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Abstract

There has been considerable interest recently in quantifying

uncertainty beyond that due to random error in meta-analyses.

This is particularly relevant to meta-analyses of observational stud-

ies, since error in estimates from these studies cannot be attributed

to a randomization mechanism. Typically, observational studies are

also subject to error due to measurement error, non-participation,

and incomplete adjustment for confounding. Errors due to these

sources are often referred to as bias. To quantify uncertainty due

to bias, researchers have proposed using “bias models” and giving

subjectively elicited probability distributions to parameters that

are not identifiable in the models.

In a typical meta-analysis, probability distributions involving

tens of parameters will have to be elicited. At the same time, the

resulting estimate and uncertainty interval of the overall (meta-

analytic) effect measure will generally be very sensitive to this

multi-dimensional subjectively-elicited distribution. To overcome

some of the problems associated with the use of such a distribu-

tion, I propose an alternative method for eliciting and quantifying

uncertainty due to bias. In the method of this thesis, the lower and

upper bounds of bias parameters are elicited instead of probabil-

ity distributions. The most extreme Bayesian posterior inference

for the target parameter of interest within the specified bounds

is sought through an algorithm. The resulting lower and upper

bounds for the target parameter of interest have interpretation of

a Robust Bayes analysis.

In this thesis, the method is applied to a meta-analysis of

childhood leukaemia and exposure to electromagnetic fields. The

method of this thesis was found to produce uncertainty intervals

that are generally more conservative in comparison with the stan-

dard approach. It is also proposed that the method be used as a

tool for sensitivity analysis, and some interesting insight is gained

from the childhood leukaemia data.

3



Contents

List of Figures 7

List of Tables 8

Abbreviations 9

Notation 10

Acknowledgement 12

1 Introduction 13

1.1 Philosophical issues in the quantification of uncertainty . . . . . . . . . . . . . . . . . . . 13

1.2 Probabilistic and non-probabilistic approaches to quantifying uncertainty . . . . . . . . . 17

1.3 Relative merits of the probabilistic and non-probabilistic approaches . . . . . . . . . . . . 20

1.4 Quantifying uncertainty in meta-analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Aim and structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Introduction to the methods used for quantifying bias in this thesis 29

2.1 A Robust Bayesian approach to quantify uncertainty . . . . . . . . . . . . . . . . . . . . 30

2.2 Finding θ̂ = F−1
θ|X,η(p) by numerical integration . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Searching through E for the most extreme θ̂ . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Quantifying uncertainty in a meta-analysis with simple bias adjustments 43

3.1 The Greenland (2005a) data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Applying the method of this thesis to the Greenland data with a simple bias model . . . 48

3.3 Meta-analysis with an informative prior on θ . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Quantifying uncertainty in meta-analyses of case-control studies subject to exposure

misclassification 58

4.1 Adjustment for error due to exposure misclassification . . . . . . . . . . . . . . . . . . . . 59

4



4.2 The Greenland meta-analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Accounting for uncertainty due to non-participation bias 83

5.1 Adjusting for non-participation bias using the pattern-mixture model . . . . . . . . . . . 84

5.2 The Greenland meta-analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Accounting for uncertainty due to incomplete control of confounding 97

6.1 Making use of what is available to adjust for bias due to measured confounders in a

meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 The Greenland meta-analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Meta-analysis with multiple bias adjustment 110

8 Discussion 114

8.1 Some issues that are not addressed in the thesis . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Issues concerning the application of the proposed method of this thesis . . . . . . . . . . 117

8.3 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendices 123

A Integration details 124

B A simple algorithm for optimization in one dimension 138

C Estimating misclassification probabilities of EMF exposure assessment 141

D Comparison of meta-analysis based on the Binomial and the Normal model 147

References 150

Supplementary material: 1 CD-ROM

5



List of Figures

2.1 Diagram to explain the use of equally-spaced abscissas in integration . . . . . . . . . . . 37

2.2 Finding the 2.5%, 50%, and 97.5%-ile of p(θ|X,η) by interpolation . . . . . . . . . . . . . 38

3.1 A standard non-Bayesian meta-analysis using the Mantel-Haenszel method. . . . . . . . . 44

3.2 A standard Bayesian FE meta-analysis model with θ ∼ N(0, 100). . . . . . . . . . . . . . 46

3.3 A standard Bayesian RE meta-analysis model with θ ∼ N(0, 100) and δs ∼ N(0, 0.15). . . 48

3.4 FE meta-analysis of Greenland data with simple bias: −0.5 ≤ ηs ≤ 0.5. . . . . . . . . . . 49

3.5 RE meta-analysis of Greenland data with simple bias: −0.5 ≤ ηs ≤ 0.5. . . . . . . . . . . 50

3.6 FE meta-analysis of Greenland data with simple bias: −0.5 ≤ ηs ≤ 0.5 for all studies

except study 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 FPIs for a FE meta-analysis in simple bias model with θ ∼ N(0, 0.5), δs = 0, as compared

to the model with θ ∼ N(0, 100), δs = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 FPIs for a RE meta-analysis in simple bias model with θ ∼ N(0, 0.5), δs = 0, as compared

to the model with θ ∼ N(0, 100), δs = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Diagram to explain why increase in data leads to wider FPIs . . . . . . . . . . . . . . . . 55

3.10 FPIs for Θ̂ in simple bias model with −2 ≤ ηs ≤ 2, θ ∼ N(0, 0.5), δs = 0 . . . . . . . . . 56

4.1 Diagram to show the cyclic coordinate method fails with constraints involving more than

one parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Locations of sens0, sens1, spec0, spec1 at max/min θ̂M , min θ̂L, and max θ̂U when studies

are considered individually, with θs ∼ N(0, 0.5) . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Locations of sens0, sens1, spec0, spec1 at max/min θ̂M , min θ̂L, and max θ̂U when studies

are considered in a meta-analysis, with θs = θ ∼ N(0, 0.5) . . . . . . . . . . . . . . . . . 71

4.4 Locations of sens0 + spec0, sens1 + spec1, sens1 − sens0, spec1 − spec0 at max/min θ̂M ,

min θ̂L, and max θ̂U when studies are considered individually, with θs ∼ N(0, 0.5) . . . . 72

4.5 Locations of sens0+spec0, sens1+spec1, sens1−sens0, spec1−spec0 at max/min θ̂M , min

θ̂L, and max θ̂U when studies are considered in a meta-analysis, with θs = θ ∼ N(0, 0.5) 72

4.6 FPIs for Θ̂ in a FE model with exposure misclassification adjustments. . . . . . . . . . . 73

4.7 FPIs for Θ̂ in a RE model with exposure misclassification adjustments . . . . . . . . . . 74

6



4.8 Change in the possible range of Θ̂ in relation to changes in sensitivity and specificity. . . 76

4.9 FPIs for the high sens, high spec scenario, comparing independent study inference to the

meta-analytic inference for θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 FPIs for the high sens, low spec scenario, comparing independent study inference to the

meta-analytic inference for θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 FPIs for non-differential misclassification, compared to the standard differential misclas-

sification constraints (4.53, 4.54) of this chapter, for a FE model . . . . . . . . . . . . . . 79

4.12 Change in the possible range of Θ̂ in relation to changes sens1 + spec1 and sens0 + spec0

in the FE meta-analysis model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.13 FPIs for the situation where 1.5 ≤ senssi + specsi ≤ 1.7, s = 1 . . . 14, i = 0, 1, in the

meta-analysis setting and in the individual study setting . . . . . . . . . . . . . . . . . . 81

5.1 FPIs for a FE model with non-participation bias as compared to a model without bias . . 91

5.2 FPIs for a RE model with non-participation bias as compared to a model without bias . 92

5.3 Location of (Q0, Q1, R0, R1) at max/min Θ̂ when studies are considered independently as

well as when considered in a meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Sensitivity analysis to changes to the Feasible Posterior Intervals of θ in response to

changes in the feasible range of R1 and R0 in the FE meta-analysis . . . . . . . . . . . . 94

5.5 Sensitivity analysis of changes to the Feasible Posterior Intervals of θ in response to

changes in the feasible range of R1/R0 in the FE meta-analysis . . . . . . . . . . . . . . . 95

6.1 FPIs of θ with simple adjustment for bias due to incomplete control of confounding in a

FE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 FPIs of θ with simple adjustment for bias due to incomplete control of confounding in a

RE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 FPIs of θ in multiple bias FE meta-analysis as compared to single-bias meta-analysis . . 113

7.2 FPIs of θ in multiple bias RE meta-analysis as compared to single-bias meta-analysis . . 113

7



List of Tables

3.1 The Greenland (2005a) childhood leukaemia-EMF data . . . . . . . . . . . . . . . . . . . 45

4.1 Prior distribution for πs0, prevalence (p0, p1), and ranges of sens and spec derived using

the Greenland (2005a) childhood leukaemia-EMF data . . . . . . . . . . . . . . . . . . . 64

4.2 Definition of low, medium, and high sensitivity and specificity . . . . . . . . . . . . . . . 76

5.1 Number and proportion of invited participants whose exposure measurements were obtained 87

5.2 Feasible range for the non-participation bias parameters in the meta-analysis example . . 90

6.1 Crude and adjusted estimates of odds ratio between EMF exposure and childhood leukaemia100

8



Abbreviations

CCM Cyclic Coordinate Method

EMF Electromagnetic Fields

EURO Estimated Uncertainty RegiOn

FE Fixed-effects (meta-analysis model)

FPCI Feasible Posterior (95%) Credible Interval

FPI FPMI and FPCI collectively

FPMI Feasible Posterior Median Interval

HEIR Honestly Estimated Ignorance Region

MCRA Monte Carlo Risk Assessment

MCSA Monte Carlo Sensitivity Analysis

OOR Observed Odds Ratio

OR Odds Ratio

RD Relative Difference

RE Random-effects (meta-analysis model)

sens sensitivity

SES Socioeconomic Status

spec specificity

TOR True Odds Ratio

UI Uncertainty Interval

9



Notation

Functions

Pr(·) The probability of . . .

Pr(·|·) The conditional probability of . . .

p(·) The probability density function of . . .

F (·) The (cumulative) density function of . . .

F−1(·) The inverse of the (cumulative) density function

E(·) The expectation of . . .

expit(x) = logit−1(x)

Lik(·) The likelihood of . . .

Odds(p) The odds transform of p, = p
1−p

logit(p) The log-odds transform of p, = log
(

p
1−p

)
logit−1(x) The inverse log-odds transform of x, = expx

1+expx

Distributions

Bin(n, p) Binomial distribution with total number n and probability p

Logistic(µ, τ) Logistic distribution with mean µ and scale parameter τ

N(µ, σ2) Normal distribution with mean µ and variance σ2

U(a, b) Uniform distribution with lower limit a and upper limit b

10



Special parameters

N Total number of participants (in the case/control group of a case-control study)

X The data (generally), often refers to the set of {Ysi, Nsi, s = 1 . . . 14, i = 0, 1}
Y Number of exposed participants (in the case/control group of a case-control study)

i (in subscript) Index denoting case/control status: i = 1: case; i = 0: control

p Misclassified probability of exposure (as opposed to π)

s (in subscript) The index of study in a meta-analysis

γs = logitπs0

δs = θs − θ, the difference between the study-specific θs and the meta-analytic θ

η The vector of parameters that are treated non-probabilistically

θ The target parameter of inference, typically a log odds ratio

ξ The vector of parameters that are treated probabilistically excluding θ

θ∗ θ subject to bias due to incomplete control of confounding

θ̂L The 2.5%-ile of the posterior distribution of θ

θ̂M The median of the posterior distribution of θ

θ̂U The 97.5%-ile of the posterior distribution of θ

Θ̂ θ̂L, θ̂M , θ̂U collectively

λs = logitπs0 + δs

π True probability of exposure (as opposed to p)

π∗ Probability of exposure subject to non-participation bias

11



Acknowledgement

First of all, I would like to thank God, who has not only given me the skills and opportunity to embark

on such a project, but also gave me numerous inspired ideas over the years, without which this thesis

could not have been written. Moreover, He has also blessed me with a variety of people over the years,

who not only helped me finish this thesis, but also mature as a person. My sincere thanks go to:

• My supervisors Lesley and Nicky, for giving me the opportunity to work on such a topical and

important project, and also devoting so much of your time to it. My thanks also for your helping

me focusing my ideas and coming out with a coherent plan for the thesis.

• Cancer Research UK, for giving me such a generous stipend

• Professor Deborah Ashby, for helping me come up with a sound PhD plan during the upgrade

exam

• Dr Mark Little, for standing in for Nicky as co-supervisor during her leave

• Ed Chan, for lending me your computer to run my optimization

• Professor Sander Greenland, for a lot of good advice at the beginning of the project

• Professor Berc Rustem, for advice on optimization

• Mr Jay Singh Sangha, for allowing me to stay on at my office after my writeup period finished

• Mom and dad, and Chee, and Shun Heng, for being there and helping me through the hard times

• All my friends, of which there are too many to name, for supporting me emotionally during this

time

12



Chapter 1

Introduction

1.1 Philosophical issues in the quantification of uncertainty

In observational epidemiologic studies, estimates of exposure effects and associations of risk factors

and disease are usually accompanied by an estimate of uncertainty. This usually takes the form of

a standard error or confidence interval or a p value. The precise interpretation of these measures of

uncertainty, however, is generally problematic (Greenland, 1990). Since observational studies involve no

randomization in the allocation of exposure or risk factors, such uncertainty measures are not generally

regarded as representing uncertainty of causal effects due to randomization as in randomized trials.

Greenland (1990) considered two alternative interpretations of these measures of uncertainty: They could

represent uncertainty due to random sampling of the study sample from an underlying large population,

or they could represent an estimate of “random error” in a “stochastic modelling” exercise. However,

he considered both of these interpretations still problematic. The first interpretation is problematic

because many if not most observational studies in epidemiology do not involve random sampling from a

large population either. Case-control studies, for example, often involve recruiting (or trying to recruit)

all available incidence cases within a particular time period in a particular catchment area. Controls

may be recruited from other hospital patients, or friends of the patients, or from a register of some

kind, often matched collectively on age and sex. Cohort studies often involve the following-up of a

convenient sample, in order to maximize sample size. Moreover, this interpretation applies only to

the quantification of uncertainty of the association between risk factors and disease, even though the

ultimate objective of the epidemiologic studies is the elucidation of causes of disease (Cochran and

Chambers, 1965; Hill, 1965). The second interpretation of estimates of uncertainty as “random error”

in a stochastic modelling exercise is problematic because in order that parameters from the stochastic

model be identifiable from the data, often strict and unrealistic assumptions are needed and it is unclear

what inference can be made from the model if the assumptions are known to be violated. Moreover,

since knowledge of the causation of disease remains incomplete at best, particularly in relation to long
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term causes, much uncertainty remains as to the correct model form as well as the correct confounders

to include in any particular situation. Thus, in practice measures of uncertainty commonly reported in

observational studies gives only very tentative information concerning the true uncertainty underlying

the relationship between the risk factor and the disease. Indeed, almost always, it under-represents the

true degree of uncertainty.

Our “true” uncertainty over a particular estimate in general goes far beyond what is reported in the

confidence interval or p-value. It encompasses our uncertainty over the accuracy of our data in reflecting

reality, uncertainty over whether we have collected the most relevant measure of exposure as well as

confounding factors, uncertainty over the representativeness of our sample, uncertainty over how well

the observed association approximates the causal relationship, and uncertainty over how well our model

approximates reality (Greenland, 2005a). It would be ideal to have a quantitative summary of all these

uncertainties and not just the standard confidence intervals and p-values. But when we consider going

about achieving this, we immediately encounter a variety of problems. Many of these are philosophical.

A brief review of some of the issues is given below.

1.1.1 The subjective nature of uncertainty

The widespread use of methods used to quantify uncertainty based on the assumption of randomization

or random sampling is in part due to the relative lack of subjective input needed for these methods. In

random sampling from a large population (population N), for example, the probability of selection for

every individual is uncontroversially 1/N and the chance of being selected is to all intents and purposes

independent. With most other kinds of uncertainty, however, no such objective standards exist. For

example, consider the probability that the observed association between our exposure and disease differs

from the true causal relationship by more than a factor of 1.5, or the extent of error resulting from the

use of our simplified model to represent reality. Uncertainty of this kind is much more difficult to

quantify objectively because it depends how well one knows about the problem at hand.

Many theorists have in fact separated uncertainty into two different kinds (Ayyub and Klir, 2006;

Ferson et al., 2004): Aleotory uncertainty refers to uncertainty that cannot be reduced or eliminated

by increasing our knowledge or further research. It is thus “inherently random”. Epistemic uncertainty

refers to all other kinds of uncertainty — uncertainty that can be reduced through further research or

understanding. Uncertainty due to randomization or random sampling would generally belong to the

aleotory category.

From a purely philosophical point of view, however, the distinction between aleotory and epistemic

uncertainty is unsatisfactory since one can argue that no uncertainty is irreducible and all uncertainty

simply reflects a lack of knowledge (e.g. De Finetti, 1974). Nonetheless, in practice, the distinction may

help us decide whether a particular kind of uncertainty can be quantified “objectively” or not. If a
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particular source of uncertainty is considered to all intents and purposes irreducible beyond a certain

limit (like the outcome of a dice throw) by most people, then this “limit” in knowledge can be presented

“objectively” as an agreed degree of uncertainty.

1.1.2 Classical, frequentist, and subjective probabilities

In practice, the following distinction also arises between aleotory and epistemic uncertainty: While the

use of probability (and probability distributions) as a measure of aleotory uncertainty has been fairly

uncontroversial, many have found it unsatisfactory to use probability to quantify epistemic uncertainty

(Ferson et al., 2004). One of the fundamental problems of using probability to quantify epistemic

uncertainty is that the “classical” definition as well as the “frequentist” definition of probability does not

lend itself to describing epistemic uncertainty. In the “classical” definition of probability, a probability

of an event E is defined as the ratio of the number of “equally probable cases” for which E is true

to the total number of possible cases. Thus, considering drawing from a well-shuffled pack of cards,

drawing the ace of spades is considered “equally probable” to drawing any other cards, and hence the

probability of drawing the ace of spade is 1/52, given 52 cards in a pack. The “frequentist” definition

defines a probability as the “long term relative frequency of an event”. Thus the probability of drawing

the ace of spade can be estimated as precisely as one wants by drawing repeatedly from the deck (with

replacement), although it can never be known exactly. These two definitions of probability are designed

to work with uncertainty arising from randomization or random sampling. They do not, however, lend

themselves to a clear interpretation when applied to epistemic uncertainty. Consider, for example,

trying to quantify the uncertainty over the height of the Statue of Liberty. If I say it has probability

0.7 of being taller than 60m, it does not really mean I have 10 cases in mind, 7 of which has a Statue of

Liberty with greater than 60m! When dealing with epistemic uncertainty, therefore, we need to embrace a

subjective definition of probability, which is simply a measure on a continuous scale from 0 to 1 reflecting

the subjective judgement of uncertainty of the person toward a particular proposition, and which also

obeys the axioms of probability (see e.g. Good, 1950; Fishburn, 1986; Greenland, 1998). Subjective

probabilities, therefore, can be expected to vary from person to person. Although in some situations,

it may be possible to define an “ideal” probability judgement (the so-called “logical probability” or

“credibility” (see e.g. Good, 1988)), this may not be possible or even desirable in all situations.

Traditionally, however, frequentist statisticians reject the whole idea of subjective probabilities alto-

gether and therefore only apply probability methods to situations where probabilities can be interpreted

in terms of long term frequency. For example, if θ represents the population mean income which we are

uncertain of, and a sample of incomes from the population is obtained, instead of quantifying uncer-

tainty over θ directly, frequentists instead quantify uncertainty over the estimated confidence interval

of θ, because uncertainty over θ is epistemic, whereas uncertainty over the confidence interval of θ is
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aleotory if the sample is random. One problem with the frequentist approach is that we are left with

no numerical summary of uncertainty over θ at all, and this can be especially problematic in a decision

making scenario, because in these situations, we generally want to assign probabilities to θ, e.g. if we

want to find the action which maximize expected utility.

1.1.3 Quantifying subjective uncertainty

If we embrace a subjective interpretation of probability, we have the option of quantifying uncertainty

over our parameters of interest directly. The use of Bayes’ Theorem then allows us to “update” our

probability judgement in the light of data (see e.g. Berger, 1985; Robert, 2007; Gelman et al., 2004).

Thus we have a prior probability p(E) over some proposition E, reflecting our uncertainty over the

truth of E, before we observe some data X. Our probability judgement after seeing X is called the

posterior probability, and is usually denoted p(E|X). The change from p(E) to p(E|X) may then be

seen as a gain in understanding. This Bayesian method of quantifying as well as updating uncertainty

fits well with decision making, since p(E|X) can be used directly for that purpose. Moreover, De Finetti

(1974) proved that representing uncertainty in terms of probability is optimal in that if we were to

gamble based on any other numerical measure of uncertainty that is not a probability (in that they do

not conform to the probability axioms), it is possible to find a situation where we can be guaranteed to

make a loss simply by examining our judgements.

However, apart from the problem that it is by its very nature subjective, there is another major

limitation with the use of subjective probability. A probability is by definition a precise number on a

real scale, whereas humans do not reason in precise numbers. For example, a precise characterization of a

person’s probability on a continuous scale involves making an infinite number of probability judgements

(e.g. p(θ = 0.5), p(θ = 0.500001), p(θ = 0.500002), etc.). In practice, we either have to discretize the

space into a manageable number of categories or else use a mathematical equation to describe what we

believe, in which case probabilities are expressed as integrals of a probability distribution function. The

problem that this creates escalates when the number of parameters increases, since then we have to

consider joint distributions of parameters unless there are good reasons why our subjective judgement

of probabilities are independent. These measures mean that we necessarily sacrifice a degree of accuracy

and it must be hoped that such loss of accuracies does not affect our results too much.

As a result of these practical problems with probability as a representation of uncertainty, there has

been much research on overcoming this problem. The use of hierarchical prior distributions is likely

to reduce the inaccuracy arising when assigning probability distributions to a large number of similar

parameters (Good, 1980; Berger, 1985). Koopman (1940) introduced some calculus for working with

imprecise probabilities, which are interval-valued probabilities (i.e., instead of being precise numbers,

each probability has a lower and and upper limit). The Robust Bayes approach (Berger, 1984, 1990)
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addresses the difficulties in specifying precise prior probability distributions to parameters by allowing

the consideration of classes of distributions. Other authors avoided probabilistic measures of uncertainty

altogether and introduced other measures such as “possibility” (Zadeh, 1978), and proposed axioms and

rules for working with these measures. In this thesis, I examine the use of a combined probabilistic/non-

probabilistic approach to quantifying uncertainty, which is also a kind of Robust Bayes analysis.

1.2 Probabilistic and non-probabilistic approaches to quanti-

fying uncertainty

Because quantifying uncertainty with the assumption of some underlying randomization or random

sampling mechanisms is often not satisfactory, increasingly researchers are looking toward statistical

techniques that try to quantify other sources of errors too. In the epidemiologic literature, errors in

estimation that result from model assumptions not being met in reality is often referred to as bias,

since estimators based on the wrong assumptions are believed to produce biased estimates of the effect

of interest (Greenland, 2005a; Greenland and Lash, 2008; Lash et al., 2009). Statistical models or

techniques that aim to quantify or estimate the effect of bias on the target estimate are often referred to

as bias models. Bias models have been used to quantify bias due to measurement error (e.g. Tenenbein,

1970; Hui and Walter, 1980; Selen, 1986; Espeland and Hui, 1987; Armstrong et al., 1989; Greenland,

1989; Rosner et al., 1989; Carroll et al., 1995; Paulino et al., 2003; Greenland, 2008), unmeasured

confounding (e.g. Rosenbaum and Rubin, 1983b; Robins, 1988; Angrist et al., 1996; Balke and Pearl,

1997; Lin et al., 1998; Tian and Pearl, 2000; MacLehose et al., 2005; Sturmer et al., 2005; Gustafson et al.,

2010), and non-participation bias (Hansen and Hurwitz, 1946; Politz and Simmons, 1949; Little, 1982,

1993; Copas and Li, 1997; Geneletti et al., 2009). Generally speaking these techniques involve expanding

standard statistical models to involve additional parameters that characterize the biases (c.f. Gustafson,

2005). The expansion of the model will generally cause the parameter of interest to be unidentifiable from

the existing data (i.e. it will not be possible to find a consistent estimator of the parameter of interest).

However, this can be addressed in one of several ways. One strategy is to introduce additional data

to help us identify these parameters. Two such techniques have received particular attention in recent

years: The Hui-Walter paradigm (Hui and Walter, 1980) allows the use of more than one independent

measurements of an exposure to identify bias due to misclassification; the use of “instrumental variables”

(variables that are related to the exposure but are otherwise unlikely to be associated with the disease in

any other ways) can be used to reduce bias due to confounding from unmeasured confounders (Angrist

et al., 1996). However, these models generally still rely on certain assumptions, which may or may not

be met in practice and there is often no way of checking. For example, the Hui-Walter paradigm requires

that misclassification errors are independent between the two or more exposure measurements, as well as
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the assumption that misclassification probabilities do not differ between cases and controls (the diseased

and the healthy). The use of “instrumental variables” relies on the assumption that the instrumental

variable is not otherwise related to the disease other than through the exposure. In any case, these

techniques are not applicable in the absence of “additional data”. An alternative strategy to deal with

these expanded models with unidentifiable parameters is to carry out sensitivity analyses (Rosenbaum,

2005). In sensitivity analyses, some of the parameters of the models are given assumed values, in order

that the parameter of interest can be identified by the data. These assumed values are varied and the

researcher examines how sensitive the estimates of the target parameter are to changes in the assumed

values. Sensitivity analyses have a relatively long history of application in epidemiology. One commonly

cited early example is the investigation of Cornfield et al. (1959) to find out if the observed association

between lung cancer and smoking might be explained by an unknown binary confounder. However,

one major limitation of traditional sensitivity analyses is that it is difficult to deal with a model with

many unidentifiable parameters, since in such a case there are very many scenarios (assumed values)

that need to be investigated. Even if it is computationally feasible to obtain estimates for all of the

scenarios, it may be difficult to derive a summary measure of uncertainty from all the different estimates.

Several strategies can be adopted to overcome these limitations in traditional sensitivity analyses. Here

I describe a non-probabilistic approach and a probabilistic approach in the following two sections, before

discussing their relative advantages. The strategy to be adopted in this thesis will involve ideas from

both approaches.

1.2.1 A non-probabilistic approach to draw inference in models with uniden-

tifiable parameters

To illustrate these different approaches, I now introduce some notation. Let us assume that we are

interested in estimating the parameter θ, which is related to the data X, possibly through a number of

other parameters η = {η1, η2, . . . , ηn}, i.e.:

X ∼ p(θ,η) (1.1)

where p(θ,η) denotes an arbitrary probability distribution involving parameters θ,η. If θ is identifiable,

it means there is a one-to-one correspondence between the function p(θ,η) and the parameters (θ,η),

and hence observing the distribution of X (which gives us an estimate of p(θ,η)) allows us to make

inference to θ. However, frequently, bias models are not identifiable, although it is often the case that

if η or a subset of η are known then θ becomes identifiable given X. If this is the case, we can form an

estimator of θ of the form:

θ̂ = f(X,ηU) (1.2)
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where ηU ⊆ η. One non-probabilistic approach is to define ranges E for our unknown parameters ηU

and observe the range of possible θ̂ when ηU takes values within this range, i.e., we want to find:

[min
ηU∈E

θ̂,max
ηU∈E

θ̂] (1.3)

Intervals derived this way have been called Honestly Estimated Ignorance Regions (HEIRs) by Vanstee-

landt et al. (2006). This approach has been used for estimating the prevalence of disease or the pro-

portion of a particular response from surveys with missing data (Hansen and Hurwitz, 1946; Birnbaum

and Sirken, 1950). It has also been applied to the causal inference literature to obtain bounds to causal

risk differences, causal risk ratios, and causal odds ratios (Balke and Pearl, 1997; Chiba et al., 2007;

MacLehose et al., 2005; VanderWeele, 2008; Kuroki et al., 2010).

1.2.2 A probabilistic approach to draw inference in models with unidenti-

fiable parameters

A commonly used probabilistic approach to requires us to specify a probability distribution p(ηU) to ηU .

Within this approach, there are two variants: Monte Carlo Sensitivity Analysis (MCSA) and Bayesian.

In MCSA, we sample from p(ηU) and for each sample ηU,i, we obtain θ̂i = f(X,ηU,i). The mean or

median of θ̂i over the sample can then form an estimate for θ, and an uncertainty interval obtained by,

e.g., the 2.5% and 97.5%-ile. MCSA has been used mainly in the risk assessment literature, where it is

also referred to as Monte Carlo Risk Assessment (MCRA) (Greenland, 2001). In general, the uncertainty

interval derived from MCSA may be difficult to interpret. Unlike in the non-probabilistic approach, they

certainly do not correspond to limits of estimates. They also do not have the interpretation of posterior

intervals from a Bayesian analysis, although with a minor modification, they may approximate them in

certain situations (Greenland, 2005a).

For the Bayesian approach, we not only need to assign a prior distribution to ηU , but to the entire

set η as well as to θ, possibly as a joint distribution: p(θ,η). Given the likelihood (i.e. p(X|θ,η)),

p(θ,η) implies the posterior distribution p(θ|X) through Bayes’ theorem, and an estimate of θ can be

obtained by noting its median or mean and an uncertainty interval obtained through the 2.5%, 97.5%-ile.

Examples of the Bayesian approach to inference in unidentifiable models in the literature include e.g.

Gustafson et al. (2001), McCandless et al. (2007), Stamey et al. (2008).
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1.3 Relative merits of the probabilistic and non-probabilistic

approaches

The probabilistic and the non-probabilistic approaches as described in the previous section each have

their merits and limitations, which are discussed below.

1.3.1 Advantages of the non-probabilistic over the probabilistic approach

1. A natural definition for a “conservativeness” of uncertainty intervals From the very

definition of the lower and upper bounds of θ̂ given in (1.3), it is clear that if we have parameter space F
for ηU that is a subset of E , i.e. F ⊆ E , then necessarily, the lower limit of the possible θ̂ within F must

be greater than or equal to that within E , and the upper limit under F must be less than or equal to

that under E . Hence, we have a natural definition for the “conservativeness” of the uncertainty intervals

(UI): If F is a subset of E , then the UI derived using F as limits for ηU is less conservative than those

derived with E as limits. On the other hand, defining conservativeness of probability distributions p(ηU)

is more difficult since the relationship between p(ηU) and the posterior median/credible interval limits

of θ can be complicated. The possibility to compare “conservativeness” of intervals simply by comparing

the limits of parameter space in the non-probabilistic approach helps resolve one of the fundamental

problems in inference with subjective inputs. A reader who disagrees with the limits given to ηU used

in a particular analysis can check if his/her limits are within those used by the researcher. If so, he/she

can be sure that his/her UI will also fall within the researcher’s reported UI.

2. Limits are easier to elicit than probability distributions For a single uncertain parameter,

eliciting upper and lower limits require the elicitation of only 2 numbers. A probability distribution, on

the other hand, is an infinite dimension object, and in practice can only be elicited either by discretizing

or by adoption of a mathematical form. This can result in inaccuracies of the posterior distribution

(Berger, 1984). The problem is made more complicated when the number of unknown parameters

increases. Often, we need to make the assumption that our probabilistic judgement on the parameters

are independent of one another, simply because finding a suitable distribution to model the dependence

among several parameters can be extremely difficult. Eliciting limits for multiple parameters, on the

other hand, presents few additional difficulties above the one parameter case.

3. It does not suffer from complications due to different possibilities of parameterization

In many statistical models, there are multiple ways of assigning prior distributions to the parameters.
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For example, in a simple case-control study model, we have:

Yi ∼ Bin(Ni, πi) i = 0, 1 (1.4)

logitπ1 = logitπ0 + β (1.5)

where Y1 and N1 denote the number of exposed and the total number of participants among the cases

and Y0 and N0 the same among the controls. If we want to assign prior distributions to the parameters,

it is not always clear whether we should assign to π0 and π1, or π0 and β, or π1 and β. This has caused

concern in some Bayesian models in the literature (e.g. Rice, 2005). Moreover, sometimes we may have

prior information on all three parameters π0, π1, and β. However, it may be difficult to specify a prior

distribution that satisfy all of our beliefs. For example, say we want π0 and π1 to have a marginal

distribution of Uniform(0, 0.2), and β to have a marginal distribution of Normal(0, 1). Assigning a

Uniform(0, 0.2) prior to π0 and an independent normal distribution to β will not lead to a prior of

Uniform(0, 0.2) for π1. Indeed, finding a joint distribution that does have these marginals can be a

challenging mathematical problem.

The non-probabilistic approach, however, avoids these problems. It is no contradiction to require,

for example, that 0 ≤ π0 ≤ 0.2, 0 ≤ π1 ≤ 0.2, and −2 ≤ β ≤ 2.

1.3.2 Disadvantages of the non-probabilistic approach compared to the

probabilistic approach

1. No point estimate available Whereas in probabilistic approaches, one can use the median or

mean of the distribution of θ̂ (in MCSA) or the posterior distribution p(θ|X) (in Bayesian analysis) as

a point estimate of θ, there is no intuitive point estimate when we use the non-probabilistic approach.

2. Difficulties in eliciting limits In some cases, bounds for parameters are fairly uncontroversial.

For example, bounds for prevalences and proportions must be between 0 and 1. However, the use of

such bounds often lead to uncertainty bounds for θ̂ that are meaninglessly wide. In practice, we need

tighter bounds that are based on expert knowledge. Still, expert knowledge on limits of the possible

range of parameter values might be hard to elicit, because elicitation on tails of distributions has proved

difficult and unreliable (Garthwaite et al., 2005).

3. Intervals tend to be overly conservative The non-probabilistic approach examines the extreme

possible inference. Often, these can be highly unrealistic situations, and thus lead to very wide and

uninformative uncertainty intervals. This problem exacerbates when there are more parameters, because

unless there are obvious deterministic relations between parameters, it becomes more and more unlikely

that parameters are all at their extreme at the same time.

21



1.3.3 Combining probabilistic and non-probabilistic approaches

Given the trade-offs between probabilistic and non-probabilistic approaches to quantifying uncertainty

over unknown parameters, it may not be surprising that many have combined both approaches in

tackling a particular problem. In the simplest case, we might combine a non-probabilistic approach to

quantifying uncertain parameters in a model with a probabilistic approach to quantifying uncertainty

due to random sampling. In our notation θ̂ is merely an estimate of θ. The remaining error between θ̂

and θ is assumed to be due to sampling error:

θ̂ = θ + δ(η) (1.6)

δ(η) ∼ f(µ(η), σ2(η)) (1.7)

where δ(η) is used to denote the deviance between θ and its estimate, and f(a, b) denotes a general

distribution with mean a and variance b. Often, given a particular set of unknown parameter values ηU ,

we can derive not only θ̂, but also a confidence interval (θ̂L(ηU), θ̂U(ηU)) for θ. Given this confidence

interval, we can quantify the uncertainty in θ due to both uncertainty in η and random sampling δ(η).

Hence, we derive an overall uncertainty interval as:

[min
ηU∈E

θ̂L,max
ηU∈E

θ̂U ] (1.8)

(Note that the difference between (1.8) and (1.3) is in the subscript of θ̂.) Vansteelandt et al. (2006)

provided some theories on coverage for uncertainty intervals derived in this way and called them Esti-

mated Uncertainty RegiOns (EUROs). It is possible to use the same principle to construct uncertainty

for estimates for which some parameters within ηU are quantified via non-probabilistic means and some

parameters are quantified by probabilistic means.

There are other ways where non-probabilistic and probabilistic approaches can be combined in quanti-

fying uncertainty. I mentioned in the above subsection that one of the difficulties in the non-probabilistic

approach may be the specifying of limits to parameters’ ranges. It has been proposed in the literature

that this problem be overcome by assigning probabilistic distributions to the limits (Sahinidis, 2004).

Thus, instead of finding limits to θ̂ subject to the straightforward constraint that ηU ∈ E , the constraint

becomes Pr((ηU ∈ E) > 1 − ε), i.e. the probability that the constraint is violated must be less than a

certain proportion ε. There have been few, if any, applications of this kind of approach in epidemiology,

although techniques for finding solutions to these problems are developed in stochastic programming

literature (Prekopa, 1995).
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1.4 Quantifying uncertainty in meta-analyses

The subject of this thesis is the quantification of uncertainty in meta-analyses of observational studies.

Meta-analyses are studies which combine estimates collected across different studies with the aim of

synthesizing information and producing a summary estimate of a particular effect of interest (Deeks et al.,

2001; Borenstein et al., 2009). In the backdrop of the Evidence Based Practice movement, meta-analysis

and quantitative synthesis have been promoted as the best source of information in informing policies

(Greenhalgh, 1997; Cordray and Morphy, 2009). It is therefore arguably more important that uncertainty

in estimates be quantified reliably in meta-analyses than in single studies. Traditionally, however,

methods in meta-analyses make the same assumptions as in most single studies — that uncertainty is

due entirely to the individual studies’ “random” error. Furthermore, the extent of this “random” error

is generally quantified by the reported standard error or confidence interval associated with the study-

specific estimate. In the case of a meta-analysis of randomized controlled trials, this is justified to the

extent that “random” error reflects error due to randomization of the individual trials. Although meta-

analyses of observational studies are widespread, the statistical underpinning of modelling study-specific

error as “random” is far weaker (Stroup and Thacker, 2005). The standard practice of using standard

errors and confidence intervals for quantifying uncertainty is usually far from satisfactory, because of

the numerous “biases” that afflict observational studies, as noted in the previous section (Greenland,

2005a).

Although there have been numerous proposals to adjust for biases in the epidemiologic literature

(see section 1.2), it was not until relatively recently that systematic adjustment for biases was proposed

for use in a meta-analysis (Wolpert and Mengersen, 2004; Greenland, 2005a; Greenland and Kheifets,

2006; Turner et al., 2009; Welton et al., 2009; Thompson et al., 2011).1 These meta-analyses combine

study-specific estimates or raw data (in the case where the estimates were derived from simple 2-by-2

cross tabulation of counts) with subjectively elicited, study-specific, information on the likely extent

of biases, to obtain “bias-adjusted” estimates and uncertainty intervals for a meta-analytic (overall)

estimate of the effect of interest.2 A suitable model is needed to combine the two.

In the choice of such a model, there is generally a trade-off between model complexity and availability

of information. To keep the model simple, we can assume all biases are additive or multiplicative on the

1Previously, biases in meta-analyses were mainly addressed qualitatively, although sometimes quantitatively summa-
rized as a “quality score”. However, the use of this score in deriving statistical estimates has been severely criticized
(Greenland, 1994)

2In the literature, attempts to quantitatively combine information from a variety of sources for the purpose of estimating
a particular effect of interest is sometimes called evidence synthesis (Ades and Sutton, 2006; Turner et al., 2009). However,
here I distinguish between the attempts to estimate an effect of interest through a “chain of evidence” (e.g. Ades, 2003;
Molitor et al., 2009) and those that do so through a meta-analysis. The former estimates a parameter θ by formulating
it as a function of other parameters, e.g. θ = f(a, b, c), and different sources of information may contribute to estimation
by providing estimates for one or more components of the function, e.g. Study 1 is used for estimating a and study 2 for
b and c, etc. This differs from a meta-analysis in which all studies estimate θ, though with different biases and error.
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parameter of interest. For example, if θs is the parameter of interest for study s, we assume our biased

estimate θbiased
s is:

θbiased
s = θs + cs (1.9)

or

θbiased
s = ksθs (1.10)

and ask experts to give their subjective estimates of ks or cs either as interval estimates or as a probability

distribution. When considering more than one source of bias, we simply chain together these different

biases to form a more elaborate equation such as:

θbiased
s = k(K)

s (· · · (k(2)
s (k(1)

s θs + c(11)
s + c(12)

s + · · · ) + c(21)
s + · · · ) · · · ) (1.11)

This is essentially the approach taken by Turner et al. (2009) and Thompson et al. (2011). The partic-

ular difficulty of this approach, however, is in the elicitation of suitable values or distributions for the

parameters cs and ks — there can be very little information to go by. In rare circumstances, however,

one can employ estimates of cs based on so-called meta-epidemiologic studies (Welton et al., 2009),

which aimed to estimate biases by pooling over a large number of meta-analyses.

On the other hand, one can employ more elaborate bias models relating the true parameter value

to the data (and/or to the biased parameters). These are used in this thesis, as well as in Wolpert

and Mengersen (2004), Greenland (2005a) and Greenland and Kheifets (2006). One example is the

relationship between the true odds ratio (TOR) and the observed odds ratio (OOR) in a case-control

study with exposure misclassification, which are related by the formulae:

Yi ∼ Bin(Ni, pi) i = 0, 1 (1.12)

pi = πisensi + (1− πi)(1− speci) (1.13)

TOR =
π1(1− π0)

π0(1− π1)
(1.14)

OOR =
p1(1− p0)

p0(1− p1)
(1.15)

Here, Y1 and N1 denote the number of exposed and the total number of cases and Y0 and N0 denote the

number of exposed and total number of controls. In this approach, we require experts to elicit intervals

or prior distributions for the parameters sensi and speci (denoting the sensitivity and specificity respec-

tively, see equations 4.3 and 4.4 of this thesis). Based on these elicited distributions/values, we then

derive an interval/posterior distribution of the TOR, or alternatively, the bias factor TOR/OOR. The

advantage of this approach is that there is often more information to go by for such specific parameters

as sens and spec. However, the model also becomes more complicated. What is a single (exposure
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misclassification) bias is now modeled by 6 parameters (π1, π0, sens1, sens0, spec1, spec0). Specification

of a (joint) prior distribution true to the experts’ belief can be a considerable challenge. Moreover, this

approach has only been applied in situations where the outcome is categorical and where the analyses

do not depend critically on the adjustment of confounders (Wolpert and Mengersen, 2004; Greenland,

2005a; Greenland and Kheifets, 2006). While a proposal is made in chapter 6 of this thesis to extend its

applicability to the case where confounders are adjusted for, it appears more research is needed before

researchers can confidently apply these techniques to more general meta-analysis situations.

1.4.1 Critique of existing attempts to quantifying uncertainty due to biases

in meta-analyses

So far, all previous attempts to incorporate bias adjustment in meta-analysis (Wolpert and Mengersen,

2004; Greenland, 2005a; Greenland and Kheifets, 2006; Welton et al., 2009; Turner et al., 2009; Thomp-

son et al., 2011) are essentially probabilistic and subjectivist, that is, they have used prior distributions

to quantify subjective uncertainty over various perceived biases. This means that one of the main prob-

lems is that if the readers do not agree with the prior distributions that are used for the bias parameters,

it is unsure what conclusions they can draw from the results. The authors in the above papers recog-

nized this potential problem and did not recommend that one presents the results from only one set

of prior distributions. Turner et al. reported the results from prior distributions elicited from several

experts and both Greenland (2005a) and Greenland and Kheifets (2006) performed tabular sensitivity

analyses (TSA) to see how sensitive results are to disturbance in some of the parameters. Nonetheless,

given that the number of bias parameters in both cases can easily be over 100, it is understandable that

many readers can still be left unsatisfied by the very limited number of scenarios that are covered in the

sensitivity analyses, as some of the discussants appeared to be in Greenland’s (2005a) paper.

Several authors have suggested that disagreement over prior distributions are likely to be less ma-

terial than disagreement over which exact value the unknown parameters should take (Good, 1962;

Berger, 1985; O’Hagan and Oakley, 2004). This, however, does not mean that disagreement over prior

distributions are always immaterial. For example, the standard analysis in Greenland and Kheifets

(2006) leads to a posterior median and 95% credible interval for the average study-specific odds ratio of

1.55 (0.40, 4.79).3 This is based on a N(0, 0.5) prior distribution for the parameter αTY , which is the

log odds ratio between true exposure and disease among those who are observed to be unexposed. If

this prior distribution instead has double the variance, the posterior median and 95% credible interval

becomes 2.46 (0.38, 9.16). This is a result of the change of only one out of over 100 parameters used in

3This posterior odds ratio is based on a reanalysis of the data using MCMC in WinBUGS 1.4 (Lunn et al., 2000), as
are all other results in this section. Greenland and Kheifets in fact used an approximation strategy for the estimation of
this posterior distribution (pers. comm.). Thus, their reported posterior odds ratio and 95% posterior interval for the
standard analysis was given as 2.8 (0.97, 8.4) in Table 3. The difference between their results and what I computed is
believed to be due to inaccuracies in the approximation strategy.
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this study.

Moreover, sometimes it may be the case that while differences in prior distributions lead to little

difference in results when only a single study was considered, the same differences, when applied to all

studies in a meta-analysis, leads to considerably greater difference in the combined (pooled) estimate

than when only one study is considered. Again, considering the Greenland and Kheifets (2006) dataset,

the posterior median and 95% credible interval of the study-specific odds ratio for the Coghill et al.

(1996) study was 0.85 (0.19, 3.69), if this study was considered independently of other studies, using the

standard setup for the bias parameters. When the mean of one of its parameters (αTX) (which represents

the ratio of true-positive odds to false-positive odds4), is changed from ln 16 to ln 4 (indicating a belief

for greater possible misclassification error), the posterior distribution for the odds ratio for this study did

not change materially – it still had median 0.85 and similar 95% credible interval (0.20, 3.61). However,

in a meta-analysis of 15 studies, changing the mean of the prior distribution for αTX from ln 16 to ln 4

for all studies simultaneously changes the posterior median and 95% credible interval of the average

study-specific odds ratio from 1.55 (0.40, 4.79) to 1.18 (0.31, 4.31), reflecting a noticeable movement of

the distribution towards 0.

The examples above considered disagreement over prior distribution. Furthermore, there can be

disagreement over modelling strategies. I noted above that there is a trade-off between model simplicity

and the availability of information. In the literature, many models have been developed for adjustment of

biases due to exposure misclassification, non-participation bias, and incomplete control of confounding.

Many of these models will also be applicable in a meta-analysis setting. It may not always be clear which

model enables us to best represent our uncertainty. Consider, again, the Greenland and Kheifets (2006)

model. The model the authors used for exposure misclassification was a loglinear model, described also

in Greenland (2009b), and parameterized in terms of true-positive to false positive odds, ratio of case

vs. control receiver operator characteristics, etc. Another possible model for exposure misclassification

is described in chapter 4 of this thesis, and is parameterized in terms of sensitivity and specificity of the

exposure measure in the cases and controls. Some researchers may prefer one model over another, but

it does not mean that their preferred method is necessarily the most suitable.

Another problem concerns the correlation of the bias parameters in such a meta-analysis. When so

many bias parameters are involved, it is natural to want to simplify analyses and assume that the prior

distribution of the parameters are uncorrelated. However, bias judgement is hardly uncorrelated. If one’s

judgement for a particular bias is wrong in one direction for one study, it is likely to be wrong in the same

direction for another study also. Furthermore, treating bias parameters as independent means that our

error in judgement is essentially “random”, and has all the advantages conferred by true randomization.

For example, it means that if we make enough estimates, the average of our estimates will have no

uncertainty left. This clearly is not reasonable in the context of subjectively elicited bias estimates.

4i.e. Odds(Truly exposed|Observed exposed)/Odds(Truly exposed|Observed unexposed)
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Greenland (2005a) and Greenland and Kheifets (2006) recognized this and their bias parameters are

correlated, to different extent, across studies. However, in general correlation of judgement is difficult

to elicit. Again, results can be sensitive to the correlation structure that is assumed, leading to more

problems in interpreting the results.

1.5 Aim and structure of thesis

The aim of this thesis is to explore the use of a new method – a combined probabilistic/non-probabilistic

approach to quantifying uncertainty in a meta-analytic setting. In this approach, instead of giving bias

parameters subjectively elicited probability distribution as in the previous approaches, we instead give

these parameters feasible ranges, and we seek the most extreme inference for our target parameter θ

that is possible within these subjectively specified ranges. As noted before, a foreseeable advantage of

this approach is that there is a natural definition of conservativeness – feasible regions that are wider

are always more “conservative” in that they always lead to an uncertainty region for θ that is wider.

Furthermore, there is no need to specify a joint distribution for the bias parameters. It is shown that

extreme inference (as defined in the next chapter) is always achieved with prior distributions with point

mass at specific values of the bias parameters. In addition to being an alternative method for quantify-

ing uncertainty, the method can also be exploited as a useful tool for carrying out sensitivity analyses,

particularly in situations where a large number of unknown parameters are involved. Traditional sen-

sitivity analyses require us to allocate precise values to the unknown parameters, and therefore only a

limited number of scenarios can be investigated and reported at any one time. The method introduced

in this thesis allows us to specify feasible ranges to the unknown parameters, thereby investigating the

sensitivity of the analyses to a wide range of parameter values at the same time.

Throughout this thesis, I illustrate the techniques involved in this method and explore its strengths

and weaknesses by applying it to Greenland’s (2005a) meta-analysis of 14 case-control studies, the data

of which are available directly from the paper. I also consider several different possible bias models

for each type of bias considered, although I have chosen to focus on those that enable the best use of

information that is typically available in a meta-analysis setting, which are not necessarily the ones that

Greenland employed.

The structure of the thesis is as follows. Chapter 2 gives the theory and the technical details of the

methods and algorithms used. Chapter 3 applies the method to a meta-analysis with simple adjustment

of bias. Chapter 4 applies the method to a meta-analysis with exposure misclassification modelling.

Chapter 5 considers non-participation bias. Chapter 6 considers bias due to incomplete control of

confounding. Chapter 7 considers a model that models exposure misclassification, non-participation

bias, and incomplete control of confounding at the same time. The findings are discussed in chapter 8

together with recommendation for future research work.
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Summary:

• Although observational studies typically do not involve randomization or random sampling, stan-

dard statistical practice is to quantify uncertainty in effect estimates using techniques developed

for randomized experiments. This is partly because uncertainty in such estimates is inherently

subjective and the use of subjective probabilities for the quantification of uncertainty has been

controversial.

• Uncertainty can be separated into two types – aleatory and epistemic, where the former refers to

uncertainty that can generally be considered random and the latter to all other kinds of uncertainty.

The use of probabilistic methods is uncontroversial for the quantification of aleatory uncertainty,

but not so for epistemic uncertainty.

• This chapter discusses a simple non-probabilistic method and a probabilistic method for quanti-

fying uncertainty and their respective advantages over one another. It then outlines a combined

probabilistic/non-probabilistic approach which is an amalgam of the two.

• There has been increasing interest in quantifying study-specific biases in meta-analyses. Prob-

abilistic approaches have been used in all such meta-analyses. These meta-analyses involve an

enormous amount of subjective input in terms of prior distributions of bias parameters, and infer-

ence can be very sensitive to these prior distributions.

• The aim of the study is to propose, apply, and examine the use of a combined non-

probabilistic/probabilistic approach to quantifying uncertainty due to biases in meta-analysis.
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Chapter 2

Introduction to the methods used for

quantifying bias in this thesis

In the standard approach to meta-analysis, we assume that the study-specific estimate of effect θ̂s is

distributed with mean θs and variance σ̂2
s , with the goal of estimating θ, where

θs = θ (2.1)

in a fixed-effects model and

θs ∼ p(θ) (2.2)

in a random-effects model, with p(θ) denoting an arbitrary distribution with mean θ (e.g. Petitti, 2000;

Deeks et al., 2001; Borenstein et al., 2009). While this formulation is general in that it does not matter

what effect measure is being used and whether the effect estimate has been adjusted for confounders,

it is arguably sub-optimal in the case of a meta-analysis of studies with binary outcomes and exposure

with no adjustment for confounders (Stijnen et al., 2010), since in such a scenario, the raw data are

typically available, and we can model them using the Binomial distribution. For a meta-analysis of

case-control studies without adjustment for confounders, the (retrospective) Binomial model would be:

Ysi ∼ Bin(Nsi, πsi) (2.3)

logitπs1 = logitπs0 + θs (2.4)

where Ys1 denote the number of exposed cases and Ys0 the number of exposed controls in study s.

Nsi represent the total number of cases and controls in study s, for i = 1, 0. πsi is the corresponding

prevalence of exposure in the population from which the participants are sampled and exp θs is the odds

ratio of disease given exposure. In this thesis, Model (2.3-2.4) serves as the basic meta-analysis model

upon which extensions are made to allow for study-specific biases. Although the model in this form
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does not appear applicable in a meta-analysis of binary data with adjustment of measured covariates, a

proposal is made in chapter 6 to overcome this limitation.

Throughout the thesis, the way various study-specific biases are accounted for is by replacing one

of the parameters in (2.3) and (2.4) with its “biased version”, which is linked to the “true version” by

some deterministic formula. For example, when accounting for exposure misclassification, I replace πsi

with psi in (2.3), with psi = f(πsi,η
miscl), where ηmiscl are the bias parameters associated with exposure

misclassification. When accounting for non-participation bias, I replace πsi with π∗si in (2.3), where

π∗si = f(πsi,η
sel). When accounting for bias due to incomplete control of confounding, I replace θs in

(2.4) with θ∗s , where θ∗s = f(θs,η
conf). The details of the formulae used are given in chapters 4, 5, and 6.

In addition, I shall be giving feasible ranges (or regions) to the parameters ηmiscl, ηsel, ηconf, and seek

the maximum and minimum estimate or uncertainty range for θ given these ranges.

2.1 A Robust Bayesian approach to quantify uncertainty

The approach of this thesis is thus similar to Vansteelandt et al. (2006). Vansteelandt et al. defined the

Honestly Estimated Ignorance Region (HEIR) as

[min
η∈E

θ̃,max
η∈E

θ̃] (2.5)

where θ̃ represents an estimate of θ and E represents the feasible region of η. They also defined the

Estimated Uncertainty RegiOn (EURO) as:

[min
η∈E

θ̃L,max
η∈E

θ̃U ] (2.6)

where θ̃L and θ̃U represent limits of particular confidence intervals. The approach of this thesis uses

a Bayesian estimate of θ and a Bayesian posterior interval limits for θL and θU instead of confidence

intervals limits. This is because in addition to specifying a feasible region for the bias parameters η,

in many situations it would be useful to be able to specify subjectively-elicited prior distributions to θ

as well as other nuisance parameters which are not part of η. An example of this is given in section

4.2.1. Furthermore, Bayesian procedures can often be made to have good frequentist properties such as

consistency of estimates and good coverage of posterior intervals (Bayarri and Berger, 2004). In the rest

of this thesis, I denote by θ̂M the median of the posterior distribution of θ, and θ̂L and θ̂U are the 2.5%

and 97.5% limits of the posterior distribution. I also define the feasible range of the posterior median

as:

Feasible Posterior Median Interval = FPMI = [min θ̂M ,max θ̂M ] (2.7)
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and the feasible range of the posterior 95% credible interval as:

Feasible Posterior Credible Interval = FPCI = [min θ̂L,max θ̂U ] (2.8)

Moreover, I use Θ̂ to denote (θ̂M , θ̂L, θ̂U) generally, when the discussion applies equally to all of θ̂M , θ̂L,

and θ̂U , and Feasible Posterior Interval (FPI) to denote FPMI and FPCI generally.

It can be noted that the FPIs defined above can have the interpretation of uncertainty intervals

from a Robust Bayes analysis (Berger, 1990). In Robust Bayes analysis, we seek to summarize the

many possible posterior inferences arising from a class of prior distributions. Denote by η the set of

parameters whose uncertainty are quantified non-probabilistically, and (θ, ξ) those whose uncertainty are

quantified probabilistically, where θ is the parameter of interest and ξ are other nuisance parameters (not

belonging to η). Seeking the minimum and maximum of θ̂M can be thought of as seeking the minimum

and maximum posterior median among the class of prior distributions which have zero density outside

the feasible region of η. To see this, note that the posterior density of θ can be written as:

p(θ|X) =

∫
η

∫
ξ

p(θ, ξ,η|X)dξdη (2.9)

Denoting the cumulative distribution of θ given X by Fθ|X : θ → p, which maps θ onto the percentiles

p, we have:

Fθ|X(θ) =

θ∫
θ′=−∞

∫
η

∫
ξ

p(θ′, ξ,η|X)dξdηdθ′ (2.10)

=

θ∫
θ′=−∞

∫
η

∫
ξ

p(X|θ′, ξ,η)p(θ′, ξ)p(η)p(X|η)

p(X|η)p(X)
dξdηdθ′ (by Bayes’ Theorem) (2.11)

=

∫
η

θ∫
θ′=−∞

p(θ′|X,η)dθp(η|X)dη (2.12)

=

∫
η

Fθ|X,η(θ)p(η|X)dη (2.13)

Hence, we see that the cumulative distribution of θ given X is a weighted average of the cumulative

distribution of θ given X and η. Now, if our prior distribution of η belongs to a class that has zero

mass for values outside the feasible region of η, denoted E , i.e.:

p(η) = 0 ∀η /∈ E
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then

p(η|X) = 0 ∀η /∈ E

and because averages cannot be greater than the maximum or less than the minimum,

min
η∈E

Fθ|X,η(θ) ≤ Fθ|X(θ) ≤ max
η∈E

Fθ|X,η(θ)

Now our Bayesian estimates θ̂M , θ̂L, θ̂U are defined by the percentile function F−1 : p → θ, which is

the inverse of the cumulative distribution function. Since the cumulative distribution function F (θ) is

necessarily a monotonically increasing function, we have:

min
η∈E

θ̂ = min
η∈E

F−1
θ|X,η(p) ≤ F−1

θ|X(p) ≤ max
η∈E

F−1
θ|X,η(p) = max

η∈E
θ̂

Thus, by finding min
η
θ̂ and max

η
θ̂, we give bounds to F−1

θ|X(p). Note that when we give bounds to F−1
θ|X(p),

we are assuming that the prior distribution of θ is the same as the prior distribution we use to calculate

the bounds (i.e. F−1
θ|X(p) and F−1

θ|X,η(p) share the same prior distribution for θ). For this to be possible,

the prior distribution of θ must not depend on η.

2.2 Finding θ̂ = F−1
θ|X,η(p) by numerical integration

As discussed in the previous section, our goal is to find min
η∈E

Θ̂ and max
η∈E

Θ̂ (Θ̂ = (θ̂L, θ̂M , θ̂U)) subject

to η being in a certain space E . Generally, we cannot determine these values analytically, and hence

the approach of the thesis is to use a search algorithm. Searching through the space of E can be

computationally very time-consuming if the evaluation of F−1
θ|X,η(p) is slow. To overcome this problem, I

considered using the posterior mode as an approximate estimate for θ̂M and θ̂M±1.96σ̂ as approximation

for θ̂U and θ̂L, where σ̂ is the square root of the inverse of the Observed Information, in accordance with

standard theory (see e.g. Gelman et al., 2004). However, I found that sometimes, the inverse of the

Observed Information can be a very poor approximation of the posterior variance. (This happens when

the posterior mode is in a very flat region of the log posterior density, rendering the Observed Information

close to 0.) Moreover, there was the possibility that the posterior density is not unimodal, such that

convergence may not be to the true mode. In this thesis, I have chosen to evaluate Fθ|X,η(θ) through

numerical integration for various values of θ, and then interpolate to find F−1
θ|X,η. At first this may seem

computationally infeasible, especially if ξ is of a high dimension. However, in a meta-analytic situation,

all parameters except the common parameters and (and possible hyperparameters in a hierarchical

model) are study-specific, and that given the common parameters and the hyperparameters, the posterior

distribution of the study-specific parameters are independent. This feature can be used to factorize the

overall posterior distribution, such that even if the posterior density has to be integrated over, the
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number of dimensions can be vastly reduced. This is particularly the case when bias parameters take on

fixed values rather than distributions, as this obviates the need to integrate over the bias parameters.

This approach is described more fully in the next subsection. Other options for evaluating F−1
θ|X,η are

available. For example, we can make use of Laplace’s approximation for p(θ|X,η) (Rue et al., 2009;

Leonard and Hsu, 1999, p.191), which is discussed further in the future discussion section of Chapter 8.

2.2.1 The Bayesian meta-analysis model

First, let us consider a standard Bayesian model of a meta-analysis of case-control studies without

consideration of biases. Such a model is already given in (2.3) and (2.4), and is re-presented here:

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (2.14)

logit πs1 = logitπs0 + θs (2.15)

Here, we further note that in a fixed-effects (FE) meta-analysis model, θs are assumed to be the same

for all s, whereas in the random-effects (RE) model, θs are assumed to “be drawn” from the same

distribution. In a RE model, attention is often focused on the mean of the study-specific θs, or the mean

of the distribution of θs. Denoting this mean by θ, we can write:

θs = θ + δs (2.16)

where δs represents the departure of the study s-specific log odds ratio from the average log odds ratio

among the population of studies. Written in this way, instead of assuming θs being drawn from some

distribution, we assume δs is drawn from some distribution with mean 0:

δs ∼ f(0, σ2
δ ) (2.17)

It is readily seen that if the distribution for δs is a point-mass at 0, the RE model reduces to the FE

model and hence the FE model is a special case of the RE model. Here, I show how we can obtain

posterior inference for θ in the RE model.
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2.2.2 The posterior distribution for θ in a standard random effects meta-

analysis of case-control studies

Denoting the entire dataset {Ysi, Nsi : i = 1, 2; s = 1 . . . k} by X, π0 = (π10, π20, . . . , πk0), δ =

(δ1, δ2, . . . , δk), where k is the number of studies, our posterior distribution of interest is:

p(θ|X) =

∫
π0∈Rk

∫
δ∈Rk

p(θ, δ,π0|X) d δ dπ0 =

∫
π0∈Rk

∫
δ∈Rk

Lik(X|θ, δ,π0)p(δ,π0, θ)

p(X)
d δ dπ0 (2.18)

(by Bayes’ Theorem) given suitable priors for θ, π0 and δ. In a meta-analysis, the likelihood Lik(X|θ, δ,π0)

is a product of individual study likelihoods:

Lik(X|θ, δ,π0) = Lik(X1|θ, δ1, π10)Lik(X2|θ, δ2, π20) · · ·Lik(Xk|θ, δk, πk0) (2.19)

Each study-specific likelihood depends only on its study-specific δs and πs0, and not on the others. If

the prior distributions of δs and πs0 are also independent across studies, the multivariate integral can

be written as a product of bivariate integrals:

p(θ|X) =
p(θ)

p(X)

∏
s

∫
πs0

∫
δs

Lik(Xs|θ, δs, πs0)p(δs, πs0) d δs d πs0 (2.20)

In a typical Bayesian random-effects model, however, δs are not independent across studies, but are

rather exchangeable (e.g. Sutton and Abrams, 2001; Higgins et al., 2009), i.e. in addition to (2.17), we

have:

σ2
δ ∼ p(.) (2.21)

This considerably complicates the calculation as it does not enable the factorization of (2.20). In this

thesis, therefore, we treat δs as independent. This is equivalent to fixing σ2
δ . As explained in the following

chapter, there are also conceptual reasons why this might in fact be desirable.

Although we have reduced a multi-dimensional integral to a product of bivariate integrals, the

computational burden is still great. Moreover, because it is the inverse cumulative distribution of

p(θ|X) that is needed (i.e. F−1
θ|X), we further need to integrate over θ. As a result, we need to integrate

over 3 dimensions: θ, δs, and πs0. However, a reparameterization of the above formula can make the

computational burden considerably less. Reparameterizing (πs0, δs) as (γs, λs), where γs = logitπs0 and

λs = γs + δs, equation (2.20) becomes:

p(θ|X) =
p(θ)

p(X)

∏
s

∫
γs

∫
λs

Lik(Xs|θ, λs, γs)p(γs, λs) dλs d γs (2.22)
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Writing Xs as {Xs1, Xs0}, where Xs1 denote the case and Xs0 the control data, (2.22) factorizes to:

p(θ|X) =
p(θ)

p(X)

∏
s

∫
λs

Lik(Xs1|θ, λs)
∫
γs

Lik(Xs0|γs)p(γs, λs) d γs dλs (2.23)

While equation (2.23) still involves a double integral, it is of note that the integral∫
γs

Lik(Xs0|γs)p(γs, λs) d γs (2.24)

(= p(Xs0, λs)) no longer involves θ. Therefore, it only needs to be evaluated once when we integrate

over θ. This can greatly reduce the computational burden.

In case-control studies, it has been recommended that prior distributions be given independently for

πs0 and θs (Greenland, 2001, 2005b). This translates to independent γs and δs (with γs = logit πs0 and

λs = γs + δs). For this reason, it is useful to rewrite the joint distribution p(γs, λs) as:

p(γs, λs) = pγs(γs)pδs(λs − γs) (2.25)

(by change of variables). In this way, the joint distribution is simply the product of two (generally)

known univariate distribution, and complications in prior specification is avoided.

2.2.3 Further details on integration

Our goal is to evaluate the median, 2.5%-ile, and 97.5%-ile of the posterior distribution of θ given η,

which is the inverse of the posterior cumulative distribution Fθ|X,η(θ). Now,

Fθ|X,η(θ) =

θ∫
θ′=−∞

p(θ′|X,η) d θ′ (2.26)

where p(θ|X,η) is defined in equation (2.23) except here we have added the η as part of the condition,

to highlight the dependence of the posterior distribution on η. From formula (2.23) and (2.26), it can
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be seen that Fθ|X,η(θ) is a triple integral. It is helpful to separate the three levels of integral as:

Fθ|X,η(θ) =
1

p(X|η)

θ∫
θ′=−∞

p(θ′)
∏
s

p(Xs|θ′,η) d θ′ (A1)

p(X|η) =

∞∫
θ′=−∞

p(θ′)
∏
s

p(Xs|θ′,η) d θ′ (A2)

p(Xs|θ,η) =

∞∫
λs=−∞

Lik(Xs1|θ, λs,η)p(Xs0, λs|η) dλs (B)

p(Xs0, λs|η) =

∞∫
γs=−∞

Lik(Xs0|γs,η)p(γs, λs) d γs (C)

It is clear from the above integrals that C is nested in B and B in A1 and A2. Thus, to evaluate integral

A1 and A2, we first evaluate integrals C and then B, and finally A1 and A2 simultaneously. Moreover,

it is sufficient to consider integration techniques for one-dimension only. Techniques for integration over

one dimension are well known for over a century. These generally aim to approximate an integral by a

weighted sum of the function evaluated at a finite number of abscissas (Press et al., 2007):

b∫
a

f(θ) d θ ≈
n∑
i=1

wif(θi) (2.27)

Generally, the most efficient integration algorithms would choose the number (n) and location (θi) of

the abscissas to evaluate the integral in order to achieve a required level of precision. In general, when

only one integral needs be evaluated, these algorithms are to be preferred over schemes which fix the

number and locations of the abscissas in advance (Press et al., 2007). In this thesis, we are searching

over the feasible space of η for the extreme Θ̂ = F−1
θ|X,η(p), p = 0.025, 0.5, 0.975. As η changes, so do

some of the components of the integrals A1, A2, B, C. In this thesis, it will be the case that some of the

components of A1, A2, B, C will stay the same, and hence it will be efficient to reuse those components

without having to re-calculate them every time η changes (see Figure 2.1). To achieve this, we also need

to fix the locations of the abscissas in advance (Krommer and Ueberhuber, 1998, p.346).

Moreover, in order that the algorithm can be accurate and efficient at the same time, we need to

adapt the domain of integration to the distribution (e.g. for a distribution which has 99.99% of its mass

from -2 to 4, our integration domain would probably be from around -2 to 4, whereas for a distribution

with 99.99% mass from 4 to 6, our integration domain would probably be around 4 to 6). For this thesis,

I have developed some ad hoc algorithms to achieve this and these are given in Appendix A. In order

to reuse the abscissas even as the domain changes, the abscissas need to be equally spaced (see Figure
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x 

f(x)=a(x|η)b(x) 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

η=1 η=1.5 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 

Figure 2.1: Suppose we want to integrate the function: f(x) = a(x|η)b(x). When
η = 1, it would be sufficient to use the set of points (x1, x2, x3, . . . , x12) for inte-
gration. When η changes from 1 to 1.5, we would want a different set of points
for integration. Here, we denote these by (x1, x2, x3, . . . , x13). It would be advan-
tageous to choose (x1, x2, x3, . . . , x13) such that (x1, x2, x3, . . . , x9) coincides with
(x4, x5, x6, . . . , x12). This is because although a(x|η) still needs to be evaluated
for (x1, x2, x3, . . . , x13), b(x) only needs to be evaluated for (x10, x11, x12, x13), and
not for (x1, x2, x3, . . . , x9), since these have been evaluated. This scheme is easy
to apply only if the abscissas are equally spaced.

2.1). Integration with equally spaced abscissas for smooth functions is best done using Newton-Cotes

formulae (Press et al., 2007), and these are employed in this thesis. Appendix A.4 gives further details.

Once we have evaluated the integrand of integral A1 (and A2) at a number of equally-spaced abscis-

sas, we can then work out the approximated cumulative distributions F̂ (θ1), F̂ (θ2), F̂ (θ3), . . ., F̂ (θn)

using the Newton-Cotes formula, where:

F̂ (θi) =
n∑
j=1

w
(i)
j p(θj|X,η) ≈ Fθ|X,η(θi) =

θi∫
θ′=−∞

p(θ′|X,η) d θ′ (2.28)

and w
(i)
j are the weights used in the Newton-Cotes formula (see Appendix A.4). Since we seek the

inverse of the cumulative distribution function, we then plot F̂ (θi) against θi, and interpolate to locate

θi (see Figure 2.2). In fact, accuracy is lost if we simply use the linear interpolation scheme as depicted

in Figure 2.2, since the true cumulative distribution must be smooth whereas Figure 2.2 represents it

as piecewise linear. In this thesis, I instead use linear interpolation after first transforming F̂ (θi) on the

inverse Normal scale.

2.3 Searching through E for the most extreme θ̂

In the above section, I described the techniques for evaluating Θ̂ = F−1
θ|X,η(p), p = 0.025, 0.5, 0.975. Here,

I describe the algorithm for searching through the feasible space of η (denoted E) to find min/max Θ̂.
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θ1 

  (θ) 

θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 

1 

θ 

0.5 

0 

0.975 

0.025 

Figure 2.2: Finding the 2.5%, 50%, and 97.5%-ile of p(θ|X,η) by interpolation

First, let us note that if E is defined arbitrarily, then optimizing over this space can be quite difficult. In

this thesis, however, the space of E is always regular, with boundaries that are linear. This means that

optimization can be achieved by a simple iterative algorithm. In the case where the feasible space is

“box-shaped”, i.e. where the feasible region of any ηi ∈ {η1, η2, . . . , ηR} can be described by an inequality

of the form:

li ≤ ηi ≤ ui (2.29)

where li and ui denote the lower and upper limit of the feasible region, an algorithm known as the cyclic

coordinate method (Vassiliadis and Conejeros, 2009) that allows us to search through the feasible space

is given in Box 2.1.

It may be worth noting that the algorithm as presented in Box 2.1 is quite inefficient for general

optimization problems (Press et al., 2007, p. 509). In the problems of this thesis, however, it presents

two advantages:

1. In every iteration of the algorithm, only one ηi out of (η1, η2, . . . , ηR) is changed. This means that

in the evaluation of the integrals A1, A2, B, and C, many components retain their value from

iteration to iteration, saving the need to re-evaluate all components every time.

2. It is easily extensible to deal with the more complicated constraints given in chapter 4 and 5

It is important to note that the algorithm only aims to seek a local maximum/minimum whereas

the aim of the thesis is to find the global minimum/maximum.1 If a problem contains multiple local

maxima or minima, then the point of convergence may not be the global maximum/minimum that we

seek. In general, it can be difficult to verify whether a local maximum/minimum is in fact also the

global. Indeed, often the only guaranteed solution is to explore the entire parameter space, which,

however, is often infeasible, particularly as the number of dimensions is large. We can, however, repeat

1Briefly, the local maximum/minimum is the maximum/minimum within a neighbourhood of the minimum/maximum,
whereas the global maximum/minimum is the absolute maximum/minimum over the entire parameter space.
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1. Permute the bias parameter η1, η2, . . . , ηR into a random sequence η(1), η(2), η(3), . . . , η(R). For ex-
ample, when R = 5, one possible sequence is: η(1) = η2, η(2) = η1, η(3) = η4, η(4) = η5, η(5) = η3.

2. Start with any feasible η[0] = (η0
(1), η

0
(2), . . . , η

0
(R)). In my program, these starting values are gener-

ated randomly.

3. Holding η(2), η(3), . . . , η(R) fixed, i.e. η(2) = η0
(2), η(3) = η0

(3), . . . , η(R) = η0
(R), optimize the objective

function with respect to η(1) alone (See Appendix B). Replace η(1) by the new, optimized value
η1

(1). The new vector of η now would be: η[1] = (η1
(1), η

0
(2), . . . , η

0
(R)).

4. Repeat 3 above for η(2), holding η(1), η(3), . . . , η(R) fixed, generating η[2] = (η1
(1), η

1
(2), . . . , η

0
(R)) and

so on. When we reach the end of the sequence, repeat from the beginning. For example: η[R+1] =
(η2

(1), η
1
(2), . . . , η

1
(R))

5. After every evaluation, compare η[n] with η[n−R]. This is done by a standard relative difference
(RD) formula in numerical analysis:

RD(η[n],η[n−R]) = max
r

{
RDr(η

pr
(r), η

pr−1
(r) )

}
(2.30)

RDr(η
pr
(r), η

pr−1
(r) ) =

|ηpr(r) − η
pr−1
(r) |

|ηpr−1
(r) |+ 1

(2.31)

If RD is less than a certain tolerance tol, then declare convergence, and report η[n] as the optimized
vector of η.

6. In theory, it is possible that the maximum/minimum is in a flat region. In this case, the sequence
of η[n] may not converge. Declare that a flat region is encountered if RD(f(η)[n], f(η)[n−R]) is
less than a certain tolerance tol′. Typically, this tolerance level will be much less than tol. In my
program, I used 0.0001 for tol and 1× 10−10 for tol′.

Box 2.1: The cyclic coordinate method for searching through E for max/min Θ̂
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the optimization several times from different starting points and use different optimization schedules,

i.e. different sequences of η(1), η(2), . . . , η(R), to see if they converge into different maxima/minima (see

Box 2.1 for notations). This is why I used randomly generated starting points, and randomly permuted

parameter sequences, even though computational time can be significantly reduced by having well-chosen

starting values. If optimization from different starting points using different parameter sequences all

converge to the same point, then we may have more confidence that the maximum/minimum achieved

is the global maximum/minimum. This is the approach that is followed in this thesis. For all of the

problems in this thesis, I repeated the optimization 4 times. When more than one optima is encountered,

I repeated the optimization a further 4 times until no more optima are found. Discussion then focuses

on this overall maximum/minimum as if the global optimum.2

A note on programming

All computer programs used to implement the algorithms were written in Stata 10.1 (StataCorp, 2007),

with much use made of the Mata programming language that is part of Stata. The Mata programming

language has syntax similar to C but has syntax similar to R or Matlab for the manipulation of matrices.

Programs are compiled before running (rather than interpreted as in R or Java). The codes for all

programs used in this thesis are found in the supplementary CD-ROM, and instructions are also given

in the CD-ROM for reproduction of all results. During the development of the programs, a selection

of results were checked against implementation using WinBUGS 1.4 (Lunn et al., 2000) to check for

possible programming error in the implementation of the numerical integration.

A note on results

To avoid having too many tables in the thesis, results of the extreme locations found in all of the

optimization done in this thesis are given in the “Location tables.pdf” file in the supplementary CD-

2Because of inaccuracies in the evaluation of Θ̂ = F−1θ|X,η(p) (due to limitation in computer time), the values of η upon

convergence would be slightly different even if they were all from the same mode. Thus, an arbitrary cut-off needs to be
used to distinguish between “true” multi-modality and “apparent” multimodality due to computational inaccuracies. In
this thesis, in order that two η’s be classified as being from different modes, they must have a relative difference of more
than e−5 = 0.0067, where relative difference (RD) is defined by:

RD(η[a],η[b]) = RD((η
[a]
1 , η

[a]
2 , . . . , η

[a]
R ), (η

[b]
1 , η

[b]
2 , . . . , η

[b]
R )) (2.32)

= max
r

{
RDr(η

[a]
r , η[b]r )

}
(2.33)

RDr(η
[a]
r , η[b]r ) =

|η[a]r − η[b]r |
|η[a]r |+ 1

(2.34)

The choice of this cut-off point is decided by the examination of the relative differences calculated in the various problems
of this thesis. In general, η’s from the same mode have log(RD) of around −∞ to -7, and η from different modes have
log(RD) of around -4 to 0. Thus -5 is around the midpoint between the two distributions.
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ROM. Where more than one local minima are found in any of the problems, the table also presents the

location of all the local minima.
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Summary:

• The basic meta-analysis model used in this thesis is the Binomial model of (2.3), (2.4). To account

for bias, some of the parameters are replaced by their biased counterparts, which are related to

the unbiased parameters through a function with bias parameters η.

• Bias parameters η are given the feasible region E , and the combined probabilistic/non-probabilistic

approach of this thesis is to use a search algorithm to search through E for the most extreme

posterior median or 95% credible interval for θ, the effect of interest (which depends on η).

• An algorithm was devised for evaluating the posterior median and credible interval quickly. The

cyclic coordinate method is used to search through E for the most extreme posterior inference for

θ.
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Chapter 3

Quantifying uncertainty in a meta-analysis

with simple bias adjustments

In this chapter, I apply the method of this thesis to a simple bias model and describe several features of

the methodology, especially in the context of the example data of this thesis — the meta-analysis of the

Greenland (2005a) data, which is a meta-analysis of 14 case-control studies of childhood leukaemia in

relation to Extremely Low Frequency Electromagnetic Fields (henceforth shortened to EMF). Below I

give a few more details on this dataset, and some background of the epidemiology of childhood leukaemia

in relation to EMF.

3.1 The Greenland (2005a) data

The data of this meta-analysis are given in Table 3.1. As mentioned above, the data are a collation

of individual study data by Greenland of 14 case-control studies of childhood leukaemia in relation to

exposure to high levels of EMF. In these studies, EMF exposure was assessed in different ways, but

for each study, Greenland chose the measure that in his judgement corresponded most closely to the

average exposure prior to the onset of disease. He then classified exposure to high levels of EMF as

having measurement (often a 24-hour measurement in the bedroom of a child, or calculations based on

distance from the child’s residence to the nearby external sources) of at least 0.3 µT. There has, however,

been no clear understanding of any biological causal mechanism that relates high EMF exposure to risk

of childhood leukaemia (WHO, 2007). In the laboratory, exposure to EMF of even a magnitude greater

than 0.3µT has not been demonstrated to cause any long-term changes to bodily function in the human

body (WHO, 2007). However, because of epidemiological evidence, especially from the meta-analyses

of Greenland et al. (2000) and Ahlbom et al. (2000), the International Agency for Research on Cancer

(IARC) classifies EMF has a possible carcinogen to the human body (IARC, 2002). Bias remains

a strong possibility for the explanation of the observed association in these meta-analyses. For this
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Figure 3.1: A standard non-Bayesian meta-analysis using the Mantel-Haenszel
method.

reason, and also to demonstrate techniques for multiple bias modelling, Greenland (2005a) re-analyzed

his meta-analysis of 2000 with additional data, and took into account of additional uncertainty due to

biases.

The results of two non-Bayesian methods for analyzing this dataset are given at the bottom of Table

3.1. The Dersimonian-Laird estimate of the between-study variance for the data is 0, which means that

the random-effects (RE) model is equivalent to the fixed-effects (FE) model using the Dersimonian-Laird

method (Dersimonian and Laird, 1986). These results are also plotted in Figure 3.1. As can be seen,

the confidence intervals from these meta-analytic summaries suggest that the odds ratio of childhood

leukaemia due to high levels of EMF is significantly different from 1.

3.1.1 A Bayesian analysis for a FE meta-analysis

As mentioned in section 2.1, in this thesis we are primarily interested in Bayesian estimates of meta-

analytic summary odds ratios and their credible intervals, in particular the median θ̂M , the 2.5%-ile θ̂L,

and the 97.5%-ile θ̂U . We want to find max/min Θ̂ = {θ̂M , θ̂L, θ̂U}, subject to the bias parameters η

being within a certain feasible region E . To obtain Bayesian inference, we need to give prior distributions

to the non-bias parameters. Recall that in the standard meta-analysis model of this thesis, we have:

Ysi ∼ Bin(Nsi, πsi) s = 1 . . . 14, i = 0, 1 (3.1)

logitπs1 = logitπs0 + θs (3.2)
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Posterior median Posterior 95% credible intervals

Note: The study−specific results shown are for studies considered independently and are
not from the overall meta−analysis model.

Figure 3.2: A standard Bayesian FE meta-analysis model with θ ∼ N(0, 100).

In a FE model, we have: θs = θ, and hence we have to assign prior distribution to θ and πs0, or

alternatively, to θ and γs = logitπs0. The RE model is considered in the next subsection.

In this thesis, I consider the following ‘nearly flat’ prior distributions for θ and γs:
1

γs ∼ Logistic(0, 1) s = 1 . . . 14 (3.3)

(equivalent to πs0 ∼ U(0, 1)) (3.4)

θ ∼ N(0, 100) (3.5)

Results from these analyses are given in Table 3.1 and Figure 3.2.

The posterior median and 95% credible interval for the odds ratio is 1.52 (1.16, 1.99) for this method.

Compared to the non-Bayesian results (1.68, 95% CI=[1.27, 2.22]), we see that this appears to be

somewhat closer to the null. (This is because the prior distribution we give to γs = logitπs0 is not

completely flat. γs, being a Logistic(0,1) distribution, has disproportionate mass around γs = 0. If a

completely flat prior (i.e. γs ∼ U(−∞,∞)) was used for γs, the results would be much closer to the

non-Bayesian results.

1Note that I have avoided using improper priors such as:

γs ∼ U(−∞,∞)

or
θ ∼ U(−∞,∞)

This is to avoid having improper posterior distributions associated with having zero counts in some of the studies, e.g.
Coghill et al. (1996) and Tynes and Haldorsen (1997)
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3.1.2 A Bayesian RE meta-analysis

For a RE model, instead of θs = θ, we have θs = θ+ δs, and we need to assign a prior distribution to δs

as well. Often, in Bayesian RE meta-analyses, this parameter is given a hierarchical prior distribution,

e.g.:

δs ∼ N(0, σ2
δ ) (3.6)

with σ2
δ given a second-level distribution (Smith et al., 1995; Sutton and Abrams, 2001; Higgins et al.,

2009). However, the specification of this second-level distribution can be a contentious issue, particularly

when the number of studies is not large (Sutton and Abrams, 2001; Congdon, 2006, p.155). Non-

informative priors for σ2
δ can lead to over-smoothing, resulting in little information being available in

the data to inform θ (Congdon, 2006, p.155) in meta-analyses that are moderate or small in size. Most

attempts to overcome the issue generally suggest replacing this prior distribution with an informative

one (Sutton and Abrams, 2001; Congdon, 2006; Gustafson et al., 2006), possibly with the parameters

estimated from data (e.g. DuMouchel, 1996).

Alternatively, we can fix σ2
δ at suitable values. In the previous chapter, we have noted that the

evaluation of our Bayesian estimates Θ̂ is made considerably easier if σ2
δ were fixed. In view of the

difficulties in specifying a suitable distribution for the parameter, fixing it at reasonable values has

additional appeal. Indeed, a number of the explicitly Bayesian meta-analyses with consideration of biases

have preferred to use fixed values for σ2
δ instead of giving it a second-level distribution, presumably for

similar reasons (Greenland and Kheifets, 2006; Welton et al., 2009). I therefore also follow this approach

in this thesis.

σ2
δ represents the variance of the study-specific effects θs. Assuming the absence of bias due to

exposure misclassification, non-participation bias, and bias due to incomplete control of confounding,

study-specific effects can still differ from one another due to differences in design and differences in the

underlying populations. Greenland and Kheifets (2006) considered a prior variance of approximately

0.5 for θs, the study-specific log odds ratio, and that 70% of this variance of might be common to all

studies, leaving 30% due to study-specific features.2 If the variance of θs is 0.5, then σ2
δ = 0.15.

Together with the nearly flat prior of N(0, 100) for θ, the posterior median and 95% credible interval

for θ is 1.54 (1.06, 2.24). This result is also given in Table 3.1 and Figure 3.3. Compared with the

FE model, the posterior 95% intervals are wider, both for the study-specific odds ratio and the overall

average odds ratio. Because the information from each study is split between informing θ and δs (whereas

in a FE model, all information is used for θ alone), there is now less information for informing θ, resulting

in a wider posterior credible interval.

2This is derived from the prior distribution Greenland and Kheifets gave to the parameter αTY in the model, which
equals the exposure-disease log odds ratio among those that are classified as unexposed. Although not technically the
study-specific log odds ratio, its distribution is almost identical to the study-specific log odds ratio based on simulation.
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Note: The study−specific results shown are for studies considered independently and are
not from the overall meta−analysis model.

Figure 3.3: A standard Bayesian RE meta-analysis model with θ ∼ N(0, 100) and
δs ∼ N(0, 0.15).

3.2 Applying the method of this thesis to the Greenland data

with a simple bias model

Now, let us consider extending the standard Bayesian meta-analysis model to allow for a simple bias

adjustment in each of the study. Recall that our standard meta-analysis model has the form:

Ysi ∼ Bin(Nsi, πs0) (3.7)

logitπs1 = logitπs0 + θs (3.8)

Here, we replace (3.8) with

logitπs1 = logitπs0 + θ∗s (3.9)

θ∗s = θs + ηs (3.10)

As an initial illustration, let us consider the following feasible region for ηs:

−0.5 ≤ ηs ≤ 0.5 s = 1 . . . 14 (3.11)

This feasible range for ηs implies that the true odds ratio may be biased by a factor of exp(0.5) = 1.65

in either direction. Using the methods described in the previous chapter, we now search through the
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Note: The study−specific results shown are for studies considered independently and are
not from the overall meta−analysis model.

Figure 3.4: FE meta-analysis of Greenland data with simple bias: −0.5 ≤ ηs ≤
0.5.

feasible region of ηs, s = 1 . . . 14 for the most extreme Θ̂. Figure 3.4 and 3.5 present the Feasible

Posterior Intervals (FPI, c.f. equations 2.7 and 2.8) for θ with this feasible region for η for a FE and a

RE meta-analysis, respectively. As before, θs = θ for the FE model, and θs = θ+ δs, δs ∼ N(0, 0.15) for

the RE model. Optimization took 2 to 15 seconds to run for the single studies and 60 to 130 seconds

to run for the meta-analysis on a Intel Pentium Core 2 Quad computer (using only 1 core). As might

be expected, for min Θ̂, ηs = 0.5 for all s, and for max Θ̂, ηs = −0.5 for all s, and there was no sign of

multimodality.3

We see in figures 3.4 and 3.5 that in comparison with the meta-analyses without bias, the Feasible

Posterior Median Interval (FPMI) is almost exactly [θ̂M − 0.5, θ̂M + 0.5], and the 95% Feasible Posterior

Credible Interval (FPCI) for θ with bias is almost the same as [θ̂L−0.5, θ̂U + 0.5], where I have used θ̂M ,

θ̂L, and θ̂L to denote the posterior median and 95% limits in the meta-analysis without bias. Importantly,

it can be seen that the FPMI in the meta-analysis setting is not shorter than that in the individual

study setting, although the FPCI is shorter in the meta-analysis setting. Roughly speaking, we can

3It may be wondered whether in such a simple scheme, an analytical solution exists for (η1, η2, . . . , ηs) that maxi-
mizes/minimizes Θ̂, since intuition suggests that if the posterior median for θ∗s is around k, then the posterior median for
θs would be around k− ηs, such that the posterior mean/median of θs might be minimized when ηs is at its most positive
and maximized when ηs is at its most negative. And since θ = θs − δs, the maximum/minimum posterior median of θ is
also likely to be located with ηs at its most negative/positive. However, I have not been able to derive such association
analytically, although if the likelihood of θ is Normal (through the Central Limit Theorem for large samples), then an
analytical solution exists.
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Figure 3.5: RE meta-analysis of Greenland data with simple bias: −0.5 ≤ ηs ≤
0.5.

consider the FPMI to be due to uncertainty in bias alone, whereas the FPCI reflects uncertainty due

to both bias and random sampling (or residual randomness, if randomness is defined in the subjective

sense).4 We therefore see that the effect of pooling studies in a meta-analysis is to reduce uncertainty

due to random sampling, but not uncertainty due to bias. This reflects the very essence of the method

in this thesis, which is to allow the pooling of data to reduce aleatoric but not epistemic uncertainty.

3.2.1 Some observations

This feature of the methodology, however, can lead to some counterintuitive results. Consider, for

example, a meta-analysis of the above 14 studies, except that study 5 is known to have no bias. The

FPIs for this scenario are given in Figure 3.6.

We see that the uncertainty interval for study 5 is in fact narrower than the overall meta-analytic

uncertainty interval. If study 5 also happens to be our most relevant study, the analysis would suggest

that there is no gain in our estimation of θ by including the other studies also in the meta-analysis

(i.e. we have a less precise estimate from the meta-analysis than from the estimate from study 5

4This follows from standard large sample theory, which states that in large samples, as the likelihood becomes Normal
and the variance small, Bayesian inference (with sensible choices of prior) becomes almost identical to maximum likelihood
inference. The median becomes the same as the mode, and can be considered a location estimate. The credible interval
becomes the same as the confidence interval, reflecting uncertainty due to random sampling. See Gelman et al. (2004,
p.106) for more details.
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Figure 3.6: FE meta-analysis of Greenland data with simple bias: −0.5 ≤ ηs ≤ 0.5
for all studies except study 5

alone). This is certainly an important feature of the methodology that has to be borne in mind. The

combined probabilistic/non-probabilistic method of this thesis is inherently conservative. Although it

may be very unlikely that all study-specific biases ηs in fact equal their lower or upper bound, i.e.

ηs = −0.5 or 0.5, s = 1 . . . 14, this scenario is considered “possible” by this method, and the posterior

inference for this rather extreme scenario is not weighted down in any way. When we are considering

only one study, the extreme scenario concerns an extreme value for only one parameter, and is thus in

some sense much less “extreme” than the extreme scenario considered in a meta-analysis.

3.3 Meta-analysis with an informative prior on θ

Before we leave this chapter, let us consider the situation where we replace the uninformative N(0, 100)

prior for θ with an informative prior. When there is little in the data to inform our target parameter

(such as when uncertainty over the bias parameters is great), the influence of the prior distribution

becomes much greater, and the use non-informative prior distributions to avoid prior elicitation is no

longer be justifiable (see e.g. Berger, 2006). (This is why an informative prior distribution for θ is used

in the next chapter.) Here, we follow Greenland and Kheifets (2006) in giving a N(0, 0.5) prior for the

study s-specific log odds ratio, i.e.

θs ∼ N(0, 0.5) (3.12)
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Note: The study−specific results shown are for studies considered independently and are
not from the overall meta−analysis model.

Figure 3.7: FPIs for a FE meta-analysis in simple bias model with θ ∼ N(0, 0.5),
δs = 0, as compared to the model with θ ∼ N(0, 100), δs = 0.

This prior corresponds to a 95% credible interval of [0.25, 4.00] for the odds ratio (i.e. for exp θs). In

a RE model, if we continue to have 70% of the variance of θs being common across studies, we have a

prior distribution of:

θ ∼ N(0, 0.35) (3.13)

In a FE model, we have:

θs = θ ∼ N(0, 0.5) (3.14)

The FPIs for these models with informative priors for θ are given in Figures 3.7 and 3.8, both in the

case where studies are considered independently, and together in a meta-analysis, and are compared

with the case where the ‘nearly flat’ prior distribution of (3.5) is used.

Perhaps the most striking feature of the FPIs when an informative prior is used for θ is that the

FPMI is somewhat narrower for each of the studies when the informative prior for θ is in place, the

reduction being particularly great for studies with little data, e.g. studies 1 and 2. However, the overall

meta-analytic FPI is less affected, and moreover, the meta-analytic FPMI appears even wider than

FPMIs of the individual studies. It appears that by pooling studies together, our uncertainty over θ due

to bias has actually increased!

The reason for this is because of the influence of the prior distribution. The prior distribution has

median 0 and if there were no data, the posterior median remains 0 whatever value the bias parameters
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Figure 3.8: FPIs for a RE meta-analysis in simple bias model with θ ∼ N(0, 0.5),
δs = 0, as compared to the model with θ ∼ N(0, 100), δs = 0.

53



η takes. As the amount of data increases, the posterior distribution becomes more sensitive to changes

in the bias parameters η, leading to wider and wider FPMI. A meta-analysis has more data than any of

the individual studies, and therefore can be expected to have a wider FPMI than any of the individual

studies. A heuristical explanation of this phenomenon is given in Figure 3.9, although we should take

note that the diagram represents a great simplification of the mathematics and the true relationship

between the posterior median and the data is much more complicated.

Note that when an informative prior distribution is used, it becomes much more possible that the

overall meta-analytic FPCI is wider than the study-specific one. This is because the meta-analysis

contains more data than a single study, and hence the influence of the prior on the posterior of θ is

much less in the meta-analysis than for a single study, leading to an increase in the width of the FPMI.

The increase can be so large that it more than offsets the decrease in the width of the FPCI due to the

decrease in uncertainty due to random sampling. For illustration, we may consider the scenario where

−2 ≤ ηs ≤ 2 for all s. Figure 3.10 gives the feasible region for Θ̂ for this scenario for a FE model.

In summary, the results of this section shows that when using the combined probabilistic/non-

probabilistic method of this thesis, an increase in data does not always lead to a decrease in uncertainty

intervals.
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Figure 3.9: Given different bias parameter values, the likelihood function with
respect to θ can be very different, as seen in figure 3.9a. The influence of a zero-
centred prior distribution is generally to move the posterior distribution closer
to zero than the likelihood (is from 0) (figure 3.9b). The effect of increasing the
amount of data is generally to increase the information available in the likelihood
and thus to reduce the amount of shrinkage toward zero. Thus, this tends to lead
to wider intervals (figure 3.9c).
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Note: The study−specific results shown are for studies considered independently and are
not from the overall meta−analysis model.

Figure 3.10: FPIs for Θ̂ in simple bias model with −2 ≤ ηs ≤ 2, θ ∼ N(0, 0.5),
δs = 0
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Summary:

• In this chapter, I introduced the Greenland (2005a) meta-analysis of 14 case-control studies of

childhood leukaemia and EMF, which serves as the example dataset of this thesis.

• I applied the method of this thesis to find the Feasible Posterior Intervals (FPI) for θ, the meta-

analytic average log odds ratio, assuming study-specific log odds ratio are subject to a simple

additive bias of −0.5 ≤ ηs ≤ 0.5.

• Unlike confidence intervals in conventional meta-analysis, the Feasible Posterior Median Interval

(FPMI) is not shortened in the meta-analysis as compared to the study-specific FPMI. The FPCI,

however, is shortened. Roughly, the FPMI reflects uncertainty due to bias alone, which is treated

non-probabilistically, and the FPCI reflects uncertainty due to both bias and residual random

error, which is treated probabilistically.

• When an informative prior is used for θ instead of an uninformative prior, some counterintuitive

results can occur in that the meta-analytic FPMI/FPCI can be wider than the study-specific one.

This is because there is more information in a meta-analysis to overcome the information contained

in the prior, and posterior inference therefore becomes more sensitive to the bias parameters in a

meta-analysis.
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Chapter 4

Quantifying uncertainty in meta-analyses

of case-control studies subject to exposure

misclassification

In this chapter, I illustrate the combined probabilistic/non-probabilistic approach to quantifying un-

certainty of bias due to exposure misclassification, again with application in Greenland’s childhood

leukaemia-EMF data. Before I discuss the details, it might be useful to consider how exposure misclas-

sification might have arisen in these studies:

1. It is unsure what the relevant measure of EMF is, because the etiology of childhood leukaemia is

unclear. In particular, the timescale is uncertain. It is also uncertain whether it is the average

intensity, or the highest intensity to which the child was exposed, or whether it was the fluctuation

in exposure that is relevant (ICNIRP, 2001).

2. Exposure to EMF was either measured after the development of the disease at the residences of

the participants or estimated using calculations based on the distance of the residences from the

nearest power lines or transformer stations. While these estimates may correlate positively with

the real exposure levels, it is clear that they are far from accurate.

3. Moreover, the extent of error can be expected to differ from one child to another. Many children

moved homes, and some were able to provide more residences for measurements than others. Some

measurements were made over the course of 24 hours. Some were made for only a few seconds.

Some measurements were only made outside the apartment/flat, while others were made inside

the bedroom. Some children spent more time at home, particularly younger children.

58



4.1 Adjustment for error due to exposure misclassification

There is a large body of literature on adjustment of relative risk estimates in case-control studies with

exposure misclassification (e.g. Diamond and Lilienfeld, 1962; Selen, 1986; Espeland and Hui, 1987;

Drews and Greenland, 1990; Gustafson et al., 2001; Fox et al., 2005; Chu et al., 2006; Greenland, 2008).

One class of methods considers the joint distribution of the correctly classified and misclassified exposure

in a loglinear model (Greenland and Kheifets, 2006; Greenland, 2009a,b). This class of methods considers

the problem of misclassification in terms of parameters such as the ratio of the true-positive to false

positive odds within the controls, the ratio of these two ratios between cases and controls, and other

parameters. Elicitation of suitable values for these parameters, however, is not as intuitive as the others,

and these methods are therefore not considered. Another class of methods deals with misclassification

in a regression context by approximation methods based on methods developed for measurement error

models (for continuous variables) (Kuchenhoff et al., 2006). These methods do not fit easily into a

Bayesian modelling framework and are also not discussed.

The vast majority of studies on misclassification models focus on methods that model the marginal

distribution the true and the misclassified exposure, with the two distributions linked together by certain

misclassification probabilities. Because the true exposure probabilities are related to the misclassified

exposure probabilities through a linear transform, these methods have been termed matrix methods

(Morrissey and Spiegelman, 1999), and two approaches are available.

The first approach considers the probabilities of the misclassified exposure as a linear function of the

probabilities of true exposure. Denoting the vector of true exposure probabilities by π = (π1, π2, . . . , πk)
T

and the vector of misclassified exposure probabilities by p = (p1, p2, . . . , pk)
T for an exposure with k

levels, this approach considers the misclassification probability matrix A, such that:

p = Aπ (4.1)

The second approach considers the reverse, i.e., the probability matrix B, such that:

π = Bp (4.2)

In both approaches, the researcher needs to obtain suitable estimates for the probabilities in either the

matrix A or the matrix B. In the literature on exposure misclassification, however, almost all studies

have taken the first approach (4.1), although when diagnostic misclassification is the subject, the second

approach (4.2) is usually used (e.g. Gastwirth, 1987; Paulino et al., 2003). Possible reasons for this may

be:

• The probabilities in A are more “transportable”, in that if they are estimated in one study, they

are more likely to be similar in another study (Greenland, 2008). (Note that Greenland’s argument
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was not based on empirical evidence.)

• It is usually more reasonable to assume the probabilities in A to be independent of disease status

(i.e. non-differential exposure misclassification) than it is to assume B to be independent. This

is when we suppose that apparent exposure status gives no information on disease independent

of true exposure status, which is often a reasonable assumption (Diamond and Lilienfeld, 1962).

When this assumption is valid, we can impose the constraint that the probabilities in A are the

same for diseased and non-diseased individuals, which can reduce the need for finding estimates

for A.

• When applying Bayesian procedures for inference, it is easier to specify a prior distribution on π

in the first approach than in the second approach, because in the second approach, the prior has

to satisfy constraints given by B.

For these reasons, in this thesis, I also follow the usual approach of modelling p as a linear function of

π.

For an exposure with only 2 levels (i.e. k = 2), the misclassification probability matrix A can be

summarized by two probabilities: the sensitivity and the specificity. In the rest of this thesis, I denote

sensitivity by sens and specificity by spec, where they are defined as follows:

sens =

(
Number of truly exposed people who

would have been categorized as exposed in the population

)
Total number of truly exposed people in the population

(4.3)

spec =

(
Number of truly unexposed people who

would have been categorized as unexposed in the population

)
Total number of truly unexposed people in the population

(4.4)

In a two-level exposure case, a more transparent version of equation (4.1) is:

p = πsens+ (1− π)(1− spec) (4.5)

To extend our meta-analysis model to take into account of misclassification, we modify our standard

random-effects (RE) meta-analysis of case-control studies (equations 2.14, 2.15, and 2.16), i.e.:

Ysi ∼ Bin(Nsi, psi) i = 0, 1 (4.6)

logitπs1 = logitπs0 + θs (4.7)

θs = θ + δs (4.8)
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to become:

Ysi ∼ Bin(Nsi, psi) i = 0, 1 (4.9)

psi = πsisenssi + (1− πsi)(1− specsi) (4.10)

logitπs1 = logitπs0 + θs (4.11)

θs = θ + δs (4.12)

4.1.1 Some theoretical observations

In a typical Bayesian analysis, we would give prior distributions to (senss0, specs0, senss1, specs1) for

each of the studies s, and examine the posterior distribution of θ. (For single case-control studies, this

approach has been used in Gustafson et al. (2001), Chu et al. (2006, 2010), among others.) In the

approach of this thesis, however, we rather assign a feasible region to (senss0, specs0, senss1, and specs1)

and search through this region for the most extreme Bayesian posterior inference. Before we examine

this with an example, let us consider where we might expect to find these extreme inferences.

Rearranging equation (4.5) as:

π =
p− (1− spec)
sens+ spec− 1

(4.13)

and differentiating π with respect to sens, we find that:

∂π

∂sens
=

1− spec− p
(sens+ spec− 1)2


> 0 if spec < 1− p

= 0 if spec = 1− p

< 0 if spec > 1− p

(4.14)

Moreover, it is easy to show that when sens+ spec > 1, spec ≥ 1− p.1 The condition sens+ spec > 1

can be translated as

Pr(Truly exposed|Observed to be exposed) > Pr(Truly exposed|Observed to be unexposed)

(see Appendix C.2) i.e. that those who are observed to be exposed are more likely to be truly exposed.

If this is true, π will decrease with increasing sens (since ∂π
∂sens

≤ 0).

Rearranging equation (4.5) as:

π = 1 +
p− sens

sens+ spec− 1
(4.15)

1This can be seen by rearranging (4.5) as: spec = 1−p+π(sens+spec−1). Because 0 ≤ π ≤ 1, when sens+spec > 1,
spec ≥ 1− p
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and differentiating π with respect to spec, we find that:

∂π

∂spec
=

sens− p
(sens+ spec− 1)2


> 0 if sens > p

= 0 if sens = p

< 0 if sens < p

(4.16)

Again, it can be shown that when sens+ spec > 1, sens ≥ p.2 Therefore we would expect π to increase

with increasing sens (since ∂π
∂spec

≥ 0). For large θs, we would expect πs1 to be large and πs0 to be

small, since θs = logit πs1 − logitπs0. Thus, for large Θ̂, we would expect senss1 to be near its lower

limit, senss0 to be near its upper limit, specs1 to be near its upper limit and specs0 to be near its

lower limit. For small Θ̂, we would expect the reverse. However, the exact relationship between Θ̂

and {senss1, senss0, specs1, specs0 : s = 1 . . . 14} is considerably more complex than that between θ and

{senss1, senss0, specs1, specs0 : s = 1 . . . 14}. Thus a search algorithm is needed to identify the exact

extreme locations.

4.2 The Greenland meta-analysis example

Before we can apply the search algorithm to search through the space of senss1, senss0, specs1, and specs0

to find the maximum/minimum Θ̂ in the Greenland example, a number of issues need to be addressed.

First of all, we need to specify a suitable feasible region for senss1, senss0, specs1, specs0. Occasionally,

for some exposure, studies have been conducted to estimate the values of these parameters. This is

not the case for EMF exposure. However, we are not completely ignorant of the likely values of these

parameters. As shown in the previous section, if those who are classified as exposed are more likely to

be truly exposed than those who are classified as non-exposed, we have sens + spec > 1. This reduces

the feasible region of senss1, senss0, specs1, specs0 by exactly one half. Furthermore, it is also shown in

the previous section that when sens+ spec > 1,

spec > 1− p (4.17)

sens > p (4.18)

where p is the prevalence of mis-classified exposure, which can be estimated from the data. For exposure

with low (misclassified) prevalence, this reduces the feasible region of spec considerably.

In my Master’s thesis (Mak, 2008), I further examined whether we can make use of studies which

estimated the correlation between various different measures of EMF levels to estimate the misclassifica-

2This can be seen by rearranging (4.5) as: sens = p + (1 − π)(sens + spec − 1). Because 0 ≤ 1 − π ≤ 1, when
sens+ spec > 1, sens ≥ p
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tion parameters (Appendix C). It was found that the misclassification parameters cannot be estimated

to any degree of precision, although the correlation between various measurements of EMF and the

true exposure levels experienced by the child is more likely to be low rather than high. From this, we

may further infer that sens + spec is probably not close to 2 (see Appendix C). Furthermore, since

sens + spec = 1 corresponds to the scenario where someone who is observed to be exposed is no more

likely to be truly exposed than someone who is observed to be unexposed, it is likely that sens + spec

would be greater than 1. For these reasons, I believe that reasonable bounds for sens+ spec might be:

1.05 ≤ senssi + specsi ≤ 1.7 i = 0, 1 s = 1 . . . 14 (4.19)

Based on equations (4.17), (4.18), I gave lower limits to senssi and specsi using the standard 95%

confidence limits for psi (denoted [p−si, p
+
si]), i.e.:

specsi > 1− p+
si (4.20)

senssi > p−si (4.21)

Together with equation (4.19), I derived the intervals for senss1, senss0, specs1, specs0, and the exact

values are given in Table 4.1.

Finally, it may be expected that senss1 and specs1 do not differ very much from senss0 and specs0,

since in most studies, methods for assessment of exposure are similar for cases and controls. When

sens1 = sens0 and spec1 = spec0, we have the non-differential misclassification assumption, whose

property was well known since at least Bross (1954). In the present situation, however, because in

some studies cases provide better access for exposure measurement than controls, and also because

exposure is a dichotomization of a continuous exposure measurement, non-differential misclassification

is believed not to hold exactly. Nonetheless, I believe the following might be reasonable bounds for these

parameters.

|senss1 − senss0| ≤ 0.05 (4.22)

|specs1 − specs0| ≤ 0.02 (4.23)

s = 1 . . . 14 (4.24)

Here I have given a wider possible degree of non-differentiality for sens than for spec, because the range

of specsi can be known more precisely than the range of senssi through p1 and p0, as shown in Table

4.1.
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4.2.1 Prior distribution for πs0 and θs

Although considerable effort has been spent to derive suitable bounds for the bias parameters senss1,

senss0, specs1, specs0, there remains considerable uncertainty in these parameters. Perhaps of more

importance is the fact that severe misclassification of exposure remains a possibility (severe meaning

0.5 < sens+ spec < 1.5 or so). When exposure is severely misclassified, the data will generally contain

very little information on the true probability of exposure πs0 and πs1. This can be seen by considering

equation (4.13):

π =
p− (1− spec)
sens+ spec− 1

(4.25)

If sens and spec were fixed, and p and π were random and unknown, then:

Var(π) = Var

(
p− (1− spec)
sens+ spec− 1

)
(4.26)

=
Var(p)

(sens+ spec− 1)2
(4.27)

Thus, we see that if sens + spec is close to 1, the variance of π can be many times larger than the

variance of p. Information on π is thus “diluted” relative to information on p. When this is the case,

the posterior distributions πs0 and πs1 tend to be greatly influenced by their prior distributions. Using

flat or nearly flat priors such as πs0 ∼ U(0, 1) often results in posterior distributions that suggest πs0

is many times that of ps0 when applied to the Greenland data of this thesis (because ps0 tends to be

around 0-0.05 (see Table 4.1), whereas the distribution U(0, 1) has 50% of mass between 0.25 and 0.75).

A classical measurement error model, however, would imply that it is more likely that πs0 < ps0.3

Partly for this reason, Greenland and Kheifets (2006) assigned a prior distribution of approximately

N(logit 0.0025, 3) for logitπ0 among studies which were carried out in “high-exposure countries”4 and

a prior of N(logit 0.001, 3) for all other countries.5 This, however, suggests that the true exposure

3In a classical measurement error model for measurements of EMF, we may write that the observed EMF exposure
levels (Z) equals their true EMF levels (ζ) plus an error term (ε):

Z = ζ + ε

where ε is typically 0 centred, and ε is independent of ζ. Our observed prevalence estimate (p = Y/N) estimates Pr(Z > c),
and our true prevalence is Pr(ζ > c), where c denotes a certain threshold, 0.3µT in this particular case. If ζ and ε were
both Normal, and ε has 0 mean, then Pr(Z > c) will always be greater than Pr(ζ > c) if Pr(ζ > c) < 0.5. Since 0.3µT is
quite a high threshold for exposure, Pr(ζ > c) � 0.5, and hence we would expect the observed prevalence to be greater
than the true prevalence.

4This includes all studies in North America as well as the Japanese study (Kabuto et al., 2006) and the Feychting and
Ahlbom (1993) study, the latter because it particularly selected a high-exposure population for the study.

5The actual prior distribution of π0 is in fact the distribution of E1+0/E++0, where E1+0 is the expected number of
truly exposed controls and E++0 the number of controls. logitπ0 is parameterized as

logit
E1+0

E++0
= αT + log(1 + exp(αX + αTX))− log(1 + exp(αX))
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prevalence is some several hundred times lower than the observed.6 This does not seem reasonable and

therefore, in this thesis, I elicited my own prior distributions for πs0, where logit πs0 ∼ N(logitµs, 1),

and µs is taken to be 1/4 of the observed prevalence estimate. A variance of 1 for the distribution means

that the probability of πs0 being less than the observed prevalence estimate p̂s0 = Ys0/Ns0 is around

0.91 if p̂s0 is close to 0, i.e. when we can approximate logit ps0 with log ps0. This is because I agree with

Greenland and Kheifets that the true prevalence is likely to be less than the observed prevalences (based

on the classical measurement error model), but not by as much as they suggested. For studies 1 and

2, because the observed prevalence estimate is 0, I used the average of logitµs among the low-exposure

studies instead for the mean. The distribution of logit πs0 and the 95% interval for πs0 for each study is

given in column 8 of Table 4.1.

As for the prior distribution of θs, I continue with:

θs ∼ N(0, 0.5) (4.28)

as used in the previous chapter.

For a fixed-effects (FE) model, this leads to:

θ ∼ N(0, 0.5) (4.29)

δs = 0 (4.30)

For a random-effects (RE) model, if 70% of the variance is common across studies, this leads to:

θ ∼ N(0, 0.35) (4.31)

δs ∼ N(0, 0.15) (4.32)

s = 1 . . . 14 (4.33)

as in chapter 3.

where αT ∼ N(logit(0.001 + h0.0015), 3), αX ∼ N(0, 400), and αTX ∼ N(log 16, 2), h = 0 for low exposure studies, and
h = 1 for high exposures studies. Following simulation, it is found that the latter terms log(1 + exp(αX + αTX)) and
log(1 + exp(αX)) nearly cancels one another, and thus the distribution is very similar to that of αT alone.

6It can be seen that these prior distributions have mean 0.0025 and 0.001 on the logit scale. The 95% prior credible
intervals for these distributions are (0.000078, 0.069) and (0.000034, 0.029) for π0. If we compare these values to the
observed prevalence of exposure given in Table 4.1, we find that these values are a magnitude lower than the observed
prevalence, particularly for the high exposure studies. It appears that Greenland and Kheifets consider that studies
have generally overestimated the true prevalence of exposure, and possibly up to several hundred times. The extent of
overestimation as suggested by Greenland and Kheifets’ prior thus appears to be somewhat extreme. If the true prevalence
of exposure were in the order of, say 0.0001-0.0005, then practically all of the observed exposed participants would not
have been truly exposed, and we might as well discard our data completely.
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4.2.2 Modification to the search algorithm

If Table 4.1 contains all of the constraints we have over the parameters senss1, senss0, specs1, and specs0,

then we can apply the algorithm of chapter 2 to search through the feasible space for the most extreme

posterior distribution of θ, given the prior distributions of Table 4.1 for πs0 and (4.31), (4.32), (4.29),

(4.30) for θ and δs. However, since there is still much uncertainty over the parameters within this region,

it is very helpful if we can incorporate the constraints that concern sens + spec (4.19), and those that

limit the difference between sens and spec between cases and controls (4.22), (4.23), i.e.:

1.05 ≤ senssi + specsi ≤ 1.7 i = 0, 1 (4.34)

|senss1 − senss0| ≤ 0.05 (4.35)

|specs1 − specs0| ≤ 0.02 (4.36)

s = 1 . . . 14 (4.37)

to further narrow the feasible space.

The algorithm of chapter 2, as specified, cannot deal with these constraints that involve more than

one parameter at a time. However, it appears that a simple modification can be made to the algorithm,

which would enable it to search through the feasible region. This modification is described below together

with a heuristic explanation. It is noted that a rigorous proof of the convergence of the algorithm to a

stationary point is not yet available.

1. First, let us consider the cyclic coordinate method (CCM) as used in the previous chapter and

described in Box 2.1, summarized here in vector notation. Thus, in iteration n, we seek a new

vector η[n] by updating our old vector η[n−1] by choosing λ which minimizes f(η[n]), where:

η[n] = η[n−1] + λ∆ (4.38)

where ∆ can be any one of the following search direction vectors :

∆ =



∆[η1]

∆[η2]
...

∆[ηR−1]

∆[ηR]


=



1

0
...

0

0


or



0

1
...

0

0


or · · · or



0

0
...

1

0


or



0

0
...

0

1


(4.39)
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In terms of parameters senss0, senss1, specs0, specs1 the search direction vectors are:

∆ =



∆[sens11]

∆[sens10]
...

∆[specN1]

∆[specN0]


=



1

0
...

0

0


or



0

1
...

0

0


or · · · or



0

0
...

1

0


or



0

0
...

0

1


(4.40)

2. The presence of constraints (4.34), (4.35), and (4.36), i.e.:

1.05 ≤ senssi + specsi ≤ 1.7 i = 0, 1 (4.41)

|senss1 − senss0| ≤ 0.05 (4.42)

|specs1 − specs0| ≤ 0.02 (4.43)

however, prevents us from searching through the feasible region of the these parameters using the

directions (4.40) alone. (For an illustration, see Figure 4.1.) To overcome this problem, we include

some additional search directions to optimize along such that for each s, the search direction

vectors are:

...

∆[specs−1 0]

∆[senss1]

∆[senss0]

∆[specs1]

∆[specs0]

∆[senss+1 1]
...


=



...

0

1

0

0

0

0
...


,



...

0

0

1

0

0

0
...


,



...

0

0

0

1

0

0
...


,



...

0

0

0

0

1

0
...


,



...

0

1

1

0

0

0
...


,



...

0

0

0

1

1

0
...


,



...

0

1

0

−1

0

0
...


,



...

0

0

1

0

−1

0
...


,



...

0

1

1

−1

0

0
...


,



...

0

1

1

0

−1

0
...


,



...

0

1

0

−1

−1

0
...


,



...

0

0

1

−1

−1

0
...


,



...

0

1

1

−1

−1

0
...


(4.44)
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Figure 4.1: Consider the minimization of the function f(sens0, spec0) subject to
sens0+spec0 ≥ k. In the figure, the contour lines show the value of f(sens0, spec0)
and the true minimum is at B, and let us suppose that the algorithm has reached
the point A. It is now not possible to improve at point A by searching in the
direction of sens0 and spec0 alone because decreasing sens0 would violate the
constraint while increasing spec0 does not decrease the function.

This can be thought of as an active set search strategy, where we try to optimize the function

within the subspace defined by the active constraints (Nocedal and Wright, 1999, p.455). (A

constraint ci(η) ≤ 0 is active at η∗ if ci(η
∗) = 0.) For example, searching along the direction(

∆[sens1]

∆[sens0]

)
=

(
1

1

)
(4.45)

allows us to search within the space defined by the constraint:

sens1 − sens0 = k (4.46)

with respect to sens1 and sens0 without violating it (supposing the constraint is active). Again,
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searching along the direction 
∆[sens1]

∆[sens0]

∆[spec1]

 =


1

1

−1

 (4.47)

allows us to search within the space defined by the constraints

sens1 − sens0 = k1 (4.48)

sens1 + spec1 = k2 (4.49)

with respect to sens1, sens0, and spec1 without violating them (supposing the constraints are

active at the minimum/maximum). We, however, do not know which of the constraints will be

active in advance, and hence we iteratively search along each of the constraints defined by (4.44),

which cover all possibilities imposed by (4.34), (4.35), (4.36) until no improvement can be found.

4.2.3 Results

With the adjustment made to the algorithm in section 4.2.2, we can now optimize Θ̂ subject to the

constraints of Table 4.1 as well as the linear inequality constraints:

1.05 ≤ senssi + specsi ≤ 1.7 (4.50)

|senss1 + senss0| ≤ 0.05 (4.51)

|specs1 + specs0| ≤ 0.02 (4.52)

Because each study now has 4 parameters, and we have an additional 9 search directions to go through

(for each study, c.f. (4.44)), optimization takes considerably longer than for the problems of the previous

chapters. Single-study optimizations take around 20-160 seconds each to run, and meta-analysis opti-

mization takes from 500 up to 10000 seconds on my Intel Pentium Core 2 Quad computer. The reason

the time it takes to run the optimization varies so much is partly because it is sometimes difficult to adapt

the integration algorithm used to the particular posterior distribution of θ as senss0, senss1, specs0, specs1

vary. Because accuracy is favoured over efficiency, there are situations where the evaluation becomes

inefficient. However, it is interesting to note that on a more powerful PC with the Intel Core i7-2600

processor, optimization takes only around one quarter of the time. Thus continual development in

computer technology can make these computer-intensive tasks more and more feasible.

It is also found that for some of the problems in this chapter, the algorithm converges to different

local optima with different starting points/search direction schedule. For single-study problems, more

than 1 local optima were found in 3% of the problems. For meta-analysis problems, 29% of the problems
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Figure 4.2: Locations of sens0, sens1, spec0, spec1 at max/min θ̂M , min θ̂L, and
max θ̂U when studies are considered individually, with θs ∼ N(0, 0.5)
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Figure 4.3: Locations of sens0, sens1, spec0, spec1 at max/min θ̂M , min θ̂L, and
max θ̂U when studies are considered in a meta-analysis, with θs = θ ∼ N(0, 0.5)

have more than 1 local optima, and 15% has more than 2. The largest number of local optima found for

a single problem was 10. All of these local optima are tabulated in the document “Location tables.pdf”

in the supplementary CD-ROM. As mentioned in chapter 2, however, it is not feasible to verify that

the most extreme of the local optima are indeed the global optima, and it is conceded that the global

optimum may not have been found in some of the problems. Nonetheless, for most of the local optima

found, their values in Θ̂ were similar. Therefore, error resulting from the failure to find the global

optima is unlikely to be large.

Before we examine the FPI of this model, let us first note the locations of senss1, senss0, specs1,

specs0 for the most extreme Θ̂ found. When the studies are considered independently from each other,

the locations are given in Figure 4.2. When in a meta-analysis, they are given in Figure 4.3. I have

presented the locations for the FE model only.

In examining Figures 4.2 and 4.3, we find that min Θ̂ tends to be found at spec0 = min spec0, sens1
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Figure 4.4: Locations of sens0 +spec0, sens1 +spec1, sens1−sens0, spec1−spec0

at max/min θ̂M , min θ̂L, and max θ̂U when studies are considered individually,
with θs ∼ N(0, 0.5)
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Figure 4.5: Locations of sens0+spec0, sens1+spec1, sens1−sens0, spec1−spec0 at
max/min θ̂M , min θ̂L, and max θ̂U when studies are considered in a meta-analysis,
with θs = θ ∼ N(0, 0.5)

and sens0 near their maximum, and spec1 near its minimum, as would be predicted from the theories

given in section 4.1.1. However, often, they are not found at these extreme points. This is partly because

of the constraints between sens0, sens1, spec0, and spec0 (equations 4.50, 4.51, 4.52). If we examined

the constraints, we would find that these two-variable constraints are active in almost all of the extreme

points (Figures 4.4 and 4.5). The only exception appears to be max θ̂M and max θ̂U when study 3 is

considered by itself. At these points, the location of sens0 and sens1 were not limited by spec0 and

spec1, or by their own boundaries.

Occasionally, the location of sens0, sens1, spec0, and spec0 is found at the complete opposite of

where we might expect them based on theories of section 4.1.1. An example is spec0 for study 9. (And

this was not because of a failure to locate the global maximum.) All this suggests that we are unlikely
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Note: The study−specific results shown are for studies considered
independently and are not from the overall meta−analysis model.

Figure 4.6: FPIs for Θ̂ in a FE model with exposure misclassification adjustments.

to find a simple relationship between the location of the extreme points and the feasible region.

We turn now to the Feasible Posterior Intervals (FPIs), which are graphed in Figure 4.6 and 4.7

for the FE and the RE model, respectively. Again, FPIs are given in both the case when studies are

considered independently and together in a meta-analysis. These FPIs are contrasted with the posterior

credible interval when no exposure misclassification bias is assumed, i.e. when senssi = specsi = 1, s =

1 . . . 14, i = 0, 1.

Here, we note that not only was there the added uncertainty due to bias, as reflected by the wider

Feasible Posterior Median Intervals (FPMIs), but the uncertainty due to randomness was also increased,

as reflected by the increased length of the Feasible Posterior Credible Intervals (FPCIs) on top of the

increase in the width of the FPMI, particularly in studies with more data. This can be explained by the

fact that misclassification essentially “dilutes” data (c.f. equation 4.27), such that the effective amount

of data is reduced. Moreover, we see that large positive values for θ are much more possible than large

negative values, for all studies except study 12. This reflects the impact of the near-non-differential

misclassification constraint of (4.22) and (4.23), since the effect of non-differential misclassification is to

bias estimates towards the null in classical estimates (Bross, 1954), and study 12 is the only study that
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Figure 4.7: FPIs for Θ̂ in a RE model with exposure misclassification adjustments

has an estimate of odds ratio less than 1.7

Perhaps more striking is the fact that the overall meta-analytic FPMI is now so wide that it exceeds

the widths of the FPCI for all individual studies. This parallels the situation in the previous chapter

where the uncertainty in bias is severe (−2 ≤ ηs ≤ 2) (c.f. Figure 3.10). There, I explained that two

factors were at work. First, there are more data in the meta-analysis, so there is more information to

overcome the information in the prior distribution. Secondly, the extremes in the meta-analytic situation

are “more extreme” than the extremes in the single-study situation. I believe this is still the case here.

An additional issue when faced with such a wide FPI is that there is evident conflict between the prior

distribution and the likelihood when η takes on some of the values within E . For example, in Figure

4.3, we see that at max Θ̂, specs1 was high (near 1), and senss1 and senss0 were low for all studies, with

senss0 > senss1. These misclassification probabilities together with the data (which gives estimates of

ps1 and ps0 close to 0) give much weight to πs1 close to 1 and much weight to πs0 close to 0, resulting in a

7The reader may also observe that for the analysis without bias, the meta-analytic posterior median and 95% credible
interval for the overall log odds ratio is considerably more to the right than study-specific posterior median and 95%
credible interval. This is in fact an artifact due to the prior distribution we give for πs0 in this chapter, which has
mean 4 times less than that of p̂s0, where p̂s0 is the observed prevalence of exposure in the controls. When there is no
misclassification, this prior does not make sense, since ps0 = πs0. However, I have decided to show these results alongside
the uncertainty intervals with misclassification bias, to highlight the difference the bias parameters make to the posterior
distribution.
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likelihood which favours very positive values of θs = logitπs1− logitπs0 (whereas the prior distribution of

N(0, 0.5) for θ places nearly 0 weight on these extremely positive values of θ). In a single-study setting,

the conflict between the prior distribution and the likelihood is perhaps not great since the likelihood

is probably relatively flat as compared with the prior. In a meta-analysis, this is no longer the case,

and we see that even though our prior distribution (θ ∼ N(0, 0.5)) gives very little weight to values of θ

greater than 2 or so, the posterior has so much weight on positive values of θ that the overall posterior

median for θ is around 4. In view of this, it is natural to want to “re-specify” our feasible region for η

such that it does not conflict as much with the prior distribution. However, this may be difficult, since

the conflict only appears to arise in the meta-analysis situation, and not so much in the single-study

situation.

4.3 Sensitivity Analyses

However, even when the approach of this thesis is unsatisfactory as a means of quantifying overall

uncertainty about θ, it may still be used as a tool for sensitivity analysis. In the current situation,

for example, we may instead ask: What values do the bias parameters have to take in order that the

data may give us useful information over the possible range of θ? What if, for example, the sens and

spec were in fact all towards the higher ends of our uncertainty intervals? What if non-differential

misclassification were exact rather than near? What if sens + spec can be known to be high? In the

following subsections, I consider these scenarios for the FE model only. The RE model has very similar

patterns and so its results are not presented.

4.3.1 High, medium, and low sens and spec

Here, let us consider three different levels of sensitivity and three different levels of specificity, high,

medium, and low, with their definition given in Table 4.2.

The definitions of low, medium, and high sensitivity and specificity are derived by equally dividing

the shared range of sens0 and sens1, and spec0 and spec1 into three parts. In Figure 4.8, I graphed the

changes in FPI of θ for the meta-analysis in relation to these different sensitivity and specificity levels.

Here, we see that increasing specificity tends to increase the width of the FPMI, whereas increasing

sensitivity tends to decrease its width. As a result, the widest FPMI and FPCI is observed when

specificity is high and sensitivity is low. The shortest uncertainty interval is observed when specificity

is low, and when this is the case, varying the sensitivity does not appear to affect the FPI very much.

One observation which may partly explain the pattern is that when specificity is low, the information

afforded by the data is little. As a result, the prior distribution still has great influence over the posterior

distribution, whatever values the bias parameters take. As a result, the posterior median cannot depart
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sens spec
Index Low Medium High Low Medium High

1 [ .05, .288] [.288, .526] [.526, .764] [.936, .957] [.971, .985] [.985, 1]
3 [ .06, .293] [.293, .527] [.527, .76] [ .94, .96] [ .96, .98] [ .98, 1]
4 [ .05, .279] [.279, .508] [.508, .737] [.963, .975] [.975, .988] [.988, 1]
5 [ .05, .288] [.288, .527] [.527, .765] [.935, .957] [.957, .978] [.978, 1]
6 [.062, .316] [.316, .571] [.571, .825] [.875, .917] [.917, .958] [.958, 1]
7 [ .05, .286] [.286, .523] [.523, .759] [.941, .961] [.961, .98] [ .98, 1]
8 [ .05, .277] [.277, .504] [.504, .731] [.969, .979] [.979, .99] [ .99, 1]
9 [ .05, .268] [.268, .487] [.487, .705] [.995, .997] [.997, .998] [.998, 1]
10 [ .05, .286] [.286, .522] [.522, .758] [.942, .961] [.961, .981] [.981, 1]
11 [ .05, .275] [.275, .499] [.499, .724] [.976, .984] [.984, .992] [.992, 1]
12 [ .05, .274] [.274, .498] [.498, .722] [.978, .985] [.985, .993] [.993, 1]
13 [ .05, .269] [.269, .489] [.489, .708] [.992, .995] [.995, .997] [.997, 1]
14 [ .05, .279] [.279, .507] [.507, .736] [.964, .976] [.976, .988] [.988, 1]

Table 4.2: Definition of low, medium, and high sensitivity and specificity

No misclassification

Standard misclassification

High spec

Low spec

High sens Med spec

High spec

Low spec

Low sens Med spec

High spec

Low spec

Med sens Med spec

0.1 1 10 100
Odds Ratio

−2 0 2 4 6
log Odds Ratio

FPMI FPCI

Figure 4.8: Change in the possible range of Θ̂ in relation to changes in sensitivity
and specificity.
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Note: The study−specific results shown are for studies considered independently
and are not from the overall meta−analysis model.

Figure 4.9: FPIs for the high sens, high spec scenario, comparing independent
study inference to the meta-analytic inference for θ

greatly from the prior median, which is 0.

It may be interesting to compare the meta-analytic FPI with the individual-study FPI for the various

sensitivity and specificity scenario. The comparison for the high sens, high spec scenario is given in

Figure 4.9.

Here, we note that although the meta-analytic FPCI is of a similar width to the study-specific FPCI,

it is altogether more positive. This is because in the meta-analysis setting, the pooling of data affords

the likelihood more weight to drive the posterior away from the prior. Therefore, if sens and spec are

high, the combined information from the studies gives stronger evidence for a positive θ than when

studies are considered independently.

The same, however, cannot be said in a situation where spec is low. When this is the case, there

is very little information in the data, and the increase in FPMI in the meta-analytic setting more than

offsets the precision gained in the pooling of data. Figure 4.10 shows this for the case when spec is low

and sens is high, but the same pattern is observed for other sens levels.
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Figure 4.10: FPIs for the high sens, low spec scenario, comparing independent
study inference to the meta-analytic inference for θ

4.3.2 Non-differential/differential misclassification

In this subsection, I examine whether imposing the assumption of strict non-differential misclassification

affects the FPIs materially. Recall that in the above model, it was assumed that:

|sens1 − sens0| ≤ 0.05 (4.53)

|spec1 − spec0| ≤ 0.02 (4.54)

(c.f. equations 4.22, 4.23). Strict non-differential misclassification requires:

sens1 = sens0 (4.55)

spec1 = spec0 (4.56)

The FPIs under this assumption are given in Figure 4.11, which contrasts the FPIs under the strict

non-differential misclassification assumption with that under the assumptions of (4.53) and (4.54). It

can be seen that the FPMIs are shortened both in the individual study case and the meta-analysis case.

The reduction in width is more dramatic in the meta-analysis situation, such that the lower limit of

the FPMI is now almost 0. This indicates even small changes in the allowable degree of differential

misclassification can have large effects on the range of possible posterior inference. Nonetheless, the

lower limit of the FPCI remains negative, and a negative relationship between EMF and childhood

leukaemia remains a possibility.
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Figure 4.11: FPIs for non-differential misclassification, compared to the standard
differential misclassification constraints (4.53, 4.54) of this chapter, for a FE model
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Figure 4.12: Change in the possible range of Θ̂ in relation to changes sens1+spec1

and sens0 + spec0 in the FE meta-analysis model

4.3.3 High, medium, and low sens+ spec

Another sensitivity analysis we can conduct is with respect to sens+spec. As discussed in Appendix C,

sens + spec is related to the correlation of the raw (uncategorized) true and measured exposure levels.

We are unable to estimate the correlation precisely, and therefore in the above, we use a wide range for

sens + spec, from 1.05 to 1.7. In Figure 4.12, we can examine how sens + spec affects our uncertainty

over θ.

Interestingly, as sens + spec becomes larger, the upper bound of Θ̂ becomes smaller, although the

lower bound remains roughly the same. Hence, we do not have more evidence that θ is greater than

zero even if sens+ spec is known to be near its upper bound of 1.7.

In Figures 4.13, I compare the FPIs for the individual study scenario and the meta-analysis scenario

for the case where sens+spec is near the upper end, i.e. with 1.5 ≤ senssi+specsi ≤ 1.7, s = 1 . . . 14, i =

0, 1. It can be seen that even in this scenario the meta-analytic FPCI remain considerably wider than the

study-specific FPCI. Thus a negative meta-analytic θ remains a strong possibility even when sens+spec

is high. This contrasts with results from section 4.3.1, which shows that if both sensitivity and specificity

are high, the data give evidence for a positive θ.

4.3.4 General observations

In conventional sensitivity analyses for bias models, we assign specific values to the unknown parameters

η and examine how statistical inference to the target parameter θ changes with η. By using the methods

of this thesis, however, we can assign feasible regions to η, and examine the maximum and minimum

possible statistical inference within the feasible region. This overcomes the major limitation of traditional

sensitivity analyses — that if there are too many bias parameters, it becomes difficult to explore all the

different possibilities.
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Study 1
Study 2
Study 3
Study 4
Study 5
Study 6
Study 7
Study 8
Study 9

Study 10
Study 11
Study 12
Study 13
Study 14

Meta−analysis

0.1 0.5 1 2 10
Odds Ratio

−2 −1 0 1 2 3
log Odds Ratio

FPMI FPCI

Note: The study−specific results shown are for studies considered independently
and are not from the overall meta−analysis model.

Figure 4.13: FPIs for the situation where 1.5 ≤ senssi + specsi ≤ 1.7, s =
1 . . . 14, i = 0, 1, in the meta-analysis setting and in the individual study setting

However, sometimes sensitivity analyses carried out in this way also display the phenomenon we saw

earlier in the standard analyses — that the meta-analytic FPIs become wider than the study-specific

FPIs. In general, a wide FPCI straddling across 0 is not very useful. It does not give evidence for a

positive or a negative association, neither does it give evidence for a lack of association. Thus we are

not able to say whether particular values for η are associated with positive or negative inference for θ.

To overcome this problem, we may want to further restrict the range of values given to η. However, this

becomes unrealistic as it becomes more and more unlikely that all bias parameters take values within

the feasible region as that region becomes more and more narrow.
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Summary:

• Consideration of bias due to exposure misclassification poses a number of additional difficulties for

the method of this thesis. Firstly, estimates for sensitivity and specificity are often not available.

Moreover, if severe misclassification is a possibility, prior distributions for πs0 and θs must be

chosen carefully.

• When misclassification probabilities are poorly known, it is useful to restrict the parameter space

of senss1, specs1, senss0, specs0 through some additional constraints, such as near-non-differential

misclassification, or use correlation estimates to give bounds to sens+spec. Using these constraints

that include more than one parameter, however, requires modifying the search algorithm of chapter

2 to search through more directions.

• Multi-modality also becomes an issue searching through the feasible region of senss1, specs1, senss0,

specs0 for max/min Θ̂. There are typically more modes in a meta-analysis (with more parameters

and hence a larger parameter space) than for single studies.

• Even when the technical aspects of the method are overcome, under severe misclassification, un-

certainty due to bias is often much greater than that due to randomness. Because the method

of this thesis does not allow the pooling of information to reduce uncertainty due to bias, the

meta-analytic FPI for θ can remain very wide.

• Nonetheless, the method is also useful as a tool for sensitivity analysis, and we can consider

different sub-space within the original feasible region of η and see how inference for θ changes with

η. This extends conventional sensitivity analyses in that we are able to consider ranges of values

rather than unique values for η and therefore reduce the number of sensitivity analyses that need

to be done.

• In this chapter, it was found that only when specificity and sensitivity are both high, the data give

evidence for a positive relationship between EMF and childhood leukaemia using the Greenland

data. It was also found that a small degree of differential misclassification (|sens1 − sens0| <
0.5, |spec1−spec0| < 0.02) can render the FPI significantly wider than under strict non-differential

misclassification.
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Chapter 5

Accounting for uncertainty due to

non-participation bias

Many studies require informed consent from the participants. However, typically not all invited to

participate would participate. This can be due to unavailability or refusal. If those who are unavailable

or refuse differ in characteristics from those who participate, then non-participation bias is likely to

arise. The literature on adjustment for bias due to non-response is almost entirely dedicated to one of

two models: the pattern mixture model (e.g. Hansen and Hurwitz, 1946; Birnbaum and Sirken, 1950;

Little, 1993) and the selection model (e.g. Politz and Simmons, 1949; Rubin, 1977; Greenland, 2005a;

Geneletti et al., 2009). If X = {X1, X2, . . . , Xn} denote the data with no non-response, and Si = 0, 1

denotes whether Xi is observed or not, then the pattern-mixture model considers the likelihood of X

and S as:

p(X,S|θ,η) = p(S|φ(pm)
1 )p(X|S,φ(pm)

2 ) (5.1)

while the selection model considers the likelihood as:

p(X,S|θ,η) = p(X|φ(s)
1 )p(S|X,φ(s)

2 ) (5.2)

where φ
(pm)
1 , φ

(pm)
2 , φ

(s)
1 , φ

(s)
2 are generally different parameters. The selection model has the advantage

that the parameter of interest (i.e. θ in our case) can generally be represented as a parameter within

φ
(s)
1 , whereas in the pattern-mixture model, the parameter usually has to be written as a function

of parameters from both φ
(pm)
1 and φ

(pm)
2 . Moreover, in cases where Xi is multivariate, i.e. Xi =

{Xi1, Xi2, . . . , Xip}, and where Xi can be partially observed, e.g. when Si1 = 1, Si2 = 0, it may sometimes

be reasonable to assume Pr(S|X,φ(s)
2 ) depends only on the observed data, i.e.: Pr(Si|Xi,φ

(s)
2 ) =

Pr(Si|X ′i,φ
(s)
2 ), X ′i = {Xij : Sij = 1} (a condition known as missing at random (Rubin, 1976)), resulting

in a marginal likelihood (i.e. integrating over X ′′ = {Xij : Sij = 0}) for the target parameter (assumed

within φ
(s)
1 ) that does not depend on the auxiliary parameters φ

(s)
2 (see Geneletti et al., 2009, for a
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number of examples).

In the situation considered here, however, where a person’s disease and exposure status are either

both observed or both not observed, the missing at random assumption is equivalent to the assumption

that response (or nonresponse) does not depend on exposure. If this assumption is not fulfilled, the

auxiliary parameters φ
(s)
2 are needed in the selection model. In the simple case-control study with a

binary exposure variable X, four parameters are inherent in φ
(s)
2 :

Pr(S = 1|X = 1, case) Pr(S = 1|X = 1, control)

Pr(S = 1|X = 0, case) Pr(S = 1|X = 0, control)

These parameters are not identifiable from the data. On the other hand, if we consider the pattern-

mixture model, only two unidentifiable parameters are needed:

Pr(X|S = 0, case) Pr(X|S = 0, control)

because Pr(S|case) and Pr(S|control) are often available in study reports. For this reason, in this

thesis, I adopt the pattern-mixture model.

5.1 Adjusting for non-participation bias using the pattern-

mixture model

It was mentioned above that there are two unidentifiable parameters in the simple case-control study

with binary exposure, using a pattern-mixture model: Pr(X|S = 0, case) and Pr(X|S = 0, control). We

can reparameterize the model such that the unidentifiable parameters represent the odds ratios between

the exposure and response for the cases and for controls:

Pr(X|S = 0, i)

1− Pr(X|S = 0, i)
Ri =

Pr(X|S = 1, i)

1− Pr(X|S = 1, i)
i = case/control (5.3)

where Ri denotes the odds ratio. Rearranging equation (5.1) and denoting by:

πi = Pr(X = 1|S = 1, i) (5.4)

π∗i = Pr(X = 1|i) (5.5)

Qi = Pr(S = 1|i) (5.6)

we have:

π∗i = Qiπi +
(1−Qi)πi

Ri(1− πi) + πi
(5.7)
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Thus, we have a deterministic relationship between the prevalence of exposure among those who would

respond (πi), and the prevalence of exposure of the target population (π∗i ). Applying equation (5.7) to

the meta-analysis model of (2.14) (2.15) and (2.16), we have:

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (5.8)

πsi = f(π∗si) (5.9)

logitπ∗s1 = logitπ∗s0 + θs (5.10)

θs = θ + δs (5.11)

where f(π∗si) is the inverse of function (5.7), and has been shown by Plackett (1965) to be the solution

of a quadratic equation. Mardia (1970) further showed that the solution is always the larger of the 2

solutions of the quadratic equation (given Rsi 6= 1, 0 < Qsi ≤ 1, 0 ≤ π∗si ≤ 1). In symbols, we can write:

πsi =
−bsi +

√
b2
si − 4asicsi

2asi
(5.12)

asi = Qsi(1−Rsi)

bsi = (Rsi − 1)(Qsi + π∗si) + 1

csi = −Rsip
∗
si

As in previous chapters, we can assign feasible ranges for Qs1, Qs0, Rs1, Rs0, and observe the range of

posterior Θ̂ given by these ranges.

5.1.1 Some theoretical results

In order to see where we are likely to find the maximum and minimum of Θ̂ (= {θ̂L, θ̂M , θ̂U}), it

is instructive to examine the partial derivatives of equation (5.7). In the following, dependence on

case/control status is removed to improve clarity.

∂π∗

∂Q
= π

(
1− 1

R(1− π) + π

)
(5.13)

∂π∗

∂R
=
−(1−Q)π(1− π)

(R(1− π) + π)2
(5.14)

It can be seen that the derivative with respect to R (equation 5.14) is always non-positive (since 0 ≤
π,Q,R ≤ 1). This is intuitive because the greater R is, the less the prevalence of the exposure among

the unobserved (Pr(X|S = 0)) compared to the observed (Pr(X|S = 1)) (R = Odds(X|S=1)
Odds(X|S=0)

). The total

population exposure prevalence is a weighted average of that of the observed and the unobserved, and

thus should vary with R negatively.
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It can also be seen that the derivative with respect to Q (equation 5.13) is positive when R > 1,

and negative when R < 1, and 0 when R = 1. This is also intuitive because if the unobserved (S = 0)

has a greater exposure prevalence (R < 1), then increasing the proportion of unobserved (decreasing Q)

will increase the true population prevalence estimate (π∗). The same logic applies when R > 1. When

R = 1, then we are saying the exposure prevalence is the same in both the observed and the unobserved,

and hence the proportion of unobserved does not affect our estimate of π∗.

As in previous analyses, a simple relationship between Q, R and Θ̂ probably does not exist. However,

we can note where extreme values of Q1, Q0, R1, and R0 are likely to be found based on the above

relationships. For example, since θ = logitπ∗1 − logitπ∗0, for more positive Θ̂, we would expect R1 to be

towards its minimum and R0 to be towards its maximum. If both R1 and R0 are less than 1, then we

would expect Q1 to be towards its minimum and Q0 to be towards its maximum. The reverse would be

expected when R1 and R0 are both greater than 1. If R1 < 1 and R0 > 1, then we would expect both

Q1 and Q0 to be near their minima. Again, we can derive the exact opposite for more negative θ.

5.2 The Greenland meta-analysis example

In this section, we apply the pattern-mixture model for adjustment of non-participation bias to the

Greenland meta-analysis example. Going through the studies of the childhood leukaemia example we

have been considering, we can find the following reported figures of rates of participation, as tabulated

in Table 5.1.

5.2.1 Constraints for Q1, Q0

Q corresponds to the proportion of participation among those invited to participate in the studies.

A number of studies (studies 3, 9, 11, 12, 14) did not require consent for exposure measurement, as

exposure was assessed by the distance between the participant’s residences (which can be obtained from

the records) and major sources of EMF, such as power lines and electricity transformation stations. For

these studies, we may assume participation is complete:

Qs0 = Qs1 = 1 s = 3, 9, 11, 12, 14 (5.15)

Among studies that require consent for studies, we have the proportion of participation among the

invited. These are tabulated in Table 3.1 together with their 95% confidence intervals. For these

studies, we can take the 95% Confidence Intervals limits of the proportion of participation as reasonable

bounds for the parameters Qs0 and Qs1. (We assume these proportions are estimating the population

proportion of would-be participants, since Qs0 and Qs1 represent the population rather than the sample
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participation proportion.) For example, for the Linet et al. (1997) study (index number 5),

0.75 ≤ Q5 1 ≤ 0.81 (5.16)

0.60 ≤ Q5 0 ≤ 0.66 (5.17)

The one study that failed to provide a measure of the proportion of participation is the Coghill et al.

(1996) study. This study recruited cases from advertisement and controls were friends of the cases.

Because the potential for non-participation bias is large in comparison with the other studies, if we

want to adjust for bias in this study in the same way we adjust for bias in the other studies, it will be

reasonable to give this study a range for Q1 and Q0 that is closer to zero than the others. Here, I give

these parameters a lower bound of 0.2 and an upper bound of 0.5.

0.2 ≤ Q1 1, Q1 0 ≤ 0.5 (5.18)

5.2.2 Constraints for R1, R0

Unlike Qsi, there is little to inform possible values of Rsi. As the odds ratio of exposure between

the observable and the unobservable, its value depends on how different we believe the unobservable

population is to the observable population. From a closer examination of the studies, it appears that

most of the non-participation in the studies were due to refusal among both the cases and the controls.

Some probable, though unconfirmed reasons why participation might be related to exposure include:

(1) Those being near to high exposure sources (e.g. transmission lines) may be more interested in the

project; (2) Cases who are more ill are less likely to participate. If we, for example, suppose that those

who are more exposed are more likely to participate, then we have Odds(Ssi|Xsi = 1) > Odds(Ssi|Xsi =

0) ⇐⇒ Rsi > 1. Coupled with other unknown reasons for differential propensity to participate, let us

suppose that a conservative interval for Rs1 and Rs0 is:

0.75 ≤ Rsi ≤ 3 i = 0, 1 s = 1, 2, 4, 5, 6, 7, 8, 10, 13 (5.19)

Although we do not have much information to inform Rsi, there may be good reasons to suppose

that the difference between Rs1 and Rs0 may not be too much. This is because for whatever reasons

Odds(Ssi|Xsi = 1) may be different from Odds(Ssi|Xsi = 0), the same reasons may be at work in both

cases and controls, if the invitation to participate is the same for the two groups. Thus, it will usually

be reasonable to restrict the ratio between Rs1 and Rs0. In the following discussion, let us assume that

this ratio does not exceed 1.5 or 1/1.5, for all studies except the Coghill et al. study, since this study
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has very different mechanisms for recruiting cases and controls.

1/1.5 ≤ Rs1/Rs0 ≤ 1.5 s = 2 . . . 14 (5.20)

The constraints on Q1, Q0, R1, R0 given in the last two subsections are summarized in Table 5.2.

Unlike bias due to exposure misclassification, non-participation bias does not “dilute” the data, and

hence given the values of the non-participation bias parameters, the data in a meta-analysis generally

contain fairly precise information for the prevalence of true exposure, i.e. for πs0 and πs1. Thus, we can

use non-informative prior distributions for πs0 and θs(= logitπs1 − logitπs1), as in chapter 3:

θ ∼ N(0, 100) (5.21)

πs0 ∼ U(0, 1) (5.22)

As for δs, I follow the previous chapters in having δs = 0 for a FE model, and δs ∼ N(0, 0.15) for a RE

model.

5.2.3 Results

The optimization of this chapter took around 10-100 seconds for single study results and 30-600 seconds

for meta-analyses on an Intel Core i7-2600 computer. These optimization were much faster than those

in the previous chapter because (1) there are less parameters to consider (when Qi = 1 or Ri = 1, then

bias is absent), and (2) there is not the same problem with adaptation in the range of integration as was

encountered in the problems of the previous chapter. However, multi-modality is a significant problem

in this chapter, with 12% of single-study and 68% of meta-analysis problems found with more than 1

mode. The presence of multiple modes was almost entirely the consequence of the constraint (5.20):

1/1.5 ≤ Rs1/Rs0 ≤ 1.5 s = 2 . . . 14 (5.23)

Frequently, one mode is found with Rs0 at its upper or lower extreme, and Rs1 = Rs0 × 1.5±1, and

another is found with Rs1 at its upper or lower extreme and Rs0 = Rs1× 1.5±1. If there is only 1 study,

then at most two modes are found. In a meta-analysis, more than two modes are possible because each

constituent study can contribute up to 2 modes.

Figures 5.1 and 5.2 show the Feasible Posterior Intervals (FPIs) for the above setup for both the

individual study setting and the meta-analysis setting, for a fixed-effects (FE) model and a random-

effects (RE) model, as compared to the situation without bias. It appears that the effect of non-

participation bias is roughly additive — it behaves similarly to the simple bias model of chapter 3 in

that bias increases the width of the Feasible Posterior Median Intervals (FPMIs) but does not increase
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Meta−analysis
Study 14
Study 13
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Study 10
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Study 7
Study 6
Study 5
Study 4
Study 3
Study 2
Study 1
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Odds Ratio
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log Odds Ratio

FPMI, with bias
FPCI, with bias
Posterior median, no bias
Posterio 95% interval, no bias

Note: The study−specific results shown are for studies considered
independently and are not from the overall meta−analysis model.

Figure 5.1: FPIs for a FE model with non-participation bias as compared to a
model without bias

the Feasible Posterior Credible Intervals (FPCIs) on top of the increase in the FPMIs. The degree of

non-participation bias that is possible for these studies is moderate for all studies, except perhaps for

Coghill et al. (1996), and this is noted earlier.

The location of Q0, Q1, R0, R1 at max Θ̂ and min Θ̂ are given in Figure 5.3. Only one figure is

presented for both the independent-study and the meta-analysis case, and for both the FE and the RE

models, because in this example, the locations are in fact the same in all four situations. Because of

the constraints (5.20), the pattern of the location of Q0, Q1, R0, R1 is quite complicated. Based on the

theory of section 5.1.1, we expect R1 to be smaller than R0 at max Θ̂, and the reverse at min Θ̂. This

can be observed in Figure 5.3. However, because of the constraints of (5.20), sometimes R0 is found

at the extreme of its feasible space while other times R1 is. Always, one of R0 or R1 is found at the

extreme of its feasible region. Depending on the location of R0 and R1, Q0 and Q1 are sometimes found

at the lower and sometimes the upper bound. When both R0 and R1 are greater than or equal to 1,

then one of (Q0, Q1) is at its minimum and the other at its maximum. When one of (R0, R1) is less

than 1, and the other is greater than 1, then both Q0 and Q1 are found at their minimum. This is also

in agreement with predictions from section 5.1.1.
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Meta−analysis
Study 14
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Note: The study−specific results shown are for studies considered
independently and are not from the overall meta−analysis model.

Figure 5.2: FPIs for a RE model with non-participation bias as compared to a
model without bias
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Figure 5.3: Location of (Q0, Q1, R0, R1) at max/min Θ̂ when studies are consid-
ered independently as well as when considered in a meta-analysis
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5.3 Sensitivity analyses

As with the previous chapter, we can conduct sensitivity analyses to see how further restricting the

range of feasible non-participation bias affects the uncertainty interval of Θ̂. Again, we consider the

FPI for θ only in the FE meta-analysis setting.

As a first example, consider the scenario where those who are more exposed are certainly more likely

to participate, so that we have Odds(S|X = 1) > Odds(S|X = 0), or R > 1. Replacing constraints

0.75 ≤ Rsi ≤ 3 i = 0, 1 s = 1, 2, 4, 5, 6, 7, 8, 10, 13 (5.24)

by

1 ≤ Rsi ≤ 3 i = 0, 1 s = 1, 2, 4, 5, 6, 7, 8, 10, 13 (5.25)

we find that:

[min θ̂M ,max θ̂M ] = [0.29, 0.61] (5.26)

[min θ̂L,max θ̂U ] = [0.15, 0.88] (5.27)

in the meta-analysis. This compares to

[min θ̂M ,max θ̂M ] = [0.24, 0.63] (5.28)

[min θ̂L,max θ̂U ] = [−0.03, 0.89] (5.29)

for the standard setup (5.24), and we see that the FPIs are only slightly narrowed. Figure 5.4 shows

results from further sensitivity analyses altering the feasible range of R1 and R0. From the theory in

section 5.1.1, we know that when R1 = R0 = 1, no non-participation bias is present. As R1 and R0 is

allowed to depart more and more from 1, the uncertainty interval also increases in width.

Also, when R1 and R0 becomes larger, Θ̂ also tends to become more positive (see bottom 4 lines of

Figure 5.4). This is when we have held constant the width of logR+
1 − logR−0 , where R+

i and R−i denote

the upper and lower bound of the feasible region of Ri.

Apart from varying the ranges of R1 and R0, we can also examine the effect of varying the range

of R1/R0. For example, one possible scenario is that while the control group’s readiness to participate

is related to the exposure (with those who are more exposed to EMF more likely to participate), the

cases’ readiness to participate may be less related, but rather more related to factors such as health. If

this was the case, we might expect R1 to be less than R0. For example, if we replace the constraints:

1/1.5 ≤ Rs1/Rs0 ≤ 1.5 s = 1 . . . 14 (5.30)
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0.75 < R1, R0 < 1

0.95 < R1, R0 < 1.5
1 < R1, R0 < 1.1

1 < R1, R0 < 3

1 < R1, R0 < 4/3

16/9 < R1, R0 < 64/27
4/3 < R1, R0 < 16/9

No bias

Original: 0.75 < R1, R0 < 3

0 .2 .4 .6 .8 1
log Odds Ratio

1 2
Odds Ratio

FPMI FPCI

Figure 5.4: Sensitivity analysis to changes to the Feasible Posterior Intervals of θ
in response to changes in the feasible range of R1 and R0 in the FE meta-analysis

by

1/1.5 ≤ Rs1/Rs0 ≤ 1 s = 1 . . . 14 (5.31)

we have:

[min θ̂M ,max θ̂M ] = [0.32, 0.63] (5.32)

[min θ̂L,max θ̂U ] = [0.07, 0.89] (5.33)

Compared to the standard setup (5.30), where we have:

[min θ̂M ,max θ̂M ] = [0.24, 0.63] (5.34)

[min θ̂L,max θ̂U ] = [−0.03, 0.89] (5.35)

we see that the FPI has a more positive lower bound, although the upper bound remains nearly the

same. Figure 5.5 displays further sensitivity analyses of how varying the possible range of R1/R0 affects

the uncertainty interval. We see that the location of the uncertainty interval of Θ̂ is sensitive to the

values of R1/R0. When R1 is 0.667-0.8 times R0, the interval is shifted to the right and the evidence

for a positive θ is stronger. On the other hand when R1 is greater than R0, the interval is shifted to

the left and the evidence is weaker. This is easy to explain: the greater R is, the smaller the true

exposure prevalence (π∗) is compared with the observed prevalence (π) (equation 5.7). When R1 is less

than 1, π∗1 is increased relative to π1. When R0 is greater than 1, π∗0 is decreased relative to π0. Since

θs = logitπ∗1 − logit π∗0, this will tend to increase θ. Finally, let us note that R1 = R0 is not equivalent

to the absence of non-participation bias. This is because non-participation bias depends also on Q1 and

Q0, and even when Q1 = Q0, some non-participation bias is possible because the scale by which Q and

R affects π is not the log odds scale.
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0.667 < R1/R0 < 0.8

0.667 < R1/R0 < 1

0.8 < R1/R0 < 1
1 < R1/R0 < 1.2
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No bias

R1/R0 = 1

Original: 0.667 < R1/R0 < 1.5
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log Odds Ratio

1 2
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Figure 5.5: Sensitivity analysis of changes to the Feasible Posterior Intervals of θ
in response to changes in the feasible range of R1/R0 in the FE meta-analysis
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Summary:

• In this chapter, I have briefly outlined two commonly used models for adjustment of non-

participation bias — the selection model and the pattern mixture model. In a meta-analysis

setting, the pattern mixture model appears more straightforward to apply as estimates of some

the parameters, namely the participation probabilities (Q1 and Q0), are often available in reports.

• The other parameters, R1 and R0, which gives the odds ratio between participation and exposure

status, are harder to estimate, although often the exposed (if they know of their exposure) are

more likely to participate, and that if controls and cases are invited in similar ways, R1 and R0

are likely to be similar. This means it may be reasonable to limit the ratio R1/R0.

• I applied the pattern-mixture model to the Greenland meta-analysis, assigning feasible ranges to

the parameters Q1, Q0, R1, and R0. As in the previous chapter, I demonstrated the use of the

algorithm of this thesis to search through the feasible region for the most extreme Θ̂.

• As in the previous chapter, multimodality is a problem for optimization in the problems of this

chapter. However, it appears at most two modes are found for each study.

• For sensitivity analyses, I demonstrated how the location of Θ̂ is sensitive to the values of R1/R0,

and also to the values of R1 and R0 themselves (if the range of allowable R1/R0 stays the same).

Greater values of R1, R0 as well as smaller values of R1/R0 tend to lead to more positive Θ̂. The

effect of R1/R0 on the value of Θ̂ might be predicted from theory, whereas the reason for the effect

of the values of R1, R0 themselves on Θ̂ are not entirely clear.
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Chapter 6

Accounting for uncertainty due to

incomplete control of confounding

In epidemiology, confounding refers to the true (causal) effect of an exposure on a disease being con-

founded by some other factors, leading to a spurious association (Greenland and Robins, 1986). In

clinical trials, bias due to confounding can often be probabilistically controlled for by randomization. In

observational studies, however, randomization is generally not possible, and stratification in either the

sampling stage or the analysis stage over known confounders is believed to reduce the potential for bias

due to confounding. Commonly, stratification is replaced by adjustment in a regression context, and

is expected to give reasonable approximation to the stratification results (Greenland and Maldonado,

1994). However, generally we do not expect such strategies to completely eliminate confounding bias.

This is because (1) the exact relationship (i.e. dose-response relationship) between the confounder and

the disease may not be known or modeled correctly, (2) the confounder may be subject to measurement

error/dichotomization, (3) some relevant confounder data may not be measured or collected, and (4)

even when all relevant confounders are measured precisely and modeled correctly, there will likely be

residual confounding (due to residual “randomness”).

In the literature, a number of proposals have been raised to address bias due to such incomplete

control of confounding, particularly due to (3) (e.g. Rosenbaum and Rubin, 1983a; Arah et al., 2008;

McCandless et al., 2009). However, nearly all of these techniques assume we have access to measured

confounder data. In a meta-analysis setting, this is usually not the case. Thus, we are even more limited

than usual in our ability to deal with bias due to incomplete control of confounding. Among the three

types of biases considered in this thesis, bias due to uncontrolled confounding might therefore be the

one that is most difficult to quantify satisfactorily.
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6.1 Making use of what is available to adjust for bias due to

measured confounders in a meta-analysis

However, many studies report at least 2 estimates of the effect of a risk factor on a disease – one

unadjusted for confounders and one adjusted for confounders. A common strategy for meta-analysis that

takes into account of study-specific adjustment for measured confounders is to extract the “adjusted”

estimate (θ̂adj
s ) together with its standard error1 (σ̂adj

s ) and form a weighted average of (θ̂adj
s ) with weights

being inversely proportional to the variance of (θ̂adj
s ), estimated as σ̂adj

s
2

+ σ̂2
δ , where σ̂2

δ is an estimate

of the random-effects (between-study) variance (e.g. Deeks et al., 2001; Petitti, 2000):

Estimate of meta-analytic θ =
∑
s

wsθ̂
adj
s (6.1)

ws ∝
1

σ̂adj
s

2
+ σ̂2

δ

(6.2)

While the justification of the “inverse-variance” weights is usually given as it being the minimum variance

unbiased estimator of θ in the fixed-effects (FE) meta-analysis (Deeks et al., 2001), an alternative

justification which applies to both the FE and the random-effects (RE) model is that they lead to the

maximum likelihood estimate for θ under a model with Normally distributed random effects and errors

and known σ2
δ :

θ̂adj
s ∼ N(θs, σ̂

adj
s

2
) (6.3)

θs = θ + δs (6.4)

δs ∼ N(0, σ2
δ ) (6.5)

This model has also formed the basis for general Bayesian meta-analysis inference (Sutton and Abrams,

2001; Higgins et al., 2009), presumably because in the situation where only the effect (θ̂s) and its

standard error (σ̂s) is available, the Normal distribution of θ̂s around its true effect θs can be justified

through the Central Limit Theorem for large enough samples. A disadvantage of this model, however, is

that we cannot easily extend it to account for bias due to selection and exposure misclassification using

the techniques of the previous chapters, because it does not involve the exposure probability parameters

πsi. To overcome this problem, I propose the following modification to the standard model.

1The standard error is often converted from the 95% confidence interval, assuming the estimate follows a Normal
distribution.
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6.1.1 A proposal

Supposing (6.3) to be an adequate approximation of the true model (i.e. the fully Bayesian model which

properly accounts for measured confounders), we note that (6.3) can be equivalently written as (i.e. it

leading to the same likelihood for θs):

θ̂crude
s ∼ N(θ∗∗s , σ̂

crude
s

2
) (6.6)

θ∗∗s = θs − (θ̂adj
s − θ̂crude

s ) + εs (6.7)

εs ∼ N(0, σ̂adj
s

2 − σ̂crude
s

2
) (6.8)

given σ̂adj
s

2 ≥ σ̂crude
s

2
. Thus, if we replace equation (6.6) with:

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (6.9)

logitπs1 = logitπs0 + θ∗∗s (6.10)

our inference for θs should not differ very much from if we had used model (6.6-6.8) since the justification

for the use of (6.6) is that it approximates (6.9), (6.10). However, in the form of (6.9-6.10), we can easily

extend it to incorporate adjustment for non-participation bias and bias due to exposure misclassification

using the techniques of the previous chapters. Moreover, in the light of evidence from Appendix D, it

appears likely that this model may give even closer approximation to the true model than (6.3) since

some of the bias introduced through the Normal approximation of (6.6) may be reversed when we revert

back to a Binomial model. This, however, awaits confirmation in a future study.

6.2 The Greenland meta-analysis example

In this section, the above techniques are demonstrated in the Greenland meta-analysis example. Table

6.1 presents the data that are extracted from the reports of the original studies. We note that not

all studies have adjusted their estimates for confounders, and that among those that have adjusted for

confounders, all except one (study 6) included a measure of socioeconomic status (SES), such as parental

education or income. Moreover, let us note that the adjusted estimates were generally not available for

the exposure contrast we have been considering (i.e. not for > 0.3µT vs. < 0.3µT), but for some other

contrasts. This is because not all studies considered the contrast between > 0.3µT and < 0.3µT as

their main analysis, as Greenland did. Table 6.1 also gives the estimates of the confounding bias due to

measured confounders (θ̂adj
s − θ̂crude

s ) and the difference in variance of the estimates (σ̂adj
s

2 − σ̂crude
s

2
), as

derived from the published estimates and confidence intervals.
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6.2.1 Adjustment for measured confounders only

As a first example, let us consider a meta-analysis with adjustment only for SES as measured by these

studies. The studies that have included an estimate of θ adjusted for a measure of SES are: 2, 3, 4, 5,

7, 8, 13. (Although study 6 reported an estimate of θ adjusted for confounders, the confounder was not

SES.) For these studies, the model I use is:2

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (6.11)

logitπs1 = logitπs0 + θ∗∗s (6.12)

θ∗∗s = θs − (θ̂adj
s − θ̂crude

s ) + εs

εs ∼ N(0, σ̂adj
s

2 − σ̂crude
s

2
)

}
s = 2, 3, 4, 5, 7, 8, 13 (6.13)

θ∗∗ = θs }s = 1, 6, 9, 10, 11, 12, 14 (6.14)

θs = θ + δs (6.15)

For δs and θ, I follow the previous chapters in having θ ∼ N(0, 100) and

δs = 0 (6.16)

for a FE model and

δs ∼ N(0, 0.15) (6.17)

for a RE model.

Note that we can rewrite the (6.11 - 6.17) as:

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (6.18)

logit πs1 = logitπs0 + θs (6.19)

θs = θ + δs (6.20)

with

δs ∼ N(−(θ̂adj
s − θ̂crude

s ), σ̂adj
s

2 − σ̂crude
s

2
) s = 2, 3, 4, 5, 7, 8, 13

δs = 0 s = 1, 6, 9, 10, 11, 12, 14 (6.21)

2Normally, it may not be reasonable to include estimates from studies that adjust for confounders as well as studies
that do not adjust in the same meta-analysis model, since they may be estimating different quantities. Here, however,
they are included in order to facilitate comparison with previous and subsequent results.
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for a FE model and:

δs ∼ N(−(θ̂adj
s − θ̂crude

s ), 0.15 + σ̂adj
s

2 − σ̂crude
s

2
) s = 2, 3, 4, 5, 7, 8, 13

δs ∼ N(0, 0.15) s = 1, 6, 9, 10, 11, 12, 14 (6.22)

for a RE model, and we see that these models are equivalent to the standard meta-analysis model given

in chapter 2 (2.14, 2.15, 2.16) except for the prior given to δs. Given these specifications, we find that

our posterior median and 95% interval of θ is 0.41 (0.13, 0.69) for the FE model and 0.44 (0.05, 0.82)

for the RE model. This compares to 0.42 (0.14, 0.69) for the FE model and 0.43 (0.06, 0.81) for the RE

model without adjusting for measured confounding. Thus, we see that the 95% posterior interval is only

very slightly widened. Overall, the posterior distribution is not much different. This is likely because

the bias due to the measured confounders were small for most studies.

6.2.2 Accounting for uncertainty in unmeasured confounders or incom-

plete confounding

In the above, we estimated the bias due to confounding by SES by subtracting the unadjusted estimate

(θ̂crude) from the adjusted estimate (θ̂adj) for studies that did report these estimates. It should be noted

that this estimate of bias, like the estimates θ̂crude and θ̂adj themselves, is subject to sampling/random

error. This error has not been ignored in the above model, but has rather been absorbed into the random

error of the Binomial model (6.11). Nonetheless, there are still many reasons why this estimate may

still depart from the true confounding bias due to SES, such as:

1. As noted above, the exposure contrasts with which the studies derived their adjusted estimates

were not generally the one we are interested in, namely > 0.3µT vs < 0.3µT. We have assumed that

the bias is the same for all exposure contrasts, which is probably not a very realistic assumption.

2. We assumed that the studies adjusted only for SES, used the correct model for adjustment, and

that SES was measured without error. Evidently, many studies adjusted for other factors in

addition to SES, and the inclusion of these additional factors may bias our estimates. Likewise,

measurement error in the assessment of SES is also likely to contribute to bias (Greenland and

Robins, 1985).

Apart from the above reasons, it was also found that the validity of the Normal approximation of

model (6.3) was inadequate in the current case, as many studies have very few numbers of exposed cases

and controls. We saw in Chapter 3 that without adjustment for measured confounders, the median and

95% posterior interval of exp θ was 1.52 (1.16, 1.99) for the FE model and 1.54 (1.06, 2.24) for the RE

model (Table 3.1), which translate to a median and 95% posterior interval of 0.42 (0.14, 0.69) and 0.43
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(0.06, 0.81) for θ. However, when we replace

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (6.23)

logitπs1 = logitπs0 + θs (6.24)

with

θ̂crude
s ∼ N(θs, σ̂

crude
s

2
) (6.25)

the posterior median and 95% posterior interval of θ becomes 0.56 (0.28, 0.84) in the FE model and

0.60 (0.22, 0.97) in the RE model, such that the posterior distribution is shifted to the right by about

0.15. I demonstrate in Appendix D that this is most likely the result of the assumptions of the Normal

approximation not being met.

Given these reasons, together with the fact that not all studies provided estimates of θs adjusted

for SES, we cannot be considered to have sufficiently accounted for the uncertainty of the bias due to

possible confounding with SES in the above model. We can, however, extend the model in a simple way

to allow for this uncertainty, e.g., by adding an extra bias parameter, as in chapter 3, i.e. replacing

logitπs1 = logitπs0 + θs (6.26)

with:

logitπs1 = logitπs0 + θ∗s (6.27)

θ∗s = θs + ηconf
s (6.28)

As in chapter 3, we can give ηconf
s uncertainty ranges, say

ls ≤ ηconf
s ≤ us (6.29)

These ranges can be elicited directly, or using the method described below.

6.2.3 Eliciting the range of ηconf
s through the consideration of a categorical

unmeasured confounder

One possible method for eliciting the possible degree of confounding bias is by considering the various

bias formulae described by Arah et al. (2008), which relate a crude, unadjusted odds ratio (ORcrude) to

one standardized for an unmeasured confounder (ORstd) through the odds ratio between the confounder

and the disease and the exposure. For example, assuming a confounder (U) with 2 levels, and with
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standardization with respect to the exposed population, the authors showed that

ORstd = ORcrude (ΓΛ + 1)(ΩΛ + 1)

(ΓΩΛ + 1)(Λ + 1)
(6.30)

Γ = Odds ratio of disease between level 1 and level 0 of U among the unexposed (6.31)

Λ = Odds of the prevalence of U among the unexposed (6.32)

Ω = Odds ratio of exposure between level 1 and level 0 of U (6.33)

This is also the formula Greenland (2005a) and Greenland and Kheifets (2006) made use of for adjust-

ment for unmeasured confounding. Defining Ψ as:

Ψ = ORcrude/ORstd (6.34)

it can be shown that:

∂Ψ

∂Γ

{
> 0 if Ω > 1

< 0 if Ω < 1
(6.35)

∂Ψ

∂Ω

{
> 0 if Γ > 1

< 0 if Γ < 1
(6.36)

Thus, given as ≤ Γs ≤ bs and cs ≤ Ωs ≤ ds, we have:

min(Ψs) = min

 (asdsΛs + 1)(Λs + 1)
(asΛs + 1)(dsΛs + 1)
(bscsΛs + 1)(Λs + 1)
(bsΛs + 1)(csΛs + 1)

 (6.37)

max(Ψs) = max

 (ascsΛs + 1)(Λs + 1)
(asΛs + 1)(csΛs + 1)
(bsdsΛs + 1)(Λs + 1)
(bsΛs + 1)(dsΛs + 1)

 (6.38)

Thus, if we elicit feasible ranges for Γs and Ωs, and fix Λs, we imply a feasible range for Ψs. For example,

let us assume that among studies that have adjusted for SES, Us represents a variable that summarizes

all incomplete control of confounding due to SES, with Us = 1 indicating having a higher SES and

Us = 0 a lower SES. Further, because the definition of high and low SES is arbitrary, we can set the

prevalence of Us to 0.5, i.e. Λs = 1. Now, if high SES confers a 0.5 to 2 times increase in risk (odds) of

childhood leukaemia, we have:

0.5 ≤ Γs ≤ 2 (6.39)
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If high SES are also 0.5 to 2 times more likely to be exposed, then

0.5 ≤ Ωs ≤ 2 (6.40)

Given these ranges, we have:

8/9 ≤ Ψs ≤ 10/9 s = 2, 3, 4, 5, 7, 8, 13 (6.41)

through equations (6.37) and (6.38). For studies that have not adjusted for SES, we may assume:

1/3 ≤ Γs ≤ 3 (6.42)

1/3 ≤ Ωs ≤ 3 (6.43)

i.e. we give it a wider range to represent our greater uncertainty. This then implies:

3/4 ≤ Ψs ≤ 5/4 s = 1, 6, 9, 10, 11, 12, 14 (6.44)

Note that Ψs denote the ratio between the standardized and the unstandardized Odds Ratio when there

is no adjustment for additional confounders. If we want to use log Ψs as estimates for ηconf
s , we have

to make the additional assumption that this bias due to the missing confounder U is the same in the

presence of the other confounders as in their absence. If this was the case, we have:

−0.12 ≤ ηconf
s ≤ 0.11 s = 2, 3, 4, 5, 7, 8, 13 (6.45)

−0.29 ≤ ηconf
s ≤ 0.22 s = 1, 6, 9, 10, 11, 12, 14 (6.46)

Using the model:

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (6.47)

logitπs1 = logitπs0 + θ∗s (6.48)

θ∗s = θs + ηconf
s (6.49)

θs = θ + δs (6.50)

with

δs ∼ N(−(θ̂adj
s − θ̂crude

s ), σ̂adj
s

2 − σ̂crude
s

2
) s = 2, 3, 4, 5, 7, 8, 13

δs = 0 s = 1, 6, 9, 10, 11, 12, 14 (6.51)
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Figure 6.1: FPIs of θ with simple adjustment for bias due to incomplete control
of confounding in a FE model

for the FE model and:

δs ∼ N(−(θ̂adj
s − θ̂crude

s ), 0.15 + σ̂adj
s

2 − σ̂crude
s

2
) s = 2, 3, 4, 5, 7, 8, 13

δs ∼ N(0, 0.15) s = 1, 6, 9, 10, 11, 12, 14 (6.52)

for the RE model, I optimized over ηconf
s for max/min Θ̂. The FPIs for the meta-analysis of this situation

are given in Figure 6.1 for the FE model and Figure 6.2 for the RE model, compared to the no-bias

scenario. Because the implementation of bias adjustment in this model is the same as that in the simple

bias model of chapter 3, I had similar experience optimizing for max/min Θ̂ in these models as I had

for models in chapter 3. Multi-modality was not found in any of the problems.

Finally, let us note that in certain cases, we may know the direction of confounding bias due to an

unmeasured confounder. If 1 ≤ Γ ≤ b and 1 ≤ Ω ≤ d (or alternatively a ≤ Γ ≤ 1 and c ≤ Ω ≤ 1), then

we have Ψ ≥ 1. If 1 ≤ Γ ≤ b and c ≤ Ω ≤ 1 (or alternatively 1 ≤ Γ ≤ b and c ≤ Ω ≤ 1), then Ψ ≤ 1.

Thus, if we have a clearer idea of how SES might be related to childhood leukaemia and EMF exposure,

we may know the direction of possible confounding bias due to SES, and this can help us narrow the

range of Θ̂ considerably. This has been noted by Flanders and Khoury (1990), and expressed more

generally by VanderWeele (2008), among others. It is also of note that simply knowing the direction of
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Figure 6.2: FPIs of θ with simple adjustment for bias due to incomplete control
of confounding in a RE model
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one of Γ and Ω is insufficient in determining the direction of Ψ.
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Summary:

• In a meta-analysis setting, we do not generally have access to the raw data. As a result, a full model

involving both the exposure and confounders is not possible. In a meta-analysis, one solution is to

consider the reported adjusted estimate (an estimate of the effect adjusted for confounders) and

model the estimate using a Normal distribution with zero mean and standard deviation estimated

by the standard error.

• A disadvantage of this approach is that the model cannot be extended to account for non-

participation bias and exposure misclassification bias in case-control studies using the techniques

of the previous chapters. In this chapter I propose a modified model that allows for easy extension.

• However, for many reasons, we are unlikely to have completely controlled for confounding by

adopting the proposed model. Resulting uncertainty due to incomplete control of confounding

can be summarized by an additional parameter (ηconf). As in previous chapters, we can assign a

feasible range for this parameter and examine the range of possible posterior inference given this

range.

• There is, however, typically very little information by which we may choose suitable limits for

ηconf. One possible method is to suppose the existence of a single unmeasured binary confounder,

and elicit the range of ηconf by giving ranges to the odds ratio between the confounder and the

exposure, and between the confounder and the disease.

• The model used for accounting for incomplete control of confounding is thus the same as the simple

bias model used in chapter 3.
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Chapter 7

Meta-analysis with multiple bias

adjustment

More frequently than not, observational studies are subject to more than one type of bias, and authors

such as Greenland (2005a) and Lash et al. (2009) have called for multiple bias modelling to examine

the impact of all biases together. The models used in this thesis for exposure misclassification, non-

participation bias, and incomplete confounding bias are all formulated in a way to make multiple bias

modelling a straightforward extension from single bias models. As a reminder, for exposure misclassifi-

cation, we have the model:

Ysi ∼ Bin(Nsi, psi) (7.1)

psi = πsisenssi + (1− πsi)(1− specsi) (7.2)

logitπs1 = logitπs0 + θs (7.3)

θs = θ + δs (7.4)

For the non-participation bias model, we have:

Ysi ∼ Bin(Nsi, πsi) (7.5)

πsi = f(π∗si, Qsi, Rsi) (7.6)

logitπ∗s1 = logitπ∗s0 + θs (7.7)

θs = θ + δs (7.8)
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For incomplete confounding bias, we have:1

Ysi ∼ Bin(Nsi, πsi) (7.9)

logitπs1 = logitπs0 + θ∗s (7.10)

θ∗s = θs + ηconf
s + βs (7.11)

θs = θ + δs (7.12)

βs

∼ N(−(θ̂adj
s − θ̂crude

s ), σ̂adj
s

2 − σ̂crude
s

2
) if adjusted estimates were available

= 0 otherwise
(7.13)

To put all three models together, we have:

Ysi ∼ Bin(Nsi, psi) (7.14)

psi = πsisenssi + (1− πsi)(1− specsi) (7.15)

πsi = f(π∗si, Qsi, Rsi) (7.16)

logitπ∗s1 = logitπ∗s0 + θ∗s (7.17)

θ∗s = θs + ηconf
s + βs (7.18)

θs = θ + δs (7.19)

βs

∼ N(−(θ̂adj
s − θ̂crude

s ), σ̂adj
s

2 − σ̂crude
s

2
) if adjusted estimates were available

= 0 otherwise
(7.20)

Using the methods of this thesis, we provide uncertainty ranges for senssi, specsi, Qsi, Rsi, η
conf
s and

examine the FPI of θ. Because exposure misclassification is involved, it will be necessary to provide

informative prior distributions for πs0 or π∗s0, as well as for θs. In the Greenland example, I believe it is

better to assign prior distributions to πs0, the prevalence of exposure in the biased population, rather

than π∗s0, the prevalence of exposure in the target population. This is because we have information on

ps0, the prevalence of misclassified exposure in the biased population, but not the target population. In

chapter 5, I also gave πs0 rather than π∗s0 the prior distribution of U(0, 1). As for θs = θ + δs, I use:

θ ∼ N(0, 0.5) (7.21)

δs = 0 s = 1 . . . 14 (7.22)

1I have represented the model slightly differently than in chapter 6, by introducing the parameter βs, representing the
bias due to measured confounders. This enables us to treat δs in the same way as in the other chapters.
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for the FE model and

θ ∼ N(0, 0.35) (7.23)

δs ∼ N(0, 0.15) s = 1 . . . 14 (7.24)

for the RE model, as in chapter 4.

If we use the ranges given to senssi, specsi, Qsi, and Rsi in previous chapters of this thesis (c.f.

Tables 4.1 and 5.2), and the prior distribution given to πs0 in Table 4.1 together with the constraints:

1.05 ≤ senssi + specsi ≤ 1.7 i = 0, 1 (7.25)

|senss1 − senss0| ≤ 0.05 (7.26)

|specs1 − specs0| ≤ 0.02 (7.27)

s = 1 . . . 14 (7.28)

and the bias due to measured confounders as given in Table 6.1, we have the following Feasible Posterior

Intervals for θ in the meta-analyses:

[min θ̂M ,max θ̂M ] = [−1.38, 4.97] (7.29)

[min θ̂L,max θ̂U ] = [−2.38, 5.67] (7.30)

for the FE model, and

[min θ̂M ,max θ̂M ] = [−1.14, 4.37] (7.31)

[min θ̂L,max θ̂U ] = [−2.02, 5.09] (7.32)

for the RE model. In Figure 7.1 and 7.2, I compare these Feasible Posterior Intervals (FPIs) with

the FPIs derived in single-bias meta-analyses. It is apparent that the majority of the uncertainty is

due to exposure misclassification bias. Because there are more bias parameters in these multiple bias

models than the single bias models of previous chapters, there are also more modes when carrying out

optimization, with 75% of the meta-analysis problems having more than one mode.
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Figure 7.1: FPIs of θ in multiple bias FE meta-analysis as compared to single-bias
meta-analysis
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Figure 7.2: FPIs of θ in multiple bias RE meta-analysis as compared to single-bias
meta-analysis
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Chapter 8

Discussion

As discussed at the beginning of this thesis, although randomization or random sampling are often

not employed in observational studies, standard practice in quantifying uncertainty has relied heavily

on methodology developed for situations involving some form of randomization or random sampling

(Greenland, 1990). As a result, commonly used measures of uncertainty of parameter estimates such

as confidence intervals and standard error generally do not capture the “true” degree of uncertainty

reliably. To overcome such limitations, there has been considerable interest recently to employ methods

which extend traditional techniques, discussed in the biostatistics literature under topics such as “bias”,

or “causal inference”.

In statistical parlance, “bias” often refers to systematic (long-run) departures of estimated quantities

from their true values due to assumptions not being met. Uncertainty due to bias is not quantified in

standard measures such as confidence intervals. The recent proposals, however, aimed to rectify this,

and both probabilistic and non-probabilistic approaches have been advanced to quantify uncertainty

due to bias. This thesis represents a valuable addition to the literature on non-probabilistic approaches

to quantifying uncertainty due to bias. Previously, such approaches have been limited to the use of

sensitivity analyses (e.g. Groenwold et al., 2010; Arah et al., 2008; Lash et al., 2009), or the estimation

of bounds of estimates in simple scenarios (e.g. Birnbaum and Sirken, 1950; Balke and Pearl, 1997;

Vansteelandt et al., 2006; VanderWeele, 2008; Kuroki et al., 2010). In this thesis, I proposed a method

for the derivation of bounds to estimates that can be applied to problems with many more parameters,

through the use of an optimization algorithm.

The thesis also represents a significant addition to the quantitative evidence synthesis literature.

Meta-analysis is perhaps the most widely practiced form of quantitative evidence synthesis. However,

the lack of any randomization mechanisms in observational studies renders the meta-analyses of obser-

vational studies a less convincing method even than other forms of meta-analyses (Stroup and Thacker,

2005), which themselves are not without criticisms (Eysenck, 1978; Iyengar and Greenhouse, 1988;

Shapiro, 1994; Egger et al., 1998). Again, the presence of biases in study estimates, which are unac-
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counted for in traditional forms of uncertainty summaries, has been at the heart of the problem (Turner

et al., 2009; Thompson et al., 2011). Proposals have been made to quantify uncertainty in study-specific

biases probabilistically (Greenland, 2005a; Turner et al., 2009; Thompson et al., 2011). These authors

suggested assigning subjectively-elicited probability distributions to quantities/parameters that cannot

be estimated from the data, in order to “adjust” standard models or estimates to provide better esti-

mates and uncertainty measures for the target parameter of interest. As discussed in the first chapter of

this thesis, probability distributions for this purpose can be very difficult to elicit accurately, since the

number of parameters involved can be so many. Furthermore, if more than one elicitation is carried out

(i.e. more than one “expert” is consulted), there is also the additional issue of finding a suitable way to

summarize the different experts’ probability distributions. The non-probabilistic approach of this thesis

offers a solution to this problem. Since experts provide ranges rather than probability distributions, a

natural way to combine different ranges specified by different experts is to seek the union of the ranges.

Following the theory given in chapter 2 of this thesis, we can be sure that the Feasible Posterior Intervals

(FPIs) derived in this way for the parameter of interest encompasses the FPIs derived based on any

individual expert’s information. This approach therefore has considerable appeal in a policy/decision

making setting where the consultation of more than one expert is involved. More generally, when com-

municating the uncertainty in the results of bias-adjusted meta-analysis to the public, this method allows

the reader to compare the results based on his/her own “prior information” to that given in the paper

more readily. The reader can be invited to examine whether his/her ranges for the unknown parameters

fall within those specified in the paper. If they do, then he/she can be certain that his/her FPIs also

fall within that given in the paper.

For this reason, it may be recommended that when applying the method of this thesis in practice,

one reports the FPIs based on at least several scenarios of differing “conservativeness”, since we can

expect our readers to have different degree of belief over the possible extent of bias. This enables readers

of a wide range of different opinions to form their own conclusions based on the analyses of the study.

8.1 Some issues that are not addressed in the thesis

Because the main innovation of this project concerns the use of a non-probabilistic means to quantifying

uncertainty due to biases, this thesis focuses on the challenges this presents, and does not address

issues associated with the use of probability distributions in the quantification of the other parameters,

including the target parameter θ, the between-study variation parameter δs, and the study-specific

(true) prevalence of exposure among the controls πs0. In the misclassification bias chapter, for example,

I fixed the distribution of θ and δs at θ ∼ N(0, 0.5), δs = 0 for a fixed-effects (FE) model and θ ∼
N(0, 0.35), δs ∼ N(0, 0.15) for a random-effects (RE) model. The choice of the Normal distribution is

by convention, and the choice of 0.35 and 0.15 as variances of these parameters is based on considerations
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in the Greenland and Kheifets (2006) paper (although their considerations were not based on estimates

from research findings, but rather subjective opinion). It is natural to expect the FPI of θ to be sensitive

to its own prior distribution, and likely more so than to the prior distributions of other parameters. In

theory, a possible improvement to this is to allow the user to specify a set of feasible prior distributions.

A simple case would be to assume a Normal distribution for these parameters, and assign feasible ranges

to the mean and variance parameters and use the algorithm of this thesis to seek the maximum and

minimum posterior inference for θ within this range, and thus quantify uncertainty in the variance non-

probabilistically. In this thesis, however, I avoided this complication in order to reduce computational

burden and simplify discussion. The program that was written, however, does allow the user to provide

ranges to the variance parameters, assuming Normal distributions.

Another issue not addressed in this thesis is the model that is used for the meta-analysis. As given

in chapter 2, the “basic” meta-analysis model is:

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (8.1)

logit πs1 = logitπs0 + θs (8.2)

This was based on convention, although by the arguments of chapter 1, one might question the ap-

propriateness of the Binomial distribution for the number of exposed cases and controls, since they

are frequently not a random sample from a large, well-defined population. If the recruited cases con-

stitute a large proportion of the underlying population, for example, a more appropriate model might

be the Hypergeometric distribution, which assumes sampling without replacement. In theory, this can

be implemented within the current framework, although the evaluation of the log likelihood for the

Hypergeometric distribution may prove computationally much more costly than for the Binomial.

A further issue which has not received attention in this thesis is the appropriateness of the RE model

in the presence of heterogeneity. It has been argued that if study-specific effects of interest (θs) differ

from one another, a summary estimate of the mean of the study-specific effect is irrelevant (Al khalaf

et al., 2011). Moreover, some have suggested if adjustment for biases is adequate, then there should be

no remaining heterogeneity (Turner et al., 2009). This argument may have validity to the extent that

the definition of bias encompasses all departures from a particular target effect of interest. However,

in this thesis, only three types of biases have been considered. It would not be surprising to find

that even if all studies involved no biases due to exposure misclassification, non-participation bias, or

unmeasured confounding, and were sufficiently large to ensure the extent of random error is small, some

heterogeneity in effect estimates would remain due to differences in the underlying population being

sampled, the period during which it is sampled, the background incidence of childhood leukaemia in the

region/country specific to the study, and so on. Nonetheless, even when it is accepted that there are

real between-study differences in the odds ratio, it remains a question as to whether the mean of the
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study-specific effects is of interest. For example, if we were interested in the odds ratio of childhood

leukaemia due to EMF in the UK, the odds ratio from a particular study in the UK might be more

relevant than the global mean. In such a situation, it may be argued that a weighted mean, with more

weight given to UK-based studies, is more appropriate.

Although the above issues are important and have been considered during the course of the develop-

ment of this project, they were set aside in the main investigation of this thesis, which aims to focus on

the practical aspects of implementing the proposed combined non-probabilistic/probabilistic approach

to quantifying uncertainty. Because the proposed method is novel, a more important aim of the thesis

was to explore and identify potential issues in the application of the technique in practice, particularly

in the meta-analysis situation. These issues have been discussed to various extent in chapters 3 to 7. In

the following section, I present a summary and some concluding remarks.

8.2 Issues concerning the application of the proposed method

of this thesis

8.2.1 Wide FPIs

Throughout this thesis, we see that one important feature of the proposed method in a meta-analysis

setting is that it allows the pooling of information across studies to reduce uncertainty that is considered

random (i.e. aleatory uncertainty) but not uncertainty due to bias, which is not considered random (i.e.

epistemic uncertainty). While such behaviour may be desirable philosophically, in practice it may allow

too little uncertainty to be reduced by the pooling of studies in meta-analyses. This happens in situations

where epistemic uncertainty dominates, and in the example of this thesis, we see this in the consideration

of bias due to exposure misclassification, where sometimes the meta-analytic Feasible Posterior Credible

Interval (FPCI) is even wider than the study-specific FPCI. When an FPCI is wide and straddles over

the null, the analysis gives virtually no evidence for or against an association between the exposure

and disease and is therefore not immediately useful in that particular situation. One feature of the

methodology is that whenever the feasible region for the bias parameters η is tightened, the FPCI

will also be narrowed, and therefore uncertainty due to bias will diminish if we know more about our

bias parameters. Thus, the more information we have about the bias parameters, the more useful and

applicable this method becomes. On the other hand, however, if the amount of data or the number

of studies increases without concomitant increases in knowledge about the biases, then uncertainty due

to residual randomness will decrease, and uncertainty due to biases dominate, and the method of this

thesis becomes less and less useful. This remains a paradox in the application of this method in meta-

analyses. In this thesis, I proposed we can also use the method as a tool for sensitivity analysis, which

is less vulnerable to this problem, and is further discussed in the next subsection. I provide some other
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possible developments to overcome this problem in the Future directions section (section 8.3).

8.2.2 The proposed method as a method for sensitivity analyses

One of the most pertinent issues with traditional sensitivity analyses when applied to models with

many parameters (such as a meta-analysis model with bias adjustment) is that the number of potential

scenarios we want to investigate may often be too many to carry out or to report. Using the methods of

this thesis, instead of giving bias parameters fixed values for the sensitivity analyses, we can assign them

feasible regions, and thus greatly reduce the number of potential scenarios that need to be carried out.

However, as we see in chapter 4, the “wide FPI” problem we saw earlier for the standard analyses can

remain a problem in sensitivity analyses. One solution to this problem would be to further subdivide

our feasible regions into smaller and smaller sub-regions, since this guarantees narrower and narrower

FPI. But this eventually leads us to the same problems that affect traditional sensitivity analyses.

Nonetheless, in this thesis, it appears that the use of this method as sensitivity analyses has given us

some useful insight into the effect of biases in modifying the apparent odds ratio of EMF on childhood

leukaemia not easily obtained otherwise. In chapter 4, for example, we see that both sensitivity and

specificity need to be high for all studies in order that an overall positive effect can be seen. We also see

that posterior inference is fairly sensitive to the non-differential misclassification assumption, such that

even a small departure from the assumption can have significant impact on the posterior inference for

θ. In chapter 5 we see that a positive relationship between EMF and childhood leukaemia is favoured

when exposed individuals are more likely to consent to study participation (i.e. when R1 and R0 are

positive).

8.2.3 The assumption of independence between the bias parameters η and

other parameters

Throughout this thesis, it is assumed that beliefs concerning the range of the bias parameters η and

the other parameters that are treated probabilistically, such as θ, δs, πs0, are independent. Sometimes,

it may be more reasonable to assume that they are dependent. For example, in chapter 4, feasible

regions are given to the parameters senss0, senss1, specs0, and specs1, but not to the parameters ps0

(the observed prevalence of exposure among the controls) or πs0 (the true prevalence of exposure among

the controls) or θs (the study s-specific odds ratio). It may be desirable to give feasible regions to

these parameters also, if only to avoid the conflict between prior distribution and likelihood, as we see

in section 4.2.3. Giving a feasible region to a parameter already treated probabilistically such as θ is

the same as restricting its domain, and is not difficult to implement in practice. However, to ensure

that the prior distribution does not conflict with the likelihood severely, it may be necessary to impose

dependence between the domain/distribution of θ and η. For example, in the exposure misclassification
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model, in order that the prior distribution with respect to psi does not conflict with the likelihood, we

may have to impose dependence between πsi and senssi and specsi, since psi, πsi, senssi, and specsi are

related together through the identity:

psi = πsisenssi + (1− πsi)(1− specsi) i = 0, 1 (8.3)

While such dependence between the prior distribution of πsi and bias parameters senssi, specsi does

not present too many additional problems computationally, it results in the Feasible Posterior Intervals

losing their interpretation as Robust Bayes inference, since a key assumption in this interpretation is

that the distribution of the non-bias parameters must be independent of the bias parameters (c.f. section

2.1). In an earlier stage of the development of this thesis, I considered the option of treating πs0 non-

probabilistically together with senssi and specsi and thus avoid conflict between ps0 and senss0 and

specs0. This, however, was dropped in favour of the treatment as presented in this thesis because of

its tendency to produce FPIs that are even wider than those given in this thesis, and also because of

difficulties in optimization. However, further research would be useful to determine what is the best

solution to this problem.

8.2.4 Optimization issues

In this thesis, I proposed the use of the cyclic coordinate method for seeking the maximum and minimum

of Θ̂. One reason for using this method is that it takes advantage of the factorization of the likelihood

function in a meta-analysis, such that not all parts of the likelihood need be evaluated at every iteration.

Nonetheless, it is generally an inefficient algorithm. In this thesis, it was also found that multi-modality

appears a fairly frequent phenomena and thus renders global optimization difficult. In this thesis,

optimizations were repeated a number of times until new modes are no longer discovered. Of course,

this still does not guarantee finding the global optima. Future research should focus on algorithms that

focus on certain “hot-spots” where optima are likely to be found. Theoretical work may also be needed

to characterize these “hot-spots”.

8.3 Future research directions

In view of the above limitations of the method of this thesis, I believe useful research may be conducted

in the following areas:
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8.3.1 Use of additional constraints

To overcome the problem of FPIs being too wide, in addition to the proposals of this thesis, another

option is to introduce additional constraints. For example, one type of constraint that can be introduced

may require the average of a number of parameters to be within a certain region. An example might be

a constraint given to the mean of the sensitivity parameter across studies:

l ≤
∑
s

senssi/n ≤ u (8.4)

This then disallows parameters to take their extreme values all at the same time in a meta-analysis.

The above constraint is still linear, and in theory, can still be accommodated using the technique of

this thesis. However, as we see in chapter 4, constraints that involve more than one parameter requires

us to introduce additional search directions. In fact, this increase is exponential. Thus, to implement

constraints such as the above, we are likely to require a different optimization strategy to the one used

in this thesis.

8.3.2 Treating some bias parameters probabilistically

In this thesis, I have divided parameters into those that are “bias” parameters and those that are “non-

bias” parameters, where the uncertainty of the former is quantified non-probabilistically and the latter

probabilistically. This approach may be seen as a compromise between a purely probabilistic and a purely

non-probabilistic approach. It overcomes some of the problems associated with the purely probabilistic

approach, where specifying suitable probability distributions for a large number of parameters is difficult,

and the purely non-probabilistic approach for specifying feasible regions, where the lack of a mechanism

for downweighting extreme scenarios may lead to uncertainty intervals that are too wide to be useful.

The division of parameters into “bias” and “non-bias” parameters in this way also means that the

number of parameters whose uncertainty is quantified probabilistically is limited, and it is thus feasible

to use exact numerical integration to evaluate the posterior medians and 95% intervals.

However, sometimes, it may be preferable to consider some of the “bias” parameters probabilistically

as well. For example, uncertainty in the parameters Q0 and Q1, the proportion of people in the popula-

tion who would not participate in the study, is estimated in this thesis by the confidence interval limits

of the proportion of participation in the sample. In other words the extent of uncertainty is informed by

reference to a random sampling mechanism. If this is reasonable, then a probabilistic quantification of

uncertainty for these parameters will also be reasonable. In other situations, we may want to revert to

using a probabilistic quantification of uncertainty simply because the non-probabilistic approach leads to

uncertainty intervals that are too wide to be useful. The challenge at present in adopting an alternative

strategy to divide parameters into “probabilistic” and “non-probabilistic” is mainly computational —
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as the number of parameters that are quantified probabilistically increases, so does the computational

burden in evaluating the posterior percentiles exactly. This problem may be overcome if we use an

approximation method for the estimate, however (section 8.3.3).

I believe the potential for future development in this regards is enormous. As discussed in the intro-

duction of this thesis, observational studies often do not have any kind of random sampling mechanism,

and so the separation of parameters into “bias” and “non-bias” may not always correspond to the divi-

sion between epistemic and aleatory uncertainty, and hence the treatment of one type probabilistically

and another type non-probabilistically is still arbitrary to an extent. It remains to be seen what is

the most informative or useful way of dividing parameters into the two categories in order to facilitate

understanding of the data in different applications in epidemiology.

8.3.3 Use of an approximation method for evaluating Θ̂

In this thesis, I have relied on the use of numerical integration for evaluating Θ̂, i.e. the target percentile

of the posterior distribution given the bias parameters. While the advantage of this is that calculation

is exact, it is also slow and limits the flexibility of the bias model that can be used for the meta-analysis.

Moreover, if the integration scheme of this thesis were not used, there would also be less reason for

using the inefficient cyclic coordinate method for optimization, and would open us to a wider variety

of options for optimization. I mentioned in chapter 2 that we could alternatively use approximation

methods available for evaluating p(θ|X,η) and from there we can calculate Θ̂ = (θ̂L, θ̂M , θ̂U). Perhaps

the most well known is Laplace Approximation where we approximate p(θ|X,η) by p̃(θ|X,η), where:

p̃(θ|X,η) =
p(θ,θ′, X,η)|R|− 1

2∫
θ
p(θ,θ′, X,η)|R|− 1

2 d θ
(8.5)

R = −
[
∂2 log p(θ,θ′|X,η)

∂(θ′θ′T )

]
θ′=θ̂′(θ)

(8.6)

and θ̂′(θ) is the value of θ′ that maximizes log p(θ,θ′|X,η) given θ (Tierney and Kadane, 1986; Leonard

and Hsu, 1999). The use of Laplace Approximation avoids evaluating p(θ|X,η) as a multidimensional

integral:

p(θ|X,η) =

∫
θ′

p(θ,θ′|X,η) dθ′ (8.7)

and therefore saves time. It may also be viewed as an extension of the ‘profile likelihood’ technique

for avoiding nuisance parameters (Leonard and Hsu, 1999, p.191). However, as is clear from (8.5),

integration over one dimension is still needed. Furthermore, at every abscissa of θ, we need to find

θ̂′(θ) through a search algorithm. In preliminary work for this thesis, the computational burden for this

appears comparable to full integration. Nonetheless, there is still an important advantage of using this
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approximation, as described below.

In this thesis, I have relied on reusing parts of the integrands in reducing the computation burden in

integration over 3 dimensions (section 2.2). This in turn necessitates the use of Newton-Cotes formula

for integration (Appendix A.4), for which precise control over error tolerances is difficult. Even if the

use of Laplace Approximation does not decrease computational burden, it allows us to avoid using

Newton-Cotes formula for integration, such that tolerances for computational error can be more readily

controlled (i.e. it allows me to avoid having to check for integration errors as I did in Appendix A.2).

8.3.4 Using non-Bayesian estimates of θ

It may be argued that a non-Bayesian approach to estimating θ is more consistent with the philosophy of

not treating epistemic uncertainty probabilistically. In chapter 2, however, I mentioned that a Bayesian

estimate is used for θ because this allows us to incorporate prior information in estimating θ through the

use of subjectively-elicited prior distributions. However, as can be seen in chapter 4, the specification of

a suitable prior distribution can be quite challenging and moreover, it introduces some counterintuitive

results (section 3.2.1) which can be difficult to explain, particularly to a non-statistician audience.

In principle, non-Bayesian methods can be employed also in the estimation of θ, though these can

be expected to produce much wider uncertainty intervals for θ, since we do not have a prior. An

advantage in using non-Bayesian methods, however, is that we can often avoid making distributional

assumptions for parameters. This may be particularly useful for the misclassification model, for which

the specification of priors for θ and logit πs0 is difficult in the Bayesian approach (section 4.2.1). Another

potential benefit of the non-Bayesian approach is in the estimation of θ in the RE meta-analysis model.

Unlike the Bayesian approach, the standard non-Bayesian method of estimation makes no distribution

assumption on the random effects variance (Dersimonian and Laird, 1986). A disadvantage with non-

Bayesian procedures, however, is that the construction of confidence intervals can be a difficult issue.

Standard approaches for the construction of confidence intervals in complicated estimation problems in

general rely on asymptotic theories. Their validity in meta-analyses with bias modelling needs to be

explored further.

8.3.5 Alternative optimization strategies

The literature on optimization of smooth functions is huge, and it is likely that a more efficient algorithm

can be found than the one proposed in this thesis. A promising option might be the gradient projection

method of Rosen (1960) for optimization of problems with linear inequality constraints, as we have

in this thesis. This method focuses attention on optimization within the space defined by the active

constraints, and may be more effective than the cyclic coordinate method of this thesis.
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8.3.6 Overcoming problems with multi-modality

The existence of multiple local optima in problems of this kind makes it difficult to find the global

optimum. However, throughout this thesis, I have given some simple mathematical results to suggest

where the extreme is likely to lie. Often, extremes are found at the expected locations, and in this

thesis, this is uniformly the case for the simple bias model. It should be noted that by the Central Limit

Theorem, likelihoods are approximately Normal for large samples. And if the likelihood is Normal, then

analytical results are often available to allow us to determine the maximum/minimum directly without

recourse to a search algorithm. However, we note in Appendix D that the Normal approximation can

be poor, especially in small samples. It would be interesting to see if a compromise can be achieved,

such that an approximation model can be found which gives reliable results even with small study sizes.
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Appendix A

Integration details

The four integrals that we need to evaluate in this thesis are given on page 36. To evaluate these

integrals, I used Newton-Cotes formulas to evaluate the integrand at a number of abscissas within a

finite lower and upper limit a and b. a and b need to be chosen to encompass most of the mass of the

probability density function. An ad hoc algorithm which allows us to adapt the limits of integration to

the probability function at hand is given in the A.1. In section A.2, I discuss choosing the number of

abscissas within [a, b]. In section A.3, I discuss deriving approximate estimates for the posterior variance

of λs and γs, which is used to inform the choice of abscissas in sections A.1 and A.2. In section A.4, I

discuss the Newton-Cotes formula used to compute the integrals from a fixed number of equally-spaced

abscissas.

A.1 Choosing the integration limits

1. First, start with any suitable chosen range [a, b]. In my program, this range is x̄ ± kσ̄, where

I have used x to denote a general parameter over which integration is needed. In integral A1

and A2, this is θ. In integral B, this is λs, and in integral C, this is γs. x̄ is the mode from

the previous integration (or else if it is the first ever integration, 0). σ̄ is a rough estimate of the

standard deviation of the distribution. For γs and λs, this is the square root of a preliminary rough

estimate of the posterior variance of γs (see subsection A.3). For θ, this gets adapted based on

the empirical posterior standard deviation of the previous evaluation. (In fact, in order to retain

the same integration points, it is necessary that this does not change very frequently, since every

time σ̄θ is changed, all previous calculations that involve θ have to be abandoned. σ̄θ is therefore

readjusted only in “exceptional” circumstances, when the posterior standard deviation appears to

be vastly different from σ̄ that is being used.) k is a constant chosen to be 7 for γs, 7 for λs, and 6

for θ. These parameters were chosen by trial and error to optimize speed. They do not affect the

accuracy of the algorithm.
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2. Carry out numerical integration by summing up the integrand at n equally spaced points within

the interval. The number to use for n will be discussed in the next section. Denote this integral

by I, i.e.:

I =
n∑
1

f(xi) (A.1)

Note that x1 = a and xn = b.

3. Check whether the range [a, b] is sufficient by the following:

(a) Evaluate the following

I1 =
a+κ∑
a

f(xi) (A.2)

and

I2 =
b∑

b−κ

f(xi) (A.3)

where

κ = 0.05(b− a) (A.4)

represents the extreme 5% distance from both ends of the range [a, b].

(b) If I1/I > tol, then change the range of integration to [a′, b], where a′ = a − 0.3(b − a) and

repeat steps 3 and 4. (0.3 was chosen as a scaling factor to optimize speed.) If I2/I > tol,

then change the range of integration to [a, b′] where b′ = b + 0.3(b − a). (i.e. extending the

range of integration either on the left or the right hand side if [a, b] is deemed insufficient.)

For the problems in this thesis, I have chosen tol to be 5×10−7. This ensures that the extreme

5 percent of the range being considered covers at most 0.0000005 of the mass of the entire

probability distribution, if the distribution is unimodal.

4. Repeat until both I1/I and I2/I < tol.

It appears that even with a distribution with as heavy tails as a Cauchy distribution, using the

method to derive suitable limits for integration results in error of < 1 × 10−5 compared to the exact

integral (see Box A.1).

In theory, it is possible for the method to fail in situations where the probability distribution is

seriously “pathological”, e.g. a multimodal distribution with modes separated by more than 5 standard

deviations. Such scenarios, however, seem highly unlikely, especially when we use Normal prior distri-

butions for most parameters in the thesis. Evaluation of the integral will and should fail if the integral

is improper. This is one of the reasons why proper prior distributions are used in this thesis unless it is

clear the posterior distribution cannot be improper.
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The Cumulative distribution function of a standard Cauchy distribution is:

1

π
arctan(z) + 0.5

Therefore, given integration limits [−a, a], with a > 0, the integral is:

1

π
(arctan(a)− arctan(−a))

The integral of the extreme 5% of [−a, a], i.e. [−a,−0.9a], is:

1

π
(arctan(−0.9a)− arctan(−a))

The following table shows the various values of these integrals as a function of a, assuming f(x) is a
standard Cauchy probability distribution function:

a I =
∫ a
−a f(x) dx I1 =

∫ −0.9a

−a f(x) dx Proportion (I1/I)

0.1 0.0635 0.0032 0.0497
1 0.5 0.0167 0.0335
10 0.937 0.00350 0.00373
100 0.994 0.000354 0.000356
1000 0.99936 3.537× 10−5 3.539× 10−5

10000 0.999936 3.537× 10−6 3.537× 10−6

100000 0.9999936 3.537× 10−7 3.537× 10−7

70736 0.9999910 5× 10−7 5× 10−7

We see that in order that the extreme 5% of the range [−a, a] has less than 5 × 10−7 coverage of the
integral, a needs to be at least 70736. When a is 70736, the integral covers over 0.99999 of the mass of
the distribution, and so error due to the use of this definite integral instead of the improper integral is
less than 1× 10−5.

Box A.1: Demonstration that the algorithm for adapting the domain of integration
results in error of less than 1×10−5 even when computing the integral of a Cauchy
distribution
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A.2 Choosing the number of integration points

In this section, I discuss choosing the number of abscissas between the integration limits [a, b] for

integration. Obviously, the greater the number of abscissas n we use for integration, the greater the

resulting accuracy of the integral (generally). However, this also increases computational burden. It is

therefore a matter of trial and error to find the optimal compromise.

In the application of this thesis, F−1
θ|X,η(p) does have to be evaluated to a high degree of accuracy,

since if the error is large, then the surface over which Θ̂ varies with η may become rough and the search

algorithm (section 2.3) would fail. (Reminder: Our goal is to search for Θ̂ = F−1
θ|X,η(p) over values

of η within E .) However, it is difficult to determine a minimum threshold for accuracy that must be

achieved. In this thesis, I simply adopt a precision level that appears to be acceptable, and does not

cause problems in the optimization algorithm that is discussed in section 2.3.

Through trial and error, I have determined that for integral C, I use roughly n = (a − b)/σ̄. For

integral B, I use roughly n = 3(a − b)/σ̄, where σ̄ is defined in the previous section. For integrals A1

and A2, I use roughly n = 7(a − b)/σ̄. These results in error less than 1 × 10−3 generally, although it

is likely that for the examples used in this thesis the error is much less, in the order of 1 × 10−6 or so.

These estimates of error are determined by comparing the results obtained to that obtained when n is

doubled. In the following two subsections, I report the investigation I did to examine the precision of

the integrals (1) when there is no bias, and (2) when there is misclassification bias.

A.2.1 No bias

Using the data given in Table 3.1, and the model of (2.14), (2.15), and (2.16), I calculated the 2.5%-ile,

50%-ile, and 97.5%-ile of θ, when the prior distributions of θ and δs are:

θ ∼ N(0, 0.35), δs = 0 (1)

θ ∼ N(0, 0.35), δs ∼ N(0, 0.15) (2)

θ ∼ N(0, 100), δs = 0 (3)

θ ∼ N(0, 100), δs ∼ N(0, 0.15) (4)

Table A.1 shows the percentiles for the four situations, calculated with different values of nθ, nλ, nγ.

It can be seen that nθ = 7(a − b)/σ̄θ, nλ = 3(a − b)/σ̄λ, nγ = (a − b)/σ̄γ gives the same estimate as

nθ = 14(a − b)/σ̄θ, nλ = 6(a − b)/σ̄λ, nγ = 2(a − b)/σ̄γ to at least 5 decimal places and so it suffices to

use nθ = 7(a− b)/σ̄θ, nλ = 3(a− b)/σ̄λ, nγ = (a− b)/σ̄γ in this situation.
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A.2.2 Meta-analysis model with exposure misclassification adjustment

Here, I investigate how the evaluation of the Θ̂ varies with n, the number of abscissas when the meta-

analysis model includes adjustment for exposure misclassification. Within each of the four scenarios

above, i.e.:

θ ∼ N(0, 0.35), δs = 0 (1)

θ ∼ N(0, 0.35), δs ∼ N(0, 0.15) (2)

θ ∼ N(0, 100), δs = 0 (3)

θ ∼ N(0, 100), δs ∼ N(0, 0.15) (4)

I have the following sub-scenarios:

sens0 = sens1 = 0.3; spec0, spec1 : low;πs0 ∼ U(0, 1) (x.1)

sens0 = sens1 = 0.3; spec0, spec1 : low;πs0 ∼ as in Table 4.1 (x.2)

sens0 = sens1 = 0.3; spec0 = spec1 = 1;πs0 ∼ U(0, 1) (x.3)

sens0 = sens1 = 0.3; spec0 = spec1 = 1;πs0 ∼ as in Table 4.1 (x.4)

sens0 = sens1 = 0.6; spec0, spec1 : low;πs0 ∼ U(0, 1) (x.5)

sens0 = sens1 = 0.6; spec0, spec1 : low;πs0 ∼ as in Table 4.1 (x.6)

sens0 = sens1 = 0.6; spec0 = spec1 = 1;πs0 ∼ U(0, 1) (x.7)

sens0 = sens1 = 0.6; spec0 = spec1 = 1;πs0 ∼ as in Table 4.1 (x.8)

sens0 = sens1 = 0.9; spec0, spec1 : low;πs0 ∼ U(0, 1) (x.9)

sens0 = sens1 = 0.9; spec0, spec1 : low;πs0 ∼ as in Table 4.1 (x.10)

sens0 = sens1 = 0.9; spec0 = spec1 = 1;πs0 ∼ U(0, 1) (x.11)

sens0 = sens1 = 0.9; spec0 = spec1 = 1;πs0 ∼ as in Table 4.1 (x.12)

In the above, “spec0, spec1 : low” means they take the value of the lower bound low specificity given in

Table 4.2.

There are therefore 4× 12 = 48 scenarios. Taking the condition with the most number of abscissas,

i.e. nθ = 14l/σ̄θ, nλ = 6l/σ̄λ, nγ = 2l/σ̄γ, as the gold standard, Table A.2 compares the maximum

deviation in the evaluation of θ̂L, θ̂M , θ̂U with lesser nθ, nλ, or nγ as compared to the gold standard over

the 12 sub-scenarios.

Here, it can be seen under Prior 1 and 2, the maximum error from using n = half the number of the

gold standard is less than 4.3×10−5. When using Priors 3 and 4, this can be considerably more, with error

of up to 0.0013. We see that doubling the number of abscissas for λ and γ makes very little difference,
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so the error is due to insufficient nθ. Increasing nθ, however, significantly increases computational

time, especially if we need to get the error level down to around 1 × 10−5 or so. Nonetheless, in this

thesis, because we do not use flat or nearly flat prior distributions for θ when we consider the exposure

misclassification models, the error should in general be not more than 4.3× 10−5.

I did not investigate the precision of integration for models involving non-participation and incom-

plete confounding bias, since these models do not affect the shape of the likelihood significantly, except

in altering its central location, and therefore precision of integration using these models should be similar

to the model without bias considered in the previous subsection.

A.3 Deriving approximate posterior variances for γs and λs

In this section, I describe the methods for deriving approximate posterior variances for γs given λs and

θ, and for λs given θ. These approximate posterior variances are used to inform σγ and σλ. First, I

describe the method used in the case where no biases are involved, and then in the case where exposure

misclassification biases are involved.

A.3.1 Assuming no biases

A.3.1.1 Posterior variance of γs given λs and θ

Throughout this section, I make use of the following property: If the likelihood of a parameter is

proportional to a Normal distribution, and a Normal prior distribution is used, then the posterior

distribution is also Normal with variance

Varpost = 1/(1/Varprior +1/VarLik) (A.5)

where Varpost denotes the posterior variance, Varprior the prior variance and VarLik the variance of the

Normal distribution to which the likelihood is proportional (Gelman et al., 2004, p.47). In other words,

the posterior variance is a harmonic mean of the prior variance and the “likelihood variance” divided

by 2.

The conditional likelihood of γs given λs, and θ is proportional to:

l(Ys0, Ns0, Ys1, Ns1|γs;λs, θ) ∝ (expit γs)
Ys0(1− expit γs)

Ns0−Ys0(expit(λs + θ))Ys1(1− expit(λs + θ))Ns1−Ys1

(A.6)

∝ (expit γs)
Ys0(1− expit γs)

Ns0−Ys0 (A.7)
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which is the typical Binomial likelihood.1 The Fisher’s Information for γs is thus

I(γs) = (Ys0(Ns0 − Ys0))/Ns0 (A.11)

which implies that in large samples, the likelihood is proportional to a Normal distribution with variance

1/I(γs) = 1/Ys0 + 1/(Ns0 − Ys0) (A.12)

Thus, we may use equation (A.12) to give us an approximate estimate of the “likelihood variance”

VarLik. One problem is that if Ys0 or Ns0− Ys0 is 0, in which case (A.12) is undefined. To overcome this

problem, I replaced equation (A.12) with:

V̂ar
Lik

= 1/(Ys0 + 0.5) + 1/(Ns0 − Ys0 + 0.5) (A.13)

One reason for adding 0.5 to the denominators of (A.12) is that it leads to posterior inferences based

on Jeffreys’ prior for γs (Gelman et al., 2004, p.63).

As for the prior distribution of γs given λs and θ, we observe that:

p(γs|λs, θ) = p(γs|λs) (by assumption of independence of θ and γs) (A.14)

=
p(λs|γs)p(γs)

p(λs)
(A.15)

∝ p(γs)pδs(λs − γs) (since δs = λs − γs) (A.16)

where p(γs) is the prior distribution of γs and pδs(λs − γs) the prior distribution of δs. In this thesis,

these two distributions are both Normal, and hence the prior variance of γs given λs and θ is:

Varprior = 1/(1/Var(γs) + 1/Var(δs)) (A.17)

Combining the prior (A.17) and the likelihood (A.13) variance using equation (A.5), we have an estimate

of the posterior variance of γs given λs and θ. Note that if δs = 0, then the posterior variance is also 0.

This is because if δs = 0, then γs = λs, and hence γs is known (given λs).

1Recall that:

γs = logitπs0 (A.8)

λs = γs + δs (A.9)

logitπs1 = λs + θ (A.10)
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A.3.1.2 Posterior variance of λs given θ

Here, I again derive a formula for this posterior variance based on (A.5). In the following, I first derive

a formula for Varprior and then a formula for VarLik and then combine the two to derive an estimate for

Varpost.

Varprior

By assumption, θ, δs, and γs are independent a priori, and hence the prior variance of λs given θ is:

Varprior = Var(λs|θ) = Var(λs) = Var(γs) + Var(δs) (A.18)

VarLik

The conditional likelihood of λs given θ, Lik(Xs|λs; θ) can be split up into the case component Lik(Xs1|λs; θ)
and the control component Lik(Xs0|λs; θ)

Lik(Xs|λs; θ) = Lik(Xs1|λs; θ)Lik(Xs0|λs; θ) (A.19)

where Xsi = {Ysi, Nsi}, i = 1, 2 and Xs = {Xs1, Xs0}. By the same logic as (A.5), I derive VarLik as:

VarLik = 1/(1/VarLik(X1) +1/VarLik(X0)) (A.20)

VarLik(X1)

Lik(Xs1|λs; θ) ∝ (expit(λs + θ))Ys1(1− expit(λs + θ))Ns1−Ys1 (A.21)

Because θ is fixed, the likelihood with respect to λs is simply the likelihood with respect to logitπs1

shifted to the left by θ (since logitπs1 = λs + θ). The likelihood with respect to logit πs1 is a standard

logit-Binomial likelihood, and hence has Fisher’s Information.

I(logitπs1) = (Ys1(Ns1 − Ys1))/Ns1 (A.22)

In large samples, the variance of the Normal distribution which approximates the shape of the likelihood

(both with respect to to logitπs1 and λs) would therefore have variance

1/I(logitπs1) = 1/Ys1 + 1/(Ns1 − Ys1) (A.23)

Again, to cope with possible zeros for Ys1 or Ns1 − Ys1, I used:

V̂ar
Lik(X1)

= 1/(Ys1 + 0.5) + 1/(Ns1 − Ys1 + 0.5) (A.24)
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VarLik(X0)

As for Lik(Xs0|λs; θ), let us note that:

Lik(Xs0|λs; θ) ∝
Lik(Xs0|λs, θ)p̃(λs|θ)

p(Xs0|θ)
(if p̃(λs|θ) = 1) (A.25)

= p̃(λs|Xs0, θ) (A.26)

where p̃(λs|θ) = 1 is an improper flat prior and p̃(λs|Xs0, θ) denotes the posterior density of λs given

this flat prior. Therefore, the likelihood is proportional to the posterior distribution of λs given θ, if a

flat prior distribution were used for λs given θ. Now,

Varp̃(λs|Xs0,θ)(λs|Xs0) = Varp̃(λs|Xs0,θ)(γs + δs|Xs0) (A.27)

= Varp̃(δs,γs|Xs0,θ)(γs|Xs0) + Varp̃(δs,γs|Xs0,θ)(δs|Xs0) + 2 Covp̃(δs,γs|Xs0,θ)(δs, γs|Xs0)

(A.28)

Therefore, we seek to estimate VarLik(X0) as a sum of estimates of Varp̃(γs|θ)(γs|Xs0) and Varp̃(δs|θ)(δs|Xs0)

and 2 Covp̃(δs,γs|Xs0,θ)(δs, γs|Xs0). However, while we defined p̃(λs|Xs0, θ), p̃(δs, γs|Xs0, θ) remains unde-

fined. To be consistent, p̃(δs, γs|Xs0, θ) must be the posterior distribution of (δs, γs) given certain prior

distribution such that the prior distribution of γs + δs = λs is flat. One possible option is if γs and δs

were independent and γs were flat and δs is Normal with given prior variance σ2
δs

. If this were the case,

then in large samples,

Varp̃(δs,γs|Xs0,θ)(γs|Xs0) ≈ 1/(Ys0) + 1/(Ns0 − Ys0) (A.29)

since with a flat prior, the posterior is proportional to the likelihood. Here, the variance of the likelihood

is approximated by the inverse Fisher’s Information.

Also,

Varp̃(δs,γs|Xs0,θ)(δs|Xs0) = σ2
δs (A.30)

Covp̃(δs,γs|Xs0,θ)(δs, γs|Xs0) = 0 (A.31)

since Xs0 doe not inform δs, and δs and γs are independent a priori.

Again, to cope with possible Ys0 = 0 or Ns0 − Ys0 = 0, I replaced equation (A.29) with:

V̂arp̃(δs,γs|Xs0,θ)(γs|Xs0) = 1/(Ys0 + 0.5) + 1/(Ns0 − Ys0 + 0.5) (A.32)

Altogether, we have:

V̂ar
Lik(X0)

= 1/(Ys0 + 0.5) + 1/(Ns0 − Ys0 + 0.5) + σ2
δs (A.33)
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Applying equation (A.5) to the estimates of VarLik(X0), VarLik(X0), and VarLik(X0) derived in equations

(A.18), (A.24) and (A.33), we derive an estimate of the posterior variance of λs given θ as:

V̂ar
post

= 1/(1/V̂ar
Lik(X0)

+ 1/V̂ar
Lik(X1)

+ 1/Varprior) (A.34)

A.3.2 In the presence of exposure misclassification bias

In the previous subsection, we assumed there are no biases. In the presence of non-participation bias

and bias due to incomplete control of confounding, because the data are not “diluted” as in bias due

to exposure misclassification (see chapters 5 and 6), the posterior variance of γs and λs should not be

very different from the case without bias (although the posterior mean might be considerably different).

Therefore, I continue to use the above as estimates of the posterior variance. In the presence of exposure

misclassification, the data are in effect “diluted”, and hence the posterior variance would generally be

larger. Using the above estimates for the posterior variance would generally lead to an underestimate.

This, however, only increases the accuracy of the integration, though at the expense of computation

time. To avoid such underestimation, I adjusted the posterior variances calculated above by the following

factor:

Varbias adjusted = Varunadjusted

(
p̂(1− p̂)
π̂(1− π̂)

)2
1

(sens+ spec− 1)2
(A.35)

where p̂ is the observed prevalence and π̂ the true prevalence, derived using equation (4.5) in chapter 4.

This is because:

1/I(logitπ) = 1/I(logit p)

(
p(1− p)
π(1− π)

)2
1

(sens+ spec− 1)2
(A.36)

where I(logitπ) and I(logit p) are Fisher’s information with respect to logit π and logit p, respectively,

assuming fixed sens and spec and p = πsens+ (1− π)(1− spec) (c.f. equation 4.5).

Proof. Denote by s = logit p and t = logitπ, where p = πsens+ (1− π)(1− spec), and Y ∼ Bin(N, p).

I(t) = I(logitπ) = −EY
(
∂2l

∂t2

)
(A.37)

where l is the log-likelihood. Now,
∂l

∂t
=
∂l

∂s

∂s

∂p

∂p

∂π

∂π

∂t
(A.38)

Note that because
∂p

∂π
= sens+ spec− 1 (A.39)

is a constant,

∂2l

∂t2
=
∂p

∂π

[
∂l

∂s

(
∂s

∂p

∂2π

∂t2
+
∂π

∂t

∂2s

∂p2

)
+

(
∂s

∂p

)2(
∂π

∂t

)2
∂2l

∂s2

∂p

∂π

]
(A.40)
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(by differentiating (A.38) with respect to t.) Note that because

EY

(
∂l

∂s

)
=
∂p

∂s
EY

(
∂l

∂p

)
(A.41)

since ∂p
∂s

= p(1− p) and is independent of Y , and that

EY

(
∂l

∂p

)
= EY

(
Y

p
− N − Y

1− p

)
= 0 (A.42)

after taking expectation (over Y ), the first term on the right side of (A.40) = 0, and hence combining

(A.37) and (A.40) gives:

I(t) = −EY
(
∂2l

∂t2

)
(A.43)

= −EY

((
∂p

∂π

)2(
∂s

∂p

)2(
∂π

∂t

)2
∂2l

∂s2

)
(A.44)

It turns out that ∂p
∂π

, ∂s
∂p

, ∂π
∂t

are all independent of Y , and hence,

I(t) = −
(
∂p

∂π

)2(
∂s

∂p

)2(
∂π

∂t

)2

EY

(
∂2l

∂s2

)
(A.45)

=

(
∂p

∂π

)2(
∂s

∂p

)2(
∂π

∂t

)2

I(s) (A.46)

=

(
∂p

∂π

)2(
∂s

∂p

)2(
∂π

∂t

)2

I(logit p) (A.47)

Verifying that:

∂p

∂π
= sens+ spec− 1 (A.48)

∂s

∂p
=

1

p(1− p)
(A.49)

∂π

∂t
= π(1− π) (A.50)

completes the proof.

In the problems of this thesis sens and spec often take on a range of values rather than being fixed at

particular values. From (A.35) we may expect Varbias adjusted to be smaller as sens+spec becomes further

away from 1. Because it is worse to overestimate than to underestimate the variance (overestimation of

variance leads to loss of accuracy; underestimation leads to increase in computation time), I choose the

value of sens and spec within their feasible regions that result in sens + spec furthest away from 1 to
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use in (A.35).

It is important to note that π̂ is not always defined, i.e. not always between 0 and 1, as calculated

from equation (4.5). Moreover, using equation (A.35) can often lead to variance estimates that are

unrealistically large. Thus, I also impose a “cap” on Varbias adjusted: Varbias adjusted must not exceed its

prior variance. If it exceeds its prior variance, it is replaced by the prior variance. This agrees with

intuition that in general the posterior variance is not larger than the prior variance.

A.4 Newton-Cotes formula for evaluating an integral

Suppose we have evaluated the integrand f(x) at n + 2 equally-spaced abscissas from a to b, i.e.

f(x0), f(x1), . . . , f(xn), f(xn+1), where x0 = a and xn+1 = b. The integral can be written as a sum

of sub-integrals:
xn+1∫

x=x0

f(x) dx =
n∑
i=0

xi+1∫
x=xi

f(x) dx (A.51)

For any integral of the function f(x) over the space [x1, x2], Newton-Cotes formulae approximates the

integral as a weighted sum of f(x(1)), f(x(2)), f(x(3)), . . ., where x(1), x(2), x(3), . . . are generally chosen to

be in the neighbourhood of [x1, x2]. An n−point Newton-Cotes formula is a weighted sum of n different

evaluations, and is exactly correct if f(x) over the intervals of the n points (not just over [x1, x2])

can be exactly represented by a polynomial of order n − 1. For example, if f(x) over the interval of

[x1, x2] can be exactly represented by a cubic equation, then the integral can be exactly evaluated as

∆(− 1
24
f(x1 −∆) + 13

24
f(x1) + 13

24
f(x2)− 1

24
f(x2 + ∆)) where ∆ = x2 − x1. When evaluating the integral

between x1 and xn, with equally spaced abscissas, we can simply add up the individual [x1, x2], [x2, x3],

[x3, x4], . . ., [xn−1, xn] integrals, resulting in the formula:

xn∫
x1

f(x) dx ≈ ∆

(
− 1

24
f(x0) +

12

24
f(x1) +

25

24
f(x2) + f(x3) + f(x4) + f(x5) + · · ·

+f(xn−3) + f(xn−2) +
25

24
f(xn−1) +

12

24
f(xn)− 1

24
f(xn+1)

)
(A.52)

It has been shown that when the integrand is not a polynomial, integration using this scheme results

in error of the order 1/∆5, i.e. when ∆ is halved, the accuracy increases roughly 32 times (Press et al.,

2007).
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Appendix B

A simple algorithm for optimization in one

dimension

In Box 2.1 of chapter 2, step 3 involves optimizing the objective function over 1 dimension within given

limits. In many mathematical programming environments, this is straightforward, as there will be a

pre-packaged function for this. In the programming environment that I used for this thesis (The Mata

programming language in Stata 10.1), however, only unconstrained optimizers are available. Although

it is possible to transform the problem into an unconstrained optimization problem by adding in barrier

penalties (e.g. Nocedal and Wright, 1999), this was deemed too cumbersome. Moreover, when I first set

about programming for this thesis, I had hoped to solve a very general problem (more general than the

ones that are discussed in this thesis, including problems with discontinuous constraints), and wanted

a very general algorithm that copes with discontinuity as well as multi-modality and missing values.

I therefore developed the following simple line search algorithm for this purpose, based on the golden

section search algorithm (Press et al., 2007, p.492).

A simple line search algorithm

Consider finding min f(η) subject to l ≤ η ≤ u:

1. Evaluate f(η) at n equally spaced intervals between l and u. For the problems in this thesis, I

chose n to be 11.

2. Identify the two most negative points. If the most negative point is at the boundary and the

second most negative point is next to it, then carry out a golden section search (Press et al., 2007,

p.492) based on these two points. If the two most negative points are next to one another, but

the most negative point is not at the boundary, then carry out a golden section search, based on

these two points and the other point that is next to the minimum point (see Figure B.1a.). The

golden section search should finally converge to a point η̇ when neighbouring η’s do not differ by
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more than a certain tolerance level. I used 1 × 105 for this tolerance. Otherwise, a flat region is

encountered, when f(η) is essentially the same across a wide range of η’s. In this case, declare a

flat region is encountered and set η̇ as a randomly chosen η among the η’s with the same f(η).

3. If only one point is non-missing, then evaluate f(η) for two more points which are halfway between

the adjacent points of the only non-missing point. Keep repeating until at least one other non-

missing point is found, in which case follow step 2. If no other non-missing point is found, then

the only non-missing point is naturally also the minimum of the function. (see Figure B.1b)

4. If the initial two most negative points were not adjacent to one another, then repeat step 3 for the

two most negative points separately, and compare the final optimized result of these two “modes”,

and select the one with the more negative f(η̇). (See Figure B.1c).
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Figure B.1: (a) When the two minimum points are adjacent, we perform a Golden
section search for the region bounded by the two points adjacent to the lowest
point. (b) When only one point is non-missing, we continue to search around
the point until we find another non-missing point. (c) When the two minimum
points are not adjacent, we search through the two regions separately and find
the minimum of the two.
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Appendix C

Estimating misclassification probabilities

of EMF exposure assessment

In my Master’s thesis (Mak, 2008), I estimated the correlation between the true EMF measurement

and various imperfect measurement of EMF that has been used in the literature. This was based on

various studies in the literature that examined the correlation between various different types of exposure

measurement, and between the same measurements taken at different time points. I proposed that the

correlation between a particular EMF measurement and a child’s true exposure levels, defined as the

average EMF level in the three months prior to diagnosis, be estimated as a product of three components

— the stability, the non-personal-monitor penalty, and the incomplete coverage penalty.

The stability is defined as the correlation between the study’s measure with an average of the measure

made in exactly the same way except that it is made during the target exposure period. This depends on

the mode of estimation (e.g. measurements based on personal monitor tend to be less stable, and 24-hr

measurements are assumed to be more stable than “spot” measurements). The non-personal-monitor

penalty is defined as the correlation between the average exposure during the target exposure period

and the average of personal monitor measurements made during this period. The coverage penalty is

an arbitrary penalty given to studies depending on the time lapse between their measurement period

(typically post diagnosis), and the target exposure period.

Some estimates for each of these quantities were available in the literature for various types of

measurements, and I used the most relevant estimate for each of the studies in the Greenland (2005a)

meta-analysis to derive an overall correlation estimate, as given in Table C.1.

As can be seen in Table C.1, studies with direct measurement of EMF (such as room measurement)

tend to have lower stability but smaller (i.e. more positive) non-personal-monitor penalty. In contrast,

studies with calculated EMF estimates (based on distance to nearest power lines) such as Tynes and

Haldorsen (1997) have perfect stability but a greater non-personal-monitor penalty. Nonetheless, it was

clear that huge scope for error exists in these estimates.
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Non-personal
monitor Coverage Overall

Study Stability penalty penalty Correlation
Coghill et al. (1996) 0.837 0.75 1 0.63
Dockerty et al. (1998) 0.837 0.75 1 0.63
Feychting and Ahlbom (1993) 1 0.4 1 0.4
Kabuto et al. (2006) 0.837 0.75 1 0.63
Linet et al. (1997) 0.837 0.71 0.8 0.50
London et al. (1991) 0.837 0.75 0.9 0.56

McBride et al. (1999)
0.548 1

0.9 0.49*

0.837 0.64
Michaelis et al. (1998) 0.837 0.75 1 0.63
Olsen et al. (1993) 1 0.4 0.7 0.28
Savitz et al. (1988) 0.837 0.75 1 0.63
Tomenius (1986) 0.837 0.64 1 0.54
Tynes and Haldorsen (1997) 1 0.4 0.7 0.28
UKCCS (1999) 0.812 0.8 1 0.65
Verkasalo et al. (1993) 1 0.4 0.7 0.28
* Calculated as the average of the two rows, because some children are measured

in one way and some in another

Table C.1: Estimates of overall correlation between measurements of EMF and
target “true” exposure
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If we, however, believe that the rationale behind the estimation was basically sound, i.e. that the true

correlation can be estimated as the product of the three components, it does appear unlikely that the

true correlation between measured EMF exposure and true exposure can be high. In my Master’s thesis,

I also explored how these correlation coefficients may be converted to the misclassification probabilities

sens and spec, through the fitting of a bivariate Normal distribution. This is taken further below.

C.1 Converting correlations to misclassification probabilities

Let us denote by X the measured EMF levels and by T the true EMF levels that the child is exposed

to and assume: (
X

T

)
∼ N

((
µX

µT

)
,

(
σ2
X ρσXσT

ρσXσT σ2
T

))
(C.1)

where µX and µT denote the mean, and σX and σT denote the standard deviation, and ρ denote the

correlation of X and T . Whether a child is classified as exposed or not depends on whether X is greater

than a certain threshold τ , such that:

p = Pr(X > τ) (C.2)

π = Pr(T > τ) (C.3)

sens = Pr(X > τ |T > τ) (C.4)

spec = Pr(X < τ |T < τ) (C.5)

Given the form of the bivariate Normal distribution, it is clear that sens and spec are in fact functions

of the parameters τ , ρ, ∆, and Φ, where ∆ = µX − µT and Φ = σ2
X/σ

2
T .

In Figure C.1, I examine how sens and spec varies with different values of ∆, Φ, ρ, and τ ′ =

(τ − µT )/σT . In Figure C.1a, we see that when ∆ = 0, and Φ = 1, i.e. when the observed exposure

and the true exposure have the same mean and variance, the Resceiver Operation Characteristic (ROC)

curve moves from the diagonal and become closer to the upper and right boundary with increasing ρ.

The Area Under the Curve (AUC) naturally also increases. It is of note that the maximum sens+ spec

is achieved when τ ′ = 0. Because in this thesis, we use a high level of EMF as a cut-off point, we expect

τ ′ to be positive. Note that when τ ′ approaches∞ or −∞, however, either sens→ 1 or spec→ 1. With

a high threshold, we tend to have high spec and low sens. With a low threshold, we get the reverse.

However, it may not be the case that the observed exposure and the true exposure have the same

mean and variance. In fact, under the classical measurement error model, i.e.:

X = T + ε
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Figure C.1: Diagrams showing how sens and spec vary with ∆, Φ, ρ, and τ ′. The direction
of the arrows is from low values of τ ′ to high values. The minimum τ ′ is -2 and the maximum
is 2. The lines that interpolate the (sens, spec) are called Receiver Operating Characteristics
(ROC) curves. These are in darker shade of red for higher ρ lighter shade for smaller ρ
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where T and ε are independent, the observed exposure (X) is expected to have a greater variance than

the variance for the true exposure (T ), i.e. Φ > 1. Figure C.1b shows the case for Φ = 1.5. Here, it is

interesting that for ρ < 0.7 or so, the ROC curves are much more linear, and almost parallel to lines

defined by sens + spec = k. When ρ = 0.9, sens no longer tends to 0 as τ ′ → ∞. Instead, sens tends

to 1, both when τ ′ →∞ and when τ ′ → −∞.

Figures C.1c and C.1d show how the ROC curves vary with other values of ∆ and Φ. In general,

the ROC curve for high ρ is more unpredictable but for lower values of ρ, as long as Φ is around 1.5 -

2, it is roughly parallel to lines defined by sens+ spec = k.

Therefore, based on arguments that the correlation between X and T are unlikely to be high (most

likely less than 0.7), and that sens appears to have a nearly linear relationship with spec for ρ < 0.7 or

so, a reasonable upper bound for the parameters sens+ spec might be:

sens+ spec ≤ 1.7 (C.6)

On the other hand sens+ spec > 1 corresponds to:

Pr(Truly exposed|Observed to be exposed) > Pr(Truly exposed|Observed to be unexposed) (C.7)

i.e.

sens+ spec > 1 ⇐⇒ Pr(T > τ |X > τ) > Pr(T > τ |X < τ) (C.8)

(I give the proof of (C.7) in the next section.) Since it seems reasonable that those classified as exposed

are more likely to be truly exposed than those otherwise classified, I believe a reasonable lower bound

for sens+ spec for any EMF exposure assessment, for both cases and controls, would be:

1.05 ≤ sens+ spec (C.9)

C.2 Proof that sens + spec > 1 is equivalent to (C.7)

Let a, b, c, d denote the probabilities Pr(T > τ,X > τ), Pr(T > τ,X < τ), Pr(T < τ,X > τ), and

Pr(T < τ,X < τ) respectively. The sensitivity (sens) and specificity (spec) are therefore defined as:

sens = Pr(X > τ |T > τ) =
a

a+ b

spec = Pr(X < τ |T < τ) =
d

c+ d
(C.10)
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Likewise, the positive predictive value (PPV ) and negative predictive value (NPV ) are defined as:

PPV = Pr(T > τ |X > τ) =
a

a+ c

NPV = Pr(T < τ |X < τ) =
d

b+ d
(C.11)

We want to show that: as long as sens, spec, PPV , and NPV are all defined, i.e.:

a+ b > 0, c+ d > 0, a+ c > 0, b+ d > 0

then:

sens+ spec > 1 ⇐⇒ PPV +NPV > 1 (C.12)

sens+ spec < 1 ⇐⇒ PPV +NPV < 1 (C.13)

sens+ spec = 1 ⇐⇒ PPV +NPV = 1 (C.14)

Proof of C.12.

sens+ spec > 1

⇐⇒ a

a+ b
+

d

c+ d
> 1

⇐⇒ a(c+ d) + d(a+ b) > (a+ b)(c+ d)

⇐⇒ ac+ ad+ ad+ bd > ac+ bc+ ad+ bd

⇐⇒ ad > bc

⇐⇒ ab+ ad+ ad+ cd > ab+ bc+ ad+ cd

⇐⇒ a(b+ d) + d(a+ c) > (a+ c)(b+ d)

⇐⇒ a

a+ c
+

d

b+ d
> 1

⇐⇒ PPV +NPV > 1

The proof for C.13 and C.14 can be obtained analogously.
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Appendix D

Comparison of meta-analysis based on the

Binomial and the Normal model

Throughout the thesis, the meta-analysis model that has been employed is based on the distribution

of exposed cases and controls being Binomial in case-control studies. Thus, denoting the number of

exposed cases and controls in study s by Ys1 and Ys0, and the total number of cases and controls by Ns1

and Ns0, respectively, the model used is:

Ysi ∼ Bin(Nsi, πsi) i = 0, 1 (D.1)

logitπs1 = logitπs0 + θs

where πs1 and πs0 are the probabilities of exposure in the case and the control group in study s, and θs

is the log odds ratio. For the rest of this Appendix, (D.1) is referred to as the Binomial model.

In Chapter 6, I discuss extending this model to account for bias due to measured confounders. Many

studies give an estimate of the effect θs adjusted for a number of confounders. Nonetheless, the entire

dataset with the confounders is generally not available. Without these data, we cannot easily extend

model (D.1) to account for bias due to measured confounders. An alternative model that does account

for these measured confounders make use of the Normal approximation to the distribution of θ̂adj
s , the

estimate of θs adjusted for measured confounders:

θ̂adj
s ∼ N(θs, σ̂

adj
s

2
) i = 0, 1 (D.2)

Here, σ̂adj
s is the standard error of θ̂adj

s , which is often available by back-calculating from confidence

intervals, and in this Appendix, model (D.2) is referred to as the Normal Approximation model. Because

the likelihood for θs is approximately Normal in large samples, we may expect this to lead to very similar

inference for θ in large samples. In the example data of this thesis, however, many studies do not have
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Exposed Total Exposed Total
case case controls controls

Index Study (Ys1) (Ns1) (Ys0) (Ns0) θ̂s (σ̂s)

1 Coghill et al. (1996) 1 56 0.1 56 2.319 (3.322)
2 Dockerty et al. (1998) 3 87 0.1 82 3.376 (3.218)
3 Feychting and Ahlbom (1993) 6 38 22 554 1.512 (0.495)
4 Kabuto et al. (2006) 11 312 13 603 0.506 (0.416)
5 Linet et al. (1997) 42 638 28 620 0.399 (0.251)
6 London et al. (1991) 17 162 10 143 0.444 (0.416)
7 McBride et al. (1999) 14 297 11 329 0.358 (0.411)
8 Michaelis et al. (1998) 6 176 6 414 0.875 (0.585)
9 Olsen et al. (1993) 3 833 3 1666 0.695 (0.818)
10 Savitz et al. (1988) 3 36 5 198 1.255 (0.754)
11 Tomenius (1986) 3 153 9 698 0.426 (0.673)
12 Tynes and Haldorsen (1997) 0.1 148 31 2004 -3.146 (3.168)
13 UKCCS (1999) 5 1057 3 1053 0.509 (0.732)
14 Verkasalo et al. (1993) 1 32 5 320 0.709 (1.112)

Table D.1: The Greenland (2005a) childhood leukaemia-EMF data with estimated
θ̂ and σ̂2

large samples. Therefore, my original intention was to investigate whether this causes significant bias

to the inference for θ. A surprising result was that bias can result even in large samples. I report this

investigation in the section below.

D.1 A small investigation on the bias of using the Normal

approximation model

For this investigation, I employ a Bayesian FE model, with θs given as:

θs = θ (D.3)

θ ∼ N(0, 100) (D.4)

The data I am using for comparison is given in Table D.1. Table D.1 is equivalent to Table 3.1 except

for Ys1 in the Coghill et al., Dockerty et al., and the Tynes and Haldorsen studies. This is because in

these studies, either Ys1 or Ys0 is zero, and θ̂s is infinity and σ̂s is not calculable from conventional

statistics. To overcome this limitation, I replaced 0 with 0.1 for these studies and calculated θ̂s and σ̂s

from standard large sample maximum likelihood theory.

Here, we found that given the Binomial model (D.1), the posterior median and 95% interval for θ
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Model Posterior Median (95% interval)
Binomial 0.52 (0.46, 0.58)
Normal Approximation 0.59 (0.52, 0.65)

Table D.2: Posterior median and 95% credible intervals for θ in the Binomial
model and the Normal Approximation model

is 0.42 (0.14, 0.69), which is almost identical to the results in chapter 3, which does not involve the

correction of zero counts. When we use the Normal approximation of (D.2), however, the posterior

median and 95% was 0.59 (0.31, 0.87). Thus, it appears that the posterior distribution was shifted to

the right by around 0.17.

I suspected that this was because of the inadequacy of the Normal approximation, in turn due to

small sample size. To see if this is the case, I increased all numbers in Table D.1 by 20 times. Results are

given in Table D.2. Now the two models give more similar results. However, some discrepancy remains

(around 0.07), which does not go away even when I increased the amount data by many more times,

suggesting the difference in estimation is not entirely due to insufficient sample size.

To further investigate the problem, I identified the part of the data that appears instrumental in

causing this discrepancy. For example, let us consider the last three studies of the dataset: The Tynes

and Haldorsen (1997) study, the UKCCS (1999) study, and the Verkasalo et al. (1993) study. If we carry

out a FE meta-analysis of these three studies alone using the Binomial model and the prior distributions

of (D.4), the posterior median and 95% credible interval of θ is: -0.31 (-1.37, 0.58). However, when

using the Normal Approximation model, the posterior median and 95% credible interval is 0.44 (-0.74,

1.61), considerably different to the results from the Binomial model.

If we increase the amount of data by 1000 times, the posterior median and 95% credible interval of

θ in the Binomial model is -0.14 (-0.17, -0.11), whereas in the Normal Approximation model, it is 0.44

(0.40, 0.47). Therefore, although the credible interval is narrowed in both cases, the estimates remain

far apart. In particular, the influence of the Tynes and Haldorsen (1997) study is considerably greater

in the Binomial model.

It can be shown that this is not due to a Bayesian formulation of the model. Fitting a logistic

generalized linear model to these data (1000 times the original), our maximum likelihood estimate of the

common θ is -0.14 (-0.17, -0.11), almost identical to the Bayesian results. When the three studies’ study-

specific θs are estimated independently (using maximum likelihood in the generalized linear model), they

are:

Study Ys1 Ns1 Ys0 Ns0 θ̂s σ̂2
s

13 100 148000 31000 2004000 -3.15 0.0100

14 5000 1057000 3000 1053000 0.51 0.00053

15 1000 32000 5000 320000 0.71 0.00124
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The inverse-variance weighted average θ̂s is 0.44, which equals the Normal Approximation model results.

However, a full likelihood-based calculation does not employ inverse-variance weights. Therefore, we see

that the discrepancy between the Binomial model and the Normal Approximation model results is not

due to the Bayesian formulation, and remains even in large samples.

An intuitive explanation of the above results is that it is not sufficient for large samples to ensure that

the likelihood of θ is accurately approximated by the Normal approximation model (contrast, e.g. com-

ments from Deeks et al., 2001, p.303). The accurate approximation instead requires the study-specific

likelihood of θ be approximately Normal in the region of combination of the study-specific likelihoods,

and not just in the region of the maximum likelihood estimate θ̂s, as has been pointed out by O’Rourke

(2007, p.9). This may not necessarily be guaranteed by large samples.

In conclusion, it is demonstrated in this Appendix that the use of the Normal Approximation model

instead of the “true” Binomial model can introduce bias, in meta-analyses with small study sizes as well

as large sizes. It may be the case that the proposal as given in chapter 6 of this thesis may to some

extent reverse the bias, although this awaits further investigation.
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