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Abstract 
 

Considerable development in the field of nanotechnology is increasingly yielding novel applications 

of nanoparticles. The unique properties of nanoparticles in particular their high aspect ratio (length : 

width ratio), however could pose potential risks to the user. A high throughput genetic screening 

platform, RISCI (robotic single cDNA investigation), was previously established for the systematic 

evaluation of single gene activities. Here, RISCI was utilised to identify pro-apoptotic genes as well as 

genes involved in the positive and negative regulation of silica nanoparticle-induced cell death.  

This project describes the further development of the screening platform by harnessing its capability 

to screen a cDNA library comprising approximately 30,000 full length, completely annotated, and 

sequenced human genes for novel regulators of apoptosis. It integrates an extensive skill sets and is 

broadly organised into three major phases: Setup, Screen and Analysis. The integration of a pro-

apoptosis treatment to screen for inhibitors and sensitizers is a novel aspect of the current 

experimental setup, along with the low redundancy library. 

The extensive setup phase focused on technical aspects. The cDNA library, acquired as plasmid DNA, 

was transformed into a bacterial host for replication and subsequent DNA isolation. A new high-

throughput process was developed encompassing the production of competent bacteria and a heat 

shock transformation protocol, which was subsequently transferred onto the robotic platform. In 

parallel, the software controlling the robots was redeveloped to allow for execution of user-defined 

protocols while novel transfection protocols were adapted for automation.  

The screen identified 699 apoptosis inducers, 1,141 inhibitors and 626 sensitizers. Bioinformatics 

analysis revealed that the inducers were highly enriched for cell death associated terms, while the 

inhibitors were strongly associated with cancer profiles. Both inducers and sensitizers were 

predominantly achieving the functional effect on the protein level, but inhibitors were mainly 

transcription based. Enriched metal response genes also suggest that the silica nanoparticles were 

causing their toxicity through reactive oxygen species generation. Intriguingly, the screen identified 

many noncoding sequences as being functionally capable of regulating apoptosis. These noncoding 

candidates are capable of regulating the protein coding counterparts identified from the screen.  

The truly interesting part of the project outcome remains those unknown candidates that were 

implicated in apoptosis regulation for the first time. Dissemination of the consolidated candidate list 

would help accelerate the experimental validation of these candidates and aid other researchers in 

deriving novel hypotheses when the candidates are placed in their research context.  
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Chapter 1: Introduction 
 

Apoptosis 
 

History and Highlights 
Cell death is a concluding event of any living system, an essential event which requires delicate 

management within multicellular organisms. Apoptosis represents one of the programmed cell 

death mechanisms evolved by nature to manage the systematic clearance of dying cells. 

Apoptotic phenotypes were first described in principle by the German scientist Carl Vogt in 1842. 

The concept and eventual term of programmed cell death began taking hold only in the mid-

ninetieth century after observations indicating the crucial role of cell death in the development of 

multicellular organisms [1, 2]. “Apoptosis" was coined in 1972 by Kerr, Wyllie and Currie as a term to 

describe the processes leading up to the controlled and reproducible pattern of cell death, 

analogous to the poetic description of “leaves falling away from a tree” which the term draws from 

its Greek origin [3]. Around the same time, pioneering works in the establishment of the nematode 

Caenorhabditis elegans as a model system by Brenner and Sulston et al. [4, 5], and discoveries in 

subsequent decades of the mechanistic regulations by cell death (“ced”) genes by Horvitz et al. in 

the C. elegans system [6, 7] and the Apoptosome complex by Wang et al. [8, 9] established some of 

the fundamental molecular controls of apoptosis signalling.  

Today, apoptosis research is an extremely active field, with more than 70,000 publications [10]  since 

its initial conception detailing the vast signalling networks and physiological and clinical relevance. 

Cells may decide to undergo apoptosis for the benefit of the organism as a whole, a classical 

example of which is the activation of apoptosis during embryonic development resulting in proper 

deletion of cells for morphogenesis. Cells damaged via external insults such as virus or encountering 

DNA replication or repair impairment may also undergo apoptosis as a way of damage limitation 

[11]. The process may also be forced upon cells, when employed by the immune system during 

development of the T cells antigen recognition in the thymus, or by cytotoxic T cells (TCL) and 

natural killer (NK) cells in the removal of compromised cells [12]. Since the proliferation of cells in 

multicellular organisms such as humans via mitosis is actively balanced by the selective destruction 

via apoptosis, inappropriate changes to the rate of apoptosis would negatively impact normal 

physiology. In fact, numerous disorders such as neurodegenerative disease, AIDS, myocardial 

infraction and atherosclerosis are associated with excessive apoptosis, while cancer and 

autoimmune diseases are often the result of suppression of apoptosis.  
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Expanding on the vast knowledge of the apoptosis network not only offers insights into its molecular 

regulation and disease implications, but also allows for this knowledge to be exploited for the 

detection and treatment of the damaging disorders resulting from inappropriate apoptosis within a 

clinical context.  

 

Apoptosis, Necrosis and Autophagy 
Since its discovery, the elegant and controlled disposal of dying cells by apoptosis is often compared 

with necrosis, another classical form of cell death associated with uncontrolled destruction of the 

cells, to reinforce the morphological distinction of the two types of cell deaths. Necrosis almost 

always occurs under pathological conditions, while apoptosis can take place under both healthy and 

disease states. Specialised publications may refer to necrosis as the end stage phenotype, while the 

sub lethal process prior to necrosis is referred to oncosis [13]; for simplicity, necrosis is used to 

describe both the process and final phenotype. 

Necrosis is a passive and energy-independent process often the result of excessive fluid influx into 

the cell; hence the effect of necrosis usually extends beyond individual cells to affect a large area. As 

a result, the cells undergo uncontrolled swelling, accompanied by swollen organelles such as the 

mitochondria, endoplasmic reticulum & Golgi, disrupted membranes, ruptured lysosomes, 

detachment of ribosomes, and eventual destruction of the cell membrane integrity [3, 13, 14]. Cells 

or tissues undergoing necrosis may appear visibly cloudy as a result of reversible denaturation of 

proteins. The cell lysis causes cellular constituents to leak into the surrounding environment, leading 

to the recruitment of immune cells. Such response causes inflammation and extensive cellular 

damages.  

In contrast, cells undergoing apoptosis display several characteristics phenotypes such as shrinkage 

of the cytosol (in contrast to swelling during necrosis), chromatin condensation and subsequent DNA 

cleavage, mitochondrial depolarisation, display of phosphatidyl serine on the plasma membrane 

surface, loss of symmetry and membrane blebbing [3, 15].  Morphologically, apoptosis can be 

classified into three distinct phases [16].  

Phase I begins after initiation of apoptosis, whereby the apoptotic cells detach from adjacent cells 

and the surrounding matrix. The stimuli leads to molecular changes including the activation of the 

permeability transition (PT) pore [17], hence the loss of mitochondrial membrane potential and 

release of cytochrome c [18] and apoptosis-inducing factor [19] from the mitochondria 

intermembrane space.  Surface structures of these detaching cells such as microvilli and junction 
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complexes are also lost as they round up due to the activated caspases and proteases breaking down 

their substrates such as the cytoskeleton structures.  

Under the light microscope, chromatin condensation can be observed as crescent-shaped bodies, 

this event is followed by the activation of endonucleases which causes DNA fragmentation. DNA 

fragmentation is another hallmark of apoptosis, which appears with 180- to 200-bp intervals. DNAse 

I and H, and a calcium/magnesium-dependent endonucleases may be involved in this event, 

although the specific combination of cleavage enzymes is dependent of the activation stimuli [20]. 

Distribution of phosphatidyl serine from to the cell surface also occurs as a signal for macrophages to 

take up apoptotic bodies [21]. 

During Phase II, membrane blebbing can be observed as the cells produce pseudopodia containing 

nuclear fragments which then bud off [22]. What remains are the purported apoptotic bodies 

characterised by their smooth and round appearance. Phase III concludes the process with the 

membrane becoming permeable to dyes like Tryphan Blue, and the apoptotic bodies and vesicles 

being phagocytosed by the surrounding cells or by immune cells such as marcophages. 

Apoptosis can be triggered by a variety of stimuli, but the appearance of the same cellular changes 

indicates a convergence of the signalling pathways for apoptosis into a conserved death effector 

machinery [23].  This makes it possible to employ such changes as markers of apoptosis and 

techniques like the detection of the membrane phosphatidyl serine with annexin V [24, 25], 

measuring mitochondrial enzyme activity with the MTT assay, and staining DNA with intercalating 

dyes or labelled nucleotides have become common techniques in apoptosis research [26, 27]. Such 

molecular changes that can be easily exploited as sensitive detection assays are extremely important 

in a screen. 

In recent years however, the distinction between these two major forms of cell death is becoming 

increasingly blurred. It is now recognised that apoptosis is one of many forms of programmed cell 

death (PCD). Apoptotic cell death or type I PCD is defined by its main characteristics being the 

apoptotic phenotypes such as caspase activation, membrane blebbing and DNA fragmentation.  

Autophagy or type II PCD differs morphologically from apoptosis as it is independent of caspase 

activation and other apoptotic phenotypes. The process depends on the formation of double 

membrane autophagosomes and autolysosomes, and features cells with an intact nucleus. 

Autophagy functions primarily as the cell survival response to growth factor or nutrient starvation by 

degrading macromolecules such as proteins. Studies have also indicated that the process is capable 

of recycling materials from damaged organelles [28], and its molecular mechanisms have been 
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associated with induction of tumour specific cell death and suppression of neurodegenerative 

diseases [29]. Both apoptosis and autophagy, while being distinct in morphologies, are evolutionarily 

conserved. Their signalling networks have become ever more linked through recent studies that 

indicate intricate and extensive cross-talking between them. In certain instances, both act 

synergistically, while in others, activation of autophagy can occur only with the suppression of 

apoptosis [30]. Their close interplay and ultimate control over the cell survival status could be 

exploited by tumour cells through the same trigger [31], hence also offers valuable targets for 

treatments [32].  

As the understanding of the cell signalling network deepens with the exponential data generation 

approach offered by high-throughput research, greater overlaps between previously “defined” 

processes would likely emerge, providing more insights into the coordination of apoptosis and 

autophagy with other forms of programmed cell death, such as necropoptosis which displays a 

combination of features from apoptosis and necrosis [33, 34]. 

 

Apoptosis Signalling Network 
CED-3, CED-4 and CED-9, discovered in C. elegans, were some of the first genes to be associated with 

apoptosis signalling. The human homologues of these genes were found to be caspase-9, apaf-1 and 

bcl-2 and constitute the core components for the activation of apoptosis [35]. Decades of extensive 

research have since expanded this into a vast network, which comprises a delicate equilibrium of 

pro- and anti-apoptotic signals under normal cellular conditions. The flow of the apoptosis pathway 

begins with a signal trigger, which could be the aggregation of death ligands or a stress response 

such as after DNA damage or reactive oxygen species accumulation. Upon activation by these 

signals, initiation complexes and platforms are formed from an ensemble of adaptors and initiation 

proteins. This in turn activates cascades for signal amplification which ultimately commits the cells to 

apoptosis with the activation of effector proteins such as proteases and endonucleases for the 

disassembly of the cells. 

Extrinsic and Intrinsic Pathways 
The extrinsic pathways of apoptosis are initiated with the binding of the death receptors such as the 

Fas and TNF receptors to their ligands, by which the apoptosis signals are triggered externally. The 

extracellular death ligands are homotrimetric, thus the binding to their corresponding receptors 

would form ligand-receptor complexes that are at least homotrimeric. These complexes in turn 

recruit, via their death domain (DD), cytosolic factors and adaptor proteins containing the death 

effector domain (DED), providing a platform which increases the concentration of DED-containing 
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initiator caspases within the local proximity to enable auto-catalysis in a model known as “induced 

proximity” [36]. Activated caspases then cleave and activate effector caspases and other substrates 

to execute apoptosis. An example is the Fas receptor (FasR), which upon binding to the Fas ligand 

(FasL), recruits FADD and procaspase-8 to form the death-inducing signalling complex (DISC) [37, 38], 

upon which caspase-8 auto-activates. The DISC complex is functionally homologous to the 

apoptosome, which is central to the intrinsic pathway, and convergence exists between the extrinsic 

and intrinsic pathways through for example the cleavage of Bid that is mediated by caspase-8. 

Cleaved BID (tBID) interacts with Bax and promotes its insertion into the mitochondria to trigger the 

release of pro-apoptotic factors [36, 39, 40].  

The intrinsic pathways, centred on the mitochondria, involve signals triggered from within the cells 

as a result of stress or oncogene activation, leading up to the loss of mitochondria integrity and 

release of pro-apoptotic factors. The mitochondria intermembrane space comprises a concoction of 

pro-apoptotic factors such as cytochrome c, SMAC/DIABLO, endonuclease G, Omi/HtrA2 and AIF. 

The permeabilisation of the outer mitochondria membrane is tightly regulated by various factors 

including formation of the permeability transition (PT) pore, members of the Bcl-2 superfamily and 

mitochondrial lipids [41]. The disruption of the mitochondria outer membrane causes the pro-

apoptotic proteins to enter the cytosol to promote apoptosis [42]. The classical route is the binding 

of the released cytochrome c to the cytosolic APAF1, which causes a conformation change enabling 

ATP binding and heptamerisation to form the apoptosome [8, 43], which forms the platform on 

which caspase-9 becomes activated [8, 44] and triggers downstream caspase cascade including 

caspase-3 activation. Increasingly, mediation of the intrinsic pathway independent of the 

apoptosome and caspases is also beginning to emerge [45]. The inactivation of the intrinsic pathway 

is the primary mechanism by which oncogenes achieve apoptosis evasion, hence is an important 

hallmark of cancer [46]. 

Caspases 
The caspase family of proteins is the centrepiece within the apoptosis signalling response. Caspases 

are cysteine proteases which cleave their substrate after an aspartate residue [47]. Caspase-1 or 

interleukin-1 –converting enzyme (ICE) was the first caspase to be discovered in humans [48] while 

the molecular mechanisms of caspases were determined in C. elegans [7]. Caspases are synthesised 

as catalytically inactive zymogens and can be broadly divided into the initiator and effector caspases. 

Mammalian initiator caspases consist of caspase-2, -8, -9 and -10 and are activated by apoptotic 

platforms like the apoptosome to initiate the caspase cascade. Caspases-3, -6 and -7 are the effector 
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caspases, which are downstream of the caspase cascade activated by the initiator caspases to cleave 

a broad range of substrates and commit the cell to apoptosis.  

Structurally, both initiator and effector caspases exist as homodimers. The initiator caspases contain 

adaptor motifs such as the caspase-recruitment domain (CARD) and death-effector domain (DED) in 

their N-terminal prodomain. These adaptor domains are absent in the effector caspases, which have 

short amino acid sequences of 20 – 30 residues in its place. During apoptosis, the initiator caspases 

auto-activates upon recruitment to the apoptotic activation platforms, which in turns proceed to 

proteolytically activate the effector caspases. The molecular mechanism for the activation of 

effector caspases is derived from structural information of caspase-7 [49]. The core structure of the 

pro- and activated caspase remained unchanged. Instead, the reconstitution of the catalytic activity 

is dependent on the loop structures, most importantly the L2 loop. Under the natural conformation 

of the pro-caspase, the L2 loop is locked in a closed conformation; the cleavage of L2 loop allows it 

to move into a new conformation which stabilises the active site, thus conferring catalytic activity to 

the caspase by several orders of magnitude. Substrate recognition is also dependent on these loop 

structures, which binding pockets frequently found in L1, L3 and L4 loops [50]. Caspases recognise a 

sequence of four amino acids, P4-P3-P2-P1, cleaving the protein after the P1 position. Aspartate is 

usually the preferred residue in the P1 position, but it has been found that glutamate can take this 

position without abolishing catalytic ability in the case of the Drosophila Dronc [51]. Glutamate is 

also the preferred residue for P3 in all caspases studied [50, 52] while the residue for P4 differs 

between caspases and is thought to determine the substrate specificity.  

Since the activation of caspases ultimately commits the cell to irreversible cell death, the process is 

tightly regulated especially for the initiator caspases which requires assembly of multimeric 

complexes. Caspases are regulated transcriptionally and post-translationally, but its catalytic activity 

can also be inhibited by the Inhibitor of Apoptosis (IAP) family of proteins [53]. Viruses are also 

known to exploit caspases inhibition to bypass apoptosis such as through the baculoviral protein p35 

[54], p49 [55] or the cowpox virus serpin CrmA [56]. 

Inhibitor of Apoptosis (IAPs) Family 
Proteins in the IAPs family possess one to three copies of the baculoviral IAP repeat (BIR) domain, 

which is a cysteine and histidine rich, zinc chelating protein domain around the N terminus. In 

addition, several mammalian IAPs also possess addition domains such as the RING zinc-finger (RZF) 

or CARD around the C terminus. The IAPs comprises a subfamily of the larger BIR containing protein 

family, with the additional functional capacity to inhibit apoptosis. Notable members of the IAPs 

family are X-chromosome-linked IAP (XIAP), c-IAP1, c-IAP2, NAIP which possess three BIR domains 
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and one RZF domain, while single BIR containing members includes Survivin, testis-specific IAP (Ts-

IAP) and Livin [57]. 

IAPs regulate apoptosis inhibition through a number of mechanisms, one of which is the direct 

binding and inhibition of caspases through the BIR containing region [58, 59]. Each BIR domain 

consists of the N-terminal “linker” which is unstructured followed by the main globular structure of 

four to five alpha helices and multiple antiparallel beta sheets which chelate a zinc ion. For IAPs 

containing multiple BIR domains, the second BIR domain (BIR2) is associated with caspase-3 and -7 

inhibition and the third (BIR3) for the inhibition of caspase-9 [59, 60]. For single BIR members, the 

domain can either exhibit specificity similar to BIR2 or BIR3 by inhibiting both caspase-3 and -7, or 

only caspase-9 for Survivin and Ts-IAP respectively, or a combination of all three caspases as with 

Livin [61-63]. The linker region of BIR2 occupies the active site of caspase-3 and -7 in a reversed 

orientation relative to the caspase substrates or other inhibitors, and prevents catalytic activity by 

steric hindrance. The main BIR2 domain does not contribute to caspase-3 inhibition, but is required 

for the stabilisation of the linker in the caspase-7 active site [64-66].  Caspase-9, in contrast to the 

other initiator caspases, becomes catalytically active upon recruitment to the apoptosome, which 

induces a conformational change without requirement of proteolytic activation. In addition to the 

processing of caspase-3, the activated caspase-9 can also commence a self-cleavage event, 

generating a new amino terminus. The XIAP BIR3 binds to this newly generated region, preventing 

the caspase-9 from undergoing homodimerisation, hence keeping the caspase in an inactive state 

[67].  

IAPs such as XIAP, c-IAP1 and c-IAP2 can also target IAPs and their interaction partners for 

proteasomal degradation through the RZF zinc-finger domain. These RZF possessing proteins act as 

adaptor proteins to recruit their targets to the E2 enzyme ubiquitination complex, the conjugation of 

the ubiquitin tag subsequently flags their targets for degradation by the proteasome. XIAP and c-

IAP1 were demonstrated to undergo auto-ubiquitination and degradation upon apoptosis stimuli 

[68], while XIAP and c-IAP2 were capable of targeting caspases-3 and -7 for proteasomal degradation 

[69, 70]. SMAC/DIABLO released from the mitochondria during apoptosis also possesses an 

tetrapeptide IAP-binding motif, hence is able to competitively bind to IAPs like XIAP thereby lifting 

their inhibitory effects on the caspases through steric clashes [64, 71] and becoming ubiquinated in 

their place [72, 73].  

Upon the activation of the caspase cascade, the IAPs can be cleaved by caspases. Various caspases 

such as caspase-3, -6, -7 and -8 are able to cleave XIAP while c-IAP1 can be cleaved by caspase-3. The 

XIAP cleavage fragment occurs in late stage apoptosis, hence is considered to be a phenotypic 
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marker of apoptosis rather than the abolishment of its inhibitory effect [57]. Cleavage of c-IAP1 is 

proposed to convert the anti-apoptotic effect into pro-apoptotic through the release of the C-

terminal fragment containing the CARD and RZF domains [74]. Proteins such as XAF1, SMAC/DIABLO 

and Omi/HtrA2 are able to suppress the anti-apoptotic capacity of IAPs. XAF1 can bind XIAP directly 

to disrupt its inhibition of caspase-3 and the suppression of XAF1 is proposed as a mechanism of 

apoptosis suppression in transformed cells [75, 76]. SMAC/DIABLO and Omi/HtrA2 are thought to 

work in similar mechanism discussed above.  

Hence, IAPs as such constitute a checkpoint in apoptosis progression after the release of cytochrome 

c, determined by the balance between IAPs and its suppressors such as XAF1 and SMAC/DIABlO. This 

allows for a reversal of cell fate prior to commitment to apoptosis through caspase activation and 

IAPs sequestration or degradation. 

Apoptosome 
The initial discovery of caspase-3, a prominent executioner caspase generally regarded as the “point 

of no return” during apoptosis, raised further questions regarding its mechanism of activation [77]. 

Procaspase-9, cytochrome c and Apaf-1 were subsequently determined as the molecules responsible 

for caspase-3 activation [78-80], forming an approximately 1 MDa complex central to mitochondrial-

mediated apoptosis known as the apoptosome.  

Apaf-1 is a member of the STAND (signal transduction ATPases with numerous domains) family 

present in the cytosol. Structurally, Apaf-1 comprises the nucleotide binding and oligomerisation 

domain (NOD) flanked by the CARD domain and WD40 repeat domain (WRD) on the N- and C-

termius, respectively. The CARD domains within Apaf-1 and procaspase-9 allow for the interaction to 

occur while the NOD domain contains the adenine nucleotide binding site important for the 

oligomerisation of Apaf-1 into the apoptosome. The WRD domain prevents Apaf-1 oligomerisation 

by holding the NOD domain in place thus avoiding conformational changes necessary for 

apoptosome formation [81, 82]. 

Cytochrome c, with its already well defined function as part of the respiratory chain, was identified 

as the final critical component of apoptosome complex amid great scientific excitement for its dual 

functions [80]. The localisation of cytochrome c is of particular importance. Within the healthy cells, 

cytochrome c localised to the mitochondrial intermembrane space functioning as part of the 

respiratory chain. Upon apoptosis, mitochondrial damage allows the release of cytochrome c into 

the cytosol where it interacts and bind to Apaf-1, relieving the autoinhibition imposed by the WRD 

domain [83]. The separation of various components of the apoptosome within different organelles 

reduces the chance for unintentional activation of the caspase cascade. 
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The binding between Apaf-1 and cytochrome occurs in a 1:1 proportion and enables Apaf-1 to 

assume an extended conformation, forming a heptameric structure with seven-fold symmetry 

resemblance of a wheel termed the apoptosome. Recent modelling and cryo-electron microscopy 

studies indicate that the NOD domains of Apaf-1 form an inner ring surrounded by an outer ring 

comprising the WRD domains and cytochrome c. The Apaf-1 CARD domains form a disk resting 

above the inner ring [84, 85]. Once formed, the apoptosome complex is able to recruit procaspase-9 

and bring about its activation by either the induced proximity or induced conformation model as 

discussed above. The activated caspase-9 then proceeds to activate caspase-3 committing the cell to 

irreversible apoptosis. 

The exchange of an ADP molecule for an exogenous adenosine nucleotide is also important, 

however the precise type and function of adenosine nucleotide remain the subject of on-going 

research interest. ATP, dATP and other non-hydrolysable ATP analogs such as AppNHp and AppCp 

are able to interact with Apaf-1 leading to apoptosome formation, indicating that the ϒ-phosphate is 

adequate for complex formation [86].  

The apoptosome complex is a major signalling hub in the intrinsic mitochondrial-mediated pathway 

where pro-apoptotic signals are integrated, activating the death complex.                                                                                                                                                                                                                                                                                                                                                                                           

Tumor Necrosis Factor (TNF) Superfamily  
The TNF superfamily comprises an extensive group of cytokines and their associated receptors and is 

an area of immerse research interest. The family currently has 19 ligands and 30 receptors, each of 

which is involved in a wide range of cellular functions including cell proliferation, morphogenesis and 

apoptosis. First isolated from B lymphoblastoid cell line and myeloid cell line [87, 88], subsequent 

functional and structural analyses revealed significant homology between TNF-α and TNF-β setting 

the foundation for the large group of associated cytokines. Ligand members involved in the 

regulation of apoptosis includes TNF-α, FasL, VEGI, TRAIL and TWEAK, with their respectively 

receptors being TNFR1 & TNFR2, Fas, DR3, DR4 & DR5 and Fn 14. A single ligand may be able to bind 

to more than one receptors; TRAIL for example is capable of binding to DR4, DR5, DcR1, DcR2 and 

OPG. It is widely accepted that this ability to bind a range of different receptors serve to reduce the 

cytokine response, although the precise reason has yet to be completely understood. 

Six receptor members possess the death domain (DD) within the cytoplasmic portion, with the DD 

acting to recruit adaptor proteins to create a platform for caspase activation. However, the DD is not 

indispensable, with receptors such as TNFR2 lacking a DD but remaining capable of mediating 

apoptosis [89].  
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Signalling via the TNF superfamily is the primary basis for the extrinsic apoptotic pathway. A 

prominent receptor which activates apoptosis through their associated adaptor proteins is TNFR1 

(also known as DR2). Upon binding to TNF-α, TNF-α  and TNFR1 form a trimeric complex which 

sequentially recruits TRADD, FADD and then the initiator procaspase-8, which in turns auto-activates 

and cleaves procaspase-3 into its active form initiating the apoptosis caspase cascade [90, 91]. This is 

known as the death-inducing signalling complex (DISC, see above). The induction of apoptosis 

signalling is one of three pathways which may be initiated following TNF-α ligand binding, the other 

two signalling pathways being activation of NF-κB which mediates transcription of proteins involved 

in cell survival and anti-apoptotic response, and activation of MAPK signalling involving activation of 

JNK stress related proteins and subsequent transcription factor activation such as c-Jun and ATF2, 

which the latter is responsible for cell differentiation, proliferation and pro-apoptotic responses. 

Other proteins associated with the TNF-α -TNFR1 complex include RIP, TRAF2 and ASK1 [92, 93]. Our 

group has recently discovered USP2a as the ubiquitin-specific protease that specifically keep in check 

the levels of RIP by targeting it for proteasomal degradation. TRAF2 in turn was found to be able to 

inhibit USP2a activity on K48 ubiquitin chains, and hence regulate the sensitivity of the cells to 

apoptosis [94].  

While TNF- α was first discovered to be an anti-cancer agent, it has since become linked with a range 

of pathophysiological diseases from cancer to neurologic and pulmonary diseases, diabetes and 

obesity together with other TNF superfamily members. TNF- α-based therapeutics has been a great 

source of treatment for various diseases and continues to remain an active drug development 

target. For example, a TNF- α monoclonal antibody was approved for treatment of psoriatic arthritis, 

rheumatoid arthritis and active ankylosing spondylitis while receptor antagonists such as Atacicept 

which inhibits B cells activation by TACI are in clinical trials for autoimmune disease treatment [95, 

96]. 

Bcl-2 Protein Family 
The Bcl-2 family is a group of apoptosis regulators which governs mitochondrial changes such as the 

mitochondrial outer membrane permeabilisation (MOMP).  Over 30 members have been discovered 

since the gene, bcl-2, was first found to promote survival of cytokine-dependent hematopoietic cells 

in the absence of the survival signals [97, 98]. Bcl-2 family members possess at least one conserved 

Bcl-2 homology (BH) domains. Functionally, the family can be classified into pro-survival and pro-

apoptosis. Pro-survival members such as Bcl-2, Bcl-XL. Bcl-w and Mcl-1 have the capacity for 

apoptosis inhibition over a wide range of cellular insults, and possess at least two BH domains with 

the most homologous members possessing all four BH domains [99]. The pro-apoptosis members 
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can be further classified into multidomain members such as Bax, Bak and Bok which have high 

structural homology to Bcl-2 proteins, and the single domains BH3-only proteins such as Bid, Bad, 

Bim, Noxa and Puma which only have the BH3 domain [100].  

Within the apoptosis signalling network, the Bcl-2 family members exist to counteract the functions 

of other family members. The pro-survival members frequently bind the pro-apoptotic members, 

thereby hampering their ability to mediate release of cytochrome c. In the case of Bcl-2, it can bind 

to Bak through its exposed N-terminus while preventing Bax translocation to the mitochondria, thus 

prevents Bax/Bak oligomerisation and inhibits the release of cytochrome c through mitochondrial 

membrane permeabilisation [101, 102].  

Current consensus on the BH-3 only proteins assumes that they can function through the “de-

repressors” or “direct activators” models. De-repressor BH-3 only proteins exert their pro-apoptotic 

effect through the binding of the pro-survival members such as Bcl-2 at their hydrophobic pockets, 

hence relieving their apoptosis inhibitory effects [100, 103, 104]. The direct activators such as Bid 

and Bim are also able to induce apoptosis independent of Bcl-2 inhibition through interaction with 

Bax or direct damage to the mitochondria membrane [105]. For example, Bid is cleaved by active 

caspase-8 into tBid and undergoes myristoylation at the N-terminus, enabling it to interact with Bax 

or Bak which leads to Bax/Bak oligomerisation and subsequent apoptosis.  The Bax/Bak complexes 

are hypothesised to exist transiently in a model known as “kiss and run” [106]. However, it is unlikely 

that activation of either de-repressors or direct activators is sufficient for apoptosis induction; the 

inhibition of Bcl-2 pro-survival proteins needs to occur together with Bid mediated activation of Bax 

and Bak [104]. tBid oligomers have also been shown to trigger apoptosis independent of the Bax/Bak 

complexes [107]. 

A number of hypothesises exist to explain how the Bcl-2 family proteins governs mitochondrial 

stability. The first relies on structural similarity between Bid and Bcl-XL and observations of channel 

formation by tBid, Bax, Bcl-2 and Bcl-XL. During apoptosis, translocation of Bcl-2 from the cytosol to 

the mitochondria and ER has been observed, and the subsequent pore formation is thought to 

protect or antagonise apoptosis [108, 109]. tBid has also been shown to behave similarly [110]. The 

second hypothesis suggests Bcl-2 family proteins could form a mitochondria pore termed the 

mitochondrial apoptosis-induced channel (MAC). While the composition of the channel complex 

remains to be determined, studies have indicated MAC to be involved in the release of cytochrome 

c. Bax has been proposed to be one of its components [111, 112]. The third model proposed that the 

curvature or composition of the mitochondrial lipid bilayer is altered by Bcl-2 family members. 

Studies have indicated tBid insertion into mitochondria to lead to rupture and overflow of 
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intermembrane space proteins into the cytoplasm, in a scenario similar to antibiotic polypeptide 

activity on bacteria [113].  

In addition to the signalling via the mitochondria, Bcl-2 family members are also involved in other 

pathways that determine the fate of the cell. For example, Bcl-2 can enforce a pro-survival effect 

when expressed at the ER by maintaining calcium homeostasis, regulating caspase and Bax 

activation, while also inhibiting autophagy through interaction with Beclin1 [114-117].  

As vital regulators in the nexus of apoptosis signalling, the activity of the Bcl-2 family proteins are 

tightly regulated at transcriptional, post-transcriptional and post-translational levels [118, 119]. 

Understanding how this balance between survival and apoptosis is governed can contribute in the 

mechanisms of disease disorders such as cancer and autoimmune diseases. Bcl-2 family proteins are 

the subject of therapeutic development, with several inhibitors of Bcl-2 like proteins in development 

pipelines as anticancer regimens [120, 121]. 

Heat Shock Proteins, ER Stress and Calcium Release associated Signalling 
Heat shock proteins (HSPs) are produced in response to various stresses encountered by the cell. 

Under normal conditions, they are involved in various cellular functions including promoting proper 

folding of nascent polypeptide chains and multi-protein complex assembly, regulation of protein 

degradation through the proteasome, and protein translocation between various organelles. Their 

wide range of interaction targets confers a significant role in apoptosis by promoting the balance 

between pro-survival and pro-apoptosis signals [122-124].  

HSP-induced protection is able to rescue from apoptosis, but this survival response is limited by the 

protein folding capacity which becomes depleted in the presence of significant stress scenarios. 

Hence HSPs act both as a defence mechanism and stress sensors, serving first as a temporal brake on 

apoptosis for cell repair subsequently shifting the equilibrium towards apoptosis should damage 

accumulation becomes critical [125, 126].  

Within mammalian systems, four major classes of HSP, Hsp27, Hsp60, Hsp70 and Hsp90 exists to 

influent apoptosis across various signalling points [127]. Hsp27 has been shown to exert an anti-

apoptotic effects by overexpression experiments [128], the mechanism proposed as its direct 

binding and sequestering of cytosolic cytochrome c from Apaf-1 [129]. Mitochondrial Hsp60 was 

reported to bind procaspase-3, while its cytosolic counterpart was found to be in complex with Bax. 

Apoptosis induction leads to dissociation of Hsp60 from its binding partners releasing procaspase-3 

into the cytosol, while freeing Bax for apoptosis participation through translocation to the 

mitochondria. The chaperone function of Hsp60 can also accelerate caspase-3 activation [130, 131]. 
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Hsp70 can influent apoptosis through various interactions. It can directly bind Apaf-1 in an ATP-

dependent manner to inhibit apoptosome formation, indicative that its protein folding function is 

involved in the process [132]. As apoptosis progresses after caspase activation, Hsp70 continues to 

be able to counteract the process, by limiting the activation of cytosolic phospholipase A2, 

protection from caspase-3 and managing changes in nuclear morphology [133]. It can also bind and 

stabilise protein kinase C and Akt [134, 135], and supress JNK activation thereby inhibiting stress 

induced apoptosis and Bid-dependent apoptosis [136]. In late phase apoptosis where chromosomal 

fragmentation is effected by the DNase CAD, Hsp70, in conjunction with its co-chaperone Hsp40, is 

able to regulate the binding of iCAD (inhibitor of CAD) to CAD, hence exerts its control over DNA 

degradation [137]. Hsp90 can regulate TNF-receptor signalling through stabilisation of receptor 

interacting protein (RIP) allowing RIP interaction with TNFR-1, which triggers activation of NF-κB and 

JNK [138]. The presence of Hsp90 in the IKK complex is also required for effecting TNF-induced 

activation of IKK and NF-κB signalling [139].  

While the extensive presence of HSPs across cell organelles allows them to initiate and regulate 

apoptosis from virtually all major cellular components [127], this section will focus on the ER for its 

crucial role in protein biosynthesis and maintenance of calcium at homeostatic levels. ER overloading 

and changes to its oxidative environment are among a range of stresses which triggers ER stress 

induced apoptosis [139]. This is achieved through two mechanisms, the unfolded protein response 

and alterations to calcium signalling. Caspase-7 and -12, and the transcription factor 

CHOP/GADD153 have been demonstrated to be involved in this process [140, 141]. Grp78, induced 

by signals such as ER calcium depletion, is able to inhibit apoptosis through direct binding of 

caspase-7 and -12 [142]. Grp78 is also able to activate NF-κB signalling [143]. An increasingly exciting 

field is the interface between the ER and mitochondria, the central apoptosis signalling hub. This 

involves junctions between the two organelles through which it is hypothesised that pro- and anti-

apoptotic molecules could be exchanged. Bcl-2 has been shown to regulate calcium fluxes via such 

junctions [144] while pro-apoptotic  Bax and Bak were demonstrated to localise to the ER to 

promote caspase-12 associated apoptosis [145]. Furthermore, our group has discovered a novel 

platform spanning the mitochondria-ER interface, termed the ARCosome. This comprises the Fis1-

Bap31 complex upon which procaspase-8 becomes activated [146].  

Calcium release from the ER is an important apoptotic signal alongside cytochrome c release from 

the mitochondria. Cytosolic calcium is highly toxic to the cells, resulting in immense activation of 

phospholipases and proteases, hence calcium is largely imported and stored within the ER [147]. 

Calcium as a chemical messenger coordinating the mitochondria-ER activation of apoptosis was 
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discovered by Boehning et al. During apoptosis, a small amount of cytochrome c was initially 

released from damaged mitochondria. These became bound to inositol-1,4,5-trisphosphate (InsP3) 

receptors on the ER membrane, allowing massive calcium export. The large amount of calcium 

released becomes loaded into mitochondria, causing further release of cytochrome c and other pro-

apoptotic proteins [148]. The global increase in cytosolic calcium also activates proteases and 

phospholipases and is required for nucleases activity, aiding in the destruction and packaging of the 

cells during apoptosis.  

p53 and transcription dependent apoptosis 
p53 is a master transcription regulator involved in a wide range of functions from cell cycle, 

senescence, DNA metabolism, differentiation to apoptosis. It is a critical gene in maintaining proper 

cellular activity, with more than half of cancer cells containing mutations which inactive p53 [149].  

It acts as a switch primarily to determine the cell fate between cell cycle inhibition and apoptosis 

induction in response to stresses such as DNA damage. p53 can initiate transcription of its target 

genes by binding their consensus promoter sequences [150], or via non-canonical sequences such as 

in the case of the p53-induced gene 3 (PIG3), which occurs through microsatellite sequence of its 

untranslated region [151]. A key contributing factor to p53’s ability to selectively bind promoters lies 

in the redox sensing capacity of its DNA binding region. Under oxidative environment, Cys277 of the 

human p53 is oxidised, reducing its binding affinity to the promoter of Gadd45, a DNA repair 

associated gene, while maintaining its affinity for p21WAF/CIP1 (p21), a cell cycle regulatory gene. The 

oxidation of Cys277 is likely to be due to oxygen radicals resulting from high UV treatment [152]. The 

converse is true where Gadd45 promoter affinity is increased under reducing conditions, with 

Cys277 reduction allowing for binding to the cytosine rich region of its promoter by p53. Interaction 

with transcriptional co-activators can also augment p53 promoter binding affinity. Myc, which 

prevents growth arrest resulting from irradiation generated DNA damage, can specifically bind to the 

promoter of p21 upon irradiation, repressing its activation by p53 [153]. In contrast, apoptosis 

stimulating proteins of p53 (ASPP) promotes apoptosis and prevents cycle progression by enhancing 

p53 binding to promoters of pro-apoptotic genes such as Bax and PIG3, while lowering affinity for 

p21 [154]. Such interactions with co-activators and repressors are often cell type specific.  

p53 regulates apoptosis through both the extrinsic and intrinsic pathways. It can induce transcription 

of surface transmembrane receptors such as Fas (the receptor for FasL) [155], DR5 (receptor for 

TRAIL) [156] and PERP [157]. Fas and DR5 leads to DISC complex formation and caspase-8 activation, 

the classical extrinsic pathway. PERP is a novel transmembrane member of the PMP-22/gas family 

associated with regulation of cell growth, and works with E2F-1 for apoptosis induction [157]. Within 
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the intrinsic pathway, p53 promotes the expression of BH-3 only members of the Bcl-2 family such as 

Bax, Bid, Noxa and PUMA [158-162], and caspase activation such as caspase-8 and caspase-6 [163-

165]. Localisation of p53 to the mitochondria has also proved to be extremely apoptogenic to the 

cells [166]. It has been found that p53 can directly complex with Bcl-2 and Bcl-XL leading to 

permeabilisation of the mitochondrial outer membrane in a transcription independent manner [167, 

168].  

In addition to its direct pro-apoptotic effects, p53 can also abrogate survival signals in response to 

excessive stresses. Survival signals such as binding of mitogens and cytokines to their receptors are 

primarily transduced within the cell by phosphoinositide 3-kinase (PI3K). PI3K is able to activate AKT, 

a serine/threonine kinase, leading to downstream phosphorylation of a wider target range including 

Mdm2 (one of the major p53 inhibitors) in favour of cell survival and proliferation [169, 170]. As a 

result, p53 is destabilised by Mdm2 through the activity of AKT. This signalling route is neutralised 

under stress induced activation of p53, where p53 promotes caspase activation which subsequently 

degrades AKT [171, 172]. Furthermore, p53 is able to upregulate PTEN, a tumour suppressor gene, 

and cyclin G. PTEN encodes a phosphatase protein product that then proceeds to de-phosphorylate 

PI3K while cyclin G recruits PP2AB’ (also a phosphatase) to de-phosphorylate Mdm2 [169, 171]. By 

counteracting its inhibition on all three major signalling nodes, p53 is able to shift the cellular fate 

from pro-survival to pro-apoptosis.  

Dependence Receptors 
A distinct class of receptors, known as dependence receptors, has emerged as part of the apoptosis 

signalling network. In contrast with pro-survival receptors such as NGF receptors which promotes 

cell survival upon ligand binding and death receptors like TNFR1 which triggers apoptosis, 

dependence receptors is capable of a combination of both functions. When a ligand is bound, 

dependence receptors promotes cell survival, proliferation and differentiation signals, while the 

absence of the ligand leads to apoptosis induction [173].  

Identified members of dependence receptors class include neurotrophin receptor P75ntr [174], DCC 

receptors [175], UNC5H [176], androgen receptor (AR) [177], Patched [178], neogenin [179] and  

integrins like avβ3 and a5β1 [180]. There is no structural and functional similarity between the various 

dependence receptors, but general consensus holds that dependence receptors are likely to possess 

the dependence receptor transmembrane (DART) motif [181] and caspase substrate recognition 

sequences within their cytoplasmic regions.  

The precise mechanism for the activation of apoptosis by dependence receptors is the subject of 

current research, but much evidence have indicated the involvement of caspase-3 [182], -7 and -8 
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[178] as the protease that release a pro-apoptotic domain. How caspases become activated by an 

unbound receptor is unknown as they lack the death domains which recruit caspase adaptor 

proteins but a model similar to induced proximity as in the case of the death receptors has been 

proposed. In dependence receptor induced apoptosis, the common theme is for caspase-3 to 

mediate one or two cleavage within the cytoplasmic region of the receptors in the absence of their 

ligands, which either release a pro-apoptotic fragment (UNC5H) or expose a receptor region (DCC) 

which then propagate the apoptotic signal [175, 176, 178, 183]. It also does not require Apaf-1 or 

cytochrome c which are well established players of the intrinsic apoptosis pathway, hence it is 

proposed that dependence receptor induced apoptosis via a distinct mechanism. 

Our group has previously isolated CD82 (Kai1), a known metastasis suppressor, as an apoptosis 

inducer and have demonstrated its activity as a dependence receptor.  

Clinical Implications 
As the primary mechanism for controlled cell elimination, apoptosis is fundamental to normal tissue 

and cellular function. It is involved in a diverse range of processes such as tissue homeostasis, 

organogenesis, maturation of the immune system, and elimination of compromised cells such as 

virus-infected or cancer cells. Apoptosis is managed through a delicate balance of pro- and anti- 

apoptotic signals, and when disrupted would give rise to various diseases such as Alzheimer’s, 

Parkinson’s [184], autoimmune diseases, cardiovascular diseases such as myocardial ischemia and 

hypoxia [185]. Apoptosis signalling may also be abused by viruses and cancer cells for proliferation 

means and to evade cell death resulting from their invasion. This acquired ability to evade apoptosis 

is famously included as one of the hallmarks of cancer [46].  

In Alzheimer’s disease, cortical neurones undergo apoptosis as a result of β-amyloid accumulation 

within the brain [186], while in Parkinson’s disease excessive dopamine generated from 

dopaminergic neurons [184]. Within the immune system, apoptosis removes immature B cells 

producing antibodies against the host proteins, and is employed by the cytotoxic T cells to terminate 

their target cells among other functions [187, 188]. Failure to remove the defunct B cells would 

preserve the anti-self antibodies which inappropriately tag the host cells as foreign causing the 

immune system to attack the host, while excessive activity by the cytotoxic T cells may lead to 

apoptosis in normal host cells.  Dysfunctional apoptosis within the immune system has indeed been 

linked to rheumatoid arthritis, inflammatory bowel disease and diabetes [189, 190]. Excessive 

apoptosis though various signalling nodes such as TNF-α and caspase-1 have also been associated 

with cardiovascular diseases [185].  
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While the above-mentioned diseases are caused by up-regulation of pro-apoptosis signals, viruses 

often inhibit apoptosis after infection to extend the life of their host for viral replication to occur. 

Viruses like baculoviruses encode IAPs which are able to inhibit caspase activity while cowpox serpin 

crmA is also able to inhibit apoptosis, leading to an increase tendency of cancer formation [191]. 

Adenovirus and papiloma virus instead employ the use of a p53 inhibitor [192]. Interestingly, the 

human immunodeficiency virus (HIV) triggers activation of apoptosis in CD4+ cells, while producing 

HIV-1 transactivating protein (Tat) in infected cells. Tat is then taken up by other uninfected T cells, 

sensitising them to apoptosis through lowering of intracellular antioxidant levels [193, 194].  

Apoptosis inhibition is critical to cancer formation, and cancer cells have acquired an arsenal of 

mechanisms at all major signalling pathways through accumulated spontaneous mutations and virus 

infections to shift the balance towards survival and proliferation. The master regulator p53 is one of 

the most frequently and heavily mutated genes in cancers, with 26,000 known mutations [195] 

capable of conferring apoptosis inhibitory function on the cells. Another common strategy is the up-

regulation of anti-apoptotic proteins in cancer cells, such as c-FLIP which can bind to the adaptor 

protein FADD preventing caspase activation via the extrinsic pathway, and Bcl-2 which blocks 

cytochrome c release central to the intrinsic mitochondrial pathways [119, 196]. Decoy receptors 

may also be up-regulated by up to 50% to diminish the effects of death receptors signalling from the 

immune cells [197]. Other anti-apoptotic proteins up-regulated includes IAPs and surviving, while 

pro-apoptotic proteins such as caspases are down-regulated [198]. The net effect is the dampening 

of pro-apoptotic signalling in favour of anti-apoptotic factors and activation of survival and 

proliferation pathways.  

The vast apoptosis signalling network also offers a myriad of opportunities in development of drugs 

and therapeutic strategies against these diseases and cancers. Antagonists, inhibitors and antibodies 

against the major signal regulators such as Bcl-2, TNF receptors, HSPs, caspases and p53 are in 

development for treatment. For example, soluble TNF receptors have been used into the treatment 

of Cohn’s disease by acting as a sink to bind the excess TNF that is triggering apoptosis, while 

peptides derived from p53 have been employed in cancer treatment [90, 127, 199]. Other strategies 

include the use of gene therapy or small molecules to correct for the defects or mutations, such as in 

the case of p53 where the small molecule PhiKan083 was shown to be able to reactivate mutant p53 

and restore its function [200]. The use of cytokines, ligands and their analogues to trick cancer cells 

into suicide is also a promising area. TRAIL was also shown to be able to bind to both the death 

receptors DR4 and DR4 to form a complex leading to the destruction of tumour cells [201] while 

TNF-α is used with other chemotherapy with success [202].  
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Nanoparticles 
 

Definition, Characteristics and Applications 
Nanotechnology is a rapidly evolving field, and in the past decades efforts have become focused on 

expanding the development and applications of nanomaterials. Nanomaterials possess unique 

properties conferred by their size and are used in most industries today ranging from drug delivery 

and therapeutic agents to textiles, food and cosmetics. While nanomaterials are often well 

characterised in terms of chemistry and applications, the toxicity assessment of such materials is 

often lacking. As these materials become commonly used, people would be increasingly exposed 

either through direct contact in the workplace, through airborne particles or materials intended for 

health or therapeutic use. Hence, critical toxicity assessments are required to balance their potential 

applications and ensure the safety of the consumers and workplaces. 

A precise definition of nanoparticles is currently lacking and dependent on its context of use. A strict 

definition dictates that nanoparticles have dimensions between 1 – 100 nm, within which they can 

exhibit novel properties resulting from quantum effects. Their properties become similar to atomic 

and molecular interactions below 1 nm, while approximately above 100 nm they are thought to 

behave as with bulk properties of the materials [203, 204]. However, the upper size limit is arbitrary 

and is extendable up to 1000 nm.  

Characteristics such as particle size, size distribution, aspect ratios, shape, surface, catalytic activity, 

core chemistry, redox potential and porosity are important for interpretation of experimental data 

and risk assessments [205]. These characteristics are often affected by experimental conditions. For 

example, the presence of serum proteins in cell culture media is known to aggregate nanoparticles 

[206].  

Each nanoparticle possesses a unique combination of these characteristics, which form the basis of 

their industrial applications. Aluminium nanoparticles are widely used as energetics, coatings & 

alloys, incendiary devices and sensors. The use of aluminium and other nanoscale metals together 

with metal oxides for energetics is based on their ability to release large amount of energy on 

oxidation [207]. Some metallic nanoparticles and their oxides such as silver and zinc are well 

established antimicrobial agents capable of killing or slowing the growth of bacterial without toxicity 

to surrounding cells and tissues [208]. Sulphur nanoparticles have also been recently discovered to 

possess efficient antimicrobial activity [209]. Nanoparticles are also increasingly marketed as key and 

active ingredients in cosmetics offering improved UV protection, “long-lasting” effects, increased 

colour and quality finish by leading manufacturers. Mineral-based nanoparticles such as titanium 
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dioxide and zinc oxide are some of the key ingredients in sunscreen [210]. Carbon nanotubes are 

commonly used nanoparticles in production of electronic, sports, aircraft and textile products due to 

their strength and lightness. Nanoparticles are also finding extensive applications in biomedical and 

biotechnology. Carbon nanostructures have recently been demonstrated as scaffolding structures in 

the repair of large gaps in damaged nerves [211]. Novel formulation of nanomaterials are exploited 

as drug delivery vehicles as nanocarriers and nanocapsules where the drug molecules are 

encapsulated. Dextran-camptothecin nanoparticles have thus far been shown to be having the 

longest circulation half-life of above 300 hours in humans with little toxicity observed. Nano-

liposomes are another form of non-viral drug delivery systems [212]. These nanocarriers can have 

their cancer recognition affinity improved further through functionalization with cancer-specific 

antibodies and other biomolecules [213]. Such active tumour targeting and delivery of drugs could 

significantly reduce the side effects associated with traditional chemotherapy.  

Silica nanoparticles are among the most widely used particles due to the ease of preparation and 

inexpensive production. They can be easily functionalised to provide good drug separation while 

their porosity characteristics make them good drug delivery systems. They have been used to 

stabilised aspirin tablets [214] and often used as pharmaceutical excipients which are inactive 

substance used as a carrier for delivery of active ingredients [215]. The established DNA binding 

ability of silica also makes them suitable candidates for vector delivery in gene therapy [216]. 

Colloidal anhydrous silicon dioxide is commonly used as a non-toxic excipient for oral and topical 

delivery of pharmaceutical products, but injection-based delivery may trigger local tissue reactions 

and toxicity [217].  

Nanoparticles: Signalling and Apoptosis 
The diversity of nanoparticles is likely to induce different signalling and toxicity pathways specific to 

the characteristics of each nanoparticle type. Such characteristics, along with its surface, method of 

dispersions and experimental preparation determines the type of biomolecules especially proteins 

that binds to the nanoparticles upon their entry into the human system. The biological molecules 

form the protein corona, which has an essential role on cell surface receptors and lipids interactions 

with the nanoparticles, thereby determining its entry into the cells [218].  

The increased surface area of nanoparticles is another important indicator of toxicity, as non-toxic 

materials of the micrometre range are often capable of inducing a toxic response in cells and organs 

exposed to similar materials in the nanometre range [219]. Insoluble nanoparticles like titanium 

dioxide and carbon black have been shown to trigger pulmonary inflammation or intratracheal 

instillation in animal models after inhalation [220].  
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Other in vivo studies have indicated that carbon nanotubes behave similarly to fibrous asbestos as a 

result of their high aspect ratios (length to width ratio), inducing pleural granuloma and 

mesothelioma as a result of its shape rather than chemistry [221]. Nano-silver is thought to trigger 

toxicity as a result of free radical formation and the resulting oxidative stress [208]. High 

concentrations of nanoparticles are associated with necrosis [222] while lower doses induce 

apoptosis. Toxicity effects from nanoparticles vary markedly. Aluminium nanoparticles (40 – 47 nm 

diameters) were found to induce toxicity through apoptosis in Neuro-2A cells by affecting the 

mitochondrial integrity [223]. Similar nano-aluminium (with diameters between 8 – 12 nm) inhibits 

apoptosis and triggers proliferation of mouse epithelial JB6 cells [224]. This inhibitory effect involves 

regulations of AP-1 and increased Bcl-XL expression through the increased expression of SIRT-1.  

While studies are increasingly demonstrating apoptosis induction upon treatment with 

nanoparticles, the molecular signalling remains to be largely unexplained.  Nanoparticles induced 

apoptosis are hypothesised to be the consequence of various signalling points from the death 

receptors to mitochondria and lysosomes. Silica nanoparticles-induced apoptosis was shown to 

involve lysosomal permeabilisation while the JNK/P38 pathway and subsequent Bid and caspase-8 

activation were associated with titanium dioxide nanoparticle apoptosis in lymphocytes [225, 226]. 

The JNK pathway apoptosis was instead inhibited by nano-fullerene in cerebral microvasculature 

endothelial cells [227, 228]. Other apoptosis related proteins that were discovered to be changed 

through expression and proteomics studies includes cyclin dependent kinase inhibitor 1A (CDNK1), 

alpha synuclein, Bcl-2 modifying factor, NF-κB, transitional ER ATPase, VDAC-1, MAPK/ERK kinase 

kinase 1, DAG kinase, FADD protein, chemokine (C-X-C motif) ligand 1, HSP70 2, IL7 and MDR/TAP, 

all of which were changed in a pro-apoptotic manner [229].  

Pro-survival pathways were also triggered as a response to nanoparticles presence. In RLE-6TN rat 

lung epithelial cells treated with carbon black nanoparticles, an ERK1/2 signalling mechanism 

involving EGFR and β1-integrin activation of PI3K and Akt cascade was shown to induce apoptosis 

[230]. NF-κB signalling was also activated in A549 exposed to water-soluble nanoparticles generated 

from propane combustion [231].  

 

High Throughput Technology 
 

High Throughput Screening Concept 
The high throughput concept took hold in the early 1990s as an approach for lead compound 

discovery among pharmaceutical and biotechnological companies. This approach focuses on 
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processing thousands of samples per day through lab automation and robotics to identify candidates 

for the drug discovery pipeline.  

Traditionally, high throughput screening (HTS) is performed in 96-well microplates, generating 

10,000 to 100,000 data points daily. Such preference has shifted towards further miniaturisation and 

higher plate densities in recent years, in favour of the 384-well and 1536-well plate formats [232]. 

Miniaturisation increases the daily throughput in excess of 200,000 samples (termed ultra-high 

throughput screening or uHTS) and addresses the key issue of costs and time. Cost is a major 

inhibitory factor in adoption of HTS technology both in terms of initial hardware investment such as 

robots and the consumables costs down the pipeline.  

Increasingly efficient systems and miniaturisation has made the technology affordable in academic 

research, leading to widespread popularity of high throughput techniques in the past five to six 

years. In a simplistic sense, HTS involves systematically screening a collection of chemical or 

biological molecules, known as the library, for candidate effectors of a phenotype-of-interest. The 

approach is often divided into various key phases: Assay development & validation, Library 

generation, Process optimisation, Screen Implementation, Data Capture & Analysis and Secondary 

Validation & lead generation [233, 234].  

HTS has evolved into a mature discipline since its early implementation as part of the 

pharmaceutical lead compound discovery process. Efficient automation and miniaturisation 

combined with commercial availability of large chemical and gene libraries and high quality read-

outs have established HTS as an indispensable tool for both commercial and academic research. 

While past efforts have focused heavily on synthetic and natural small molecules chemical 

compounds, the future trend will become directed at genes as novel targets such as transporters, 

ion channels and other protein interaction based molecules [235].  

A screen is different from a selection in which any cell not displaying the phenotype-of-interest, 

termed background, is removed using some form of selective pressure such as chemical resistance. A 

screen identifies the target cells in a background of cells [233]. This is an important distinction in 

apoptosis research since the phenotype-of-interest, apoptosis, removes the cells, making it difficult 

to select for apoptotic genes. 

Libraries and Assays 
The libraries, or collections of small molecules- or nucleic acid- based compounds, are often 

exclusively generated by each research group in the early days of HTS. The size of the collection 

could vary widely, from hundreds strong collections at academic institutions to collections with 
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millions of compounds at pharmaceuticals companies developed over the years [234]. Depending on 

the purpose of the screen, the library would either comprise of small molecules as in the case of lead 

discovery or, RNAi or cDNA plasmids as part of a functional genomics screen. The compound libraries 

have become expanded to include a myriad of molecules derived from plant or other natural 

sources, complementing traditional sources such as combinatorial chemistry and automated 

synthesis [236]. The Human Genomic Project has provided large collections of cDNA libraries which 

are sequenced and defined [237], while RNAi libraries are often designed and synthesised by 

commercial companies. In recent years, the increasing adoption of HTS has led chemical and biotech 

companies to develop such libraries for commercial purposes, making this key component of HTS 

widely and readily available for research and development.  

HTS assays for a primary screen are sensitive read-outs critical in hit discovery and minimisation of 

false positives. They are less quantitative and often used only in duplicates, although many 

companies are increasingly using single measurements to reduce costs. The generally accepted 

approach is to use a fast and sensitive primary assay to generate a list of positives or “hits” which are 

then subjected to more rigorous and accurate secondary assays. A variety of assays types is 

employed in HTS, including proliferation/cytotoxicity assays, ELISA, reporter enzyme based assays 

and binding assays, all of which are adapted into automated robotic formats [234].  

Assays could be classified based on the involvement of cells. Cell-free assays, on the one hand, 

assess the interaction of proteins with other peptides or nucleic acids directly in the assay buffers in 

the absence of cells. This could be employed in screens for antibodies against a particular antigen in 

ELISA-style assays, to study protein-protein interactions using fluorescence resonance energy 

transfer (FRET) based assays [238], or even identification of protein inhibitors [239].  

Cell-based assays, on the contrary, use various cell types as the primary system to assess drug and 

gene expression effects. Examples include the Sulforhodamine B (SRB) assay to quantify cytotoxicity 

[240], chloramphenicol acetyl transferase (CAT) assays for study promoter activity [241], and other 

enzyme and fluorescent protein based assays involving luciferase and GFP.  

The quality of the assay is intricately linked to the quality of the hits, and an extensive library 

improves the chances of hit generation. While cellular systems are easy to work with, it may not be 

an accurate representation of the human system where the drug ultimately works. As the 

complexity of screens develop beyond cell-based assays, researchers are increasingly using higher 

organisms like zebrafish as the host systems for their physiological and morphological similarities to 
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mammals  [242]. Such phenotypic screens have yielded compounds such as Digoxin, Isoniazid and 

even Sildenafil for the treatment of a wide range of diseases [242]. 

Types of screens 
Compound screens were the basis of HTS in the lead discovery process. Such screens involve 

individual treatment of cells with small molecules from the library and assaying for cytotoxicity or 

other phenotype-of-interest. They are easy to deploy and useful for lead discovery but many notable 

issues remain such as compound solubility, the active concentration and physiological relevance.  

As the screen design evolves, high throughput techniques began to be combined with DNA 

sequencing. These high-throughput sequencing approaches in combination with 

immunoprecipitation have been used in the study of DNA methylation and promoter expression 

alteration in various breast cancer cell lines [243]. Deep sequencing (where the region is sequenced 

for multiple fold coverage) has been employed in many systematic screens such as the Cancer 

Genome Project, with studies revealing the extent of mutations in major oncogenes and regulators. 

Such screens have revealed frequent mutations to genes like PREX2, MAP2K1 and MAP2K2 in 

melanomas [244, 245], SPOP, FOXA1 and MED12 in prostate cancer [246] and components of the 

ubiquitin-mediated proteolysis pathways in renal cancer [247]. These screens sequence only the 

target regions. Whole genome sequencing is more common in yeast and bacteria with smaller 

genome size, along with some forms of directed evolution [248, 249].  

HTS has further been adapted for functional annotation of genes. These screens, termed functional 

genetic screens, transiently introduce cDNA expression plasmids or RNAi into mammalian cell lines, 

after which the phenotype-of-interest such as apoptosis is assayed for.  

This introduction of genetic materials can be performed by co-precipitation of the plasmids with 

calcium phosphate or polyethyleneimines which are then taken up by the cells via endocytosis [250], 

with lipid-based transfection methods forming DNA-liposomes that can fuse with the cell membrane 

[251], or by packaging and transduction with viruses. Recently, paramagnetic nanoparticles are also 

increasingly being exploited in transfection of expression plasmids which claims to achieve higher 

levels of transfection and low toxicity [252]. 

cDNA libraries often result in a gain-of-function screen where the phenotype-of-interest is conferred 

upon the cells by ectopic expression while RNAi libraries lead to loss-of-function screens by 

suppressing the expression of the target genes. By systematically over-expressing or knocking down 

each gene, knowledge about its functional activity could be derived [253-255]. Indeed, various 

functional screens were successfully designed and implemented, identifying novel regulators of 
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cellular functions like telomerase activity, acetylation-deacetylation of histones, genome 

maintenance, oxidative stress response and cancer development [256-259]. Synthetic lethality is a 

common adaption of functional screens. It refers to redundancy within a cellular signalling network, 

where two genes are described as synthetically lethal if mutation of both genes results in cell death 

while mutation of the individual genes do not. Exploiting the concept of synthetic lethality with a 

cancer-associated mutation could provide a cancer-specific framework for drug development [260]. 

Such adaptations involve the use of mutation or ineffective concentration of drugs in combination 

with individually transfected cDNA or RNAi to determine which genes, genomic loci, proteins or 

other conditions then sensitise the cells to cell death. Synthetic lethal screens are particularly 

important in cancer research as a tool to study the anti-apoptosis ability of cancer cells and identify 

conditions capable of sensitising these cells to chemotherapy induced toxicity [255].  

While cell-based “in vitro” functional screens are effective at dissecting cellular signalling pathways, 

it is impossible to study complex mechanisms and diseases at higher levels of organisations such as 

tissues and organs. Hence, as mentioned above, HTS was adapted to the use of animal models and 

has been demonstrated in amphibians like Xenopus tropicalis [261], invertebrate Ciona intestinalis 

with high genomic similarity with humans [262] and Zebrafish [242]. For example, a screen for 

suppressors of crb mutant was performed in Zebrafish. crb mutants give rise to more mitotic cells 

with the heterozygotes having increased cancer risks. The screen was achieved at a rate of 1,000 

compounds per week, completing a 16,320 compounds library within 16 weeks, identifying suitable 

compounds as anti-cancer agents [263]. Transgenic Zebrafish were also established as excellent 

cancer models for melanoma and leukaemia [264-266] and the study of the nervous system [267].  

Apoptosis Related Screens 
Early screens were dependent on internally generated libraries and often labour intensive due to the 

prohibitive initial investment required. Albayrak et al. implemented a manual screen using a cDNA 

library generated from mouse mRNA, leading to the identification of 72 apoptosis inducing clones. 

The screen was performed in human embryonic kidney (HEK) 293T cells and in excess of 10,000 

cDNA clones were screened all of which were visually inspected for typical apoptotic phenotypes like 

membrane blebbing. The candidate clones were later subjected to quantitative assays by flow 

cytometry counting of propidium iodide positive staining [268].  

A similar screen for apoptosis inducers was later performed by Park et al., processing a small library 

of 938 cDNA using automated fluorescence microscopy to image transfected cells nuclei stained with 

Hoechst 33342. The nuclear images were later analysed using computer algorithm yielding three 

positive clones [269]. Another study by Wan et al. employed commercially available high-throughput 
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systems and transfection reagents to screen 29,910 clones from an in-house cDNA library was 

achieved at high financial costs. The study focused on cancer development by detecting a change in 

cell colony counts after G418 selection, identifying 8,237 positive clones with 49 associated with 

apoptosis based on bioinformatics analysis [254].  

Reverse transfection cell-based microarray [270] is an alternative to rapidly screen large libraries 

cost efficiently. This is achieved through miniaturisation where the gene libraries are printed onto 

slides in the presence of transfection reagents as it is used with standard microarrays. Cells are then 

added, which grow over and take up the DNA mix, expressing the genetic material. Such screens by 

Palmer et al. [271] and Mannherz et al. (2006) [272] identified 3/1959  and 10/382 clones positive as 

apoptosis inducers, respectively. 

Compound screens were also commonly exploited to detect the pro-apoptotic activity of a 

compound since apoptosis is tightly associated with cancer development. A compound screen by 

Johnson et al. screened over 9,000 compounds in prostate cancer 3 (PC-3) cells with multiplexed PCR 

primers for toxicity markers such as Hsp70, Gadd153 and O6-methylguanine-DNA methyltransferase, 

and survivin as marker for apoptosis inhibition.  Compounds that specifically reduce the mRNA of 

survivin and other prostate cancer markers but not the toxicity markers are anticancer drug 

candidates [273]. Another study by Tian et al. combines a library of compounds isolated from herbal 

medicine with an innovative FRET-based assay to identify anticancer compounds. The reporter, YFP 

fused with CFP through a caspase-3 cleavage sequence, was stably expressed in HeLa cells and 

generated the FRET effect due to close proximity of the YFP and CFP. When a compound induced 

apoptosis, capase-3 becomes activated and cleaved the reporter causing the loss of the FRET signal. 

This screen identified compounds from the tanshinone and podophyllotoxin family as candidates for 

drug development [274]. Compound screens were also used to identify novel caspase-3 inhibitors 

[239] and agents that specifically kill cancer stem cells [275].  

Screening technology was also taken in vivo to the Drosophila model, with a library of 13,071 RNAi 

targeting the whole genome. This study identifies 42 positive apoptosis inducing candidates 

including a novel regulator Tango7. Tango7 silencing was able to inhibit caspase-dependent 

apoptosis, a function also presence in its human homologue PCID1. PCID1 functions through 

caspase-9 and offers a new development in the regulation via the apoptosome [276].  

Automation and Robots 
Laboratory automation has been around since the early 1980s when robots were used for simple 

repetitive tasks like setting up sequencing or PCR reactions and colony picking of bacterial clones 

from agar plates. Automation technology was critical to the Human Genome Project and its rapid 
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development contributed to the early completion by almost a decade. Large-scale public genome 

projects and private drug discovery pipelines continue to drive innovative applications of automation 

in research, applying rigorous productivity and consistency to research data generation [277].  

Frequently cited advantages include the elimination of laborious tasks, improvement in time 

efficiency with overnight automation, quality and safety of work, and cost-efficiency [277, 278]. 

Return on investment reminiscent of corporate accounting culture has been calculated to compare 

the initial costs to the savings and workload generated by robots, and on average, it is suggested 

that the cost is recovered within two years of initial purchase [278]. Technology has progressed to 

the stage where even the most challenging or delicate task such as generating protein crystals and 

cell cultures could be automated, but such advances represent a trade-off between achieving 

insights into ever increasing, statistically viable datasets and the loss of techniques by the researcher 

[279]. 

Beyond the allure of automation remain many issues that are known to researchers but less often 

discussed. The cost is a major inhibitory factor. Robots are expensive to purchase and operate. While 

costs may be justifiable, many research groups simply lack the funding to make the initial purchase. 

Commercial efforts have been made for cost reduction, such as making the robots with their liquid 

handling platforms more modular, allowing the researcher to add only the function required. 

Specialised workstations are also available to automate specific processes, such as the Qiagen 

BioRobot series, which is designed for high-throughput genomics and protein purification for 

structural analysis. Also, operational costs could be reduced by using less reagents with newer liquid 

handling platforms capable of dispensing nanolitres using electromagnetic valves, and 

miniaturisation of assays that support “lab-on-chip” technologies [279].   

After the investment, the setup process offers a whole new series of challenges. Adapting a standard 

protocol to an automated platform is difficult given the required optimisation of liquid handling and 

assay reproducibility. This could take months before the robot produces a stable run, sometimes 

even longer for it to achieve its full potential. In addition, fast robots are not sufficient; bottlenecks 

in the entire process need to be identified and optimised to ensure the highest efficiency in the 

workflow [280]. 

Normal laboratory procedures have to be scaled up. Simple issues such as freezer and storage space, 

and reagent ordering become complex. A moderate library could easily fill up an entire freezer and 

the sheer volume of reagents required accumulates from microlitres into hundreds of litres. 

Information and data management have to be integrated into the workflow, where data could 
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amount to terabytes especially with image acquisitions. Manual analysis is no longer viable, 

requiring specialised algorithms to identify patterns and the lack of such software easily adds to 

delays. Thermal gradient across high-throughput plates has been shown to be more significant than 

in individual tubes [281], and these require proper equilibration to minimise variations between 

wells [282]. 

Hence, high-throughput systems, especially those that involve compound screens, are often cited to 

be capable of screening hundreds of thousands of compounds per day, but achieving this in reality 

requires sustained funding for consumables and determination.  Automation technology forms the 

core lead discovery pipeline of major pharmaceutical companies today, most of which would find it 

impossible to operate in the absence of such technologies [279].  

Genetic screens involving different techniques are being used to elucidate the apoptosis signalling 

network, but the full high-throughput potential is often reduced by library redundancy, non-

specificity of the assay, delays in automation workflow and the costs among other factors.   
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Chapter 2: Project Information 
 

Project Overview 
The involvement of apoptosis in various disease states and carcinogenesis is well established. 

Expanding our understanding of the signalling network through high-throughput screening would 

help assign gene functions to the sequences produced by the various genome projects, revealing 

candidates that could be targets for anticancer drug development or even gene therapy.  

Current screening efforts have identified many new open reading frames as pro-apoptotic gene 

candidates such as C10orf61, MGC 26717, and FLJ13855 [269] but high library redundancy remains a 

key issue. Previous screens by our group have identified over a hundred clones as inducers of 

apoptosis including Orctl3 which is tumour specific [268, 283].  

The popularity of nanomaterials and their expanding application in consumer products and 

production technology requires toxicity assessments and regulations to ensure any potential risks is 

managed. While nanomaterials are known to cause necrosis at high doses, a variety of 

nanomaterials have become implicated with toxicity via apoptosis with each able to induce 

apoptosis via a different mode of action conferred by their unique characteristics. By integrating the 

treatment of nanoparticles with our high-throughput screening platform, we aim to elucidate the 

toxicological properties of these nanomaterials through pathway analysis.  

This project attempts build on the success of previous screens [268, 284] through the use of a fully 

sequenced cDNA library instead of previously generated in-house libraries, with the expectation of 

substantially lower redundancy and hence improved hit quality and counts. Furthermore, this 

project also attempts to identify positive and negative regulators of apoptosis, as opposed to only 

apoptosis inducers as in our previous screens.  

The project will utilise the RISCI (robotic single cDNA investigation) screen (Figure 1) that employs a 

specific method for extraction of high purity DNA plasmids with reduced endotoxin levels in 

combination with an unique beta-galactosidase based assay for apoptosis detection designed for 

high-throughput screens [285]. This assay exploits the membrane permeablisation in late apoptosis 

to allow the interaction of the expressed beta-galactosidase with the substrate in the cell to 

generate a quantifiable signal. DNA extraction and transfection are performed by a pair of custom-

built robots, which are capable of 2,000 individual reactions per day. 
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Figure 1: Workflow of the RISCI Screen. RISCI is a high-through screen with a pair of robots 
automating the DNA-isolation and Transfection procedures. The robots are able to generate a 
daily maximum throughput of 2,304 unique samples. The intensity of apoptosis is quantified 
and normalised by the CPRG assay, a functional readout exploiting the degradation of 
membrane integrity in late apoptosis.  
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The screen will be primarily carried out with the NITE cDNA library, a collection of over 30,000 full 

length and fully sequenced cDNA acquired from the National Institute of Technology and Evaluation 

(NITE) in Japan and a smaller RNAi library. As the NITE library is fully sequenced, redundancy is 

expected to be low and a screen of unique clones on this scale will be representative of the human 

genome. 

 

Hypothesis and Objectives 
We hypothesise that through the screening of a comparatively large collection of clones equivalent 

to the predicted gene counts from the human genome, the resulting candidates would be 

representative of a substantial part of the cellular apoptosis signalling network. This large candidate 

count would allow for bioinformatics, pathway, cluster and enrichment analyses with the prospects 

of identifying novel and unique signalling responses. The use of nanoparticles to induce toxicity 

would further enable the identification of various classes of apoptosis regulators, including pro-

apoptotic “inducers”, anti-apoptotic “inhibitors” and “sensitizers” which predispose the system to 

apoptosis. The combined approach would be the foundation for the eventual identification of 

signalling pathways involved in the apoptosis response, in particular nanoparticles induced toxicity.  

The project may be broadly divided into three phases associated with common HTS approaches: 

Setup, Screen and Analysis.  

The Setup phase comprises intensive optimisation of a set of experiments with the objective of 

identifying the most appropriate conditions to execute the screen. Major experiments include the 

transformation of the cDNA library (acquired as plasmid DNA) into a suitable bacterial host, 

identifying a good method of transfection suitable for automation, optimisation of the robotic 

systems and characterisation of the nanoparticles.  

This is followed by the Screen phase which implements the actual high-throughput screen under the 

optimised conditions. This phase of the research also discusses the control experiments prior to 

going high-throughput and the candidate threshold determination, and is heavily dominated by 

repetition and extensive use of the robotic systems. The primary screen probes the entire NITE cDNA 

library for regulators of apoptosis, and potential candidates are validated in a secondary screen.  

The final phase involves extensive analysis of the validated candidates, predominantly focused on 

gene ontology (GO) clustering, gene set enrichment and pathway analyses, supported by general 

bioinformatics data mining for available information such as interaction partners and microarray 
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differential expression analysis of disease datasets. The final aim is to identify the key signalling 

pathways and hubs active in normal cells and nanoparticles induced toxicity, and possibly the 

integration of the analysis into a signalling map.  

 

The Robots: History and Descriptions 
The robotic system comprising of a pair of robots was originally designed and developed at the Max-

Plank Institute for Biochemistry in Germany for the specific purpose of implementing the high-

throughput screening protocols developed. Both robots operate on similar three axes (x-y-z) gantry 

on which the main pipetting head is mounted; x and y axes determine the horizontal position of the 

pipetting head on the platform, while the z axis determines its vertical height. 

The Transfection Robot, officially designated as “TFA”, was conceived as a prototype due to its 

simple requirements of liquid handling functions. Its layout is minimalistic with platforms positions 

for 96-well microplates arranged in a six by ten layout surrounding the central washing station and 

four reagent vessels. The washing station cleanses the pipette tips after contact with each reagent, 

minimising cross contamination and consumable costs. It is capable of processing up to twenty 

plates of DNA transfection or 1920 samples in a single transfection run [285]. Its minimal layout also 

allows for easy customisation and implementation of automated protocols. 

The DNA Isolation Robot, designated “BASY”, was developed following the success of TFA to 

specifically handle the DNA isolation protocol adapted from standard alkaline lysis. This protocol 

differs from the standard in two ways: 1) it involves the co-precipitation of lipo-polysaccharides (LPS) 

or endotoxins with SDS in isopropanol and 2) it removes residual impurities by washing with 

acetone. The protocol yields ultra-pure transfection grade plasmids. Hence BASY is much more 

complex, featuring an integrated computer controlled centrifuge to pellet the cell debris and DNA-

silica complexes, dedicated pipetting stations for media removal and acetone wash, integrated 

chilling platforms at 4°C and -20°C, six reagent vessels with robot-operated lids, shaking platforms 

and heating platforms in addition to the wash station [286]. The result was that BASY was designed 

with rigidity and its 4.5-hour automated routine was solely dedicated to implement the DNA 

isolation protocol. It is capable of processing eight deep well plates (DWP) per run with a yield of 768 

samples, but multiple runs could be achieved daily.   

The robot pair combines to generate an average throughput of over 2,000 samples, and together 

with the FLUOstar OPTIMA (BMG Labtech) spectrophotometer forms the automation technology 

available at our group.  
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Figure 2: Transfection and DNA Isolation Robots. A) Layout of the TFA setup for the addition 
of transfection complexes to the cells and the additional of CPRG substrate during assay and 
B) Overview of the DNA Isolation layout, dedicated pipetting stations for media removal and 
acetone wash, and transport of DWP using the robotic gripper to the integrated centrifuge.   
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The Library 
The NITE Library was a sub-library of sequenced human cDNAs from the “full-length long Japan” (FLJ) 

collection, which was generated with the aim of providing a foundation for the functional genomics 

research since 1999. It was acquired from the Japanese NITE Institute and consists of approximately 

30,021 individual cDNA clones. Collection, construction and annotation of part of the FLJ collection 

was published by Ota et al. in 2004 [237] and indicated a significant portion (14,490 / 21,243, 68.2%) 

of the published clones to be unique to FLJ collection. The library consists of a mix between protein 

coding sequences and non-coding RNA candidates. The FLJ collection was generated such that it 

includes only full-length and completely sequenced cDNAs, in order to address the short-comings of 

extensive public sources such as the IMAGE collection or in-house generated libraries which are 

mostly partially sequenced and annotated using express-sequence tags (ESTs).  

The FLJ collection was generated from diverse sources, with the published collection from 61 tissues, 

21 primary cell cultures and 16 cell lines. The cDNAs were generated using oligo-capping method, 

which uses the tobacco acid pyrophosphatase (TAP) to remove the RNA capping structures of 

matured RNA and ligating a synthetic oligoribonucleotide tag in its place with T4 RNA ligase. The 

reaction was specific for matured RNA sequences as alkaline phosphatase was used to remove any 

exposed 51-phosphates of non-capped RNAs prior to the TAP reaction [287, 288]. The synthesised 

cDNA were clone predominantly into the vector pME-18SFL3 under the control of a mammalian 

SRalpha promoter, which is a derivative based on the SV40 promoter [289].  

Over one million clones were randomly selected and subjected to one-pass sequencing. The 

sequences matching RefSeq entries were excluded, leaving only those matching human ESTs or 

without matches. These were then completely sequenced using the standard primer walking 

method with an accuracy of 99.99%, and all sequences were deposited at the DNA database of Japan 

(DDJB) [237].  

While redundancy is expected within the NITE library in that multiple sequences may lead to the 

same protein products, each individual cDNA sequence was transcribed in its biological sources, and 

hence may be the source of splice isoforms generation or novel regulatory mechanism.  
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β-galactosidase CPRG Colorimetric Assay 
Apoptosis assays have placed emphasis on the involvement of caspases as the primary markers of 

apoptosis, but studies have revealed many caspase-independent apoptosis signalling. Hence, the use 

of more general phenotypes such as the degradation of cell membrane integrity in late stage 

apoptosis would avoid screening for candidate regulators which are only caspase-dependent. 

Assays which utilise reporters such as luciferase and GFP are also frequently dependent on a single 

signal whether luminance or fluorescence, with the signal strength correlating with the intensity of 

the phenotype-of-interest. This type of assay signal is excellent when the reporters are constitutively 

expressed across all cells in a normal versus compound-treated scenario. However, functional 

genetic screens are dependent on transient transfection, its efficiency of which frequently varies 

between experiments. This causes fluctuation in the data generated in the absence of normalisation.  

Our choice of readout for apoptosis is the β-galactosidase CPRG Colorimetric Assay, shortened as the 

CPRG assay, which addresses the two major weaknesses mentioned above. A plasmid containing the 

β-galactosidase reporter enzyme (pcDNA3.1-BetaGal) is co-transfected with the library cDNA in each 

transfection, constitutively expressing the reporter only in successfully transfected cells. Hence the 

amount of reporter present and its signal intensity are positively correlated with the quality of 

transfection. The β-galactosidase substrate, chlorophenolred-β-D galacto-pyranoside or CPRG, is 

added to the culture media at the point of assay. The enzyme-substrate interaction is prevented by 

an intact plasma membrane present only in normal healthy cells, while the “leaky membrane” as a 

result of membrane blebbing and cellular packaging in late apoptosis allows the CPRG substrate to 

enter the cells initiating the reaction. This provides a convenient colorimetric assay where the CPRG 

is hydrolysed, giving a visual colour change from yellow to deep purple quantifiable at absorbance 

590 nm. A mild detergent (1% triton) is added to induce total cell lysis once the reaction reaches 

equilibrium, allowing the total reporter signal to be quantified (Figure 3). The ratio between the two 

signals indicates the intensity of cell death. However, the CPRG assay is also sensitive to other forms 

of cell death or damages whereby the membrane integrity is affected, hence a secondary assay to 

validate apoptosis activity of the candidates will be necessary. 

Equation 1: Calculation of CPRG Ratio, an estimator of cell death 

CPRG Ratio =
𝐶𝑃𝑅𝐺 𝑆𝑖𝑔𝑛𝑎𝑙 "𝐴𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠"

𝑇𝑟𝑖𝑡𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 "𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑐𝑡𝑖𝑜𝑛"
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Figure 3: Mechanism of the CPRG Assay.  The CPRG Assay exploits the membrane 
permeablisation in late apoptosis to allow the interaction of the expressed β-galactosidase 
with the substrate in the cell to generate a quantifiable signal. The signal before lysis indicates 
the levels of cell death while the manual lysis with a mild detergent gives the total reporter 
signal from the transient transfection, hence the ratio between the signal before and after 
manual lysis indicates the intensity of cell death occurring.  
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 Chapter 3: Materials and Methods 
 

Reagent List 
 

Chemicals and Kits 
Sigma Aldrich 

2-mercaptoethanol (M7522), Acrylamide (40% solution, A7168), Ammonium persulfate (A3678), 

Ampicillin sodium salt (A9518), Agarose (A9539), Bovine serum albumin (BSA, A7906), Bicinchoninic 

acid kit (BCA1-1KT), Calcium chloride (C7902), Caspase-3 assay kit (CASP-3-C), Dimethyl sulfoxide 

(D2650), DMEM AQmediaTM (D0819), Earle's Balanced Salt Solution (E2888), Fetal calf serum 

(F7524), LB-broth (L3022), L-glutamine (G7513), Magnesium sulphate heptahydrate (63138), 

Polybrene® (H9268), Polyethylenimine Branched (MW 25,000) (408727), Propidium iodide solution 

(P4864), Puromycin dihydrochloride (P8833), Sodium azide (S8032), Sodium butyrate (30,341-0), 

Sodium citrate (S1804), Sodium deoxycholate (30970), Sodium pyruvate (S8636), TEMED (T9281), 

Triton X-100 (T8532), TWEEN® (P5927) and Yeast extract (Y1625) 

Biotium  

GelRedTM Nucleic Acid Gel Stain, 10,000X in DMSO (41002) 

Fluka 

Polyvinyl alcohol mounting medium with DABCO(10981)  

Invitrogen 

10x PBS (14200-067), DAPI (D3571), DiOC6 (D273), DMEM (21969-035), Earle's Balanced Salt 

Solution (24010-043), Library efficiency® DH5αTM chemocompetent bacteria (18263-012), Mito 

Tracker® Red CMXRos (M7512), Penicillin/streptomycin (100U/ml and 100μg/ml, respectively, 

15070-063), PicoGreen (P7589), pLenti7.3/V5-TOPO® TA cloning kit (K5310-00), PureLinkTM HiPure 

plasmid filter purification kit (K2100-07), TMRE (T669), Trypsin-EDTA solution (0.5%, 15400-54) and 

UltraPure™ DNA Typing Grade® 50X TAE Buffer (24710-030).  

All primer oligos were purchased from Invitrogen. 
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Fermentas 

5x protein loading buffer (R0891), 50x TAE buffer (#B49), 6X DNA Loading Dye (R0611), Bradford 

(500-0006), GeneRuleTM 1KB Plus DNA Ladder (SM1333), GeneRuleTM 1KB DNA Ladder (SM0314), 

FastAP Thermosensitive Alkaline Phosphatase (EF0651), PageRulerTM prestained protein ladder 

(SM1811 or SM0671), ProteoBlockTM protease inhibitor cocktail (R1321) and T4 DNA Ligase HC 

(EL0013).  

All restriction enzymes used were FastDigest® enzymes purchased from Fermentas.  

Bio-Rad Laboratories 

0.5M Tris-HCl pH 6.8 solution (161-0799), 1.5M Tris-HCl pH 8.8 solution (161-0798), 10x TGS buffer 

(161-0772) and SDS solution (10% w/v, 161-0416).  

GE Healthcare 

HyperfilmTM high performance chemoluminescent film (28906837) 

Promega 

Wizard® SV Gel and PCR Clean-Up System (A9282) and Caspase-Glo® 3/7 Apoptosis Quantification Kit 

(G8091). 

Polysciences  

Polyethylenimine, Linear (MW 25,000) (23966-2) 

QIAGEN 

Attractene Transfection Reagent (301005) and Effectene Transfection Reagent (301425).  

OZ Biosciences 

LipoMag Transfection Kit (LM80000) 

New England Biolabs (Finnzymes) 

Phusion High-Fidelity DNA Polymerase (F-530L) 

Clontech 

In-FusionTM Advantage PCR Cloning Kit (639635) 
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Millipore 

CaspaTag Caspase 3,7 In Situ Assay Kit Fluorescein (APT423), CaspaTag Caspase 8 In Situ Assay Kit 

Sulforhodamine (APT503) and PVDF membrane (IPVH00010). 

Roche 

Cell Death Detection ELISAPLUS 10X (1920685) and Chlorophenolred-β-D galacto-pyranoside 

(10884308001). 

MP Biomedicals 

zVAD-fmk (O103) 

OXOID Ltd. 

LB-agar (852323) 

Pierce 

Enhanced chemoluminescent reagent (#32106) 

Thermo Scientific 

Paraformaldehyde (28908)  

Merck 

Colorimetric caspase-3 substrate I  (Merck 235400) and fluorogenic caspase-3 substrate II (Merck 

235425). 

 

Plasmid Vectors 
The standard mammalian expression system employed by our group is the pcDNA3.1 vector 

(Invitrogen) driven by the CMV promoter. Our group has created a number of derivatives from 

pcDNA3.1. pcDNA3Δ has the neomycin resistance cassette deleted, its size reduction contributes to 

improved transfection efficiency. pcDNA3-HA, pcDNA- tCFP(NheI)TAA(NotI) and pcDNA3-(NheI)YFP 

were used for labelling of proteins with the hemagglutinin (HA) or fluorescence tag. Unless 

otherwise stated, cloning was performed using the commercially available pcDNA3.1. 
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The NITE Library was cloned using the pME18SFL3 vector, an SV40-based promoter system for 

mammalian expression. Apoptosis positive and negative controls such as RIPK1, Caspase-2 and GFP 

were cloned under the pME18SFL3 vector.  

Viral production uses the pLenti7.3 vector (Invitrogen) and a derivative pLenti7.3puro where the GFP 

cassette was replaced with the puromycin cassette allowing for stable clone selection. Plasmids 

encoding viral proteins required for co-transfection include group antigen and reverse transcriptase 

(pGag.Pol), stomatitis virus glycoprotein (pVSV-G) and reverse transcriptase (pRev). pAdVantage 

(Promega) was co-transfected with the viral plasmids to enhance protein expression. 

Other plasmids containing reporter proteins routinely used include pGreenLantern-1 (Invitrogen), 

pEGFP-C1 (Clontech), pcDNA3-DsRed, pcDNA3-Luciferase and pcDNA3-β-galactosidase. 

 

Molecular Biology 
 

Bacterial Culture 
Bacteria containing plasmids were cultured in Lysogeny broth plus (LB+) media (2% w/v LB, 1% w/v 

Yeast Extract) in the presence of 100ug/mL ampicillin.  Bacteria was inoculated in 25 or 300mL media 

depending on the scale of DNA isolation and incubated at 37°C and 260 rpm for 24 hours. For large-

scale experiments, 50mL starter cultures were used to inoculate 5L of media and cultured at 37°C 

until the culture reaches optical density of 0.6 at absorbance 600 nm.  

Library cDNA clones were cultured in 96-well DWP. 1.4mL LB+ media per well was dispensed by the 

robot and each DWP manually inoculated with approximately 5ul of glycerol stocks. The DWP was 

then sealed with gas permeable adhesive seal (ABgene, AB-1450) and incubated at 37°C and 260 

rpm for 24 hours. Plate inoculation may be automated on the BASY robotic platform. 

Glycerol stocks (30% v/v glycerol) of bacterial culture were prepared and keep at -80C for long term 

storage.   

Preparation of Competent   
A starter culture of the desired Escherichia coli strain (DH5α was used) was inoculated and allowed 

to grow overnight at 37°C, 260rpm. The overnight culture was diluted with fresh media at a 100X 

factor, and allowed to grow at 37°C, 260rpm until the culture density reached an O.D. of 0.6 at 

600nm absorbance. The cells were harvested by centrifugation at 2,000rpm and resuspended in 1/5 

volumes of cold 100mM calcium chloride (Sigma-Aldrich). The cell suspension was incubated for 20 
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minutes on ice. The harvesting step was repeated and the cells resuspended in 1/10 volume of cold 

100mM calcium chloride and incubated for 60 minutes on ice. Finally, the cells were harvested and 

resuspended in 1/10 volume of cold 100mM calcium chloride with 15% glycerol. The cells could be 

used directly or aliquot into smaller volumes for long term storage at -80°C. 

Transformation of Plasmids 
Escherichia coli DH5α were used as the bacterial host for plasmid replication. 5ul of plasmid DNA 

was combined with 50ul of chemo-competent cells and incubated on ice for 15 minutes. The mix 

was then heat shocked by incubating in 42°C waterbath for 45 seconds before returning to ice for a 

further 2 minutes incubation. 900ul LB+ media was then added for each reaction and the cells 

allowed to recover at 37°C and 260 rpm incubation for 60 minutes. The cells were then pellet and 

fresh media added to the desired dilution and plated onto LB agar plate containing the appropriate 

antibiotic resistance.  

This protocol was adapted for high-throughput mode using the BASY platform, with the robot 

managing all pipetting steps.  

Ultra-pure Plasmid DNA Isolation 
This protocol was adapted from standard alkaline lysis to yield high quality supercoiled and 

endotoxin-free plasmids suitable for transfection in mammalian cells. 

1.4mL of bacterial cultures were centrifuged at 4,300 rpm (Sigma Robotic Centrifuge 4K15) and the 

pellet resuspended in 250ul of P1 Buffer (50 mM Tris-HCl, 10 mM EDTA, pH 8.0, 100 µg/ml RNase A 

(Fermentas)). The cells were lysed with the addition of 250ul P2 Buffer (200 mM NaOH, 1% SDS), 

gently mixed then incubated at ambient temperature for 5 minutes. 250ul of P3 Buffer (3.0M 

potassium acetate, pH5.5) chilled to 4°C was added next to neutralise the reaction and the mixture 

left to incubate at ambient temperature for a further 5 minutes. Next, the mixture was centrifuged 

at 4,300 rpm for 15 minutes after which the supernatant is transferred into new reaction vessels. 

120ul P4 Buffer (2.5% SDS in isopropanol) was mixed with the supernatant and incubated at 4°C for 

15 minutes then -20°C for another 15 minutes to precipitate the endotoxin. The chilled mixture was 

centrifuged at 4,300 rpm for 15 minutes and the supernatant transferred into new reaction vessels. 

150ul of silica (50mg/mL in water) was added and the mixture allowed to incubate at ambient 

temperature for 15 minutes for DNA binding to occur. The mixture was pelleted and washed twice 

with acetone to remove any residual contaminants before drying at 65°C for 15 minutes. Water was 

finally added to elute the plasmid DNA with the silica pelleted and discarded.  
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DNA Isolation with Commercial Kits 
Plasmid DNA for small-scale experiments were extracted from bacterial using column-based 

commercially available kits like the Plasmid Mini or Maxi Prep kit (QIAGEN) or the PureLinkTM 

HiPure plasmid filter purification kit (Invitrogen). All extractions were performed according to 

manufacturer’s protocol. 

Quantification of DNA Concentration 
DNA extracted using commercial kits was quantified with the NanoDrop (ThermoScientific), using 

traditional measurement of DNA and protein absorbance at wavelengths 260nm and 280nm 

respectively, in the absence of any nucleic acid staining.  

PicoGreen (Molecular Probes) is a fluorescence nucleic acid stain which binds specifically to double 

stranded DNA molecules and is sensitive up to the picometer range. DNA was diluted in 100ul TE 

buffer (10 mM Tris-Cl, 1 mM EDTA, pH 7.5). 100ul of a working solution of PicoGreen (1:200 in TE 

Buffer) was added per well, and the mixture set aside in the dark for 5 minutes incubation at 

ambient temperature. UV-transparent 96-well plates specifically for DNA measurements were used 

and the fluorescence signal was quantified using the FLUOstar OPTIMA (BMG Labtech) at excitation 

480nm and emission 520nm. The signal was used to derive the DNA concentration using a standard 

curve. The PicoGreen protocol was employed for samples generated using the ultra-pure plasmids 

isolation method where DNA was captured using silica binding, and for samples requiring higher 

degree of sensitivity. The presence of minimal silica residues in the DNA solution interferes with 

NanoDrop quantification due to similar absorbance wavelength between DNA and silica at 

approximately 260nm.  

Restriction Enzyme Reactions  
All restriction enzyme digests were performed using the Fermentas FastDigest® line of restriction 

enzymes. 1ug of plasmids were mixed with 1ul of the appropriate enzyme and 2ul of 10X FastDigest® 

Reaction Buffer, and the final reaction volume made up with nuclease-free water to 20ul. Double 

and multiple digests may be scaled up proportionally, with the combined volume of enzymes not 

exceeding 10% of total volume. The reaction was incubated at 37°C for 20 minutes and heat-

activated at 80°C for 5 minutes prior to use or gel electrophoresis.  

DNA Gel Electrophoresis 
1% w/v agarose gel was prepared in TAE Buffer (40 mM Tris-acetate, 1 mM EDTA, pH of 8.3) with the 

nucleic acid stain GelRed (Biotium) added according to manufacturer’s protocol, and set in a casting 

apparatus. DNA samples were mixed DNA loading buffer in a 5:1 ratio and loaded onto the gel. 5ul of 
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GeneRuleTM 1KB Plus DNA Ladder (Fermentas) was loaded as the DNA size marker. The gel was run 

in excess TAE Buffer at 90V for 45 – 60 minutes.  

Cloning 
Polymerase chain reaction (PCR) was performed with the Phusion High-Fidelity DNA Polymerase 

(Finnzymes). The reaction mix was prepared by mixing 1ul of dNTP (10mM), 10ul Phusion HF Buffer, 

7.5ul each of forward and reverse primers (200uM), 0.5ul of Phusion polymerase, 1ul of DNA 

template (200ng), 1.5ul of DMSO and the reactions made up with water to a final volume of 50ul. 

The PCR reaction was initiated with denaturation (98°C, 59 seconds), then cycled through the 

amplification phase with denaturation (98°C, 30 seconds), annealing (50°C, 20 seconds), extension 

(72°C, 30 seconds per 1000 bases), before a final extension at 72°C for 5 minutes.  

The appropriate fragment was isolated after gel electrophoresis and purified using the Wizard® SV 

Gel and PCR Clean-Up Kit (Promega), and subjected to the appropriate restriction digest. The vector 

was cut with the same restriction enzymes and 1ul of FastAP Thermosensitive Alkaline Phosphatase 

(Fermentas) added at the final 5 minutes of the 37°C incubation. Both reactions were then purified 

again using the PCR Clean-Up Kit before ligation.  

For ligation, Vector:Insert were mixed in a 1:5 ratio, together with 2ul of 10X T4 Ligase Buffer and 1 

unit of T4 DNA Ligase (Fermentas), and the reaction made up to a final volume of 20ul with water. 

The reaction was allowed to incubate for 10 minutes at ambient temperature before heat 

inactivation at 70°C for 5 minutes. The reaction mix was then used for heat shock transformation 

into bacterial host as previously detailed.  

Difficult cloning was achieved with the In-FusionTM Advantage PCR Cloning Kit (Clontech). The In-

Fusion enzyme was able to create single-stranded regions at the complementary ends of the 

linearised vector and PCR insert, the allowing the DNA molecules to anneal together; the strands 

were repaired upon transformation into bacterial hosts. The kit was used according to 

manufacturer’s protocol.  
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Mammalian Cell Culture and Transfection 
 

Cell Culture 
Human embryonic kidney (HEK293T) cells, 293FT (Invitrogen; for viral production), adenocarcinomic 

human alveolar basal epithelial cells (A549) and human cervical carcinoma (HeLa, ATCC) cells were 

cultivated in high glucose Dulbecco’s modified eagle medium (DMEM) or DMEM AQmediaTM (Sigma-

Aldrich) supplemented with heat inactivated foetal calf serum (FCS, Sigma-Aldrich), 2mM sodium 

pyruvate (Sigma-Aldrich), penicillin-streptomycin (100U/mL, Sigma-Aldrich) and 2mM L-glutamine 

(Sigma-Aldrich). HEK293T cells were cultivated in the presence of 5% v/v FCS while 10% v/v FCS was 

used for 293FT, A549 and HeLa cells. Cells were cultured in 10cm tissue culture dishes, T75 or T175 

vented flasks dependent on application at 5% atmospheric CO2 and 37°C in a humidified incubator. 

Cells were resuspended in freezing media (supplemented DMEM with 20% FCS and 10% DMSO) and 

frozen at -80°C for long term storage.  

Cells were seeded at 50 – 60% confluency for transfection experiments and 70 – 80% for chemical 

treatment experiments. For the screening experiments, HEK293T cells were seeded at 14,000 cells 

per well in a 96-well microplate. 

Calcium Phosphate Transfection 
For 96-well format, 15 µl of 0.25M calcium chloride mixed with 15 µl of plasmids (300ng plasmid 

DNA), then 10 µl of Hepes buffer saline (HBS, pH 7.1) and 15 µl of 2mM chloroquine were added 

immediately. 15 µl of the transfection mix was added to cells without incubation. The cells were 

incubated in the presence of the transfection mix at 37°C for 6 hours, after which media was 

replaced. This protocol may be proportionally scaled upwards for 24- and 6- well format by a factor 

of 4 and 20 respectively.  

Polyethylenimine (PEI) Transfection1  
Linear PEI (Polysciences, MW 25,000 Da) stock solution was prepared by completely dissolving 1g of 

linear PEI in 100ml (10mg/mL) of sterile hot water. Once the solution has equilibrated to ambient 

temperature, the solution is neutralised to pH 7.0 using 37% hydrochloric acid (Sigma-Aldrich). The 

solution was then passed through a 0.22um filter.  

Branched PEI (Sigma-Aldrich, MW 25,000 Da) stock solution was prepared by dissolving 2g of 

branched PEI in 100ml (20mg/mL) of sterile water, neutralised to pH 7.0 using 37% hydrochloric acid 

                                                           
1 The use of PEI for transfection is currently covered by intellectual property rights including US Patent 6,013,240, European Patent 0,770140, and other foreign equivalents. Polyplus-
transfectionTM remains its exclusive worldwide licensee. All PEI reagents used in this project are acquired from commercial sources solely for academic research purposes. No PEI 
preparations were made available for commercial benefits.   
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(Sigma-Aldrich). The solution was then passed through a 0.22um filter before further dilution with 

sterile water to 2mg/mL.  

Prior to transfection a working stock of the PEI solution was prepared by diluting the stock with 

water; the linear PEI is diluted ~300X and the branched PEI diluted ~135X in 150mM sodium chloride 

(Sigma-Aldrich). For transfection in 96-well format, 300ng of plasmids DNA was prepared in 30ul of 

150mM sodium chloride. 30ul of the PEI working solution was then added to the DNA solution, and 

the mixture immediately vortexed or mixed by pipetting. The transfection mix was incubated at 

ambient temperature for 30 – 60 minutes. The media in the well was changed prior to addition of 

the transfection mix.  40ul of media was added to the transfection mix and the entire 100ul volume 

added to the cells. The cells are incubated in the presence of the transfection mix for 5 – 6 hours 

before the media was replaced. The protocol was proportionally scalable to 24- and 6-well plate 

formats.  

PolyPlus jetPEI Transfection Kit 
For 96-well format, 250ng plasmid DNA was diluted in 150mM sodium chloride to a final volume of 

50ul; the solution was gently mixed to disperse the DNA. Separately, 0.5ul of the jetPEI transfection 

reagent was diluted in 150mM sodium chloride to a final volume of 50ul. The jetPEI solution was 

next added to the DNA solution, mixed and allowed to incubate at ambient temperature for 15 – 30 

minutes. The media in each well of the plate is replaced with fresh media containing the transfection 

mix, and the cells incubated for 5 – 6 hours before media change. 

Other Commercial Transfection Kits 
Commercially available transfection kits were employed for a range of cell lines that were less 

efficiently transfected. QIAGEN Effectene and Attractene transfection reagents were employed for 

HeLa cells transfection, while OZ Biosciences LipoMag transfection kit was used for A549 cells. All 

commercial kits were used according to the manufacturer’s recommended protocol.  

Production of Stable Cell Line 
The desired cell line was seeded in 6-well plates 15 hours prior to transduction. On the next day, the 

cells were incubated in the presence of the viral supernatant supplemented with 1ug/mL of 

Polybrene® (Sigma-Aldrich) for 6 hours. The medium was then replaced with fresh media and 

incubated further for two to three days, after which the medium was replaced with one containing a 

lethal dose of puromycin (the dose determined based on a kill curve prior to experiment). The 

infected cells were maintained in the selection media for three days. After selection, the cells could 

be passaged and maintained in the appropriate media containing 1ug/mL of puromycin to retain the 

resistance.   
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Production of Lentiviral Particles 
 

Viral Production 
pLenti7.3puro containing the protein-of-interest was co-transfected with three plasmids containing 

group antigen and reverse transcriptase (pGag.Pol), stomatitis virus glycoprotein (pVSV-G) and 

reverse transcriptase (pRev), and pAdVantage (Promega). 20ug of pLenti7.3puro, 7.8ug of pGag.Pol, 

5.4ug of pVSV-G, 3.8ug of pRev and 9ug of pAdVantage were combined and made to 437.5ul with 

water. The DNA solution was transfected using calcium phosphate transfection protocol into 293FT 

viral production cell line (Invitrogen).  

The culture media was replaced with fresh media containing 1mM sodium butyrate (Sigma-Aldrich) 

the next morning. The supernatant was harvested two to three days post transfection and 

centrifuged at 500g and at ambient temperature for 10 minutes to remove the cell debris. The 

supernatant, which contains the viral particles, was then filtered with 0.45um sterile filter; 0.22um 

filter should be avoided so as not to damage the viral outer glycoproteins. 

Viral Titre Calculation 
The cell line of interest was seeded on a 12-well plate at 30% confluency. On the day of transduction, 

the viral stock was diluted at varying dilutions in 400ul of DMEM containing 6ug/mL polybrene® and 

introduced to the cell line of interest for 48 hours during which integration into the genome and 

protein expression should occur. The number of cells was counted prior and post selection with 

5ug/mL puromycin for 24 hours.  

Viral titre was calculated using Equation 2: 

Equation 2: Calculation of viral titre 

𝑇𝑈 𝑚𝑙−1 = (𝐹 × 𝑁 × 𝐷) 𝑉⁄  

 

Where TU is the transforming unit (=number of virion), F is the percentage of surviving cells, N is the 

number of cells at the time of transduction, D is the dilution factor, and V is the volume of diluted 

viral sample added into each well in ml. 
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Assays and Imaging 
 

Propidium Iodide (PI) Staining 
The supernatant and the adherent cells were harvested, centrifuged (1500rpm, 5 minutes) and 

resuspended in lysis buffer (0.1% sodium citrate and 0.1% Triton X-100 in PBS) containing propidium 

iodide (PI, 20μg/ml). The cell nuclei released by the lysis were acquired with flow cytometer 

(FACSCaliburTM, BD Biosciences) using FL-2 channel to quantify the percentage of cell population 

with subG1 DNA content. The pan-caspase inhibitor, zVAD-fmk (MP Biomedicals), was used at a 

concentration of 50μM. Propidium iodide is a DNA stain and hence this assay may be used as an 

estimator of apoptosis based on quantity of DNA present. This draws on the relationship between 

DNA quantity and apoptosis, where nucleases activated during apoptosis results in the degradation 

of DNA.  

3,3-dihexaoxacarbocyanine Iodide (DiOC6) Staining 
The supernatant and the adherent cells were harvested, centrifuged (1500rpm, 5 minutes) and 

resuspended in 150ul of PBS containing 40nM 3,3-dihexaoxacarbocyanine iodide (DiOC6) and PI 

(6μg/ml) for 30 minutes in the incubator and further incubated for 30 minutes at room temperature 

in dark. Cells were then analysed using a flow cytometry using FL-1 channel for DiOC6 staining and 

FL-3 for PI staining. 

This DiOC6 is retained in intact mitochondria and a decrease in its signal is an indicator of 

mitochondrial outer membrane depolarisation. PI is excluded from intact cells, and its staining of the 

cell nuclei represents a degradation of the plasma membrane. In combination, this assay allows the 

simultaneous quantification of two markers of apoptosis, degradation of membrane integrity in the 

mitochondria and plasma membrane, hence is capable of estimating populations of early and late 

apoptosis. 

CaspaTag Staining for Caspase Activation (Millipore) 
CaspaTag kits (Millipore) uses carboxyfluorescein (FAM) or sulforhodamine (SR) labeled fluoromethyl 

ketone (FMK) inhibitor probes. These fluorescently labelled inhibitors binds irreversibly to activated 

caspases via their substrate recognition sequences, caspase-3 & -7 (DEVD), caspase-8 (LETD), 

caspase-9 (LEHD) and all caspases (VAD), thereby labelling cells undergoing apoptosis with activated 

caspases. The kit was used according to the manufacturer’s recommended protocol, and the FMK or 

SR labelled probes could be detected with fluorescence microscopy or quantified with flow 

cytometry using FL1 and FL3 channels respectively. 
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CPRG Assay 
The CPRG assay is dependent on the co-transfection of the β-galactosidase reporter and was 

performed 48 hours post transfection. For 96-well format, 10ul of CPRG substrate (13mM, Roche) 

was added per well containing 200ul of phenol-red free media. The reaction was allowed to incubate 

at ambient temperature for 60 minutes after which the signal intensity was quantified at 590nm. 

20ul of 1% Triton lysis buffer was then added. The cells were incubated at ambient temperature for 

another 60 minutes and the signal intensity quantified at 590. The ratio between the two readings is 

an indicator of apoptosis (Equation 1).  

Cell Death Detection ELISAPLUS (Roche) 
The Cell Death Detection ELISAPLUS (Roche) is a quantitative sandwich ELISA assay directed against 

DNA and histones. The assay specifically detects and quantifies nucleosomes released into the 

cytosol during apoptosis. Biotin-labelled anti-histone antibodies bind to the streptavidin-coated MTP 

walls, and the presence of nucleosomes captured by the anti-histone is detected using POD-labelled 

anti-DNA antibody. The POD reporter enzyme then reacts with the substrate 2,2’-Azino-di[3-ethyl-

benz-thiazolin-sulfonat] (ABTS) generating a colorimetric signal that is positively correlated with the 

apoptosis intensity. The kit was used according to manufacturer’s protocol.  

Caspase-Glo® 3/7 Apoptosis Quantification Kit (Promega) 
The Caspase-Glo® 3/7 kit (Promega, G8091) is a luminescent-based assay that quantifies caspase-3 

and -7 activities. The substrate, aminoluciferin, is covalently modified and inactivated using the 

DEVD tetrapeptide sequence. Luciferase can only catalyse the production of light in the presence of 

activated caspases which cleave the tetrapeptide, thereby activating the substrate for luciferase 

cleavage. The kit was used according to manufacturer’s protocol. 

PARP Cleavage Immunoblotting  
Poly (ADP-ribose) polymerase (PARP) is a substrate of caspase-3 and is cleaved during apoptosis. 

Cells were harvested and lysed in 100ul of RIPA buffer, incubated on ice for 20 minutes.  SDS-

PAGE/western blot was done using 12% gel and anti-PARP (Cell Signalling #9542, 1:1000 in 5% milk-

TBST) probed for 24 hours incubation at 4C; 50ug of proteins was loaded per well. Secondary probe 

& washing was performed as normal, developing was done with standard ECL. 

Full-length PARP is observable at 116kDa while the activation of apoptosis generates a second 

smaller band at 85kDa. The amount of PARP cleaved may be quantified using imageJ [290] and the 

apoptosis intensity estimated using Equation 3: 
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Equation 3: Estimation of apoptosis intensity (%) from PARP cleavage 

Apoptosis (%) =
Intensity Cleaved PARP at 85kDa

Intensity of both cleaved and uncleaved PARP at 85 and 116kDa
×  100 

 

Lactate Dehydrogenase (LDH) Cytotoxicity Assay 
The LDH Cytotoxicity Assay (BioChain) is a colorimetric assay that quantifies the amount of LDH, a 

stable cytosolic enzyme, which is released into the cell culture supernatant upon damage to the 

plasma membrane. LDH oxidises lactate to pyruvate, which in turns reacts with tetrazolium salt INT 

forming formazan. Formazan is a water-soluble dye quantifiable at 490nm absorbance and hence 

the increase in formazan formation is correlated with an increased in number of lysed cells, which is 

an indication of necrosis. The kit was used according to manufacturer’s protocol. 

Fluorescence Microscopy 
Cells were seeded in wells containing coverslips then transfected and treated accordingly. At the 

point of microscopy, the cells were fixed at 4°C in 4% para-formaldehyde (PFA, Thermo Scientific) in 

PBS for 20 minutes. DAPI Mito Tracker® Red CM-H2XRos (MitoTracker) and tetramethylrhodamine 

ethyl ester (TMRE) (Molecular Probes) staining were used according to the manufacturer’s protocol. 

After staining, the dyes were removed and the coverslips washed three times with water, then 

mounted onto glass plates with polyvinyl alcohol mounting medium with DABCO (Sigma-Aldrich). 

Cells were observed and imaged under the fluorescence microscope using the appropriate filters.  

Confocal Live Cell Imaging 
The confocal laser-scanning microscope (Leica) was setup and equilibrated one hour prior to 

imaging. Cells were seeded in glass bottom 24-well plates (BD Biosciences) and subjected to the 

desired experimental conditions were mounted onto the confocal microscope stage, and the system 

programmed to image between three to five positions per well at an interval of 10 – 15 minutes for 

a period between 16 – 24 hours at the desired wavelength. Pictures were acquired with LAS AF 

software and analysed with LAS AF Lite software.  

Live cell imaging was used for FRET-based assays such as the caspase-3 FRET sensor generated by 

our group and imaging of cells undergoing autophagy for time point experiments.  
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Protein SDS-PAGE Gel Electrophoresis  
 

Preparation of Whole Cell Lysate 
Cells were harvested by trypsinisation along with the supernatant depending on the experiment 

type. The cell suspension was centrifuged at 1,500rpm for 5 minutes and lysed by adding the 

appropriate lysis buffer (RIPA buffer was commonly used). The cells could also be lysed directly in 

the plates after media removal and washing. The lysate was incubated on ice for 10 minutes before 

centrifugation at 13,000 rpm and 4°C for 10 minutes. The supernatant containing soluble proteins 

was transferred to fresh eppendorf tubes for immediate use or storage at -20°C. 

Protein Quantification 
Protein concentration was determined using the Bicinchoninic Acid Assay Kit (Sigma-Aldrich). The 

BCA working solution was prepared by combining 1 part of 4% (w/v) copper(II) sulfate pentahydrate 

with 50 parts of bicinchoninic acid solution (bicinchoninic acid, sodium carbonate, sodium tartrate, 

and sodium bicarbonate in 0.1 N NaOH). 10ul of protein samples were added per well in a 96-well 

plate; a BSA standard curve with a range of 200 – 1000ug/mL was also prepared. 200ul of the BCA 

working solution was then dispensed to each well, and the reaction mix allowed to incubate at 37°C 

for 30 minutes or until colour change is visible. The reaction may be accelerated by incubating at 

60°C for 15 minutes. Absorbance was measured at 590nm and the sample concentration determined 

according to the standard curve.  

Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 
20 – 100ug of the whole cell lysate was resolved by SDS-PAGE (stacking gel: 4.8% polyacrylamide, 

125mM Tris-HCl pH6.8, 0.1% SDS, 0.1% APS, 0.1% TEMED; resolving gel: 10-15% polyacrylamide, 

375mM Tris-HCl pH8.8, 0.1% SDS, 0.1% APS, 0.05% TEMED) in TGS-running buffer (25mM Tris-HCl, 

192mM Glycin, 0.1% w/v SDS). PageRulerTM prestained protein ladder (Fermentas) was used as a size 

marker.  

Proteins were transferred to PVDF membrane (Millipore) in transfer buffer (20% methanol in TGS 

buffer); semi-dry transfer was performed at 20V for 45 minutes for a single gel. 

Western Blot 
The membranes were blocked with blocking buffer (5% milk (Sigma-aldrich) in Tris Buffered Saline 

Tween (TBST; 20 mM Tris, 0.9% NaCl, pH 7.4 and 0.1% Tween-20)) for 30 minutes. The blocking 

buffer was replaced with the primary antibody and incubated for the desired duration. The 

membranes were washed with TBST three times, for 10 minutes per cycle. The horseradish 

peroxidise-conjugated secondary antibody was next added and incubated for 60 minutes. The 
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membranes were washed three times as before. Enhanced chemoluminescent reagent (Pierce) was 

applied to the membrane to initiate the HRP reaction and captured using high performance 

chemoluminescence film (GE Healthcare). 

Antibodies used included PARP (Cell Signalling 9542), LC3 (Novus Biologicals NB100-2220), β-actin 

(Sigma-Aldrich A2228), GAPDH (Santa Cruz SC-32233), GFP-HRP (Santa Cruz SC-8334), Mouse HRP 

(Molecular Probes G21040), Rabbit HRP (Sigma-Aldrich) and Goat HRP (Sigma-Aldrich A5420). 

  

Analysis 
 

Statistical Analysis 
Statistical analysis was performed using unpaired student’s t-test. Data were regarded as statistically 

significant if p<0.05 based on the one-sided t-test with unequal variance. Error bars displayed in all 

figures are indicative of the standard deviation of the sample size of each experiment. 

DAVID functional annotation  
Functional annotation of the candidate genes was performed using the DAVID functional annotation 

tool with the default settings, which identify functional clusters enrichments based on gene ontology 

(GO) terms for biological processes, cellular localisation and molecular functions. DAVID also yielded 

enrichment of protein interaction, protein domains, tissue specificity and signalling pathways. 

Biomolecular Interaction Network Database (BIND), Molecular INTeraction database (MINT) and 

Reactome were used for protein interactions while InterPro, SMART and Protein Information 

Resources (PIR) databases were used for protein domain enrichment. Tissue specificity used the 

UniProt tissue specificity annotation.  

Gene Set Enrichment Analysis (GSEA) 
Gene Set Enrichment Analysis (GSEA) V2.0 was used to identify enriched profiles using three curated 

Molecular Signatures Database v3.0 collections: : 1) c2 curated gene sets comprising of pathway 

databases, 2) c3 motif gene sets consisting of conserved cis-regulatory motifs and 3) computational 

gene sets defined with expression neighbourhoods focused on 380 known cancer genes. A ranked 

list for the non-treated dataset was generated using the CPRG ratio while the nanoparticles treated 

dataset were ranked using the normalised TNTD score calculated based on Equation 12. The non-

treated dataset corresponds to the inducer candidates while the treated dataset was used for 

enrichment associated with inhibitors and sensitizers. 
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Pathway Analysis 
Ingenuity® Pathway Analysis (IPA, Ingenuity® Systems, www.ingenuity.com) was used to identify 

curated signalling pathways from the IPA knowledgebase. This was combined with signalling 

pathways enriched by DAVID from the KEGG, PANTHER and RECTOME databases, GSEA enriched 

pathways from the C2 collection, and GeneMANIA network analysis.  

Noncoding Sequence Analysis 
Noncoding candidate sequences were submitted to the Rfam database to identify structural RNAs 

including noncoding RNA and cis-regulatory elements, and to RegRNA to identify homologs of 

regulatory RNA motifs and elements within the noncoding sequences. 

The noncoding sequences were also searched for the presence of microRNA using a custom-coded 

Excel macro based on absolute matches. If the microRNA sequences were derived from IPA, only 7bp 

seed sequences were available while matured microRNA sequences from the miRBase database 

comprises of full length microRNA between 18 - 24bp. Information on the microRNA was mined 

using miRMaid while TargetScanHuman Release 6.2 was used to predict the potential targets of the 

microRNAs. 
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Chapter 4: Setup of the RISCI Screen 
 

Background Information  
 

High-throughput screens involve vast repetitions of a specific experimental setup to identify targets-

of-interest. It is important that prior to subjecting an experimental setting to such repetitive 

screening, the optimal conditions are achieved and any potential pitfalls identified. A proper setup 

translates into an efficient screen which saves on reagents and generates high quality data points 

within a short period of time.  

The RISCI screen comprises the DNA isolation, transfection and assay component phases, all of 

which needs to be optimal. This section discusses the setup of the RISCI screen for the identification 

of apoptosis inducers, and inhibitors and sensitizers of nanoparticles induced cell death. The setup 

phase forms the bulk of the project and is critical to the success of a screen. 

 

Results 
 

High-Throughput Transformation of the NITE cDNA Library 

Bioreactor Design and Assembly 
The quantity of competent bacterial cells required for the transformation of the NITE Library with 

30,000 unique cDNA clones was estimated between 2.5 to 3.0 litres, which needs to be derived from 

over 30 litres of bacterial cultures. This necessitates the use of a bioreactor for large-scale culture. 

To avoid the costs associated with commercial systems, a bioreactor was assembled from commonly 

used laboratory glassware and consumables. A large 5L volume glass bottle was used as the main 

culture tank. Prior to assembly, it was filled with 4L water, autoclaved before being equilibrated 

overnight at 37°C. All other components were sterilised with 100% ethanol.  

The 5L glass bottle was set on a magnetic stirrer and covered with a coil of silicone tube connected 

to a waterbath to maintain the temperature during culture growth. Next, two tubes were introduced 

into the main culture tank. The air supply tube was inserted from the top and connected a 0.22 µm 

filter and an air pump, while the sampling tube was inserted through the side entry at the bottle 

neck. The side entry is connected to a secondary waste flask through a waste tube, leading any 
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overflow resulting from gas production into the waste flask containing virkon. 1L of 5X LB+ media, a 

starter culture of approximately 100mL E. coli DH5α and a thermometer were introduced into the 

main culture tank, and the content was sealed with a rubber plug (Figure 4A). The cells were allowed 

to grow until the culture reached a density between 0.5 – 0.6 prior to harvesting. 

Sampling of the culture density was achieved via the sampling tube which connected the sterile 

culture content to a 15mL falcon tube. The pressure within the 15mL falcon tube could be lowered 

by drawing out the air with a syringe, which causes the bacterial culture to flow into the tube for 

absorbance assay without disruption to the main culture tank setup. Culture density was determined 

at 600nm absorbance. 

A comparison was made between the growth characteristics of culture derived from the bioreactor 

setup and the standard culture flask by inoculation of the same amount of starter culture per media 

volume.  100 µl of culture from each condition was measured every 30 minutes over a three-hour 

period. The growth rate was reduced by a factor of 3.5 in the bioreactor compared to standard 

shaking flask culture condition (Figure 4B), but this did not affect the quality of competent cells.  
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Figure 4: Design and Assembly of a Bioreactor. A) Schematic illustrating the setup of the 
Bioreactor during large-scale culture of E. coli DH5α . The 5L culture was maintained at 37°C 
through induction from the coils supplied by the waterbath, while filter-sterile air was 
supplied by a dedicated air pump and the culture constantly mixed using a magnetic stirrer. 
The entire setup is closed throughout the culture and samples were extracted using a 
sampling tube to keep the content sterile. B) The growth rate of the bacterial cells within the 
bioreactor was reduced by a factor of 3.5, likely due to inadequate aeration. However the 
lower growth rate does not impede on the quality of competent cells and a larger volume of 
starter culture was introduced to generate the appropriate culture density within the same 
timeframe. N = 3, error bars represent standard deviation of sample size. 
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Large-scale Preparation of Competent Cells 
A simplified and scaled up version of the protocol described by Chung et al. [291] was used in the 

large-scale preparation of competent cells. E. coli DH5α Library Efficiency competent cells 

(Invitrogen) were used as the inoculant and host for the NITE Library. Following the bioreactor setup, 

the DH5α cells were left to multiply until the culture absorbance (A600) reached 0.5. The competent 

cells were prepared as described in the Materials and Methods (Preparation of Competent). 

As the E. coli were cultured in antibiotic resistance free condition, quality control steps were 

introduced to ensure that the competent cells were sterile and not contaminated with bacteria 

containing antibiotic resistance. Inoculant for the starter culture was aliquot into sterile 1.5mL 

eppendorf tubes and a single aliquot was used for each large-scale culture and discarded. Samples 

were retrieved from various steps from the large-scale culture and competent cells preparation 

process including the starter culture, bioreactor culture and prepared competent cells. The samples 

were subjected to ampicillin treatment in both liquid LB+ and agar plate culture, which allowed for 

tracing of any potential source of contamination. Only batches of competent cells which were 

negative for antibiotic resistance and positive for plasmid transformation capacity were used for 

downstream high-throughput transformation of the NITE Library.  

Samples from successful batches were also subjected to heat shock transformation with 

pGreenLantern-1 and the DNA plasmids isolated and subjected to restriction digest. In one selected 

control experiment, twenty colonies were randomly picked after the pGreenLantern-1 

transformation and the clones digested with BamHI, a single cutter of pGreenLantern-1. All colonies 

resulted in plasmids with the same size as the pGreeLantern-1, indicating that the plasmids could be 

replicated in the in-house generated competent cells and that no major sequence recombination 

was observable (Figure 5).  
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Figure 5: Recovery of pGreenLantern-1 from competent DH5α. pGreenLantern-1 plasmids 
were transformed into prepared competent E. coli DH5α using the standard heatshock 
method, 20 colonies were then picked and cultured overnight at 37°C, then miniprep was 
performed to extract the plasmids. 2.5 µl of the resulting plasmids were then subjected to 
restriction digest by BamHI, a single cutter of pGreen Lantern-1 before gel electrophoresis on 
1% agarose gel.  In both upper and lower lanes, lanes 1 – 10 were BamHI digested plasmids 
extracted from selected colonies, 11 – 12 were empty, 13 – 15  contained Fermentas 1kb 
O’Gene Ruler, BamHI-digested and BamHI-undigested pGreenLantern-1. All colonies matched 
the pGreenLantern-1 size, indicating that the plasmid can be transformed into the prepared 
competent cells and extracted without major mutations or recombinant events. 
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Adaption of the DNA Isolation Platform for Bacterial Transformation 
A new workflow for the high-throughput transformation was designed and implemented on the 

BASY robot using newly developed software. The software design is separately discussed in Chapter 

5.  

The wash cycle count was increased to six cycles from three in the DNA isolation protocol, and an 

ethanol wash step was introduced after each pipetting step which involves bacteria cells. The 

ethanol wash step was a combination of rinse cycles with water, 30-second immersion in ethanol 

and finished with further rinse cycles with water. The 4°C refrigerated platform was used as a 

holding area for the competent cells. The -20°C platform (with an increased temperature) was used 

for the incubation step after addition of the plasmids to the competent cells as the platform could 

be closed with its lid to avoid aerial contamination. All positioning routes of the main pipetting arm 

were programmed such as to minimise and avoid movement across plates containing competent 

cells after pipetting steps, with the intention of reducing contamination from aerial droplets. 

Furthermore, direct contact with bacterial cells was avoided where possible such as during addition 

of plasmid through the use of air pressure to eject the solution. These steps were used to avoid cross 

contamination occurring between pipetting steps. 

The ability of the system to perform liquid handling functions with live biological agents was also 

tested to determine the level of contamination. A 96-well starter plate containing 150ul of E. coli 

DH5α:pGreenLantern-1 dispensed in a specific pattern of wells (A1, A9, B2, B8, B10, C3, C11, D4, 

D12, E5, E11, F6, F10, G7, G9 and H8) with the remaining wells containing only the same volume of 

LB+. The system was used to inoculate two DWP with 1ml of LB+ with 50ug/ul ampicillin. The first was 

performed after system initialisation and three water wash cycle inoculated DWP 1 with 10ul from 

the starter plate. The pipette tips were next sterilised with the ethanol wash cycle and immersed 

into the media-containing DWP 2 to determine the levels of contamination.  Both DWPs were sealed 

with the gas permeable membranes and incubated overnight at 37°C and 260rpm. A third plate 

(DWP 3) was seeded with bacteria in alternate wells and sealed with the Abgene membrane to test 

cross contamination between wells resulting from shaking. Optical density was measured at 600 nm 

(A600) after overnight incubation. 

The absorbance of each well was illustrated in a 96-well layout in Figure 6. 16/16 (100%) of the 

targeted wells were successfully inoculated with 4/80 (5%) of the remaining wells of DWP 1 also 

resulting in bacterial growth. The ethanol step was able to effectively sterilise the pipette tips which 

were in contact with bacterial cells with all targeted positions of DWP 2 showing no bacterial growth 

after the ethanol wash. However, 1/96 (1%) well did lead to bacterial growth. DWP 3 which was 
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processed in ambient condition similar to the BASY platform and sealed with the gas permeable seal 

(ABgene) reproduced exactly the pattern of inoculation. This indicated that processing of live 

cultures in open air was not a significant source of contamination, in combination with the use of 

antibiotic resistance in the culture media. Further, the seal could tightly close the content within 

each well, preventing cross-contamination which was expected from orbital shaking of the DWP 

overnight. The gas permeable seal also allowed for gaseous exchange to occur while preventing 

bacteria from the ambient incubator atmosphere to enter and grow in the plate.  

Unintended growth of bacteria in non-inoculated wells could be attributed to the movement of the 

robotic pipetting arm over the plates. While the software routes were programmed to minimise 

such movement across other plates, the layout of the 96-well plate format physically impose the 

need for some tips to move across other positions as the robot arrive in its destination coordinates. 

Such movement cannot be resolved and remains a limitation of these high-throughput formats. 

However, minute contamination resulting for small number of bacterial cells would only be visible in 

wells that were not inoculated. Inoculation of wells with high density starter cultures or 

transformation mix would contain millions of cells, which would be able to exponentially out-grow 

any trace contamination. The expectation would be that aerial contamination resulting from robotic 

movements would only form a small proportional of any resulting culture, allowing the intended 

plasmids to be replicated.  

Overall, the control experiments indicated that open-air high-throughput processing the 

transformation process using the BASY DNA Isolation platform does not impede on the quality of the 

library when the adapted procedures such as ethanol wash, use of DWP sealing membranes, strict 

molecular biology techniques and quality control initiatives are integrated. 
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Figure 6: The adapted DNA Isolation Platform can handle live cultures with minimal cross-
contamination. Culture density at 600nm absorbance was displayed in a 96-well plate layout 
for each experiment condition. A) The BASY platform may be adapted to perform liquid 
handling functions involving live cultures with low contamination. All targeted wells (green) 
were successful inoculated and 5% of the non-targeted wells resulted in bacterial growth 
(red) as shown in DWP 1. DWP 2 indicated that the ethanol step introduced could effectively 
sterilise pipette tips in contact with bacteria and prevent well-to-well contamination across 
plates. The unintended growth observed in both DWPs was likely to be due to aerial micro-
droplets generated as the robotic arm moves across the plates. B) Exposure to ambient 
conditions in similar to those of the BASY platform was not a major source of contamination. 
The gas permeable seal (ABgene) was able to tightly close the DWP content, preventing cross-
contamination between wells as the DWP is subjected to orbital shaking. It allows gaseous 
exchange while preventing contamination from the general incubator atmosphere.  
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Implementation of HT Transformation 
The traditional heat shock protocol [292] was adapted to 96-well format for processing using the 

robotic BASY DNA Isolation platform. All pipetting steps were automated by the robot, enabling the 

simultaneous processing of 96 samples per pipetting cycle. Briefly, 50ul of competent cells were 

dispensed into DWP and eight plates were processed during each robotic transformation run. 15ul of 

plasmids from the original library acquired from the NITE Institute was added into each well and 

incubated for at least 10 minutes at 4°C in the enclosed -20°C platform. Afterwards, each DWP was 

retrieved by the robot and manually heat shocked at 42°C in a waterbath before returning for 

further incubation at the -20°C platform approximately 5 minutes. 400ul of LB+ lacking ampicillin was 

introduced to each well and the DWP incubated for 60 minutes at 37°C, after which 500ul of LB+ 

containing doubled concentration of ampicillin was added and the cells allowed to incubate for a 

further 3 hours at 37°C for the first selection. 5ul of the ampicillin-selected transformation mix was 

used to inoculate 1mL of fresh LB+ media with ampicillin and incubated overnight  (20 – 24 hours) at 

37°C with shaking at 260rpm. Finally, 250 µl of bacterial glycerol stocks were created in 30% glycerol. 

The protocol was processed on the robot platform in five phases: 1) Dispensing of competent cells 

into deep well plates, 2) Addition of plasmid DNA, incubation and heat shock, 3) First selection with 

ampicillin, 4) Dispensing of LB+ with ampicillin into deep well plates and inoculation of bacterial cells, 

and 5) Preparation of glycerol stocks. Quality control steps were integrated after each medium 

dispense step in Phase 2 – 4, and these were subjected to ampicillin selection.  

The primary round of transformation was completed with a success rate of 73.68% consisting of 

224/304 plates. Unsuccessful plates were due to various types of contamination occurring during the 

intensive transformation process including the acquisition of ampicillin resistance, all of which were 

identified with the quality control procedures (Figure 7A). Clones which failed to become 

transformed into the bacterial host were subjected to two further rounds of heat shock 

transformation, both of which were manually performed since the robot was unable to manage 

individual pipetting and cherry picking functions. Clones which continued to fail the transformation 

were no longer pursued and excluded from the subsequent screens.  

 

Validation of NITE Library Integrity  
In addition to the validation of the transformation capacity of the prepared competent cells, the 

high-throughput transformation process was trialled using eight plates (Plate ID. AE0001 – AE0008) 

selected from the NITE Library. Then, 160 clones were randomly selected and the plasmid DNA was 

extracted using standard alkaline lysis. The resulting plasmids were subjected to EcoRI and NotI 



 
74 | P a g e  

 

restriction digest and the pattern matched with those predicted by software based on the positions 

of the EcoRI and NotI within the published sequences of the clones. The workings of the computer 

script for this purpose will be separately discussed in Chapter5: Software Development. Clones were 

also sequenced to verify the sequence accuracy.  

143 out of 160 clones screened matched the calculated restriction pattern (Figure 7B). In the 17 

wells which did not match the predicted pattern, all digested plasmids also did not contain the 

vector band. These 17 clones were subsequently determined to be part of a minority cDNA 

sequences which were cloned into the pUC19FL3 instead of the pME18SFL3 vector. Only a total of 

322 cDNA sequences were cloned into the pUC19FL3, with all remaining sequences in the NITE 

library cloned into pME18SFL3. Hence, all clones screened generated restriction patterns matching 

the software predicted patterns expected from the physical location within the library. DNA 

sequencing data also confirmed the identity of the sequences as those generated by the NITE 

Institute. This confirmed the quality of the competent cells and the newly developed high-

throughput transformation workflow in maintaining the integrity of the cDNA library. Furthermore, 

the results indicated that there is no positional cross contamination and that all clones tested are 

indeed those stipulated by the database location. This allowed for the identification of positive 

candidates downstream based on available database information without extensive and costly 

experimental validation.  
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Figure 7: Implementation of high-throughput transformation. A) Workflow detailing the 
process from competent cells preparation to the transformation of the NITE cDNA Library and 
its subsequent creation of glycerol stocks for long-term storage. Quality control samples and 
checks were implemented to trace any potential contamination. B) Validation of the NITE 
cDNA Library after transformation. All plasmids tested matched the predicted restriction 
pattern, indicating that no major plasmid reorganisation or contamination occurred.   
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Transfection Optimisation 

Calcium phosphate optimisation 
The initial calcium phosphate protocol obtained from the transfection robot programme prepared 

the DNA-calcium phosphate transfection mix by adding 25 µl of calcium chloride (0.25 M) to 15 µl of 

DNA solution generated by the DNA isolation robot, followed by 30 µl of Hepes buffer saline (HBS, 

pH 7.1) and a 13 minutes first incubation at room temperature. Then, 10 µl of chloroquine (2mM) 

were added and the second incubation at room temperature began for 3 minutes, after which 10 µl 

of the transfection mix were introduced into 293T cells in 20% FCS-DMEM (Sigma) for 5 hours before 

the medium was replaced with 5% FCS-DMEM. However, this protocol was found to be inefficient, 

and modification to the above protocol by using 15ul volume for each component was found to 

significantly improve transfection efficiency.  

In order to further optimise the protocol, a calibration curve of GFP fluorescence signal from the 

FLUOstar plate reader against the transfection efficiency derived from flow cytometry was prepared 

to allow for estimation of the transfection efficiency base on GFP fluorescence. 0 – 2.2ug/ul of 

pGreenLantern-1 was transfected using the protocol using 15ul of each transfection component, 

with eight replicates for each DNA concentration in a 96-well plate. 24 hours post transfection, the 

fluorescence was measured using the Optima FLUOstar plate reader, four replicates of each 

condition were then pooled and subjected to flow cytometry. Correlation coefficient for the dataset 

was 0.827, indicating good correlation between GFP fluorescence and transfection efficiency (%) 

(Figure 8A). From the calibration curve, the transfection efficiency may be estimated from GFP 

fluorescence using Equation 4: 

Equation 4: Transfection efficiency estimated from GFP fluorescence 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)  =  0.0015(𝐺𝐹𝑃 𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒)  +  32.045 

 

The optimal volume of each component was then fine-tuned by individually varying the volume of 

each component between 0 – 35ul while keeping the other components constant as its previously 

determined optimum. The components were individually investigated in this order: HBS, calcium 

chloride, chloroquine and final transfection mix volume introduced to the cells.  Variation of the HBS 

volume contributed most to the improvement in transfection efficiency (Figure 8B). The optimised 

calcium phosphate protocol uses 15 µl of 0.25M calcium chloride mixed with 15 µl of plasmids, then 

10 µl of HBS and 15 µl of 2mM chloroquine were added immediately, and 15 µl of the transfection 

mix was added to cells without any incubation. Incubation was found to be suitable for higher DNA 
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concentration hence a more acidic transfection mix conditions but incubation at low DNA 

concentration reduces transfection efficiency. The optimal conditions were also tested on a gradient 

of cell density from 5,000 – 340,000 cells and it was found that about 60% confluency or between 

14,000 – 20,000 cells per well was ideal. The optimised conditions resulted in a net fluorescence of 

21737.81 ± 4603.07 or an average of 65%.  
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Figure 8: Optimisation of the Calcium Phosphate Transfection in HEK293T cells.  
A) A calibration curve between fluorescence signals generated by the FLUOstar plate reader 
and flow cytometry derived proportion of transfected cells was prepared for the purpose of 
directly estimating transfection efficiency from the plate reader data. B) Optimisation of the 
HBS component volume (left) and its estimated transfection efficiency (right) resulted in 
significant improvement to transfection. Optimal HBS volume is 10ul. C) Fluorescence 
intensity of GFP transfected cells as a result of the optimised calcium phosphate protocol 
(left) and a fluorescence microscopy image of the transfected cells. The optimised protocol 
resulted in an average transfection efficiency of 65%. N = 8, Magnification = 200X, scale bar = 
20µm, error bars represent standard deviation of sample size.  
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Polyethylenimine Transfection Optimisation 
Polyethylenimine (PEI) polymers of various sizes and structures were trialled in the process of setting 

up a protocol which uses PEI as the transfection reagent. PEI molecules with molecular weights of 

2kDa (Sigma-Aldrich 408700, branched), 25kDa (Sigma-Aldrich 408727, branched) and 60kDa (Sigma-

Aldrich P3143) and 25kDa (PolySciences 23966-2, linear) were tested. A stock of each polymer type 

was prepared in water and neutralised to pH7.0.  

Transfection was optimised for 24-well and scaled down for 96-well high-throughput transfection. 

1ug of pME18SFL3-GFP was diluted in 50ul of 150mM sodium chloride. Working stock with dilutions 

between 1 – 2,000 fold (100-fold increment) of the stock was prepared in 150mM sodium chloride. 

50ul of the working stock was added to the DNA solution, vortexed and incubated for 30 minutes 

prior to incubation with cells. The media was then changed after 5 hours and the proportion of 

transfected cells and fluorescence intensity quantified with flow cytometry 24 hours post 

transfection. Polymer size around 25kDa was found to be most appropriate for transfection use and 

subjected to more precise dilutions with 10-fold increment to determine the dilution of the stock 

which resulted in maximum transfection efficiency and minimal toxicity.  

Optimal dilution of 25kDa (Sigma-Aldrich 408727) branched PEI was 135X while the (PolySciences 

23966-2) linear PEI was 300X of their respective stock, with the final concentration being 7.2ng/mL 

and 16.67ng/mL respectively. These final concentrations were found to give the maximum 

transfection efficiency with little or no observable cytotoxicity after transfection. Cytotoxicity was 

quantified using flow cytometry using the forward- and side-scatter (FSC-H and SSC-H) [293] 

together with transfection efficiency using the FL1 channel. Dead cells have lower forward-scatter 

and higher side-scatter. Branched PEI was found to be more toxic than linear PEI by a factor of two, 

as approximately twice the amount of linear polymer may be introduced to the cells without toxicity. 

This limitation may have contributed to the maximal transfection efficiency in the branched 

polymers at 59.30% ± 8.21 compared with linear polymers which consistently reaches 94.00% ± 0.56. 

The mean fluorescence intensity between branched and linear PEI was relatively similar at 2412.26 ± 

524.93 and 2978.18 ± 89.85 respectively.  

Using the optimal protocol for the branched polymer, the DNA concentration tolerance was also 

investigated by transfecting between 0 – 2.5ug of pME18SFL3-GFP. It was found that the amount of 

DNA may be reduced by a factor of two from 1.0ug to 0.5ug with the transfection efficiency reducing 

slightly from 59.30% ± 8.21 to 52.43% ± 0.72. Increasing the amount of DNA from 1.0ug to 1.5ug 

caused the transfection efficiency to decrease by two-fold to 32.05% ± 0.81, with each further 
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increment of 0.5ug reducing the transfection efficiency by one third. This wide tolerance of DNA 

concentration is crucial for high-throughput screens since the amount of plasmid DNA varies.  

This stability was also observed when the pH of the linear PEI stock solution was adjusted to range 

from 6.8 to 7.2 with increment of 0.1. The PEI reagent resulted in similar transfection efficiency 

across the whole pH range. Hence pH was not a significant factor in determining the transfection 

efficiency. Filtering of the stock solution using 0.22um filters was also found to be important in 

generating higher transfection efficiency of >70%. It has been experimentally observed that this was 

due to the filter size removing the excessively large PEI molecules which would otherwise bind the 

DNA but prevents the complex uptake by the cells due to its size.  

In addition to the GFP control, both optimised transfection protocols were used to transfect the 

positive controls RIP and caspase-2, and the reporter enzyme β-galactosidase. Apoptosis induction 

with the strong apoptosis inducer RIP and weak inducer caspase-2 was found to be positive, while β-

galactosidase did not result in toxicity. Further characterisation of these positive controls using the 

optimised PEI protocols was performed using the CPRG assay. 

  



 
81 | P a g e  

 

 

Figure 9: Optimisation of the PEI Transfection in HEK293T cells. A) Low cytotoxicity of the 
optimised protocols. At the concentrations investigated, both branched and linear 25kDa PEI 
polymers did not induce more than 5% toxicity above background (Right). Branched PEIs were 
found to be more toxic since they began to induce cell death above 40ng/mL. This was in 
contrast with the linear PEIs which only exhibited toxicity at excessive high concentration such 
as 5,000ng/mL (Left). N = 3, error bars represent standard deviation of sample size. B) PEI 
polymers exhibit an extended tolerance range for DNA complex formation, here linear PEI 
was shown to generate stable transfection across a wide concentration range of the polymer. 
N = 3. C) Images showing cells transfected with controls cloned into the pME18SFL3 library 
vector. Magnification = 100X, scale bar = 20µm, error bars represent standard deviation of 
sample size. 
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CPRG Assay 

Characterisation of CPRG Assay Kinetics 
The performance of the CPRG assay was explored using the optimised branched PEI transfection 

protocol. HEK293T cells were manually transfected with apoptosis positive controls RIP and Caspase-

2, and negative control GFP. Between 0 – 35ul of each control plasmids derived using the BASY 

platform was co-transfected with 150ng of β-galactosidase reporter plasmid and the CPRG assay 

performed 48 hours post transfection. The kinetics of the enzyme-substrate generated signal was 

quantified every minute before and after lysis with triton for 60 minutes each.  

Increasing the amount of plasmids co-transfected with the reporter had the effect of enhancing 

apoptosis activity (Figure 10A). This increased activity was quantifiable with the CPRG assay, where 

the strong inducer RIP reached signal equilibrium in less than 20 minutes when 25ul or more volume 

of plasmid was used. Increased volume of plasmids did not result in a degradation of transfection 

efficiency, and the Triton signals generated after lysis (including those from volumes less than 20ul) 

were above the threshold of 0.7.  

At lower volumes of 5 and 10ul where total plasmids quantity was reduced, the signal reached 

equilibrium at a slower pace, and the absolute signal intensity was reduced approximately by 18.5% 

with every 5ul reduction in plasmids volume. In the absence of co-transfected plasmids, the 

concentration of reporter plasmids did not result in transfection since the Triton signal did not 

increase above the CPRG blank measurements. The assay reaches equilibrium within 60 minutes, 

after which the signal becomes stabilised.  

The CPRG Ratio for each control was calculated 60 minutes after either CPRG or Triton addition 

(Figure 10B). When 15ul or more RIP plasmids were used, the CPRG ratio stabilised above 0.9, 

averaging at 0.938 ± 0.023; the CPRG did not deviate more than 2.47% from the mean. Below 15ul of 

plasmids, RIP CPRG ratio was reduced to 0.769 ± 0.17 and 0.686 ± 0.233 for 10 and 5ul respectively. 

The reduction in volume increased the deviation from the mean by up to 33.95% at 5ul. However, all 

CPRG ratios of RIP were above the apoptosis selection threshold of 0.55. The efficiency of caspase-2 

in stimulating apoptosis were increased approximately 16.36% with every 5ul increment. 15ul of 

caspase-2 was the minimum volume required to initiate apoptosis with a CPRG ratio of 0.648 ± 

0.173, and further reduction in volume resulted in the weaker positive control failing the selection 

criteria for apoptosis induction. The negative control, GFP, was stable with a mean CPRG ratio of 

0.345 ± 0.061 across the whole volume range tested.   
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Figure 10: Characteristics of CPRG Assay Kinetics in HEK293T cells. A) Time course kinetics of 
absorbance 590nm signal generated before and after triton lysis of the controls. B) CPRG 
Ratio calculated from CPRG and Triton signals taken 60 minutes after addition of CPRG 
substrate or triton respectively. N = 12, error bars represent standard deviation of sample 
size. 
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Methods of calculations of Cell Death Indicators 
The CPRG ratio was calculated according to Equation 1. Alternative methods of calculation (Equation 

5 and Equation 6) were explored to determine if other more sensitive methods of calculations were 

available.   

Equation 5: Ratio of dead to live cell population A590 signals 

𝐶𝑒𝑙𝑙 𝐷𝑒𝑎𝑡ℎ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 2 =
𝐶𝑃𝑅𝐺 𝑆𝑖𝑔𝑛𝑎𝑙 "𝐷𝑒𝑎𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛"

(𝑇𝑟𝑖𝑡𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 − 𝐶𝑃𝑅𝐺 𝑆𝑖𝑔𝑛𝑎𝑙) "𝐿𝑖𝑣𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛"
 

 

Equation 6: Ratio of dead to live cell population based on rate of change of A590nm signals 

𝐶𝑒𝑙𝑙 𝐷𝑒𝑎𝑡ℎ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 3 =
𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐶𝑃𝑅𝐺 𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 "𝐷𝑒𝑎𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛"
𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑇𝑟𝑖𝑡𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 "𝐷𝑒𝑎𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛"

 

In contrast with the CPRG ratio, which is a proportional measure of dead cell population to the total 

transfected population, both indicator 2 and 3 measure the amount of dead cells to live cells. Hence 

the CRPG ratio calculates apoptosis intensity as a percentage while indicator 2 and 3 generate the 

same data as fold-change of dead population relative to the live ones.  

Indicator 2 uses the absolute value of the 590nm signal before the lysis as the measure of dead cell 

population and the net increase in 590nm signal generate by the lysis as contribution from the live 

cell population, combining the two measures generates a fold-change of dead population to live 

population. Indicator 3 generates the same fold-change ratio using the rate of change between 

590nm signals. A higher rate of change before lysis indicates increased amount of cell death, while 

higher rates after lysis indicates a greater proportion of live cells. Under apoptotic conditions, the 

rate of change will be higher before the lysis, and decreases to an infinitely small value depending on 

the intensity of apoptosis. The reverse will be true for apoptosis negative condition. Since the assay’s 

enzymatic reaction begins immediately after CPRG substrate addition, the rate of change (per 

minute) of the CPRG signal is calculated by the signal at 60 minutes less the aggregate blank 

measurements of CPRG substrate only, while the rate of change of the triton signal (per minute) is 

the difference between the Triton and CPRG after 60 minutes incubation.  

The averaged CPRG ratio across all plasmids volume for RIP, caspase-2 and GFP is 0.88 ± 0.15, 0.69 ± 

0.19 and 0.34 ± 0.06. The mean indicator 2 and 3 for the respective controls are 11.13 ± 42.18, 2.88 

± 2.47 and -3.03 ± 19.90, and 1.15 ± 0.34, 0.61 ±0.28 and 0.13 ± 3.24. 
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Whereas the CPRG ratio was able to distinguish between the positive and negative controls with 

little or no overlap of the standard deviation (Figure 10B), indicator 2 appears to not be able to 

distinguish the moderate caspase-2 control from the negative control GFP. Taking 20ul plasmid 

volume as the optimal volume, indicator 2 also indicated massive standard deviation at the low and 

high volumes. The indicator appears to be stabilised at ranges near the optimal volume where the 

standard deviation does not overlap between each controls. The large standard deviation also 

caused the mean of the strong positive control RIP to dip below the negative control when the 

highest volume of plasmids was used. Indicator 3 also has extensive standard deviation which 

overlaps across the controls at the lower range of 5 – 15ul, but remains stable after 15ul to 

sufficiently distinguish between each control. 

The standard deviation of each ratio was calculated as a proportion of the mean to determine the 

extent of fluctuation between each indicator (Figure 11B) using the manually transfected CPRG assay 

kinetics dataset. Each indicator was calculated from a set of 12 independently generated data points. 

The fluctuation of the CPRG ratio tends to dissipate when the amount of positive control plasmids 

(hence apoptosis intensity) was increased. For example with RIP, the CPRG ratio deviated by 33.95% 

when only 5ul of the plasmid was used, which decreased and stabilised at under 10% when 15ul or 

more of plasmids was used. The positive controls RIP and caspase-2 have a similar pattern of 

fluctuation which tends to be higher when less of the plasmids were available. The negative control 

tends to have a rather stable level of fluctuation across the range. CPRG ratios of RIP, caspase-2 and 

GFP deviated within the range of 0.92 – 33.95%, with a mean fluctuation of 10.43% ± 12.69, 18.67% 

± 8.35 and 14.85% ± 8.81 respectively. 

The extent of fluctuation when the same dataset was processed into indicator 2 and 3 was much 

greater.  For indicator 2, the three controls ranged between -9,670.05% - 101.86%, with a mean 

fluctuation of -163.33% ± 591.81, 59.91% ± 13.82 and -1,446.96% ± 3,632.57 for RIP, caspase-2 and 

GFP respectively. Indicator 2 thus has an extensive range of error for both the strong positive control 

RIP and the negative control GFP, with the error range of caspase-2 stabilising at around 59.91%.  

Indicator 3 ranged between -8,188.37% - 3,439.82%, with the RIP, caspase-2 and GFP mean 

fluctuation being 20.42% ± 16.00, 31.57% ± 18.88 and -547.49% ± 3,590.61 respectively. Indicator 3 

thus has a smaller fluctuation in data for the positive controls, but is inherently unstable for the 

negative control.  

There is a tendency for both indicators 2 and 3 to fluctuate more than 1,000% or 10-fold for a single 

control, with indicator 3 potentially fluctuating by more than 10,000% or a 100-fold. This deeply 
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contrasts with the CPRG ratio which has a maximum fluctuation range of approximately 35% across 

the controls.  

A key measure of the usefulness of the apoptosis indicator is its ability to distinguish the apoptosis 

positive samples from the negative samples. The t-test was employed to compare the degree of 

segregation of the positive controls RIP and caspase-2 from the negative control GFP, with the 

resulting p-value used as a gauge of the significance of each indicator (Figure 11C). The CPRG ratio is 

able to distinguish the positive samples from the negatives in almost all scenarios with a lower 

degree of error (lower p-value). Notable exceptions are denoted by asterisks in Figure 11C. For 

example, at the optimal 20ul volume of plasmids, all three indicators do not differ in the p-value 

when identifying the strong positive control RIP, while the CPRG ratio has significantly lower p-values 

when identifying the moderate control caspase-2. Also, Indicator 3 appears to be able to identify RIP 

at volumes higher than 20ul where apoptosis signal is expected to be stronger.  

The 0ul volume or untransfected dataset was used as a false positive dataset since no positive 

controls were expected to be identified. For the false positive dataset, the CPRG ratio of false 

positives was calculated to be 0.91 ± 0.12, while indicator 2 and 3 were calculated as being 84.19 ± 

454.90 and 11.76 ± 62.16 respectively. The calculated indicators of false positives were generally 

higher than the mean of RIP, since there is little change in the values before and after lysis. The 

CPRG ratio however presents the false positives as extremely high values, and more often exceed 1.0 

which makes it convenient to eliminate in combination with the 0.7 threshold of the triton signal. 

False positives calculated using the other two indicators were distributed across a wide range, and 

often intersect the range of the positives, hence do not adequately separate them.   
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Figure 11: Comparison between different calculations of indicators. A) Calculated indicators 
2 and 3 using the HEK293T kinetics dataset from the previous section. Both indicators 
measure the dead : live ratio as opposed to the dead : total by the CPRG ratio. N = 12, error 
bars represent standard deviation of sample size. B) The proportion of fluctuation of each 
indicator calculated from the same dataset. The CPRG ratio shows the lowest amount of 
fluctuation in all scenarios investigated. Charts for RIP and GFP were expressed in the Log10 
scale. C) Statistical power of the CPRG ratio in resolving positive controls from negative 
controls. The CPRG ratio has the lowest t-test statistical probability of random error in all 
except five cases. These exceptions are denoted by asterisks (*).  
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Reproducibility of the CPRG Assay on the Robotic Platforms 
A fully automated DNA isolation and transfection protocol was performed and the reproducibility of 

the CPRG assay assessed in a similar manner as described in the previous section Methods of 

calculations of Cell Death Indicators. On a 96-well plate setup, which was performed in duplicates by 

the robots, 91/96 (94.79%) of the wells did not generate CPRG ratio that deviated more than 10% 

from the mean.  

In a separate experiment, bacterial cells containing the control plasmids of RIP and luciferase were 

inoculated in alternate wells of a DWP, and subjected to the automated DNA isolation and 

transfection process. Here, 45/48 (93.75%) of the positive control RIP were correctly identified using 

a CPRG threshold of 0.65, while 2/48 (4.17%) of the luciferase were incorrectly identified as positive.  

The fully automated DNA isolation and transfection processes were hence able to generate 

reproducibility similar or better than manually performed protocols.  

 

Modifications of the DNA Isolation Platform 

Technical improvement to robots  
General maintenance of the robots included the routine exchange of pipette tips and air-channelling 

tubes, sterilisation of the wash station and secondary water tank and general cleaning and 

sterilisation of the platform with ethanol.  

With each exchange of the pipette tips, the exact pipetting height at each destination position was 

altered. This required readjustment and testing of the heights after each exchange for which the 

software was adapted for increased efficiency. A spacer was also incorporated to align each pipette 

tips to the same height, increasing the pipetting efficiency.  

The water for cleansing the pipette tips was distributed between the two robots through a central 

10L tank, which is manually refilled using deionised water from a dedicated tap. The water pressure 

drives the water into the tank, located approximately a metre above the robots, and distributes to 

the secondary tanks of both robots using gravity. The small tank size requires frequent refills and 

hinders the automated process with “low water” warning. This setup was replaced with an 

automated pump supplied with double-distilled water from the Millipore RiOsTM 5 and an 

accompanying 30L reservoir.  

The aging computers of both robots were also upgraded from those running Microsoft Windows 

Millennium Edition to Microsoft Windows XP powered by Intel® Core2 processors, and adjustments 
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to the software in line with the system upgrades. The robotic centrifuge was also replaced with a 

similar centrifuge (Sigma 4K15).  

Engineering support and maintenance on the electrical circuitries was routinely provided by Dr 

Volker Kachel, and a team of electrical engineers based at the Imperial College Hammersmith 

Campus.  

Changes to the automated DNA Isolation protocol 
LB+ was used as the bacterial culture media instead of standard LB media, which resulted in 

increased culture density and plasmid yield. The use of the gas permeable seal to close the DWP for 

incubation allowed the culture volume to be increased from 1.0 to 1.4mL while improving aeration 

and preventing contamination. 

The volumes of the reagents used in the DNA isolation protocol was increased approximately 47%, 

which enhanced the supernatant transfer between steps and reducing the loss of supernatant 

volume to “dead volumes” which cannot be pipetted by a robotic system.  

A semi-automated protocol was developed such that the robot manages major pipetting steps while 

repetitive steps such as individual transfer of DWP between platform and centrifuge, and cyclic 

removal of waste media or supernatant were manually performed. This reduced the total duration 

of a single run by 1.5 hours, enabling two to three runs to be scheduled daily. This in turn translated 

to a two- or three-fold increase in daily throughput.  

 

Discussion 
 

The NITE cDNA library was provided as plasmid DNA, which required the transformation into a 

bacterial host for replication and production of the plasmids. Scaling an experiment towards high-

throughput levels create various sorts of technical and logistical hurdles, even for a protocol as 

simple as heat-shock transformation.  

E. coli DH5α strain (Invitrogen) was selected as the primary bacterial host as it is a strain commonly 

used for cDNA library cloning, with advantageous mutations in genes like endA1 and recA which 

reduce non-specific endonuclease activity and DNA recombination events, hence offer an overall 

higher plasmid yield. However, with 30,000 different transformation reactions, 2.5 to 3.0L of 

competent cells would be required, the use of commercially available library-efficient E. coli 
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DH5αTM (Invitrogen) would be cost prohibitive at GBP 180,000. Consumables costs such as pipette 

tips would also be staggering.  

The only possible solution to culturing the required 30L of bacterial cells was the use of a bioreactor, 

since the amount of flasks required would be difficult to manage and process due to the lack of 

incubator space. The self-assembled bioreactor was designed with a number of key features, 

including a constant air supply, continuous suspension of the culture with a magnetic stirrer, stable 

incubation temperature, outlets for waste media sterilisation and sampling. Sterility is the primary 

concern since no antibiotics could be used. The bioreactor was designed to remain closed from the 

external environment throughout incubation, with regular sampling achieved through a sampling 

tube. 

It was discovered that the rate of growth in the bioreactor was 0.0445 units/hour and 0.1567 

units/hour for the standard flask conditions. Hence the growth rate in the bioreactor was reduced by 

a factor of 3.5 compared to the normal culture conditions. This is likely to be the result of 

inadequate aeration and mixing of the 5L culture volume, which was supplied through a dedicated 

pump at 0.1 bar pressure. The tubing supplying the air was optimally perforated for improved 

efficiency of aeration with smaller and higher counts of bubbles generated. Further perforation 

would decrease air flow due to insufficient pressure while increasing the pressure leads to 

turbulence within the culture content which disrupts the mixing and excessive overflow. Similarly, 

the mixing was operated at maximal revolution as further increase would have caused the magnetic 

stirrer to slip, halting the mixing.   

However, competent cells derived from either culture conditions could both be efficiently 

transformed and resulted in similar colony counts. This is expected since both cultures were 

harvested at similar optical density indicative of similar bacterial cell count, therefore, the rate of 

growth is not a significant indicator on the quality of competent cells as the culture density. Twice 

the amount of starter culture volume (100mL) was used to inoculate the bioreactor such that it 

reached the appropriate culture density within the same timeframe. 

Competent cells were prepared using a single reagent, calcium chloride, which greatly reduced the 

complexity of the preparation process. Each batch was subjected to strict control procedures where 

samples were tested for antibiotics resistance. The prepared competent cells were shown to be able 

to produce high plasmid yields with no major sequence recombination events or contamination 

observed. 
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Automation was required for the pipetting steps to handle repetitive functions and reduce process 

time and consumable costs. The DNA isolation robot was selected as the platform of choice to avoid 

bacterial contamination on the transfection robot. The implementation of the new transformation 

protocol required the development of new software, since the BASY robot was hardcoded to only 

perform the DNA isolation protocol.  

Contamination was again the main concern since the platform was not designed to handle live 

cultures in a sterile environment. The control experiments performed indicated that the use of the 

new ethanol rinse function and increased wash cycles could sufficiently prevent cross-contamination 

between plates. Some unintended growth of bacterial were observed, which could be attributed to 

the movement of the pipetting arm as it moves over the plates for inoculation. This source of 

contamination is expected to result from a small number of cells, which would be a negligible 

background as the inoculant is a dense starter culture. The denser culture is expected to 

exponentially outgrow any background and form the bulk of the culture. Prior to implementing the 

high-throughput transformation, the workflow was tested on eight plates of cDNA. 143/160 clones 

were matched with the predicted restriction pattern of pME18SFL3-based clones, while the 

remaining 17 were matched to those cloned into pUC19FL3 which forms a minority (<1%) of the 

library. This indicated that contamination across the platform and process was sufficiently low to 

allow for sequential processing of bacterial plates without cross-contamination.  

The primary round of transformation was completed within six weeks with a success rate of 73.68%. 

The remaining clones were manually transformed and completed within two weeks. These clones 

failed the primary round due to various reasons, most often due to the lack of contact between the 

DNA and cells since the solution was ejected from a distant. Contaminated batches were also 

identified and rejected using the quality control procedures, and were likely to be due to the 

intensive operation schedule or blocked pipette tips. 

Two types of transfection protocols were investigated and optimised for use on the transfection 

platform. The first, using calcium phosphate, was a common method of transfection employed for 

HEK293T cells transfection. The initial conditions used in a previous screen were found to be 

ineffective for the plasmid concentration generated by the robot. Previously, this was not a concern 

since the previous screen setup uses a normalised and non-sequenced cDNA library which was 

actively cloned and cultured at high dilution prior to DNA isolation and screening; any untransfected 

cDNA were basically excluded. With the NITE library, each well contains a unique plasmid which is 

variably replicated by the host, resulting in a range of DNA concentration. This DNA concentration 

range introduced instability in the transfection protocol. 
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During one experiment, 15 µl of each component as part of the transfection mix resulted in a 

massive shift in the detected fluorescence from insignificant background autofluorescence to a 

detectable increase of the GFP reporter. This volume ratio formed the basis for further optimisation. 

A calibration curve for the estimation of transfection efficiency from fluorescence was prepared in 

order to avoid the need to optimise in 24-well before scaling down, since this was not possible with 

the initial conditions. The correlation was linear for fluorescence signals above 5,000 units but 

rapidly slopes off to zero, so this region was not suitable for use to estimate transfection efficiency. 

Generally, higher fluorescence indicates a better transfection. 

Incubation periods appeared to be suitable only for higher DNA concentrations of more than 1 µg/µl 

(data not shown), so the incubation was eliminated from the optimisation protocol since the 

estimated plasmid yield was 0.3 µg/15µl. 

Variations of individual component volumes showed that a further 5 µl reduction in HBS was able to 

improve the transfection efficiency, after which changing the volume of calcium chloride and 

chloroquine did not produce further significant improvements. The optimised protocol for calcium 

phosphate transfection was set as 0.3µg plasmids in 15 µl water, 15 µl calcium chloride, 10 µl HBS 

and 15 µl chloroquine. 60% cell confluency with 14,000 – 20,000 HEK293T cells per well was also 

found to give the best transfection.  The optimised protocol resulted in significantly higher levels of 

transfection as determined by the GFP fluorescence intensity, and is proportionally scalable to 24-

well and 6-well plate formats and the quantification of GFP with flow cytometry had consistently 

indicated transfection efficiency between 70 – 80% (data not shown). 

However, it was impossible to implement the optimised calcium phosphate protocol to the robotic 

platform. The reason has yet to be determined, but it was theorised that the residual water droplets 

remaining on the pipette tips after each wash cycle eventually dilutes the transfection mix and 

reduced transfection efficiency.  

The alternative polyethylamine (PEI) based protocol was selected for its cost-efficiency and simplicity 

in transfection. The protocol uses a single PEI reagent compared to three components in the calcium 

phosphate, making it faster and simpler to automate. Furthermore, it was found during the 

optimisation that both the branched and linear PEI protocols were very stable to DNA concentration 

variation. This is advantageous since the apoptosis modulating capacity of a potential candidate 

gene may become reduced but remains detectable. In contrast, the calcium phosphate protocol 

would result in no transfection once the DNA concentration is beyond the precise optimal point.  
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The branched PEI polymer (Sigma-Aldrich 408727) was initially found to be the best commercially 

available polymer for high-throughput transfection. It reached a maximum transfection of 60%, but 

the transfected cells generated strong protein expression indicated by the high fluorescence 

intensity of 2,412 units using flow cytometry. As the CPRG assay was normalised to include only 

signal from transfected cells, it was not necessary for the transfection to reach 100% efficiency. 

Moreover, the stability of the protocol was evident as the branched PEI protocol was adapted onto 

the transfection platform and used during the primary screen. 

It has since become widely established that PEI-based protocols to be excellent for high-throughput 

applications and even in vivo transfection [294, 295]. The linear form of PEI polymer has since 

become available commercially. The linear PEI was more efficient and routinely reaches near 

complete transfection of cells with strong fluorescence intensity of 2,978 units. It was also less toxic 

than the branched form as the cells could tolerate twice the active concentration of the linear 

polymer. This higher tolerance may explain why the linear polymer could reach near complete 

transfection in HEK293T cells. The linear PEI was employed in the secondary screen. 

The stability of the PEI transfection was confirmed in the kinetics studies of the CPRG assay, where a 

range of plasmid volumes was used with a single set of transfection conditions. Reducing the active 

plasmid component caused the apoptosis intensity to be reduced, but for a strong inducer like RIP, 

this did not cause the clone to fail the selection criteria test. However, weaker inducers such as 

caspase-2 could have its effects reduced beyond the positive selection threshold when lesser 

plasmids were used. The assay reached equilibrium 60 minutes after introduction of either the 

substrate or Triton, providing a stable signal, which could be measured.  

The use of the CPRG ratio as the basis for assessing apoptosis activity was also optimal as this ratio 

could sufficiently distinguish the negative and positive controls. When compared to fold-change 

indicators using either the signal intensity or rate of change of these signals to quantify the dead : 

live ratio, the CPRG ratio offered greater statistical power in distinguishing the controls. This is 

because the CPRG ratio represents apoptosis as a proportion of dead cells to the total transfected 

population, while the other indicators present the same information as magnitudes of change. Fold-

change indicators give a higher value for a positive control, but tend to fluctuate more.  

Furthermore, the false positives as measured by the CPRG ratio always have a ratio which is 

extremely near or above 1.0. This is the consequence of the signals not changing due to the lack of 

transfection, and the slight dilution in Triton signal after the addition of the detergent which 

increased the total assay volume by approximately 10%. As a result, the false positives are presented 
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within a small range by the CPRG assay. Both fold-change indicators present the same false positives 

across a wide range, which frequently overlap with the candidate selection range. False positives 

may generally be excluded from the analysis through the application of a 0.7 threshold value for the 

Triton signal (Discussed in Chapter7: Implementation of the Screen).  

The deviation of the CPRG ratio increases when lower volumes of plasmids were co-transfected. This 

reduced amount of plasmids resulted in lower protein expression, which causes the gene to miss the 

threshold for apoptosis activation. The effect was particularly acute for the weaker controls, which 

could miss the threshold by up to 50%, leading to the wide standard deviation. This effect of 

increasing error range is a familiar feature of high-throughput assays [296]. 

The error range of the assay when manually performed is approximately 33.95%, which reduced to 

less than 20% when automated on the robotic platforms. The test trial using the optimal DNA 

isolation, transfection and assay conditions on the robotic platforms correctly identified 93.75% of 

the positive controls, with a 4.17% error rate where the negative control was identified as positive.  

Since the effects of the over-expressed genes were expected to improve with higher DNA 

concentration, 20ul of the plasmids was selected at the volume of plasmids to be co-transfected 

with the reporter during a screen. The CPRG ratio was statistically capable of resolving the controls 

at this volume, while retaining sufficient volumes for up to four replicates to be performed from a 

single plate of DNA plasmids.  

The DNA isolation robot comprises various components including a centrifuge, reagent reservoirs, 

freezer positions, acetone dispensing chamber and a tip washing module. The complexity of the 

robot was initially preventing a fully automated process for the isolation of DNA, since the lack of 

position sensors occasionally resulted in a system crash when a DWP was positioned out of 

alignment after centrifugation. Such simple problems were often interrupting the process, and in 

serious cases caused the movable pipetting arm to physically crash into the equipment.  

With the development of new software, a semi-automated protocol was developed where the robot 

manages the liquid handling functions while time exhaustive cycles such as the removal of media or 

transfer of DWP between centrifuge and platform positions were performed manually. This 

modification reduced the time spent on repetitive cycles, cutting the total process time from 4.5 

hours to less than 3 hours. This represents a 30% increase in efficiency, allowing two DNA isolation 

runs to be comfortably performed daily, while an additional run could be performed on demand.  
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Additional problems included low pressure developing in the main water tank, creating a “vacuum” 

effect that prevented water from refilling the secondary tank. While an isolation valve was initially 

introduced to manually correct the pressure difference, the manual setup for tank refill was replaced 

with the Millipore RiOsTM 5 with uses an electric pump to fill the tank from an accompanying 30L 

reservoir. This resolved the scenario where the system halts the process as it awaits tank refill. 

Pipette tips were manually loaded and could be reused after cleaning by a dedicated washing 

module, to reduce consumable costs. This manual loading of tips, however, was highly inconsistent 

resulting in downstream pipetting errors. The tips could also dislodge from the pipettor, becoming 

trapped in the deep well plates on the pipettor, which then crashed into other components if 

unsupervised. A solution was founded by first assembling the 96 tips over a plastic film and a spacing 

guide before this tip assembly was loaded onto the robot pipettor. This arrangement allowed all 96 

tips to sit on a similar level thus improving liquid handling accuracy while the plastic film prevented 

rogue tips from dislodging. The incorporation of a new ethanol wash step keeps the system sterile 

while handling live bacterial culture.  

The working coordinates of the robot pipettor on the platform were also important, and incorrect 

values could introduce pipetting errors, carry over contaminants, or resulted in physical crashes. 

These coordinates and pipetting height were altered and optimised following each reassembly of the 

main pipettor. 

Reagent volumes were also increased by 47% to minimise the loss of supernatant between transfer 

steps due to dead volumes. This resolved a critical point in the automated system where the pipette 

is unable to pipette all the volume from a plate, with increased the final plasmid yields.  

After this initial optimisation work, a stable run with consistency in the plasmids yields between each 

well was achieved on the robot platform. This is important since the DNA concentration is not 

quantified for the downstream transfection as the robots are unable to pipette individual wells. 

Concentrations differ slightly as individual pipette position had a minuscule level of error. Average 

yield per well was determined to be around 0.3 µg/15µl. Overall, 95/96 wells clearly indicated the 

presence of plasmids and the system was ready for automation of plasmids isolation.  
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Chapter 5: Software Development 
 

Background Information  
 

Specialised software is an integral part of automation, working in tandem with the robotic hardware 

to process the workflow. The uniqueness of the RICSI platform and its hardcoded nature necessitate 

the continual development of its software in order to implement new workflows. The sheer scale of 

our high-throughput experiments, which resulted in over 120,000 data points after a single screen, 

further required the need of software to process the data.  

The software was designed to be robust and user-friendly, allowing for user involvement to be 

minimised. This reduction of user involvement in the screen is an important factor in improving the 

workflow efficiency, and the software for the robots and data handling were designed with a 

simplified interface, and to setup and execute the systems in a few clicks, and provide live system 

status such as current process and platform position. The ultimate objective was to minimise user 

programming with the implementation of each new workflow, making the system also accessible to 

users with minimal programming knowledge.  

The software for the RISCI platform was originally developed in HP VEE 4.0, and has since been 

upgraded to Agilent VEE 9.0. The VEE (Visual Engineering Environment) was a proprietary package 

developed by Hewlett-Packard for automated measurements, data acquisition, reporting, 

instrument control and virtual instrumentation, and became the product line of Agilent Technologies 

when the company was spun-off. VEE is a graphical programming language which offers an 

integrated software development environment. In contrast with development languages such as C 

or Java which describe the functions as text, VEE represents the operation flows and software 

architecture graphically. VEE objects and functions are represented as boxes with various types of 

sequence, execution and dataflow pins. Operation sequence flows vertically from top to bottom 

through a single sequence pin, while data flows horizontally from left to right through one or more 

input/output pins. This graphical interface along with the dynamic IO library helped to speed up the 

development for the RISCI software and simplified the development of the software graphical user 

interface (GUI).  

Automation of data processing was performed primarily using Microsoft Visual Basics, since the data 

was captured into a Microsoft Excel® spreadsheet by the FLUOstar plate reader. Integration with the 
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Microsoft Office Suite® also provided the various charting and presentation functions, while its 

extensive library of mathematical and statistical functions aided in the calculations.  

 

Results and Discussion 
 

RISCI Software Development 

Early stable version and minor adaptations 
Since the BASY DNA Isolation Platform was originally developed for a single purpose of processing 

the ultra-pure DNA isolation protocol, its software was designed to be rigid and initiated with a 

single activation button. The innate structure was designed to avoid user involvement on the 

programming aspect, restricting user involvement to load and run functions where the reagents and 

plates were setup at pre-defined locations after which the robot fully automates all downstream 

steps. This single protocol was extensive with a runtime of 4.5 hours and comprised of more than 

100 individual steps by simultaneously processing two interlaced workflows with four plates each. It 

also featured a GUI panel providing status updates as the robot processed the protocol. The entire 

protocol was hardcoded into a single program, and its complexity with hundreds of sequence and 

data flow lines linking various functions and objects was a major impediment for further 

optimisation or minor changes. 

However, minor changes to platform coordinates and pipetting height were routinely required since 

changing to a new set of pipette tips may affect previously optimal coordinates. Implementing such 

routine updates was difficult and tedious as each set of coordinates were coded within subroutines 

of individual steps. Optimisation of the DNA isolation protocol also identified certain limiting steps, 

which were reducing the final plasmid yield; for example, the small reagent volume used resulted in 

a higher loss of supernatant between each transfer steps. Potential improvements were hence 

difficult to implement without disassembling the hardcoded workflow, while any change needed to 

be followed up with relevant changes to the status update GUI which was also hardcoded.  

Furthermore, a major shortcoming of the BASY platform was identified during optimisation runs, in 

that the robot has a higher probability of suffering a physical system crash compared with the TFA 

transfection platform, a consequence of its ability to transport plates between positions and the 

centrifuge using the robotic gripper. The plate transfer function was built on the assumption that 

each plate does not move at its position prior to transfer, an assumption which is not completely 

accurate since the capacity of the shaking platform to homogenise the solution and centrifugation 
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steps may cause the plates to move slightly. These slight shifts in position may cause the gripper to 

place the plates in an inclined position, which cannot be detected by the robot due to a lack of 

positioning sensors, and downstream attempts by the robot pipette to pipette from the incorrectly 

positioned plate would result in a serious crash. Such crashes can be dangerous since the system 

cannot automatically sense the damage and continue to process its workflow in the absence of the 

user. The hardcoded nature of the software further prevented the continuation of the workflow 

when the system was temporarily stopped to correct errors or major crashes, potentially wasting the 

entire run. This inherited software design was appropriate for the previous screen design, which did 

not require every well position to be transfected due to the randomised nature of the cDNA library.  

For a structured and sequenced collection like the NITE library, the position of each well becomes 

important and necessitates the optimisation of conditions. The changes made for the 

implementation of the optimised experiment settings were minimised to maintain the software 

architecture integrity. Changes such as the increase in volumes and changes in the protocol were 

made by modifying the software and similarly hardcoded. A number of new functions were created 

to facilitate the routine coordinate optimisation. This include a height increment function, whereby a 

loop structure was used to repeatedly increase the pipetting height in minute steps until the optimal 

height is obtained, after which it returns the numerical value. A similar function was made for 

optimising the x-y coordinates for each plate position. The function for performing the pipetting 

steps was also improved by introducing a two-step height change function. The robotic pipettor was 

programmed to first stop above the plate allowing for the ends of each pipette tip to be positioned 

in each well, followed by the second height change to the final pipetting height for liquid handling. 

This change allowed the plates to be “repositioned” by the robot and slows the approach speed, 

both of which greatly reduced the chance of the robot crashing into an incorrectly aligned plate. 

To enable the process to restart from the point of termination, each step of the protocol was 

reorganised into an individual function and sequentially labelled. These functions were then placed 

under the control of a for-next loop structure, which the initiation variable value being the step to 

restart from. This allowed runs with minor errors to be salvaged.    

The optimised conditions for the DNA isolation protocol automated by the BASY platform was 

validated to produce a stable and equal quantity of plasmid DNA in each well, and the introduction 

of new functions enhanced the ease of using the platform. 
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Flexible and user-customisable version  
The need to harness the BASY platform for the automation of high-throughput bacterial 

transformation protocol, coupled with the first major upgrade of the development environment 

from HP VEE4.0 to Agilent VEE 9.0 dictated the development of new platform software architecture. 

The objective was to open the robotic platform and allowed for automation of a variety of user-

generated protocols, with the software version codenamed as “ProjectFlex”.  

Taking a simplistic view, the robots are controlled by electrical bits in a binary fashion, each of which 

regulate a specific action such as the opening of a valve, and a set of bits was orchestrated for the 

robot to perform a particular action such as pipetting or washing. The robotic centrifuge was 

controlled via a serial interface by sending ASCII commands. The paradigm shift to a fluid structure 

required all hardcoded functions to be replaced by variable-controlled independent functions, and 

the organisation of each set of electrical bits as a robotic action rather than a step of a particular 

protocol.  

These independent functions were developed according to five main classifications: administrative, 

basic, actions, creation and error handling. Administrative-type functions control the background 

process which generally do not translate into a physical motion, such as the variable declaration, 

position offsetting and retrieval of status information for display. Basic functions were the minimal 

possible organisation of the bits to perform a robotic motion. These include robot actions for 

pipetting in and out solutions, activation of gripper, wash station pumps and vessel lid motions. 

Actions-type functions defined routinely used robotic processes including dispensing of solution, 

transferring plates between positions, cleaning of the pipette tips and pipette mixing motion to 

homogenise solutions. Creation-type functions manage the user interface for assisting the user in 

building and testing of the custom workflows. Actions and Creation type functions are high level 

functions built from the Basic functions. For example, the “Transfer DWP” Actions function consists 

of sequential implementation of the following Basic functions: “Go To Platform”, “Grip DWP”, “Go 

To Platform” and “Release DWP”. Error-handling functions check for system error such as low 

pressure, low water levels, disengaged platform doors, incorrect motions for detecting jammed lids 

and shaking platforms and other safety features. Each of these functions required a specific set of 

variables to work, for example the pipetting functions required input for volume and speed. The use 

of variables enabled settings to be actively defined. 

Under the ProjectFlex development, the program operating the robots required two user-defined 

text files for coordinates and protocol. The coordinates file defined the name and x-y-z coordinates 

of all platform positions, which were previously hardcoded into the DNA isolation workflow. This 
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coordinates file offers many advantages, such as allowing the user to quickly update the coordinates 

following optimisation and even full-scale reorganisation of the platform. It is defined once and 

automatically loaded by the software during system initialisation, with each position declared as a 

variable holding coordinates. The robotic pipettor may be moved to a defined position using the 

position name, instead of all three coordinates previously.  
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Figure 12: Original BASY and ProjectFlex core codes. A) The original BASY program was 
hardcoded, resulting in an extensive 4.5 hour workflow comprised of more than 100 steps. 
This version was incredibly difficult to modify and cannot be used to implement any other 
protocol. B) ProjectFlex was designed to be flexible, with the core code simply reading off the 
user-defined protocols and translating the instruction into robotic actions.  
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The protocol file defines the entire process required by the user in a step-by-step format. The user 

may define as many protocol files as required and select the appropriate one prior to execution. 

Each protocol file may be manually written in a text (.txt) file or build using the Creation functions. 

The Creation functions are organised into a single Panel, and on activation, keep the program in a 

loop allowing the user to add or delete each step, and even test the protocol, until the desired 

process is achieved after which the protocol is converted into a permanent text file. Each line within 

the protocol file refers to an individual step with all its variables delimited by a semicolon “;”.  The 

first five variables define general information such as the step count and status description, the sixth 

variable defines the function name to execute, with all remaining variables attributed to those 

required by the specific function. An example of a single instruction is given as: 

7;A;2;a;Cleaning the pipette tips;act_WashTipsN;3; 

Where “7” refers to the seventh step of the protocol, “A” refers to the processing of the first of two 

interlaced protocol, “2” and “a” are placeholder variables reserved for future use, “Cleaning the 

pipette tips” describe the step and is reflected in the status information, “act_WashTipsN” refers to 

the wash function to execute, and “3” refers to the cycle count required by the wash function which 

in turns execute the function repeatedly thrice.  

The core algorithm (summarised in Figure 13) for processing of the protocol file works similarly to 

the Creation function. The system was first initiated whereby the robot is required to align itself with 

and contact a reference pin; its height was next incrementally changed to the point where reference 

signal becomes negated and the z value used to reference and offset any variation in the vertical 

pipetting height. The system initiation function was inherited from the previous software and placed 

under the control of a Boolean variable to enable it to be bypassed as required. All other platform 

bit signals controlling valves, lids and action activation would also be reset to the default settings. 

Next, the protocol file was processed and the total number of steps counted and used to estimate 

the protocol progress. The function was then kept active through the use of a “Do until break” loop 

structure, which repeated its subroutine for processing each protocol step. The time prior to and at 

the end of each step was recorded and its difference used to gauge the step duration and total 

process duration. The instruction at each line was then sequentially read and processed if an 

instruction was available; this instruction will be split using the semicolon delimiter into its 

component variables, which are then used to update the status information panel and execute the 

appropriate function. If the protocol has reached the end of the file, known as “End of line”, the 

break function was activated to allow the loop to end.  
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Figure 13: Summary of the core algorithm for flexible processing of user-defined protocol. 
The BASY platform was opened up for user-defined protocol by organising the robots into 
action functions, which could then be called and executed in any combination as defined by 
the user in  a protocol file. The core algorithm was a reduced from a complex hardcoded 
structure to a simple loop structure, which continually reads and executes each instruction 
until the end of the protocol file.   
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Due to the flexible nature of ProjectFlex, additional set of checks and safety functions were added to 

the previous set of error handling functions. The new safety features focused on the platform 

actions, for example, the “safety height” function, which changes the robotic pipettor to a safe z-

coordinate was built into all functions involving the movement of the robot. Also, each position was 

checked to be correct and the shaking features inactivated before transfer of plate. These safety 

features ensured that any combination of user-defined protocols could be performed without 

causing damage to the robot, but it also introduced a greater degree of redundancy which is a 

drawback of any flexible program. All error-handling functions were compiled into a single 

management panel, enabling selective activation of each function. As ProjectFlex was developed 

with the intention for the implementation of the high-throughput bacterial transformation 

workflow, new functions such as the ethanol wash cycles and media dispensing were also introduced 

to handle live culture work. 

The new program proved to be useful in its deployment for high-throughput transformation. Various 

pre-processing protocols were defined. For example, one protocol was defined for the robot to 

slowly pierce the foil-sealed 96-well PCR plates containing the lyophilised plasmid DNA, while 

another was defined to add sterile water and resuspend the plasmids.  

The transformation workflow was implemented in five phases: 1) dispensing of 100ul competent 

bacterial cells into DWP, 2) introduction of DNA and heat shock, 3) dispensing of selection media 

after cell recovery, 4) dispensing of 1mL fresh selection media and inoculation of these new plates 

and 5) preparation of library glycerol stocks. The protocol files were defined for processing of one 

and eight plates and the entire process of defining these protocol files was completed in less than an 

hour. Switching between protocols was also extremely quick and easy, with the user simply selecting 

the desired protocol files and hitting the “Perform Protocol” button. 

Its versatility eventually made it the default choice for automation of routine high-throughput liquid 

handling functions and also for troubleshooting and optimisation when checking for protocol 

inefficiencies.  

Update of the DNA Isolation Process on the BASY Platform 
The core design of ProjectFlex was used to implement the DNA isolation workflow. Due to the 

extensive nature of the DNA isolation protocol and the occasional need to pause and restart the 

protocol, each step of the workflow was reorganised into a separate function. This allowed for more 

precise optimisation to remove redundancy and the step count allowed for continuation of the 

protocol.  
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The major feature still missing from the hardcoded program was the position status update GUI 

indicating the physical position of the robot on the platform as it processed the workflow. The 

sequential programming nature of Agilent VEE was excellent for managing a workflow type program, 

but makes it difficult to run another function in parallel for GUI-purposes. All indicators had to be 

positioned together with the active functions on a single panel. For this reason, colour indicators 

marking each platform position were added to the core structure, all of which are managed by a 

variable display function.  

Within each line of instruction in the protocol, the variables were organised so that the first and 

second variable positions refer to the function name and step description, while the remaining 

positions three to twenty-five each represented an individual position status value. A value of -1 

indicated that the position was inactive, while value of 1 or 2 represented the first or second of the 

interlaced process. This allowed the user to manually define each position where the step would be 

active. A more sophisticated approach was attempted by incorporating the indicator variables into 

each function, which then mark the indicator when activated, but the linear nature of the 

programming language imposed on the effectiveness of the implementation. Furthermore, such 

approach would only mark the latest position, and does not reflect the status accurately in steps 

involving multiple positions, such as the transfer of solution between two positions.  

The DNA isolation workflow was optimised into fifty individual steps for the processing of eight 

plates, and classified under the “BASY” function class. The core algorithm from ProjectFlex was then 

used to call on these functions sequentially, with the additional variable display function updating 

the position colour indications of each step. This new GUI allowed the user to track the process in 

real time, without having to figure out the progress by studying the platform activity.  

The upgrading of the water management system to an automated pump supply resolved previously 

frequent error message of “low water”, but intensified minor problems such as the overflow of the 

waste tanks, which were easily missed during busy workflow. The software was updated to include 

the water levels management by calibrating the flow rate of the waste water into the tank with the 

wash cycles, and imposing a “Waste tank full” error handling function when the limit was reached.  

This update allowed the ProjectFlex core codes to be used for DNA isolation purposes.  
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Figure 14: Improvement to the graphical user interface. A) During the development of 
ProjectFlex, and its implementation of the high-throughput transformation workflow, status 
updates provided were limited to text-based panels. B) The extensive nature of the DNA 
isolation protocol made it difficult to track using text updates, hence a graphical status display 
was created to report on the platform activity.    
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Implementation of ProjectFlex on the TFA Platform 
ProjectFlex was also adapted for use on the TFA transfection platform. The TFA robot was a basic 

liquid handling robot equipped with a robotic pipettor similar to the BASY. The platform has sixty 

default positions defined in six rows of ten plates. Depending on the configuration of the workflow, 

the TFA is able to process up to sixty plates in a single run for simple protocols involving dispensing 

of solution, cell culture media or treatment. For example, during the validation screen, the TFA was 

used to process the PEI transfection workflow in triplicate sets of nine plates to prepare 27 96-well 

plates of transfection mix in a single run of about 65 minutes.  

The ProjectFlex codes were in a stable version after extensive improvements from two major 

implementations for high-throughput transformation and DNA isolation. Only minor adaptations 

were introduced, with the core design remaining constant.  

Due to the repetitive workload of the TFA platform, execution of the instruction line in the protocol 

file was placed under a nested loop structure. Repetition is possible in two forms: 1) repetition of 

protocol for unique plates and 2) the number of times each unique plate is repeated within a set of 

replicates. Optimal repetition of experiments may be achieved by looping these two types of 

repetition across the x- and y-axis. Using the validation screen example above, the nine unique 

plates of plasmid DNA would be subjected to the same experiment protocol on the y-axis, while 

three plates of the same transfection mixture was prepared for each unique plate. The distinction 

between the two forms of repetition greatly reduced the time dedicated to washing of the tips since 

repeating protocols for the same plates allowed the pipette tips to be reused.  

To achieve this two axes repetitive effect, the function processing and executing the instruction line 

was placed with a “For” loop, which repeats the plate X times. This loop was nested within another 

“For” loop, which repeats the experiment protocol Y times. Functions were created to process the 

additional command-type instruction denoted by double square brackets “[[Command…]]”, which 

are used to indicate the start and end of loops so that a whole range of instructions may be 

repeated. Additionally, functions were also created to map the loop index position to actual physical 

coordinates. For example, if the experiment loop starts at the loop index of 1,1 which has a platform 

position of A1, the next plate to be processed will have a loop index of 1,2 which has to be translated 

to position A2. The loop index allows the process to be mathematically controlled, while the new 

position translation function retrieves the physical coordinates for the robot to process. In the 

absence of the loop commands, the software assumes the standard count of 1 for the respective 

“For” loops, which returns to non-replicate processing mode. This update allows for any 

combination of unique plates and replicates to be performed, limited only by the maximum plate 
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load at each axis. It also simplifies the protocol file through the use of command lines to mark region 

of instruction lines for repetition, eliminating the need to manually repeat the definition for each 

plate.  

Other problems unique to the TFA platform includes its susceptibility to extended protocol, where 

unlike the BASY, it would terminates after processing certain number of instruction lines. This usually 

occurred around a similar region of instruction lines and was initially attributed to the lack of 

processing power and memory on the previous generation computer.  While the upgrade of the 

computer did prolong the length of the protocol approximately proportional to the amount of 

memory (RAM), it did not completely resolve the problem. Extensive referencing of the TFA source 

code with those of the BASY platform and discussion with the systems engineer, Dr. Volker Kachel, 

identified the cause as the depletion of a serial interface memory buffer. A function was developed 

for the BASY platform, which routinely cleared this memory buffer, enabling the system to sustain 

the workflow. This function had not been applied to the TFA platform previously and a similar 

function was developed for the TFA to resolve the premature termination error. 

Furthermore, the TFA had a smaller volume range of 10 – 100ul through the use of a 200ul tip 

compared with the BASY which has a range of 10 – 200ul using a 300ul pipette tip. The use of the 

200ul tip increased the precision when handling smaller volumes necessary for transfection 

protocols, but created additional problems for the tip cleansing steps. Its maximum volume is half of 

the BASY robot, requiring the wash cycles to be doubled accordingly in the software. The smaller 

pipette tip also has the tendency for liquid droplets to form at the end, which is difficult to clear with 

the air ejection system. This residual droplet is estimated at approximately 5ul per tip, which could 

quickly add up to dilute the working solutions by over 15%. This is likely to be the reason why the 

calcium phosphate protocol was extremely difficult to implement on the platform. This was resolved 

by reprogramming the wash action; instead of a direct clearing of the residual droplet with increased 

air pressure, the robot was first programmed to touch the flowing water surface to remove the 

droplets before projecting the bust of air through the tips to clear any remaining residuals. This 

update together with the use of the robust PEI transfection protocol, dedicated reagent reservoirs 

for each plate and excess volume of transfection reagent greatly improved the stability of the 

transfection efficiency. 
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Data handling and other mini-scripts 

Data handling scripts for processing screen data 
Processing the huge amount of data generated during the screen was performed with Microsoft 

Visual Basic based scripts, also known as macros, and the Excel spreadsheet was used to store and 

aggregate the data and derivative calculations. 

A suite of functions was developed to manage the data flow, centred on the Data Import and 

Candidate Identification functions, which are supported by a range of auxiliary functions such as 

statistics collection, error logging and ID mapping. These functions were created with a similar “Do 

While” loop structure, which keeps repeating the function for the next line until an empty space 

counter reached its limit. 

The Data Import script was the most important function and was employed for the translation of the 

raw data format generated by the Optima FLUOstar plate reader. This raw data was encrypted and 

required the use of its associated commercial software to process and analyse. A basic license was 

available on the computer controlling the plate reader, with limited data viewing, export and 

analysis. Furthermore, the basic analysis can only be performed on the single licensed computer 

which prevented the use of the equipment. Each set of data comprised of 96 measurements of each 

microplate at 590nm wavelength. These sets were manually extracted into individual worksheet in 

Excel before automated processing.  

The Data Import script was coded in sections: initiation, temporal data import, validation & transfer 

to final worksheet and housekeeping. Initiation comprises the variable declarations for the various 

worksheet names such as “Plate View”, “Error Logs”, “Attention Required”, “Dataset List” and other 

temporal worksheets, and the string, integer, real and Boolean variables. A dialogue box was then 

created for the user to select the data file workbook to import, and the file checked to have the 

correct file extension (.xls or .xlsx) prior to opening and import. The temporal data import section 

employs a “For” loop to sequentially process all worksheets in the selected file. Within each 

worksheet, the space delimited description is retrieved from the cell F2 and split to retrieve the 

date, lysis status, plate name and treatment type. Next, the 96 data points were retrieved into the 

temporal worksheet, and the step repeated until all worksheets were processed. This was followed 

by the validation and transfer section, whereby the CPRG datasets were identified and cut into the 

final worksheet “Plate View”. The remaining datasets were searched for the Triton lysis status, and 

matched to the corresponding CPRG dataset with the plate name. Any remaining datasets, along 

with datasets which were unsuccessfully imported, were flagged in the “Attention Required” while 

error messages were recorded under “Error Logs”. Once the import was completed, the script 
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proceeds to the housekeeping sections where the temporal worksheets are deleted and the source 

workbook closed. The Data Import script then calls for the Inducer, Inhibitor and Sensitizer candidate 

selection functions (Figure 15).  

The candidate selection functions performed the implementation of the experimentally determined 

thresholds. For all selection, only pairs with the Triton signal greater than the 0.7 threshold were 

analysed. Inducers were selected with CPRG ratio greater than threshold of 0.55, and excluded from 

the Inhibitor-Sensitizer selection. Inhibitors and sensitizers were selected by ranking the TNTD 

between the treated and non-treated datasets, and the selection proportion for each candidate 

types calculated with Equation 11 to pick the appropriate candidate counts from each tail. The 

selected candidates were marked in the “Plate View” and shortlisted into three mutually exclusive 

candidate lists.  

Other supporting functions were created to generate reports on data statistics such as the frequency 

and distribution of candidates, calculation of the distance-weighted estimator (DWE), and ID 

mapping. The ID mapping function uses the input from one list to search the collection in another, 

and is extremely useful for retrieving clone information using its accession numbers or plate 

position, mapping reindexed clones to the original library information and the incorporation 

annotation information provided by the Bioinfomatics Service or generated with online databases.   
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Figure 15: Data import algorithm for processing the FLUOstar raw data. After the manual 
extraction of the FLUOstar plate reader generated raw data, the data import macro 
automates the extraction, alignment and assembly of all data points into a single Excel 
spreadsheet. This allowed for downstream data handling and analysis with further macros or 
built-in Excel functions. 
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Mini Scripts 
A host of macros were developed to assist with other aspects of the scaled up experiment settings. 

During the validation of the transformation efficiency and cDNA library integrity after the 

implementation of the high-throughput transformation, more than a hundred clones were randomly 

subjected to EcoRI and NotI double restriction digest analysis. A macro was created to search the 

DNA sequence information for the presence of each restriction site and calculate the potential 

restriction pattern. The predicted pattern could then be used as the reference for comparison with 

the experimentally generated pattern to validate each clone.  

Another macro was created for the management of the sequencing data and selection of internal 

primers for further sequencing. This macro comprises of two parts for data input and primer 

selection. On activation, a panel was presented for the sequencing data to be entered after which 

this data was stripped of whitespaces and line breaks to generate a continuous string. The sequence 

length was counted, and if the sequence was from the BGH reverse primers or other primers 

sequencing the alternate strand, a standard reverse and complement function was performed. This 

processed string was submitted for primer selection. 80% of the sequencing data from the 5’ end 

was retained and this marked the end point for primer selection. The remaining 20% was not used 

for selection and reserved for the purpose of complementary and sequence assembly. 100 primer 

candidates were selected before the 80% mark for each DNA sequence, with each candidate 20 

nucleotide in length.  

Each of the candidates were analysed for its GC content and predicted annealing temperature. The 

GC content needs to be approximately balanced with the AT count, with the predicted annealing 

temperature between ranges of 40°C - 45°C. Annealing temperature was predicted using Equation 7: 

Equation 7: Estimation of primer annealing temperature 

𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 69.3 + (0.41 ×  𝐺𝐶 𝐶𝑜𝑢𝑛𝑡) − (
650

𝑃𝑟𝑖𝑚𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ
) 

Next, preference was given to candidates ending with a guanine or cytosine due to the higher 

binding affinity, and sequences with long repeats of five or more of the same nucleotide were 

excluded. Each successful criterion increased the candidate scores, and only those that were positive 

for every defined criterion were selected. The candidate nearest to the 80% mark was selected as 

the primary choice, with the positions of the remaining successful candidates listed as alternatives.  
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Over 300 primers were designed with this macro with approximately 95% success rates. The 

sequencing experiments were discussed in greater details in Chapter 7: Implementation of the 

Screen (Sequencing and Alignment). 

This early version of the loop structure and scoring system for candidate selection was eventually 

optimised and developed into the structure deployed in the data handling set of functions central to 

the screen analysis.  

 

Concluding Statement 
 

High-throughput approaches are exceedingly dependent on the ability to automate the 

experimental process, and this extends beyond the bench work to include the post-experiment data 

processing and analysis phase. The updating of the RISIC platform software greatly contributed to 

the ease of use when implementing new protocols on the robotic platforms. Relinquishing the 

management of error handling and other tracking procedures such as water levels to the robot 

software also greatly relieved the workflow, allowing attention to be directed towards more 

significant tasks. Furthermore, the move away from hardcoding towards more dynamic software 

enabled new alternatives for simultaneously integrating various workflows, improving the overall 

time efficiency.  

The use of supplementary codes such as the Excel macros to handle the data processing removed 

the need for otherwise laborious manual processing. The current coding structure which heavily 

relied on various types of loops to manage the data processing works well due to the limited nature 

of the data points, which meant that data processing duration is generally within minutes for 

batches and generally completed under an hour when processing the entire screen. However, the 

pursue for higher throughput which is still theoretically possible for the current hardware may 

necessitate the development of more dynamic structures. Such structures may for example require 

the datasets to be split and processed in parallel to drive down the overall processing time since 

loop structures have a tendency to slow with cycle increase. 

Nonetheless, the software and data processing software presented have contributed to improving 

the automation process and the ease of use for the systems. 
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Chapter 6: Characterisation of the Nanoparticles 
   

Background Information 
 

The diversity of nanoparticles and their increasing industrial and medical applications created 

exciting opportunities and necessity to explore any toxicity and its mode of action. While excessive 

concentration of nanoparticles was known to result in necrosis, apoptosis regulated via various 

signalling pathways could be differentially associated with each type and chemistry of nanoparticles. 

The RISCI platform offers a systematic approach to study the regulation of these signalling pathways 

when the cellular system becomes exposed to nanoparticles induced toxicity. Integration of 

nanoparticles treatment is a novelty with numerous advantages. It would enable the RISCI screening 

approach to identify two additional classes of regulators, namely the inhibitors and sensitizers, while 

the candidate lists could potentially indicate enrichment of specific signalling pathways or novel 

regulatory mechanisms unique to nanoparticles induced toxicity. This, in turns, could lead to the 

prospect of generating new hypotheses, contribution to the regulatory knowledgebase crucial to 

implementation of health and safety guidelines and the discovery of biomarkers.  

This chapter explores the toxicity associated with nanoparticles, the characterisation of their 

chemistry and structures, and the attempts to incorporation this new treatment approach into the 

RISCI screen.   

 

Results  
 

Toxicity of Nanoparticles 
A549 or HEK293T cells were exposed to a variety of nanoparticles under a dose-response 

experimental setup and screened for toxicity using light microscopy. Nanoparticles tested included 

commercially available ~157nm silver dispersion citrate-stabilised in water (Sigma Aldrich 675318-

5ML), <150nm titanium(IV) oxide dispersion in water (Sigma Aldrich 700347-25G), LUDOX® TM-40 

~22nm colloidal silica suspension in water (420786-1L), as well as 10nm and 100nm silica dispersion 

in water specially synthesised by Dr Agnieszka Dybowska at the Natural History Museum (NHM).  

The silver nanoparticles tested did not result in observable toxicity even when the undiluted solution 

with the final concentration of 0.0269ug/mL was used in HEK293T (Figure 16A). The titanium(IV) 
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oxide nanoparticles was not soluble in the cell culture media, increasing the opacity of the media. 

Increasing its concentration resulted in visible precipitate forming, which eventually generated huge 

aggregates covering the cells at high concentrations such as 150ug/mL. While toxicity was not 

observed at lower does such as 5ug/mL, use of concentration of 50ug/mL or more led to visible cell 

death (Figure 16B). At 50ug/mL, the cells appeared to die by a variety of cell death including 

apoptosis, but this remained inconclusive. However, apoptosis may be excluded as the form of cell 

death at 150ug/mL since the apoptotic phenotype was definitely absent. The presence of precipitate 

and the resulting cloudiness of the media greatly interfered with methods for quantification of cell 

death including the LDH and CPRG assay, as well as flow cytometry.  

Silica nanoparticles in contrast were easy to work with, their stability in water allowed for very high 

concentrations of up to 40% w/v to be achievable. Nano-silica displayed consistent toxicity, with the 

apoptotic phenotype of rounded cells clear present between the dose ranges tested (Figure 16C). 

The NHM-synthesised 15nm particles were observed to induce 23.92% cell death at 125ug/mL in 

A549 cells, which rapidly increases to 74.61% at 150ug/mL. 100nm particles displayed a delay in 

toxicity, with only 42.39% cell death at 150ug/mL but increasing to 84.34% at 175ug/mL which is 

similar to the 15nm particles in A549 cells (Figure 17A). The commercially available LUDOX® was 

more toxic to the cells, with 27.17% cell death at only 40ug/mL, but displayed similar characteristics 

to the NHM-synthesised particles whereby the toxicity increased sharply towards the maximal within 

a small increment (Figure 17A). Quantification of cell death was performed using DiOC6-PI flow 

cytometry. 

Silica nanoparticles from both sources were subjected to the CPRG assay, during which the 

nanoparticles were applied to HEK293T cells transfected with GFP. The CPRG assay could detect the 

increase in toxicity with greater degree of sensitivity. Here, the 15nm silica nanoparticles (NHM) 

induced cell death was quantified (Figure 17B), with an increase in mean observable at 75ug/mL or 

40% improvement in the lower detection limit. Furthermore, at 100ug/mL the mean CPRG ratio was 

extremely similar to the apoptosis criteria of 0.55. However, at 125ug/mL the treated sample mean 

showed a decrease and the silica treated samples generally had greater standard deviation. This is 

likely to be due to the narrow transit range of the nanoparticles in combination with pipetting 

errors. 

HEK293T cells treated with LUDOX® silica nanoparticles were also subjected to the LDH assay (Figure 

17C), which measures the amount of lactate dehydrogenase (LDH) released from the cells due to cell 

lysis. The LDH assay may be a suitable indicator for estimation of necrosis. Across the range of 0 – 

120ug/mL treatment concentration, none generated significantly LDH release against the 
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background, whereas the signal control which were lysed in parallel resulted in a strong LDH signal. 

This indicated that uncontrolled lysis of the cells was not triggered by the LUDOX® silica 

nanoparticles; in contrast the signal generated by the CPRG ratio is likely to be attributed to 

apoptosis.  

Finally, a range of concentration of LUDOX® silica nanoparticles were applied to HEK293T cells to 

study the dose response against time. HEK293T cells were tolerant to concentration of the silica 

nanoparticles less than 20ug/mL, with no observable differences between the treated samples and 

non-treated controls. At 40ug/mL, moderate level of apoptosis was first observed at the 24hours 

time point. Increasing the concentration further causes the cells to become susceptible to the silica 

nanoparticles at an earlier time point (Figure 18). 80ug/mL induces apoptosis six hours after 

treatment, 100ug/mL at 4 hours while 150ug/mL results in an almost immediate activation of 

apoptosis. The increase in concentration also causes the cells to undergo apoptosis with a greater 

magnitude, with nearly the entire population becoming apoptotic at high concentrations 

(>60ug/mL).  
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Figure 16: Dose response of various nanoparticles in HEK293T cells. Magnification = 200X, 
scale bar = 20µm. A) The silver nanoparticles tested did not induced observable cell death 
under the chosen conditions, and is likely due to a result of insufficient quantity of 
nanoparticles present. B) Titanium (IV) oxide nanoparticles did not induce cell death at low 
concentration such as 5ug/mL, but exhibit toxicity at concentration equal to or greater than 
50ug/mL. C) Silica nanoparticles also induce toxicity at 50ug/mL and above, and continue to 
display morphology of apoptotic cells at higher concentrations.   
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Figure 17: Quantification of the dose response of cells to silica nanoparticles. A) NHM-
synthesised provided by our collaborators and commercially available silica particles were 
used in the toxicity studies and quantified with DiOC6-PI flow cytometry. The NHM-
synthesised nanoparticles were tested in A549, while commercially available nanoparticles 
were tested in HEK293T cells. N = 3, error bars represent standard deviation of sample size. B) 
The CPRG assay could detect cell death induced by 15nm silica nanoparticles (NHM) in 
HEK293T cells. N = 3. C) Increased cell death was also detected in HEK293T cells treated with 
the LUDOX silica nanoparticles using the CPRG assay (not shown) but not in the LDH release, 
suggesting that the cell death comprised predominantly of apoptosis. N = 3, error bars 
represent standard deviation of sample size. 
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Figure 18: Dose response of the LUDOX® silica nanoparticles with time. HEK293T cells 
appear to be tolerant to low concentrations of the LDUOX® silica nanoparticles (<20ug/mL), 
with toxicity observed at 40ug/mL after 24 hours. Increasing the concentration causes the 
cells to become susceptible to the nanoparticles at an earlier time point and eventual cause 
cell death on a greater magnitude. The time points where apoptosis were observed were 
labelled with an orange outline. Magnification = 200X, scale bar = 20µm. 



 
120 | P a g e  

 

Characterisation of the LUDOX® Silica Nanoparticles 
Chemical characterisation of the LUDOX® silica nanoparticles was performed by Dr Agnieszka 

Dybowska from the Earth Sciences Department, Natural History Museum (NHM). 

The LUDOX® nanoparticles were characterised using x-ray diffraction (XDR) to study crystallinity, the 

BET method to study the surface area, transmission electron microscopy (TEM) to analyse the size, 

Fourier transform infrared (FTIR) spectroscopy for purity and surface characteristics, and dynamic 

light scattering (DLS) for size, surface charges and stability of the nanoparticles in the cell culture 

media. 

The samples were dried at 60°C to obtain a silica powder for the XDR, BET and FTIR analysis, while 

the original colloid was used for the DLS and TEM. 

The silica powder was scanned using Enraf-Nonius diffractometer coupled to INEL CPS 120 positive-

sensitive detector with Co Kα radiation. The XDR results indicated that the LUDOX® sample consists 

of only amorphous silica (Figure 19A). Traces of crystalline phase of silica or other impurities were 

not found in the sample.  

For FTIR analysis, the powder was mixed with potassium bromide to form a pellet, which was then 

analysed by PerkinElmer Spectrum 1 FRIR. Three absorption peaks were detected at 477cm-1, 

802cm-1 and 1105cm-1 which are characteristic of silica (Figure 19B). The 477cm-1 peak 

corresponds to the bending vibration of the Si-O-Si bond, while the 802cm-1 and 1105cm-1 peaks 

correspond to the symmetric and anti-symmetric stretching vibration adsorption of Si-O bond 

respectively. Another peak at 3433cm-1 corresponds to the Si-OH and stretching vibration 

absorption of the O-H bond of physically adsorbed water and the 1641cm-1 peak represents the 

bending vibration absorption of physically adsorbed water. The surface of the silica nanoparticles 

was not functionalised since only absorption peaks characteristics of silica and water were detected. 

For TEM imaging, the colloidal silica nanoparticles were diluted with water then deposited on a 

copper grid and left to dry at room temperature overnight prior to imaging. Images captured using 

the Hitachi 7100 TEM with accelerating voltage of 100kV show the silica nanoparticles to be 

spherical with an estimated size of 28nm (Figure 19C).  

The zeta potential of the silica nanoparticles was measured with the Autotitrator on Malvern 

Zetasizer Nano, and the pH was titrated from pH 9.0 to pH 1.0. The zero point of charge was 

determined to be pH 1.96 (Figure 19D). The zeta potential measures the degree of repulsion 

between particles with the same charge. A high zeta potential confers stability to small particles or 

molecules since the dispersion will resist aggregation. The colloid is electrically stabilised when the 



 
121 | P a g e  

 

zeta potential is positively or negative high, and a decrease in the zeta potential indicates attraction 

forces increasingly exceeding repulsion, causing the dispersion to destabilise, flocculate and 

eventually precipitate. While the stability of the nanoparticles is reduced by under the near neutral 

pH of the cell culture environment leading to a shift towards larger particle size, the nanoparticles 

remained fairly well dispersed in the culture media. 

DLS was performed using the Malvern Zetasizer Nano instrument equipped with a He-Ne 633 nm 

laser. 40ug/mL of the silica nanoparticles were diluted into the media, vortexed for one minute and 

incubated for five minutes at 37°C before transfer into size cuvettes for measurements. In the 

absence of serum, the particle size in cell culture media (DMEM) was 26.3nm, and follows an 

approximately linear scale as the serum (FBS) concentration was increased up to a maximum of 

173nm at 10% FBS. The particle size of 101nm at 1.25% appears to be an experimental outlier, and 

estimation from the correlation function would give a particle size of approximately 50nm (Figure 

20A). The quoted average particle size refers to peak position in DLS graph (Figure 20A) after 

excluding peak contribution generated by the media and FBS.  

Figure 20B shows the results from a 24-hour incubation period during which the particle size in 

media without FBS or supplemented with 1.25% FBS was monitored using DLS. In the absence of the 

serum, particle size appeared to continuously increase over time in the DMEM, while the addition of 

1.25% FBS stabilises the particle size within the first six hours of incubation. This may suggest that 

the serum protein plays an important role in the formation of the corona (a shell of biomolecules or 

proteins) around the nanoparticles, which could aid the passage of the nanoparticles across the 

plasma membrane. 
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Figure 19: Characterisation of the LUDOX® silica nanoparticles. A) X-ray diffraction indicates 
that the silica nanoparticles exist as a single amorphous phase, with no other crystalline 
phases or impurities detected. B) Fourier Transform Infrared spectroscopy results show only 
absorption peaks characteristic of silica and confirm that the nanoparticle surface is not 
functionalised. C) Transmission electron microscopy images show the spherical form of the 
silica nanoparticles, with an estimated diameter of 28nm. D) The point of zero charge 
estimated at pH 1.96 from the titration experiment. The decreased in zeta potential at neutral 
pH of the cell culture media destabilises the nanoparticles, increasing its size. However the 
nanoparticles remain well dispersed in the media. Figure prepared by Dr Agnieszka Dybowska. 
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Figure 20: Effects of cell culture serum on the LUDOX® silica nanoparticles. A) Increasing the 
amount of serum (FBS) in the cell culture media (DMEM) led to increase in particle size, with a 
maximum size of 173nm at 10% serum concentration. B) The particle size of the LUDOX® silica 
nanoparticles was tracked using DLS over a 24 hour incubation period in DMEM with or 
without the supplement of 1.25% FBS. Addition of 1.25% FBS caused the particle size to 
stabilise within the first six hours of incubation. Figure prepared by Dr Agnieszka Dybowska. 
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Inhibition of Silica Nanoparticles Induced Cell Death 
The toxicity studies on nanoparticles revealed that the CPRG assay could be used to quantify the cell 

death induced by the silica nanoparticles with a greater sensitivity than flow cytometry. The 

converse needs to be demonstrated for the CPRG assay and RISCI screen confirming the inhibition of 

the CPRG ratio after a treatment condition which induced cell death.  

A construct of IκBα targeted to the mitochondria outer membrane (mIκBa) generated by Evangelos 

Pazarentzos, a PhD student in our group, was demonstrated to show strong apoptosis inhibition 

effect. This construct was used as the apoptosis inhibition control while the GFP was used as an 

overexpression control. Both controls were co-transfected with the β-galactosidase reporter enzyme 

into HEK293T cells, and 24 hours post-transfection the cells were subjected to 0 – 70ug/mL of 

LUDOX silica nanoparticles treatment for a further 24 hours. At 40ug/mL, mIκBa was observed to 

prevent increase of CPRG ratio compared with the GFP control. This was further investigated with 96 

samples transfected by the optimised robotic platform. The distribution of the CPRG ratios for non-

treated cells and in the presence of 40ug/mL silica nanoparticles was presented in Figure 21A. For 

the overexpression control GFP, the treatment caused the CPRG ratio to shift towards higher values 

compared with the non-treated baseline. In contrast, mIκBa was able to prevent this shift towards 

higher values.  

This inhibition effect was also observed by comparing just the CPRG ratios from the treated set 

without accounting for the baseline (Figure 21B). This comparison method formed the initial 

selection criteria for identifying inhibitor candidates, but was eventually changed to the Treated-

Non-Treated Difference (TNTD) which accounted for the baseline and provided greater statistically 

significance (See Chapter 7: Implementation of the Screen). The TNTD threshold was calculated from 

these readings to be 0.2 for GFP and 0.05 for mIκBa.  

Established inhibitors of apoptosis such as Bcl-2 and BclXL were also tested using similar experimental 

setup, but results were inconclusive with both controls showing excessive toxicity on transfection. 

The plasmids were eventually sequenced and found to be damaged, and was not pursued further 

since the apoptosis inhibition was readily observed using mIκBa. 
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Figure 21: Inhibition of LUDOX® silica nanoparticles induced cell death in HEK293T cells by 
mIκBa. A) Distribution of the CPRG ratios in the overexpression (GFP) and apoptosis inhibition 
(mIκBa) controls indicated that the apoptosis-inhibitory effect may be observed using the 
CPRG assay. N = 96. B) Comparison of the CPRG ratios between GFP and mIκBa subjected to 
silica nanoparticles treatment. N = 12, error bars represent standard deviation of sample size. 
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Discussion 
 

The diversity of nanoparticles and available surface functionalization make it likely that each type of 

nanoparticles is likely to trigger toxicity, if any, through a unique mode of action imposed by its 

chemistry. This diversity also makes studying the toxicity of every nanoparticle types and 

modification impossible and the project focused on nanoparticles commonly used in industrial and 

consumer products, including silver commonly employed for its anti-microbial activity [297], 

titanium oxide which is used in sun screen and paints [298] and silica which has extensive 

applications including in the biomedical field as drug delivery carriers [299, 300]. At the start of this 

project, it has been commonly recognised that application of high concentration of nanoparticles to 

cells often results in necrosis, but information regarding the type of toxic response and associated 

regulation mechanisms remained rare.  

The nano-titanium induced toxicity resulted in cell morphology which did not correspond to 

apoptosis. It was also difficult to work with, in particular due to increased opacity of the media and 

the precipitation of the particles onto the cells. The opacity caused by the nano-titanium interfered 

with traditional 96-well assay format such as MTT, LDH and CPRG assays, while the insoluble 

precipitates interfered with flow cytometry techniques, all of which made quantification of cell 

death difficult. Nano-titanium is likely to cause necrosis at high concentration such as 150ug/mL, 

where the presence of large amount of cell debris was observed in the absence of typically rounded 

apoptotic cells. This necrotic effect may help explain reported allergy to sunscreens containing 

titanium dioxide [301], since the uncontrolled cell lysis is likely to result in an inflammatory 

response. It was excluded from further optimisation and integration for the RISCI screen due to its 

interference with the CPRG assay.   

The silver nanoparticles were not observed to induce toxicity at the concentrations tested. This lack 

of toxicity could be the result of insufficient nanoparticles concentration, although this could not be 

verified further in our experiment settings. Due to the lack of sufficient quantity of the nano-silver 

and the high acquisition costs, these particles were not tested further. The anti-bacterial effect of 

silver nanoparticles had been well established but the current literature remained vague in the 

toxicity of these nanoparticles to biological systems. Recent publications indicated that silver 

nanoparticles may have an advert effect on human macrophages [302, 303] and could induce 

oxidative stress, genotoxicity and even apoptosis in cultured cells and animal tissues [304, 305].   
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Silica nanoparticles however displayed consistent toxicity with in-house synthesised nanoparticles 

provided by our collaborators and commercially sourced nanoparticles inducing cell death with cell 

morphology similar to apoptosis. The size of the nanoparticles appears to be an important factor to 

the toxic response, with smaller diameter nanoparticles displaying increased toxicity. The interaction 

of silica nanoparticles with macromolecules from its biological environment is likely to mediate its 

final size, and hence play a critical role in determining the toxicity for this type of nanoparticles. 

The LUDOX® silica nanoparticles were selected as the primary toxic agent in the RISCI screen due to 

its availability and costs. The nanoparticles were extensively characterised by Dr Agnieszka 

Dybowska to confirm that the silica remained stable and in the nano-scale under the experimental 

setup. XRD and FTIR analysis confirms the purity of the nanoparticle sample and that the 

nanoparticle surface was not functionalised. TEM imaging confirmed the spherical form of the 

nanoparticles and provided an estimate to its diameter at 28nm. DLS and zeta potential 

measurements indicated that the silica nanoparticles remained in the nano-scale in the cell culture 

media, and while the zeta potential is reduced in this environment causing the particles to 

destabilise and increase in size, the nanoparticles remained evenly dispersed in the media. 

Supplementing the media with serum increased the estimated particle size to a maximum of 178nm 

at 10% FBS, and this follow an approximately linear function. The presence of 1.25% serum also 

seemed to stabilise the size of the nanoparticles within a few hours of interaction. This observation 

confirms the importance of the corona, which is the clustering of proteins and other biomolecules in 

the immediate vicinity around the nanoparticles, in mediating the interaction and toxicity of the 

nanoparticles with the cells. It may be concluded that under the experiment conditions of 1.25% and 

40ug/mL of the LUDOX® sample, the silica is pure and remained as nanoparticles which are evenly 

dispersed.  

The cell death induced by the LUDOX® nanoparticles was also characterised by the CPRG assay 

(Figure 21A) and the LDH assay (Figure 17C). The LDH assay results indicated that the nanoparticles 

were not causing non-specific necrotic lysis of the cells during the induction of cell death, suggesting 

that the membrane lysis detected by the CPRG assay comprised mostly apoptosis. Furthermore, this 

form of cell death could also be inhibited by a known apoptosis inhibitor, mIκBa, as measured using 

the CPRG assay, providing further supporting evidence that apoptosis was induced by the LUDOX® 

silica nanoparticles.  

Dialysis experiments by the postdoctoral researcher Dr Odu Okoturo on the LUDOX® silica 

nanoparticles further confirmed that toxicity results from the nanoparticles and not the carrier 

solution. Membranes with various pore sizes were used to retain the nanoparticles during dialysis. 
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Application of the retained content to A549 cells was shown to induce cell death (data not 

presented).  

The effectiveness of the CPRG assay in quantifying this inhibitory effect by the mIκBa construct 

confirmed the possibility of using the CPRG assay to identify apoptosis inhibitors and potentially 

sensitizers.   
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Chapter 7: Implementation of the Screen 
 

Background Information 
 

The implementation of the screen followed on the extensive setup and optimisation phase which 

looked into the various aspects of the screening workflow such as process efficiency, costs, 

practicality of the implementation and potential bottlenecks and pitfalls.  

The process, especially the validation assays, was first trialled on mouse cDNA clones identified as 

apoptosis inducing candidates through a previous screen to accustom to the high-throughput 

workflow. This tested various processes such as the potential validation assays which included the 

nucleosome ELISA and PARP western blotting to confirm the apoptotic activity of the candidates. 

Bioinformatics analysis approaches such as DAVID were also trialled for the first time on the 

candidate genes isolated from the RISCI platform.  

The primary screen of the NITE library cDNA collection was then scaled up in phases, beginning with 

control runs, followed by limited number of plates from four per day. As these initial results of the 

screen were generated and familiarity with the workflow improved, the throughput was scaled 

upwards to the standard eight plates and further doubled as the pace reached its maximal 

practicality.  

Based on the data generated in the primary screen and the selection criteria determined 

experimentally, candidates for apoptosis inducing, inhibiting and sensitizing activity were then 

isolated into a hit library for further validation. 

 

Results 
 

Validation of the Mouse cDNA Apoptosis Candidates 

Sequencing and Alignment 
118 Mus musculus derived cDNA sequences cloned into pcDNA3.1 which were identified as pro-

apoptosis gene candidates in a previous screen were sequenced to verify the identity of the 

sequences. Sequencing was performed first in the forward and reverse directions using the T7 

promoter and BGH polyadenylation signal sequences flanking the cDNA. Next, internal primers were 
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designed from these initial sequences in the 5’-3’ direction using a computer script to continue the 

sequencing. DNA sequencing was performed using the standard chain-termination sequencing by 

the MRC DNA Core based at the Imperial College London Hammersmith Campus.  

Each cDNA was repeatedly sequenced using the internal primers until all sequences may be aligned 

into a single contig. In total 340 sequencing primers were designed and used, from which 321 

primers generated good quality reads (94.41%). Approximately 281,442 bases were derived for the 

clones, giving fold coverage of 1.67. 117/118 (99.15%) clones were successfully sequenced and 

aligned, with only a single clone not generating any sequences despite both manual and automated 

primer designs.  

The sequencing reads were assembled into a continuous sequence using the online CAP3 Sequence 

Assembly Program provided by the Université Claude Bernard Lyon 1, France [306]. 22 clones 

(18.80%) required the use of an additional published sequence homology from the NCBI database to 

completely align the sequencing reads due to small gaps which failed to be closed after repeated 

sequencing.  

Validation of Apoptosis Activity2 
The mouse pro-apoptotic candidates were independently validated for other markers of apoptosis. 

The late-stage degradation of chromosomal DNA characteristic of apoptosis was investigated using 

the Cell Death Detection ELISAPLUS (Roche) kit. The kit uses the absolute signal at 405 nm referenced 

to the negative control to calculate the fold increase in apoptosis. GFP was used as the 

overexpression negative control (the reference) while RIP was used as the apoptosis positive control. 

The calculated value of GFP was always 1 since it was the reference, while RIP signal was quantified 

at 3.393. 79 of the non-redundant candidates were positive for increased nucleosome release into 

the cytosol and significantly (p < 0.1) increased from the GFP negative control (Figure 22A). This 

reaffirms the capacity of the CPRG assay to identify pro-apoptotic genes. 

Accumulation of cleaved PARP was also quantified using western blot for each candidate. This assay 

is an indirect measure of caspase-3 activity, an established marker of apoptosis, and validated 75 

candidates as positive (Figure 22B). The general tendency between the ELISA and western blot 

generated validation results appears to be similar, with the apoptosis intensity increasing with the 

candidate genes clone number, indicative of the accurate ranking achieved with the primary CPRG 

ratio (Compare Figure 22A and B).  

                                                           
2 Results from this section has been published in the following article: Lin B, Huntley D, AbuAli G, Langley SR, Sindelar G, et al. (2011) Determining Signalling Nodes for Apoptosis by a 
Genetic High-Throughput Screen. PLoS ONE 6(9): e25023. doi:10.1371/journal.pone.0025023 
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Figure 22: Validation of the mouse pro-apoptotic candidates using alternative apoptosis 
assays in HEK293T cells. A) The Cell Death Detection ELISAPLUS   Kit (Roche) was used to probe 
the pro-apoptotic candidates for nucleosome release into the cytoplasm, a marker for late-
stage DNA degradation characteristic of apoptosis B) PARP cleavage quantified using western 
blot band intensity determined the level of caspase-3 activation for each candidate. C) Control 
experiment performed in duplicates showing caspase-3 activation assayed with the 
accumulation of its cleaved substrate, PARP. 
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Bioinformatics Analysis2 
Bioinformatics analysis was performed in collaboration with Dr. Derek Huntley of the Bioinformatics 

Support Service, Imperial College London. Comparison of the mouse candidate list with disease and 

cancer associated microarray expression profiles were performed by Sarah Langley and Dr Enrico 

Petretto of the MRC Clinical Sciences Centre, Imperial College London.  

The Ensembl gene IDs for each of the assembled sequences were retrieved from the Ensembl 

peptide database (NCBIM37.58) using BLAST [307, 308]. Further data-mining was performed using 

the derived gene ID, retrieving information such as the gene names, UniProt protein identifiers, 

InterProScan motif/domain [309] and the GO annotations [310] including the cellular localisation, 

molecular functions and biological processes. Information on the signalling pathways was retrieved 

from the PANTHER website (v7.0) [311, 312].  

21 of the sequences were found to be redundant. A further 6 clones were identified as potential 

candidate dependence receptors, having fulfilled the criteria of apoptosis induction, presence of 

predicated caspase recognition sequences and presence of a DART motif common to dependence 

receptors [181]. Caspase substrate and dependence receptor predictions were performed using the 

CASVM Server 1.0 [313] and Dependence Receptor Database [181] respectively. The potential 

dependence receptor clones were excluded from the analysis to investigate them in collaboration 

with Professor Patrick Mehlen, National Scientific Research Center (CNRS), Lyon, France. 

Transporter and catalytic function clusters were the most significant association between the 

validated pro-apoptotic genes, with 43 genes identified within these clusters. This was followed by 

previously established genes involved in apoptosis, signalling factors and genes without known 

functional annotation.  

The established pro-apoptosis genes formed approximately 9% of the validated candidates, with 

seven unique genes: Mitochondrial carrier homolog 1 (Mtch1), cathepsin L, glutathione peroxidase-

1, Rhob, Itm2b, Fam82a2/PTPIP51 and Fis1. Mtch1 is a transporter localised to the mitochondria and 

is involved in apoptosis by presenilin-1 in a Bax/Bak dependent manner [314-316]. Itm2b has been 

described extensively as a BH3-only protein and promotes apoptosis activation in a p53-independent 

manner [317, 318]. Overexpression of Fam82a2 was previously published to induce apoptosis [319]. 

Fam82a2 is also a substrate to a host of other enzymes include protein kinase A, Src, PTP1B/TCPTP 

protein tyrosine phosphatases and is known to interact with Nuf2, 14-3-3 proteins, diacylglycerol 

kinase alpha and CGI-99 protein. This implicates Fam82a2 in various signalling cascades including 

apoptosis. However, the precise function of Fam82a2 has yet to be discovered, but it may involve 
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the calcium release coordinated with VAPB [320, 321]. The involvement of cathepsin L, glutathione 

peroxidase-1, Rhob and Fis1 in apoptosis has also been previously established [322-325]. 

The proteins of the isolated genes were found to be localised across all major cellular 

compartments, a finding which was in line with studies proposing that sensors were present in each 

of these compartments to activate apoptosis resulting from excessive damage or stress [326, 327]. 

The mitochondrion, a major apoptosis signalling hub, was also found to be a major component 

where the gene products localised to. 20 proteins were localised to the mitochondria, 16 of which 

were novel genes previously not associated with apoptosis. This indicates that signalling via the 

mitochondria may be more complex than the major established pathways. The endoplasmic 

reticulum (ER), another key organelle involved in apoptosis regulation primary via ER stress and 

calcium release, was another prominent cellular localisation with 13 genes. It was hypothesised that 

transporters found to localised to the ER such as Napa, Slc37a4, Surf4 and Yipf5 may facilitate the 

release of calcium or other pro-apoptotic factors directly or indirectly. It is interesting to note that 

only five of the genes were localised to the nucleus, which may hint that the nuclear control of 

apoptosis may be vested with a few master regulators such as p53, with most other apoptosis 

signals initiated at the protein level elsewhere which may offer a faster response. 

Transmembrane proteins were also found to be a significant portion of the positive genes, many of 

which are transporters that may indirectly affect apoptosis signalling by altering the cellular 

homeostasis, or being involved in complex formation or protein sequestration such as the proposed 

involvement of Mtch1 in the permeability transition pore [314].      
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Figure 23: Bioinformatics analysis of the mouse pro-apoptotic candidates. A) The localisation 
of each of the pro-apoptotic genes. B) The signalling pathway, biological process and 
molecular function clusters derived using the PANTHER Classification System were presented 
as a tree map. A significant proportion of the genes were found to possess catalytic and 
transporter activities. 
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Determining signal thresholds and candidate selection criteria 

Triton Signal Threshold 
The CPRG ratio is calculated by Equation 1 using two absolute signals at equilibrium. The CPRG signal 

(before lysis) estimates the level of apoptosis, while the Triton signal (after lysis) gauges the total 

level of transfection.  

A plate of the substrate CPRG in the absence of the reporter enzyme was measured at 590nm as the 

blank values. The CPRG ratio of each blank well was then calculated using randomly computer 

generated Triton signals between the ranges of 0.1 to 2.0. The sample size of each signal range was 

96 and the mean CPRG blank value is 0.238 ± 0.012. The CPRG ratio at 0.0 - 0.1 Triton signal range 

was 6.89 ± 6.11, decreasing to 1.66 ± 0.38 at 0.1 - 0.2 and 0.527 ± 0.040 at 0.4 - 0.5, before stabilising 

under 0.3 at Triton signals of 0.9 or above.   

A Triton signal of 0.5 represents a 100% increase in signal against the blank and indicates a well is 

transfected. However it generates a CPRG ratio above 0.5, which still classes the false positive well 

as a positive candidate with approximately 67.71% probability of this error occurring. This false 

positive rate increases to 100% below Triton signal of 0.4, since the diminishing transfection reduces 

the enzymatic activity to zero causing the Triton signal to be equal to the blank. Above a Triton signal 

of 0.6, the false positive rate resulting from the assay design reduces to zero. Since the estimated 

fluctuation in dataset automated by the robots is between 10 – 15%, a Triton signal of 0.7 was 

selected as the minimal threshold a data point has to achieve prior to analysis. Any values below 0.7 

are excluded as the transfection was too weak to generate a signal that sufficiently removes the 

false positives.  

This threshold was further emphasised in a separated automated control experiment with 192 

sample size for the luciferase and RIP controls. Below the threshold of 0.7, the negative and positive 

controls become indistinguishable (Figure 24A). Within the same control, the two sets of 96-well 

plates resulted in similar range of CPRG and Triton signals. Furthermore, Figure 24A indicated that 

only 4 / 384 (1.04%) samples transfected resulted a Triton signal lower than 0.7, reasserting that the 

threshold is sufficient to identify transfected samples. 

In general, the level of transfection correlates with the intensity of the Triton signal. The higher the 

Triton signal, the better the transfection and consequently improves the quality of the data point. 

  



 
136 | P a g e  

 

CPRG ratio for pro-apoptotic candidates 
The luciferase, caspase-2 and RIP controls were isolated and transfected using the robots under the 

optimal conditions. The negative control luciferase has a CPRG ratio of 0.35 ± 0.079, while the 

positive controls caspase-2 and RIP are 0.60 ± 0.12 and 0.91 ± 0.04 respectively. Due to this linear 

separation of the controls, a fixed threshold may be employed for the selection of pro-apoptotic 

genes.  

Caspase-2 was used as the weak control with its mean CPRG ratio between 0.6 – 0.7. By reducing the 

mean by approximately 10%, the minimal threshold was determined at 0.55. This threshold allows 

selection of the lower range of the caspase-2 signals, while allowing for slight increases in toxicity as 

result of ectopic expression.  
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Figure 24: Thresholds for Transfection and Apoptosis determined using datasets derived 
from HEK293T cells. A) Distribution of the CPRG and Triton signals from the positive and 
negative controls. The gradient between the two signals is the CPRG ratio, and the pro-
apoptotic CPRG ratio threshold of 0.55 is represented by the grey line. The orange horizontal 
line represents the 0.7 threshold for the Triton signal. N = 192 per control type. B) The CPRG 
ratios of luciferase, caspase-2 and RIP. Caspase-2, the weak apoptosis control, is used as the 
minimal threshold for apoptosis. N = 96, error bars represent standard deviation of sample 
size. 
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Indicators for selecting inhibitors and sensitizers of apoptosis 
The attempt to identify inhibitors and sensitizers of apoptosis in addition to the pro-apoptotic 

inducers is a novel aspect of this screen. Inhibitors are defined as genes which supress cell death 

based on a reduction or maintenance of the CPRG ratio after treatment. Sensitizers are genes which 

do not induce apoptosis upon overexpression, instead predisposing the cellular system to an 

external trigger. In this screen, this external trigger is the treatment with the silica nanoparticles.   

Unlike the CPRG selection criteria for the apoptosis inducers which is on a linear scale using a single 

CPRG ratio, selection of inhibitors and sensitizers may only be possible when non-treated and 

treated sets of data are analysed relative to each other. Such relationship causes the assay to 

assume a quadratic distribution, where the negatives are located within the central range while 

extremely negative and positive values indicate the presence of inhibitors and sensitizers 

respectively. This makes the direct comparison of the CPRG ratio of an external negative control 

such as luciferase or GFP with the candidates sub-optimal, since the overexpression of each cDNA is 

expected to modify the cellular system differently leading to different baselines. This dictates the 

use of relative selection criteria to determine the inhibitor and sensitizer candidates, rather than the 

fixed threshold used for inducer selection. 

Two indicators were examined to quantify this relationship. First, the Treated-Non-Treated (TNT) 

ratio is calculated by putting the CPRG ratios of the treated and non-treated conditions into 

relationship as in Equation 8: 

Equation 8: TNT Ratio 

𝑇𝑁𝑇 𝑅𝑎𝑡𝑖𝑜 =  
𝐶𝑃𝑅𝐺 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝐶𝑃𝑅𝐺 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑁𝑜𝑛 − 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
 

The TNT ratio uses the rate of change between the treatment condition and the non-treated 

condition to measure the effects of apoptosis inhibition or sensitization. The faster the CPRG ratio is 

changed under treatment relative the non-treated baseline, the more likely that the gene is 

sensitizing the cells to apoptosis. Conversely, if there is little or no change in the CPRG ratio after 

treatment, then the gene is likely to be inhibiting or delaying cell death.  

GFP was used as the overexpression control while mIκBa was used as the inhibitor control. 96-well 

plates of each control were transfected, and subjected to silica nanoparticles treatment previously 

optimised at 40ug/mL for 24 hours. The calculated TNT ratio for GFP was 1.512 ± 0.319, with mIκBa 

at 1.157 ± 0.290. This represents a 23.18% reduction in TNT ratio by the inhibitor control under 

treatment, with a t-test p-value of 8.06912E-14. 
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An alternative method of calculation using the TNT Difference (Equation 9) was proposed by Dr. 

Enrico Petretto of the MRC Clinical Sciences Centre, Imperial College London.  

Equation 9: TNT Difference 

𝑇𝑁𝑇 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐶𝑃𝑅𝐺 𝑅𝑎𝑡𝑖𝑜𝑇𝑟𝑒𝑎𝑡𝑒𝑑 − 𝐶𝑃𝑅𝐺 𝑅𝑎𝑡𝑖𝑜𝑁𝑜𝑛𝑇𝑟𝑒𝑎𝑡𝑒𝑑 

The TNT Difference (TNTD) quantified the changes in cell death using absolute difference between 

the two CPRG ratios, rather the rate of change. Using the same experimentally generated dataset, 

the TNT Difference of GFP and mIκBa were 0.204 ± 0.096 and 0.052 ± 0.107 respectively. The TNT 

Difference indicated a reduction of 74.51% with a t-test p-value of 3.90973E-20. 

The change in method of calculations to TNT Difference led to a three-fold increase in sensitivity, 

while the p-value was improved by a factor of 2,063,855.80. Instability of the TNT ratio which may 

cause the indicator to fluctuate more wildly leading to multiple peaks (Figure 25A) was also 

improved using the TNT Difference. 

Hence, it was determined that the TNT Difference was sufficient to identify inhibitory response from 

the ectopic protein expression based on the controls. While a control for sensitizer was not 

available, it could be hypothesised that a similar effect is likely to occur at the opposite spectrum, 

where a significant increase in TNT Difference relative to the GFP baseline is indicative of a 

sensitization effect. 
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Figure 25: Comparison between the TNT Ratio and TNT Difference as the indicator for 
changes in cell death using datasets derived from HEK293T cells. A) Frequency (%) of the TNT 
Ratios between the overexpression and inhibitor controls across classes with 0.2 unit 
increment. Instability of the indicator is observable with multiple signal peaks at different 
ratios, and small proportion of extremely high ratios for both controls. N = 96. B) Frequency 
(%) of the TNT Difference between the overexpression and inhibitor controls across classes 
with 0.2 unit increment. The TNT Difference improves the assay sensitivity by three-fold, 
resulting in a smooth distribution of signals across a narrow range. N = 96. 
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DWE as the measure of central tendency 
It was discovered that the dataset generated during the screen fluctuated between different 

experiments. This could be due to minor changes in final nanoparticles concentration resulting from 

pipetting errors, or variation in response of the cells among other reasons. Hence, an absolute TNT 

ratio or difference calculated in one experiment may be of another magnitude in another. For 

example, in an experiment where the cells are more sensitive to nanoparticles treatment, more 

sensitizer candidates will be identified using a “fixed” threshold of the control. As this was not 

anticipated in the setup, insufficient control counts prevented the accurate calculation of a baseline 

for determining the relative toxicity baseline for normalisation. 

However, the central tendency of the whole experiment could offer a solution to the baseline 

calculation. By taking the reasonable assumption that candidates are randomly distributed across 

the entire NITE library, and not organised based their apoptosis sensitivity, the experiment 

population will follow a normal distribution. The true central tendency will form the most 

appropriate baseline toxicity as a result of the nanoparticles treatment. 

Standard calculations such as mean or median are not accurately weighted and may be 

disproportionally skewed by outliers. Since these outliers are the inhibitor and sensitizer candidates, 

non-weighted skewing will reduce their significance. The statistical approach of trimming these 

outliers prior to calculation is also not ideal since it introduces biasness. The most appropriate 

measure of central tendency for the screen will be one based on where most of the data points are 

clustering, which could be calculated by proportionally reducing the weights of large outliers. The 

Distance-Weighted Estimator (DWE) calculated in Equation 10 offers this advantage. 

Equation 10: Distance-Weighted Estimator 

𝑤𝑒𝑖𝑔ℎ𝑡,𝑤𝑖 = (𝑛 − 1).�𝑎𝑏𝑠(𝑥𝑖 − 𝑥𝑗)−1
𝑛

𝑗=1

 

𝐷𝑊𝐸 =  
𝑤1𝑥1 +  𝑤2𝑥2 +  𝑤3𝑥3 + 𝑤𝑛𝑥𝑛

𝑤1 +  𝑤2 +  𝑤3 +  𝑤𝑛
 

The merits of the DWE such as its robustness in the presence of outliers versus classical measures 

such as the arithmetic, harmonic and geometric means, and data trimming approaches were 

discussed by Dodonov et al. [328]. The DWE was used to estimate the central tendency of each 

experimental population of data points and thus the baseline on which the inhibitors and sensitizers 

was identified. 
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Selection of Inhibitor and Sensitizer Candidates 
Unlike inducer candidates which may be easily selected based on a fixed threshold of the CPRG ratio, 

inhibitor and sensitizer candidates have to be determined relatively due to the greater amount of 

experimental fluctuation. Previously, the use of DWE to estimate the baseline toxicity of each 

experiment set was explained. The TNT Difference (TNTD) threshold for mIκBa, GFP and sensitizer 

set at 0.05, 0.20 and 0.45 respectively; mIκBa and GFP thresholds were determined experimentally 

previously while the sensitizer threshold was forward-estimated based on the other two threshold. 

These thresholds are used as the references for calculation. 

Under the optimised screening condition, the set DWE is expected to be near the GFP threshold, 

allowing for both the inhibitors and sensitizers to be equally selected. In hyper-sensitive conditions 

where the set DWE approaches the sensitizer threshold, the quality of sensitizer selection is 

diminished and only the extremely effective sensitizers may generate sufficient signal to qualify 

selection. However, selection of inhibitors will be improved since genes which prevent cell death 

under these hyper-sensitive conditions will be likely to possess certain inhibitory functions. The 

reverse will be true under inhibitory conditions where the cells are not responding sufficiently to 

treatment-induced cell death. Here, the emphasis will be on sensitizer selection. Under optimal 

conditions, the 15% of the genes at each tail will be selected as inhibitors and sensitizers, with a 

higher proportion selected from the opposite end as the dataset become skewed. 

A linear estimation was first employed based on the gradients or rate of change of the controls, with 

the inhibitor and sensitizer gradients at 218.75 and 145.83 times DWE. However, this linear 

estimation may cause the selection to become bias, since DWE baselines around the GFP threshold 

becomes over- or under-estimated too early. The change in selection proportion is expected to 

assume a sigmoidal behaviour, which remains fairly stable around the GFP threshold but rapidly 

emphasised the opposition proportion as the baseline is skewed.  

The weighting factor for determining the sigmoidal proportional selection was determined by trial-

and-error, cumulating in Equation 11: 

Equation 11: Selection Gate Weighting Factor 

𝐺𝑎𝑡𝑒 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝐷𝑖𝑠𝑡𝐺𝐹𝑃 ×  | 𝐷𝑖𝑠𝑡𝐺𝐹𝑃 |𝐷𝑖𝑠𝑡𝐺𝐹𝑃  ×  10 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  
1

𝑒−𝐺𝑎𝑡𝑒 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 + 1
 ×  30 
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Where DistGFP is the distance between the DWE baseline and the GFP threshold. The absolute 

DistGFP determines the degree of deviation from GFP threshold, while the positive or negative signs 

of DistGFP determine the direction of selection.  

A standard sigmoidal fit (Figure 26) will cause no clones to be selected once the DWE baseline past 

either inhibitor or sensitizer thresholds. However, while the significance of selection may be 

reduced, it does not necessary mean that the set will contain no sensitizer at all. Hence, an 85% 

selection limit was built into the fit, allowing some of the insignificant clones to be selected at the 

opposite tail. Since a total of 30% of clones will be selected from each experiment set as inhibitors or 

sensitizers, this limit translate to approximately 4.5% selection of insignificant candidates in the 

worst scenario.  

A normalised score for each gene across different experiments may be further calculated using the 

same principles with Equation 12: 

Equation 12: Gene Score Normalisation 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =  ��𝑇𝑁𝑇𝐷𝑔𝑒𝑛𝑒 − 𝐷𝑊𝐸𝑠𝑒𝑡�  ×  (𝐷𝑊𝐸𝑠𝑒𝑡 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐺𝐹𝑃 + 1)� 

Under the optimal condition, the normalised gene ranking score will be its TNT Difference less the 

DWE baseline since scaling factor will be around 1. Negative values indicate inhibitors, while positive 

values are sensitizers. As the dataset becomes skewed, the gene score is proportionally scaled 

according to the amount of under- or over-sensitivity. A negative scaling factor indicates inhibitory 

condition, causing any negative gene score indicative of inhibitors to be scaled towards the central 

region. The reverse will also be true for the sensitizers. This allows the data points from different 

experiments to be combined into a single list, which is important for enrichment analysis such as 

GSEA.  

Equations from this section were refined using valuable contributions from Dr. Enrico Petretto and 

Professor Stefan Grimm. Dr. Petretto also contributed greatly to the validation of Equation 12 which 

formed the basis of data normalisation and ranking for subsequent analysis. 

  



 
144 | P a g e  

 

 

Figure 26: Determining the Inhibitor-Sensitizer selection proportion. A sigmoidal fit was 
most appropriately for determining the selection proportion for inhibitor and sensitizer. 
Inhibitors and sensitizers were equally selected under optimised conditions where the 
baseline centres on the GFP threshold. As the baseline approaches the inhibitor or sensitizer 
threshold, a greater proportion of candidate will be selected from the opposite tail. Control 
thresholds were experimentally determined in HEK293T cells. 



 
145 | P a g e  

 

Primary Screen 

Workflow Management 
Two runs of DNA isolation was performed daily with a throughput of 1,536 samples while 

transfections were performed in duplicates thus processing 3,072 samples daily. Both processes 

were performed simultaneously to maximise workflow efficiency. The entire transfection process 

was automated and separated into three phases involving the preparation of transfection mix, 

introduction of transfection mix and change of media after incubation. The reagents and plates were 

setup on the TFA platform by the user, after which the robot fully managed each process.  

This “setup-and-go” performance allowed the simultaneous run of the semi-automated DNA 

isolation process, which requires user involvement in DWP transfer and media removal steps for 

increased efficiency. Both processes were tightly interlaced so that the incubation time in one 

process corresponds to the user involvement steps in the other. DNA isolated were transfected the 

next day, minimising degradation of the plasmid over time.  

One set of the transfected cells was subjected to the silica nanoparticles treatment 24 hours post-

transfection, the process of introduction of media with or without the nanoparticles was automated 

on the TFA platform. The CPRG assay involving first the addition of the CPRG substrate followed by 

the addition of 1% triton lysis buffer after incubation and measurement was also automated on the 

TFA platform. The robot manages the liquid handling steps, while measurement at equilibrium was 

manually accomplished.  

The workflow is summarised in Figure 27. Briefly, Day 1 of screen initiation involves mainly the DNA 

isolation process and transfection if previously isolated plasmids were available. 24 hours post-

transfection on Day 2, the treatment of cells with nanoparticles were included into the workflow, 

while 48 hours post-transfection on Day 3, the transfected and treated plates were subjected to the 

CPRG assay. The workflow reaches the maximal on Day 3, and further processes were repeated 

according to the Day 3 workflow until the end of the screen. At the peak, the TFA platform will be 

actively processing plates in the order of transfection, treatment, assay and media change, using 

near 100% of its capacity. The BASY platform uses approximately 65% of its daily available runtime.  

All chemical reagents were purchased prior to the screen, and working solutions required for DNA 

isolation and transfection prepared on a weekly basis. Other bulk purchases include plastic 

consumables such as the microtitre plates, were acquired every fortnight due to the lack of storage 

space. All supplies for the screen were actively managed such that the required quantity arrives as 

the previous stocks become exhausted.   



 
146 | P a g e  

 

  

Figure 27: Daily workflow for the NITE Screen. Two DNA Isolation runs and four transfection 
runs were included as part of the standard screen workflow. Steps involving treatment of cells 
with nanoparticles and assay were included on the second and third day after screen 
initiation, after which the screen workflow repeats the intensive setup of Day 3 until the end 
of the high-throughput screening process. 
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Trial Screen 
Prior to intensively screening of the NITE library, approximately 14.08% or 4224 cDNA clones from 

the library were screened. The results were concisely analysed to determine the quality of the 

screen and candidates. 

The non-treated (NT) baseline set consists of 3,919 (92.78%) good quality data points which were 

above the Triton threshold, with a mean Triton signal of 1.31. The proportion of successful 

transfection in both NT and treated sets decreased slightly to 89.61%. The mean CPRG ratio of the 

NT set was 0.285, indicating that the transfection process and subsequent overexpression did not 

trigger excessively toxicity. 54 cDNA (1.45%) were identified as inducer candidates from the NT set in 

this trial screen. 757 (20.31%) cDNA were identified as inhibitor candidates based on the TNT ratio, 

with the mean TNT ratio of the screened library at 1.87 (Figure 28A). The TNT Difference indicator 

had yet to be discovered at the time point of the trial screen.  

24 of the inducers and 21 of the inhibitors were subjected to repetitive validation based on the CPRG 

assay (Figure 28B). Unsuccessful transfection accounted for 25% and 31% of the inducer and 

inhibitor validation, the increase likely to be due to the small sample size. Excluding the non-

transfected samples, the inducers were accurately validated with 63.9% of the candidates remaining 

positive. Therefore, the selection of candidates using a single CPRG ratio value remains fairly 

accurate. This accuracy was reduced to 37.9% when inhibitors were selected using the TNT ratio, 

which suggested that the indicator is identifying a high count of false positives. 

Both candidate lists were also analysed using DAVID [329] to determine if any major changes were 

observable in the preliminary dataset (Figure 28C). The most striking difference was found in the 

localisation GO Terms, where membrane-associated proteins comprised a significant portion of the 

inducer and sensitizer candidates (34.03% and 33.24%). Inhibitor candidates however displayed 

higher localisation to the nucleus (16.49%), with membrane association reducing to 15.16%. This 

finding suggested that sensitizer candidates may be weak inducers which are insufficient to activate 

apoptosis under the screen conditions. It also highlighted potential differences between the pro- and 

anti-apoptotic candidates, suggesting that inhibitory response may be more associated with 

transcriptional activity while apoptosis activation is regulated at the protein level.  
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Figure 28: Analysis of the Trial Screen. A) Approximately 14% of the NITE library was 
subjected to the screen using HEK293T cells and the results analysed. Inducers were identified 
using CPRG ratio while Inhibitors and Sensitizers were identified using TNT Ratio according to 
previously determined threshold. B) The identified candidates were subjected to a secondary 
screen performed in duplicates. 47.9% of the inducer candidates and 35.7% of the inhibitor 
candidates were positive in the secondary screen. C) The candidates were concisely analysed 
based on their Gene Ontology terms, with their respective cellular localisation displayed in 
this treemap. Inducer and sensitizer candidates consist of a significant proportion of 
membrane proteins, which is reduced in Inhibitor candidates, hinting at potentially successful 
selection criteria. 
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Complete Screen of the NITE Library 
The primary screen was completed in 38 experiment sets in approximately eight weeks with 25,132 

good quality data points generated giving library coverage of 83.77% in a single pass.  

The mean CPRG ratio of the non-treated set was 0.279 ± 0.081, which was similar to those calculated 

in the trial screen. Using the non-treated set, the inducers were first selected with the previously 

determined CPRG ratio threshold of 0.55. This yielded 377 (1.50%) clones which were subjected to 

further validation. This selection proportion was similar to those of the trial screen. It was also 

interesting to note that this selection threshold was just above the 3 sigma range (3 units of 

standard deviation) calculated at 0.522, reaffirming that these positively selected inducers are likely 

to be positive (Figure 30). cDNA clones identified as apoptosis inducer candidates were excluded 

from the inhibitor-sensitizer selection (Figure 29). 

The sensitivity of the CPRG assay to silica nanoparticles induced cell death was apparent. Although 

the treatment set was subjected to the same automation process as the non-treated set, subtle 

variation between experiments was sufficient to result in a major shift resulting from the secondary 

treatment factor. This caused some experiments to have a higher toxicity baseline, shifting the data 

points into two peaks rather than one as observed in the non-treated set. Normalisation of the 

dataset with Equation 12 did generate a normal distribution (Figure 30B).  

TNT Difference (TNTD) was used to select for inhibitors and sensitizers, along with the calculation of 

selection proportion previously discussed. Excluding transfections which were successful in only one 

set, the primary screen with the treatment had library coverage of 83.40%. The selection resulted in 

3,936 (15.73%) inhibitors and 2,759 (11.03%) sensitizers, which were subjected to further validation 

(see below).  
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Figure 29: Candidate selection algorithm. The primary screen resulted in two datasets, the 
non-treated and nanoparticles treated sets. Apoptosis inducer candidates were first selected 
from the non-treated set using the previously determined CPRG ratio and Triton thresholds.  
These candidates were excluded and the remaining data points used for selection of inhibitor 
and sensitizer candidates. The TNT difference was next calculated with the extreme positive 
outliers in the upper range selected as sensitizers and extreme negative outliers in the lower 
range selected as inhibitors. The combined inhibitor and sensitizer candidates represent 30% 
of the data points, with the remaining 70% classified as “no significant change” and excluded 
from the secondary validation screen. 



 
151 | P a g e  

 

  

Figure 30: Primary screen data generated using HEK293T cells. A) Distribution of the CPRG 
ratio in the non-treated set. Previously determined selection criterion of 0.55 for apoptosis 
inducer was more than three standard deviation from the mean, indicative of a good quality 
selection. B) Pre-normalised distribution of the TNT Difference indicator (left) and the 
normalised ranking score (right). Inhibitor and sensitizer candidates were identified with a 
selection proportion calculated from the deviation of the experiment data from the GFP 
control threshold.  
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Validation Screen 
The selected candidates were validated through replication. The 377 inducer candidates were 

independently transfected and assayed up to six times, with the mean CPRG ratio of all inducer 

candidates at 0.562, compared with the GFP controls of 0.341. This indicated enrichment for pro-cell 

death candidates. Using t-test, the p-value for each candidate was calculated and only those with p-

value less than 0.05 were selected. 300 (79.58%) inducer candidates were finally selected to have 

CPRG ratios, which were significantly increased, compared to the GFP negative controls.  

Since the selection of candidates as inhibitors or sensitizers is likely to result in enrichment, the 

assumption that clones are randomly distributed is no longer valid and prevents the use of DWE of 

each experiment set to calculate the toxicity baseline from each experiment set. Instead, a plate of 

GFP controls was transfected with each experiment and the DWE of this control plate serves as the 

baseline for toxicity.  

Triplicate transfection was performed for the inhibitor-sensitizer validation screen, with two plates 

subjected to silica nanoparticles treatment and one plate as the non-treated baseline. This resulted 

in two TNTD values which were used to determine the significance from the GFP. Clones that were 

significantly decreased in the TNTD compared with the GFP DWE baseline were selected as inhibitor 

candidates, while those showing increased TNTD were classified as sensitizer candidates. Statistical 

significance was established using the t-test. 1,142 (29.01%) inhibitors candidates were selected with 

p-value <0.05, with the mean TNTD of 0.271 compared with GFP DWE baseline of 0.511 after silica 

nanoparticles treatment. Likewise, 626 (22.68%) sensitizers remained significantly increased with 

mean TNTD of 0.552 against a GFP baseline of 0.412.  

Interestingly, additional inducer candidates were detected in the inhibitors and sensitizers 

shortlisted for validation, 268 (6.81%) and 64 (2.32%) additional inducers respectively. This is likely 

due to the increased transfection efficiency from the use of the linear PEI transfection protocol in 

the validation screen, which resulted in higher expression levels of the plasmids. The proportion of 

positive inducers resulting from the validation screen on the inhibitors and sensitizers is also higher 

than the 1.50% identified in the primary screen. This suggests that the proportion of the inducers 

may be higher and hence the clones which are currently within the “grey zone” between the current 

selection criteria and the negative control baseline may be potential inducers. 

Since the validation screen involved testing of a fairly large number of clones, some of these clones 

may be statistically significant for the p-value threshold by chance. The false discovery rate (FDR) 

was calculated for the set of p-values generated for each candidate type in order to correct for 

multiple testing [330].  
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The FDR (or q-value) was calculated using the R statistical package and the QVALUE extension [331, 

332]. The FDR was used to determine the significance of the p-value selection criteria, and the FDR 

values for each candidate type are presented in Figure 31. The FDR values appeared to be extremely 

low (under 0.01) for all candidate types and across a wide range of p-value of up to 0.5. This 

phenomenon of low FDR values was likely due to the pre-selection step whereby only the significant 

candidates from the primary screen were selected for validation in the secondary screen. Only 

repetitions were performed in this secondary validation screen to generate the p-values. It is likely 

that this selection step had enriched for candidates that were already significant from the baseline, 

and hence the range of the resulting p-values which in turns translate into low q-values. 

This indicated that the selection thresholds that were established experimentally for each candidate 

types may indeed be sufficiently to differentiate the phenotype-of-interest from the background. It 

also indicated that the p-value threshold of 0.05 is sufficient to select for positive candidates that are 

statistically significant with minimal amount of false positives. The p-value may also be increased to 

include the other potential candidates although the more stringent p-value criteria of 0.05 is 

preferred in this scenario since only one experimental test was performed in the primary screen. 

The validated candidates were subjected to downstream bioinformatics analysis. The apoptosis 

inducing candidates isolated in the validation screen were also included in a separate expanded list 

of inducer candidates.  
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Figure 31: The FDR thresholds were verified for the significance of the p-values. The FDR 
values for the set of p-values derived from the validation were calculated using R (QVALUE). 
This is to determine the significance threshold as a result of multiple testing. It was revealed 
that the FDR values were very low for the p-values, and hence the selection of p-value 
significance 0.05 remains a validate criteria. The low FDR values are likely to be a result of the 
validation of selected candidates that were already significantly different from the baselines 
in the primary screen. 
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Discussion 
 

The validation of the mouse cDNA apoptosis candidates served as a miniaturised validation process 

for the workflow downstream of the experimental workflow previously optimised in the setup phase 

such as DNA isolation, transfection and assay. The aim was to identify alternative methods for the 

verification of the pro-apoptotic activities of the newly identified clones and experiment with various 

approaches for bioinformatics analysis of the candidates. Unlike the NITE library which consists of 

cDNA clones which have been fully sequenced, the mouse cDNA library was established in-house 

and the identity of the candidates was unknown. Hence an additional sequencing phase was 

included to verify the identity of the clones.  

The sequencing of the mouse cDNA candidates provided the foundation for downstream analysis 

and handling the sequencing phase which extended into hundreds of sequencing reads was another 

novel undertaking at our group. A one-pass sequencing strategy was employed to minimise the 

sequencing costs while the traditional approach of primer design was coded as a macro to facilitate 

the management of sequencing data. The macro proved to be crucial when handling the increased 

load of sequencing reads, since each batch of data could be feed into the macro which then quickly 

generated the lists of primers required for the next sequencing phase. Although this approach was 

performed for the first time, the approached proved to be efficient and generated high quality 

sequencing data. Most of the computer-designed primers resulted in high quality sequencing reads 

which are >500bp in length and >80% of these reads could be assembled without the need for 

additional data. However, 22 clones required additional processing by using a homologous sequence 

identified by NCBI BLAST to assemble into a single contig after repeated sequencings and manually 

designed primers. This is likely due to the presence of secondary structures such as hairpin loops in 

the sequences, which prevented the proper sequencing under the standard conditions employed by 

the sequencing centre.  

The assembled contigs were made available to Dr Derek Huntley, who performed additional 

processing to retrieve the associated information such as gene name and ENSEMBL identification 

numbers. The identifiers for the sequences allowed for the removal of redundancy, and the non-

redundant clones which were verified though using alternative apoptosis assays were subjected to 

further analysis. Bioinformatics analysis was performed in conjunction with Dr Huntley while 

comparison of the mouse candidate list with disease and cancer associated microarray expression 

profiles were performed by Sarah Langley and Dr Enrico Petretto. The bioinformatics analysis 

revealed that seven genes from the candidate list had a known role in apoptosis, reaffirming the 
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quality of the candidate list. The localisation of many of the candidates to the mitochondria and 

endoplasmic reticulum, which are traditional organelles associated with apoptosis further support 

the pro-apoptosis function of the candidates. This implicated the candidates, most of which are 

novel, in the regulation of apoptosis.  

Differential expression analysis of disease and cancer associated microarray profiles also identified 

candidates which were consistently down-regulated in cancer profiles including the haemoglobin 

gene (Hba-a2) in breast, colon and prostate cancer profiles analysed. Expression of UDPGT and 

Tim22 were reduced in colon cancer while ALEX (Gnas) was down-regulated in breast cancer [284]. 

The overall expression profile of the candidate list indicated considerable heterogeneity, which may 

suggest the functional importance of the pro-apoptotic candidates in the altered cellular profile in 

the diseased state. Overexpression of genes with apoptotic activity and sensitizes the cancer cells 

were known to contribute to the cancer metabolism. For example, the oncogene myc which exhibits 

both proliferative and pro-apoptotic signals is frequently up-regulated in cancer [333]. Interestingly, 

Atp1a1 was also found to be down-regulated in the Alzheimer’s disease profile analysed. 

Furthermore, using Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com) revealed 

that four of the candidates may potentially signal via the NFkappaB complex [284]. The collaboration 

with the bioinformatics and microarray specialists offered valuable exposure to the analysis 

approaches which was important for the analysis of the NITE derived candidate.  

Efforts were also expended to explore alternative validation assays for the apoptosis activity, with 

the focus on high throughput formats, sensitivity and cost-efficiency. Assay sensitivity is an 

important factor since the RISCI screen uses an enzymatic assay which is sensitive to apoptosis or 

cell death in general. Utilisations of alternative assays which are less sensitive have the unintended 

consequences of invalidating a potential candidate. Here, the preferred assay of choice was the 

Roche Cell Death Detection ELISAPLUS assay which is extremely sensitive for late-stage apoptosis 

detection. The increased sensitivity and commercial availability is compromised by a starkly 

increased consumable costs. Nonetheless the assay was applied to the mouse candidates (Figure 

22A).  

Assays detecting the activation of caspase-3, a well-established marker of apoptosis, were also 

tested. A variety of colorimetric and fluorogenic caspase-3 substrates as well as commercially 

available kits were investigated, including colorimetric caspase-3 substrate I 
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(Merck, 235400), fluorogenic caspase-3 substrate II (Merck, 235425), and caspase-3 assay kit (Sigma-

Aldrich, CASP-3-C). These colorimetric and fluorogenic substrates lacked the sensitivity to determine 

caspase-3 activity in a 96-well cell-based format and no signal was detectable even for the RIP 

control. These generally required the use of substantial amount of cell lysate which could not be 

generated from a 96-well format, which may explain the lack of substrate conversion. Furthermore, 

caspase-3 as an effector caspase serve to activate the caspase cascade and its expression level or 

activity may not be sufficiently high for the required sensitivity. The Caspase-Glo® 3/7 Apoptosis 

Quantification Kit (Promega) was successful in detecting caspase-3 activation under compound 

treatment in 96-well format, but the signal was insignificant and unstable for transfections of pro-

apoptosis genes. This is likely to be due to a lack of normalisation mechanism, which was built into 

the CPRG assay to account for the discrepancies generated by the transfection process. The 

sensitivity, costs and the lack of access to a luminescence compatible instrument limited the 

application of this assay. A FRET-based reporter for caspase-3 activation was also generated and 

proved to be able to detect caspase-3 activation under confocal imaging, but again failed to be 

translated into the 96-well format due to the limited sensitivity of the current instrument. The 

caspase-3 activation was eventually detected indirectly via the accumulation of its substrate, PARP. 

PARP is cleaved by caspase-3 [334] and the normal and cleaved form at 113 kDa and 89 kDa may be 

detected conveniently using western blotting and quantified using image analysis software such as 

ImageJ. The western blot approach was successful in detecting caspase-3 activation for the mouse 

candidates (Figure 22A). The western blot approach was more laborious but remained scalable to 

simultaneous processing of hundreds of clones within a manageable budget, the major consumable 

being the antibodies. The apoptosis activity of the candidates as detected by the commercial ELISA 

assay and western blot approach resulted in similar signal profile, highlighting the quality of both 

approaches. Furthermore, the majority of the candidates validated by the two alternative assays 

remained positive (approximately 90%), further highlighting the quality of the CPRG assay in 

detecting apoptosis signal as compared to other forms of cell death such as necrosis.  

The validation screen for the mouse candidates served as an important learning point where the 

experience with the high throughput workflows were scaled and extended to include the 

management of the post-experiment processes such as validation assays, data handling and analysis.  
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The selection criteria and thresholds for candidate selection were also finalised prior to the 

execution of the screen. The traditional method of selecting for pro-apoptosis inducer candidates 

remained consistent and had become well established by this point. This selection method involved 

the use of a fixed threshold, which was experimentally determined to be 0.55 being approximately 

10% lower than the mean CPRG ratio of the weak control, caspase-2. The inclusion of the Triton 

signal threshold at 0.7 also served to improve the quality of the selection, since any signal below this 

threshold increased probability of false positives as the Triton signal approaches the limit of the 

CPRG substrate reference value. An approximation of this effect may be observed in Figure 24A 

where the frequencies of the negative and positive controls remained equal, hence an 

approximately equal chance of any candidate identified without a Triton signal filter of being either a 

true or false positive. This pair of selection thresholds formed the basis of selection for inducer 

candidates in the primary screen, and the effectiveness of these thresholds was proven in the 

validation screen where up the successful inducer candidates were independently repeated for six 

times with about 80% positive rate. 

The selection for the inhibitor and sensitizer candidates was approached in a similar manner, where 

a single CPRG ratio threshold was determined for the apoptosis inhibitor and negative controls after 

silica nanoparticles treatment. This approached had a major disadvantage since the CPRG ratio after 

treatment did not account for any potential toxicity before the treatment (the non-treated CPRG 

ratios). This introduced biasness within the selection, resulting in a greater probability that clones 

with a higher non-treated baseline being excluded from inhibitor selection (and being positive as a 

sensitizer). It also made it difficult, if not impossible, to establish a theoretical threshold for the 

sensitizers since we do not have any known sensitizer controls at the time of the screen.  

This fixed and linear approach was eventually discarded in favour of the TNT ratio, which is the 

quotient of the treated CPRG ratio against the non-treated CPRG ratio baseline. The TNT ratio 

effectively corrected the treatment signal for any signal resulting from overexpression of the cDNA. 

The rate of change between each pair of CPRG ratios hence provided an elegant indicator to 

measure the effect of each cDNA on apoptosis; an anti-apoptotic effect occurs when the cDNA 

sufficiently slow the rate of change after treatment, resulting in little change or a reduced (less than 

1.0) TNT ratio (TNTR), while the sensitizers could conveniently be observed on the opposite effect 

where the rate of change is increased. The TNT ratio was also statistically significant in 

differentiating between the inhibitor (mIκBa) and negative (GFP) controls. However, the 

compression of each pair of CPRG ratios as a result of the division minimised the effect of inhibition 

while expanding the range of the sensitizers, making the indicator bias and placed greater emphasis 
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on the lower decimal places of the experimental values. Thus the TNT ratio is good for candidates 

that exhibit inhibitory or sensitizing effect of a greater magnitude. This indicator eventually evolved 

into the TNT difference (TNTD), which was proposed following a consultation with Dr Enrico 

Petretto. The TNTD quantified the effect on apoptosis using the magnitude of change (the difference 

in absolute values of the CPRG ratio pairs) rather than a rate of change. The TNTD proved to be 

considerably more stable compared with the TNTR, and improved the statistical significance (p-

value) by more than 2,000,000 fold. This resolved the choice of indicators for the inhibitor and 

sensitizer candidate selection, and the TNTD thresholds were experimentally determined to be 1.157 

and 1.512 for the inhibitor and negative controls after nanoparticle treatment. The assumption of 

equal effect magnitude was made for the sensitizer candidates, setting the TNTD threshold at 

approximately 1.867.  

However, implementation of the screen at high throughput format introduced further surprises not 

anticipated in the extensive setup and optimisation phase. As the actual screen progresses, it 

became increasingly clear that minor differences between experimental conditions were having an 

effect on the level of apoptosis, with experiment sets being pro- or anti-apoptotic as a whole. Any 

factor may contribute to this fluctuation in general including the cell culture conditions and the 

minute changes in the final amount of nanoparticles as a result of the normal pipetting errors. This 

problem was compounded by the loss of control values due to equipment technicality. The control 

plasmids for apoptosis were introduced in a separate pipetting step by the robot, which using a blast 

of air from increased pressure to eject the liquid into the wells. Since only six pipette tips of the 96-

well dispenser were used for the controls, the pressure had an increased tendency to dissipate via 

unused pipette tips. The control dispenses correctly for the first few plates, but repeated dispensing 

steps caused minor accumulation of the control plasmid solutions in the six control tips to build over 

time and increasing the preferential dissipation of the pressure via the unused tips. Eventually, the 

control tips become blocked; this process introduced unintended fluctuation for the control values, 

rendering them useless. 

By using the fixed threshold determined previously, the selection is now biased when all 

experimental sets were aligned. The pro-apoptosis set would naturally yield only sensitizers while 

the anti-apoptosis set would isolate only inhibitors when the fixed thresholds are applied. 

Furthermore, the results were accumulated as the screen progresses, creating yet another 

conundrum. The current set of results was derived from experiments performed over the past days 

and may for example indicate a slightly pro-apoptotic phenomenon. Applying these new 

assumptions experimentally would require upstream changes to be made to a completely different 
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set of experiment. This approach is not dissimilar to using the current share price to predict the 

movement of the future prices. The end result would be a mess of different experiment conditions 

made in an attempt to “guess” the desired baseline, and is likely to widen the fluctuations. The 

decision was made to keep the condition stable and address the deviations mathematically.   

As a result, this caused the selection to be made in a dynamic approach to exploit the observation of 

the fluctuation between experiment sets. By taking the assumption that the NITE library clones are 

randomly distributed, the central tendency TNTD of all clones from each experiment set would 

provide an indication of the “natural” level of apoptosis within each set. Any appropriate measure 

could be used to quantify this central tendency, including the most common arithmetic mean or 

simply average. The arithmetic mean weigh each component equally, hence is easily scaled by 

“outlier values” away from the true central tendency. Alternative approaches involve the trimming 

of these outlier values prior to calculating the mean which was not appropriate either, since these 

outlier values of the experiment sets are the inhibitor or sensitizer candidates. The solution was 

found in the distance weighted estimator (DWE) where the magnitude of each value from every 

other value was used to weigh the contribution of the value towards the central tendency. The DWE 

allowed for the quantification of the central tendency, which in the screen setting approximate the 

level of apoptosis experienced within each experiment set. The selection strength of the assay for 

selecting sensitizers degrades as the sets become increasingly pro-apoptotic (higher DWE), but the 

significance of selection is shifted to the inhibitors. The reverse is also true for selection of sensitizers 

in low DWE sets. Hence the final selection isolates a greater proportion of the candidate at the 

opposite end to the DWE. The predetermined control values were used as the reference or baseline, 

and the DWE of each set of TNTDs used to scale each set of values for comparison, and this dynamic 

approach was eventually converted into Equation 12. The scaled set of values was then used for the 

GSEA analysis. 

The implementation of the screen was impeded with various problems both experimentally and for 

the interpretation of the results, despite the effort spent on optimisation. However, these were 

eventually resolved.  

The actual screen was executed in phases, scaling up from the trial phase which provided further 

indication in conjunction with the results from the mouse validation screen that the setup was 

sufficiently robust and accurate in identifying the phenotype-of-interest. The candidates selected 

from the primary screen were validated by repetition and subjected to further analysis.  
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Chapter 8: Analysis 
 

Background Information 
 

The apoptosis inducer candidates were analysed as two different gene lists: 1) Inducer Main List 

which comprised of the experimentally validated candidates and 2) Inducer All List comprised of the 

validated candidates from the Main List and pre-validated candidates identified from the secondary 

validation screens of the inhibitors and sensitizers. The inhibitor and sensitizer lists were analysis as 

a single combination each. The candidate gene lists were subdivided into two sub-lists each 

comprising of either protein coding or non-coding genes. Protein coding and non-coding genes were 

subjected to different analysis.  

Protein coding genes referred to cDNA sequences which could be mapped to an experimentally 

verified or hypothetical protein sequences. A list matching the cDNA sequences to known genes with 

its corresponding Ensembl identifier was generated by Dr Derek Huntley from the Bioinformatics 

Services, Imperial College London. This was combined with an alternative list mapped by online 

databases using the db2db function of bioDBnet [335], part of which were manually verified to be 

similar to the BLASTx output generated by NCBI BLAST. The protein coding sub-lists were subjected 

to functional annotation by DAVID, Gene Set Enrichment Analysis (GSEA), Ingenuity® Pathway 

Analysis (IPA, Ingenuity® Systems, www.ingenuity.com) and GeneMANIA network analysis.  

Any outstanding cDNA sequences not mapped were classified as non-coding sequences; this non-

coding list was analysed for alternative regulatory mechanisms including non-coding regulatory RNA 

like microRNAs and potential of the open reading frames to translate into mini-proteins.  

The analysis approach is summarised as Figure 32. 
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Figure 32: Analysis strategy. The gene lists were classified into protein coding and non-coding 
cDNA sequences. Protein coding sequences were analysed using functional annotation and 
enrichment approaches such as DAVID and GSEA while non-coding genes were analysed for 
the possibility of micro-RNAs or mini-proteins as the mode of action. 
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Results 
 

DAVID Function Annotation 
Analysis of the gene ontology (GO) terms [310] by the DAVID functional annotation tool [329, 336] 

revealed functional clusters enriched based on biological processes, cellular localisation and 

molecular functions. 

The enriched biological processes GO terms for each candidate type were presented as a tag cloud 

(Figure 33), where the font size is scaled proportionally with the frequency counts. Both the “Inducer 

Main” and “Inducer All” lists were shown to be enriched for terms associated with apoptosis and cell 

death, the former comprising of the validated apoptosis inducer candidates and the latter inclusive 

of pre-validated candidates. Terms such as apoptosis (GO:0006915), programmed cell death 

(GO:0012501) and cell death (GO:0008219) indicated increase in frequency counts with the addition 

of the pre-validated candidates, although the specific term for induction of apoptosis (GO:0006917) 

was no longer enriched. The pre-validated candidates could possibly represent high pro-cell death 

regulatory diversity compared with the direct execution of programmed cell death. Transport-

associated processes for various organic and inorganic ions including intracellular transport (GO: 

0046907), ion transport (GO:0006811), L-glutamate transport (GO:0015813), organic anion transport 

(GO:0007010) and amine transport (GO001587) were also highly represented. The false discovery 

rate (FDR) of L-glutamate transport was improved from 19.86% to 8.11% with the inclusion of the 

pre-validated candidates, while other transport-associated terms like acidic amino acid transport, 

organic anion transport also have FDR of under 25%. Regulation of defence against virus (GO: 

0002230 and GO 0050691) together with cytoskeleton organisation (GOL0007010) also had low FDR 

at 15.29%, 23.65% and 17.90% respectively. The use of apoptosis as a response to viral infection of 

the host is well established [337] and supports the identity of the inducer candidates, while the 

various transport functions may hint at the integral nature of metabolism and associated sensors to 

cross-talk with apoptosis signalling and activation in the event of any homeostatic imbalance.  

Inhibitor candidates associated with the reduction of cell death signal induced by the LUDOX® silica 

nanoparticles were enriched for RNA processing terms with the general term RNA process 

(GO:0006396) highly represented with 37 counts and 7.84% FDR, followed by specific terms such as 

RNA splicing via transesterification reactions (GO:0000377 and GO:0000375) and nuclear mRNA 

splicing via spliceosome (GO:0000398). Uniquely, the inhibitors were enriched for response-

associated processes with the response to metal ion (GO:0010038) represented with 11 gene counts 

and FDR of 10.18%. The response to metal ion was the second most significant terms ranked by FDR, 
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while response to inorganic substance (GO:0048872) was only 2.45% above the guideline FDR 

threshold used in this analysis. This suggests that the silica nanoparticles were inducing a similar 

effect to metal ions where toxicity of ions such as iron, copper cadmium and nickel was shown to 

involve oxidative mechanisms involve reactive oxygen species and depletion of antioxidants such as 

glutathione [338]. A general review of all biological processes enriched regardless of the FDR 

indicated enrichment of terms such as ubiquinone metabolic processes (GO:0006743 and 

GO:0006744) and quinone cofactor biosynthetic process (GO:0006730) which are associated with 

oxidation. Furthermore, inhibitor candidates associated with protein methylation and alkylation 

(GO:0006479 and GO:0008213), biopolymer methylation (GO:0043414) and histone methylation 

(GO:0016570 and GO:0016571)  could perhaps help mediate any potential oxidative stress and 

manage the stress response. Methylation of non-histone proteins is important in regulation their 

stability and function [339] while histone methylation has also been established to contribute to 

transcriptional regulation [340]. Methylation could also potentially tag the proteins to stress 

granules which are large ribonucleoprotein particles to mediate the stress response [341]. 

Furthermore, the term negative regulation of protein complex disassembly (GO:0043242) may 

suggest the possibility of the inhibitor candidates maintaining important cellular functions by 

preventing the breakdown of protein complexes. Involvement of the inhibitors in estrogen receptor 

signalling pathway (GO:0030520), homeostasis of number of cells (GO: 0048872), erythrocyte 

differentiation and homeostasis (GO:0030218 and GO:0034101) further supports the pro-survival 

characteristics of this candidate type. For example, estrogen receptors are over-expressed in 70% of 

breast cancer incidents and are involved in disrupted apoptosis [342-344].   

Intriguingly, the sensitizers were significantly enriched in biological processes associated with cell 

morphogenesis (GO:0000902), cell projection organisation (GO:0048858, GO:0032990 and 

GO:0030030), cellular component morphogenesis (GO:0032989), cell differentiation and 

development. These terms were below the guideline FDR threshold of 25%, with terms associated 

with cell morphogenesis, cellular component morphogenesis, cell projection morphogenesis, cell 

part morphogenesis and cell part organisation all below a FDR of 5%. Many of these terms were 

associated with neurons, from differentiation (GO:0000904, GO:0048667 and GO:0030182), to 

development and morphogenesis of neuron projections (GO:0031175, GO:0048666 and 

GO:0048812), to axonogenesis and axon guidance (GO:0007409 and GO:0007411). However the 

sensitizer candidates may also be involved in heart development (GO:0007507) and leukocyte 

differentiation (GO:0002521) albeit with high FDR. Management of the cytoskeleton also indicated 

high gene counts, with terms such as cytoskeleton organisation (GO:0007010), actin cytoskeleton 

organisation (GO:0030036) and actin filament-based process (GO:0030029) perhaps in association 
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with its other development and differentiation functions like axonogenesis. This association with the 

cytoskeleton was significant in the inducer candidates, and suggest the similarity between the 

inducer and sensitizer candidates. This connection with the inducers and the large number of 

enriched development-associated terms suggests that the sensitizers might possibly serve as sensors 

which activate programmed cell death in the event of erroneous development outcome. Other 

processes with insignificant FDR includes regulation of ARF protein signal transduction (GO:0032012 

and GO:0032312) , regulation of hydrolase activity (GO:0051336) and positive regulation of 

translation (GO:0045727 and GO:0045948). It remains interesting to note that the sensitizers were 

associated with translational activity while the inhibitors appear more involved in transcriptional 

processes.  

As illustrated in Figure 34, the validated inducers in the “Inducer Main” list localise exclusively to the 

membrane being intrinsic to membrane (GO:0016021) and integral to the membrane (GO:0016021), 

although the inclusion of the pre-validated inducers expanded the localisation terms to include the 

cell soma (GO:0043025), neuron projection (GO:0043005), microtubule (GO:0005874), integral to 

mitochondrial outer membrane (GO:0031307) and extrinsic to membrane (GO:0031307). Both 

intrinsic and integral to membrane localisation remains the two most significant localisation terms, 

and the gene counts were increased proportionally by approximately two-fold. The FDR for the two 

membrane terms was also improved from >45% to 15.44% and 23.80% for the integral and intrinsic 

membrane localisation respectively. The extrinsic to membrane term enriched with the inclusion of 

the pre-validated inducer candidates reinforced this unique enrichment of membrane associated 

terms, along with the integral to mitochondrial outer membrane term. It should be noted that the 

FDRs for the new terms enriched with the “Inducer All” list were above 25% and hence should be 

interpreted with caution. 

The inhibitors enriched for 6 / 13 localisation terms with FDR <25%, with the candidates localised to 

contractile fibre part (GO:0044449 and GO:0043292)), actin cytoskeleton (GO:0015629), non-

membrane-bounded organelle (GO:0043228 and GO:0043232) and sarcomere (GO:0030017). The 

main difference compared with the inducer candidates is the localisation of the inhibitors to non-

membrane-bounded locations, making the inducers and inhibitors appear mutually exclusive within 

the cellular environment.  

The sensitizer localisation appeared to overlap with both the inducers and inhibitors. The only term 

with FDR under the 25% threshold was the cytoskeleton (GO:0005856) which was also enriched in 

the inhibitors. All three candidate types seem to be associated with localisation to cell projections 
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although some sensitizers were also associated with membrane terms such as apical plasma 

membrane (GO:0045177) and basolateral plasma membrane (GO:GO:0016323).  

Functionally, the inducers were associated with a wide range of protein and ion binding functions as 

well as transporter and enzymatic activities. This includes L-glutamate, acidic amino acid and amine 

transmembrane transporter activity (GO:0005313, GO:0015172 and GO:0005275), symporter 

activity (GO:0015293), sodium ion binding (GO:0031402), alkali metal ion binding (GO:0031420) and 

protein binding such as to the cytoskeleton proteins (GO:0008092) and PDZ domain (GO:0030165). 

The enzymatic activities include cytidine deaminase (GO:0004126), Ras GTPase activator 

(GO:0005099) and a range of ligase activities (GO:0016879, GO:0019787 and GO:0016881). 

However, only the PDZ domain binding and ligase activities among the “Inducer Main” list were 

significant for the FDR threshold. This implies that the pre-validated inducers could be more 

functionally diverse resulting in lower enrichment significance. 

The inhibitors were significant for actin binding (GO:0003779) and calmodulin binding (GO:0005516) 

functions. The less significant terms include histone acetyltransferase activity (GO:0004402), 

transcription factor binding (GO:0008134), transcription regulator activity (GO:0030528) which were 

in line with the inhibitor biological processes profile, and ligase activities similar to the inducers. 

Calmodulin is an important calcium binding messenger which binds the ions and alter its interaction 

with its target proteins [345, 346] and is important in calcium regulated apoptosis signalling [347].  

The sensitizers were enriched for receptor regulator activity with a FDR of 13.86%, with a range of 

protein binding functions with higher FDR including bridging (GO:0030674), cytoskeleton binding 

(GO:0008092), heat shock protein binding (GO:0031072) and SHD3/SH2 adaptor activity 

(GO:0005070). This variety of protein binding functions suggests that the sensitizers could serve as 

the mediator between various proteins to coordinate their function or assist in inter-network cross-

talking. The sensitizers were also associated with ARF GTPase activator (GO:0008060) and epidermal 

growth factor receptor (GO:0005006) activities. 
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Figure 33: The Gene Ontology biological processes terms displayed as Tag Clouds. The 
apoptosis inducer candidates in the Inducer Main List were enriched for apoptosis and cell 
death terms and the counts of death-related terms were increased when the pre-validated 
candidates were included in the analysis. The inhibitor candidates were enriched for 
transcriptional-related processes such RNA processing, although enrichment of the sensitizer 
biological processes associated with apoptosis signalling was less direct consisting of cell 
morphogenesis, neuron differentiation, translational initiation and membrane organisation. 
The font size of the terms was presented proportionally to the associated candidate 
frequency indicated by the brackets.  
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Figure 34: The Gene Ontology cellular components terms. Inducer candidates from both 
Main and All lists were associated with membrane type components. Interestingly, the 
majority of inhibitors were associated with non-membrane bounded organelles. The 
sensitizers were associated with plasma membrane similarly to the inducers, but were also 
significant in cytoskeleton and cell projection which are also associated with the inhibitors.   
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Figure 35: The Gene Ontology molecular functions terms displayed according to the various 
gene classes from the screen. The inducers and sensitizers appear to be enriched in ion and 
protein binding functions, while the inhibitors were associated with transcription factor 
binding and transferase activities. Furthermore, the sensitizers were also enriched in heat 
shock binding functions and SH2/SH3 adaptor proteins. 
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Clustering of interaction proteins  with the candidates was performed using DAVID on information 

from the Biomolecular Interaction Network Database (BIND) [348], Molecular INTeraction database 

(MINT) [349, 350] and Reactome [351]. 

The inducers were enriched for interactions with members of the ras homolog gene family, various 

Rho GTPase activating proteins, v-rel reticuloendotheliosis viral oncogene homolog (avian) and 

deleted in liver cancer 1 (DLC1). These proteins are frequently associated with cancer profiles as 

oncogenes [352-355] and their ability to suppress apoptosis might be partly attributable to altered 

interactions with many of the inducer candidates. It should be noted that the FDR did not meet the 

threshold for any interaction terms of the inducers. 

The inhibitors enriched for 103 / 128 protein interaction terms which are within the FDR threshold, 

almost all of which are associated with transcriptional activities including various small nuclear 

ribonucleoproteins, splicing factors, RNA binding motif proteins, cleavage and polyadenylation 

specific factors, small nuclear RNA auxiliary factors, X-box binding nuclear transcription factor, 

polymerase (RNA) II (DNA directed) polypeptides and THO complex. This association with 

transcriptional activity continues beyond the FDR threshold, although some interacting proteins of 

other molecular functions were also enriched such as syndecan 4, receptor-interacting serine-

threonine kinase 3 and cell division cycle and apoptosis regulator 1. Syndecan 4 functions as a 

receptor in intracellular signalling while receptor-interacting serine-threonine kinase 3 and cell 

division cycle and apoptosis regulator 1 are associated with apoptosis signalling. The enrichment of 

transcriptional activities associated terms in both the inhibitor candidates and their interacting 

proteins clearly reinforces the extent of transcriptional mechanisms involvement in apoptosis 

inhibitory functions. 

The three interacting proteins for the sensitizers within the FDR threshold are nucleolin, 

heterogeneous nuclear ribonucleoprotein A1-like 3 and nucleophosmin 1 which are associated with 

translational functions. Nucleolin and nucleophosmin 1 are involved in the synthesis and maturation 

of ribosomes [356, 357]. Nucleophosmin 1 is also known to be crucial in cancer such as leukemia and 

attributed with tumour suppressor functions [358, 359]. Heterogeneous nuclear ribonucleoprotein 

A1-like 3 may be involved in mRNA processing functions [360]. The sensitizers were also associated 

with a variety of eukaryotic translation initiation and elongation factors, ubiquitin B and C, and 

docking proteins. 

Protein domain enrichment was performed using DAVID with information from the InterPro [361], 

SMART [362, 363] and Protein Information Resources (PIR) [364] databases (Figure 36). 
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The inducer candidates displayed enrichment for Major Facilitator Superfamily MFS-1 (IPR011701) 

and RING-type Zinc finger (IPR001841) domains with an FDR under 25%. The MFS transporters are 

involved in the transport of small solutes in response to chemiosmotic ion gradients [365] while the 

RING-finger is a specialised class of zinc finger domains involved in mediating protein-protein 

interactions [366], many of which bind ubiquitination enzymes and their substrate thereby targeting 

their substrate for degradation [367]. Other notable protein domains include the Hly-III related 

(IPR004254) domains of which the family comprised of integral membrane proteins including 

hemolysin-III homologues, the Leucine-rich repeats (LRR) (SM00013 and SM00082) which fold into 

an arc shape and provide a framework for protein-protein interactions, AAA ATPases (SM00382) 

which are involved in a range of roles from cell-cycle regulation to protein proteolysis and 

intracellular transport, EFh-hands (SM00054) associated with calcium binding, and a range of 

immunoglobulin domains (SM00408, IPR013106, IPR03598 and IPR013783).  

Immunoglobulin folds (IPR003006, M00407 and IPR003597) were highly enriched in the inhibitors. 

Ig-like domains are associated with functions such as cell-cell recognition, cell surface receptors and 

the immune system [368]. C6HC-type Zinc finger (SM00647), G8 domain (IPR019316) found in 

disease proteins in polycystic kidney disease and non-syndromic hearing loss [369], WD40 repeats 

(SM00320, IPR001680, IPR015943 and IPR019775) implicated in signal transduction and 

transcription regulation of cell cycle and apoptosis [370], PWWP domains (SM00293 and IPR000313) 

with a role in cell growth and differentiation and protein-protein interactions [371], PLAC (protease 

and lacunin) domain (IPR010909) associated with peptidase activity, TUDOR domains (SM00333, 

IPR002999 and IPR018351) associated with zinc binding and found in many proteins colocalised with 

ribonucleoprotein or single-strand DNA –associated complexes [372], peptidase C19 ubiquitin 

carboxyl-terminal hydrolase 2 (IPR001394) and pyridoxal phosphate-dependent decarboxylase 

(IPR002129) are other protein domains associated with the inhibitors.  

The enrichment of the immunoglobulin folds between the pro-and anti-apoptotic candidates is an 

interesting find, and may suggest a link between apoptosis and the intracellular antibody-mediated 

degradation. TRIM21 for example is an intracellular antibody effector of the pathway and binds both 

immunoglobulin G and M resulting in ubiquitination [373]. The candidates with these 

immunoglobulin folds may represent novel effectors of the intracellular antibody-mediated 

proteolysis, or regulate apoptosis by tagging their target for degradation. 
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The sensitizers were associated with the TUDOR domains (SM00333 and IPR00299) and C-terminal 

chaperone DnaJ domains (IPR002939), with both domains represented under the FDR thresholds. 

Other domains enriched include ArfGAP (SM00105 and IPR001164), Leucine-rich repeat (SM00369 

and IPR003591), actin/actin-like (SM00268 and IPR004000), EXTL2 alpha-1,4-N-

acetylhexosaminyltransferase (IPR015338), spindle associated domains (IPR012943) and A-kinase 

anchor (IPR008382). ArfGAP family proteins are strongly implicated in tumour invasion and 

malignancy with a critical role in suppression of superoxide production [374].  

The sensitizers appear to have an overlap in the domain enrichment with the inducers and 

inhibitors, for example the leucine-rich repeats with the inducers and the TUDOR domains with the 

inhibitors. However, the sensitizers also included unique enrichment for domains associated with 

DnaJ which is a chaperone associated with binding of unfolded proteins to prevent aggregation and 

possesses protein folding activity [375]. The inducers and inhibitors also shared similarities, most 

notably the enrichment for immunoglobulin domains. The three candidate types appear to enrich 

for domains associated with protein-protein interactions, which might be speculated to aid the 

candidates in achieving their pro- or anti-apoptotic behaviour. 

DAVID was also used to identify the enrichment for the tissue specificity of each candidate class 

using the UniProt tissue specificity annotation (Figure 37A). All three candidate types were found to 

be enriched in the placenta, amygdala and teratocarcinoma, beyond which they appear to be 

mutually exclusive. The inducers were found to be expressed in the uterus, skeletal muscle, colon 

and embryo of normal tissue types. The tissue expression of the inhibitors appeared with greater 

diversity including muscle, lymph, spleen, prostate, tongue, platelet, small intestine, colon mucosa, 

peripheral blood, salivary gland and the spinal cord. The inhibitors were also strongly enriched in the 

epithelium with 137 gene counts, a phenotype also observed for the sensitizers with 78 genes. The 

inhibitors and inducers also overlapped in expression in the skin, with 88 and 54 genes respectively. 

The sensitizers were unique in enriching for 213 genes expressed in the brain and 4 counts in the 

neuron, which might be a result of their role in neuron morphogenesis and development of neuron 

projects. The sensitizers were also uniquely expressed in other tissue types.  

Interestingly, the three candidate types were found to be expressed in teratocarcinoma, with similar 

frequency between 30 and 45. The inducers were expressed in mammary cancer and endometrial 

adenocarcinoma while the sensitizers were not found to be expressed in other cancer tissues apart 

from teratocarcinoma. The inhibitors were however extremely well represented in the cancer tissue 

types with 114 genes associated with cancer tissues compared with 40 and 32 for the inducers and 

sensitizers respectively (Figure 37B). The cancer tissue-associated terms enriched amongst the 
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inhibitors included hepatoma, neuroblastoma, ovarian carcinoma, retinoblastoma, leukaemia and 

rectum tumour. The high association with cancer tissues was supportive of their anti-apoptotic 

effect identified from the screen. Moreover, it could be hypothesized that the pro-survival signalling 

exploited by cancer cells could similarly be employed by the normal cells in response to LUDOX® 

silica nanoparticles induced cell death.   
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Figure 36: Enrichment of Protein Domains. The inducers were associated with MFS-1 
domains associated with solute transporters and the RING-type zinc finger domains involved 
in DNA and protein binding. The inhibitors were enriched for immunoglobulin domains and 
interestingly, the C6HC-type zinc finger which is also involved in protein-protein interactions, 
while the TUDOR and DnaJ c-terminal domains were enriched amongst the sensitizers.  
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Figure 37: Tissue expression profile associated with each candidate type. A) All four 
candidate gene lists were highly enriched for expression in the placenta, amygdala and 
teratocarcinomas, although terms unique to each candidate type were also enriched. Cancer 
associated tissue types were labelled in orange.  B) Cancer tissue-related term frequency. The 
inhibitor candidates were highly enriched for cancer tissue-associated terms, with up 
approximately three fold increase compared to the inducer and sensitizer candidates. 
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Gene Set Enrichment Analysis 
The primary data were analysed using Gene Set Enrichment Analysis (GSEA) V2.0 [376, 377]. A 

ranked list for the non-treated dataset was generated using the CPRG ratio while the nanoparticles 

treated dataset was ranked using the normalised TNTD score calculated based on Equation 12. The 

non-treated dataset corresponds to the inducer candidates while the treated dataset was used for 

enrichment associated with inhibitors and sensitizers.  

Both datasets were analysed against three curated Molecular Signatures Database v3.0 collections: 

1) c2 curated gene sets comprising of pathway databases, 2) c3 motif gene sets consisting of 

conserved cis-regulatory motifs and 3) computational gene sets defined with expression 

neighbourhoods focused on 380 known cancer genes. The default settings of 1,000 permutations, 

weighted enrichment statistic with minimum and maximum set size of 15 and 500 genes was used. 

The GSEA results were complimentary to the formerly identified list since the approach was based 

on the statistical significant of a priori defined set of genes, hence would be able to identify 

enrichment information such as signalling pathways without every component of the pathways 

passing the thresholds.   

With the c2 collection, the NFAT pathway and Hypertrophy of the heart gene set 

(BIOCARTA_NFAT_PATHWAY) were enriched with the highest normalised enrichment score (NES) of 

2.030, normalised p-value of 0.001198 and 15 / 19 gene counts in the core enrichment (Figure 38A). 

Nuclear factor of activated T-cells (NFAT) is a family of transcription factors comprising of four 

members localised to the cytoplasm, two (NFAT3 and NFATc4) of which are expressed in adult heart 

and regulates cardiac hypertrophy signalling [378, 379]. The association between a gene set involved 

in heart failures with genes displaying pro-cell death increase of CPRG ratios is supportive of the 

quality of the primary data. Furthermore, two gene sets associated with genes up-regulated in 

ATG16L1 deficiency (CADWELL_ATG16L1_TARGETS_UP, NES 1.929, NOM p-value 0.004662, 24 

counts) and up-regulated in response to IL6 (DASU_IL6_SIGNALING_UP, NES 1.766, NOM p-value 

0.008403, 19 counts) also supported the association of increased CPRG ratios with increased cell 

death. ATG16L1 is a gene involved in autophagy [380], which when excessive, can lead to cell death. 

Interleukin-6 (IL6) is a cytokine involved in inflammatory response [381]. While IL6 signalling is 

commonly associated with apoptosis suppression [382], it has also been shown to activates 

apoptosis under conditions such as STAT3 inhibition [383]. Three transmembrane transport 

associated gene sets involved in SLC-mediated transmembrane transport 

(REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT), inorganic cation/anion SLC 

transporters (REACTOME_INORGANIC_CATION_ANION_SLC_TRANSPORTERS) and transmembrane 
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transport of small molecules (REACTOME_TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES) 

was also identified and this was in line with membrane localisation enriched in the inducers by 

DAVID. Amongst the five cancer associated gene sets enriched in the top twenty terms, three sets 

indicated genes with increased CPRG ratios were down-regulated in colon carcinoma tumours 

(GRADE_COLON_CANCER_DN), 3D cultures of preinvasive breast cancer cells 

(RIZKI_TUMOR_INVASIVENESS_3D_DN) and diffuse large B-cell lymphoma 

(SHIPP_DLBCL_VS_FOLLICULAR_LYMPHOMA_DN) consistent with the predicted behaviour of pro-

cell death genes. Interestingly, these pro-cell death genes were also up-regulated in prostate cancer 

(TOMLINS_PROSTATE_CANCER_UP) and stage 2 colon cancer 

(BARRIER_COLON_CANCER_RECURRENCE_UP), which could support the hypothesis that these genes 

have significant roles in cancer metabolism and signalling and could serve as drug targets since they 

may predispose the cancer cells to apoptosis.  

The inhibitors selection tail (negatively enriched by GSEA) was highly enriched in cancer associated 

signalling which formed nine of the top twenty enriched terms. Six of these cancer-associated terms 

were for up-regulation of genes in breast cancer (NADERI_BREAST_CANCER_PROGNOSIS_UP), 

embryonic carcinoma tumours (KORKOLA_EMBRYONAL_CARCINOMA_UP), seminoma tumours 

(KORKOLA_SEMINOMA_UP), hepatocellular carcinoma (LEE_LIVER_CANCER_MYC_TGFA_UP and 

LEE_LIVER_CANCER_E2F1_UP) and esophageal adenocarcinoma 

(WANG_ESOPHAGUS_CANCER_VS_NORMAL_UP), which supported the apoptosis suppression 

capabilities of the inhibitor candidates. The top signalling profile enriched by GSEA was the gene set 

which distinguish cells expressing activated beta-catenin (CTNNB1) oncogene from the normal cells 

(BILD_CTNNB1_ONCOGENIC_SIGNATURE) [384] which had the highest normalised enrichment score 

of -1.87 and 14 genes among the core enrichment (Figure 38B). The knockdown of HIF1A and HIF2A 

(ELVIDGE_HIF1A_TARGETS_UP and ELVIDGE_HIF1A_AND_HIF2A_TARGETS_UP) also resulted in the 

up-regulation of genes on the inhibitor tail, perhaps as a compensatory effect involving the action of 

2-OC-dependent dioxygenases on non-HIF target genes. This gene set was also similar to a gene 

expression profile induced by hypoxia. Finally, the knockdown of cofactor of BRCA1 (COBRA1) also 

led to the down-regulation of a gene set associated with the inhibitor tail. COBRA1 is important in 

regulating the expression of genes at various chromosomal locations in breast cancer, thereby 

implicating the genes in another cancer signalling mechanism. 

The sensitizer tail had enriched for much less profiles associated with cancer unlike the inhibitors, 

with only three occurrences in among the top two enriched gene sets. Two of the three cancer-

associated gene sets indicated down-regulation of the candidates in the sensitizer tail 
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(BOYAULT_LIVER_CANCER_SUBCLASS_G123_DN and LANDIS_BREAST_CANCER_PROGRESSION_DN) 

in liver and breast cancer respectively. The third cancer-associated gene set was associated with the 

gene signature of S2 subtype of hepatocellular carcinoma (HCC), with implications in proliferation, 

MYC and AKT1 activation.  

The sensitizers were instead enriched for signalling pathways associated with cellular functions, with 

NCAM1 signalling (REACTOME_NCAM1_INTERACTIONS and 

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH) as the top gene set with NES of 1.95 

(Figure 38C). Candidates located at the sensitizer tail were also found to be up-regulated in 

inflammatory response to lipopolysaccharide (LPS) (SEKI_INFLAMMATORY_RESPONSE_LPS_UP), 

hepatocyte growth factor signalling not associated with AKT1 signalling 

(XU_HGF_SIGNALING_NOT_VIA_AKT1_48HR_UP), up-regulated by CD40 receptor 

(BASSO_CD40_SIGNALING_UP) and also in response to interleukin-6 (IL-6) stimulation 

(DASU_IL6_SIGNALING_UP). Translational activity was also prominent in the sensitizer tail, with four 

gene sets (REACTOME_TRANSLATION_INITIATION_COMPLEX_FORMATION, KEGG_RIBOSOME, 

REACTOME_VIRAL_MRNA_TRANSLATION and 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX)

. Signalling by Rho GTPases (SIG_REGULATION_OF_THE_ACTIN_CYTOSKELETON_BY_RHO_GTPASES) 

and PDGF (REACTOME_SIGNALING_BY_PDGF) was also identified, along with regulation of 

peroxisome (KEGG_PEROXISOME), regulation of beta-cell development 

(REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT) and DNA replication in oocyte 

(KEGG_OOCYTE_MEIOSIS). Another interesting pathway profile was for the genes involved in the 

RNA transcription and replication of Influenza virus 

(REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION). Unlike the inhibitors 

where a clear association with a range of cancer signalling profiles was found, there does not appear 

to be any clear indication of association with apoptosis among the sensitizers. However, signalling 

pathways associated with translation and development of neurons was similar to the functional 

annotation results by DAVID (see above). 
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Figure 38: GSEA enrichment plot for the top gene set associated with each candidate type. 
The enrichment score is the maximum deviation from zero with the genes prior to enrichment 
score is known as the leading edge. A) The NFAT pathway has the highest normalised 
enrichment score (NES) of 2.03 among the inducer tail, with 15 / 19 genes in the core 
enrichment. B) The inhibitors exhibited oncogenic signature associated with cells expressing 
activated CTNNB1, a known oncogene. The CTNNB1 signature was enriched with NES of -1.86 
and the core enrichment including 14 / 35 genes. C) The NCAM1 interactions gene set was 
associated with the sensitizers with NES of 1.95 and 6 / 17 genes in the core enrichment.   

 



 
180 | P a g e  

 

The c3 collection offered insights into transcriptional regulatory mechanisms of the candidate types. 

The genes in the inducers tail of the non-treated dataset were found to be target genes of Sp1 

transcription factor (V$SP1_01 and V$SP1_Q2_01) as their upstream promoter regions contained 

the GGGGCGGGGT motif recognised by Sp1. Other promoter regions were also identified including 

those regulated by hepatic nuclear factor (HNF1) (V$HNF1_01), HMX1 (V$HMX1_01), CEBPA 

(V$CEBP_C), SREBF1 (V$SREBP1_02), HOXA4 (V$HOXA4_Q2) and FOXN1 (V$WHN_B). Some of the 

candidates at the inducer tail were also found to be targets of microRNA including MIR-122A 

(ACACTCC,MIR-122A), MIR-409-3P (AACATTC,MIR-409-3P), MIR-299-SP (GTAAACC,MIR-299-5P), 

MIR-346 (GGCAGAC,MIR-346) and MIR-518A-2 (TTTGCAG,MIR-518A-2). For example, the genes 

SMARCD1, CD320, NEGR1, TBC1D108, BAI2, MARK1, SLC39A8, CDC42BPB, GNPDA2, SLCO5A1, 

CALM3, HAND2, ANKRD13C could potentially be targeted by the MIR-122A microRNA; this 

represented a core enrichment of 13 / 41 genes. Seven of the terms indicated similarity in the 

promoter regions but the associated transcription factor was currently unknown. 

Using the silica nanoparticles treated dataset, candidates at the inhibitor tail were enriched for ten 

promoter regions associated with ESRRA (V$ERR1_Q2), JUN (V$AP1_Q6, V$AP1_Q6_01, V$AP1_01), 

POU3F1 (V$TST1_01), TCF4 (V$TCF4_Q5), SRF (V$SRF_C), VDR (V$VDR_Q6), MIF (V$MIF1_01) and 

SPI1 (RGAGGAARY_V$PU1_Q6). Both JUN and SPI1 are known oncogene genes [385, 386] and the 

controls of the anti-apoptosis candidates suggests that these oncogenic transcription factors could 

contribute to the response towards the silica nanoparticle treatment. Five microRNA sequences 

were identified as potential regulators of the inhibitor candidates: MIR-198 (TCTGGAC,MIR-198), 

MIR-205 (ATGAAGG,MIR-205), MIR-190 (ACATATC,MIR-190), MIR-216 (TGAGATT,MIR-216) and MIR-

90 (CCAGGTT,MIR-490). Three promoter regions were not known to be associated with known 

transcription factors. 

On the sensitizer tail, 12 / 20 of the top enrichment terms were associated with known transcription 

factors including: TCF1 (RGTTAMWNATT_V$HNF1_01), EN1 (V$EN1_01), NF1 (V$NF1_Q6), FOXA1 

(V$HNF3ALPHA_Q6), EGR3 (V$EGR3_01), STAT1 (V$STAT1_01), PAX5 (V$PAX5_01), CART1 

(V$CART1_01), CEBPB (V$CEBPB_02), TGIF (V$TGIF_01), GATA1 (V$GATA_Q6), NR2F2 (V$DR1_Q3), 

HNF4A (V$HNF4_DR1_Q3) and POU2F1 (V$OCT1_07). 2 / 20 of the enrichment terms were 

associated with microRNA comprising of MIR-31 (ATCTTGC,MIR-31) and MIR-320 (CAGCTTT,MIR-

320), while four promoter regions with unknown transcription factors were also enriched.  

It is interesting to note that between the three classes of candidates, the known transcription 

regulatory mechanisms were exclusive to each class and do not overlap with other transcription 

factors.  
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Finally, using the c4 collection enabled the clustering of candidates to known cancer gene 

neighbourhoods on the genome to be analysed. 

The inducers were found to be localised to the neighbourhood of GPX4 (MORF_GPX4), PSMC2 

(MORF_PSMC2), ETV3 (MORF_ETV3), S100A4 (GNF2_S100A4), BNIP1 (GCM_BNIP1), PPP2R4 

(MORF_PPP2R4), PRKAR1A (MORF_PRKAR1A), ATOX1 (MORF_ATOX1), LMO1 (MORF_LMO1), THRA 

(MORF_THRA) and STK17A (MORF_STK17A).  

The inhibitors were found near cancer-related genes such as ITGA2 (MORF_ITGA2), BAG5 

(GCM_BAG5), CSNK1D (GCM_CSNK1D), PTPN6 (GNF2_PTPN6), G22P1 (GNF2_G22P1), SIRT2 

(GCM_SIRT2), REV3L (MORF_REV3L), CD53 (GNF2_CD53), SELL (GNF2_SELL), FSHR (MORF_FSHR), 

ELAC2 (GNF2_ELAC2), CCNA2 (GNF2_CCNA2), HAT1 (GNF2_HAT1), TYK2 (GNF2_TYK2), PRKCA 

(MORF_PRKCA) and MLLT10 (MORF_MLLT10).  

The sensitizers were found in the region of TPT1 (GCM_TPT1), EIF4A2 (MORF_EIF4A2), BECN1 

(MORF_BECN1), CCNF (MORF_CCNF), DNM1 (GNF2_DNM1), TST (GNF2_TST and MORF_TPT1), 

CCNA1 (GNF2_CCNA1), MAPT (GNF2_MAPT), NPM1 (GCM_NPM1), PTX3 (GNF2_PTX3), MLF1 

(GNF2_MLF1),  

As with the enrichment from the c3 collection, the three candidate types appear to be mutually 

exclusive although the implications of being in the proximity of cancer-associated neighbourhoods 

may likely be dependent on the type of cancers.  
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Ingenuity® and Alternative Signalling Pathway Analysis 
Ingenuity® Pathway Analysis is a curated proprietary knowledgebase widely adopted as an 

integrative analysis platform to examine complex biological and chemical relationships. IPA 

incorporates data from a range of experimental platforms, providing insight into molecular and 

chemical interactions, signalling pathways, cellular and disease phenotypes. The IPA knowledgebase 

comprises curated information on genes, proteins, chemicals, drugs, biomarkers and other 

molecular relationships to quickly build biological models or help drive novel hypothesis.  

Here, the functional information, where available, was used to reinforce, or supplement, the 

annotation results generated with DAVID. In particular, the signalling pathways generated by IPA 

were combined with those enriched by DAVID, GSEA and GeneMANIA plugin [387] on cytoscape 2.8 

[388] to build potential signalling networks and identify important signalling mechanisms.  

Inducers 
The inducer candidates were well enriched for phosphorylated inositol signalling. 3-

phosphoinositide biosynthesis and D-myo-inositol-5-phosphate metabolism pathways were among 

the top pathways identified by IPA (Figure 39), while DAVID (Figure 40) identified 

phosphatidylinositol signalling system (hsa04070) and inositol phosphate metabolism (hsa00562). 

Phosphoinositide is defined as any phosphorylated inositol-containing compounds involved in cell 

activation and calcium mobilisation in response to hormones. The four phosphoinositide associated 

signalling pathways yielded eight unique genes (PLCB2, PI4KB, PRKCB, PTEN, DGKA, CDIPT, PPM1F 

and PTPN1) from the screen out of 483 protein coding inducers.  

PLCB2 is a calcium-binding protein involved in signal transduction through the production of the 

second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). PLCB2 is 

also involved in the activation of phospholipase C activity. The IP3 molecule is soluble and freely 

diffusible across the cytoplasm to the endoplasmic reticulum (ER) where it activates the release of 

calcium, thereby increasing intracellular calcium concentration which is a trigger of apoptosis [389]. 

DAG remains in the plasma membrane where it facilitates the translocalisation and activation of 

protein kinase C (PKC). Phosphatidylinositol 4-kinase beta (PI4KB) is another protein involved in 

signal transduction, and phosphatidylinositol biosynthetic and signalling processes. PI4KB catalyses 

the phosphorylation of phosphatidylinositol (PI) which is the first committed step in the synthesis of 

PI3 [390, 391]. Protein kinase C beta type (PRKCB) is activated by calcium or DAG and is associated 

with a range of cellular functions including oxidative stress-induced apoptosis, regulation of 

androgen receptor-dependent transcription, regulation of the B-cell receptor (BCR) signalosome, 

insulin signalling and proliferation  of endothelial cells [392]. 
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Figure 39: Signalling pathways identified for the Inducers. A) An overview showing all the 
signalling pathways and their relationships. The intensity of the shade of red increases with 
the significance of the signalling pathway. B) Pathway chart showing the most significant 
signalling pathways. The yellow ratio line represents the proportion of the candidate genes 
identified among each curated gene set.  
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Figure 40: Enrichment of the signalling pathways identified by DAVID. The signalling 
pathways enriched by DAVID were ranked according to FDR and then plotted as a pie chart 
using the gene counts associated with each signalling pathway. 
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PTEN is a known tumour suppressor involved in apoptosis, lipid metabolism and neurogenesis. Its 

dual-specific phosphatase function includes protein phosphatase where it dephosphorylate proteins 

phosphorylated at the tyrosine, serine or threonine residues, while its lipid phosphatase activity 

dephosphorylates the D3 positions of the inositol ring of various phosphoinositides [393, 394]. This 

lipid phosphatase activity is important for its tumour suppressor function [395]. It is a crucial 

modulator of the AKT-mTOR signaling pathway, hence controls the process of neurogenesis. The 

mono-ubiquitinated PTEN localised to the nucleus possesses enhanced apoptotic potential 

compared to the non-ubiquitinated form located in the cytosol [396-398].  

Diacylglycerol kinase alpha (DGKA) converts DAG into phosphatidate to initiate the resynthesis of 

phosphotidylinositols, in the process terminating the PKC activity [399]. CDP-diacylglycerol--inositol 

3-phosphatidyltransferase (CDIPT) is another enzyme involved in the biosynthesis of 

phosphatidylinositol and could function to limit excessive cellular phosphatidylinositol content 

through its phosphatidylinositol:inositol exchange reaction [400]. Protein phosphatase 1F (PPM1F) is 

a phosphatase that dephosphorylates CaM-kinases and therefore inactivates them; PPM1F is also 

known to be pro-apoptotic [401]. Tyrosine-protein phosphatase non-receptor type 1 (PTPN1) is a 

tyrosine-protein phosphatase involved in the regulation of endoplasmic reticulum unfolded protein 

response [402], which is known to lead to apoptosis [403]. 

These phosphoinositide associated pathways, in combination with the mTOR signalling identified by 

IPA, would constitute the PI3K/AKT/mTOR signalling pathway. Within the PI3K/AKT/mTOR pathway, 

activation of PI3 kinases (PI3K) in turns activates protein kinase B (AKT) which then activates mTOR; 

this pathway is heavily up-regulated and exploited in cancers as a proliferative mechanism to by-

pass apoptosis [404, 405]. Here, it was discovered that many members associated with this signalling 

pathway also possess a pro-apoptotic functions, which could be exploited as treatment focal points 

in cancer therapies.  

Nine genes were identified for the mTOR pathway: DIRAS3, MRAS, PRKAG2, PRKCB, RHOA, RHOT1, 

RPS3A, RPS6KA1 and RPS6KA3. GTP-binding protein Di-Ras3 (DIRA3) possesses GTP binding and 

GTPase activity, and is involved in the regulation of cyclin-dependent protein kinase activity, gene 

expression by genetic imprinting and signal transduction mediated by small GTPase [406]. DIRA3 was 

also found to be expressed in normal ovarian and breast epithelial cells but not the cancer cells 

[406]. Ras-related protein M-Ras (MRAS) is involved as a signal transducer during the control of cell 

proliferation and is a weak activator of the MAP kinase signalling pathway [407]. 5'-AMP-activated 

protein kinase subunit gamma-2 (PRKAG2) is an energy sensor protein kinase involved in the 

regulation of cellular energy metabolism [408].  
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RhoA regulates the signal transduction between the cell surface receptors and to the assembly of 

actin stress fibres and focal adhesions [409]. The involvement of RhoA in apoptosis is conflicting, 

where it is associated with the negative regulation of apoptosis in neurons and the positive 

regulation of NF-kappaB and MAPK which are generally pro-survival proliferative pathways [410, 

411]. However, RhoA along with p38 MAPK were shown to be pro-apoptotic under depleted cellular 

cholesterol environment [412] while Rho1, the Drosophila melanogaster homologue of RhoA, was 

demonstrated to induce apoptosis via the JNK signalling pathway [413]. Here, we demonstrated that 

the ectopic expression of RhoA constitute a pro-apoptotic signal. Mitochondrial Rho GTPase 1 

(RHOT1) is localised to the mitochondria outer membrane where it is involved in mitochondrial 

trafficking processes which transport and organise mitochondria. Overexpression of RHOT1 has been 

observed to increase apoptosis [414, 415].  40S ribosomal protein S3a (RPS3A) is involved in 

translational initiation and associated with the induction of apoptosis [416]. Ribosomal protein S6 

kinase alpha-1 (RPS6KA1) and Ribosomal protein S6 kinase alpha-3 (RPS6KA3) are serine/threonine-

protein kinases which act downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signalling and 

mediate stress-induced activation of transcription factors such as CREB1, NR4A1/NUR77 and 

ETV1/ER81 [417]. They promote cell proliferation and survival via mTOR signalling and suppression 

of pro-apoptotic activity of DAPK and BAD [418, 419].  

MAPK signalling pathway (hsa04010) was identified by DAVID while ERK5 signalling was identified by 

IPA, with both pathways comprised of members from the mitogen-activated protein kinase (MAPK) 

family. Both pathways are activated by growth factors and play a role in the regulation of cell 

proliferation [420]. RPS6KA1, STMN1, NF1, GNA12, MRAS, FGFR1, PRKCB, RPS6KA3, PLA2G6 and 

ELK4 are associated with the classical MAPK signalling while five genes (ELK4, GNA12, MRAS, 

RPS6KA1 and RPS6KA3) are associated with ERK5 signalling. All five genes enriched for ERK5 

signalling is a subset of the ten genes associated with the extended MAPK signalling pathway, while 

RPS6KA1, RPS6KA3, PRKCB and MRAS were also identified with the PI3K/AKT/mTOR signalling 

pathway.  

Among the genes involved in MAPK signalling, six were unique to this pathway. Stathmin (STMN1) is 

involved in the regulation of the microtubule filament system by preventing the assembly and 

promoting the disassembly of microtubules. STMN1 binds to two alpha/beta-tubulin heterodimers 

and is known to interact with KIST [421, 422]. Guanine nucleotide-binding protein subunit alpha-12 

(GNA12) is part of the G proteins family associated as regulators and signal transducers for various 

transmembrane signalling systems such as the MAPK and Rho signalling pathways. ETS domain-

containing protein Elk-4 (ELK4) is a DNA binding protein with transcription cofactor activity [423, 
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424]. Fibroblast growth factor receptor 1 (FGFR1) is involved in cell proliferation, differentiation and 

migration. It acts as the surface receptor for the fibroblast growth factors and possesses tyrosine-

protein kinase activity capable of phosphorylating targets such as PLCG1, FRS2, GAB1 and SHB upon 

ligand binding to activate their signalling cascade. PLCG1 activation triggers DAG and IP3 production 

which activates the IP3K signalling pathway while SHB and FRS2 mediates the MAPK signalling [425, 

426]. Neurofibromin (NF1) is a likely regulator of Ras capable of stimulating the GTPase activity of 

Ras [427] while 85 kDa calcium-independent phospholipase A2 (PLA2G6) catalyses the release of 

fatty acids from phospholipids and is also associated with cardiolipin biosynthesis [428, 429]. Both 

NF1 [430] and PLA2G6 [431] were previously demonstrated to be pro-apoptotic.  

Gene sets featuring intracellular transport pathways were also enriched using GSEA, which included 

SLC mediated transmembrane transport, amino acid and oligopeptide SLC transporters, inorganic 

cation anion SLC transporters and transmembrane transport of small molecules. In total, 46 unique 

genes were associated with transport pathways as enriched by GSEA. These solute-carrier (SLC) 

transporters facilitate the movement of a specific substrate either against or with their 

concentration gradient through conformation change of the transporter protein [432]. While the 

direct association of SLC transporters with apoptosis is not clear, SLC transporters are known to play 

an important role in resistance of cancer cells towards chemotherapy by reducing the cellular 

accumulation of drugs. Some SLC transporters such as folate, nucleoside, and amino acid 

transporters, in contrast increase the sensitivity to chemotherapy by mediating the uptake of 

hydrophilic drugs [433]. It could be speculated that the ectopic expression of these transporters 

resulted in an imbalance of the intracellular homeostasis of their substrate, allowing for pro-

apoptotic signals to manifests. Such ectopic expression may be reminiscent of the up-regulation of 

these transporters in disease pathology.   

The NFAT signalling pathway was also enriched by GSEA (BIOCARTA_NFAT_PATHWAY) with 15 genes 

among the core enrichment. It is closely associated with the IP3 signalling, whereby the initial 

calcium release triggers a greater calcium influx through calcium release activated channels (CRAC), 

which then activates the NFAT transcriptional activity [434]. This pathway is heavily implicated in 

cardiac failure, which is orchestrated by cytokines and growth factors acting through various 

signalling cascade such as the MMAPK, PKC, low molecular weight GTPases (Ras, RhoA and Rac) and 

G-proteins [435]. Nuclear Factor of Activated T-cells (NFAT) occupies a central role in these pathways 

[436]. Activation of NFAT is known to mediate apoptosis, with pro-apoptotic signalling including up-

regulation of COX2 and the FAS death pathway [437, 438], and the association of inducer candidates 

with this pathway vindicates their pro-apoptotic activity.  
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Signalling by Rho GTPases (REACT_11044) was identified by DAVID with eight gene counts (CHN1, 

SYDE2, MYO9A, RHOT1, RHOA, KALRN, FGD2 and ARHGEF16). The Rho family of small GTP-binding 

proteins are signalling molecules activated by stimuli ranging from cytokines, growth factors, 

hormones, G-proteins and other biologically active substances. They are involved in processes such 

as reorganisation of actin cytoskeleton, regulation of transcription activity, vesicle trafficking, 

morphogenesis, apoptosis and tumourigenesis [439].  

KALRN, FGD2 and ARHGEF16 are known to exhibit pro-apoptotic activity. Kalirin (KALRN) promotes 

the exchange of GDP by GTP and activates specific Rho GTPase family members to trigger regulatory 

signalling involved in the control of neuronal shape, growth and plasticity [440]. FYVE, RhoGEF and 

PH domain-containing protein 2 (FGD2) also promotes the exchange of GDP for GTP and activates 

CDC42, a member of the Ras-like family of Rho- and Rac proteins. CDC42 then activates JNK1 

signalling. FGD2 is also able to bind a range of phosphoinositides. Rho guanine nucleotide exchange 

factor 16 (ARHGEF16) acts as a Guanyl-nucleotide exchange factor of the RHOG GTPase to promote 

the exchange of GDP for GTP [441] and could also activate CDC42 [442].  

Other interesting pathways identified by IPA are Ephrin B Signalling, Cholecystokinin/Gastrin-

mediated Signalling and Actin Nucleation by ARP-WASP Complex, while those from GSEA includes 

Phase II conjugation pathways, IL6 signalling, neuroactive ligand receptor interaction and response 

to gonadotrophins.  

Ephrin B is a subfamily of the Eph tyrosine kinase (Tk) receptor family with six members involved in 

the regulation of cellular function such as cell-cell adhesion and are important in tissue development 

[443]. Cholecystokinin/Gastrin-mediated Signalling involves gastrointestinal peptides such as gastrin 

and cholecystokinin (CCK) which act as messenger molecules for signal exchange within the 

organism. For example, Gastrin is a circulating hormone able to stimulate acid secretion from the 

parietal cells; it is also a growth factor. The binding of these gastrointestinal peptides to their surface 

receptors (GPCRs) results in production of DAG and IP3, and the subsequent activation of IP3 

signalling pathways, while Rho and MAPK signalling are also involved.  

Phase II conjugations are biotransformation pathways involving transferases which transfer 

cofactors groups to the target substrate to increase the excretory potential of the compounds. The 

pathway generally results in inactivation or detoxification, although bioactivation may also occur.  

As part of an integrated network of genes identified by IPA, the functions associated with the top 

network terms including haematological disease, hereditary disorder, infectious disease, drug 

metabolism, lipid metabolism, small molecule biochemistry, cellular development, cellular assembly 
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and organisation, cell-to-cell signalling and interaction, cellular function and maintenance, cellular 

movement and development disorder. Analysis of the integrated networks of known interactions 

revealed significant interactions among the inducer candidates, notably via UBC and Gpc (Figure 41).  

IPA also provides information on the upstream regulators of the candidates. The inducers do not 

appear to be regulated under similar upstream signals, but clusters of genes able to be triggered by 

the same signal could be identified. The top five upstream regulators for the inducer candidates are 

MAGI2, tropomyosin, ZNF148, PTIO and MGEA5 (Figure 42).  MAGI2 is a membrane-associated 

guanylate kinase which acts upstream of PTEN and RHOA, two of the inducer candidates. MAGI2 

could for example improve the ability of PTEN to inhibit Akt1 activation [444]. Tropomyosin is 

upstream of TPM2 and TPM3, all of which are involved in the troponin complex associated with the 

calcium dependent regulation of vertebrate striated muscle contraction. ZNF148 is a zinc finger 

protein involved in transcriptional regulation and acts on ITGAM, PTCRA and VIM while PTIO is a 

chemical reagent which targets ITGAM and NCAM1. PTIO is a stable radical scavenger for nitric oxide 

(NO) and possesses significant inhibitory activity against NO biological actions. MGEA5 is an enzyme 

which specifically cleaves N-Acetylglucosamine but not N-Acetylgalactosamine from glycopeptides 

[445] and targets ABLIM1, ADAM19, AHNAK2, APOBEC3G, CD99L2, CDCA7, DAB2, FGFR1, PHKA2 and 

RPS6KA3 from the inducer candidates; it could potentially act as a regulator of apoptosis by changing 

the glycosylation status of its targets.  

The top diseases and disorders enriched by IPA among the inducer candidates are inflammatory 

response, gastrointestinal disease, hepatic system disease, neurological disease and cancer.  

The top toxicity terms include increases Bradycardia, decreases depolarisation of mitochondria and 

mitochondrial membrane, pro-apoptosis, cardiac fibrosis and TGF-β signalling while the top 

toxicological function includes increased levels of AST, red blood cells and haematocrit.  
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Figure 41: Integrated network for all known inducer interactions. All the networks identified 
by IPA were merged into a single network, with the orange lines indicating significant 
interactions. The proteins with the most interactions are potential signalling hubs and 
changes in the expression or activity of these hubs could potentially affect its interacting 
partners. An enlarged view of the region of interest with the highest density of significant 
interactions is inset in the top right corner. Candidate genes are shaded grey. 
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Figure 42: Top ten upstream regulators for inducers. Upstream regulators may be identified 
using IPA although the inducer candidates did not feature control of a large cluster of target 
genes by a single regulator. The five most significant upstream regulators are MAGI2, 
tropomyosin, ZNF148, PTIO and MGEA5. 
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Inhibitors 
Using DAVID (Figure 40), five signalling pathways were identified and these are spliceosome 

(hsa03040), processing of Capped Intron-Containing pre-mRNA (REACT_125), cytoskeletal regulation 

by Rho GTPase (P00016), Gene Expression (REACT_71) and Alzheimer disease-amyloid secretase 

pathway (P00003). The majority of the enrichment by GSEA was for gene sets associated with cancer 

profiles, and only two (ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_DN and 

ELVIDGE_HIF1A_AND_HIF2A_TARGETS_UP) were linked to known signalling networks. IPA (Figure 

43) yielded multiple pathways including regulation of actin-based motility by Rho, integrin signalling, 

clathrin-mediated endocytosis signalling, pregnenolone biosynthesis, glutamate degradation III (via 

4-aminobutyrate), signalling by Rho family GTPases, Huntington's Disease signalling, histidine 

degradation VI, thiamin salvage III, histamine biosynthesis and oleate biosynthesis II (Animals) 

pathways.  

Spliceosome (hsa03040) and processing of capped intron-containing pre-mRNA pathways 

(REACT_125) were both associated with transcriptional activity, in particular mRNA splicing. This 

process removes the noncoding introns from the protein-coding exons resulting in a final matured 

mRNA transcript. Spliceosomes are comprised of a dynamic family of particles which assemble on 

the mRNA precursor to help it achieve the conformation for the splicing to proceed. The standard 

spliceosome is comprised of five small nuclear reibonucleoproteins or snRNPs (U1, U2, U4, U5 and 

U6) and other spliceosome-associated proteins (SAPs). Both of these mRNA processing pathways in 

combination with the more general gene expression network (REACT_71) which covers the 

pathways from regulation of various transcription processes from the transcription of genomic DNA 

to how the new RNA transcripts are processed yielded 30 unique genes from the inhibitor 

candidates. The processing of capped intron-containing pre-mRNA is a subset of the gene expression 

network, with all 11 associated genes also enriched in the latter pathways. DHX15, HSPA8, MAGOHB, 

PRPF38B, PRPF40B and TRA2B are the six genes unique to the spliceosome pathway while the gene 

expression pathways consisting of 17 unique genes (CARS2, CCAR1, DHX9, EEF1G, HNRNPH1, IARS2, 

LARS, MAMLD1, NARS2, PAPOLA, POLR2F, RPL10A, RPS3, SUPT16H and TAF11). Six genes (NHP2L1, 

PCBP1, PRPF8, SF3A1, SRSF2 and SRSF7) are common to the spliceosome and gene expression 

pathways; Poly(rC)-binding protein 1 (PCBP1) is a DNA binding protein with a preference for cytosine 

while the remaining five are various splicing factors associated with spliceosome formation.  
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Figure 43: Signalling pathways identified for the Inhibitors. A) An overview showing all the 
signalling pathways and their relationships. The intensity of the shade of red increases with 
the significance of the signalling pathway. B) Pathway chart showing the most significant 
signalling pathways. The yellow ratio line represents the proportion of the candidate genes 
identified among each curated gene set. 
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Regulation of the cytoskeleton by Rho was identified by both DAVID and IPA with the following 

unique genes: DIAPH3, SSH3, TTN, ARHGAP32, SSH1, ASPM, MYH11, TUBB6, ARPC5, RHOF, ACTG2, 

BAIAP2, GSN, MYL9, PI4KA and RND2. This is likely to be closely associated with the signalling by Rho 

family GTPases pathway, which was also identified in the inducer candidates. The Rho signalling 

pathway was associated with 8 inducer candidate genes, while 14 was enriched among the inhibitor 

candidates (ACTG2, ARPC5, BAIAP2, DIAPH3, GNB1, GNG7, MAPK1, MYL9, PARD3, PI4KA, PIK3C3, 

RHOF, RND2 and SEPT4). The genes associated with Rho signalling are distinct to the inducer and 

inhibitor candidates, and this observation reinforces the involvement of Rho signalling in cell 

proliferation and apoptosis. It could also highlights the pro- and anti-apoptotic points along the Rho 

signalling pathway as indicated by the respectively candidate types, which could be exploited as 

treatment or biomarkers in the relevant clinical setting.  

Alzheimer disease-amyloid secretase pathway and Huntington's disease signalling pathway form 

another interesting pair of enriched signalling pathways. Both are neurodegenerative diseases 

manifesting as a result of accumulation of protein aggregates of beta amyloid or mutant huntingtin. 

Six genes (PCSK5, CHRM3, CACNB2, APBA2, MAPK1 and PCSK6) are associated with the Alzheimer 

disease-amyloid secretase pathway and 13 are involved in Huntington’s disease signalling (CAPN2, 

CAPN3, CLTC, CPLX2, GNB1, GNG7, GOSR1, HDAC2, HSPA8, HTT, MAPK1, PIK3C3 and POLR2F), both 

sets of genes do not appear to overlap apart from MAPK1. Mitogen-activated protein kinase 1 

(MAPK1) is a serine/threonine kinase central to the MAP kinase signal transduction pathway, and 

depending on the signals and cellular context, the MAP signalling cascade could mediate a range of 

biological functions from cell proliferation, survival and differentiation through to the regulation of 

transcription, translation and cytoskeletal rearrangements. MAP signalling was previously enriched 

in the inducers, but may play a pro-survival role in association with the inhibitor candidates. 

Alzheimer disease-amyloid secretase pathway involves the cleavage of the amyloid precursor 

protein by beta-secretase (BASE) then subsequently by gamma-secretase to generate the beta 

amyloid fragment found in senile plaques in Alzheimer's disease patients' brains.  This pathway is 

different from the normal cleavage pattern of the amyloid precursor, which generates the benign p3 

fragment first by alpha-secretase cleavage (TACE, ADAM10 or MDC9) then by gamma-secretase 

(presenilin complex) [446, 447]. Within the genes identified with this pathway, PCSK5 and PCSK6 

possess endoprotease activity which cleaves at the RX(K/R)R consensus motif [448, 449]. CHRM3 is 

the muscarinic acetylcholine receptor that mediates cellular responses such as the inhibition of 

adenylate cyclase, phosphoinositides degradation and regulation of potassium channels through the 

action of G proteins, and hence is capable of influencing the various associated signal transduction 
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pathways [450]. CACNB2 is the beta subunit of voltage-dependent calcium channels which 

contributes to the calcium channel function by shifting the voltage dependencies of activation and 

inactivation and controlling G protein inhibition [451], APBA2 is associated with putative protein 

transport functions and MAPK1 is one of the key signalling nodes of the MAPK signal transduction.  

Huntington's disease (HD) generally involves the mutations of the huntingtin gene (htt) which 

translate into extended polyglutamine tracts (polyQ) resulting in insoluble misfolded protein 

aggregates. The HD mutation also causes abnormal protein interactions such as the interference of 

the PSD-96 substrate interaction with its NMDA receptor by the mutant htt, leading to increased 

calcium influx. The HD mutation leads to sequestration of proteins including transcription factors. 

The mutant htt is also able to disrupt gene transcription by recruiting transcription factors like CBP, 

TBP and Sin3A via its cleaved N-terminal fragments.  

CAPN2 is a calcium-regulated non-lysosomal thiol-protease able to catalyse the proteolysis of 

substrates involved in signal transduction and cytoskeletal remodelling [452]. CAPN3 is also calcium-

regulated protease and has been demonstrated to exhibit an anti-apoptotic activity through NF-

kappaB-dependent expression of the anti-apoptotic factor c-FLIP [453]. CLTC is a major protein 

component of coated pits and vesicles, CPLX2 negatively regulates the formation of synaptic vesicle 

and is down-regulated in Huntington disease [454, 455]. GNG7 is a G-protein involved in signal 

transduction, GOSR1 is involved in ER-Golgi intra-organelle transport [456], HDAC2 catalyses the 

deacetylation of lysine residues on the core histones (H2A, H2B, H3 and H4) [457] and can negatively 

influent apoptosis via its control of p53 [458]. HSPA8 is a chaperone associated with protein folding 

function and stress response, and is capable of acting as a repressor of transcriptional activation 

such as the inhibition of the transcriptional coactivator activity of CITED1 on Smad-mediated 

transcription [459, 460]. HSPA8 is also regulated by the anti-apoptotic BAG-1 [461], which may 

facilitate its apoptosis inhibitory behaviour. HTT is the primary protein involved in Huntington’s 

disease and may be involved in microtubule-mediated transport function. HTT is also associated with 

the negative regulation of apoptosis [462]. PIK3C3 is the catalytic subunit of the PI3K complex which 

regulates the production of phosphatidylinositol 3-phosphate, which in turn regulates the formation 

of autophagosomes [463] while POLR2F is a DNA-dependent RNA polymerase also associated with 

the spliceosome pathway.  

It remains unclear how the inhibitor candidates associated with the Alzheimer and Huntington’s 

neurodegenerative disease pathways exhibit their anti-apoptosis effect, although it may be 

speculated that this is achieved through transcriptional mechanisms or through the pro-survival 

signals as a result of stress response (HSPA8) or autophagy (PIK3c3).  CAPN3, HDAC2 and HTT were 
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demonstrated to be negative regulators of apoptosis. It is interesting that the inhibitor candidates 

may confer pro-survival mechanisms under disease conditions such as Alzheimer and Huntington’s 

along with various cancer profiles.   

IPA also identified six pathways involved in cellular metabolism: pregnenolone biosynthesis, 

glutamate degradation III (via 4-aminobutyrate), histidine degradation VI, thiamin salvage III, 

histamine biosynthesis and oleate biosynthesis II. The genes involved are CYP11A1, MICAL2, GAD1, 

MYO5B, TPK1, HDC, FADS1 and FADS2. The mechanism by which these pathways associated with 

synthesis or degradation of biomolecules translates into an anti-apoptotic response is unknown, and 

may represent novel crosstalk between the metabolic and apoptosis pathways.  

Integrin signalling and clathrin-mediated endocytosis signalling were also identified by IPA with 14 

and 13 genes respectively. Integrins are receptors which mediate the attachment between the cells 

and its extracellular matrix while clathrin-mediated endocytosis involves the uptake of surrounding 

molecules through clathrin-coated vesicles. Integrin signalling is able to activate PI3K and MAPK 

signalling to modulate cell proliferation or apoptosis, and integrins are able to shift the balance 

between pro- and anti-apoptosis signals. For example in anoikis, the absence of a survival signal 

provided by integrin anchorage would trigger apoptosis. Alternatively, integrin signalling is also able 

to increase resistance to apoptosis directly via pathways which target the Bcl-2 and IAP families of 

apoptosis regulators [464]. The anti-apoptosis effect via the clathrin-mediated endocytosis pathway 

may partially be attributed to the reduction of cell surface expression of death receptors [465].  

The top upstream regulators of the inhibitor candidates are miR-1 (GGAAUGU), tropomyosin, DL-

threo-dihydrosphingsosine, HNF-4A and miR-125bp-5p (CCCUGAG). Unlike the upstream regulator 

profile of the inducer candidates which appeared to have little correlation, the regulators of the 

inhibitor candidates seemed to be able to target a wide range of genes. Among these, the 

transcription factor HNF-4A appears to have the widest target cluster (Figure 44), while two 

microRNAs (miR-1 and miR-125bp-5p) were also identified. Both microRNAs identified by IPA did not 

appeared in the GSEA enrichment, likely as a result of the different method of enrichment algorithm 

employed between the two analysis methods. miR-1 is important in cancer where its expression was 

shown to be reduced while its target genes were up-regulated [466, 467]. It is also shown to possess 

tumour suppression activity via the regulation of LASP1 [468], and may be hypothesised to act 

through some of the inhibitor candidates identified in the screen. The activity of miR-125bp-5p is 

currently not well established. Tropomyosin is also identified as an upstream regulator of inducer 

candidates, while DL-threo-dihydrosphingsosine is a chemical inhibitor of sphingosine kinase which 

is involved in calcium mediated signalling [469].  
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Figure 44: Upstream regulators for Inhibitors. All upstream regulators for the inhibitor 
candidates with the focus on HNF4A (blue) indicating the wide extend of its target genes, 
arranged in around the circular peripheral.  The top ten upstream regulators are inserted in 
the top right corner. 
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The top networks identified by IPA are associated with the listed terms: hereditary disorder, 

neurological disease, skeletal and muscular disorder; connective tissue development and function, 

embryonic development, nervous system development and function; cell-to-cell signalling and 

interaction, tissue development, neurological disease; lipid metabolism, small molecule 

biochemistry, dermatological diseases and conditions. 

The top IPA biological functions associated with the inhibitors are infectious disease, neurological 

disease, developmental disorder, hereditary disorder and metabolic disease, while toxicological 

functions includes decreased levels of albumin, increased levels of ALT, increased levels of 

Hematocrit, increased levels of albumin, increased levels of blood urea nitrogen. Since the inhibitors 

are acting in response to the silica nanoparticles, these toxicological functions may be proposed as 

potential biomarkers upon exposure to the same nanoparticles although this hypothesis needs to be 

verified experimentally.  

The top toxicity list includes renal ischemic resistance panel (rat), cardiac necrosis/cell death, 

increased cardiac proliferation, decreased permeability transition of mitochondria and mitochondrial 

membrane and cytochrome P450 panel (human).  
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Figure 45: Integrated networks of all known inhibitor interactions. All the networks 
identified by IPA were merged into a single network, with the orange lines indicating 
significant interactions. The proteins with the most interactions are potential signalling hubs 
and changes in the expression or activity of these hubs could potentially affect its interacting 
partners. Candidate genes are shaded grey. 
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Sensitizers 
Pathways involving endocytosis (hsa04144) and regulation of actin cytoskeleton (hsa04810) were 

identified by DAVID (Figure 40). GSEA enrichment for the sensitizer tail indicated fifteen pathways 

including NCAM1 interactions, translation initiation complex formation, inflammatory response to 

LPS, peroxisome, oocyte meiosis, formation of ternary complex and subsequent 43S complex, CD40 

signalling, signalling by PDGF, regulation of beta cell development,  GTP hydrolysis and joining of the 

60S ribosomal subunit, ribosome, viral mRNA translation, regulation of the actin cytoskeleton by Rho 

GTPases, NCAM signalling for neurite out growth and IL6 signalling.  

IPA (Figure 46) identified another twelve signalling pathways including Paxillin signalling, FAK 

signalling, agrin interactions at neuromuscular junction, CMP-N-acetylneuraminate biosynthesis I 

(Eukaryotes), y-linolenate biosynthesis II (Animals), ErbB signalling, virus entry via endocytic 

pathways, ILK signalling, leucine degradation I, caveolar-mediated endocytosis signalling, HER-2 

signalling in breast cancer and phosphatidylglycerol biosynthesis II (non-plastidic). 

Whereas the transcriptional pathways were associated with the inhibitor candidates, pathways 

involved in the translation of mRNA into proteins appear to be prevalent in the sensitizer candidates 

with five pathways enriched by GSEA. 14 unique genes (RPS27A, RPS4X, RPS29, RPS16, RPS6, EIF4G1, 

EIF5B, FAU, RPS9, RPL9, RPL12, UBA52, RPLP1 and DNAJC3) were identified among the four 

translation related pathways. RPS27A, RPS4X, RPS29, RPS16, RPS6, FAU, RPS9, RPL9, RPL12, UBA52 

and RPLP1 are ribonucleoproteins associated with various aspects of translational activity such as 

initiation, elongation and termination. EIF4G1 is a translation initiation factor that is part of the 

complex which recognises the mRNA cap and initiates translation while EIF5B promotes translation 

initiation by enhancing the binding of formylmethionine-tRNA to ribosomes. UBA52 is interesting in 

that it is also a precursor for ubiquitin, which is generated via a cleavage at the N-terminal freeing a 

single ubiquitin molecule from the 60S ribosomal protein L40. UBA52 is involved in apoptosis with 

both anti-apoptotic and pro-apoptotic (via extracellular signal) capabilities as annotated by 

Reactome. DNAJC3 is a chaperone involved in the unfolded protein response during ER stress and is 

activated in response to influenza viral infection [470]. Intriguingly, 11 / 13 genes including DNAJC3 

may also be hijacked for the translation of viral mRNA, and the association of these sensitizer 

candidates may act to prime the cell to or even activate apoptosis as antiviral defence response. 
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Figure 46: Signalling pathways identified for the sensitizers. A) An overview showing all the 
signalling pathways and their relationships. The intensity of the shade of red increases with 
the significance of the signalling pathway. B) Pathway chart showing the most significant 
signalling pathways. The yellow ratio line represents the proportion of the candidate genes 
identified among each curated gene set. 
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Endocytosis is another well represented pathway with three associated terms: endocytosis 

(hsa04144), caveolar-mediated endocytosis signalling and virus entry via endocytic pathways. 14 

genes were associated with these pathways: ASAP2, EGFR, GIT2, EHD2, VPS37B, ARFGAP1, ARAP3, 

EPN2, ACTB, ACTC1, DNM2, ITGB5, PIK3R1 and PRKCE. 5 / 6 genes associated with viral entry 

overlapped with the other to endocytosis pathway, although PRKCE is unique to this viral 

association. Protein kinase C epsilon type (PRKCE) is a serine/threonine-protein kinase with 

important functions in the regulation of biological processes linked to cytoskeletal proteins including 

cell adhesion, migration, motility and cell cycle, functions in neuron growth and ion channel 

regulation. PRKCE is also involved in immune response, cancer cell invasion and regulation of 

apoptosis. Caveolae-dependent endocytosis is important in the internalisation of the scavenger 

receptor-substrate complex to initiate apoptosis [471] and endocytosis in general is widely 

associated with the modulation of virus-induced apoptosis [472]. In addition, an increase in the rate 

of endocytosis may correlate with increase of apoptosis since more silica nanoparticles are taken up 

by the cells.  

Pathways associated with development are also well represented. NCAM1 interactions and NCAM 

signalling for neurite out growth as identified by GSEA are associated with the growth of neurons; 

NCAM1 is a cell adhesion protein involved in neuron-neuron adhesion, fasciculation and outgrowth 

of neurons. The pathway involving agrin interactions at neuromuscular junction, identified by IPA, is 

associated with the development of the neuron-muscle interface; agrin (AGRN) is a protein secreted 

by motor neuron axons during development which binds to the surface of skeletal muscle [473]. The 

three pathways associated with neuron development enriched for 15 genes (COL9A1, CACNA1C, 

COL3A1, COL9A3, COL6A3, NCAN, SPTBN4, PTK2, AGRN, ACTB, ACTC1, EGFR, ERBB2, NRG3 and 

PAK6). COL9A1, COL3A1, COL9A3 and COL6A3 are variants of collagen chains used for cell adhesion 

functions, SPTBN4 is a structural constituent of the cytoskeleton [474] while ACTB is the cytoplasmic 

actin, ACTC1 (alpha cardiac muscle 1) are actin molecules also associated with the cytoskeleton. 

NCAN binds to hyaluronic acid and regulates neuronal adhesion and neurite growth during 

development. NRG3 is a ligand for the ERBB4 tyrosine kinase receptor [475]. 

ERBB2 (a.k.a HER2) is a protein tyrosine kinase which is involved in several cell surface receptor 

complexes and is a key component of a neuregulin-receptor complex. It regulates neuron outgrowth 

and stabilisation of peripheral microtubules [476]. PTK2 is a non-receptor protein-tyrosine kinase 

involved in regulating cell migration, adhesion, reorganisation of the actin cytoskeleton, cell cycle 

progression, proliferation and apoptosis. PAK6 is a serine/threonine protein kinase involved in the 
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regulation of gene transcription [477] and may potentially exhibit an anti-apoptotic effect through 

the phosphorylation of BAD. [478] 

CACNA1C is a voltage-sensitive calcium channel (VSCC) regulating the entry of calcium ions into 

excitable cells. It is also associated with various calcium-dependent processes such as muscle 

contraction, release of hormone or neurotransmitter, gene expression, cell motility, division and 

death [479]. NCAM signalling is also thought to mediate pro-apoptotic signals induced by IL-1beta in 

beta cells [480]. Regulation of beta cell development and oocyte meiosis were also development- 

associated pathways identified by GSEA with 12 genes each. Beta cells are located in the islets of 

Langerhans in the pancreas and are implicated in diabetes. Oocyte is a female germ cell involved in 

reproduction.  

Signalling by platelet-derived growth factor (PDGF) is also closely associated with the development 

process, the signalling pathway being enriched by GSEA with 7 genes (COL9A1, STAT1, COL3A1, 

PDGFB, COL9A3, COL6A3 and CRK). STAT1 is a signal transducer and transcription activator involved 

in various cellular responses to cytokines, interferons and growth factors, and is capable of induction 

of apoptosis [481]. PDGFB is a growth factor associated with the regulation of embryonic 

development, cell proliferation and survival. CRK is an adaptor protein which mediates MAPK8 

activation in a Rac-dependent manner [482]; CRK is also a proto-oncogene.  

FAK signalling (7 genes: ACTB, ACTC1, ARHGAP26, EGFR, GIT2, PAK6 and PIK3R1) involved the 

activation of focal adhesion kinase-1 (FAK) by focal adhesion complex associated growth factors and 

integrins. FAK activation in turns promotes activation of signal transduction pathways which in turns 

promote cell migration and may have a role in the regulation of p53. FAK signalling is critical in early 

development and its loss is lethal to the cells. FAK can regulate cell growth and survival through the 

activation of PI3K/PKD1/Akt/PKB and Grb2/SOS/Ras/Raf-1/MEK/ERK pathways.  

Paxillin signalling (8 genes: ACTB, ACTC1, ARF1, GIT2, ITGB5, PAK6, PARVA and PIK3R1) plays an 

important role in mediating signal transduction from integrin receptors to the actin cytoskeleton. 

Paxillin is a signal transduction adapter protein that localises with integrin-β1, FAK, vinculin and 

certain kinases at focal adhesions. It connects the integrin signalling with p38 MAPK and JNK 

pathways. Its primary function is as a molecular adapter or scaffold protein to create an interface 

with multiple docking sites at the plasma membrane for interactions between signalling proteins like 

kinases and structural proteins [483]. These kinases could then phosphorylate the N-terminus of 

paxillin allowing for recruitment of downstream effectors like Crk which can then modulate gene 
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expression via various MAPK cascades. Paxillin signalling results in changes in cytoskeleton 

structures important for events like embryonic development, wound repair and tumour metastasis. 

ILK signalling (9 genes: ACTB, ACTC1, FN1, ITGB5, LIMS2, PARVA, PIK3R1, RSU1 and TMSB4X) involves 

the integrin linked kinase (ILK) which primarily functions to connect integrins to the cytoskeleton. ILK 

recruits other adaptor molecules into a large complex to regulate actin dynamics and integrin 

function. ILK is also important in cancer progression, and has been validated as a cancer therapeutic 

target [484, 485]. 

The regulation of actin cytoskeleton yielded two pathway terms by DAVID and GSEA with 14 unique 

genes:   SSH3, TTLL3, FN1, ITGB5, ACTB, PAK6, EGFR, TMSB4X, RPS4X, AKT1, PAK4, FSCN1, CFL1 and 

WASF1. The association of the actin cytoskeleton across the three candidate types is intriguing and 

suggests that the actin cytoskeleton may be an important area for the control of apoptosis. Indeed, 

the actin cytoskeleton dynamics may regulate apoptosis signalling through the release of reactive 

oxygen species and rearrangement of the cytoskeleton from the mitochondria [486].  

Three pathways associated with the immune system and inflammatory response were also enriched. 

CD40 signalling (7 genes: RGS1, TCEB3, ARID5B, PHACTR1, CFLAR, STAT1 and IRF4) centres on CD40, 

a member of the tumour necrosis factor receptor (TNFR) family and mediates signals between 

proliferation, differentiation, growth suppression and cell death. The pathway is important for B-

cells survival and production of various molecules associated with the immune system such as 

costimulatory molecules, cytokines, chemokines (interleukins), TNF-alpha and cytotoxic radicals 

[487]. CD40-mediated signal transduction increases the transcription of target genes involved in host 

defence against pathogens. Up-regulation of these genes is achieved by activation of multiple 

pathways such as NF-KappaB, MAPK and STAT3 [488]. IL6 signalling (6 genes: PDPN, SOD2, DNM1, 

AGRN, CDC25B and STMN2) involves the cytokine interleukin-6 and is achieved through its receptor 

comprising of the alpha subunits for ligand specificity and GP (glycoprotein) 130. Binding of the 

ligand initiates the signalling including the activation of JAK kinases, Ras-mediated signalling and IP3K 

signalling. These signalling pathways translate into a variety of biological responses such as immune 

response, inflammation, gene activation, cell proliferation, survival and differentiation. Inflammatory 

response to bacterial lipopolysaccharide or LPS enriched for 7 genes: RAB20, SLC15A3, SLC11A2, 

SOD2, TNIP1, CXCL5 and CD44. RAB20 is involved in protein transport/recycling.  SOD2 destroys 

superoxide radicals by catalysing the conversion of these superoxide into oxygen and hydrogen 

peroxide [489]. TNIP1 interacts with zinc finger protein A20/TNFAIP3 and suppresses TNF-induced 

NF-kappaB-dependent gene expression by impeding RIP- or TRAF2-mediated transactivation signal 

[490]. CXCL5 is a chemokine involved in neutrophil activation [491] while CD44 is a receptor for 
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hyaluronic acid involved in cell adhesion. SLC15A3 and SLC11A2 are both transporters involved in the 

transport of histidine and small peptides for the former, and metal ions such as iron, manganese, 

cobalt, cadmium, nickel vanadium and lead for the latter.  

The ErbB/HER2 signalling pathway implicated in various cancer types including breast, ovaries, brain 

and prostate was identified by IPA with 7 unique genes: EGFR, ERBB2, NRG3, PAK6, PIK3R1, PRKCE 

and ITGB5. The ErbB receptor tyrosine kinase family comprises of four members (ErB1 – 4) that are 

typical surface receptor tyrosine kinases which become activated upon ligand binding. Receptor 

dimerization and subsequent phosphorylation enables the interaction with adaptor proteins to 

promote downstream signalling, with the range of effects including cell proliferation, migration, 

differentiation, and apoptosis. In addition, ErbB family proteins can also act as transcriptional 

regulators by translocating to the nucleus. For example, ErbB2 is able to interact with importin β1 

and Nup358 to translocate to the nucleus via endocytic vesicles, where ErB2 then regulates target 

genes such as COX-2 [492, 493].  

Five metabolic pathways were identified including peroxisome, leucine degradation I, 

phosphatidylglycerol biosynthesis II (non-plastidic), CMP-N-acetylneuraminate biosynthesis I 

(Eukaryotes) and y-linolenate biosynthesis II (Animals). Unlike the inhibitor candidates enriched for 

approximately equal counts of biosynthesis and degradation pathways, the metabolic pathways 

associated with the sensitizers appear to be largely anabolic. The peroxisome is involved in the 

breakdown of long fatty acid chains, D-amino acids and polyamines, but may also be involved in 

biosynthesis of plasmalogens, an ether phospholipid with a large presence in the nervous, immune 

and cardiovascular systems [494]. Phosphatidylglycerol is a glycerolphospholipid found in pulmonary 

surfactant. Interestingly, two units of phosphatidylglycerol would form cardiolipin, an important 

component of the inner mitochondrial membrane and a known trigger for apoptosis [495]. The 

connection of phosphatidylglycerol synthesis with cardiolipin may be a probable mode of action for 

the apoptosis sensitizing effect of the associated genes. CMP-N-acetylneuraminate is a common 

sialic acid in human, and the precursor for the synthesis of other sialic acids. Sialic acids are usually 

the terminal sugar residue of glycoproteins and glycolipids, but may also mediate cellular recognition 

and adhesion events during development, immune and inflammatory responses and oncogenesis. y-

linolenate is a polyunsaturated fatty acid and a precursor for Δ6-desaturated fatty acids like 

arachidonate and eicosapentaenoate which are associated with maintenance of membrane 

structure and function, and regulation of cholesterol synthesis and transport.  

Like the inducer candidates, the sensitizers do not appear to have the regulatory pattern where a 

large number of genes are targeted by an upstream regulator as in the case of the inhibitor 
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candidates. The top five upstream regulators for the sensitizers are miR-1 (GGAAUGU), HTF, PLCD4, 

miR-7-5p (GGAAGAC) and IGFBP2 (Figure 47). HER2 transcription factor (HTF) is an activator protein-

2 transcription factor involved in the regulation of ERBB2 gene expression [496]. PLCD4 hydrolyses 

phosphatidylinositol 4,5-bisphosphate (PIP2) to generated DAG and IP3, in a reaction similar to the 

PLCD2 identified as an inducer candidate, hence PLCD4 is likely to mediate its downstream target 

genes via PKC and IP3K signalling.  Insulin-like growth factor-binding protein 2 (IGFBP2) binds to 

insulin-like growth factors (IGFs) to prolong their half-life, and is able to inhibit IGF-mediated growth 

by altering the interactions between the IGFs and their surface receptors [497]. The association of 

the microRNA miR-1 with the sensitizers is another intriguing find, since miR-1 was previously found 

to be an upstream regulator for many of the inhibitor candidates. While the pro-survival activity of 

miR-1 is better suited as the regulator for apoptosis inhibitor candidates, its association with  the 

sensitizers may potentially acts as a negative feedback signal to prime the cells for apoptosis when 

its expression is critically reduced for example in the event of cancer development. Another 

microRNA, miR-7-5p, was also identified although its functions have yet to be established. 

The top networks identified by IPA involves the following listed pathway terms: cellular assembly 

and organisation, cardiovascular disease, cell morphology; cellular assembly cellular function and 

maintenance, DNA replication, recombination and repair; post-translational modification, embryonic 

development and tissue morphology; cell morphology, endocrine system development and function 

and organ morphology; nervous system development and function, organ morphology and cell cycle. 

Analysis of the integrated network revealed UBC, HNF4A and miR-124-3p to be among the top 

signalling hubs (Figure 48).  

The top biological functions include cancer, haematological disease, infectious disease, reproductive 

system disease and connective tissue disorders.  

The top toxicity list includes irreversible glomerulonephritis biomarker panel (rat), p53 signalling, 

renal glomerulus panel (human), NRF2-mediated oxidative stress response and hypoxia-inducible 

factor signalling. The top toxicity functions are increased levels of creatine and red blood cells.  
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Figure 47: Top ten upstream regulators for sensitizers. Upstream regulators may be 
identified using IPA although the sensitizers, like the inducer candidates, did not feature 
control of a large cluster of target genes by a single regulator. The five most significant 
upstream regulators are miR-1 (GGAAUGU), HTF, PLCD4, miR-7-5p (GGAAGAC) and IGFBP2. 
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Figure 48: Integrated network for all known sensitizer interactions. All the networks 
identified by IPA were merged into a single network, with the orange lines indicating 
significant interactions. The proteins with the most interactions are potential signalling hubs 
and changes in the expression or activity of these hubs could potentially affect its interacting 
partners. An enlarged view of the region of interest with the highest density of significant 
interactions is inset in the top right corner. Candidate genes are shaded grey. 
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Analysis of Noncoding cDNA Sequences 
The cDNA sequences which were not matched to any protein products either by the annotation 

provided by Dr Derek Huntley, or annotations generated from online databases such as UniProt, 

Ensembl Biomart, NCBI and bioDBnet were classified as noncoding sequences. The ability of 

noncoding sequences to regulate cellular functions and processes is an exciting field, with the 

ENCODE project revealing that the bulk of the previously defined junk DNA may in fact be involved in 

some form of regulatory mechanisms [498]. The hypothesis of the noncoding sequences acting as 

various form of RNA regulatory mechanisms such as microRNA was explored together with the 

potential of the open reading frames coding for mini-proteins which were also known to exert 

functional activity within cells [499].  

The noncoding sequences comprised of 141 inducers, 300 inhibitors and 157 sensitizers. The 

sequences were submitted to Rfam database, a known collection of structural RNAs including 

noncoding RNA and cis-regulatory elements  maintained by the Wellcome Trust Sanger Institute 

[500] to identified potential regulatory mechanisms.  

Among the inducer candidates, AK022826 was shown to contain the SOX2 overlapping transcript 

exons 1 to 4 (SOX2OT). SOX2OT is a known long non-coding RNA which is involved in embryogenesis 

and vertebrate development [501]. Here, we have demonstrated that the overexpression of this 

transcript is capable of pro-apoptosis activity which may be mediated by the exons 1 – 4 of the 

SOX2OT transcript. AK127225 and AK124567 contained the GRIK4 3’ UTR element and could be 

speculated to interfere with GRIK4 expression by interacting with its mRNA to change its half-life 

[502]. GRIK4 encodes a kainate receptor subtype which is a member of the ligand-gated ion channels 

family and the interference of this ligand-receptor interaction has been demonstrated to trigger 

neuronal cell death [503]. AK023600 possesses the U6 spliceosomal RNA, a non-coding small nuclear 

RNA (snRNA) which is a component of the spliceosome, making this cDNA sequence a potential U6 

snRNA precursor. Free U6 snRNA is also known to interact with the proteins Prp24 and LSms in S. 

cerevisiae [504]. AK129752 and AK124771 were associated with the snoRNAs from RNA 

Z195/SNORD33/SNORD32 family and sR21 respectively.  Small nucleolar RNA 

Z195/SNORD33/SNORD32 are snoRNAs able to modify other snRNAs and was found to be 

overexpressed in non-small-cell lung cancer [505]. AK124781 is associated with rydB RNA, a non-

coding RNA found in E. coli, Shigella flexneri and Salmonella species [506] although the function of 

the rydB RNA is currently unknown. This intriguing link between abundance in common bacterial 

species and apoptosis induction may suggest that the sequence may act as some kind of internal 

cellular mechanism to trigger apoptosis in the presence of these foreign bacteria within the cells.  
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The inhibitor candidates also include associations with snoRNAs; AK125313, AK092456 and 

AK129752 were associated with Small nucleolar RNA SNORD95, Small nucleolar RNA SNORD75 and 

Small nucleolar RNA Z195/SNORD33/SNORD32 family respectively. Furthermore, the inhibitors were 

associated with four spliceosomal RNA: AK023614 (U2 spliceosomal RNA), AK124014 (U6atac minor 

spliceosomal RNA), AK124213 and AK023600 (U6 spliceosomal RNA). AK022419 was associated with 

Deleted in lymphocytic leukemia 2 conserved regions 1 – 6, which is a long non-coding RNA (lncRNA) 

encoded by the DLEU2 gene. The DLEU gene is associated with tumour suppressor activity and is 

frequently deleted in patients with B-cell chronic lumphocytic leukemia [507]. 

The inhibitors also resulted in six microRNA sequences, supporting our hypothesis that one of the 

potential mechanisms for these noncoding sequences was via generation of microRNAs to silence 

their target genes. Here, these microRNAs are implicated in the regulation of apoptosis, a regulatory 

mechanism currently novel to apoptosis signalling. The inhibitor candidates AK098506, AK001351, 

AK129585, AK096776 and AK025763 were associated with microRNAs mir-497, mir-198, mir-650, 

mir-149 and mir-280. AK098506 also contained two sites associated with the mir-16 microRNA 

precursor family within the same transcript, an observation which supports the role of AK098506 as 

the microRNA precursor, and its resulting microRNA mir-16 could potentially act to down-regulate 

pro-apoptosis genes. potC RNA and Pyrococcus C/D box small nucleolar RNA were two other RNA 

elements associated with the inhibitors AK024181 and AK058064. potC RNA is a recently discovered 

conserved RNA structure and a predicted cis-regulatory element (acting within the same DNA 

molecule) associated with the 5’ untranslated regions of genes encoding membrane transport 

proteins or peroxiredoxins [508]. Membrane transport proteins are highly enriched among the 

inducer candidates, and the association of a RNA regulatory element which could inhibit apoptosis 

through the down-regulation membrane transport proteins is indeed an extremely supportive 

finding. Furthermore, peroxiredoxins are universal antioxidant enzymes capable of regulating 

cytokine-induced peroxide levels (and possibly apoptosis via changes in the cellular oxidative state) 

and mediate signal transduction [509]. The potC RNA motif is currently known to be associated with 

marine bacteria, and this discovery of its presence in mammalian sequences with two potential 

target classes both associated with apoptosis is yet another novel finding. Pyrococcus C/D box small 

nucleolar RNA are non-coding RNA (ncRNA) first identified in the achael genus Pyrococcus with the 

function of modifying ribosomal RNA (rRNA) and transfer RNA (tRNA) [510]. It has since been found 

to be localised to the nucleolus in eukaryotic cells which is the primary organelle for the biogenesis 

of rRNA and tRNA.  
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The sensitizers comprise an approximately similar proportion between snRNAs and microRNA with 

two and three associations respectively. Small nucleolar RNA SNORA71 and small nucleolar RNA 

sR11 were found in AK055434 and AK055108 respectively. AK126603 was associated with the 

microRNA mir-448 while AK055108 contained two sites associated with mir-335 similar to the 

observation for AK098506 of the inhibitor candidates. AK125960 was associated with the APC 

internal ribosome entry site (IRES), an RNA element within the coding sequence of the APC gene. 

APC is a tumour suppressor gene and the IRES-mediated translation of APC is crucial for the 

apoptosis cascade [511]. Remarkably, the noncoding sequences of the sensitizers also included three 

terms associated with amino acid metabolism, and one associated with retroviral stability. These 

candidates reinforced the functional annotation and signalling pathways enriched for the protein-

coding sensitizers, where translation- and viral-associated pathways were similarly enriched. Here, 

AK128619 contained two sites for the Termite-leu RNA structure associated with genes involved in 

leucine biosynthesis while AK091631 contained ctRNA (counter-transcribed RNA) associated with 

translational inhibition [512].  

The sensitizer candidate AK093650 contained the FAM13A antisense RNA 1 conserved region 2, 

which is a long noncoding RNA (lncRNA); FAM13A is associated with the positive regulation of 

GTPase activity and hence involved in regulating small GTPase mediated signal transduction. Its 

variant is also known to confer a protective effect on lung cancer cells [513]. AK093650 could serve 

to directly knockdown and silence its target gene FAM13A and influent the small GTPase signal 

transduction cascade.  

Indeed, this potential to knockdown and silence the target gene via the antisense sequences 

remained a novel aspect of apoptosis regulation. This observation was also found among the 

candidate noncoding sequences. In the initial attempts to use the annotation information curated by 

the ENCODE Project [498], ten inducer noncoding sequences were randomly selected and manually 

searched using UCSC genome browser. One cDNA clone, AK124552, was identified at three positions 

on chromosome 5 of the human genome (Positions 69403208 – 69406827, 70278675 – 70282294 

and 70403560 – 70407180), all of which covered regions associated with NAIP. NAIP, also known as 

Baculoviral IAP repeat-containing protein 1 (BIRC1), is a known anti-apoptosis protein which acts as 

inhibitors of caspase-3, -7 and -9 [514, 515]. When translated with ExPASy a protein-coding ORF 

could be found in the 3’-5’ (reversed) Frame 2, and a blastx query on the NCBI server revealed that 

this region comprises of 58% coverage and 99% identity match which included two protein domains 

NACHT and GVQW. The NACHT domain is found in proteins involved in apoptosis [516]. Since this 

sequence was cloned under the pME18SFL3 expression plasmid, transcription could only occur in the 
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5’-3’ direction, generating the antisense sequences which potentially could directly bind the mRNA 

for NAIP, causing the complete knockdown of the target or resulting is alternative splicing and the 

loss of the region including the apoptosis-associated NACHT domain. This is the most striking 

example identified among the noncoding sequences, where a noncoding apoptosis inducer 

sequence could potentially directly influence the expression of an anti-apoptotic protein, relieving 

the inhibitory function leading to caspase activation. The incorporation of the ENCODE annotation, 

and identification of more known noncoding RNA sequences using the GenCODE annotation of 

noncoding RNA [517] is currently underway, and will be separately discussed in a future publication.  

The occurrence of microRNA sequences was briefly approached in two ways. First, the frequency for 

each of the three unique microRNA upstream regulators miR-1 (GGAAUGU), miR-125bp-5p 

(CCCUGAG) and miR-7-5p (GGAAGAC) identified by IPA was counted to calculate the occurrence 

probability; miR-1 was common to both inhibitors and sensitizers while miR-125bp-5p and miR-7-5p 

were only associated with the inhibitors and sensitizers respectively. The occurrence probability was 

normalised with the natural probability for the length of the microRNA sequence, in this case 7bp 

and presented as a percentage change as in Equation 13. 

Equation 13: Normalised change in occurrence probability (NCOP) 

𝑁𝐶𝑂𝑃 (%) =  �
𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝐶𝑜𝑢𝑛𝑡7𝑏𝑝 𝑚𝑖𝑅 𝑆𝑒𝑞

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑝𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑡𝑦𝑝𝑒
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4𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑖𝑅 𝑆𝑒𝑞 − 1�× 100 

 

miR-1 with the seed sequence of GGAAUGU was 48.45% and 31.44% more likely to in the noncoding 

inducer and sensitizer sequences, compared with 24.10% in the inhibitors; likewise miR-125bp-5p 

showed increased occurrence among the noncoding inducers and sensitizers by 48.45% and 80.74% 

compared with 40% in the inhibitors. This suggested that there was an increased presence of the 

seed sequence of both microRNA upstream regulator associated with the inhibitor, together with 

the fact that miR-125bp-5p was twice as likely to occur in the sensitizers indicated that the 

noncoding inducers and sensitizers may be enriched for pro-apoptotic precursor microRNA 

sequences by targeting apoptosis inhibiting targets. The reverse was also true for miR-7-5bp which 

was an upstream regulator unique to the sensitizers. The occurrence of miR-7-5bp was increased 

from 19.12% in the sensitizers to 33.65% in the inhibitors, although the occurrence was also 

increased in the inducers by a slightly lower magnitude to 29.30%.  

The second approach involves the use of all known human microRNA sequences downloaded from 

MiRBase database (2042 matured sequence entries) [518]. The occurrence of the matured 
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microRNA sequences (full length microRNA sequences usually between 18 – 24bp) was identified 

among the noncoding sequences of the three candidate types (Figure 49A). The inducers were 

associated with four unique microRNA sequences hsa-miR-5095 (AK127225), hsa-miR-5096 

(AK127110 and AK055262), hsa-miR-1273g-3p (AK092937 and AK024862) and hsa-miR-3654 

(AK097279). The inhibitors were associated with hsa-miR-5096 (AK097083, AK055262, AK056407 

and AK130488), hsa-miR-1273f (AK022113 and AK026906), hsa-miR-3149 (AK025763) and hsa-miR-

1285-5p (AK092621). Intriguingly, a single inhibitor noncoding sequence (AK098506) was contained 

four unique matured microRNA sequences: hsa-miR-497-3p, hsa-miR-497-5p, hsa-miR-195-3p and 

hsa-miR-195-5p; this is an incredibly rare occurrence with a probability of 1.67048E-52. AK098506 is 

hence likely to be a precursor molecule for the generation of the associated microRNAs. The same 

may be argued for the other noncoding sequences with the matured microRNA sequence, since the 

occurrence of a nucleotide sequence with an average length of about 20bp is already an extremely 

rare event occurring once in every 1,099,511,627,776 base pairs. Nonetheless, the potential of these 

sequences as microRNA precursors may be dependent on other features such as the formation of 

stem-loop secondary structures to aid in the process of microRNA generation [519]. No microRNA 

sequences from the miRBase database were associated with the noncoding sensitizers. 

The noncoding sequences were also manually submitted to the Regulatory RNA Motifs and Elements 

Finder (RegRNA) integrated web server for the identification of homologs of regulatory RNA motifs 

and elements within the noncoding sequences [520]. An interesting observation from the predicted 

annotations revealed the potential of some noncoding sequences, such as AK021669, which are 

capable of binding a single microRNA repeatedly across its entire length (Figure 49B). This suggested 

that these sequences may potentially function as a decoy to sequester their target microRNA and 

prevent their functions. Such sequences appeared to be fairly common although the precise 

frequency was not quantified. RegRNA annotations included motifs for the 5’-UTR, 3’UTR exonic 

regulatory motifs, intronic regulatory motifs, transcriptional regulatory motifs and microRNA target 

sites, and are too extensive to discuss individually. These annotations are made available in the 

supplementary materials for reference.  

Concisely, information for the unique microRNAs were mined from miRMaid [521] while their 

potential targets were predicted using TargetScanHuman Release 6.2 [522, 523]. In total, inducers 

were associated with four microRNA sequences (all miRBase), inhibitors with sixteen (2 IPA 

upstream regulators, 8 miRBase and 6 Rfam) and the sensitizers with four microRNA sequences (2 

IPA upstream regulators and 2 Rfam). TargetScan predicted 741 targets for the four inducer 

associated microRNAs, 709 of which are unique (4.51% redundancy). For the 16 microRNAs of the 
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non-coding inhibitors, 5393 targets were predicted with 3204 unique (40.63% redundancy) while the 

four microRNAs of the sensitizers had 1745 targets with 1585 unique (9.17% redundancy). The 

average targets per microRNA for the inducers, inhibitors and sensitizers were 247, 599.22 and 

581.67 (only microRNAs with available prediction were included for the averaging). This revealed 

that the target range of the inhibitors and sensitizer microRNAs were approximately 2.43 times that 

of the inducers. Although the increased range of the microRNA of the inhibitors could be attributed 

to the high redundancy within the targets, the sensitizer microRNAs appeared to be targeting a wide 

range of target with little redundancy.  

Another interesting aspect was that the target range overlapped with the protein-coding candidates. 

For example, the inhibitor microRNAs were hypothesised to target and down-regulate the inducer 

and sensitizer protein-coding candidates to achieve its anti-apoptotic effect. Predicted targets of the 

inhibitor microRNAs were then compared with the protein-coding inducers and sensitizers, revealing 

that 100 protein-coding inducers and 86 sensitizers may in fact be targeted by the inhibitor 

microRNAs (Figure 50). The reverse is also true, albeit with a smaller effect, for the inducer and 

sensitizer microRNAs targeting the protein-coding inhibitors. Here, 43 and 78 protein-coding 

inhibitors may be targeted by the inducer and sensitizer microRNAs respectively.  

miRMaid also revealed the association of the following microRNAs with cancer: hsa-miR-5095, hsa-

miR-5096, hsa-miR-1273g-3p, hsa-miR-1273f, mir-149, miR-7-5p, mir-335 [524], hsa-miR-3654 [525], 

hsa-miR-3149 [526], mir-16 [527] and mir-650 [528]. However, the functional and regulatory 

mechanisms of these microRNAs remained to be elucidated experimentally.  

The possibility of the noncoding sequences encoding short open reading frames (ORFs) for mini-

proteins. These are defined as polypeptides comprising no more than a hundred amino acids and are 

known to play important roles in a range of cellular processes in both prokaryotic and eukaryotic 

cells [529]. The 5’-3’ ORFs are translated from the cDNA sequences using an Excel macro and the 

distribution of the mini-proteins analysed.  

This distribution appeared to be following its natural pattern where shorter peptides are occurring at 

greater frequency, which decreases to near zero as the polypeptide length approaches the defined 

limit of 100 amino acid residues (Figure 51). This pattern remained similar between the three 

candidate types and is therefore likely to be an indication that the effect may not be significant. 

Furthermore, attempts were made to align the mini-proteins between 70 – 100 residues in length 

using ClusterW2. Although there appears to be regions of probably similarity, manual blastp of these 

overlapping regions between the various mini-proteins did not yield significant products. In addition, 
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blastp was also performed for approximately 20 of these longer polypeptides (70 – 200 residues); 

nothing led to known domains or proteins. It is likely that greater depth of analysis is required to 

look into any potential pattern by analysis of the residue and polypeptide occurrence, and more 

diverse analysis of the degree of conservation, if any, within these mini-proteins. However, this 

hypothesis was not developed further within the context of this project.  
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Figure 49: Analysis of the noncoding sequences - microRNAs. A) The occurrence probability 
of the three unique microRNA upstream regulators identified by IPA was normalised with the 
natural probability of the length of a nucleotide sequence, in this case 7bp and presented as a 
percentage change. Here, miR-1 and miR-125bp-5p both inhibitor upstream regulators were 
shown to be markedly increased among the noncoding inducers and sensitizers; this suggests 
a regulatory mechanism where these noncoding inducers and sensitizers silence the anti-
apoptosis targets to initiate a pro-apoptotic response. The seed sequence for miR-7-5p, a 
unique upstream regulatory associated with the sensitizers, was also observed to occur with 
an increased probability among the noncoding inhibitors. B) An example showing some of the 
microRNA target sites predicted by RegRNA for AK021669. The sequence appeared to be able 
to bind miR-1 across its entire length, suggesting a decoy mechanism. 
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Figure 50: The protein coding inducer candidates are targets of the noncoding inhibitors 
candidates. Some of the noncoding candidates are potentially the precursor of endogenous 
microRNAs. TargetScan predicted the potential targets which could be silenced by these 
microRNAs, revealing here that the protein coding apoptosis inducer candidates (purple) can 
be knockdown by microRNAs generated from the noncoding inhibitor candidates (blue). The 
reverse is also true. The large number of interactions suggests an intricate apoptosis signalling 
network featuring a high degree of cross-talk.  
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Figure 51: Distribution of all mini-proteins. All ORFs encoding potential polypeptides were 
translated. The distribution of the potential mini-proteins appear to be following its natural 
distribution, where the short peptides had increased frequencies which reduces to near zero 
as it polypeptide length approaches the defined limit of the mini-proteins. This pattern 
remained similar between the three candidate types, and is likely to indicate that mini-
proteins might not be significant in this context.  
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Discussions 
 

Functional annotation by DAVID generally resulted in distinct characteristics for each of the three 

candidate types. The enrichment for a high count of genes with known apoptosis activity in both the 

inducer list was a striking validation of the RISCI screening approach. The inducer and sensitizer 

candidates with the pro-apoptotic behaviour also appear to involve protein products and the protein 

translational machinery to a greater degree. This was in contrast to the inhibitors, which appeared to 

regulate apoptosis primarily via transcriptional mechanisms such as the processing and splicing of 

RNA.  

Furthermore, the inhibitors were closely associated with cancer expression profiles as determined 

by GSEA; it also has the highest count of genes expressed in cancer-associated tissue profiles. This 

association with cancer profiles was crucial towards the validation of inhibitors since cancer cells 

were known to evade apoptosis. It was also interesting to note that the genes which were capable of 

inhibiting the cell death induced by the LUDOX® silica nanoparticles were in fact similar to those 

employed that cancer cells. Nonetheless, the enrichment of the set of genes associated with metal 

ion response offered important insights into the signalling mechanisms potentially employed by 

normal cells. The response to metal ion activated by the resulting increase in reactive oxygen species 

(ROS) which is also likely to be implicated in the silica nanoparticles induced cell death. 

The pathway analysis also revealed interesting findings. The association of the PI3K, MAPK and Rho 

signalling cascades all of which could potentially contribute to apoptosis were identified among the 

inducers. The inhibitions, on the contrary, were involved in Alzheimer disease-amyloid secretase 

pathway and Huntington's disease signalling pathway both of which are neurodegenerative diseases. 

The sensitizers were associated with pathways involving the translational machinery and interesting 

appeared to be associated with various viral terms, which was present even in the noncoding 

sequences.  

While there is a general pattern which fits with the expected profile of the candidates, there remains 

a healthy level of disagreements. A recurring theme is the observation of that some pro-apoptotic 

candidates turned out to possess known anti-apoptotic activity and vice versa. These candidates may 

possess additional roles within apoptosis signalling network which are yet to be discovered. In the 

end, the association of these known pathways would help to support the general pattern of the 

candidate lists. But the interesting output of the RISCI screen will be the novel candidates implicated 

for the first time in regulation of apoptosis. Little is known about these novel candidates, but 
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together with the integrated analysis they would help to drive new hypothesis and research for 

these novel candidates.  

One of the most surprising outcome of the screen and analysis was the observation that many of the 

noncoding sequences which did not result in known protein products are in fact functional and 

equally capable of regulating apoptosis. The ENCODE project, only published recently, served to 

provide evidence in support of our hypothesis that these noncoding candidates may exert their 

effect on apoptosis signalling via previously unknown mechanisms.  

The analysis of these noncoding sequences revealed that these are likely to involve a range of 

different regulatory mechanisms. As long noncoding RNA (lncRNA), the noncoding candidates may 

form complex structures to guide the recruitment of chromatin modifying complex, or facilitate the 

interactions between two RNA binding protein complexes. Alternatively, they could bind 

transcription factors to suppress the expression of the target promoter, or directly bind the 

microRNA sequences to prevent the silencing of the target genes [530]. There are indications from 

the analysis in support of some of these mechanisms, especially the sequestering of the microRNA 

since many of the candidates were capable of binding the same microRNA molecules across the 

entire length (see RegRNA analysis).  

The potential to serve as precursors to the microRNA, thus directly involved in the regulation of 

apoptosis by the knock-down of their counterpart exerting the opposite effect, is also another mode 

of action.  While it was certainly of interest that many of the matured microRNA sequences could be 

wholly detected among the noncoding candidates in support of the microRNA precursor hypothesis, 

the single most interesting observation from the noncoding analysis was the reciprocal behaviour of 

the pro-apoptotic inducer and sensitizer microRNAs have on the protein-coding inhibitor candidates 

and likewise the inhibitor microRNAs are capable of targeting the protein-coding inducers and 

sensitizers. 

Till date, few of the lncRNA and other noncoding elements were determined experimentally, and 

none are known to exert a known regulatory function in apoptosis signalling. The identification of 

598 noncoding candidates associated with the various aspects of apoptosis signalling could open up 

a new field in the control of apoptosis regulation through these noncoding elements.  

Although candidates from the three classes were subjected to repetitive validation and shown to be 

statistically significant here, and the extensive analysis based on currently available knowledgebase 

was in agreement with the predicted characteristics, further experimental validation will be required 

to firmly elucidate the signalling pathways involved and confirm the apoptosis activity.  
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Chapter 9: Assay Design 
 

Background Information 
 

In parallel with the optimisation and setup of the RISCI screen for apoptosis inducers, inhibitors and 

sensitizers, brief attempts were made to establish a suitable assay for the detection of autophagy 

regulators.  

Autophagy is the regulated catabolic breakdown of excess or damaged cellular components and 

biomolecules, serving as the primary mechanism for the recycling of materials within the cellular 

system. It is also an important mechanism for cell survival under nutrient starvation, and is also 

employed for removal of foreign particles such as viruses or bacteria [531]. Excessive autophagy has 

also become progressively recognised as another form of programmed cell death alongside 

apoptosis. Intricate crosstalk exists between apoptosis and autophagy signalling. Its signalling 

network is frequently implicated in various cancer types [532, 533] and in degenerative diseases 

such as Alzheimer’s [534]. 

Developing an assay for the detection of autophagy regulators using the RISCI screening platform 

and NITE library could offer new insights into the signalling mechanism of autophagy, and how it 

interacts with apoptosis regulation.  

Microtubule-associated proteins 1A/1B light chain 3B (LC3) is a prominent marker and effector for 

autophagy. The cytoplasmic protein (LC3-I) is cleaved at the C-terminal during autophagy and 

translocates to the autophagosome (LC3-II). Fluorescently tagged LC3 is routinely used as an 

autophagy marker, where the activation of autophagy results in the concentration of fluorescence 

signal to the autophagosome, which appear as bright green dots. It was hypothesised that by using 

the C-terminal amino acid sequence in conjunction with a reporter system, the cleavage which is 

normally observed through microscopy could be adapted into a quantifiable signal suitable for high-

throughput format. 
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Results 
 

Optimisation of Autophagy Induction  
The autophagy reporter plasmid pEGFP-LC3 was obtained from Dr Anne Petiot, Université Joseph 

Fourier, Grenoble. Transfection optimisation was performed for a variety of cell lines including 

HEK293T, MCF-7, HeLa, HFF-1, A549 and BHK cells. These cell lines were transfected using the 

optimised calcium phosphate protocol or commercially available transfection kits including QIAGEN 

Effectene, Attractene, Superfect, Clontech XFect and Polyplus jetPEI according to manufacturer’s 

protocol.  

HEK293T cells were easily transfected but the small stature of the cells increased the cytoplasmic 

fluorescence of the GFP-LC3, which had the effect of masking the localised signal. HFF-1, A549 and 

BHK were rejected due to inconsistent and low transfection efficiency. HeLa cells were eventually 

found to be suitable for the detection of autophagy using fluorescence microscopy due to its large 

cell area. When transfected using jetPEI with up to 0.5ug of active pEGFP-LC3 plasmids and 80,000 

HeLa cells, the overexpression of the GFP-LC3 did not result in observable cleavage and localisation 

of the reporter into the autophagosome.  

The various cell lines were also subjected to conditions known to induce autophagy. Work primarily 

revolve around various type of nutrient starvation, including overnight serum deprivation, culturing 

of the cells in the amino acid free media Earle's Balanced Salt Solution (EBSS, Invitrogen and Sigma 

Aldrich), serial dilution of serum-free DMEM with PBS, and even in PBS alone. In addition, ER 

stressors such as brefeldin-A and thapsigargin, and chemical compound inducers like rapamycin and 

lithium chloride (10 – 20mM) which inhibits downstream signalling from the target of rapamycin 

(TOR) proteins were also tested. Incubation in EBSS (Sigma Aldrich) for approximately 90 minutes 16 

– 20 hours post-transfection of the GFP-LC3 reporter was shown to induce autophagy above 

background, quantified by manual counting of nine image frames and more than 300 cells per 

treatment (Figure 52). However, none of the conditions tested could consistently activate autophagy 

as assessed by the transient transfection of GFP-LC3. 

Lentivirus was used to create a stable cell line of HeLa cells expressing the GFP-LC3 reporter to avoid 

transient overexpression using the commercial jetPEI kit. The GFP cassette in the pLenti7.3 viral 

vector was first replaced with a puromycin cassette (termed pLenti7.3puro) to resolve the 

interfering signal of the GFP and allow for selection of stable clones using the aminonucleoside 

antibiotic puromycin. eGFP-LC3 DNA sequence was then PCR amplified and cloned into the 

pLenti7.3puro vector. After infection and puromycin selection, the cells were kept at high dilutions 
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per well of a 96-well plate to isolate single clones. Subsequently, it was discovered during the 

expansion of these single clones which occur over a period of two weeks that the stabilised 

glutamine in the DMEM AQmediaTM (Sigma Aldrich) had an inhibitory effect on the autophagy 

activation. Indeed, a literature search identified a recent publication which further confirmed that 

glutamine was a signalling molecule in autophagy [535].  

The ammonium (-NH4) ions appear to play an important role in the activation of autophagy, and a 

range of ammonium salts were used tested for this effect. 25mM, 50mM, 100mM and 200mM of 

ammonium acetate, ammonium chloride, ammonium formate and ammonium hydroxide. 

Ammonium hydroxide was found to be extremely toxic and excluded. Although ammonium acetate 

and ammonium formate were shown to be able to induce the localisation of GFP-LC3 to the 

autophagosomes, they displayed toxicity at the minimum concentration of 25mM tested.  

It was found that ammonium chloride could readily and consistently activate autophagy, and at 

25mM causes the GFP-LC3 to localise to the autophagosome without induction of cell death (Figure 

53). The phenotype was assayed using live confocal imaging of the HeLa cells stably expressing GFP-

LC3 and western blotting which further confirm the cleavage of endogenous LC3 (Figure 54A). High 

concentration of 100mM ammonium chloride was toxic and the cells displayed a unique phenotype 

of being rounded with huge vacuoles visible (Figure 54B). These rounded cells also appeared to 

remain stable without progression into apoptosis, which some of the surrounding cells did. 

Apoptotic cells displayed strong and uniform fluorescence signal, with membrane blebbing often 

observable.  

Treatment using 25mM ammonium chloride for two hours was selected as the condition for 

inducing the autophagy phenotype, although live imaging of the HeLa cells stably expressing GFP-

LC3 indicated that localisation of LC3 to the autophagosomes occurred within 60 minutes of 

treatment (Figure 54C). This condition was also validated in a range of other cell lines such as 

HEK293T and N2a which is a cell line of neuronal origins to induce cleavage of LC3.   
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Figure 52: Autophagy induction using nutrient depleted EBSS media. Autophagy in HeLa cells 
could be observed after 90 minutes incubation in EBSS media 16 – 20 hours post transfection 
of the GFP-LC3 reporter. The number of cells undergoing autophagy was manually counted 
against the total population count. In total, nine image frames were captured with more than 
300 cells counted per condition. N = 3, Magnification = 400X, scale bar = 20 µm, error bars 
represent standard deviation of sample size. 
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Figure 53: Autophagy induction using ammonium salts. HeLa cells stably expressing the GFP-
LC3 reporter were used to screen for the effect of ammonium salts on activation of 
autophagy. 25mM, 50mM, 100mM and 200mM of each ammonium salts were applied to the 
cells for 24 hours. Ammonium acetate and ammonium formate were able to induce 
autophagy but also increased toxicity. 25mM ammonium chloride was found to consistently 
activate autophagy with little or no cell death observed. Magnification = 200X, scale bar =  
20 µm. 
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Figure 54: Ammonium chloride was able to induce autophagy. A) Induction of autophagy by 
ammonium chloride was observed on western blot. Here, endogenous LC3 was observed to 
be cleaved and phosphorylated in HEK293T cells with increasing concentration of ammonium 
chloride. B) Image of HEK293T treated with 50mM ammonium chloride for two hours.  Vast 
increase of the autophagosome count and intensity can be observed. Some cells were also 
observed to assume a unique phenotype of being rounded with large vacuoles.  Magnification 
= 400X, scale bar = 20 µm. C) Time-course confocal microscopy showing the response of 
HEK293T to 25mM ammonium chloride. Autophagy indicated by the autophagosome 
formation may be observed after two hours. Magnification = 200X, scale bar = 20 µm. 
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Cloning of the FRET Reporter System 
It was previously published that the cytoplasmic LC3 protein was cleaved at Met121 at the C-

terminus by Atg4b [536, 537] to expose Gly120 for lipidation and targeting. Amino acid sequences 

consisting of residues 111 - 125 of MAP1LC3B (MVYASQETFGMKLSV) was cloned to test for 

selectivity of the published cleavage site. The human codon optimised linker (SGLRSGGDEVDGGSNS) 

caspase-3 substrate recognition sequence DEVD was cloned in parallel to act as a cleavage control 

during the validation of the reporter system. 

Two strategies exist to quantify the cleavage of LC3. The first involves the use of fluorescence 

resonance energy transfer (FRET) between two chromophores linked by the LC3 or DEVD cleavage 

sequences. The FRET effect can be readily quantified when the two chromophores remain in close 

proximity imposed by the cleavage sequence. The activation of autophagy or apoptosis would result 

in the respective cleavage, leading to a loss of FRET signal. This loss of FRET signal may be quantified, 

although a negative readout may not be an ideal assay. The second strategy exploits the alpha 

complementary effect of the β-galactosidase enzyme in a similar manner to the blue white genetic 

screen in E. coli. The functionally inactivated mutant with a deletion to amino acid 11 – 41 (the 

omega fragment) can be reactivated in its catalytic activity by the peptide with amino acid 3 – 90 of 

the β-galactosidase enzyme (the alpha fragment) [538]. The alpha complementation effect was also 

previously demonstrated in a mammalian system [539]. It was hypothesised that the fusion of the 

alpha fragment with the cleavage sequence would disrupt the interaction between the two β-

galactosidase fragments and reduces the catalytic activity. As with the FRET system, activation of the 

target process results in cleavage which releases the alpha fragment to restore the catalytic function 

of β-galactosidase. As opposed to the FRET system, this assay strategy generates a positive readout 

which correlates with the phenotype-of-interest.  

tCFP and YFP were individually cloned from a tCFP-Calmodulin-YFP FRET construct obtained from 

Ryota Iwasawa, a PhD student from our group, into the vector pcDNA3.1. An ATG start codon was 

added to the tCFP at the 5’ end for translational initiation while the TAA stop condon was cloned 

such that it was flanked by the NheI and NotI restriction sites. This construct was labelled as pcDNA- 

tCFP(NheI)TAA(NotI), which allowed for normal protein translation, and when required the YFP 

protein can be cloned in frame using the NheI site to create a FRET reporter protein. An NheI 

restriction site was added before the start codon of the YFP during cloning into pcDNA3.1, and is 

referred to as pcDNA3-(NheI)YFP. A primer pair was first used to PCR amplify the approximately 

700bp generated by either the YFP or CFP sequences from the calmodulin FRET construct. These 

sequences are then cloned using EcoRI and NotI into pcDNA3.1, with the individual clones 
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transfected into HEK293T cells and visually screened using fluorescence microscopy. The selected 

clones were further sequenced to confirm that key mutations, Y66W for CFP and T203Y for YFP, 

were present before the additional NheI was incorporated using PCR and a repeated cloning step 

back into pcDNA3.1. To create the LC3 or caspase-3 FRET reporters, primer sequences containing the 

linker sequences were used to PCR amplify CFP and the PCR amplified sequences cloned into the 

pcDNA3-(NheI)YFP. The cloning of the CFP and YFP FRET system was performed using standard 

restriction enzyme digests and T4 ligase methods.  

Cloning of the alpha and omega fragments was performed using the In-FusionTM Advantage PCR 

Cloning Kit (Clontech) according to the manufacturer’s protocol.  

Validation of the LC3 and Caspase-3 FRET Reporters 
Under the CPF and YFP FRET system, the CFP acts as the donor and the YFP as the acceptor. When 

the donor and acceptor are far apart, no FRET can occur; hence the excitation of CFP at wavelength 

436nm would result in the regular CFP emission at 480nm. However, when both donor and acceptor 

are in close proximity, the CFP emission at 480nm serves as the excitation wavelength for YFP, 

resulting in the YFP emission at 535nm. This is known as the FRET effect and by exciting the FRET 

reporters at 436nm, and measuring the emissions at 480nm and 535nm, the effect can be quantified 

as the FRET ratio using Equation 14: 

Equation 14: FRET Ratio 

𝐹𝑅𝐸𝑇 𝑅𝑎𝑡𝑖𝑜 =  
𝑌𝐹𝑃 𝑒𝑚𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 535𝑛𝑚
𝐶𝐹𝑃 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 480𝑛𝑚

 

Where the FRET effect signal indicated by the YFP emission is normalised by the number of reporter 

present indicated by the CFP emission signal. 

10uM arsenic trioxide was used to induce apoptosis in HeLa cells transfected with the caspase-3 

FRET construct and the fluorescence signals were captured every 15 minutes using confocal 

microscopy (Figure 55). The data was analysed using the Leica LAS AF Lite software. A region of 

interest (ROI) comprising of two cells was analysed. Prior to apoptosis within the first hours of 

treatment, the FRET signal strength in the ROI continues to increase as the transiently expressed 

reporter construct continued to accumulate to a maximum FRET signal of 1.48. 3 hours after 

treatment, a massive decrease in the FRET signal to 1.05 was observed in one cell, and this was 

followed by the other cell 1.5 hours later. The loss of FRET signal as a result of caspase-3 activation 

for each of the cells was 0.425 and 0.420 respectively, which indicated similar expression levels of 

the FRET construct.  
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Approximately 2.5 hours after the activation of capase-3, the first signs of membrane blebbing could 

be observed and massive membrane blebbing continues until the cell finally becomes rounded 10 

hours after activation of caspase-3 (See Supplementary Materials). 

At the time of testing of the caspase-3 FRET construct, the autophagy induction conditions was yet 

to be finalised. Therefore, no confocal microscopy data was available. Furthermore, initial western 

blot analysis suggested that the LC3 FRET constructs was being constitutively cleaved by the cells 

during transient overexpression (data not shown).  

Due to time constraints to initiate the RISCI screen, the LC3 FRET constructs and the alpha and 

omega fragments complementation were not pursued further.  
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Figure 55: Detection of caspase-3 activation in HeLa cells using the FRET reporter system.  
A) The calculated FRET ratio within the selected region of interest (ROI). The two cells showed 
decrease in FRET ratios of 0.42 within the same time period of approximately 50 minutes and 
follow a similar pattern, suggesting similar level of expression for the reporter protein and 
extremely high sensitivity of the confocal microscope. B) Time lapse images of the process of 
apoptosis activation detected by the FRET construct, with an enlarged image of the ROI inset. 
Co-localisation of the blue and citrine spectrum of the CPF and YFP (FRET) signal resulted in a 
final green hue. The cleavage of the reporter protein resulted in loss of the FRET signal, 
returning the fluorescence signal to the blue spectrum. Common apoptosis phenotypes such 
as membrane blebbing and rounded cell structure continued to be tracked by the labelled 
cells.  
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Discussion 
 

Venturing into the realm of autophagy signalling was complimentary to our current speciality 

research area of apoptosis, since excessive autophagy was acknowledged to lead to an alternative 

form of programmed cell death.  

Transfection was optimised such that overexpression of the GFP-LC3 reporter did not lead to 

autophagy activation, although it was noted that the presence of GFP-LC3 at high quantities (such as 

when more than 0.5ug of active reporter plasmids was used) would lead to cellular toxicity within 24 

hours. jetPEI (Polyplus) was eventually selected as the optimal transfection reagent. 

While this research area was new, the difficulties encountered in trying to elicit an autophagic 

response was definitely not expected. Well established conditions that were tested include various 

forms of nutrient and serum deprivation, as well as treatment with chemical compounds were not 

conclusive due to the presence of labelled autophagosomes in both control and treatment 

conditions. However, amino acid deprivation using EBSS (Sigma Aldrich) was able to induce a 

moderate autophagy response.  

The acquisition of a Lentivirus system (Invitrogen) also made it possible for the first time to establish 

stable cell lines with viral particles. The generation of HeLa cells with stable expression of the GFP-

LC3 reporter sped up the screening process for identification of autophagy inducing conditions, since 

transfection steps could be bypassed. The stable cell line was also more sensitive and consistent, 

with a generally even and standard distribution of the reporter across the cells, which usually differs 

from between batches of transfection. The generation of the stable cell lines also proved to be a 

turning as the long incubation during the expansion of the clones led to the depletion of the 

stabilised glutamine dipeptide alanyl-glutamine (Ala-Gln or AQ) in the AQMediaTM (Sigma Aldrich) 

used for routine cell culture. 

This led to the independent discovery of the importance of glutamine in autophagy signalling, and 

based on the findings of Christina et al. [535] characterisation of an extended range of ammonium 

salts which could readily induce autophagy by increasing the availability of the ammonium ions. The 

key to autophagy induction was the increased concentration of ammonium anions, while the 

cationic counterpart of the salts may play a role in determining the overall toxicity of the treatment. 

Furthermore, glutamine was also found to induce a similar phenotype when present in twice the 

normal culture concentration. This implicated the metabolic cycles such as tricarboxylic acid (TCA) 

cycle in mediating autophagy and vindicates the involvement of glutamine in the process [540, 541]. 
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While cancer cell types were known to actively exploit the TCA cycle metabolism, the involvement of 

ammonium ions and its sources such as glutamine appears to be a general effect since these 

molecules were also able to induce the autophagy phenotype in a range of cell lines including the 

N2a cell line.  

Development of the detection assays for autophagy proceeded in parallel with the optimisation of 

the induction conditions. The aim was to convert the labour-intensive microscopy-based assay of 

GFP-LC3 into a high-throughput format suitable for use with plate readers. Two approaches were 

designed to exploit the cleavage of LC3 by ATG4b, a FRET fluorescence based method and another 

enzymatic assay based on the alpha complementation of β-galactosidase. The use of LC3 cleavage as 

a quantifiable method of autophagy detection was recently demonstrated at the time, where the 

LC3 was fused between actin molecules and gaussia luciferase. This fusion prevented the unique 

luciferase from being secreted into the media environment, and luciferase activity can only be 

detected during autophagy when LC3 was cleaved [542, 543]. However, it would be difficult to 

implement this assay on the RISCI platform since a new substrate, luciferin, has to be acquired in 

substantial quantities on top of the CPRG substrate currently used. The preference was for an assay 

which either use our current enzyme-substrate selection, or one which does not require the use of 

additional substrates to minimise the running costs of the screens. Caspase-3 DEVD, a proven 

sequence for detecting the activation of caspase-3 during apoptosis was used as the positive control 

for reporter activity.  

The FRET based reporter could greatly minimise the costs of a screen by removing the need for 

substrates, a major cost component. However, as with other fluorescence based methods, the signal 

generated is proportional to the number of reporter molecules, and hence may compromise on the 

sensitivity of the assay. The cloning of the FRET reporter system was straightforward, with the CFP 

and YFP individually cloned with an additional NheI site at the carboxyl and amino terminals 

respectively. From this pair of plasmids, any linker containing the desired cleavage sequences may 

be cloned to create its appropriate FRET construct. Here, linkers containing either the LC3 or 

caspase-3 cleavage sequence were employed, by first using PCR to fuse the linkers to CFP or YFP, 

then cloning these sequences into the other plasmid. Both LC3 and caspase-3 FRET constructs were 

verified with restriction digestion, DNA sequencing and fluorescence microscopy.  

Decrease in the FRET signal upon the activation of caspase-3 during apoptosis was confirmed for the 

caspase-3 FRET construct using confocal microscopy. However, the detection of the FRET signal was 

difficult to achieve using plate readers due to the lower sensitivity. The LC3 construct was not tested 

for its cleavage upon autophagy induction as the conditions have yet to be finalised, but the 
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construct was subjected to preliminary western blot analysis by probing with anti-GFP-HRP 

antibodies (data not presented) which indicated that the fusion protein was constitutively cleaved 

upon transient overexpression. This, together with on-going literature debates on the viability of LC3 

as a quantitative marker of autophagy due to this constitutive cleavage, conflicted with the viability 

of the LC3 FRET construct. Furthermore, p62 was increasingly being recognised as a quantifiable 

alternative when monitoring autophagy; p62 (also known as sequestosome 1 (SQSTM1)) was 

degraded during apoptosis instead of merely localisation to another organelle [544] and hence offer 

a proportional signal change correlating with autophagy.  

The alpha complementation of β-galactosidase was the preferred reporter system, but the cloning of 

the alpha and omega fragments was hindered by technical issues with PCR and ligation. Eventually, 

both fragments were cloned using the In-Fusion cloning kit (Clontech) which bypassed the 

intermediary cloning procedures to proceed directly from PCR product to cloning into vector.  

Due to the urgency to implement the apoptosis screen, efforts were redirected towards the 

direction of implementing and executing this screen. As a result, the LC3 FRET reporter was not 

validated using confocal microscopy. In additional, both linkers were not added to the alpha 

fragment, and the alpha complementation effect was not validated in in vitro cellular systems.  

While the DEVD FRET construct was demonstrated to be functional, the assay for autophagy 

detection using the LC3 marker was not positive. Furthermore, LC3 may be an excellent phenotypic 

marker but p62, whose levels changes with autophagy, might offer a better alternative for 

quantitative methods. This aspect will be independently investigated by a separate project.  
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Chapter 10: Conclusion 
 

Experience 
 

The RISCI screen was an unique opportunity to explore the interdisciplinary nature of high-

throughput technologies, from its engineering and computing aspects which resulted in the robotics 

and instrumentation of this work that enabled the automation of laboratory procedures, to the 

intricacy of molecular cell biology experiments and finally, how the eventually generated data came 

together under the domains of bioinformatics, mathematics and statistics to piece together the 

associated signalling networks. 

A significant amount of time was dedicated to setting up of the screen and troubleshooting, and the 

initial aim was to get the optimal conditions for each contributing section of the screens such as the 

bacterial culture, DNA isolation, transfection and assay. This assumption that the best condition for 

each phase would maximise the final screen output was limited, as the best conditions often 

conflicted with each other thereby requiring compromises. At the start of the project, the limiting 

factor for the screen output was the DNA isolation phase, where the daily throughput was eight 96-

microplates of plasmid DNA had created spare capacity in downstream processes such as automated 

transfection. Effort were directed at this phase leading to increased yields and doubling of the daily 

output to sixteen 96-microplates routinely generated during the screen, with up to twenty-four 

microplates easily manageable. This increase in output in the DNA isolation phase then made full use 

of the capacity of the transfection platform, which continuously processed the plates through 

transfection, treatment, assay and media change protocols during a 10 – 12 hours period. However, 

the critical workflow bottleneck at this point of the optimisation was shifted further downstream to 

the assay phase, where the microplates had to be manually processed due to the lack of automation. 

Under the optimal conditions, the BASY platform could generate twenty-four plates of plasmids but 

this required an increase in the downstream capacity of the transfection platform and plate reader 

to be efficient. Hence maximising the potential of one phase simply shifted the limiting step to 

another point along the entire workflow; the optimal screen setting was determined by the 

compromises and practicality required to integrate all phases towards equilibrium.  

These compromises ultimately drove down to a single major factor, costs. Performing a standard 

experiment using commercially available kits was already an exorbitant proposition, and attention 

had to be taken to manage the operating costs of a screen when replicating similar setups on a high-
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throughput scale. To put a commercial perspective on the screen, the competent bacterial cells from 

Invitrogen for the high-throughput transformations would be in the region of £215,000 while 

QIAGEN 96-well DNA extraction kits would require £136,250 for a single round of screen. The costs 

of Polyplus jetPEI would be approximately £24,000. These exclude the RNase, CPRG substrate, media 

and plastic consumables which are fixed costs that cannot be avoided. Under the previously 

discussed protocols, transformation and DNA isolation was achieved with a budget of £500 each 

attributable to the chemical reagent costs, while the transfection reagents using either the linear or 

branched PEI polymers were under £50. The primary screen was estimated to be completed with 

each of the 30,000 samples costing under £0.25 including consumables. Furthermore, the various 

key components such as the RNase in the DNA isolation or the CPRG substrate used in the assay 

were optimised to a cost-efficient level; for example, the RNase was reduced by approximately 20% 

without affecting the plasmid purity and this translated to a £400 reduction in costs. Equipment 

maintenance costs were also of a major concern over the course of the project as these are often 

contingencies not factored into the resources. 

The practicality of managing the intensive screen also influenced the output since the process was 

managed by a single user. The user independent aspect of the transfection platform was exploited 

and served as the maximal point of reference for workflow optimisation. Experiments were setup 

and the platform was able to independently process the samples. This frees the user to process and 

track the DNA isolation protocol on the BASY platform in parallel. This results in sixteen plates of 

plasmids and thirty two plates of transfections to be performed, moving the limiting step to the 

assay phase. Any incubation times were assigned for reagent preparations or other preparation for 

the next experiments. In the event where the workflow became overburdened due to unforeseen 

circumstances, the steps prior to the overloaded phase were scaled appropriately to allow the 

bottleneck to be cleared. Scheduling of the consumables and reagents was also managed such that 

new stocks arrive as the old ones become depleted due to the lack of storage space.  

Equipment faults were a major point, which required frequent troubleshooting. Perhaps as a result 

of intensive use from previous screens, both robotic platforms were prone to malfunctions. The DNA 

isolation platform was frequently incapacitated in the early trial runs with a unique fault each time. 

These ranged from minor failures of the electric switches on the robots, to more major issues such 

as a damaged wire connection between the robot and the computer, PC failures and eventually the 

breakdown of the robotic centrifuge. Minor issues such as the repairs of broken connection could 

easily be resolved, but more often the expertise of Dr Volker Kachel and Imperial College engineers 

to identify and repair the problems was essential. Some equipment such as the cabinet incubator 
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and plate reader were also made available for communal use which introduced uncertainties into 

the workflow. In one example, the shaking incubator was put out of use when inappropriately 

secured or damaged plastic wares employed by users led to solution leakages which damaged the 

system circuitry. This delayed the screen by almost eight weeks as the circuitry board was no longer 

commercially available and had to be manually repaired, with the costs totalling over thousands of 

pounds. In another incident, a user had altered the filter positions within the plate reader without 

updating the corresponding software, invalidating the works of others since all data generated were 

of the incorrect wavelengths. The screen was also operating at its peak routine, and this unintended 

external source of human error meant that the cumulative data generated over four weeks had to 

be discarded. Both the internal source of error resulting from wear and tear and externally 

introduced errors constantly impeded on the performance of the screen. Standard aging of the 

equipment is inevitably but could be minimised if supported by specialised engineers and routine 

maintenance. Dedicated equipment as employed in commercial screening facilities would greatly 

reduce the external source of error. Such arrangements were limited in academia and user 

responsibility towards the equipment remains important towards minimising these sources of 

errors. 

Managing a successful screen required each phase to be well integrated and flow from one step to 

the next. This was possible with organised schedule and strict time controls, supported by software 

which assisted with information handling, provided updated status and alleviate the load on data 

handling. While the popular belief holds true that high-throughput processes are efficient and 

massively scaled the data generation potential, a tremendous amount of optimisation had to be 

invested to bring each unique aspect together in a symphonic setup to make possible a screen.  

The current RISCI screen was successful in its attempt at identifying the apoptosis inducers 

traditionally assayed for by the original setup, and extended further this screening capability by 

integrating an additional apoptosis inducing treatment leading to the identification of potential 

inhibitors and sensitizers of apoptosis. 
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Future Prospects 
 

The RISCI platform offers many exciting prospects since both robots were updated to be 

programmable in executing user generated protocols. The DNA isolation robot could be optimised 

further to increase its daily throughput to more than forty microplates of plasmids through the use 

of magnetic DNA extraction beads. Commercially available magnetic beads have been tested to be 

suitable for integration with the current ultrapure DNA isolation protocol, and these magnetic beads 

could further reduced the processing time to below two hours by eliminating the centrifugation 

steps and accelerating the repeated cycles of washings. Integration of commercial magnetic beads 

handling system such as the KingFisher Flex Magnetic Particle Processors (Thermo Scientific) would 

further contribute to the increase in throughput.  

The transfection with its current capacity of up to forty eight 96-well plates may still manage the 

increase in DNA isolation output although an additional liquid handling robot would improve the 

process efficiency. An automated plate stacker could be integrated with the Optima FLUOstar plate 

reader to handle the individual plate measurements and reduce user involvement. However, the 

upper limit of the throughput is limited with 96-well format, and a transition towards 384-plates (the 

current industry preferred format) or higher plate density may be necessary. The use of microfluidics 

could also augment the potential of the screen [545-547]. Considerations should also be directed 

towards the “cherry-picking” of potential clones into a secondary plate for screen. Whereas the RISCI 

platform features automation technologies which is crucial to successful high-throughput screens, 

automation of processes terminate after the transfection stages. The compilation of candidate 

clones was manually performed over an extended period of time; this process is both dull and 

laborious, and should be automated to keep pace with further increase in the screening efficiency 

upstream of this step. 

The RISCI screen platform under its current setup could be exploited to study the genetic and 

signalling profiles of anti-cancer compounds, many of which activate apoptosis. Understanding the 

unique signalling triggered by each compound could be a more efficient way of developing 

combination treatment or polypills containing multiple active ingredients which could substantially 

reduce the development frequency of tumour resistance [548-550]. Alternatively, the default 

screening cell line may be varied such that the setup identifies anti-cancer genes. Orctl3 was 

previously identified as a tumour specific gene under such a similar setup [283]. This approach is 

currently being pursued and a significantly increased count of anti-cancer genes is likely to be 

generated due to the diversity of the NITE library. 
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The analysis of the NITE apoptosis regulator candidates offered countless points for potential 

research directions. For example, the pathway analysis identified numerous probable “stress points” 

within a signalling cascade which would be exploited to induce a pro-apoptotic effect for cancer 

therapy. The up-regulation of the metal ion response genes could perhaps also be verified for the 

prospect of using them as biomarkers for nanoparticles exposure. The three extensive gene lists for 

apoptosis inducers, inhibitors and sensitizers could offer numerous research opportunities by 

exploring their apoptosis signalling pathway. 

The most exciting outcome of the NITE screen was the experimental identification of alternative lists 

comprising of novel noncoding sequences to be involved in apoptosis signalling process. Since there 

is little known about the involvement of noncoding RNA in the regulation of apoptosis, and multiple 

hypothetical regulatory mechanisms, the work in this direction would be a novelty with extensive 

unexplored research opportunities. The experimental validation of the reciprocal relationship 

between an apoptosis regulating microRNA and its targeting of candidates initiating the opposite 

effect would also be of great interest. This extends the signalling mechanisms beyond the current 

protein-based functionality and regulatory controls to include novel non-protein based regulatory 

mechanisms. 

  



 
239 | P a g e  

 

Conclusion 
 

The project has definitely come a full circle, gradually progressing from the initial experiment setup 

and optimisation phase, to the development of the RISCI platforms, to the shift of focus towards the 

screen implementation, scaling up to the full screening capacity and finally the validation and 

analysis of the identified candidates.  

The project has offered an exciting mix of novelty with a test of endurance, many aspects of the 

screen having no precedence. This included the attempt to screen a fully sequenced library, the 

opportunity to manage its accompanying high-throughput workflows such as a mini-sequencing 

project and large-scale bacterial transformation, the introduction of an additional pro-apoptosis 

chemical signal, attempts to isolate apoptosis inhibitors and sensitizers in parallel with inducers, and 

the dynamic candidate selection criteria.  

The end results proved extremely revealing and greatly demonstrated the ability of high-throughput 

techniques to offer insights into signalling networks. Analysis of the candidates using currently 

available data revealed that the apoptosis inducing candidates were highly enriched for cell death 

and apoptosis associated terms, a strong evident in support of our screen setup to identify apoptosis 

regulators. Furthermore, the inhibitors were found to be distinct from the inducers and sensitizers 

where the former was highly associated with transcriptional based functions and localised to the 

nucleus while the latter carried out their functions via protein based mechanisms. This is further 

demonstrated by the IPA analysis which identified HNF1A, a transcription factor, to be an upstream 

regulator for a wide range of the inhibitor candidates, an observation that was not present in the 

inducer or sensitizer candidates. This observation is in line with the current understanding of 

apoptosis, where the inducers and sensitizers are regulated and activated at protein level to initiate 

a rapid response while apoptosis inhibition is regulated at transcription level to be metabolically 

efficient and prevents unintended cell immortalisation.  

Extensive cross-talking within the apoptosis network was demonstrated through the IPA integrated 

network where a vast number of known interactions among the candidates were identified. The 

inducers displayed a strong enrichment for various transport functions and transmembrane 

localisation, which was similar to the observation of the previous screen, suggesting an integral 

nature of metabolism and apoptosis and that the inducers may function as sensors to activate 

apoptosis in the event of any homeostatic imbalance. The protein binding function of the sensitizers 

suggests that they could potentially serve as mediators between various proteins to coordinate their 
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function or assist in inter-network cross-talking. Moreover, the large number of development 

associated terms enriched among the sensitizers along with their similarity to the inducers suggests 

that the sensitizers may also hold sensor functions to activate programmed cell death in the event of 

erroneous development outcome. 

In contrast, the inhibitors displayed strong association with various cancer profiles, supporting their 

anti-apoptosis function. This interesting revelation also indicated that the signalling pathways 

employed by these cancer cells to avoid apoptosis may indeed have a normal physiological role as a 

stress response, since the inhibitors were identified for their pro-survival response to silica 

nanoparticles treatment. Uniquely, the inhibitors were enriched for response to metal ion, a well-

established stress response mechanism to reactive oxygen species generated in the presence of the 

metal ions, indicating that the silica nanoparticles may produce its toxic effects using a similar mode 

of action. 

The pinnacle discovery of the RISCI screen was the ability of noncoding RNA sequences to participate 

in apoptosis regulation. These once seemingly obscured and unexplained sequences are beginning 

to take centre stage with increasing interest from the research community and high profile projects 

such as ENCODE. Using curated databases and available predictive algorithms, insights into their 

mechanisms could be proposed. Rather than a single mode of action, these RNA sequences are likely 

to achieve their regulatory effect through a range of mechanisms. Some for example are likely to be 

microRNA precursors, hence the source of endogenous RNAi generation for target knockdown. 

Others could potentially form secondary structures which act as scaffolds for transcription complex 

recruitment or protein-protein complex formation. Many noncoding sequences also displayed ability 

to bind microRNAs across their entirety, potentially acting as decoys to sequester their target and 

halt the endogenous gene silencing mechanism. These noncoding sequences could possibly also 

reciprocally regulate their protein-coding counterparts also identified in the screen based on 

prediction of their targets; for example a noncoding inducer candidate could generate a microRNA 

targeting a protein-coding inhibitor candidate, thereby alleviating apoptosis inhibition for the 

process to advance. 

Although the candidates identified from the screen were statistically significant and based on 

bioinformatics and signalling pathway profiling demonstrated to be highly likely to possess their 

respective apoptosis regulatory function, further experimental verification would be required to fully 

elucidate and confirm their role within the vast apoptosis signalling network. Indeed, the primary 

function of a high-throughput is to massively search available targets to propose an association 

between the candidates and phenotype-of-interest, providing the starting point for further 
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hypothesis generation in a discovery-driven approach. So while much could be deduced from 

existing knowledge about the candidates, the truly interesting part of the project outcome remains 

those unknown candidates that were implicated in apoptosis regulation for the first time. 

Dissemination of the consolidated candidate list to the wider research community would help speed 

up the experimental validation of these candidates and aid other researchers to derive novel 

hypotheses when the candidates are placed in their research context. 

The novelty of the screen at times proved to be persistently difficult to address, and more often than 

not holds its surprises with additional setbacks despite meticulous planning. This together with the 

responsibility of managing a unique pair of robot and the need to execute the screen successfully 

can become exceedingly overwhelming. 

The various aspects of the screen had to converge perfectly for a success. The RISCI platform holds 

true to its capacity to execute the high-throughput workflows, while the assay and selection criteria 

were sufficiently significant to result in the lists of apoptosis inducers, inhibitors and sensitizers 

many of which are associated for the first time with apoptosis. Furthermore, the discovery of the 

potential of noncoding sequences in regulating apoptosis represents another significant outcome of 

the screen alongside the candidate lists, highlighting the importance of high-throughput approaches 

such as the RISCI screen in understanding the complex signalling networks. 

The process has been trialled and tested in its entirety, and can be conveniently adapted for any 

workflow. The candidate gene lists together with the prospects of the RNA regulatory mechanisms 

would make available abundant research directions, allowing this chapter of the RISCI screen to be 

concluded in favour of the exciting opportunities that lie ahead.   
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Web Resources 
 

CAP3 Sequence Assembly Program  http://pbil.univ-lyon1.fr/cap3.php  

CASVM Caspase Substrate Prediction http://casbase.org/casvm/index.html  

Dependence Receptors Prediction http://bis.ifc.unam.mx/DependenceReceptors/  

DAVID Function Annotation  http://david.abcc.ncifcrf.gov/ 

UniProt Protein Database  http://www.uniprot.org/ 

NCBI BLAST    http://blast.ncbi.nlm.nih.gov 

Gene List Comparison   http://nemates.org/MA/progs/Compare.html 

PANTHER Classification System  http://www.pantherdb.org/ 

bioDBnet    http://biodbnet.abcc.ncifcrf.gov/ 

BIND database    http://bind.ca 

MINT database    http://mint.bio.uniroma2.it/mint/ 

Reactome    http://www.reactome.org/ 

miRBase database   http://www.mirbase.org/ 

RegRNA Motif Prediction  http://regrna.mbc.nctu.edu.tw/html/prediction.html 

Rfam database    http://rfam.sanger.ac.uk/search 

miRMaid    http://plugins.mirmaid.org/home 
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Supplementary Materials 
 

SM  1: Electronic version of the thesis 

SM  2: Poster - Investigating apoptosis and toxicity signalling with RISCI 

SM  3: Gene Lists and Annotations 

SM  4: DAVID Analysis containing all annotations; DAVID Summary.xls summarises the analysis. 

SM  5: GSEA; access the index.html within each folder to view analysis 

SM  6: Interactions identified by GeneMANIA 

SM  7: Ingenuity Pathway Analysis 

SM  8: Compiled List of All Enriched Signalling Pathways 

SM  9: Rfam Results for noncoding sequence analysis 

SM  10: RegRNA Annotations of RNA Regulatory Motifs; access the HTML file of each gene accession 

number to view annotation 

SM  11: TargetScan Prediction of microRNA targets associated with candidates 

SM  12: Mini-protein Analysis 

SM  13: Confocal Live Imaging - Activation of autophagy by ammonium chloride 

SM  14: Confocal Live Imaging - Cleavage of caspase-3 FRET construct 

SM  15: Video - Triplicate DNA Transfection Automation 
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