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Abstract

Sequential Monte Carlo (SMC) methods have been well studied within the context

of performing inference with respect to partially observed Markov processes, and

their use in this context relies upon the ability to evaluate or estimate the likelihood

of a set of observed data, given the state of the latent process. In many real-world

applications such as the study of population genetics and econometrics, however,

this likelihood can neither be analytically evaluated nor replaced by an unbiased

estimator, and so the application of exact SMC methods to these problems may

be infeasible, or even impossible. The models in many of these applications are

complex, yet realistic, and so development of techniques that can deal with problems

of likelihood intractability can help us to perform inference for many important yet

otherwise inaccessible problems; this motivates the research presented within this

thesis.

The main focus of this work is the application of approximate Bayesian com-

putation (ABC) methodology to state-space models (SSMs) and the development

of SMC methods in the context of these ABC SSMs for filtering and smoothing of

the latent process. The introduction of ABC here avoids the need to evaluate the

likelihood, at the cost of introducing a bias into the resulting filtering and smooth-

ing estimators; this bias is explored theoretically and through simulation studies.

An alternative SMC procedure, incorporating an additional rejection step, is also

considered and the novel application of this rejection-based SMC procedure to the

ABC approximation of the SSM is considered.
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This thesis will also consider the application of MCMC and SMC methods to a

class of partially observed point process (PP) models. We investigate the problem

of performing sequential inference for these models and note that current methods

often fail. We present a new approach to smoothing in this context, using SMC

samplers (Del Moral et al., 2006). This approach is illustrated, with some theoretical

discussion, on a doubly stochastic PP applied in the context of finance.
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Chapter 1

Introduction

1.1 Preamble

Sequential Monte Carlo (SMC) methods are a broad class of simulation-based tech-

niques for performing statistical inference with respect to a sequence of related

probability distributions. The study of SMC methodology has become one of the

most important areas of research in the fields of statistics and engineering, and it

remains a fertile area of study today. Wide ranging applications have increased the

attention that these methods have received, across a variety of disciplines; exam-

ples of areas of application include signal processing (e.g. Vermaak et al., 2002) and

econometrics (e.g. Del Moral et al., 2007).

This thesis will consider the application of SMC and Markov chain Monte Carlo

(MCMC) methods to the class of discrete-time state space models (SSMs) specified

by the joint Markov chain {Xt, Yt}t≥1, in which the state process {Xt}t≥1 can only

be observed indirectly through the dependent data process {Yt}t≥1. The majority of

this thesis will focus on a generalised specification of the SSM, however we will also

consider a specific class of SSMs, in which both {Xt}t≥1 and {Yt}t≥1 are point pro-

cesses. SSMs are also known as hidden Markov models (HMMs), and they provide a

versatile framework in which to study many problems of interest, such as single- or

multi-target tracking (e.g Gordon et al., 1993; Bar-Shalom et al., 2001) and stochas-



1.1 Preamble 16

tic volatility estimation (e.g. Barndorff-Nielsen and Shephard, 2001; Andrieu et al.,

2010).

We describe first the generalised SSM, which is specified completely through the

evolution of {Xt}t≥1 and {Yt}t≥1. This specification is made through the conditional

densities qt(xt |xt−1) and gt(yt |xt), which satisfy the following relations, for t ≥ 1:

P (Xt ∈ A|xt−1) =

∫

A

qt(xt |xt−1)dxt, (1.1)

P (Yt ∈ A|xt) =

∫

A

gt(yt |xt)dyt, (1.2)

where P denotes probability and X0 = x0 is assumed known. We refer to qt and gt as

the transition and observation densities, respectively. In particular, these relations

specify that the hidden state process {Xt}t≥1 is a Markov chain, and the data at

time t, Yt, is conditionally independent of the historical data {Y1, . . . , Yt−1} given

Xt.

This thesis will consider the problem of performing inference with respect to

the conditional distribution of the hidden state {Xt}t≥1, given observation of the

observed data {Yt}t≥1. In particular, we will be interested in:

• the distribution of the hidden state at time t, Xt, conditional on the observed

data {Y1, . . . , Yt} = {y1, . . . , yt}; and

• the distribution of the hidden state subprocess {Xt1 , . . . , Xt2}, conditional on

the observed data {Y1, . . . , YT} = {y1, . . . , yT}, where 1 ≤ t1 ≤ t2 ≤ T .

These two problems are referred to as the filtering and smoothing problems, re-

spectively, and this thesis will focus primarily on these problems within the context

of the generalised SSM. In particular, we will seek to develop SMC and MCMC

methods that avoid the need to either explicitly evaluate the observation density

g(yt|xt) or replace it with an unbiased estimate. This is a problem of interest in

many real world applications, such as population genetics and econometrics, where
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the observation density has no explicit analytical form and cannot be estimated

without bias.

We will also consider a specific class of SSMs, in which both the hidden and

observed processes are point processes (PPs); the observed data process is a PP,

whose time-inhomogeneous intensity is the hidden state process on which we wish

to perform inference. The filtering and smoothing problems, when defined with

respect to this specific class of SSMs, are of particular interest in the analysis of

ultra-high-frequency (UHF) financial data.

In the next section, we will see how the Bayesian approach to statistical inference

is naturally suited to analysing the filtering and smoothing problems. We therefore

proceed by giving a recapitulation of the Bayesian paradigm before presenting the

filtering and smoothing problems in detail.

1.2 The Problem: Bayesian Filtering and Smoothing

We present the Bayesian framework in the context of performing inference on a

random variable (RV) X ∈ Rdx , dx ≥ 1, given the observation of a dependent RV

Y ∈ Rdy , dy ≥ 1, which we refer to as the data. The Bayesian paradigm is the

concept of updating prior knowledge of X, given the observation of the data. Prior

to observing Y = y, we represent any existing knowledge of the distribution of X

with a prior density, p (x). Upon observation of the data y, we define the likelihood

function to be the conditional density p(y|x), and this can be used to update our

knowledge of X via Bayes’ Theorem:

p (x|y) =
p (y|x) p (x)

p (y)
(1.3)

where p (y) =

∫

Rdy

p (y|x) p (x) dy is a normalizing density, typically referred to as

the marginal likelihood of the data. p (x|y) is known as the posterior density of x
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and in many situations, it suffices to consider the proportional relationship

p (x|y) ∝ p (y|x) p (x) . (1.4)

The filtering and smoothing problems of interest are now formalised. A thor-

ough review of the notation adopted in this thesis will be presented in Section 1.5,

however we introduce some relevant notation and conventions here. The hidden

state and observation processes are denoted {Xt}t≥1 and {Yt}t≥1, as before, and the

distribution of these processes may depend upon a parameter vector θ ∈ Θ ⊆ Rdθ ,

which may be treated as either known or unknown. In the case where inference

is being performed conditional upon an unknown parameter vector θ, dependence

of a given density upon θ will be expressed through a subscript, i.e. we denote the

transition and likelihood densities qt,θ (xt|xt−1) and gt,θ (yt|xt), respectively. Where

the parameter vector is treated as known, the subscript θ is suppressed. We de-

note finite sub-processes entirely through their subscripts, e.g. for 0 ≤ t1 < t2 ≤ ∞,

Xt1:t2 := {Xt1 , . . . , Xt2}. Finally, throughout this thesis, X0 = x0 is assumed known.

The filtering problem addresses the estimation, at time t, of the class of expec-

tations of the form

Eπt,θ
[h(Xt)|y1:t] =

∫

Rdx

h (xt) πθ (xt |y1:t ) dxt (1.5)

πθ (xt|y1:t) ∝
∫

R(t−1)dx

[
t∏

i=1

gi,θ (yi |xi ) qi,θ (xi |xi−1 )

]

dx1:t−1, (1.6)

for some πθ (xt|y1:t)-integrable function h. The expectation in (1.5) is the filtered

expectation of the function h(xt) and πθ (xt |y1:t ) is the filtering density.

Smoothing addresses a similar estimation problem, where one is interested in

expectations with respect to the distribution of the entire hidden process up to

the current time point; the filtering density in (1.5) is replaced with the smoothing
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density:

πθ (x1:t|y1:t) ∝
t∏

i=1

gi,θ (yi |xi ) qi,θ (xi |xi−1 ) , (1.7)

and we similarly consider the estimation of smoothed expectations of the form

Eπ1:t,θ
[h(X1:t)|y1:t] =

∫

Rtdx

h (x1:t) πθ (x1:t |y1:t ) dx1:t,

for any π1:t,θ-integrable function h : Rtdx → R.

It is also valid to talk about smoothing when one is interested in the distribution

of a particular part of the latent process; for instance, one can compute expectations

with respect to the marginal smoothing density,

πθ (xn|y1:t) ∝
∫

R(t−1)dx

[
t∏

i=1

gi,θ (yi |xi ) qi,θ (xi |xi−1 )

]

dx1:n−1dxn+1:t, (1.8)

for any 0 < n < t. To avoid ambiguity, (1.7) is referred to as the joint smoothing

density. Note that the filtering density is simply a particular marginalisation of the

joint smoothing density.

From (1.7), it is clear that the joint smoothing density can be calculated recur-

sively. A recursive relationship is also available for the filtering density (1.6), in the

form of the so-called filtering recursions:

Predict: pθ (xt |y1:t−1 ) =

∫

Rdxt−1

qt,θ (xt |xt−1 ) πθ (xt−1 |y1:t−1 ) dxt−1, (1.9)

Update: πθ (xt |y1:t ) =
gt,θ (yt|xt) pθ (xt|y1:t−1)∫

Rdxt
gt,θ (yt|xt) pθ (xt|y1:t−1) dxt

. (1.10)

It is clear to see that pθ(xt|y1:t−1), which is known as the predictive filter, corresponds

to a prior density for Xt, i.e. prior to the observation of a new data point yt. It follows

that the update step above corresponds to Bayes theorem (1.3); this motivates our

choice to perform inference in a Bayesian framework.
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Consider the discrete-time SSM that can be written in the form

Xt = Qt(Xt−1, Vt), t ≥ 1, (1.11)

Yt = Gt(Xt, Zt), t ≥ 1, (1.12)

where Qt and Gt are linear functions, referred to as the transition and observation

functions, respectively, and Vt ∈ Rdx and Zt ∈ Rdy are independent Gaussian RVs;

this is referred to as a linear, Gaussian SSM. It was shown by Kalman (1960) that, in

this scenario, if the filter πθ(xt|y1:t) is Gaussian, then the filter at time t+1 will also

be Gaussian. Furthermore, Kalman showed that the first and second moments of

the filtering distribution can be calculated exactly through the filtering recursions.

Thus, exact inference with respect to a linear Gaussian SSM may be performed

deterministically by projecting the first and second moments of the distribution

through the filtering recursion, and this is referred to as the Kalman filter. These

results were extended to the continuous time, linear, Gaussian SSM by Kalman and

Bucy (1961).

The inevitable next step in the development of the filtering problem was the

generalisation to the scenario where both the transition and observation functions,

respectively Qt and Gt above, are allowed to be nonlinear. Approximate numerical

solutions to the nonlinear problem follow from the Kalman filter, with the extended

Kalman filter (EKF; see Sorenson and Stubberud, 1968), the unscented Kalman filter

(UKF; see Julier and Uhlmann, 1997) and the ensemble Kalman filter (EnKF; see

Evensen, 1994) being important examples. The Kalman filter and its derivatives are

all based on the same two-step update procedure described above, and are developed

under the assumption that the latent and observed processes are driven by Gaussian

noise. Although these variants can often be applied to SSMs with non-Gaussian

dynamics, the accuracy of the resulting filtered estimates will typically deteriorate

as we depart from Gaussianity. Attention therefore turns to alternative solutions to



Chapter 1. Introduction 21

the nonlinear filtering problem.

Sequential Monte Carlo methods, which are the focus of this thesis, are a broad

class of numerical methods aimed at approximating a sequence of related distribu-

tions, facilitating the estimation of expectations of the form (1.5) through Monte

Carlo integration. Since the application of SMC methods is subject neither to lin-

earity nor distributional constraints, they are considered the preferred approach to

the filtering and smoothing problems. The fundamentals of SMC methodology and

its application to these problems are addressed in greater detail in Chapter 2.

1.3 Objectives of the Thesis

This thesis presents some new developments in the application of SMC methodology

to the filtering and smoothing problems, building upon current state-of-the-art ap-

proaches and facilitating inference for problems of interest that cannot be addressed

using standard methods. As will be seen, the point-wise evaluation of the likeli-

hood is central to the execution of SMC-based filtering and smoothing methods,

yet in many real-world applications, such as the study of population genetics and

stochastic volatility modelling, the likelihood is often either analytically unavailable

with no unbiased estimate, or too complex to be calculated with a reasonable com-

putational budget. For the remainder of this thesis, an intractable likelihood will

be one that cannot be pointwise evaluated or replaced with an unbiased estimator,

and we remark that the issue of intractability is kept separate from any issues of

computational complexity in the evaluation of the likelihood.

The main focus of this work is the development of approximate Bayesian com-

putation (ABC) methodology for state-space models (SSMs), as well as the develop-

ment of SMC and MCMC methods in the context of these ABC SSMs for filtering

and smoothing of the latent process. The introduction of ABC here avoids the need

to evaluate the likelihood, at the cost of introducing a bias into the resulting filter-

ing and smoothing estimators; this bias will be explored theoretically and through
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simulation studies. Alternative approaches to the filtering problem that address

the problem of likelihood intractability include variational Bayesian filtering (Šmídl

and Quinn, 2008) and convolution particle filtering (Campillo and Rossi, 2009); the

latter will be discussed briefly in Chapter 3.

We will also consider an alternative SMC procedure for filtering and smoothing,

which incorporates an additional rejection step. The use of Rejection SMC in the

reported form is not widespread, yet it is theoretically justified and has the potential

to improve performance for filtering and smoothing, particularly in the ABC frame-

work. Justification for the presented procedure is given and the novel application of

our procedure to the ABC approximation of the SSM is considered.

This thesis will also consider the application of MCMC and SMC methods to a

class of partially observed point process (PP) models. We investigate the problem

of performing sequential inference for these models and note that current methods

often fail. We present a new approach to smoothing in this context, using SMC

samplers (Del Moral et al., 2006). This approach is illustrated, with some theoretical

discussion, on a doubly stochastic PP applied in the context of finance.

1.4 Contributions of the Thesis

The work presented in Chapter 3 provides some of the first empirical results con-

cerning the accuracy of performing particle filtering with respect to an ABC ap-

proximation of the generalised SSM. Chapter 4 presents the first theoretical results

concerning the deterministic bias associated with performing smoothing-based infer-

ence with respect to the ABC approximation of the SSM; this chapter also presents

the first empirical results concerning the accuracy of ABC smoothing procedures.

In both Chapters 3 and 4, we present the first empirical evidence that the use of a

rejection-based SMC procedure can reduce the variance of the resulting estimates.

In Chapter 4, we propose a variant of the state-of-the-art PMMH procedure of An-

drieu et al. (2010) that employs a forward-smoothing procedure (Del Moral et al.,
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2009) in the update scheme, and this is empirically observed to outperform the

PMMH procedure of Andrieu et al. (2010) when applied to the SSM and its ABC

approximation. Finally, in Chapter 5, we propose two different variants of an SMC

sampler algorithm (Del Moral et al., 2006), which allow, for the first time, an SMC-

based approach to performing inference with respect to an SSM in which both the

latent and observed processes are point processes.

Some of the work in Chapter 3 is also presented in joint work with Dr. Jasra,

Dr. S.S. Singh (University of Cambridge) and Dr. McCoy (Jasra et al., 2010). The

work in Chapter 5 is also presented in a joint paper with Dr. Jasra and Dr. McCoy

(Martin et al., 2012a). The work in Chapter 4 is the subject of an Imperial College

Technical Report (Martin et al., 2012b), which is joint work with all of the above

authors and Dr. N. Whiteley (University of Bristol).

1.5 Notation and Conventions

In this section, we detail notation that will be used throughout this thesis. Wherever

possible, the notation provided here will remain consistent throughout, and any

deviations in the notation will be highlighted when they are encountered.

1.5.1 Measure Theory, Random Variables and Processes

Given the sample subspace E ⊆ Ω, with corresponding σ-algebra E , the function

μ : E → R is a measure if it is nonnegative, i.e. μ(A) ≥ 0 ∀A ∈ E , zero when

evaluated on the null set, i.e. μ(∅) = 0, and countably additive:

μ

(
n⋃

i=1

Ei

)

=
n∑

i=1

μ (Ei) ,

for pairwise disjoint subspaces Ei ⊆ E, i = 1, . . . , n. The pairing (E, E) is referred

to as a measurable space and we say that the triple (E, E , μ) is a measure space if

μ is a measure defined on that measurable space.
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A measure μ is a probability measure if it is restricted to the unit interval,

i.e. μ : E → [0, 1], and it further satisfies μ(E) = 1. The triple (E, E , μ) is a

probability space if and only if μ is a probability measure defined on (E, E).

Throughout, random variables (RVs) will be denoted in the uppercase, suppress-

ing reference to the corresponding event in the sample space, with their values being

represented by the corresponding lowercase character. For example, X : Ω → E is

an (E, E)-valued RV, and we may write X ∈ E.

For a particular point x ∈ E, dx ∈ E will refer to the infinitesimal subspace

of E containing x. We will often denote measures e.g. μ(dx), in order to reflect

the dependence of the measure on the value of the random variable. If μ(dx) is a

probability measure, then we may talk about the probability distribution of the RV

X, say. This refers to the set of values that μ(dx) can take for all x ∈ E and, indeed,

a probability distribution is defined by the specification of the probability measure

μ(dx). We may say that an RV X is distributed according to a distribution μ(dx),

and this is denoted X ∼ μ(dx). Where we are interested in N ≥ 1 RVs that are

identically distributed according to μ(dx), and not part of the same time-indexed

process, we use the following notation: X(i) ∼ μ(dx), i = 1, . . . , N .

This thesis will be concerned with performing inference with respect to various

probability measures. In particular, we will often be interested in the integral

∫

E

h(x)μ(dx),

where h is referred to as being μ-integrable. When μ(dx) is a probability measure,

the above integral is the expectation of h(X) with respect to μ.

For two measures μ(dx), λ(dx), defined upon a common measurable space (E, E),

we say that μ is dominated by λ if λ(A) = 0 ⇒ μ(A) = 0, ∀A ∈ E . This is

alternatively written μ � λ and we may also say that μ is absolutely continuous

with respect to λ. In such a scenario, the Radon-Nikodym Theorem states that
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there exists a λ-measurable function, referred to as the Radon-Nikodym derivative

of μ with respect to (w.r.t.) λ, and denoted dμ/dλ, such that

μ(dx) =

∫

E

dμ

dλ
(x)λ(dx).

If μ is a probability measure, dominated by λ, then the probability density function

admitted by μ w.r.t. λ is defined as the Radon-Nikodym derivative dμ/dλ.

For two measures μ1, μ2, defined upon (E, E), define the total variation distance

between the two measures as

‖μ1 − μ2‖TV = sup
A∈E

|μ1(A) − μ2(A)| .

We will deal almost exclusively with time-indexed processes. For the sequence

of (E, E)-valued RVs {Xt}t≥0, the notation Xt1:t2 will denote: the finite sub-process

{Xt1 , . . . , Xt2}, for 0 ≤ t1 < t2 < ∞; the RV Xt1 ∈ E for t2 = t1; and the null set ∅

for t1 > t2. Indeed, throughout, we adopt the conventions that
∑

∅ = 0 and
∏

∅ = 1.

In the SSM setup, we will be concerned with problems in which E = Rd, for some

dimension d ≥ 1, and E is generated as the Borel σ-algebra of Rd. In particular, the

processes of interest will be the hidden state process {Xt}t≥1 and the observation

process {Yt}t≥1 such that Xt ∈ Rdx and Yt ∈ Rdy ∀t ≥ 1. Where a process is denoted

without specifying the range of the time index, we will assume t ≥ 1

1.5.2 Filtering and Smoothing Densities

Attention in this thesis lies principally in performing inference with respect to fil-

tering and smoothing distributions, as described in Section 1.2. These distributions

will typically evolve over time; we use time indices, either in the subscript of the

argument or in the subscript of the measure when the measures are referred to with-

out argument. Thus, we have the following notation for the filtering and smoothing

distributions:
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• πt = π(dxt|y1:t), the filtering distribution at time t,

• π1:t = π(dx1:t|y1:t), the joint smoothing distribution at time t,

• πs:t,T = π (dxs:t |y1:T ), the marginal smoothing distribution over [s, t], given

observation of the data up to time T .

Whenever an unknown parameter vector θ is included in the subscript of the

measure, the time parameter takes precedence. Throughout, the initial state x0 will

be treated as known, and the dependence of the filtering and smoothing distributions

on this known parameter is suppressed.

We also note here that wherever a generic density notation is required, we use

p(∙).

1.5.3 Markov Chains

This thesis will use Markov chains extensively, and these are introduced in Section

2.2.2. We provide here a summary of some key notation.

A Markov chain is a time indexed process {Xt}t≥0 whose value at time t is depen-

dent only on its value at t − 1. Assuming that the chain evolves on the measurable

space (E, E), we have that the distribution of the chain at time t is defined through

the probability measure Qt : E × E → [0, 1], which is known as a Markov transition

kernel and denoted Qt(xt−1, dxt). Assuming a suitable dominating measure, we de-

note the corresponding Markov transition density as qt(xt|xt−1). Occasionally, we

will wish to consider transition kernels and densities without referring to a partic-

ular time index; we will use the notation Q(x, dx∗) and q(x∗|x) for these respective

quantities.

A key concept in defining Markov chains is that of the invariant distribution.

For the Markov chain above, this is defined in Section 2.2.2 to be the probability
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measure π(dx) such that, at time t,

∫

E

π(dxt−1)Qt(xt−1, dxt) = π(dxt).

We will be interested in the simulation of Markov chains with a specified invariant

distribution. The techniques that we shall use to do so will involve the use of an

alternative probability measure Kt : E × E → [0, 1] to propose candidate values for

the chain at time t. This probability measure is referred to as a proposal kernel and

is denoted Kt(xt−1, dxt). Assuming a suitable dominating measure here, we can also

denote the corresponding proposal density as kt(xt|xt−1). As with the transition

kernel and density, we may also wish to denote the proposal kernel and density

without reference to the time parameter; the notation follows the same conventions

as above.

When dealing with particle MCMC methods in Section 2.4, we will be interested

in constructing Markov chains for which the RV at each iteration is itself the time

indexed hidden state process in an SSM. We will therefore have two ‘time’ indices

to keep track of. In this scenario, we move the Markov chain time index out of the

subscript, and denote the Markov chain of interest {X1:T (n)}n≥1.

1.5.4 Sequential Monte Carlo

SMC methods are designed to generate N ≥ 1 interacting time-indexed processes,

which are referred to in this context as particles. We denote the ensemble of par-

ticles up to time t as
{

X
(i)
1:t

}N

i=1
, and we have that, at each time t ≥ 1,

{
X

(i)
1:t

}N

i=1

forms a joint Markov chain. The remaining SMC notation will be introduced in the

exposition of the methodology.

We establish a convention in the terminology. An algorithm is said to be sequen-

tial if it is able to process data as it arrives over time, and an algorithm is said to be

on-line if it is sequential and has a fixed computational cost per iteration/time-step.
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1.5.5 Approximate Bayesian Computation

This thesis will consider the use of ABC methodology, and we summarise here some

of the notation that will be used. This notation is presented out of context and

without any definitions, and so should serve principally as a reference point for the

reader.

Central to the use of ABC is the definition of the auxiliary RV U ∈ Rdy , known as

the pseudo-data, which is defined on the same space as the RV that corresponds to

a set of observed data, Y ∈ Rdy . The pseudo-data and the observed data are then

used to form an approximation of the likelihood function, using the ABC kernel

function, Gε(u, y). In general, this is dependent on Y and U through an ABC

tolerance parameter ε and a distance metric ρ(s(u), s(y)), where s(∙) is a summary

statistic.

The ABC kernel, described above, can be used to form approximations of several

densities of interest; the ABC approximations of the densities are denoted through

use of an ε in the superscript, e.g. the ABC approximation of the filtering density

πε
θ(xt|y1:t) corresponds to the exact filtering density πθ(xt|y1:t).

1.5.6 Point Processes

In Chapter 5, we will consider the HMM in which both the hidden state and observed

data processes are point processes (PPs). We summarise here the notation that is

introduced there, and note that this is once again presented with little context, but

may serve as a useful reference point.

The latent PP is defined on the interval [0, tn] by the variables (ktn , φ1:ktn
, ζ1:ktn

)

where φ1:ktn
are the ordered event times (constrained to [0, tn]), with ktn the number

of events up to tn, and ζ1:ktn
are the values of the process at each event time.

The observed PP is defined similarly, and consists of the variables (rtn , ω1:rtn
, ξ1:rtn

)

where ω1:rtn
are the event times and ξ1:rtn

are the observed values of the process at
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each event time. In Chapter 5, the observed PP is interpreted as a set of financial

data; in this context, ω1:rtn
are the trading times and ξ1:rtn

are the log-returns on

the rtn observed financial transactions.

Additional notation will be provided in the exposition of the methodology in

Chapter 5.

1.6 Structure of the Thesis

In Chapter 2, we provide an in-depth review of MCMC and SMC methods, as well

as giving an introduction to particle MCMC (PMCMC) methods and approximate

Bayesian computation. We also present a rejection-based SMC procedure, referred

to here as RSMC, which was introduced by Del Moral (2004).

In Chapter 3, we introduce the ABC approximation of the generalized SSM, and

we specify the ABC approximations of the joint smoothing and filtering densities.

We discuss some theoretical results concerning the deterministic bias of the ABC

approximation of the filtering density, before providing details of the implementation

of particle filtering in the ABC framework. We also present a detailed numerical

analysis of the accuracy of the ABC particle filter, applying it first to a linear

Gaussian model, and then to a challenging nonlinear Gaussian model from the SMC

literature. We also consider the use of RSMC and provide the first empirical results

concerning the performance of this procedure in a filtering context.

In Chapter 4, we consider the problem of performing inference with respect to

the ABC approximation of the joint smoothing distribution. We present a detailed

theoretical analysis of the deterministic bias that is induced on a class of expecta-

tions that are defined with respect to the ABC approximation of the joint smoothing

distribution. We present two SMC-based procedures for performing sequential infer-

ence with respect to the ABC approximation of the joint smoothing density, and we

present a novel variant of the PMMH algorithm of Andrieu et al. (2010), which can

be used to perform batch inference with respect to both the exact joint smoothing
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distribution and its ABC approximation. In this chapter, we also consider the use

of RSMC in the context of smoothing.

In Chapter 5, we consider the application of SMC methods to an SSM comprised

of a pair of point processes. We consider two existing approaches to performing

inference with respect to these point process models, including an SMC sampler

approach that will be developed throughout the chapter. We demonstrate the poor

performance of a straightforward application of an SMC sampler to this class of

models, and we propose two alternative modifications to the sampler. The improved

performance of these proposed samplers is demonstrated on both simulated and real

financial data.

In Chapter 6, we offer a final summary of the contributions of this thesis, and

present some ideas for future development of the work presented here.

1.7 List of Acronyms

In Table 1.1, we provide a list of acronyms used in this thesis.



Chapter 1. Introduction 31

Acronym Meaning

ABC Approximate Bayesian computation
CLT Central Limit Theorem
(E/T)RSMC (Empirical/Theoretical) Rejection SMC
ESS Effective sample size
IMH Independent MH
IS Importance Sampling
MC Monte Carlo
MCMC Markov chain Monte Carlo
MH Metropolis-Hastings
MMH Marginal MH
MPDABC Multiple pseudo-data ABC
PIMH Particle IMH
PMCMC Particle MCMC
PMMH Particle MMH
PRC Partial rejection control
RJMCMC Reversible jump MCMC
SIR Sequential importance resampling
SIS Sequential IS
SLLN Strong Law of Large Numbers
SMC Sequential Monte Carlo
SSM State space model

Table 1.1: The acronyms used in this thesis.
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Chapter 2

Monte Carlo Methods: A Review

2.1 Introduction

This chapter presents a review of Markov chain Monte Carlo (MCMC; Section 2.2)

and sequential Monte Carlo (SMC; Section 2.3) methods, as well as an introduc-

tion to particle MCMC (PMCMC; Section 2.4). An introduction to approximate

Bayesian computation (ABC) is also provided in Section 2.5.

2.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a well established class of simulation-

based techniques, which can be used for approximating the expectation of a given

function with respect to a complex probability distribution. Loosely speaking, this

is achieved through generating a large number of statistically dependent samples

from the distribution of interest, referred to as the target distribution, and using

Monte Carlo estimation, defined below, to approximate the expectation of interest.

MCMC methods are widely applicable, as their use requires only that the density

of the target distribution is either known pointwise up to a normalizing constant or

can be replaced by an unbiased estimator.

The Metropolis-Hastings algorithm and the Gibbs sampler are two procedures
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that fall under the MCMC umbrella, and they can be used either independently or

in conjunction with each other to provide efficient and accurate simulation methods

for exploring a given target distribution. In a Bayesian setting, many problems

of interest can be approached using MCMC methods, and we will see that the

Metropolis-Hastings and Gibbs procedures provide the basis for the more advanced

methods that can be used to tackle the Bayesian filtering and smoothing problems

that are of interest here. A necessary precursor to MCMC methods is Monte Carlo

estimation, and so we provide a brief introduction to this concept before introducing

MCMC.

2.2.1 Monte Carlo Estimation

Consider the probability space (E, E , π), and suppose we wish to evaluate the ex-

pected value of a π-integrable function f ,

Eπ [f(X)] =

∫

E

f(x)π(dx).

Typically, we find that the probability distribution π(dx) is too complex for standard

integration methods and that the dimension of the space E is too large for determin-

istic numerical approaches such as quadrature. We therefore turn to Monte Carlo

(MC) methods, which provide a simulation-based numerical approach that can deal

with both complex integrands and high-dimensional spaces.

If the distribution of interest, π(dx), may be sampled from straightforwardly,

then an unbiased estimator for the expectation of interest is provided by the Monte

Carlo estimate, which is defined as

f̂N
π (X) =

1

N

N∑

i=1

f
(
X(i)

)
, (2.1)

where X(1), . . . , X (N) ∼ π(dx) are independently drawn samples.
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Whilst there are techniques for sampling from well-known distributions (e.g.

Gaussian, gamma, e.t.c.), the direct sampling of independent, identically-distributed

(i.i.d.) random variables from many distributions of interest is a non-trivial problem,

and this is where Markov chains prove useful. Relatively straightforward algorithms

exist for efficiently generating Markov chains with a specified stationary, or invariant

distribution, and so a natural alternative to direct sampling is to generate a Markov

chain with invariant distribution π(dx). As we shall see in the next section, the

generated chains must satisfy only weak conditions in order to be considered suitable

samples from π(dx).

2.2.2 Markov Chain Theory

We now detail some Markov chain theory, much of which can be found in Roberts and

Rosenthal (2004) and Tierney (1998). For concise work on techniques for Markov

chain simulation, Tierney (1994) was also consulted.

Consider the discrete-time stochastic process {Xt}t≥0, allowed to evolve on the

measurable space (E, E); we say that the process is Markovian if the distribution of

its future state is dependent only upon its current state and not upon any past state.

This basic assumption is defined more rigorously by the following: for t ≥ 0, the

distribution of the (E, E)-valued RV Xt+1, conditional upon X0:t = x0:t, is defined

by the probability measure Qt : E × E → [0, 1], and is denoted Qt(xt, dxt+1). We

assume that the distribution of X0 is known, and without loss of generality, we will

assume that this is the point mass at x0, i.e. X0 = x0 is known.

The joint law of the Markov chain is the measure defining the finite-dimensional

distribution induced by the subprocess X0:t on the product measure space (Et+1, E t+1),

and will be denoted L (dx0, . . . , dxt). We can also talk about the marginal law of

the Markov chain at a particular time t, which we shall denote L(dxt). This is the

measure defining the distribution induced by the process on the random variable

Xt. According to the Ionescu Tulcea Extension Theorem (see, e.g. Shiryaev, 1996,
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p.249), this can be iteratively defined as the pushforward measure composed of the

marginal law of the chain at t − 1 and the Markov transition kernel Qt (xt−1, dxt):

L(dxt) =

∫

E

L (dxt−1) Qt (xt−1, dxt) , t ≥ 2,

where the marginal law at t = 1 is given by
∫

E
Q1 (x0, dx1). As a result, the law of

the Markov chain is fully specified by its initial value and its transition kernel.

The motivation behind using Markov chains lies in the ability to sample a chain

with a prespecified invariant (or stationary) distribution. In practice, the chain is

constructed such that its invariant distribution is equal to the target distribution

π(dx).

Specification of the Invariant Distribution

For a Markov chain with transition kernel Q (x, dx∗), we define an invariant distri-

bution π(dx) on the measurable space (E, E) to be such that,

∫

E

π(dx)Q(x, dx∗) = π(dx∗).

As noted by Roberts and Rosenthal (2004), in order to specify an invariant distribu-

tion π(dx) for a chain {Xt}, it is a sufficient condition for the chain to be reversible

with respect to π(dx). That is, the transition kernel Q and the distribution π(dx)

satisfy the detailed balance condition:

Q(x, dx∗)π(dx) = Q(x∗, dx)π(dx∗). (2.2)

It is, however, insufficient simply for there to exist an invariant distribution; it

is indeed possible for a chain to have an invariant distribution to which it does not

converge. MCMC algorithms must therefore be designed such that convergence to

the target distribution can be guaranteed.
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Convergence to the Invariant Distribution

We detail here the two conditions on the chain that, between them, guarantee con-

vergence to the target distribution π(dx), with respect to the total variation distance

‖Lt − π‖TV . We give these conditions before presenting the convergence result.

φ-irreducibility Define {Xt} to be φ-irreducible if there exists a non-zero σ-finite

measure φ on (E, E) such that for all sets A ∈ E with φ (A) > 0, there exists

1 ≤ k < ∞ such that ∀xt ∈ E,

Pr (Xt+k ∈ A| xt) > 0.

Aperiodicity A Markov chain {Xt} is defined here to be periodic if there exist

d ≥ 2 disjoint subsets A1, . . . , Ad ∈ E such that

Q(x, Ai+1) = 1 ∀x ∈ Ai, i = 1, . . . , d − 1,

Q(x, A1) = 1 ∀x ∈ Ad.

We say that {Xt} has a period d and that A1, . . . , Ad is the periodic decomposition.

If there does not exist d ≥ 2 such that we can construct a periodic decomposition,

the chain is aperiodic.

If the Markov chain {Xt} with invariant distribution equal to our target distri-

bution π (dx) is both φ-irreducible and aperiodic then, by Theorem 4 of Roberts

and Rosenthal (2004), this is also the limiting distribution for {Xt} as t → ∞; for

π − a.e. x0 ∈ E,

lim
t→∞

‖Lt − π‖ = 0.

If a Markov chain converges to its invariant distribution, then this is also referred

to as its equilibrium distribution.

MCMC algorithms proceed by constructing a Markov chain with equilibrium
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distribution equal to the target sampling distribution. Once a Markov chain of

sufficient length has been created, a pre-defined burn-in period, in which the chain is

considered not to have reached its equilibrium, is discarded and the remainder of the

chain provides a statistically dependent sample from the target distribution. Since

Monte Carlo estimation requires an i.i.d. sample from the distribution of interest,

an immediate concern would be the effect that the Markov dependence in the chain

would have on the accuracy of the subsequent MC-type estimate.

It is shown by Meyn and Tweedie (2009) that for a φ-irreducible, aperiodic

(i.e. ergodic) M -length Markov chain X1:M with invariant distribution π(dx), the

resulting MC estimator f̂M
π (X), calculated as in (2.1), satisfies the Strong Law of

Large Numbers (SLLN) for any test function f such that
∫

E
|f(x)| π(dx) < ∞:

lim
M→∞

f̂M
π (X) = Eπ [f(X)] w.p.1. (2.3)

Thus, the conditions of φ-irreducibility and aperiodicity are sufficient to guarantee

convergence of the MCMC estimate to the expectation of any test function that is

absolutely integrable with respect to the target distribution.

2.2.3 Metropolis-Hastings and the Gibbs Sampler

For a brief review of MCMC development see Andrieu et al. (2004); more thorough

expositions can be found in the books by Liu (2001) and Robert and Casella (2004).

Here, we shall concentrate on the two most widely used MCMC algorithms; the

Metropolis-Hastings algorithm and the Gibbs sampler.

Metropolis-Hastings

Introduced by Metropolis et al. (1953) and generalised by Hastings (1970), the prin-

ciple behind the Metropolis-Hastings algorithm is to iteratively generate a Markov

chain by starting at an arbitrary value and proposing and subsequently accepting
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or rejecting candidate values for the remainder of the chain. Suppose we wish to

construct a Markov chain, {Xt}; the proposal of a candidate value x∗ is generated

according to a proposal kernel K (x, dx∗) with corresponding density k (x∗|x), de-

fined with respect to some dominating measure. The acceptance of this candidate

value is then determined by an acceptance probability α (x, x∗). Thus the transition

kernel for the resulting Markov chain may be written

Q (x, A) =

∫

A

K (x, dx∗) α (x, x∗) +

(

1 −
∫

A

K (x, dx∗) α (x, x∗)

)

IA(x)

=

∫

A

α (x, x∗) k (x∗|x) dx∗ +

(

1 −
∫

A

α (x, x∗) k (x∗|x) dx∗

)

IA(x).

By considering this representation of the transition kernel and requiring the detailed

balance equation in (2.2) to hold for reversibility to be guaranteed, the form of

α (x, x∗) may be determined to be (Tierney, 1998)

α (x, x∗) =






r (x, x∗) ∧ 1 x, x∗ ∈ R

0 x, x∗ ∈ Rc,
(2.4)

where R ∈ E ⊗ E is the symmetric set on which the measures π(dx)K (x, dx∗) and

π(dx∗)K (x∗, dx) are equivalent, i.e. mutually absolutely continuous. r(x, x∗) will be

referred to as the acceptance ratio, and is defined as the ratio of Radon-Nikodym

derivatives of π(dx∗)K (x∗, dx) and π(dx)K (x, dx∗), taken with respect to some

common dominating measure. This common dominating measure is guaranteed by

their mutual absolute continuity; the fact that share a common dominating measure

also allows us to write the acceptance ratio as

r (x, x∗) =
π (x∗) k (x|x∗)

π (x) k (x∗|x)
,
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Parameters: M ≥ 1, x0 ∈ E;
Result: A statistically dependent Markov chain, X0:M , with limiting

distribution equal to the target distribution π (dx)
Initialization: Set X0 = x0.
for t = 1 . . . M do

• Given xt−1 = x, generate a candidate value x∗ according to the proposal
kernel K (x, dx∗).

• Define α (x, x∗) as in (2.4).

• Set

{
Xt = x∗ with probability α
Xt = x otherwise

end

Algorithm 1: The Metropolis-Hastings algorithm

and specify the symmetric set R as

R = {(x, x∗) : π (x∗) k (x|x∗) > 0 and π (x) k (x∗|x) > 0} .

The MH procedure is detailed in Algorithm 1.

The original procedure proposed by Metropolis et al. (1953) uses a symmetric

proposal density k(x∗|x) = k(x|x∗), further simplifying the acceptance ratio:

r (x, x∗) =
π (x∗)

π (x)
.

In high dimensions, this simplification has the potential to save a significant

amount of computational effort. This must be caveated by saying that the compu-

tational efficiency of the procedure is still dominated by the quality of the proposal

density k(x∗|x). The quality of a proposal is judged largely in terms of its result-

ing rejection rate, that is the proportion of candidate values it generates that are

subsequently rejected. If the choice of proposal results in a high rejection rate, then

exploration of the sample space will require more iterations of the algorithm, in-

creasing computational effort. However, if the rejection rate is low, then it will take
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longer for the distribution of the chain to converge to the target distribution. Con-

ventionally, an acceptance rate of approximately 23% is usually sought (see Roberts

et al., 1997).

The Metropolis-Hastings algorithm produces, by construction, a Markov chain

that is reversible with respect to the target distribution. Verification of the condition

of φ-irreducibility via a suitable choice of φ is straightforward in most cases, with it

usually sufficing for φ to be the Lebesgue measure (Roberts and Rosenthal, 2004).

Finally, we note that a sufficient condition for aperiodicity in the general Markov

chain with transition kernel Q (x, dx∗) is (Tierney, 1994)

Q (x, dx∗) > 0, ∀x ∈ dx∗,

and that the extension of this condition to the Metropolis-Hastings setting is to

condition on the probability of the rejection of the candidate state being positive

(Robert and Casella, 2004):

Pr [r (x, x∗) < 1] > 0.

which, in the case of common dominating measures for proposal and target densities,

can be written

Pr [π (x) k (x∗|x) > π (x∗) k (x|x∗)] > 0.

This condition is generally satisfied in practice, as it would only be contravened

in the case where the proposal kernel K is the transition kernel for a reversible

Markov chain. This can be seen by considering the following: since x and x∗ are

interchangeable, the above is contradicted if and only if

π(x)k(x∗|x) = π(x∗)k(x|x∗),

which is simply the detailed balance condition for the Markov chain with transition
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kernel K(x, dx∗) and invariant distribution π(dx).

Independent Metropolis-Hastings and Marginal Metropolis-Hastings

In MH procedures, specific choices for the proposal kernel K(x, dx∗) result in vari-

ations on the basic algorithm that will be of interest when considering PMCMC

methods in Section 2.4; these are briefly introduced here.

Consider the proposal kernel K(x, dx∗) = K(dx∗), that is the kernel that pro-

poses candidate values independent of the current value of the Markov chain. The

candidate value is accepted or rejected according to the acceptance probability

α(x, x∗) as in (2.4), where r(x, x∗) is now defined as the Radon-Nikodym deriva-

tive of π(dx∗)K(dx) with respect to π(dx)K(dx∗). The resulting MH procedure is

referred to as Independent MH (IMH).

Suppose that interest lies in performing inference with respect to the joint dis-

tribution π(dx, dθ), where θ ∈ Θ is an unknown parameter, say. We use an MH

procedure to target the joint distribution π(dx, dθ) = πθ(dx)π(dθ), and we make

the key assumption that it is possible to sample from the conditional distribution

πθ(dx). Under this assumption, we adopt the proposal kernel K({x, θ}, {dx∗, dθ∗}) =

πθ∗(dx∗)K(θ, dθ∗), i.e. we propose a candidate parameter θ∗ and then subsequently

sample X∗ from the conditional distribution πθ∗(dx∗). The candidate values are sub-

sequently accepted or rejected, based upon the MH acceptance probability, which,

assuming a common dominating measure for the target density and proposal kernel,

can be shown to take the form

α({x, θ}, {x∗, θ∗}) = 1 ∧
π(θ∗)k(θ|θ∗)
π(θ)k(θ∗|θ)

,

which we note is simply the acceptance probability for the MH procedure targeting

the marginal distribution π(dθ). This approach to sampling from the joint distribu-

tion π(dx, dθ) is thus referred to as marginal MH (MMH).
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Metropolis-Hastings algorithms provide generic procedures for generating ergodic

Markov chains that converge to a given invariant distribution; little information

about the probabilistic structure of the target distribution is required in order to

implement them. Given knowledge of the target distribution’s structure, however, al-

lows a procedure for generating Markov chains that does not require an accept/reject

step: the Gibbs sampler, introduced by Geman and Geman (1984).

The Gibbs Sampler

The Gibbs sampler can be well suited to generating multidimensional chains given

knowledge of a conditional structure of the target distribution. A thorough introduc-

tion to the Gibbs sampler and its variants, including coverage of their convergence

properties, is provided by Robert and Casella (2004).

The sampler begins by dividing the variable into a number of components of

smaller dimension; for notation’s sake, we will here assume that the variable is split

into components of single dimension. The sampler proceeds by cycling through

the individual components, sampling a new value for each according to the target

distribution conditioned upon the other d − 1 components. In all instances, we use

the most up-to-date information available on the remaining d− 1 components, such

that at each iteration, the conditional distributions from which we sample Xn change

as we cycle through the d components, changing to reflect those components that

have already been updated. The d conditional distributions are referred to in the

literature as the full conditionals, and they are denoted using subscripts; at each
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Parameters: M , x0.
Result: A statistically dependent Markov chain X0:M , where

Xt = (Xt,1, . . . , Xt,d), with limiting distribution equal to the target
distribution π (dx).

Initialization: Set X0 = x0.
for t = 1, . . . , M do

Generate a permutation σ1, . . . , σd of the indices 1, . . . , d.
for j = 1,. . . ,d do

• Define Xt,−σj
=
(
Xt,σ1 , . . . , Xt,σj−1

, Xt−1,σj+1
, . . . , Xt−1,σd

)

• Sample a value for Xt,σj
from the full conditional πσj

(
dxσj

∣
∣Xt,−σj

)
.

end
end

Algorithm 2: The random-scan Gibbs sampler

iteration, for j = 1, . . . , d, the components of X∗ are sampled according to

X∗
1 ∼ π1 ( ∙ |X2, X3 . . . , Xd ) ,

X∗
2 ∼ π2 ( ∙ |X∗

1 , X2 . . . , Xd ) ,

X∗
3 ∼ π3 ( ∙ |X∗

1 , X∗
2 , . . . , Xd ) ,

...

X∗
d ∼ πd

(
∙
∣
∣X∗

1 , X∗
2 , . . . , X∗

d−1

)
.

There are two commonly referenced variations of the Gibbs sampler: the de-

terministic scan and random scan samplers. The deterministic scan Gibbs sampler

cycles through the components of the chain sequentially at each iteration, updating

component j before moving on to component j + 1, for j = 1, . . . , d − 1. In con-

trast, the random scan Gibbs sampler cycles through the d components in a random

order at each iteration. The random scan Gibbs sampler is detailed in Algorithm

2; the deterministic scan version is a special case of this. It is remarked that the

original procedure introduced by Geman and Geman (1984) was a version of the

random-scan Gibbs sampler, where one component of the chain, chosen at random,
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was updated at each iteration.

2.2.4 Reversible Jump MCMC

Consider the case where the dimension of the space on which the target distribution

π(x) is defined, is not known prior to simulation. In this situation, the design of

efficient proposals for use in MH-type procedures is nontrivial. We require a proposal

kernel that can move the chain between spaces of differing dimension, and this can

be achieved by treating the dimension of the space as a random variable. This is the

approach adopted by the reversible-jump MCMC (RJMCMC) procedure, introduced

by Green (1995).

Consider the case where we wish to target the distribution π(dx) defined on the

space Ed, where the dimension d is unknown. The RJMCMC procedure achieves

this by sampling from the countable union of the dimension d ≥ 0 and all possible

spaces of dimension d:

Ē =
⋃

d≥1

({d} × Ed) ,

with corresponding σ-algebra Ē .

The RJMCMC algorithm has a similar basic structure to the MH algorithm.

At each iteration, one proposes a candidate X∗ according to some proposal kernel

K (x, dx∗), and subsequently accepts the proposed value with probability given by

an MH-type acceptance probability; otherwise, the proposed value is rejected. At

each iteration, a proposal is made to move the chain from the state x ∈ Ed to a state

x∗ ∈ Ed∗ . The complication caused by the movement between spaces of differing

dimension not only lies in the specification of the proposal kernel K, but in the

subsequent careful calculation of the acceptance probability.
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Specification of a Proposal Kernel

We begin by detailing the proposal mechanism. Suppose that, at the current itera-

tion, our chain is such that x ∈ Ed, and we wish to move to a point x∗ ∈ Ed∗ ⊂ Ē.

The proposal kernel K : Ed ×Ē → [0, 1] can be represented as the countably infinite

sum

K (x, dx∗) =
∑

d∗≥1

cd∗Kd∗ (x, dx∗) ,

with Kd∗ : Ed × Ed∗ → [0, 1] the proposal kernel relating to the move from a d-

dimensional space to a d∗-dimensional space and cd∗ a mixture coefficient, defined

such that
∫

E
K (x, dx∗) = 1. Note that cd∗ could depend upon x ∈ Ed. Green

(1995) considers the generalised case where the proposal kernel at each iteration is

a probability submeasure,
∫

E
K (x, dx∗) ≤ 1, allowing for the possibility that at any

iteration, the procedure may propose no move, i.e. the chain stays in its current state.

Here, we shall forego this generalisation, specifying K as a probability measure. This

will also be the case considered in the application of this procedure to point processes

in Chapter 5.

When proposing candidates according to K, one typically samples a candidate

dimension and then subsequently a candidate state from the corresponding space,

i.e. we rely on the decomposition of the proposal densities:

kd∗ (x∗|x) = p (d∗, x∗ |d, x) = p (d∗ |d) p (x∗ |x, d∗ ) .

The Accept/Reject Step

The acceptance ratio is defined as before, as the Radon-Nikodym derivative of the

probability measure π(dx∗)K(x∗, dx) with respect to some dominating measure, di-

vided by the Radon-Nikodym derivative of the probability measure π(dx)K(x, dx∗)

with respect to another dominating measure. Note that, for the MH procedures

detailed in Section 2.2.3, these dominating measures were common, allowing us to
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immediately express the acceptance ratio in terms of the relevant target and proposal

densities.

In general, π(dx∗)K(x∗, dx) and π(dx)K(x, dx∗) will not share a common domi-

nating measure, due to the differing dimensions on which they are defined. In order

to write the ratio in terms of the relevant densities, we include a Jacobian term,

which accounts for this difference in dominating measures:

α ({d, x} , {d∗, x∗}) =
π (d∗, x∗)

π (d, x)

p (d |d∗ ) p (x |x∗, d)

p (d∗ |d) p (x∗ |x, d∗ )

∣
∣
∣
∣
∂x∗

∂x

∣
∣
∣
∣ ∧ 1.

A common problem that requires the use of RJMCMC considers the case where

one is interested in simulating from a family of point processes, where the number

of changepoints in the process up to a given time point is Poisson distributed. This

problem will be studied in greater detail in Chapter 5, where we combine RJMCMC

methods with sequential Monte Carlo (SMC) methods; the latter are the subject of

the next section.

2.3 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods are a broad class of Monte Carlo proce-

dures that build upon sequential importance sampling and resampling ideas and can

be used to target a sequence of related probability measures π1(dx), . . . , πn(dx) of

increasing dimension.

SMC methods can be described as algorithms that iteratively propagate a sam-

ple of N variables (referred to as particles) forward in time using a series of proposal

kernels, whilst correcting for the discrepancy between the empirical distribution of

the propagated sample and the target distribution through the use of importance

weights. In general, SMC procedures also consider the possibility of redistributing

the sample at each time step, according to these importance weights, in order to im-

prove the quality of the empirical distribution at later time steps. The development
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of these ideas is explored in further detail throughout this section.

SMC algorithms were initially developed as methods for performing inference

with respect to the sequence of target distributions that arise naturally in the fil-

tering and smoothing problems; see, e.g. Doucet et al. (2000). SMC approaches to

these problems are commonly referred to as particle filtering and particle smoothing.

2.3.1 Particle Filtering & Smoothing

The particulars of particle filtering and smoothing are discussed in this subsection,

however as a precursor, we consider the Monte Carlo integration technique of im-

portance sampling.

Importance Sampling

Once again, we consider the problem of evaluating expectations with respect to

some non-trivial distribution π(dx), which is assumed to admit the density π(x)

with respect to some dominating measure. In Subsection 2.2.1, we described the

Monte Carlo estimator, constructed using a sample from the target distribution.

When one is unable to obtain this sample directly from the target distribution,

it was seen that Markov chain Monte Carlo methods could adequately facilitate

MC integration. Importance sampling (IS) provides an alternative approach, and

requires only the ability to pointwise evaluate π(x) up to a normalizing constant.

Furthermore, as we shall see below, in cases where direct sampling is possible, it

can be shown that importance sampling has the potential to offer improvements in

accuracy when performing sample-based inference. A concise introduction to this

technique is given by Liu (2001) and Doucet et al. (2001).

Suppose one can sample from an auxiliary proposal distribution η(dx) that dom-

inates π(dx), i.e. π � η. This auxiliary distribution is referred to as the importance

distribution and we assume that it admits the density η(x) with respect to the same

reference measure as above. Under these assumptions, we can write the expectation
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of interest as

Eπ [f(X)] =

∫

E

f(x)
π(x)

η(x)
η(x)dx. (2.5)

From this relation, it is clear that

Eπ [f(X)] = Eη

[
π(X)

η(X)
f(X)

]

,

and so the expectation of interest can be approximated by the following sample

mean:

f̃N
IS(X) =

1

N

N∑

i=1

π
(
X(i)

)

η (X(i))
f
(
X(i)

)
, (2.6)

for X(1), . . . , X (N) ∼ η(dx). This is an unbiased estimator, and its variance, taken

with respect to the importance distribution, is defined as:

Varη
[
f̃N

IS(X)
]

=
1

N
Varη

[
π(X)

η(X)
f(X)

]

=
1

N

∫
π(x)f 2(x)

η(x)
π(x)dx −

1

N
E2

π [f(X)] . (2.7)

Consider the Monte Carlo estimator (2.1). This is clearly also unbiased, with vari-

ance given by

Varπ
[
f̂N

π (X)
]

=
1

N

∫
f 2(x)π(x)dx −

1

N
E2

π [f(X)] .

Thus, the difference between the variance of these two estimators is

Varπ
[
f̂N

π (X)
]
− Varη

[
f̃N

IS(X)
]

=
1

N

∫ (

1 −
π(x)

η(x)

)

f 2(x)π(x)dx

and so an unbiased IS estimator can be designed with variance lower than that of

the MC estimator. On the other hand, however, the presence of the ratio of densities

in the integrand of (2.7) indicates that a poor choice of importance distribution, for

example a distribution with lighter tails than the target distribution, will result in
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an unbounded variance (see, e.g. Robert and Casella, 2004).

An Alternative Importance Sampling Estimator

A requirement for the use of the unbiased IS estimator above is that the target

density can be calculated exactly. Suppose instead that the target density is known

only up to a normalizing constant:

π(x) =
γ(x)

Z

In order to proceed with importance sampling in this scenario, one must use a

sensible estimate for this normalizing constant. Motivated by (2.5), we see that Z

can be represented as follows:

Z :=

∫

E

γ(dx) =

∫

E

γ(x)

η(x)
η(dx) = Eη

[
γ(X)

η(X)

]

.

Thus, a sensible estimator for the normalizing constant is simply the sample mean

of the evaluated ratio of densities γ(x)/η(x). This leads to an alternative impor-

tance sampling estimator, the self-normalized weighted sample mean. Define the

unnormalized weight function to be

w(x) =
γ(x)

η(x)
(2.8)

and, for a sample drawn from the importance distribution, X(1), . . . , X (N) ∼ η(dx),

estimate the expectation of interest as the weighted sample mean, using the self-

normalized weights W (i) ∝ w
(
X(i)

)
,
∑N

i=1 W (i) = 1:

f̂N
IS(X) =

N∑

i=1

W (i)f
(
X(i)

)
=

N−1
∑N

i=1 w
(
X(i)

)
f
(
X(i)

)

N−1
∑N

i=1 w (X(i))
. (2.9)

This alternative IS estimator is biased. According to the SLLN, however, the
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numerator will converge almost surely to the integral

∫

E

f(x)γ(x)dx,

and the denominator will converge almost surely to the normalizing constant Z, also

by the SLLN. Almost-sure convergence to the expectation of interest is therefore

guaranteed for (2.9). Furthermore, some choices of η(dx) lead to the mean squared

error (MSE) of this estimator being less than that of f̃N
IS(X). To see this, consider

the bias and variance of this biased IS estimator. Using a second-order Taylor series

expansion of (2.9), about the expected values of the numerator and denominator

and with respect to the importance distribution, yields the following result for the

bias:

Eη

[
f̂N

IS(X)
]
− Eπ [f(X)] =

1

N

{

Eπ [f(X)]Varη [w(X)] − Covη [w(X)f(X), w(X)]

}

+ O
(
N−2

)
,

and so the estimator (2.9) is asymptotically unbiased. One can also obtain an

asymptotic result for the estimator variance. The common approach is to use the

delta method (e.g. Casella and Berger, 2002), which consists of employing a Taylor

series expansion as above, truncated to first-order terms.

Varη
[
f̂N

IS(X)
]

=
1

N

{

Varη [w(X)f(X)] + E2
π [f(X)]Varη [w(X)]

− 2Eπ [f(X)]Covη [w(X)f(X), w(X)]

}

+ O
(
N−2

)
.

Combining the above results with the corresponding results for f̃N
IS(X), we have
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the following difference between the mean squared errors of the estimators:

MSE(f̂N
IS) = MSE(f̃N

IS) +
1

N

{

E2
π [f(X)]Varη [w(X)]

− 2Eπ [f(X)]Covη [w(X)f(X), w(X)]

}

+ O
(
N−2

)
,

and so, as noted by Liu (2001), the biased self-normalized IS estimator f̂N
IS(X) has

a lower MSE than its unbiased counterpart f̃N
IS(X) when w(X)f(X) and w(X) are

highly correlated.

Choosing a Suitable Importance Sampling Estimator

As we have seen above, even though the self-normalized IS estimator f̂N
IS(X) is

biased, it can be designed such that its MSE is lower than that of the unbiased

estimator f̃N
IS(X). This is achieved when the quantities w(X)f(X) and f(X) are

highly correlated. The use of f̂N
IS(X) has the added practical advantage that the

importance distribution need only be known up to some normalizing constant. It

is therefore preferable to use this biased IS estimator, choosing an importance dis-

tribution such that w(X)f(X) and f(X) are highly correlated. Henceforth, f̂N
IS(X)

will be referred to simply as the IS estimator.

Liu (1996, 2001) provides a ‘rule of thumb’ for choosing such importance dis-

tributions, and it is detailed here as it will motivate the definition of the effective

sample size (ESS; Kong et al., 1994; Liu, 1996), which will be useful in designing ef-

ficient SMC methods. Consider the ratio of the variance of the IS estimator f̂N
IS(X),

taken with respect to the importance distribution, relative to the variance of the

Monte Carlo estimator f̂N
π (X), taken with respect to the target distribution. This

gives a measure of the efficiency of the IS procedure relative to the direct sampling

method. As shown by Liu (1996), the variance of f̂N
IS(X) can be reduced to

Varη
[
f̂N

IS(X)
]

=
1

N
Varπ [f(X)]

{

1 + Varη

[
γ(X)

η(X)

]}

+ O
(
N−2

)
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Thus, the required ratio takes the form

Varπ
[
f̂N

π (X)
]

Varη
[
f̂N

IS(X)
] ≈

Varπ [f(X)]

Varπ [f(X)]
{

1 + Varη
[

γ(X)
η(X)

]} (2.10)

where the approximation is due to the negligence of the second-order terms in

Varη
[
f̂N

IS(X)
]
. As noted by Liu (1996), the negligence of these higher order terms

may not always be justified, however a large advantage to this efficiency measure-

ment is the fact that it is independent of the test function f , and thus is a useful

tool for comparing the efficiency of different IS procedures.

The above ratio indicates the size of the sample required for direct sampling,

relative to that of the sample used for importance sampling, in order to achieve the

same level of estimator variance. Thus, for an importance sampling procedure using

the importance distribution η, the effective sample size (ESS) is defined as

ESS =
N

1 + Varη
[

γ(X)
η(X)

] , (2.11)

where N is the sample size used for IS. The ESS therefore takes a value in the

closed interval [1, N ] and, in practice, an importance distribution for which the ESS

is close to N may be sought. The ESS will prove useful in an SMC context, and

this is detailed further below.

We consider now the sequential implementation of the IS method described

above, with the aim being to target a sequence of related distributions π1(dx), . . . , πt(dx).

Sequential Importance Sampling for State Space Models

We now return to the SSM framework, given in (1.1)-(1.2), and present sequential

importance sampling (SIS) in more detail. In the SSM context, our sequence of

target distributions is the family of smoothing distributions, {π (dx1:t|y1:t)}t≥1, such

that π(dx1:t|y1:t) admits the joint smoothing density π(x1:t|y1:t) with respect to some
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common dominating measure.

Suppose that, at time t, one has access to the sample
{

X
(i)
1:t−1

}N

i=1
, which is

distributed according to the importance distribution η (dx1:t−1|y1:t−1). Our aim is to

construct a sample that is distributed according to π(dx1:t|y1:t), and we do so using

the following SIS steps.

Using a proposal kernel Kt(xt−1, dxt), we initially augment each of the existing

particles X
(i)
1:t−1 with the additional point X

(i)
t ∼ Kt(X

(i)
t−1, ∙ ). This defines the

importance distribution at time t as

η(dx1:t|y1:t) := η(dx1:t−1|y1:t−1)Kt(xt−1, dxt),

and we make the assumption that π(dx1:t|y1:t) � η(dx1:t|y1:t). We assume also

that π(dx1:t|y1:t) and η(dx1:t|y1:t) admit their respective densities, π(x1:t|y1:t) and

η(x1:t|y1:t) with respect to a common dominating measure. Note that the proposal

kernel Kt(xt−1, dxt) may, in general, also be dependent upon x1:t−2 and y1:t; for

notational convenience, and without loss of generality, we denote the proposal kernel

as above, reflecting only dependence upon the state at the previous time point.

Subsequent to propagation of the samples, weights can be calculated so as to

reflect the extent to which each sample chain X
(i)
1:t can be considered to be from the

joint smoothing distribution:

W
(i)
t ∝

π
(
X

(i)
1:t |y1:t

)

η
(
X

(i)
1:t |y1:t

) ,
N∑

i=1

W
(i)
t = 1. (2.12)

Using these importance weights, referred to as the SIS weights, it is possible to

approximate the smoothing distribution using a Monte Carlo estimator. The SMC

approximation of the joint smoothing distribution is defined here as

π̂ (dx1:t |y1:t ) =
N∑

i=1

W
(i)
t δ

X
(i)
1:t

(dx1:t) . (2.13)
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This approximation immediately allows us to define the SMC estimator for an ex-

pectation taken with respect to the joint smoothing density:

f̂N
π1:t

(X1:t) := Êπ1:t [f(X1:t)] =
N∑

i=1

W
(i)
t f

(
X

(i)
1:t

)
.

Similarly, the SMC estimator for an expectation taken with respect to the filtering

density is defined as

f̂N
πt

(Xt) := Êπt [f(Xt)] =
N∑

i=1

W
(i)
t f

(
X

(i)
t

)
. (2.14)

Recursive Calculation of the SIS Weights

As noted by Doucet et al. (2001), the SIS weights (2.12) can be calculated under

the assumption that the joint importance density satisfies the relationship

η(x1:t|y1:t) = η(x1:t−1|y1:t−1)kt(xt|xt−1, yt).

We also make use of the following identity concerning the joint distribution of the

state process and observation record:

π (x1:t, y1:t) = π (x1:t−1, y1:t−1) qt (xt |xt−1 ) gt (yt |xt ) ,

with qt the prior transition density and gt the likelihood, and we define

γ(x1:t, y1:t) = π(x1:t, y1:t),

such that the joint smoothing density may be written π(x1:t|y1:t) ∝ γ(x1:t, y1:t). The

resulting normalizing constant is the joint marginal density for the observed data,

Zt = π (y1:t).
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The unnormalized weight functions w (x1:t) can now be defined as in (2.8):

w(x1:t) =
γ(x1:t, y1:t)

η(x1:t|y1:t)
=

γ(x1:t−1, y1:t−1)

η(x1:t−1|y1:t−1)
∙
qt(xt|xt−1)gt(yt|xt)

kt(xt|xt−1, yt)
, (2.15)

= w(x1:t−1) ∙ w̃(xt−1, xt),

where w̃ (xt−1, xt) is referred to as the incremental weight function.

Using (2.15), we can recursively calculate the weights
{

W
(i)
t

}N

i=1
, as

W
(i)
t ∝ W

(i)
t−1 ∙ w̃

(
X

(i)
t−1, X

(i)
t

)
, i = 1, . . . , N.

Thus, at each time step t, one only requires access to
{

X
(i)
t−1:t, W

(i)
t−1

}N

i=1
. This has

the important practical consequence of allowing sequential estimation via the SMC

estimators (2.13)-(2.14), without requiring the storage of
{

X
(i)
1:t−2, W

(i)
1:t−2

}N

i=1
.

Similarly to before, the normalizing density π (y1:t) can be estimated using the

weights. At time t, given the normalized sample weights at the previous iteration

and the sampled particles at the previous and current iterations,
{

X
(i)
t−1:t, W

(i)
t−1

}N

i=1
,

the ratio of consecutive normalizing densities π(y1:t)/π(y1:t−1) can be estimated by

1

N

N∑

i=1

W
(i)
t−1w̃

(
X

(i)
t−1, X

(i)
t

)
.

This estimator enables recursive estimation of the marginal likelihood of the data,

which will be of great use in the implementation of PMCMC methods (see Section

2.4). The resulting estimator for the marginal likelihood normalizing constant π(y1:t)

is as follows, and it is noted that this is an unbiased estimator:

π̂(y1:t) =
t∏

n=1

1

N

N∑

i=1

W
(i)
n−1w̃

(
X

(i)
n−1, X

(i)
n

)
.
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The Weight Degeneracy Issue

In batch inference scenarios, where MCMC methods may also be used, it may be ar-

gued that the sequential importance sampling approach is preferable; the generated

samples here are independent and identically distributed, resulting in potentially

more efficient estimators. The major disadvantage of the SIS approach, however, is

that the variance of the sample weights, conditional on the observed data, follows

an increasing trend with respect to the time parameter. This is due to the following

result (Kong et al., 1994):

Eπ(y1:t)

[
Varπ1:t

[
w(x1:t)|y1:t

]]
≥ Eπ(y1:t−1)

[
Varπ1:t−1

[
w(x1:t−1)|y1:t−1

]]
.

This was first reported in the context of Bayesian filtering by Doucet et al. (2000),

and has the effect of reducing the accuracy of the filtering estimates (2.14).

In practice we find that, due to the recursive nature of the relation in (2.15),

any area of concentration in the distribution of the weights over the sample is com-

pounded at each time step. Combined with the increasing variance of the sample

weights, the effect is that after no more than a few time steps, there are typically

very few states with non-zero weighting.

Resampling

A major breakthrough for SMC methods was introduced by Gordon et al. (1993).

The most significant contribution of this paper was to introduce a resampling step

to the SIS procedure, inspired by a result from Smith and Gelfand (1992). Based

on the bootstrap methodology of Efron (1982), the principle is that, once a sample

has been collected from a distribution, one obtains a more favourable sample by

assuming this to be an empirical representation of the distribution and sampling

from it, with replacement. The original sample is then discarded and replaced with

the bootstrap sample. This has the effect of replicating desirable elements of the
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sample, at the acceptable cost of discarding the most unsuitable samples.

If we are resampling at every step, then the new procedure at time t, referred to

as sequential importance resampling (SIR), is as follows:

• Given
{

X
(i)
1:t−1

}N

i=1
, generate a sample

{
X

(i)
t

}N

i=1
,

• For i = 1, . . . , N , set W
(i)
t−1 = 1

N
and calculate W

(i)
t according to (2.15),

• For j = 1, . . . , N , choose index i with probability W
(i)
t and set X

∗(j)
1:t = X

(i)
1:t ,

• Re-define
{

X
(i)
1:t

}N

i=1
=
{

X
∗(i)
1:t

}N

i=1
, discarding the original values of

{
X

(i)
1:t

}N

i=1
.

Since the weights are reset at each step, and are calculated only up to a constant

of proportionality, we can discard W
(i)
t−1 from relation (2.15), when using it in the

above procedure. Note that this is only true when resampling occurs at every time

step.

The resampling mechanism detailed above is known as multinomial resampling,

and is the resampling scheme with which the first particle filters were proposed

(Gordon et al., 1993). Other resampling schemes are available, such as stratified

resampling (Kitagawa, 1996) and residual resampling (Liu and Chen, 1998). Both

of these alternative methods draw particles from the empirical distribution π̂(dx1:t)

(2.13), however both are designed such that the number of replicates of a particular

particle X
(i)
1:t after resampling is approximately equal to

[
NW

(i)
t

]
, where [x] is the

integer part of x. It is noted that the use of either stratified or residual resampling

can be shown to offer improvements over multinomial resampling in the variance of

the resulting SMC estimators (see e.g. Chopin, 2004; Douc et al., 2005). We will

concentrate on the use of a multinomial resampling scheme within the SMC proce-

dures presented here, in order to facilitate a more principled comparison with the

use of RSMC methods, which are introduced in Section 2.3.2; this will be explained

further in that section.

In resetting the weights, we also discard any information already collected about

the distribution of the weights, and so degeneracy of the sample weights is no longer
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as much of an issue. With the introduction of resampling, however, comes another

problem: particle path degeneracy.

The Particle Path Degeneracy Issue

As we are resampling with replacement according to the weights, at each resampling

step the least informative particles may be discarded and the more informative

particles replicated. Note that it is the entire history of each particle X1:t that is

subject to possible replacement. As a result, the number of distinct paths in the

particle system’s history diminishes with each resampling step; the cumulative effect

of this is that the majority of the particles in the system share the same history, even

after only a modest number of iterations. This is well documented as the particle

path degeneracy issue (see e.g. Del Moral et al., 2009; Doucet and Johansen, 2011)

and after a sufficient time t, there will be an integer k such that the paths x
(i)
1:t−k

will be the same for all i ∈ {1, . . . , N}. Figure 2.1 illustrates this degeneracy for

the first 30 time steps of a SIR procedure targeting the unobserved state in a linear

Gaussian SSM. It is noted that as a result of particle path degeneracy, it is not

possible to accurately approximate the distribution of X1:t for increasing length t.

It is possible at time t to approximate the distribution of Xt−k:t, however we must

have fixed length k of small magnitude.

The convergence properties of various sequential importance sampling based

methods, both with and without resampling, are examined by both Del Moral (2004)

and Chopin (2004), and the reader is directed to these references for further discus-

sion on these convergence properties.

Resampling allows us, to an extent, to deal with the issue of weight degeneracy.

From this alone, a practitioner might deduce that resampling is preferable in particle

filtering. On the other hand, however, we have seen above that resampling leads

to particle path degeneracy. Furthermore, resampling adds to the computational

expense of the SMC procedure, and so it makes sense to avoid excessive resampling.
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Figure 2.1: Particle path degeneracy for a SIR procedure. In each row, the left
hand plot shows the particles in existence before propagation via a proposal kernel;
the right hand plot shows the augmented particles, with the particles in grey subse-
quently being discarded upon resampling. The true state being estimated is given
by the red line.

Thus, we have a trade off that we must manage. In order to effectively do so, we turn

to the effective sample size (2.11). At each time step, after assigning importance

weights to the propagated sample, the ESS is estimated according to

ÊSS

({
W

(i)
t

}N

i=1

)

=

(
N∑

i=1

(
W

(i)
t

)2
)−1

, (2.16)

and, conditional on ÊSS being less than some pre-determined threshold, resampling

is performed according to the chosen resampling scheme.

Adding this adaptive resampling step to the SIS steps described above provides
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Data: y1:T .
Parameters: x0, T , N .
Result: The SMC estimates of Eπt [f(Xt)], for t = 1, . . . , T .

1. Set t = 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt (x0, dxt), and compute

W
(i)
t ∝

gt

(
yt

∣
∣
∣X(i)

t

)
qt

(
X

(i)
t |x0

)

kt

(
X

(i)
t |x0

) ,
N∑

i=1

W
(i)
t = 1.

2. If ÊSS

({
W

(i)
t

}N

i=1

)

< N
2
, then, for i = 1, . . . , N , resample X

(i)
t

independently from the discrete distribution

π̂ (dxt) =
N∑

i=1

W
(i)
t δ

X
(i)
1:t

(dxt)

and set W
(i)
t = 1

N
.

3. Set t = t + 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt

(
X

(i)
t−1, dxt

)
and calculate

the filtering weights

W
(i)
t ∝ W

(i)
t−1 ∙

gt

(
yt

∣
∣
∣X(i)

t

)
qt

(
X

(i)
t

∣
∣
∣X(i)

t−1

)

kt

(
X

(i)
t

∣
∣
∣X(i)

t−1

) ,

N∑

i=1

W
(i)
t = 1.

4. Calculate the particle filtering estimate f̂N
πt

(Xt) according to (2.14).

If t = T , stop; otherwise, return to Step 2.

Algorithm 3: An SMC Filtering Algorithm

the SMC procedure that will be used here for particle filtering and particle smooth-

ing. The full particle filtering procedure is detailed in Algorithm 3, where it is noted

that the SMC filtered estimate of the expected value of a given test function is

calculated prior to resampling at each step.
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Choice of Proposal Density

As seen above, one can use any proposal distribution to generate particles, as long

as its positive support encompasses that of the target distribution and one is able

to pointwise evaluate it up to some normalizing constant. Of course, for computa-

tional efficiency, an easy-to-sample proposal may be chosen, however, this inevitably

involves a trade-off with how well it mirrors the target distribution. A large dis-

crepancy between proposal and target will result in large variance of the importance

weights. As shown by Doucet et al. (2000), the proposal density that minimizes the

variance of the importance weights is

kt(xt|xt−1, yt) =
qt(xt|xt−1)gt(yt|xt)∫
qt(xt|xt−1)gt(yt|xt)dxt

.

Use of this proposal density within an SIS framework requires both the ability

to sample according to kt(xt|xt−1, yt), i.e. with knowledge of the data at the cur-

rent time point, and the ability to evaluate or estimate the normalizing constant
∫

qt(xt|xt−1)gt(yt|xt)dxt. This normalizing constant will not have an analytical form

in the general case, e.g. where the transition or observation noise in the SSM are

non-Gaussian. Furthermore, when considering filtering and smoothing in this thesis,

interest will lie principally in scenarios in which the likelihood gt(yt|xt) can neither

be evaluated nor replaced with an unbiased estimator and so use of the condition-

ally optimal proposal will therefore not be suitable here. For this reason, all SMC

filtering and smoothing procedures considered here will use the transition density

qt(xt|xt−1) as the proposal density. It is noted that this is a sub-optimal proposal

mechanism, as particles are proposed with no knowledge of the observed data at

the current time point. However, since the incremental weight functions under this

proposal are reduced to the likelihood function, this allows us to focus on the role of

the likelihood in the accuracy of the resulting filtering and smoothing estimates, and

the effect of estimating it through the use of ABC methodology, which will be in-



2.3 Sequential Monte Carlo 62

troduced in Section 2.5. The use of this proposal, and the subsequent simplification

of the importance weights, has the added advantage of reducing the computational

budget of all SMC algorithms considered.

2.3.2 Rejection SMC

We consider here a modification to the SMC methodology that incorporates a

rejection-based approach to resampling at each time step of the SMC procedure.

This approach to SMC was introduced by Del Moral (2004), and it is noted that,

since it is independent of the target distribution, it can be applied to both the

filtering procedure and the smoothing procedures considered in Chapter 4. This

rejection-based approach to SMC will henceforth be referred to as Rejection SMC

(RSMC).

The RSMC procedure is initialised as before, and at each time step t, after cal-

culating the incremental importance weights, the following acceptance probabilities

are assigned to the particles: for i = 1, . . . , N ,

β
(i)
t = βt

(
X

(i)
t−1:t

∣
∣yt

)
:=

w̃
(
X

(i)
t−1, X

(i)
t

)

sup
xt∈Rdx

{
w̃
(
X

(i)
t−1, xt

)} ≤ 1, (2.17)

under the assumption that the supremum in the denominator exists for any fixed yt.

With probability β
(i)
t , the particle X

(i)
1:t is not resampled, otherwise it is resampled

according to the particle approximation of the smoothing distribution, π̂ (dx1:t),

given in (2.13). The weights of all particles are subsequently set to 1/N . This

procedure is detailed in full in Algorithm 4.

This procedure is motivated through the use of the rejection kernel of Del Moral
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Data: y1:T .
Parameters: x0, T , N .
Result: The TRSMC estimates of Eπt [f(Xt)], for t = 1, . . . , T .

1. Set t = 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt (x0, dxt), and compute

W
(i)
t ∝

gt

(
yt

∣
∣
∣X(i)

t

)
qt

(
X

(i)
t |x0

)

kt

(
X

(i)
t |x0

) ,
N∑

i=1

W
(i)
t = 1.

2. For i = 1, . . . , N , calculate β
(i)
t using (2.17), and with probability β

(i)
t do not

resample, otherwise resample X
(i)
t according to the discrete distribution

π̂ (dx1:t) =
N∑

i=1

W
(i)
t δXi

1:t
(dx1:t) .

3. For i = 1, . . . , N , set W
(i)
t =

1

N
.

4. Set t = t + 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt(X

(i)
t−1, dxt) and calculate

the filtering weights

W
(i)
t ∝ W

(i)
t−1 ∙

gt

(
yt

∣
∣
∣X(i)

t

)
qt

(
X

(i)
t

∣
∣
∣X(i)

t−1

)

kt

(
X

(i)
t

∣
∣
∣X(i)

t−1

) ,
N∑

i=1

W
(i)
t = 1.

5. Calculate the particle filtering estimate f̂N
πt

(Xt) according to (2.14).

If t = T , stop; otherwise, return to Step 2.

Algorithm 4: A Theoretical Rejection SMC Filtering Algorithm

(2004), which is defined here using current notation as

Ht

((
{x(i)

t−1}
N
i=1, yt−1

)
, dxt

)
= βt

(
x

(i)
t

∣
∣yt

)
Kt(x

(i)
t−1, dxt)

+
[
1 − βt

(
x

(i)
t |yt

)] N∑

j=1

w̃(x
(j)
t−1, x

(j)
t )

∑N
l=1 w̃(x

(l)
t−1, x

(l)
t )

Kt(x
(j)
t−1, dxt).

(2.18)

It has been shown by Del Moral (2004) that the asymptotic (as N → ∞) variance
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in the CLT associated with estimates resulting from the SMC approximation of the

joint smoothing distribution (2.13) is smaller when the approximation is obtained

using an RSMC procedure than when using a SIR algorithm, i.e. an SMC procedure

that resamples at every time step. It will be of interest here to see if this advantage

is realised for finite N , in particular when comparing against an SMC procedure that

uses dynamic resampling. The motivating result of Del Moral (2004) corresponds

to an SIR procedure that uses a multinomial resampling scheme; we therefore also

use multinomial resampling for our dynamic resampling SMC procedures.

Consider the definition of the acceptance probabilities in (2.17). This definition is

made under the assumption that the supremum in the denominator is available and

finite, an assumption that will not always be satisfied. We therefore consider also a

version of RSMC that is robust to this assumption. We use the same procedure as

described above, with acceptance probabilities defined instead using the empirical

maximum incremental weight calculated over all particles, in place of the theoretical

supremum over all xt; that is

β̂
(i)
t = β̂t

(
X

(i)
t |yt

)
:=

w̃
(
X

(i)
t−1, X

(i)
t

)

max
i

{
w̃
(
X

(i)
t−1, X

(i)
t

)} ≤ 1. (2.19)

It is stressed that β̂
(i)
t is not intended as an estimator for β

(i)
t , simply an empirical

alternative. Moreover, note that neither β
(i)
t nor β̂

(i)
t require online estimation.

Henceforth, in order to distinguish between the different forms of the acceptance

probability being used, we refer to RSMC using β
(i)
t as Theoretical Rejection SMC

(TRSMC) and to RSMC using β̂
(i)
t as Empirical Rejection SMC (ERSMC). It is

remarked that, as N increases, one would expect the standard errors of the esti-

mates produced by the ERSMC procedures to approach the standard errors for the

corresponding estimates produced by the TRSMC procedures. This is due to the

fact that, as N → ∞, the empirical maximum of the observed incremental weights

at time t approaches the theoretical supremum over all proposed states xt, thus
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β̂
(i)
t → β

(i)
t as N → ∞. It is also remarked that the use of RSMC avoids the need

to choose either the resampling criterion or threshold, which are associated with the

dynamic resampling SMC procedure. Since the use of the ESS is based upon the

approximation (2.10), which is not always justified, the use of an automated RSMC

procedure may be preferable.

2.3.3 Sequential Monte Carlo Samplers

Sequential Monte Carlo methods may also be used for performing inference with

respect to complex distributions outside of the SSM framework. Consider the distri-

bution π(dx) defined upon the measurable space (E, E). SMC samplers, formalised

by Del Moral et al. (2006), can be used to target this probability measure by approx-

imating a sequence of intermediary measures {πn}
m
n=1 such that πm(dx) = π(dx).

The advantage of SMC samplers over alternative SMC methodology is that they are

geared towards targeting a sequence of measures {πn}
m
n=1 defined upon the common

space (E, E), as opposed to targeting measures defined upon a sequence of nested

spaces, {(En, En) ; En−1 ⊆ En}
m
n=1, the latter being the approach of particle filters.

This common-space approach will be advantageous, for example, in performing in-

ference with respect to latent point process models, as will be discussed later. We

provide a review of the framework associated to SMC samplers.

Proceeding as in Section 2.3.1, we could target {πn}
m
n=1 via a sequential impor-

tance sampling scheme. At iteration n, given N particles
{

X
(i)
n−1

}N

i=1
assumed to be

distributed according to ηn−1(dxn−1), each is perturbed according to the Markov ker-

nel Kn (xn−1, dxn) with corresponding density kn (xn |xn−1 ). The resulting particles

are subsequently marginally distributed according to the proposal distribution

ηn (dxn) =

∫

E

ηn−1 (dxn−1) Kn (xn−1, dxn) .

Under the assumption that the density ηn(xn) is available to compute pointwise, im-
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portance weights and expectations of interest may be calculated via straightforward

IS calculations. However, in reality, the integral

ηn (xn) =

∫

En−1

η1 (x1)

(
n∏

j=2

kj (xj |xj−1 )

)

dx1:n−1. (2.20)

is typically high-dimensional and impossible to compute. One potential solution is

to approximate ηn (xn) via

ηN
n−1kn (xn) :=

1

N

N∑

i=1

kn

(
xn

∣
∣
∣X(i)

n−1

)
,

however the computational complexity of the resulting algorithm would be O (N2),

as the evaluated importance density ηn

(
X

(j)
n

)
would need to be approximated by

the above, for j = 1, . . . , N ; this computational budget is prohibitive. In addition, it

is not always possible to pointwise evaluate kn (xn |xn−1 ) and so this approximation

might not be possible.

SMC samplers provide an alternate approach to this problem that maintains the

attractive feature of the SIS framework, without having to evaluate (2.20). Del Moral

et al. (2006) propose an auxiliary variable technique, introducing a so-called back-

ward kernel Ln−1 (xn, dxn−1) to mirror the effect of the Markov kernel Kn; denote

the corresponding density ln−1 (xn−1 |xn ).

Del Moral et al. then perform sequential importance sampling using the joint

importance density ηn (x1:n) to obtain a sample from the (auxiliary) joint target

density

π̃n (x1:n) =
γ̃t (x1:n)

Zn

(2.21)

where we define

γ̃n (x1:n) = γn (xn)
n∏

k=2

lk−1 (xk−1 |xk ) . (2.22)

At iteration n, each of the particle paths
{

X
(i)
1:n−1

}
is propagated according to the
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Markov kernel Kn (xn−1, dxn) and weighted according to W
(i)
n ∝ w

(
X

(i)
1:n

)
, using

the weighting function w (x1:n), which measures the discrepancy between γ̃n (x1:n)

and ηn (x1:n):

w (x1:n) =
γ̃n (x1:n)

ηn (x1:n)

=
γ̃n−1 (x1:n−1) γn (xn) ln−1 (xn−1 |xn )

γn−1 (xn−1)
∙

1

ηn−1 (x1:n−1) kn (xn |xn−1 )

= w (x1:n−1) ∙
γn (xn) ln−1 (xn−1 |xn )

γn−1 (xn−1) kn (xn |xn−1 )
. (2.23)

Finally, since π̃n (x1:n) admits πn (xn) as a marginal, the final weighted sample
{(

X
(i)
n , W

(i)
n

)}
is an approximation of the original target density by construction.

This method shifts focus from directly sampling from the marginal densities of

interest to sampling from the sequence of joint densities {π̃n}
m
n=1, with respective

nested supports {En}
m
n=1; it is clear that this method does not operate entirely within

a common measurable space at each time step. It is worth noting, however, that the

intention throughout is to perform inference with respect to the marginal density

πn, which does remain defined upon a common space at each time step. Also, since

the weights may be calculated recursively, with the incremental weight dependent

upon the (unnormalized) marginal densities, and not the full joint densities, it is

intuitive that SMC samplers are, in general, of fixed computational complexity.

Indeed, the standard SMC sampler algorithm, given by Del Moral et al. (2006), has

computational complexity O(N).

2.4 Particle MCMC

This section provides a review of particle MCMC (PMCMC) methodology. PMCMC

methods were introduced by Andrieu et al. (2010) as a set of techniques for per-

forming batch inference that use elements of SMC methodology to address obstacles

faced in the application of standard MCMC methods to complex problems.



2.4 Particle MCMC 68

We detail here the application of PMCMCmethods to the filtering and smoothing

problems, but note that the methodology is much more general and can be applied

to a wide variety of problems outside the SSM framework.

2.4.1 MCMC for State Space Models

Consider the application of MCMC methods to the generalised state space model,

with transition and observation densities (1.1)-(1.2) parameterised by θ ∈ Θ, and

note that interest here lies in performing batch inference on the joint smoothing

density πθ(x1:T |y1:T ). The PMCMC methods used in this work are based upon the

MH procedure, as detailed in Section 2.2.3. It is noted that PMCMC methods can

also be constructed using the Gibbs sampler, however these are not considered here;

details on the particle Gibbs procedure can be found in Andrieu et al. (2010).

Typically, the length of the state, T , is too large for straightforward MH proce-

dures to be efficient: high-dimensional proposals are generally too cumbersome to

sample from and dimension-reduced alternatives such as local or single-site update

schemes result in chains that suffer from slow mixing properties, especially when

there is a strong dependence structure within (x1:T , θ). Further difficulty lies in the

situation where point-wise evaluation of the joint smoothing density up to a con-

stant is impossible, as the calculation of the acceptance probability is infeasible in

this case.

PMCMC helps to deal with issues of difficulty associated with both high-dimensionality

and intractability of the target density. The basic premise is to use an SMC proce-

dure as the proposal mechanism in an MCMC algorithm, in order to propose suitable

candidates from the joint smoothing distribution. The candidate value proposed by

the SMC scheme is then accepted or rejected according to an MH acceptance proba-

bility, which may also be estimated as a by-product of the SMC procedure. Andrieu

et al. (2010) use a particle filter, as defined in Section 2.3.1, drawing candidate

states X∗
1:T from the SMC approximation of the joint smoothing distribution given
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in (2.13). Of course, the particle path degeneracy issue renders this a poor approxi-

mation of the joint smoothing distribution. As is also noted by Andrieu et al. (2010),

however, the PMCMC procedure does not require the candidate resulting from the

SMC procedure to be an accurate representation of the smoothed state, merely a

single sampled path from the target smoothing distribution.

This forms the basis of a Particle IMH (PIMH) procedure, which we now detail

further. To clarify the discussion, we develop the notation. Previously, the pro-

posal densities for SMC procedures and MCMC procedures have both been denoted

k (x∗|x); for clarity, we will discriminate through use of subscripts, using ksmc and

kmh respectively.

2.4.2 Particle Independent Metropolis-Hastings (PIMH)

The procedure described above corresponds to an IMH algorithm, since the particle

filter used to generate the candidate state x∗
1:T is independent of the current value of

the Markov chain. Hence, this is referred to as a Particle IMH (PIMH) procedure.

We now give the details of the procedure, specifically the proposal density and the

resulting MH acceptance probability.

PIMH Target Density and Proposal Density

Framing the problem as one of sampling from the collection of realised particles
{

X
(i)
1:T

}N

i=1
results in a proposal density that does not typically have a simple ana-

lytical form. As an alternative approach, Andrieu et al. (2010) frame the problem as

one of sampling from the extended space traversed by all variables generated by the

SMC procedure, i.e. the N candidate values for the particles generated at each time

step and the indices of the particles chosen to propagate at each resampling step.

As we will explain below, this allows a closed form representation of the proposal

density, and thus a tractable acceptance probability.

As PIMH is not used explicitly within this thesis, full technical details of the
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target and proposal densities are omitted, however we do give a brief description of

the steps taken to arrive at these densities, as well as the basic form of the densities

and how they contribute to the resulting MH ratio; for full details, see Andrieu

et al. (2010). To clarify the discussion below, we require a round of notation for the

variables generated in the SMC procedure. Denote the N -vector of state variables

generated at each time point t by X̄t =
(
X̄1

t , . . . , X̄N
t

)
∈ RNdx , and the indices of

those particles chosen during resampling at t by āt =
(
ā1

t , . . . , ā
N
t

)
∈ {1, . . . , N}N .

We further denote the joint density of all variables generated by the SMC procedure

as ψ (x̄1:T , ā1:T−1).

Andrieu et al. (2010) show that, by sampling and storing X̄1:T and ā1:T , one

can subsequently, deterministically, reconstruct a particular particle given its final

index. As a result, subsequent to running the SMC procedure at each MH iteration,

the problem of sampling from the collection of realised particles
{

X
(i)
1:T

}N

i=1
can be

reduced to sampling a final index, j, from the empirical distribution provided by

the final weights. Thus, the proposal density is given by the product

kmh(X̄1:T , ā1:T−1, j) = ψ
(
X̄1:T , ā1:T−1

)
∙ W (j)

T .

The target density is also constructed using the joint density ψ (x̄1:T , ā1:T−1).

To identify this target, we note that, at each MH iteration, given all the variables

generated by the SMC procedure, each of the possible reconstructed particles is

distributed according to the joint smoothing distribution πθ(x1:T |y1:T ). Thus, the

PIMH target density can be constructed as the product of

• the joint density of the variables generated by the SMC procedure, conditioned

upon the union of the chosen particle index j and the values of the variables

in
{
X̄1:T , ā1:T−1

}
that contribute to the realised particle X

(j)
1:T ,

• the density targeted by the SMC procedure, evaluated at the generated state

values in X̄1:T that contribute to X
(j)
1:T , i.e. the joint smoothing density evalu-
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ated at the realised particle, π
(
X

(j)
1:T

∣
∣y1:T

)
,

• the probability of generating the indices in ā1:T−1 that contribute to X(j),

i.e. N−(T−1),

• and the probability of choosing the final particle index j, i.e. N−1.

PIMH Acceptance Ratio

Andrieu et al. (2010) show that, when using the above forms of the target and

proposal densities, the ratio of these quantities is equal to π̂θ(y1:T )/πθ(y1:T ). Thus

the acceptance ratio can be reduced to the simple form

α (x1:T , x∗
1:T ) =

π̂∗
θ(y1:T )

π̂θ(y1:T )
∧ 1,

where π̂θ(y1:T ) is the current estimate of the marginal likelihood and π̂∗
θ(y1:T ) is the

estimate provided by the SMC proposal scheme used to generate X∗
1:T .

The full PIMH procedure is given in Algorithm 5 .

2.4.3 Particle Marginal Metropolis-Hastings (PMMH)

We consider the problem of sampling from the joint posterior

π (x1:T , θ |y1:T ) = πθ (x1:T |y1:T ) π (θ |y1:T ) ,

and we recall the MMH procedure described in Section 2.2.3. Under the assumption

that we can sample from πθ (dx1:T |y1:T ), we use the proposal

kmh (x∗
1:T , θ∗ |x1:T , θ ) = πθ∗ (x∗

1:T |y1:T ) k (θ∗ |θ ) ,
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Data: y1:T , x0.
Parameters: M ,N ,T .
Result: A statistically dependent Markov chain, {x1:T (n)}M

n=0, with limiting
distribution equal to the target smoothing distribution
π (dx1:T |y1:T ).

1. Set n = 0. Using an SMC procedure, generate a particle approximation of
the target distribution,

π̂ (dx1:T ) =
N∑

i=1

W
(i)
T δ

X
(i)
1:T

(dx1:T ) ,

defining π̂ (y1:T ) =
T∏

i=1

N∑

i=1

w
(
X

(i)
1:T

)
.

2. Sample X1:T (0) from π̂ (dx1:T )

3. Set n = n + 1. Using Algorithm 3, generate a particle approximation of the
target distribution,

π̂ (dx1:T ) =
N∑

i=1

W
(i)
T δ

X
(i)
1:T

(dx1:T ) ,

defining π̂∗ (y1:T ) =
T∏

i=1

N∑

i=1

w
(
X

(i)
1:T

)
.

4. Sample a candidate value X∗ from π̂ (dx1:T )

5. Define α (x, x∗) = 1 ∧
π̂∗ (y1:T )

π̂ (y1:T )

6. Set

{
X(n) = X∗, π̂ (y1:T ) = π̂∗ (y1:T ) with probability α
X(n) = X(n − 1) otherwise.

If n = M , stop, else return to Step 3.

Algorithm 5: A Particle Independent Metropolis-Hastings Algorithm

and this leads to the following MH acceptance probability:

α ({x1:T , θ} , {x∗
1:T , θ∗}) = 1 ∧

πθ∗ (y1:T ) π (θ∗)

πθ (y1:T ) π (θ)

k (θ |θ∗ )

k (θ∗ |θ )
, (2.24)

where π (θ) is the marginal target density for θ.
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Andrieu et al. (2010) propose the use of an SMC procedure, which targets the

joint smoothing distribution πθ(x1:T |y1:T ) by sampling from πθ(x1:T , y1:T ), and esti-

mating the normalizing density via the unbiased estimate π̂θ(y1:T ). The fact that

this estimate is unbiased means that the SMC procedure will provide a sample from

the true target density π(x1:T |y1:T ), and not an approximation thereof. This val-

idates the use of the SMC procedure to propose candidate states X∗
1:T within the

MMH procedure.

Framing the sampling problem as before, we have that the density of all variables

generated by the SMC procedure is denoted ψθ(x̄1:T , ā1:T−1). The PMMH procedure

therefore targets, at each iteration, the density that is formed from the product of:

• the joint density ψθ(x̄1:T , ā1:T−1), conditioned upon the union of the chosen

particle index j, the values of the variables in
{
X̄1:T , ā1:T−1

}
that contribute

to the realised particle X
(j)
1:T , and the value of θ,

• the density targeted by the SMC procedure, evaluated at the generated state

values in X̄1:T that contribute to X
(j)
1:T , i.e. πθ

(
X

(j)
1:T , y1:T

)/
π̂θ(y1:T ),

• the marginal target density for θ, i.e. π(θ),

• the probability of generating the indices in ā1:T−1 that contribute to X(j),

i.e. N−(T−1),

• and the probability of choosing the final particle index j, i.e. N−1.

In practice, the MH acceptance probability in (2.24) is calculated at each iteration,

using the unbiased estimates of the marginal likelihood, π̂θ(y1:T ).

We finally remark that, as with the PIMH procedure, the estimates of the

marginal likelihoods can be calculated recursively during the SMC update scheme,

and thus the filtering weights need not be stored. The full procedure for PMMH is

given in Algorithm 6.
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Data: y1:T , x0.
Parameters: M ,N ,T .
Result: Two statistically dependent Markov chains, {x1:T (n)}M

n=0, with
limiting distribution equal to the target smoothing distribution
πθ (dx1:T |y1:T ), and {θ(n)}M

n=0.

1. Set n = 0. Generate θ(0) according to some prior p(θ) and, using an SMC
procedure, generate a particle approximation of the target distribution,

π̂θ(0) (dx1:T ) =
N∑

i=1

W
(i)
T δ

X
(i)
1:T

(dx1:T ) ,

defining π̂θ(0) (y1:T ) =
T∏

i=1

N∑

i=1

w
(
x

(i)
1:T

)
.

2. Sample x1:T (0) from π̂θ(0) (dx1:T )

3. Set n = n + 1. Set θ = θ(n − 1) and generate a candidate value θ∗ according
to a proposal kernel K (θ, dθ∗)

4. Using Algorithm 3, generate a particle approximation of the target
distribution,

π̂θ∗ (dx1:T ) =
N∑

i=1

W
(i)
T δ

X
(i)
1:T

(dx1:T ) ,

defining π̂θ∗ (y1:T ) =
T∏

i=1

N∑

i=1

w
(
x

(i)
1:T

)
.

5. Sample a candidate value x∗
1:T from π̂θ∗ (dx1:T )

6. Calculate α (x, x∗) according to (2.24), estimating the marginal likelihoods
under θ and θ∗ by π̂θ (y1:T ) and π̂θ∗ (y1:T ) respectively.

7. Set{
θ(n) = θ∗, x(n) = x∗, π̂θ(n) (y1:t) = π̂θ∗ (y1:T ) w.p. α
θ(n) = θ(n − 1), x(n) = x(n − 1), π̂θ(n) (y1:t) = π̂θ(n−1) (y1:T ) otherwise

If n = M stop, else return to Step 3

Algorithm 6: A Particle Marginal Metropolis-Hastings Algorithm

2.5 Approximate Bayesian Computation

This section provides a brief introduction to approximate Bayesian computation

(ABC) methods. Bayesian inference provides a useful approach to performing in-
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ference in a wide range of scenarios. When performing Bayesian inference in a

computational setting, however, the explicit evaluation of the likelihood can prove

problematic for many real world problems. In many areas of interest, such as the

study of population genetics (e.g. Tavaré et al., 1997; Pritchard et al., 1999) or in

financial applications (e.g. Jasra et al., 2010), the likelihood can neither be evaluated

exactly through a closed form expression, nor replaced by an unbiased estimate. In

such scenarios, ABC can provide an alternative method for performing inference

that avoids the evaluation of troublesome likelihood functions.

In Chapters 3 and 4, we introduce the application of ABC methods to the dy-

namic problems of filtering and smoothing, respectively. In particular, we will use

ABC to introduce, in Chapter 3, an approximation of the generalised SSM (1.1)-

(1.2). We provide here an introduction to ABC methods in the context of their

application to static models.

2.5.1 ABC for Static Models

Suppose we have a set of data y ∈ Rdy , assumed to be drawn from the parametric

distribution with likelihood g (y |θ ), and that our aim is to perform simulation-based

Bayesian inference on the unknown parameter vector θ ∈ Θ, to which we assign a

prior π(θ). If the likelihood is intractable, then a standard Bayesian approach to

simulating from the posterior distribution of interest is impossible. Several methods

have been proposed for circumventing the evaluation of the likelihood, in an effort

to complete a Bayesian-type approach to problems of this nature, and these have

led to formalisation in the form of approximate Bayesian computation (ABC). A

recent review of ABC methods is provided by Marin et al. (2011).

The first proposed methods for circumventing the evaluation of the likelihood

were introduced in the genetics literature by Tavaré et al. (1997) and Pritchard

et al. (1999). These papers propose rejection-based procedures that are similar

to each other, motivated by the lack of a tractable relationship between a set of
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population parameters and their observed DNA data. In both cases, and in the

current notation, the procedures iteratively execute the following steps: candidate

parameters are proposed according to the prior π(θ); a set of artificial data, or

pseudo-data, u ∈ Rdy is simulated according to the likelihood u ∼ g(∙|θ); and the

candidate parameter is accepted if the pseudo-data u are, in some sense, close to

the observed data. We omit precise details of these approaches, noting that they

are simply implementations of a rejection-sampling procedure that targets the ABC

approximation of the posterior of interest, which we define below.

Under the above setup, we wish to perform simulation-based inference with re-

spect to the posterior

π(θ|y) ∝ g(y|θ)π(θ),

where π(θ) is a prior on the parameter vector. The ABC approach introduces an

auxiliary RV U , referred to as the pseudo-data, which is used to define an approxi-

mation of the likelihood that can subsequently be used to approximate the posterior

distribution. We can then perform simulation-based inference with respect to this

ABC approximation of the posterior, even when the likelihood is intractable.

The ABC approximation of the likelihood is given by

gε(y|θ) =

∫
g(u|θ)Gε(u, y)du, (2.25)

where Gε(u, y) is the ABC kernel, which measures the proximity of the pseudo-data

u to the observed data y, through the use of some suitably defined distance metric

ρ(s(u), s(y)), where s(∙) is a suitable summary statistic. The ABC kernel returns a

value based upon the magnitude of this distance, relative to some pre-assigned ABC

tolerance parameter ε. The accuracy of the ABC approximation of the likelihood is

controlled by the specification of ρ, s, and ε, and this is discussed in further detail

in Section 2.5.2.

We immediately note that, even if the exact likelihood is intractable, the ABC
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approximation of the likelihood (2.25) may be estimated by simulating u ∼ g(∙|θ)

and evaluating the ABC kernel Gε(u, y). Indeed, it is noted here that an alternative

estimator for the ABC approximation of the likelihood, with potentially improved

accuracy, can be constructed by generating J independent pseudo-data u1, . . . , uJ ∼

g(∙|θ):

π̂ε,J(y|θ) =
1

J

J∑

j=1

Gε(uj , y). (2.26)

Throughout this thesis, we will refer to this as the multiple pseudo-data ABC

(MPDABC) approach, and we note that it has been used by several authors, in-

cluding Marjoram et al. (2003) who address the problem of targeting the ABC

approximation of the posterior using an MH procedure.

The ABC approximation of the likelihood can be used to define the following

ABC approximation of the posterior of interest:

πε (θ |y ) =

∫
πε(θ, u |y )du, (2.27)

where the integrand is an auxiliary joint density, defined as

πε (θ, u |y ) =
π(θ)g (u |θ ) Gε (u, y)

∫
π(θ)g (u |θ ) Gε (u, y) dudθ

. (2.28)

A common choice of ABC kernel, and the one that shall be adopted for the

remainder of this thesis, is the indicator function

Gε (u, y) = IAε,y (u) , (2.29)

where the set Aε,y is defined as

Aε,y = {u : ρ (s (u) , s (y)) < ε} .
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2.5.2 Controlling the accuracy of the ABC approximation

As highlighted by Blum et al. (2012), the ABC approximations of the likelihood

(2.25), and of the posterior (2.27) involve two component approximations: the ap-

proximation of the data and pseudo-data through the use of a summary statistic;

and the subsequent approximation of the likelihood through the ABC kernel, given

this choice of summary statistic. The choice of summary statistic s clearly deter-

mines the accuracy of the first approximation, whilst ρ and ε determine the accuracy

of the second.

The problem of finding a distance metric that offers the greatest accuracy in

the ABC approximation is often model-specific, and so we do not remark further

on the effect of different choices of ρ. We simply note that common choices are the

Euclidean Lp-distances, i.e.

ρ(s(u), s(y)) =

(
ds∑

i=1

|si(u) − si(y)|p
)1/p

,

for p ≥ 1, and where si(∙) is the ith dimension of the ds-dimensional summary

statistic.

In contrast, the options available for the specification of s and ε provide the

analyst with some control over the accuracy of the ABC approximation in general.

However, improvements in accuracy often come at the cost of an increase in the

computational expense of procedures that target the ABC approximation.

We first describe the choices of ε and s that improve the accuracy of the ap-

proximation. The chapter then concludes with some remarks on the implications of

these preferred choices on the computational efficiency of performing inference with

respect to the ABC approximation of a model.
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Favourable Specifications

With regards to the approximation of the likelihood through the ABC kernel, the

effect of the ABC tolerance is intuitive: smaller values of ε will result in a ‘tighter’

kernel Gε, and a more accurate approximation of the likelihood function.

Central to the suitability of a chosen summary statistic is its sufficiency; a suffi-

cient statistic will provide maximum information about the observed data and the

pseudo-data to the kernel approximation of the likelihood, leading to a more accu-

rate measurement of the fit of the pseudo-data to the observed data, and a more

accurate ABC approximation of the likelihood.

Computational Constraints

As mentioned above, the accuracy of the ABC approximation will improve as ε

shrinks. As ε decreases, however, so does the chance of the generated pseudo-data

lying within the required Lp-distance ε of the observed data. This leads to an

increase in the computational budget required for a given level of accuracy, and a

trade-off between accuracy and computational expense is introduced for the choice

of ε.

It was noted above that the idealised specification for the ABC approximation of

the likelihood would involve a sufficient summary statistic. In practice however, as

noted by Marin et al. (2011), non-trivial sufficient statistics are rare, and an increase

in the amount of information provided by summary statistics typically translates

to an increase in the dimension ds. With increased dimension, however, comes an

increase in the computational expense incurred by the comparison of these statistics.

Furthermore, in some situations, one might expect the Lp-distance between the

pseudo-data and observed data to increase with the dimension. This would, as

above, decrease the chance of the pseudo-data being located within the required

Lp-distance ε of the observed data. Thus, assuming one is performing simulation
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based inference on the unknown parameter θ, an increase in ds could result in an

increase in the number of candidate parameters required, and thus a further increase

in the computational budget required, in order to perform inference to a given level

of accuracy.

For the choice of summary statistic, then, there is also a tradeoff between the

level of information provided and the computational expense incurred. There is

an expanding literature on the subject of dimension reduction methods for ABC

summary statistics, whose aim is to minimize the dimension of the statistics whilst

maximizing the information that they relay. Further details can be found in the

recent review by Blum et al. (2012) and the references within.
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Chapter 3

Filtering via Approximate Bayesian

Computation

3.1 Introduction

Particle filtering for the exact SSM (1.1)-(1.2) is impossible in the case where the

observation density gt (yt |xt ) is intractable. Particle filtering also suffers from diffi-

culties in high dimensions, even when the likelihood may be computed exactly, as

the number of particles required to avoid significant weight degeneracy can grow

exponentially in the dimension of the hidden state (Bengtsson et al., 2008; Bickel

et al., 2008; Snyder et al., 2008). This has the effect of significantly increasing the

computational budget required to accurately perform particle filtering.

In this chapter, we consider the ABC approximation of the SSM and we show that

this approximation may be targeted successfully using particle filtering methods; see

also the joint work, Jasra et al. (2010). We will see that particle filtering for an ABC

target (hereafter referred to as ABC particle filtering) addresses the problems of both

likelihood intractability and high-dimensional states, at the cost of introducing a

deterministic bias in the resulting filtering estimates.

In Section 3.2, we formally introduce the ABC approximation of the generalised

SSM. In Section 3.3, we present a theoretical exploration of the deterministic bias
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that is induced in the filtered expectation of a bounded test function, where the

expectation is taken with respect to the ABC approximation of the filtering density.

This theoretical analysis motivates the implementation of ABC particle filtering

and details of the ABC particle filtering procedure are provided in Section 3.4. The

performance of ABC particle filtering is then assessed for a linear Gaussian SSM in

Section 3.5 and for a common nonlinear SSM from the SMC literature in Section

3.6.

3.2 ABC for State Space Models

Recall that the SSM is defined through the specification of the transition density

qt(xt|xt−1) and the observation density gt(yt|xt), as described in Section 1.2. In

applying ABC to the SSM, a similar approach to that used in Section 2.5 is followed.

At each time step t, we assume that we have access to a dy-dimensional pseudo-

datum, ut ∈ Rdy . For the purposes of this thesis, it will suffice to assume that

ut ∼ gt(∙|xt), however it should be noted that this assumption may be relaxed in

certain scenarios; this is discussed further in Chapter 6. Furthermore, we assume

throughout this chapter that any parameter vector θ that may be associated with

the SSM is known, and thus suppressed from the notation.

The likelihood at time t is approximated by the following marginalisation with

respect to the pseudo-datum ut:

gε
t(yt|xt) =

∫
gε

t(yt, ut|xt)dut =

∫
Gε

t(ut, yt)gt(ut|xt)dut, (3.1)

where, here and for the remainder of this thesis, Gε
t(ut, yt) is the ABC kernel at time

t, whose value is determined by the distance metric ρ(s(ut), s(yt)), with summary

statistic s, and the ABC tolerance parameter ε.

Using this approximation of the likelihood, it is possible to construct ABC ap-

proximations of both the joint smoothing density and the filtering density. Recall
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the form of the joint smoothing density (1.7), obtained from the exact SSM; the

ABC approximation of the joint smoothing density, also referred to as the ABC

smoothing density or ABC smoother, is defined here as

πε (x1:t | y1:t ) =

∫
πε (x1:t, u1:t | y1:t ) du1:t (3.2)

with the auxiliary joint distribution

πε (x1:t, u1:t | y1:t ) =

∏t
n=1 Gε

n (un, yn) gn (un |xn ) qn (xn |xn−1 )
∫
Rt(dx+dy)

∏t
n=1 Gε

n (un, yn) gn (un |xn ) qn (xn |xn−1 ) dx1:tdu1:t

.

(3.3)

From this approximation of the joint smoothing density, the ABC approximation

of the filtering density at time t, also referred to as the ABC filtering density or ABC

filter, is immediately available as the marginalisation of (3.2) with respect to the

state sequence up to time t − 1:

πε (xt | y1:t ) =

∫
πε (x1:t | y1:t ) dx1:t−1. (3.4)

It is remarked that the above ABC approximations of the filtering and joint

smoothing densities can be considered to specify an SSM of their own, in which the

dynamics of the hidden state are unchanged, and the RV of the observed data at

time t, Yt, retains the same dependence structure with respect to Y1:t−1 and X1:t

(Dean et al., 2010). We refer to the SSM specified by the ABC filtering and joint

smoothing densities as the ABC approximation of the SSM, and the original SSM

of interest may be referred to as the exact SSM. The fact that the ABC approxi-

mation of the SSM maintains the probabilistic structure of the exact SSM suggests

that inference with respect to the ABC filtering and ABC joint smoothing densities

may be achieved through the computational procedures designed for inference with

respect to the corresponding exact densities. Furthermore, the unchanged proba-

bilistic structure also facilitates the application of theoretical results pertaining to
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these existing computational methods. In Section 3.3, we present an analysis of the

theoretical behaviour of the ABC approximation; we first detail the ABC setup that

will be used for the majority of this thesis.

We consider the ABC approximations above, with the ABC kernel Gε
t(ut, yt)

specified as the indicator function on the dy-dimensional ball of radius ε, centred at

yt, i.e.

Gε
t (ut, yt) = IAε,yt

(ut) . (3.5)

with Aε,yt = {u : |yt − u| < ε}. Note that this specification also implicitly speci-

fies the use of the identity statistic s(ut) = ut and the L1-distance for the metric

ρ(s(ut), s(yt)) =
∑dy

j=1 |ut,j − yt,j |. It is under this specification that the theoretical

analysis of the behaviour of the ABC approximation is carried out in Sections 3.3

and 4.4.

3.3 Exploring the Theoretical Bias of ABC Filtering

In this section, we present a brief theoretical analysis of the bias induced by the

ABC approximation of the joint smoothing density. We combine this analysis with

existing results concerning the behaviour of the SMC estimate of the exact joint

smoothing distribution in order to analyse the behaviour of the SMC estimate of

the ABC filtered expectation

Eπε
t
[ϕ(X)] =

∫
ϕ(xt)π

ε(xt|y1:t)dxt,

for some bounded measurable function ϕ : Rdx → Rdx .

The main theoretical results provided in this section establish that the bias of

the ABC filtered expectation of a bounded test function is bounded above, and that

this bias diminishes to 0+ as the ABC tolerance parameter ε ↘ 0. The results also

address the behaviour of the upper bound of the bias with respect to time, and

are presented in Propositions 3.3.1 and 3.3.2. These results, which consider the be-
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haviour of the bias under moderate and restrictive assumptions, respectively, were

proven by Dr. Jasra and Dr. S.S. Singh; the proofs can be found in our aforemen-

tioned paper (Jasra et al., 2010).

Define the bias at time t as

Bf (t, ε) :=

∣
∣
∣
∣

∫
ϕ (xt) [π(xt |y1:t ) − πε(xt |y1:t )] dxt

∣
∣
∣
∣ . (3.6)

Before stating the result, we detail the adopted assumptions.

(A1) Boundedness of the Likelihood.

For any t ≥ 1, there exists a ḡt such that for any x ∈ Rdx we have

‖gt ( ∙ | x)‖∞ := sup
u∈Rdy

|gt (u| x)| ≤ ḡt < +∞

(A2) Lipschitz Continuity of the Likelihood.

For any t ≥ 1, there exists a constant, Lt ∈ (0,∞) such that for any x ∈ Rdx ,

y, ỹ ∈ Rdy ,

|gt(y| x) − gt( ỹ| x)| ≤ Lt|y − ỹ|

where | ∙ | is understood to be an L1−norm.

(A3) Statistic and Metric.

The set Aε,y is:

Aε,y = {u : |y − u| < ε}.

(A4) Strong Mixing Conditions

There exist probability densities κ1 on Rdx and κ2 on Rdy , as well as constants
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0 < λ1, λ2 < ∞ such that for all (x, x′) ∈ R2dx , y ∈ Rdy ,

1

λ1

κ1(x
′) ≤ qt(x

′|x) ≤ λ1 κ1(x
′),

1

λ2

κ2(y) ≤ gt(y|x) ≤ λ2 κ2(y).

for all t ≥ 1, with

0 < κ2 < κ2(y) < κ2 ∀y ∈ Rdy .

In general, (A1-A3) are satisfied when the latent and observed processes evolve

on compact subsets; it is these assumptions that are adopted for Proposition 3.3.1,

which shows the validility of using the ABC approximation of the filter. (A4) is

a particularly restrictive assumption, and will not be satisfied by many HMMs;

it is under this further assumption, along with (A1-A3), that Proposition 3.3.2 is

presented. This latter result indicates the potential for the ABC filter to have a

controllable bias.

Proposition 3.3.1. Assume (A1-A3). Then for any t ≥ 2, y1:t, there exists a

Ct (y1:t) such that for any ϕ ∈ Bb

(
Rdx
)
, ε > 0,

Bf (t, ε) ≤ εCt (y1:t) ‖ϕ‖∞ (3.7)

where

Ct (y1:t) =
1

π (yt |y1:t−1 )
(2Lt + ḡtCt−1 (y1:t−1)) , t ≥ 2,

C1 (y1) =
2L1

π (y1)
.

The dependence on ε of the upper bound on the ABC filtering bias shows that as

ε tends to zero, an expectation with respect to the ABC approximation of the filter-

ing density tends to the expectation with respect to the true filtering density, i.e. the



Chapter 3. Filtering via Approximate Bayesian Computation 87

approximation disappears as ε ↘ 0. However, since Ct will typically grow exponen-

tially with t, the ABC bias should be controlled through the use of a decreasing

sequence of tolerances {εt}t≥1. Furthermore, the appearance of the marginal likeli-

hood of the data on the denominator of Ct (y1:t) means that the error could explode

at any particular point for which the observed data are particularly unlikely.

We now adopt (A4) and state Proposition 3.3.2.

Proposition 3.3.2. Assume (A1-A4). Assume also that Lt ≤ L < ∞ for t ≥ 1

and Lt as in (A2) Then for any t ≥ 1, y1:t, there exists a C < ∞ such that for any

ϕ ∈ Bb

(
Rdx
)
, ε > 0,

Bf (t, ε) ≤ εC ‖ϕ‖∞ . (3.8)

This result shows that, under the restrictive assumption (A4), the ABC bias

does not accumulate over time.

For SMC methods, it is common to examine the accuracy of the resulting esti-

mators in terms of their Lp-error. For the SMC estimate of the filtered expectation,

this is defined as

E

[∣∣
∣
∣

∫
ϕ(xt) [π(xt|y1:t) − π̂(xt|y1:t)] dxt

∣
∣
∣
∣

p]1/p

,

for p ∈ N, where the expectation is taken with respect to the joint distribution

of all variables generated by the SMC procedure. Del Moral (2004) considers the

behaviour of this Lp-error under certain regularity conditions, and shows that, for

bounded test functions ϕ, this error is bounded above by the term

Bp√
N

‖ϕ‖∞ ,

where Bp is dependent upon p only.

When considering the SMC approximation of the ABC filter, a similar result will
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hold; in this case, we acknowledge the possible dependence of Bp on ε, i.e.

E

[∣∣
∣
∣

∫
ϕ(xt) [πε(xt|y1:t) − π̂ε(xt|y1:t)] dxt

∣
∣
∣
∣

p]1/p

≤
Bp(ε)√

N
‖ϕ‖∞ ,

We can combine this result with the deterministic ABC bias in (3.7) to give a

bound for the Lp-error between the SMC estimate of the ABC filtered expectation

Eπε
t
[ϕ(X)] and the exact filtered expectation:

E

[∣∣
∣
∣

∫
ϕ(xt) [π(xt|y1:t) − π̂ε(xt|y1:t)] dxt

∣
∣
∣
∣

p]1/p

≤

(
Bp(ε)√

N
+ εCt (y1:t)

)

‖ϕ‖∞ , (3.9)

which holds under the assumptions (A1-A3), and under the regularity assumptions

in Del Moral (2004). These results indicate that use of a particle filtering procedure

that targets the ABC approximation of the filtered expectation of the hidden state

may perform adequately, with a recognisable bias. In the next section, we provide

details of such a procedure, providing in particular a sensible method for determining

the sequence of ABC tolerances {εt}t≥0.

3.4 Incorporating ABC into SMC Filtering Procedures

A method is proposed here for performing ABC particle filtering, where the approx-

imation is specified by the indicator function ABC kernel, as given in (3.5).

The particle filter for targeting this ABC approximation of the SSM is a straight-

forward alteration of the particle filter detailed in Algorithm 3: at iteration t, for

each particle i = 1, . . . , N , one samples a single pseudo-datum u
(i)
t prior to calcu-

lating the importance weight, and then allocates to that particle the incremental

weight given by the evaluated indicator function IAε,yt

(
u

(i)
t

)
. The basic procedure

for performing ABC particle filtering is detailed in Algorithm 7.

A generalisation of the above ABC kernel will also be considered. Recall the

MPDABC kernel (2.26), defined previously in the context of static models. We
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Data: y1:T .
Parameters: x0, N , ε.
Result: The SMC estimates of Eπε

t
[f(Xt)], for t = 1, . . . , T .

1. Set t = 1. For i = 1, . . . , N , sample X
(i)
t

∣
∣x0 and U

(i)
t

∣
∣X(i)

t , according to the
proposal and observation densities, respectively, and calculate the filtering
weights

W
(i)
t ∝

Gε
t

(
U

(i)
t , yt

)
qt

(
X

(i)
t |x0

)

kt

(
X

(i)
t |x0

) ,
N∑

i=1

W
(i)
t = 1.

2. If ÊSS

({
W

(i)
t

}N

i=1

)

< N
2
, then, for i = 1, . . . , N , resample X

(i)
t

independently from the discrete distribution

π̂ (dxt) =
N∑

i=1

W
(i)
t δ

X
(i)
1:t

(dxt)

and set W
(i)
t = 1

N
.

3. Set t = t + 1. For i = 1, . . . , N , sample X
(i)
t

∣
∣X(i)

t−1 and U
(i)
t

∣
∣X(i)

t according to
the proposal and observation densities, respectively, and calculate the
filtering weights

W
(i)
t ∝ W

(i)
t−1 ∙

Gε
t

(
U

(i)
t , yt

)
qt

(
X

(i)
t

∣
∣
∣X(i)

t−1

)

kt

(
X

(i)
t

∣
∣
∣X(i)

t−1

) ,
N∑

i=1

W
(i)
t = 1.

4. Calculate the particle filtering estimate f̂N
πt

(Xt) according to (2.14).

If t = T , stop; otherwise, return to Step 2.

Algorithm 7: An SMC Algorithm for ABC Filtering

update the notation and re-define the MPDABC kernel as

Gε
t (ut, yt) =

1

J

J∑

j=1

IAε,yt
(ut,j) , (3.10)

for J ≥ 1 where ut = {ut,1, . . . , ut,J}. This choice of ABC kernel is motivated by the

fact that, as J → ∞, one recovers the integrated likelihood over the dy-dimensional
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ball Aε,yt :

1

J

J∑

j=1

IAε,yt
(ut,j) →

∫

Aε,yt

gt(ut|xt)dut.

We refer to ABC particle filtering procedures that employ the ABC kernel (3.10) as

MPDABC particle filters and henceforth use ‘ABC particle filters’ to describe those

procedures that use the single indicator function (3.5).

MPDABC particle filtering is implemented in a similar fashion to ABC particle

filtering. At each time step, one simulates J pseudo-data {ut,1, . . . , ut,J} prior to

calculation of the importance weights, then replaces the likelihood in the incremental

weight with the evaluated kernel Gε
t (ut, yt) (3.10). Such a filtering procedure mimics

a ‘marginal’ particle filtering procedure that targets the ABC approximation of the

filtering distribution with the pseudo-data integrated out (3.4).

It is expected that the use of the MPDABC kernel will result in filtering weights

with reduced variance, due to a Rao-Blackwellisation type argument (e.g. Casella

and Robert, 1996), reducing the SMC error of the resulting estimates. Further, it is

expected that the particles will be less likely to die out when performing MPDABC

filtering, as there will be a smaller probability of each particle being assigned a

zero-valued incremental weight. The estimates resulting from the MPDABC filter-

ing procedure will, however, still be subject to the ABC bias described in Section

3.3. Furthermore, the computational expense of the MPDABC particle filter will be

greater than that of the ABC particle filter; it will be of interest to observe, in prac-

tice, whether any significant gains in accuracy can be observed whilst maintaining

a reasonable computational budget.

3.4.1 Weight Degeneracy for ABC Filtering

As a result of using the ABC kernels in (3.5) and (3.10), the incremental weights

at any time step of the ABC particle filter in Algorithm 7 may be evaluated at 0.

Where the particles are allocated a zero-valued weight, the particle may be said to
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have ‘died out’; similarly, one can talk about particles with positive weight being

‘alive’ in this context. SMC algorithms in which the particles can die out may be

subjected to a specialized theoretical analysis, however this is not pursued in this

thesis; for further details, see Del Moral (2004).

As described in Section 2.3.1, the exact particle filter suffers, to an extent, from

the weight degeneracy phenomenon that occurs, in part, due to the recursive nature

of the importance weights and the compounding of small and large weights for

particles in areas of low and high probability density, respectively.

Consider the ABC particle filter that uses the indicator ABC kernel (3.5). At

any particular time step t, even without resampling at t− 1, all of the particles that

are alive will have equal weighting, as all of their incremental weights since the last

resampling move will have been 1. Thus, the weights will not experience the same

compounding effect that is evident in the exact particle filter, and will therefore not

be as prone to this type of weight degeneracy issue.

The ABC filter will be prone to an alternative type of weight degeneracy. Since

particles can die out based on their incremental weights alone, it is possible for all

particles to die out at a particular time step, even if they have been resampled at

the previous time step. This is referred to here as a collapse of the algorithm and its

occurrence is dependent on the dynamics of the state and observation processes, at

the particular time at which the collapse occurs, as opposed to an inherent problem

with the propagation of the weights.

In practice, there are a number of ways of protecting against algorithm collapse.

By simply increasing the particle system size, one can reduce the chance of all par-

ticles dying out at a particular time step. Similarly, one can reduce the chance of

obtaining zero-valued incremental weights by increasing the ABC tolerance param-

eter ε. It is also noted that the use of the MPDABC kernel (3.10) will lower the

chance of obtaining zero-valued incremental weights, therefore protecting against

algorithm collapse to an extent. Furthermore, we note that the use of more general
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kernels of the form

Gε
t(u, y) =

1

ε
φ

(
ρ(s(ut), s(yt))

ε

)

,

where φ(∙) is some smooth density kernel, will offer a more robust protection to this

type of degeneracy in the ABC particle filter.

We maintain our ABC setup as previously described, i.e. using the ABC and

MPDABC kernels specified in (3.5) and (3.10), respectively, and we look to reduce

the chance of algorithm collapse through controlling ε.

3.4.2 Adaptively Tuned ABC for SSMs

The number of particles that are kept alive can be increased by increasing ε, however

this has the unwanted effect of increasing the bias of the ABC approximation; we

therefore wish to keep ε as low as possible, whilst keeping the chance of collapse

minimised.

In the implementation of our particle filter, we use a simple adaptive method for

generating a new ABC tolerance at each iteration, choosing εt at time t that encour-

ages the pseudo-data to be assigned an evaluated ABC kernel of 1 for a reasonable

proportion of the particles. At time t = 1 we generate, from the prior and the

likelihood respectively, dummy samples
{

x
(i)
1 , u

(i)
1

}l

i=1
for arbitrary, yet sufficiently

large l and we set ε1 to be the largest distance between y1 and the samples
{

u
(i)
1

}l

i=1
.

Then, for a chosen α ∈ [1, . . . , N ], at time t ≥ 2 we set εt as the α-largest distance

between yt−1 and the samples
{

u
(i)
t−1

}l

i=1
. The number of alive particles at each time

step is now controlled by the parameter α.

3.4.3 Expected Benefits of ABC Particle Filtering

Exact particle filtering cannot be performed when the likelihood is intractable. Even

when the likelihood may be computed exactly, particle filtering can prove difficult

for SSMs defined on high-dimensional spaces, as the number of particles required
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to avoid significant weight degeneracy can grow exponentially in the dimension of

the hidden state (Bengtsson et al., 2008; Bickel et al., 2008; Snyder et al., 2008).

This has the effect of significantly increasing the computational budget required to

accurately perform particle filtering.

ABC particle filtering does not require point-wise evaluation of the likelihood,

and so immediately avoids the problem of likelihood intractability. A recent theoret-

ical result by Beskos et al. (2012) (Proposition 5.2. of that paper) has shown that,

when performing ABC particle filtering under the ABC specification considered here,

the error due to the SMC approximation of the ABC filter can be controlled at a

computational cost of O(Nd), where the number of particles required will increase

sub-exponentially with the dimension. It should be noted that Beskos et al. (2012)

consider particle filtering without resampling, i.e. sequential importance sampling as

defined in Section 2.3.1. The accuracy of the particle filtering estimate, calculated

when using dynamic resampling, can be no worse than the results given in that

paper, as resampling only serves to improve the variance of the importance weights

at the subsequent time step, thus improving the resulting filtering estimate. This

would suggest that, for a given number of particles, the SMC error for the ABC filter

introduced here may be lower than for the exact filter in high dimensions. This can

be attributed to the reduced susceptibility of the ABC particle filter to the SMC

weight degeneracy issue, as discussed in Section 3.4.1. This improvement in SMC

error, however, will be counteracted by the deterministic bias induced in the ABC

approximation of the filtering density.

As mentioned in Section 1.3, alternative filtering methods have been proposed

that also address the problem of likelihood intractability; one such approach is the

convolution particle filter (Campillo and Rossi, 2009). The convolution particle filter

applies the filtering recursions (1.9)-(1.10), using simulation-based kernel estimation

techniques to estimate both the transition density qt(xt|xt−1) in the predictive filter

(1.9) and the likelihood gt(yt|xt) in the update equation (1.10) at each time t. Given
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samples from the filter at t−1, πt−1, one can then obtain samples from the resulting

mixture-of-kernels estimate of πt. We remark first that this approach requires the

user to simulate twice from the transition density, which could be unnecessary and

wasteful. We also remark that, in independent simulation examples performed by

Dr. Jasra, the ABC particle filter that is presented here was observed to significantly

outperform the convolution particle filter. For these reasons, we do not consider the

convolution particle filter further.

A number of alternative methods have recently been proposed to counter the

difficulties faced in high-dimensional filtering. These include the use of an SMC

sampler between particle filtering time steps (Beskos et al., 2012), and the use of a

combination of the ensemble Kalman filter (EnKF) and the particle filter (Lei and

Bickel, 2009).

The approach of Beskos et al. (2012) introduces a sequence of dx+1 intermediary

target distributions
{
π(n)(x1:t|y1:t)

}dx

n=0
, between the joint smoothing distributions

π1:t−1 and π1:t, which are targeted at times t−1 and t of the particle filter. The first

intermediary target density is

π(0)(x1:t|y1:t) = qt(xt|xt−1)π(x1:t−1|y1:t−1),

i.e. one extends the joint smoothing distribution π1:t−1 to the state space on which

π1:t is defined, using only the transition density. Each successive intermediary target

density is then defined as the product of the previous intermediary target and a

tempered likelihood term:

π(n)(x1:t|y1:t) = [gt(yt|xt)]
φ( n

dx
) π(0)(x1:t|y1:t) 1 ≤ n ≤ dx,

for some annealing function φ(∙) that satisfies φ(1) = 1. Note that this condition

on φ(∙) results in the final intermediary target being equal to the required joint

smoothing density at t. This tempered annealing approach reduces the variability
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of the incremental weights in the particle filter, and results in a more accurate SMC

approximation of the joint smoothing distribution at each time step, and thus a

more accurate filtered estimate.

The approach of Lei and Bickel (2009) takes advantage of the EnKF’s ability to

perform filtering on smaller subsets of the state whilst retaining information about

the ensemble, and the particle filter’s ability to adapt to nonlinear, non-Gaussian

SSMs. It is noted that, whilst not investigated in this thesis, filtering via ABC has

the potential to offer a complementary technique to the EnKF (see, e.g. Nott et al.,

2012), as well as a competing one.

We now move to two examples, in order to evaluate the accuracy and algo-

rithmic performance of the particle filter and its variants when targeting the ABC

approximations of two common SSMs from the SMC literature.

3.5 Toy Example: A Linear Gaussian SSM

We consider the linear Gaussian SSM, with dx = dy = d:

Xt = AXt−1 + Vt, t ≥ 1, (3.11)

Yt = BXt + Zt, t ≥ 1, (3.12)

with

Vt, Zt ∼ N
(
0, σ2Id

)
(i.i.d.) and Vt ⊥⊥ Zt t ≥ 1

A = B = Id, the d-dimensional identity matrix,

X0 = 0d, a d-length vector with all elements equal to 0.

With this example, the aim will be to demonstrate the accuracy of particle

filtering when applied to the both the linear Gaussian SSM (3.11)-(3.12) and its

ABC approximation, and we will be interested in the estimation of the filtered state
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at the first T = 600 time steps. Denote briefly the estimate of the filtered state at

time t by x̂t. Since this is a linear Gaussian SSM, the true filtered state is available

via the Kalman filter (Kalman, 1960). The accuracy of the SMC procedures will

therefore be measured in terms of the accuracy of the first moment estimates that

they generate, in comparison with the first moment estimate provided by the Kalman

filter. The deterioration of estimative accuracy as the dimension d increases, as well

as the improvement in accuracy as N increases will be demonstrated for the exact

particle filter. Of particular interest, however, will be how the accuracy of the ABC

particle filter will be affected by these two control parameters.

Particle filtering was performed for sample sizes N ∈ {100, 400, 900, 1600, 2500},

for the SSM with dimension d ∈ {1, 2, 5, 10}. The initial state x0 and variance σ2

were treated as known throughout the numerical study, and results were obtained

for σ2 ∈ {0.1, 1.0, 5.0}.

To ensure repeatability, each procedure was implemented 10 times, with a dif-

ferent seed for the random number generator being set at the beginning of each

execution. All of the results reported below were noted as being consistent over all

repeated implementations. Finally, all simulations were executed using C++ on a

CPU with a 2.00 GHz processor.

3.5.1 Analysis and Results

To summarise the performance of each of the particle filters, L1-errors were used.

The L1-error, attributable to the estimate x̂t of the true filtered state Eπt [Xt] ∈ Rd,

is defined as
d∑

i=1

|x̂t,i − Eπt [Xt,i]| .

It is clear that an increase in dimension will result in an increase in L1-error that is

not necessarily attributable to deterioration of the performance of the particle filter-

ing procedure. In order to meaningfully compare the performance of the procedures
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for targeting state spaces of different dimensions, the errors were therefore adjusted

to account for this. Define the dimension-adjusted L1-error at time t as

1

d

d∑

i=1

|x̂t,i − Eπt [Xt,i]| .

These will henceforth be referred to as the filtering errors, and they will often be

described with reference to the particular procedure that produced the corresponding

estimates, e.g. we may refer to both the ABC filtering errors and the exact filtering

errors.

The exact filtering errors and the ABC filtering errors were calculated, using the

Kalman filter to evaluate the true filtered state. Plots of these errors are shown

in Figure 3.1 for the case where σ2 = 1, with the rows corresponding to different

dimensions of the SSM (with d increasing from top to bottom) and the columns

corresponding to different values used for the particle system size N (with N in-

creasing from left to right). In each subplot, the black line is the error sequence for

the estimates obtained from the exact particle filter, whereas the red line is the error

sequence for the ABC particle filter. The filtering errors obtained using d ∈ {1, 2}

are significantly smaller than those for d ∈ {5, 10}, and as a result, the scale of the

error axes in the different rows of Figure 3.1 were chosen for the sake of clarity.

For all dimensions and particle system sizes considered, the filtering errors were

observed to be significantly lower when targeting the exact SSM, than when using

the ABC approximation. From the errors obtained using the exact particle filter, the

deterioration in performance for increasing state space dimension can be observed

clearly in Figure 3.1; the effect of particle system size on the accuracy of the exact

particle filter is not obvious from this figure, although the expected improvement in

accuracy is discernable when comparing the first and last columns (corresponding

to N = 100 and N = 2500, respectively). This latter point is verified further below.

Staying with Figure 3.1, we can make some first remarks on the observed accu-
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Figure 3.1: Filtering errors corresponding to the exact and ABC particle filters. The
dimension-adjusted L1-errors are shown for the exact particle filtering (black) and
ABC particle filtering (red) estimates of the filtered state in the linear Gaussian
SSM (3.11)-(3.12) with σ2 = 1.

racy of the ABC particle filter. Firstly, it is notable that, although the error observed

under the ABC approximation is more volatile than the error for the exact particle

filter, it appears stable with respect to the time parameter. This is an empirical

verification of Proposition 3.3.2. It can also be seen in Figure 3.1 that the ABC

filtering error increases as the dimension d of the SSM increases. From these results,

it appears that the size of the particle system, N , has no effect on the accuracy of

the ABC particle filter; this is explored in further detail below.

Figure 3.2 displays the histograms produced by all of the exact filtering errors

observed under each parameter pairing {N, d}; each histogram displays the errors
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Figure 3.2: Histograms illustrating the skewness in the distribution of the exact
filtering errors, obtained from applying exact particle filtering to the linear Gaussian
SSM (3.11)-(3.12) with σ2 = 1. The errors at each time point t = 1, . . . , T , from
all 10 independent implementations were included. The median filtering errors are
marked by the red vertical lines.

observed for all t ∈ {1, . . . , T} and across all independent implementations of the

exact particle filter for a given {N, d}. These histograms indicate that the distri-

butions of the filtering errors are significantly skewed for low values of d. This was

observed for both the exact and ABC filtering errors, and across all values of the

noise parameter σ2 ∈ {0.1, 1, 5}.

In order to gain more insight into the behaviour of these errors, we therefore

consider the median of the filtering errors resulting from each procedure over the

entire period [0, T ]. The median filtering errors for the estimated first moment of

the state in the SSM and its ABC approximation are presented in Tables 3.1 and
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N=100 N=400 N=900 N=1600 N=2500

d = 1 0.0754 0.0336 0.0248 0.0177 0.0145

d = 2 0.1077 0.0590 0.0368 0.0280 0.0218

d = 5 0.3125 0.1623 0.1078 0.0803 0.0646

d = 10 0.7038 0.4703 0.3528 0.2860 0.2590

Table 3.1: Median dimension-adjusted L1-errors observed over the period [0, T ] for
the estimate of the filtered state in the linear, Gaussian SSM (3.11)-(3.12), averaged
over 10 implementations of the exact particle filter.

N=100 N=400 N=900 N=1600 N=2500

d = 1 0.5007 0.4982 0.4722 0.4883 0.4770

d = 2 0.8864 0.9242 0.9266 0.9312 0.9264

d = 5 1.9369 1.7823 1.9341 1.9568 1.9762

d = 10 2.7313 2.5762 2.4918 2.4104 2.3565

Table 3.2: Median dimension-adjusted L1-errors observed over the period [0, T ] for
the estimate of the filtered state in the linear, Gaussian SSM (3.11)-(3.12), averaged
over 10 implementations of the ABC particle filter.

3.2, respectively, and displayed in Figures 3.3a and 3.3b, respectively.

Using the median filtering errors, it is simpler to observe the effect of the particle

system size and dimension of the state on the performance of the exact particle filter.

As expected, it can be seen in Table 3.1 that the errors decrease as N increases and,

independently, as d decreases. This is further demonstrated in Figure 3.3a for noise

parameter σ2 = 1, and was found to hold for σ2 = 0.1 and σ2 = 5 also.

Table 3.2 and Figure 3.3b confirm that the accuracy of the ABC particle filter

deteriorates as d increases and suggest that, for state spaces of moderate dimension

(d ≤ 5), the accuracy of the ABC particle filtering estimate is largely insensitive to

the choice of N ≥ 100. For d = 10, the ABC particle filter was observed to be less

accurate when using fewer than 900 particles, however an insensitivity to N ≥ 900

was observed in this dimension. Recalling the upper bound on the Lp-error of the

ABC particle filtering estimate, given in (3.9), we remark that this insensitivity to
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Figure 3.3: Median exact (a) and ABC (b) filtering errors for the estimated filtered
state in the linear Gaussian SSM (3.11)-(3.12) with σ2 = 1. The errors for constant
d are connected by the solid lines; from bottom to top, the dimensions used were
d ∈ {1, 2, 5, 10}.

N is the first indication that the ABC bias dominates the Lp-error. This is discussed

further in the next section.

3.6 Example: A Nonlinear SSM

We consider the nonlinear Gaussian SSM, with dx = dy = d:

Xt =
Xt−1

2
+

25Xt−1

1 + X2
t−1

+ 8 cos(1.2t) + Vt, t ≥ 1, (3.13)

Yt =
X2

t

20
+ Zt, t ≥ 1, (3.14)

with

Vt, Zt ∼ N
(
0, σ2Id

)
(i.i.d.) and Vt ⊥⊥ Zt t ≥ 1

X0 = 0d, a d-length vector with all elements equal to 0.

A true filtered state, against which to measure the accuracy of the estimated



3.6 Example: A Nonlinear SSM 102

filtered state, is unavailable for nonlinear SSMs; we shall use the exact particle

filter, executed with N = 10000 particles, as a basis against which to measure the

accuracy of the different procedures. The accuracy of particle filtering via the ABC

approximation of the nonlinear SSM (3.13)-(3.14) is once again of interest and, as

before, the filtering errors will be defined as the dimension-adjusted L1-errors.

Of added interest will also be the algorithmic performance of the ABC particle

filter in comparison to the exact particle filter; this will be measured in terms of the

algorithm’s resampling rate, i.e. the proportion of time steps at which resampling

was triggered by virtue of the estimated ESS (2.16) being less than the user-defined

threshold of Th = N/2. Note that, since resampling is not available at the final

time step, the resampling rate takes the form

1

T − 1

T−1∑

t=1

I

(

ÊSS

({
W

(i)
t

}N

i=1

)

<
N

2

)

.

We will also consider MPDABC particle filtering, using the MPDABC kernel

(3.10), with J = 10 pseudo-data per particle. This is expected to be more compu-

tationally expensive, yet less degenerate than the ABC particle filter, and we recall

that it is of interest to measure any improvements in accuracy that it may be able

to offer, whilst maintaining a reasonable computational expense.

For this example, we will also consider the accuracy of particle filtering via

the Empirical and Theoretical Rejection SMC procedures detailed in Section 2.3.2.

These will be referred to as the ERSMC particle filter and the TRSMC particle filter,

respectively, and the accuracy of the estimates resulting from the application of these

procedures to the nonlinear SSM and its ABC approximation will be studied. Note

that, when using the indicator function as the ABC kernel in the ABC approximation

of the SSM, the ERSMC ABC particle filter and the TRSMC ABC particle filter

are equivalent. Thus, we will not consider the application of the ERSMC particle

filter to the ABC approximation of the SSM.
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The SSM (3.13)-(3.14) was targeted for varying dimensions and values of the

noise parameter: d ∈ {1, 2, 5, 10}, σ2 ∈ {1, 5, 10} and each particle filter was run

using N particles, with N ∈ {100, 400, 900, 1600, 2500}. For the ABC filtering pro-

cedures, the sequence of tolerance parameters {εt}T
t=1 were tuned adaptively, using

the online procedure detailed in Section 3.4, with α = b0.8Nc, i.e. the largest integer

that is less than or equal to 0.8N . To ensure consistency of the results, we repeated

the implementation of each particle filter 10 times and all simulations were executed

using C++ on a CPU with a 2.33 GHz processor.

3.6.1 Observed Algorithm Degeneracy

As described in Section 3.4, the ABC particle filter has the potential to suffer from

algorithmic collapse, due to the potential for the incremental weights at each time

step to be evaluated as 0. Consider the observation equation (3.14). Since the

observations only provide information about the hidden state through a quadratic

term, there is uncertainty about the sign of the state. As a result, the posterior here

is bi-modal, resulting in a higher susceptibility to the complete collapse of the ABC

particle filter

We will again use the method described in Section 3.4.2 for adaptively tuning

our sequence of ABC tolerance parameters, in order to protect against algorithm

collapse. We will see here that, although this approach is effective for the majority

of parameter combinations {N, d, σ2}, for some particularly unfavourable parameter

triplets, the ABC particle filter collapsed regardless, and a suitable estimate was not

provided.

The parameter settings that resulted in complete collapse of the ABC and

MPDABC particle filters are presented in Table 3.3. As can be seen from the

table, small particle system sizes, high-dimensional state spaces and low values for

the noise parameter all appear to contribute to the collapse of these filters when

targeting the ABC approximation of the nonlinear SSM. Furthermore, it is clear
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ABC MPDABC

N d σ2 SMC RSMC SMC ERSMC TRSMC

100 2 1 ✗ ✗

100 5 1 ✗ ✗ ✗

100 10 1 ✗ ✗ ✗ ✗ ✗

100 10 5 ✗ ✗

100 10 10 ✗ ✗

400 10 1 ✗ ✗

900 10 1 ✗ ✗

Table 3.3: Table showing parameter combinations for which the ABC particle filter
collapsed at every independent implementation. For all other model and algorithm
parameter combinations, multiple estimates of the filtered state process were ob-
tained.

that the use of the MPDABC kernel results in a decrease in the susceptibility of the

algorithm to a complete collapse, as was expected.

3.6.2 Analysis and Results

We now present an analysis of the accuracy and algorithmic performance of the

ABC particle filters, both with and without the use of the RSMC methodology.

Throughout, we present the results obtained when applying the particle filters to

the nonlinear SSM (3.13)-(3.14) with the noise parameter fixed at σ2 = 5. We remark

here that all conclusions drawn below were observed to also hold for σ2 ∈ {1, 10}

and across all independent implementations of each particle filter.

ABC Filtering vs. Filtering

We now analyse the accuracy of the ABC particle filter, by comparing the result-

ing filtering errors with the filtering errors obtained using the exact particle filter.

For the moment, we focus on the exact and ABC particle filters that use dynamic

multinomial resampling; we do not yet consider the use of RSMC.

Figure 3.4 shows examples of the exact filtering errors (black line) and ABC
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Figure 3.4: The dimension-adjusted L1-errors for the exact particle filtering (black)
and ABC particle filtering (red) estimates of the filtered state in the nonlinear SSM
(3.13)-(3.14) with σ2 = 5.

filtering errors (red line). These plots correspond to a single implementation of each

of the particle filters under each parameter pairing {N, d}, and the omitted plot

corresponds to the parameter pairing {N, d} = {100, 10}, where the ABC particle

filter collapsed completely for all 10 attempted implementations. As is clear, the

errors for the ABC particle filter are much more comparable to those obtained using

the exact particle filter than was the case for the previous example. For the higher

dimensions (d ∈ {5, 10}), the ABC particle filter appears to be competing well with

the exact particle filter. This requires further exploration.

Figure 3.5 shows, for each parameter pairing {N, d}, the differences between a

set of exact filtering errors, and a set of ABC filtering errors, each of which were
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 0.2458 0.1239 0.0871 0.0668 0.0550

d = 2 0.4503 0.2168 0.1463 0.1140 0.0975

d = 5 3.4395 1.6924 0.9165 0.6447 0.5266

d = 10 6.5746 5.7356 5.2929 5.0199 4.7088

Table 3.4: Median dimension-adjusted L1-errors observed over the period [0, T ] for
the estimate of the filtered state in the nonlinear SSM (3.13)-(3.14), averaged over
10 implementations of the exact particle filter.

N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 1.1382 1.1226 1.1186 1.1074 1.1098

d = 2 2.3458 2.2872 2.2832 2.2835 2.2355

d = 5 3.8945 3.7086 3.6350 3.6397 3.6229

d = 10 - 4.9269 4.8108 4.7995 4.7547

Table 3.5: Median dimension-adjusted L1-errors observed over the period [0, T ] for
the estimate of the filtered state in the nonlinear SSM (3.13)-(3.14), averaged over
10 implementations of the ABC particle filter.

obtained over a single implementation of each particle filter. These differences are

represented by the grey line in each plot, where negative values indicate time points

at which the ABC particle filter outperformed the exact particle filter; the black

horizontal line on each plot is at zero. Again, similar results were observed over

all independent implementations of the exact and ABC particle filters. The red

horizontal line on each plot gives the corresponding difference between the median

filtering errors and the median ABC filtering errors, which are given in Tables 3.4

and 3.5 respectively; these median errors have been averaged over all 10 independent

implementations of each procedure.

There are three main conclusions to draw from these results. Firstly, note that,

for all parameter pairings {N, d}, there are time instances at which the ABC particle

filtering estimate is more accurate than the exact particle filtering estimate. As the

dimension of the state space increases, so does the number of instances at which this
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Figure 3.5: Differences between the exact filtering errors and ABC filtering errors
obtained in estimating the filtered state in the nonlinear SSM (3.13)-(3.14) with
σ2 = 5. The grey line shows the ABC filtering errors subtracted from the exact
filtering errors, at each time point t = 1, . . . , T . The red line is the corresponding
difference in the median exact filtering errors and median ABC filtering errors, which
were averaged over 10 independent implementations of each filter. The black line is
zero; negative values indicate instances at which the ABC particle filter was more
accurate than the exact particle filter using the same number of particles.

happens. For low dimensions, however, the exact particle filter still outperforms the

ABC particle filter when assessing performance over the entire time horizon [0, T ];

this is seen in the difference in the median errors, indicated by the red horizontal

lines.

Secondly, the ABC particle filter appears to marginally outperform the exact

particle filter in high dimensions (d = 10), when using a relatively low number of

particles (N ≤ 900), and it remains competitive for high dimensions as the number
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Figure 3.6: Median exact (a) and ABC (b) filtering errors for the estimated filtered
state in the nonlinear SSM (3.13)-(3.14) with σ2 = 5. The errors for constant d
are connected by the solid lines; from bottom to top, the dimensions used were
d ∈ {1, 2, 5, 10}.

of particles increases. The ABC particle filter is also seen to be competitive when

using only 100 particles for d = 5.

Thirdly, as the number of particles increases, the accuracy of the ABC particle

filter, relative to that of the exact particle filter, decreases. It is well known that

the accuracy of the particle filter increases as N increases, and so this is likely

to be due to a slower improvement (if any) in the accuracy of the ABC particle

filter than the improvement in the accuracy of the exact particle filter, as was also

observed in Example 3.5. This is confirmed in Figures 3.6a and 3.6b, which show the

effect of N and d on the errors obtained using the exact and ABC particle filters,

respectively. Indeed, from Figure 3.6b, it is clear that, as was the case with the

linear Gaussian SSM, the accuracy of the ABC filtered state in the nonlinear SSM is

relatively insensitive to any increase in the number of particles. The ABC particle

filter was applied to the nonlinear SSM using 10, 000 particles and, as with the

previous example, no improvement in performance was noted over 10 independent

implementations.

We recall the upper bound (3.9) to the Lp-error for the ABC particle filtering
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Figure 3.7: Plots of the estimated ESS, calculated at each time step of the exact (a)
and ABC (b) particle filters. For all plots show, N = 2500 particles were used to
estimate the filtered state in d-dimensional nonlinear SSM (3.13)-(3.14) with, from
top to bottom, d ∈ {1, 2, 5, 10}, and σ2 = 5. The resampling threshold (N/2) is
marked on both plots as the red dashed line.

estimate, and we note once again that the filtering errors are dominated by the bias.

We further remark that the ABC filtering errors, which are dimension-adjusted,

increase significantly with the dimension. Since the bias dominates these errors,

this suggests that the deterministic ABC bias may increase with the dimension of

the SSM. Consider the method used for adaptively-tuning εt. For fixed α, as one

increases the dimension of the data, the generated value of εt will increase also. This

increased value of εt contributes to the increase in the bias that is suggested here.

From Figure 3.6a, it is clear that the exact filtering error explodes as the dimen-

sion increases. This demonstrates the difficulty of performing exact particle filtering

for high-dimensional hidden states, and can be linked to the weight degeneracy is-

sue. To observe the extent to which weight degeneracy affects the performance of

each of the particle filters, we consider the ESS.

Figures 3.7a and 3.7b present the estimated ESS at each time point t = 1, . . . , T ,

as calculated during a 2500-particle implementation of the exact particle filter and

the ABC particle filter, respectively, for d ∈ {1, 2, 5, 10}. For the exact particle filter,

we can see that, as the dimension of the state increases, the ESS decreases such that,
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for high-dimensional states, it is consistently evaluated as being significantly lower

than N . Recall that low ESS is an indication of there being very few particles of

significant weight at each iteration, and so the accuracy of the SMC approximation

degrades with increasing dimension for the exact particle filter. In an SIS procedure,

i.e. a particle filter without resampling, this translates to the need to increase the

number of particles with the dimension in order to maintain a given level of estimator

accuracy; it can be shown (e.g Bengtsson et al., 2008) that the sample size N is

required to grow exponentially in the dimension of the hidden state.

In contrast, the ESS plot for the ABC particle filter appears much more resilient

to increases in dimension, indicating that the weight degeneracy issue affects the

ABC particle filter to a much lesser extent than the exact particle filter, as was

expected. For an SIS procedure targeting the ABC approximation of the SSM,

i.e. ABC SIS, this translates to the number of particles required for a given level

of estimator accuracy being sub-exponential. Indeed, these observations are an

empirical verification of Proposition 5.2 of Beskos et al. (2012). That result implies

that the numerical part of the Lp-error of the estimate produced by an ABC SIS

procedure, can be kept stable as the dimension of the state increases, using a particle

system size N that grows sub-exponentially in the dimension of the hidden state.

The above observations, along with the theoretical result of Beskos et al. (2012),

indicate that the SMC error associated with the ABC particle filter should be signif-

icantly lower than the corresponding error of the exact particle filter when applied

to SSMs with high-dimensional hidden states. The fact that the ABC filtering er-

rors are not observed to be significantly lower than the exact filtering errors further

exemplifies the fact that the ABC bias dominates the Lp-error (3.9) of the ABC

particle filtering estimate of the filtered state.
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 1.1615 1.1561 1.1853 1.1538 1.1429

d = 2 2.3662 2.1631 2.3248 2.3077 2.2660

d = 5 3.7982 3.6785 3.6331 3.6467 3.6539

d = 10 5.1446 4.8983 4.7948 4.7591 4.7450

Table 3.6: Median dimension-adjusted L1-errors observed over the period [0, T ] for
the estimate of the filtered state in the nonlinear SSM (3.13)-(3.14), obtained using
MPDABC particle filtering.

N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 102.16% 104.80% 106.14% 99.74% 97.90%

d = 2 98.74% 93.64% 99.75% 99.57% 101.09%

d = 5 99.65% 99.56% 100.58% 99.88% 99.48%

d = 10 - 98.80% 100.60% 99.93% 100.25%

Table 3.7: Relative magnitude of the median dimension-adjusted L1-errors of the
estimated filtered state in the nonlinear SSM (3.13)-(3.14), obtained using MPDABC
particle filtering, in comparison to those obtained using ABC particle filtering (Table
3.5).

MPDABC Filtering vs. ABC Filtering

As mentioned above, it is of interest to explore whether any improvement in the

accuracy of an ABC particle filter can be empirically measured when using a com-

position of J > 1 independent indicator functions as the ABC kernel, as opposed

to using only one. This multiple-pseudo data approach was tested for the nonlinear

SSM (3.13)-(3.14), and the results are presented here with reference to the corre-

sponding results for the single-pseudo data ABC particle filter. Once again, the

accuracy of the particle filters is measured with respect to estimated filtered state

obtained using an exact particle filter with 10, 000 particles. The median filtering

errors for the MPDABC particle filter are presented in Table 3.6, with the relative

magnitude of this error when compared to the corresponding ABC filtering error,

given in Table 3.7.
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 32.00% 31.29% 31.15% 31.02% 30.88%

d = 2 34.84% 34.52% 34.31% 34.24% 34.24%

d = 5 38.85% 38.95% 39.13% 39.10% 39.08%

d = 10 - 41.47% 41.74% 41.65% 41.74%

Table 3.8: Average resampling rates obtained over 10 implementations of the ABC
particle filtering procedure, when applied to the nonlinear SSM (3.13)-(3.14).

N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 23.62% 23.39% 23.32% 23.31% 23.39%

d = 2 28.28% 28.25% 28.28% 28.20% 28.10%

d = 5 33.02% 32.79% 32.50% 32.40% 32.47%

d = 10 38.31% 38.48% 38.51% 38.53% 38.58%

Table 3.9: Average resampling rates obtained over 10 implementations of the
MPDABC particle filtering procedure, when applied to the nonlinear SSM (3.13)-
(3.14).

From Table 3.7, we can conclude that, empirically, there does not seem to be any

consistent improvement offered by the use of a composition of J = 10 independent

indicator functions, as opposed to a single indicator function as the ABC kernel

in the approximation of the SSM. On the other hand, as indicated by Table 3.3,

the MPDABC filter is significantly less prone to collapsing, and larger values of J

may result in slight improvements in filter accuracy. Any advantage offered by the

MPDABC approximation must be weighed up against the increase in computational

cost.

The computational expense of the exact particle filter is determined to a large

extent by the resampling rate, and so we consider first the effect of whether any

improvement in the resampling rate is observed when using the MPDABC particle

filter. The resampling rates for the ABC particle filter and the MPDABC particle

filter are presented in Tables 3.8 and 3.9, respectively.

Comparing Tables 3.8 and 3.9, it is clear to see that the use of the MPDABC
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 0.08 0.45 1.58 4.26 9.50

d = 2 0.11 0.61 2.01 5.16 11.26

d = 5 0.25 1.20 3.43 7.92 16.01

d = 10 - 2.89 7.29 14.89 27.18

Table 3.10: Mean processing times (in seconds) for the ABC particle filter applied
to the nonlinear SSM (3.13)-(3.14).

N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 0.26 1.16 3.05 6.51 12.37

d = 2 0.43 1.87 4.72 9.69 17.74

d = 5 1.15 4.76 11.32 21.61 36.81

d = 10 3.31 13.40 30.87 56.67 92.16

Table 3.11: Mean processing times (in seconds) for the MPDABC filter applied to
the nonlinear SSM (3.13)-(3.14).

kernel results in lower resampling rates. This is to be expected; as discussed in

Section 3.4, the use of the MPDABC kernel should result in filtering weights with

reduced variance, according to the principle of Rao-Blackwellisation. Thus, when

using the MPDABC kernel in favour of the original ABC kernel, the effect of weight

degeneracy is decreased and the particle filter is required to resample at fewer steps.

We consider also the processing times for the ABC and MPDABC particle filters;

these are presented in Tables 3.10 and 3.11.

As can be seen from Tables 3.10 and 3.11, the use of multiple pseudo-data in

the ABC approximation comes with a significant increase in computational cost, in

spite of the observed improvement in the resampling rates. From this, we deduce

that the increase in computational cost is associated with sampling J pseudo-data

instead of a single pseudo-datum.

The results here indicate that the MPDABC particle filter offers no consistent

improvement in accuracy over the ABC particle filter when estimating the filtered

state in the nonlinear SSM (3.13)-(3.14). This is in spite of a marked improvement in
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the associated observed resampling rates and, therefore, a decreased susceptibility to

the weight degeneracy issue. This decrease in the effects of weight degeneracy should

improve the SMC approximation of the MPDABC filter; the fact that this is not ev-

ident in the filtering errors suggests that, once again, the bias in the MPDABC filter

dominates the corresponding Lp-error between the SMC estimate of the MPDABC

filtered state and the exact filtered state.

Rejection SMC Filtering vs. SMC Filtering

Finally, we report the observed effects of including a rejection step in the SMC filter-

ing procedures, as described in Section 2.3.2, for application to both the nonlinear

model described above and its ABC and MPDABC approximations.

Recall that the objective here is to ascertain whether the theoretical advantage

offered by the RSMC method, in terms of improved asymptotic variance in the

SMC approximation of the joint smoothing distribution, can be observed in the

corresponding filtering estimates for finite N . In order to simplify the analysis, we

consider the mean, over all dimensions, of the filtered estimate at each time point

t ∈ [0, T ]. We then estimate the standard deviation of these mean filtering estimates

at each t using the standard error, taken over all independent implementations of

each procedure. The median of these standard errors, taken over all time points

t ∈ [0, T ], is reported. Henceforth, this will be referred to as the median standard

error of the filtering estimates, or simply the median standard error.

First, we consider the use of RSMC for performing exact particle filtering. Table

3.12 presents the median standard errors obtained using the SMC, ERSMC and

TRSMC particle filters, for each parameter pairing {N, d}. All the results reported

here correspond to the nonlinear SSM (3.13)-(3.14), with σ2 = 5, although similar

results were observed for σ2 ∈ {1, 10}.

The median standard errors in Table 3.12 are also presented in Figure 3.8. For

each of the exact particle filters considered, the median standard errors correspond-
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1
0.2037 0.1046 0.0716 0.0528 0.0425
0.1923 0.0940 0.0626 0.0480 0.0420
0.1971 0.0941 0.0644 0.0473 0.0415

d = 2
0.4337 0.1514 0.0989 0.0685 0.0588
0.4640 0.1400 0.0934 0.0724 0.0601
0.4329 0.1448 0.0957 0.0710 0.0574

d = 5
2.1624 1.3987 0.8047 0.5098 0.3366
2.2145 1.5048 0.8604 0.5347 0.3269
2.1600 1.4242 0.8188 0.5348 0.3284

d = 10
1.9551 1.8297 1.7830 1.7443 1.6156
1.9514 1.7901 1.7884 1.6902 1.6085
1.9215 1.8808 1.7933 1.6600 1.6060

Table 3.12: Median standard errors of the exact particle filtering estimates. The
values in each cell correspond to the estimates produced by the SMC (top), ERSMC
(middle) and TRSMC (bottom) particle filters, targeting the nonlinear SSM (3.13)-
(3.14) specified by σ2 = 5.

ing to those implementations that used N = 100 were found to be significantly

larger than those corresponding to the implementations that used N ≥ 400. Since

we are interested in the behaviour of the estimator variance as N grows, the median

standard errors corresponding to N = 100 are therefore omitted from Figure 3.8 for

the sake of clarity in presenting the median standard errors for N ≥ 400.

From Figure 3.8, we note that, when targeting the distribution of the one-

dimensional hidden state, a marginal improvement in the estimated variance of

the filtering estimates is observed when using the RSMC methodology. This im-

provement over the SMC procedure is observed for both the TRSMC and ERSMC

procedures. As the dimension of the hidden state grows, the RSMC procedures

display a lower median standard error than the SMC procedure for a number of

parameter pairings {N, d}, however this advantage is not consistently observed, and

any improvement that the RSMC procedures appear to offer is extremely marginal.

We remark that Figure 3.8 also illustrates the deterioration of the filtering pro-

cedure as the dimension d increases. In low dimensions, the variance of the filtering
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Figure 3.8: Median standard errors of the exact SMC, exact ERSMC and exact
TRSMC particle filtering estimates of the filtered state in the nonlinear SSM (3.13)-
(3.14), with σ2 = 5. Each plot illustrates the standard errors corresponding to the
estimates produced by the exact particle filters using SMC (black), ERSMC (blue)
and TRSMC (green) kernels.

estimates can be seen to decrease as N increases, as would be expected. In high

dimensions, however, the improvement in estimator variance is much less significant

as N grows, due to the increase in SMC weight degeneracy and the resulting dete-

rioration in the SMC approximation of both the joint smoothing distribution and

the filtering distribution.

We now consider the use of RSMC within particle filtering procedures for es-

timating the ABC approximation of the filtered state. Recall that for the single

pseudo-data ABC approach considered here, i.e. where the ABC kernel is the single

indicator kernel (3.5), the ERSMC and TRSMC acceptance probabilities defined in

(2.17) and (2.19) coincide, and thus the ERSMC and TRSMC procedures are equiv-
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1
0.7434 0.4110 0.2910 0.2094 0.1718
0.6883 0.3393 0.2564 0.1804 0.1543

d = 2
0.9782 0.4781 0.3075 0.2381 0.1913
0.9322 0.4047 0.2850 0.2091 0.1747

d = 5
0.8539 0.4156 0.2834 0.2091 0.1635
0.7847 0.3766 0.2495 0.1895 0.1524

d = 10
- 0.5169 0.3367 0.2471 0.1930
- 0.4799 0.3232 0.2291 0.1879

Table 3.13: Median standard errors of the ABC filtering estimates. The values
in each cell correspond to the estimates produced by the SMC (top) and RSMC
(bottom) particle filters, targeting the ABC approximation of the nonlinear SSM
(3.13)-(3.14) specified by σ2 = 5.

alent. We also consider the use of the MPDABC kernel (3.10), where the ERSMC

and TRSMC procedures are once again distinct.

As before, we present the median standard errors for the filtering estimates

generated by the SMC and RSMC particle filters when targeting the ABC and

MPDABC approximations of the filtered state. The median standard errors for the

ABC filtering estimates are reported in Table 3.13 and illustrated in Figure 3.9. The

standard errors obtained when using the MPDABC approximation are presented in

Table 3.14 and Figure 3.10.

From Table 3.13 and Figure 3.9, it is immediately clear that the estimates pro-

vided by the RSMC ABC particle filter have markedly lower variance than those

provided by the SMC ABC particle filter. This is an empirical verification of the

theoretical improvement in the asymptotic estimator variance, and it is encouraging

that this advantage can be realised for finite N . We also note that Figure 3.9 demon-

strates the relative robustness of the ABC particle filter with respect to the SMC

weight degeneracy issue and the resulting deterioration of the SMC approximation.

This is shown by the fact that, even in high dimensions, the median standard errors

for both the SMC and RSMC ABC particle filters decrease as N increases.

From Table 3.14 and Figure 3.10, we see that the RSMC procedure once again
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Figure 3.9: Median standard errors of the ABC SMC and RSMC particle filtering
estimates of the filtered state in the nonlinear SSM (3.13)-(3.14), with σ2 = 5. Each
plot illustrates the standard errors corresponding to the estimates produced by the
ABC particle filters using SMC (red) and RSMC (blue) kernels.

produces MPDABC filtered estimates of lower variance than those produced by the

SMC particle filter and that this advantage is consistent for all values of N ≥ 400.

Figure 3.10 also indicates that the MPDABC particle filter also displays a robustness

to the degeneracy issues that cause the poor performance of the particle filter in high

dimensions.

The above results show that the reduction in asymptotic estimator variance that

can be achieved when using the rejection kernel of Del Moral (2004) in the particle

filter, can be realised for finite N in a number of scenarios. We now report briefly

on any improvements in estimator accuracy that the RSMC methodology can offer.

The median filtering errors were calculated for the estimates provided by the
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1
0.5781 0.3347 0.2388 0.1735 0.1455
0.5604 0.2965 0.2095 0.1508 0.1231
0.6049 0.3004 0.1928 0.1523 0.1287

d = 2
0.7646 0.4036 0.2767 0.2097 0.1619
0.7519 0.3696 0.2528 0.1891 0.1522
0.7449 0.3813 0.2577 0.1907 0.1549

d = 5
0.7256 0.3632 0.2477 0.1848 0.1488
0.6823 0.3305 0.2233 0.1705 0.1357
0.6735 0.3481 0.2239 0.1726 0.1318

d = 10
1.4397 0.4069 0.2764 0.2050 0.1636
1.4576 0.3867 0.2464 0.1956 0.1496
1.2745 0.3871 0.2613 0.1942 0.1539

Table 3.14: Median standard errors of the MPDABC filtering estimates. The values
in each cell correspond to the estimates produced by the SMC (top), ERSMC (mid-
dle) and TRSMC (bottom) particle filters, targeting the MPDABC approximation
of the nonlinear SSM (3.13)-(3.14) specified by σ2 = 5.

ERSMC and TRSMC particle filters. The magnitude of these errors was subse-

quently compared to the median filtering errors obtained using the SMC particle

filter, and the relative magnitudes are reported in Tables 3.15 and 3.16. Similar

results, corresponding to the implementation of the RSMC and SMC particle filters

under the ABC and MPDABC approximations of the model, are presented in Tables

3.17-3.19.

From Tables 3.15-3.19, we note that the accuracy of the RSMC filtering estimates

is extremely comparable to the accuracy of the SMC particle filtering estimates. It

is also noted that, in some scenarios, the RSMC particle filters offer marginally

improved accuracy over the SMC particle filter. We consider the exact particle

filters first.

From Tables 3.15 and 3.16, we see that, when targeting the one-dimensional hid-

den state, both the ERSMC and TRSMC procedures offer a consistent improvement

in accuracy. It is also observed that as the dimension increases, any improvement
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Figure 3.10: Median standard errors of the MPDABC SMC and RSMC particle
filtering estimates of the filtered state in the nonlinear SSM (3.13)-(3.14), with
σ2 = 5. Each plot illustrates the standard errors corresponding to the estimates
produced by the MPDABC particle filters using SMC (red), ERSMC (blue) and
TRSMC (green) kernels.

in estimator accuracy offered by the use of RSMC, diminishes. Even in high di-

mensions, however, the accuracy of the RSMC particle filter remains extremely

competitive when compared against the SMC particle filter.

A more consistent improvement in estimator accuracy is noted in Tables 3.17-

3.19 and for the MPDABC filters, the use of RSMC improved the accuracy of the

resulting estimates for all parameters tested. It is also remarked here that any

improvement in estimator accuracy that is observed when incorporating the RSMC

methodology, diminishes as the dimension of the hidden state increases.
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 93.91% 96.30% 90.05% 90.31% 94.95%

d = 2 103.34% 98.18% 100.53% 98.28% 96.73%

d = 5 109.22% 94.47% 100.50% 102.61% 98.29%

d = 10 99.18% 99.27% 101.33% 98.35% 99.17%

Table 3.15: Relative magnitude of the median dimension-adjusted L1-errors obtained
under ERSMC particle filtering, in comparison to those obtained under SMC particle
filtering, in application to the exact nonlinear SSM (3.13)-(3.14).

N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 95.38% 93.56% 91.96% 92.75% 94.96%

d = 2 96.88% 98.90% 98.86% 99.22% 94.66%

d = 5 102.30% 100.17% 100.78% 97.58% 98.23%

d = 10 98.55% 100.10% 98.65% 97.13% 100.57%

Table 3.16: Relative magnitude of the median dimension-adjusted L1-errors obtained
under TRSMC particle filtering, in comparison to those obtained under SMC particle
filtering, in application to the exact nonlinear SSM (3.13)-(3.14).

3.7 Summary of Results

The numerical results presented in this chapter have demonstrated the properties

of the ABC particle filter through application to a linear Gaussian SSM and a

common nonlinear SSM from the SMC literature. We have also considered the

use of the RSMC methodology, discussed in Section 2.3.2. We present here the

principal conclusions of this chapter. In particular, the following points have been

demonstrated:

• As the dimension of the hidden state increases, the (numerical) SMC error

associated with the exact particle filtering estimate explodes. In contrast, the

SMC error associated with the ABC particle filtering estimate is stable.

• The total error of the ABC particle filtering estimate was observed here to be

dominated by the deterministic bias of the ABC approximation.
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N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 98.24% 97.70% 98.52% 97.37% 97.30%

d = 2 98.06% 98.34% 98.88% 97.81% 100.14%

d = 5 97.66% 99.05% 99.58% 99.11% 99.53%

d = 10 - 99.37% 100.58% 99.60% 100.29%

Table 3.17: Relative magnitude of the median dimension-adjusted L1-errors obtained
under RSMC particle filtering, in comparison to those obtained under SMC particle
filtering, in application to the ABC approximation of the nonlinear SSM (3.13)-
(3.14).

N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 97.01% 92.71% 95.40% 95.20% 98.05%

d = 2 98.59% 98.01% 97.63% 97.43% 98.48%

d = 5 99.22% 98.81% 99.35% 99.13% 99.29%

d = 10 - 98.73% 99.51% 99.86% 99.68%

Table 3.18: Relative magnitude of the median dimension-adjusted L1-errors obtained
under ERSMC particle filtering, in comparison to those obtained under SMC particle
filtering, in application to the MPDABC approximation of the nonlinear SSM (3.13)-
(3.14).

N = 100 N = 400 N = 900 N = 1600 N = 2500

d = 1 99.81% 94.99% 97.63% 95.99% 97.12%

d = 2 98.03% 98.12% 99.07% 97.72% 98.07%

d = 5 98.96% 99.30% 99.61% 99.49% 99.13%

d = 10 97.99% 99.07% 99.67% 99.97% 99.98%

Table 3.19: Relative magnitude of the median dimension-adjusted L1-errors obtained
under TRSMC particle filtering, in comparison to those obtained under SMC particle
filtering, in application to the MPDABC approximation of the nonlinear SSM (3.13)-
(3.14).

• In low dimensions, the dominance of the ABC bias results in the ABC par-

ticle filter being significantly less accurate than exact particle filter. In high

dimensions, however, the ABC particle filter was shown to be more accurate

than the exact particle filter, due to the SMC error associated with the exact

particle filtering estimates exceeding the combined bias and numerical error

associated with the ABC particle filtering estimates.
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• The MPDABC particle filtering estimator is also dominated by the ABC bias,

and was observed to offer no significant improvements over the ABC particle

filtering estimator.

• The use of an RSMC procedure, in place of a dynamic resampling SMC pro-

cedure, was shown to reduce the variance of the ABC and MPDABC particle

filtering estimators, especially when using large N . Thus, when performing

ABC particle filtering, the use of a RSMC procedure is advised.

• The exact RSMC particle filters were shown not to offer consistent improve-

ments in estimator variance, when compared to exact particle filters that used

dynamic resampling. We conclude that, when performing exact particle filter-

ing with respect to the nonlinear SSM (3.13)-(3.14), the reduction in asymp-

totic estimator variance suggested by Del Moral (2004) cannot be observed for

N ≤ 2500.
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Chapter 4

Smoothing via Approximate

Bayesian Computation

4.1 Introduction

Consider the generalised state space model defined by the transition and observation

densities (1.1)-(1.2). In the previous chapter, we considered the filtering problem:

performing inference on the distribution of the unobserved Markov chain at time

t, given observation of the process up to t. This chapter will extend the work of

Chapter 3 by considering the use of SMC and PMCMC methods for performing

inference with respect to the ABC approximation of the generalised SSM.

In Section 4.2, we detail the inferential problem of interest. In Section 4.3, a brief

review of existing SMC smoothing procedures is provided, where we establish the

state of the art for performing sequential inference. In Section 4.4, we provide the

main theoretical result of the chapter, which establishes the behaviour of a class of

expectations, taken with respect to the ABC approximation of the joint smoothing

density. This theoretical result motivates the development of SMC and PMCMC

procedures in an ABC framework, and this takes place in Sections 4.5 and 4.6. In

Section 4.7, we test the performance of the proposed methods by applying them to

the popular nonlinear SSM from Section 3.6.
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4.2 The Smoothing Problem

Interest lies in performing inference on the joint density of the unobserved Markov

chain X1:t ∈ Rtdx given observation of the process Y1:t ∈ Rtdy , and we retain the

assumption that x0 is known.

When working with the smoothing problem, one is interested in performing either

batch or sequential inference. In the former scenario, the analyst has access to the

entire observation record, say y1:T , prior to analysis, and can therefore make use of

advanced MCMC methods, such as PMCMC, to directly target the distribution of

interest, π (dx1:T |y1:T ). In the latter scenario, the data arrives sequentially and one

must target the sequence of smoothing distributions {π (dx1:t |y1:t )}
T
t=1 sequentially.

Our eventual aim will be to implement PMCMCmethods for an ABC approximation

of the target smoothing distribution, and so batch inference will be required, however

the development of SMC based smoothing algorithms for an ABC setting will be

the initial focus of this chapter; these can be used both for sequential inference and

as the building blocks for batch inference methods.

The parameter vector θ will be treated as known for the development of SMC

smoothing for an ABC target. However, as was seen in Section 2.4, parameter

uncertainty can be tackled using PMCMC methodology, and so it is reintroduced

into the notation in this chapter. Recall the joint smoothing density, given in (1.7)

and reproduced here, with parameter vector θ ∈ Θ:

πθ (x1:t | y1:t ) =
πθ (x1:t, y1:t)

πθ (y1:t)
=

∏t
n=1 gn,θ (yn |xn ) qn,θ (xn |xn−1 )

∫
Rtdx

∏t
n=1 gn,θ (yn |xn ) qn,θ (xn |xn−1 ) dx1:t

. (4.1)

As in Chapter 3, the problem of interest will be framed in terms of the evaluation

of expectations with respect to the target distribution. We consider here the problem

of computing expectations of additive functionals with respect to the joint smoothing
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densities {πθ (x1:t |y1:t )}
T
t=1:

St = Eπ1:t,θ
[St (x1:t) |y1:t ] =

∫

Rtdx

St (x1:t) πθ (dx1:t | y1:t ) (4.2)

where

St (x1:t) =
t∑

n=1

sn (xn−1, xn) (4.3)

with sn : R2dx → Rdx , n ≥ 1.

Examples include, for n = 1, . . . , t:

sn,j (xn,j) =
xn,j

t
(4.4)

sn,j (xn−1,j , xn,j) =
xn−1,jxn,j

t

where xn = (xn,1, . . . , xn,dx) and sn = (sn,1, . . . , sn,dx), with sn,j : R → R for

j = 1, . . . , dx. These specifications of sn can be used to construct estimates of

St corresponding to the mean and first-order autocovariance, respectively.

As highlighted by Del Moral et al. (2009), the construction and estimation of

additive functionals in this way can also be extremely useful in parameter estimation

work. Consider the parameter vector θ to be unknown. Given the observed data up

to time t, y1:t, the score vector ∇ log πθ (y1:t) may be expressed as a composition of

expectations of a similar form to (4.2) (Del Moral et al., 2009):

∇ log πθ (y1:t) =
t∑

n=1

Eπ1:t,θ
[∇ log qn,θ (Xn |Xn−1 ) | y1:t ]+

t∑

n=1

Eπ1:t,θ
[∇ log gn,θ (yn |Xn ) | y1:t ] .

As the first derivative of the log-likelihood, the score vector has direct applications in

maximum likelihood (ML) estimation. A common iterative method for ML estima-

tion is the Expectation-Maximization (EM) algorithm. This is a two-step procedure,

involving a similar decomposition of the score vector. In the batch smoothing setup,

given a current estimate θ of the parameter vector, the algorithm proceeds by first
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calculating the expected value of the log-likelihood function, where the expectation

is with respect to the joint smoothing density πθ (x1:t |y1:t ):

Q (θ, θ∗) =
t∑

n=1

Eπ1:t,θ
[ log qn,θ∗ (Xn |Xn−1 ) | y1:t ]+

t∑

n=1

Eπ1:t,θ
[ log gn,θ∗ (yn |Xn ) | y1:t ] .

This function is subsequently maximized with respect to θ∗, and the parameter

vector estimate is updated to the maximising argument. As with estimating the

score vector, the usefulness of the additive functionals in computing Q (θ, θ∗) in the

Expectation step above is apparent.

4.3 Existing Approaches to Smoothing

We will consider here a number of SMC-based smoothing procedures that exist

within the literature. The aim will be to offer alterations to the existing meth-

ods, first through the application of approximate Bayesian computation (ABC) and

second through the use of Rejection SMC (RSMC).

The particle smoothing procedure, introduced in Section 2.3.1, is briefly de-

scribed below in the context of the current estimation problem. As discussed pre-

viously, this suffers heavily from the path degeneracy problem, and the resulting

estimates will be expected to display poor accuracy. Two further existing SMC

smoothing algorithms are described below: Forward Filtering Backward Smooth-

ing (FFBS; Doucet et al., 2000; Godsill et al., 2004) and Forward Smoothing (FS;

Del Moral et al., 2009). Note that these are two implementations of the same pro-

cedure, where FS exploits the additive structure of the targeted expectations (4.2),

and can be implemented for online sequential inference.

4.3.1 Particle Smoothing

As we have seen in Section 2.3.1, particle smoothing is achieved through recursively

sampling the N particles
{

X
(i)
1:t

}N

i=1
at time t from the sequence of joint smoothing
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distributions πθ (dx1:t |y1:t ). The particles are propagated forward using a combi-

nation of importance sampling and resampling steps, with the importance weights

being calculated at each time step according to the recursive relationship (2.15). Re-

call that the smoothing distribution is approximated via the Monte Carlo estimate

in (2.13), leading to the following particle smoothing estimate of the expectation of

interest

Ŝt =
N∑

i=1

W
(i)
t St

(
X

(i)
1:t

)
. (4.5)

with W
(i)
t the normalized nonnegative importance weights calculated at time t, the

most recent iteration of the SMC algorithm. The full particle smoothing procedure

is detailed in Algorithm 8; this can be implemented with computational cost O(N).

As mentioned above, this approximation of the smoothing distribution suffers

from the path degeneracy problem, which is avoided by both FFBS and FS, although

at the cost of an increased computational complexity of O(N2).

We consider also the asymptotic variance of the particle smoothing estimate of

the smoothed additive functional. It is shown by Poyiadjis et al. (2011), for additive

functionals of the slightly restricted form

St (x1:t) =
t∑

n=0

sn (xn) , (4.6)

and under favourable assumptions, that the asymptotic variance (as N → ∞) of
√

N
(
Ŝt − St

)
is bounded below by a quadratic polynomial in the length of the

observation period, t, i.e. the asymptotic variance of the particle smoothing estimate

(4.5) is at least O(t2).
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Data: y1:t;
Parameters: x0, N ;
Result: An SMC estimate of the expected value of St (4.3), an additive

functional, obtained using particle smoothing.

1. Set t = 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt (x0, dxt), and compute

W
(i)
t ∝

gt

(
yt

∣
∣
∣X(i)

t

)
qt

(
X

(i)
t |x0

)

kt

(
X

(i)
t |x0

) ,
N∑

i=1

W
(i)
t = 1.

2. If ÊSS

({
W

(i)
t

}N

i=1

)

< N
2
, then, for i = 1, . . . , N , resample X

(i)
t

independently from the discrete distribution

π̂ (dxt) =
N∑

i=1

W
(i)
t δ

X
(i)
1:t

(dxt)

and set W
(i)
t = 1

N
.

3. Set t = t + 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt(X

(i)
t−1, dxt) and calculate

the filtering weights

W
(i)
t ∝ W

(i)
t−1 ∙

gt

(
yt

∣
∣
∣X(i)

t

)
qt

(
X

(i)
t

∣
∣
∣X(i)

t−1

)

kt

(
X

(i)
t

∣
∣
∣X(i)

t−1

) ,
N∑

i=1

W
(i)
t = 1.

4. If n < t, return to Step 2, else calculate Ŝt according to (4.5) and stop.

Algorithm 8: An SMC Algorithm for Particle Smoothing

4.3.2 Forward Filtering Backward Smoothing

Consider the expectation of interest in Equation (4.2). This can be rewritten as

St =
t∑

n=1

Eπn−1:n,t,θ
[sn (xn−1, xn) |y1:t ] =

t∑

n=1

∫

R2dx

sn (xn−1, xn) πθ (dxn−1:n | y1:t ) .

This motivates the use of an SMC procedure to provide weighted samples from

each marginal smoothing distribution πθ (dxn | y1:t ), for n = 1, . . . , t−1, from which
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estimates of St can be calculated. Forward Filtering Backward Smoothing does

exactly this, by appending a backward pass to a particle filtering algorithm at time

t, which recursively calculates a series of weights
{

W̃
(i)
n|t

}N

i=1
, n = t − 1, . . . , 1, for

approximating the marginal smoothing densities with the particle approximation

π̂θ (dxn | y1:t ) =
N∑

i=1

W̃
(i)
n|tδX

(i)
n

(dxn) . (4.7)

Note that when n = t, the above coincides with the particle approximation for

the filtering distribution, and so we define W̃
(i)
t|t = W

(i)
t . For clarity, we henceforth

refer to the importance weights
{

W
(i)
1:t

}N

i=1
used in the forward pass of the algorithm

as the filtering weights; the weights calculated in the backward pass of the FFBS

procedure will be referred to as the smoothing weights.

The backward pass in the FFBS procedure makes use of the smoothing formula

(see, e.g. Doucet et al., 2000; Godsill et al., 2004). Before stating the smoothing

formula, we introduce the backward kernel representation of a density; this notation

will prove useful in exploring the bias associated with the ABC approximation of

the smoothed additive functional in Section 4.4. For a generic probability density p

on Rdx , define the backward Markov transition density as

Bp(xn|xn+1) :=
p(xn)qn+1,θ(xn+1|xn)

∫
Rdx p(xn)qn+1,θ(xn+1|xn)dxn

, (4.8)

under the assumption that
∫
Rdx p(xn)qn+1,θ(xn+1|xn)dxn < +∞. Now, the smooth-

ing formula states that, for n = 1, . . . , t,

πθ (xn | y1:t ) =

∫

Rdx

πθ (xn+1 | y1:t ) Bπn,θ
(xn|xn+1)dxn+1 (4.9)

Replacing πθ (xn+1 | y1:t ) and πθ (xn | y1:n ) with their particle approximations gives



Chapter 4. Smoothing via Approximate Bayesian Computation 131

the following approximation of the marginal smoothed distribution:

π̂θ (dxn | y1:t ) =
N∑

i=1

W (i)
n

N∑

j=1

W̃
(j)
n+1|t

qn+1,θ

(
X

(j)
n+1

∣
∣
∣ X(i)

n

)

πθ

(
X

(j)
n+1 | y1:n

) δ
X

(i)
n

(dxn) . (4.10)

Noting that πθ (xn+1 | y1:n ) =
∫
Rdx πθ (xn | y1:n ) qn+1,θ (xn+1 |xn ) dxn, we can further

approximate πθ

(
X

(j)
n+1

∣
∣
∣ y1:n

)
and substitute this approximation into the above to

give

π̂θ (dxn | y1:t ) =
N∑

i=1

W (i)
n

N∑

j=1

W̃
(j)
n+1|t

qn+1,θ

(
X

(j)
n+1

∣
∣
∣ X(i)

n

)

[∑N
l=1 W

(l)
n qn+1,θ

(
X

(j)
n+1

∣
∣
∣ X(l)

n

)] δ
X

(i)
n

(dxn) .

Thus, the backward pass of the FFBS algorithm recursively calculates the smoothing

weights
{

W̃
(i)
n|t

}N

i=1
associated with the particles

{
X

(i)
n

}N

i=1
as

W̃
(i)
n|t = W (i)

n

N∑

j=1

W̃
(j)
n+1|t

qn+1,θ

(
X

(j)
n+1

∣
∣
∣ X(i)

n

)

[∑N
l=1 W

(l)
n qn+1,θ

(
X

(j)
n+1

∣
∣
∣ X(l)

n

)] (4.11)

for n = t − 1, . . . , 1 with W̃
(i)
t|t = W

(i)
t .

Upon completion of this backwards pass,
{

X
(i)
n , W̃

(i)
n|t

}N

i=1
will provide a weighted

sample from the marginal smoothing distribution πθ (xn |y1:t ), where
{

X
(i)
n

}N

i=1
is

the sample generated at time n of the forward (filtering) pass, prior to resampling.

The requirement that these are the non-resampled particles is crucial, however this

requires the resulting FFBS algorithm to store, at each time n = 1, . . . , t, the entire

particle system (particles and filtering weights)
{

X
(i)
n , W

(i)
n

}N

i=1
. This is a significant

memory requirement and, in addition, the computational complexity of an FFBS

algorithm can be prohibitive. Assuming that one is interested in estimating St at

all time points t = 1, . . . , T , one must execute the backward pass of the FFBS

algorithm at each time t, with computational complexity O(N2t). Clearly, the

computational budget for each iteration of this procedure increases with the time
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parameter, making it an offline procedure. In this scenario, the FFBS procedure

has computational budget O (N2T 2). If one is interested in estimating ST only, as

is often the case for batch smoothing, one need only execute the backward pass at

the final iteration, and so the computational complexity of the FFBS procedure in

this scenario is O(N2T ), with T the batch size.

Godsill et al. (2004) provide a procedure for drawing independent samples from

the required smoothed distribution, where, subsequent to performing SMC filtering

via a forward pass, a backward pass is executed as follows:

Data: y1:t,
{

X
(i)
1:t , W

(i)
t

}N

i=1
(an N -particle system obtained using an SMC

filtering procedure);
Parameters: t, N ;
Result: An independent t-length sample X̃1:t from the joint smoothing

distribution with density (4.1).

1. Sample X̃t from π̂θ (dx̃t |y1:t ) =
∑N

i=1 W
(i)
t δ

X
(i)
t

(dx̃t)

2. Set n = n − 1.

For i = 1, . . . , N , calculate

W̃
(i)
n|n+1 ∝ W (i)

n qn+1,θ

(
X̃n+1

∣
∣X(i)

n

)
;

N∑

i=1

W̃
(i)
n|n+1 = 1

3. Sample X̃n from
∑N

i=1 W̃
(i)
n|n+1δX

(i)
n

(dx̃n). If n = 1 stop, otherwise return to 2.

Algorithm 9: Backward Pass of a FFBS backward-sampling procedure

Although the complexity of the pass detailed above is O(Nt), its execution must

be repeated for each independent sample required. Thus, in real terms, the backward

sampler offers no computational savings over the FFBS procedure of Doucet et al.

(2000).

4.3.3 Forward Smoothing
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Del Moral et al. (2009) introduce an online procedure for calculating the FFBS esti-

mate of expectations of the form (4.2). Referred to henceforth as Forward Smoothing

(FS), this eliminates the need for a backward pass in the smoothing procedure by

introducing an auxiliary function. Although the resulting algorithm retains a sig-

nificant computational complexity of O(N2) per time step, this is constant with

respect to the time parameter, allowing the possibility of online implementation for

SMC-based smoothing.

Del Moral et al. (2009) introduce the following auxiliary function:

Rt (xt) =

∫

R(t−1)dx

St (x1:t) πθ (x1:t−1 | y1:t−1, xt ) dx1:t−1,

such that the expectation of interest at time t may be written in the form

St =

∫

Rdx

Rt (xt) πθ (xt | y1:t ) dxt.

Since this is the expectation of the auxiliary function with respect to the filter at

time t, Ŝt can be calculated using the filtering weights
{

W
(i)
t

}N

i=1
, given Rt(xt), or

a suitable estimate. Del Moral et al. (2009) also provide a recursion for calculating

{Rt}t≥1 online, thus facilitating a forward-only smoothing procedure. The recursion

and its derivation are provided here. For t ≥ 2,

Rt (xt) =

∫

Rdx

[Rt−1 (xt−1) + st (xt−1, xt)] πθ (xt−1 | y1:t−1, xt ) dxt−1, (4.12)

where R1 (x1) := 0. This follows from:

Rt (xt) :=

∫

R(t−1)dx

[St−1 (x1:t−1) + st (xt−1, xt)] πθ (x1:t−1 | y1:t−1, xt ) dx1:t−1

=

∫

Rdx

[∫

R(t−2)dx

St−1 (x1:t−1) πθ (x1:t−2 | y1:t−1, xt−1 ) dx1:t−2

]

πθ (xt−1 | y1:t−1, xt ) dxt−1

+

∫

Rdx

st (xt−1, xt) πθ (xt−1 | y1:t−1, xt ) dxt−1.
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From (4.12), one can construct a method for generating an estimate of Rt (xt)

given the samples
{

X
(i)
t−1

}N

i=1
and

{
X

(i)
t

}N

i=1
and the filtering weights

{
W

(i)
t−1

}N

i=1
.

Noting first that

πθ (xt−1 | y1:t−1, xt ) =
qt,θ (xt |xt−1 ) πθ (xt−1 | y1:t−1 )

∫
Rdx qt,θ (xt |xt−1 ) πθ (xt−1 | y1:t−1 ) dxt−1

,

the progression to

R̂t

(
X

(i)
t

)
=

∑N
j=1 W

(j)
t−1qt,θ

(
X

(j)
t

∣
∣
∣X(i)

t−1

) [
R̂t−1

(
X

(i)
t−1

)
+ st

(
X

(j)
t−1, X

(i)
t

)]

∑N
j=1 W

(j)
t−1qt,θ

(
X

(j)
t

∣
∣
∣X(i)

t−1

) (4.13)

for i = 1, . . . , N , is straightforward. The Forward Smoothing estimate of St may

then be calculated as

Ŝt =
N∑

i=1

W
(i)
t R̂t

(
X

(i)
t

)
, (4.14)

for i = 1, . . . , N . The forward smoothing procedure is detailed in full in Algorithm

10.

An additional contribution of Del Moral et al. (2009) is the provision of an upper

bound on the non-asymptotic mean square error of the estimate Ŝt resulting from

the application of the Forward Smoothing algorithm described above. The authors

prove, once again for the restricted class of smoothed additive functionals specified

by (4.6), that for any t ≥ 0, and under the assumption that sup
n≥0

‖sn‖∞ < ∞ for any

0 ≤ n ≤ t, the following upper bound holds:

E

(∣
∣
∣Ŝt − St

∣
∣
∣
2
)

≤ a
(t + 1)

N

(

a +

√
t + 1

N

)2

,

where a is a finite constant, independent of time. The reader is directed to the

aforementioned paper for details of the proof for this case and it should be noted

that the authors also assert that the bound holds for the more general specification

of additive functionals of the form in (4.3).
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Data: y1:T ;
Parameters: x0, T , N ;
Result: An SMC estimate, at each time point t = 1, . . . , T , of the expected

value of St, an additive functional.

1. Set t = 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt (x0, dxt), and calculate

R̂1

(
X

(i)
t

)
=

∑N
j=1 qt,θ

(
X

(j)
t |x0

)
st

(
x0, X

(i)
t

)

∑N
j=1 qt,θ

(
X

(j)
t |x0

) .

For i = 1, . . . , N , compute

W
(i)
t ∝

gt,θ

(
yt

∣
∣
∣X(i)

t

)
qt,θ

(
X

(i)
t |x0

)

kt

(
X

(i)
t |x0

) ,
N∑

i=1

W
(i)
t = 1.

2. If ÊSS

({
W

(i)
t

}N

i=1

)

< N
2
, then, for i = 1, . . . , N , resample X

(i)
t

independently from the discrete distribution

π̂ (dxt) =
N∑

i=1

W
(i)
t δ

X
(i)
1:t

(dxt)

and set W
(i)
t = 1

N
.

3. Set t = t + 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt

(
X

(i)
t−1, dxt

)
and calculate

the filtering weights

W
(i)
t ∝ W

(i)
t−1 ∙

gt,θ

(
yt

∣
∣
∣X(i)

t

)
qt,θ

(
X

(i)
t

∣
∣
∣X(i)

t−1

)

kt

(
X

(i)
t

∣
∣
∣X(i)

t−1

) ,
N∑

i=1

W
(i)
t = 1.

4. For i = 1, . . . , N , calculate R̂t

(
X

(i)
t

)
according to (4.13).

5. Calculate Ŝt according to (4.14). If t < T , return to Step 2.

Algorithm 10: An SMC Algorithm for Forward Smoothing

Using a result from Del Moral et al. (2010), which itself establishes that the upper

bound on the bias of the estimate Ŝt is O (N−1), Del Moral et al. (2009) deduce that

the asymptotic variance (as N → ∞) of
√

N
(
Ŝt − St

)
has an upper bound of O(t).
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This result shows that estimates produced by Forward Smoothing (and FFBS) are

significantly more accurate than those produced by particle smoothing, due to the

O(t2) lower bound on the asymptotic variance of the particle smoothing estimate of

the smoothed additive functional.

4.3.4 Smoothing via Rejection SMC

Recall the rejection-based SMC procedures detailed in Section 2.3.2. It was demon-

strated in Algorithm 4 how to perform particle filtering via a Rejection SMC proce-

dure, and the accuracy and algorithmic performance of RSMC filtering was explored

in Chapter 3. We consider here the possibility of performing smoothing via an RSMC

procedure. The use of RSMC will be considered for particle smoothing and forward

smoothing, and their effects on the accuracy and algorithmic performance will be

examined in Section 4.7.

As a precursor to describing the alteration of the particle smoothing and forward

smoothing procedures to incorporate the rejection methodology, we stress the fact

that the use of Rejection SMC in place of standard SMC requires a change only

in the resampling step of the SMC procedure; the propagation and weighting of

particles, as well as the estimation of quantities of interest, remains unchanged.

For performing particle smoothing via RSMC, it is noted that the difference

between particle filtering and smoothing lies in the stage at which the particles

and their weights are used to estimate the quantity of interest. In particular, the

resampling step for these two procedures is the same, and so an RSMC particle

smoothing procedure can be constructed by replacing the estimation step in an

RSMC filtering algorithm (e.g. Step 5 in Algorithm 4, page 63), with Step 4 of the

particle smoothing algorithm (Algorithm 8, page 129).

Since the use of RSMC affects only the resampling step of an SMC procedure, the

rejection methodology of Section 2.3.2 can be incorporated into a forward smooth-

ing procedure without disturbing the recursive calculation of the auxiliary function
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Data: y1:T ;
Parameters: x0, T , N ;
Result: An SMC estimate, at each time point t = 1, . . . , T , of the expected

value of St, an additive functional.

1. Set t = 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt (x0, dxt), and calculate

R̂1

(
X

(i)
t

)
=

∑N
j=1 qt,θ

(
X

(j)
t |x0

)
st

(
x0, X

(i)
t

)

∑N
j=1 qt,θ

(
X

(j)
t |x0

) .

For i = 1, . . . , N , compute

W
(i)
t ∝

gt,θ

(
yt

∣
∣
∣X(i)

t

)
qt,θ

(
X

(i)
t |x0

)

kt

(
X

(i)
t |x0

) ,
N∑

i=1

W
(i)
t = 1.

2. For i = 1, . . . , N , calculate β
(i)
t using (2.17), and with probability β

(i)
t do not

resample, otherwise resample X
(i)
t according to the discrete distribution

π̂t (dx1:t) =
N∑

i=1

W
(i)
t δXi

1:t
(dx1:t) .

3. For i = 1, . . . , N , set W
(i)
t =

1

N
.

4. Set t = t + 1. For i = 1, . . . , N , sample X
(i)
t ∼ Kt

(
X

(i)
t−1, dxt

)
and calculate

the filtering weights

W
(i)
t ∝ W

(i)
t−1 ∙

gt,θ

(
yt

∣
∣
∣X(i)

t

)
qt,θ

(
X

(i)
t

∣
∣
∣X(i)

t−1

)

kt

(
X

(i)
t

∣
∣
∣X(i)

t−1

) ,
N∑

i=1

W
(i)
t = 1.

5. For i = 1, . . . , N , calculate R̂t

(
X

(i)
t

)
according to (4.13).

6. Calculate Ŝt according to (4.14). If t < T , return to Step 2.

Algorithm 11: A Rejection SMC Forward Smoothing procedure

Rt (xt). We therefore introduce the RSMC forward smoothing algorithm in Algo-

rithm 11.

Note that these RSMC smoothing procedures can be executed using the ac-
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ceptance probability β
(i)
t , calculated as in (2.17), or its empirical alternative β̂

(i)
t ,

calculated as in (2.19). Thus, we consider the four RSMC smoothing procedures:

Theoretical and Empirical RSMC particle smoothing, and Theoretical and Empiri-

cal RSMC forward smoothing. The accuracy and algorithmic performance of these

procedures are considered in Section 4.7.

4.4 Exploring the Theoretical Bias of ABC Smoothing

In this section, we consider an ABC approximation of the joint smoothing density

(4.1). We seek to determine the nature of the bias induced by this ABC approxi-

mation, in the context of estimating smoothed additional functionals. The results

presented in this section will motivate the development of existing SMC and PM-

CMC methods for use in an ABC framework, which follows in Sections 4.5 and

4.6.

The ABC approximation of (4.1) is

πε
θ (x1:t | y1:t ) =

∫

Rdy

πε
θ (x1:t, u1:t | y1:t ) du1:t (4.15)

with the auxiliary joint distribution

πε
θ (x1:t, u1:t | y1:t ) =

∏t
n=1 Gε

n (un, yn) gn,θ (un |xn ) qn,θ (xn |xn−1 )
∫
Rt(dx+dy)

∏t
n=1 Gε

n (un, yn) gn,θ (un |xn ) qn,θ (xn |xn−1 ) dx1:tdu1:t

.

(4.16)

where u1:t ∈ Rtdy are auxiliary data and Gε
n (un, yn) is the ABC kernel, used to

measure the proximity of the auxiliary data to the observed data. The problem of

interest becomes the estimation of the ABC smoothed additive functional

Sε
t = Eπε

1:t,θ
[St (x1:t) |y1:t ] .
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We define the bias at time t as

Bs(t, ε) :=

∣
∣
∣
∣
∣
Eπ1:t,θ

[
t∑

n=1

sn(xn−1, xn)

∣
∣
∣
∣
∣
y1:t

]

− Eπε
1:t,θ

[
t∑

n=1

sn(xn−1, xn)

∣
∣
∣
∣
∣
y1:t

] ∣∣
∣
∣
∣
,

(4.17)

with Eπ1:t,θ
the expectation wrt the true joint smoothing density (4.1) and Eπε

1:t,θ

the expectation wrt the ABC approximation (4.15). It is found that this bias is

bounded, and that the bound increases only linearly in the time parameter.

Before introducing this bound and its derivation, a number of assumptions are

made, and other notation is defined. We assume Lipschitz continuity of the likeli-

hood, as in (A2); furthermore, as in Proposition 3.3.2, we assume that, for {Lt}t≥1

defined as in (A2), Lt ≤ L < ∞ for all t ≥ 1. We also specify the ABC statistic

and metric as in (A3) and make the following assumption, which is a little stronger

than (A4):

(A5) There exist probability densities κ1 on Rdx and κ2 on Rdy , as well as constants

0 < λ1, λ2 < ∞ such that for all t ≥ 1, and for all (xt, xt+1) ∈ R2dx , yt ∈ Rdy

and θ ∈ Θ,

1

λ1

κ1(xt+1) ≤ qt+1,θ(xt+1|xt) ≤ λ1 κ1(xt+1),

1

λ2

κ2(yt) ≤ gt,θ(yt|xt) ≤ λ2 κ2(yt),

with

0 < κ1 < κ1(x) < κ1 < ∞ ∀x ∈ Rdx

0 < κ2 < κ2(y) < κ2 < ∞ ∀y ∈ Rdy .

Below we write Bb(E) to denote the set of all bounded measurable functions
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ϕ : E → R on a state-space E. We let ‖ϕ‖∞ = supx∈E |ϕ(x)| for ϕ ∈ Bb. Also,

β(p) := sup
x,x′∈E

sup
A∈E

∣
∣
∣
∣

∫

A

p(z|x)dz −
∫

A

p(z|x′)dz

∣
∣
∣
∣

is the Dobrushin coefficient for a Markov transition density p defined upon the

measurable space (E, E). Initially, we assume also that ε is constant with respect to

the time parameter.

Proposition 4.4.1. Assume (A2,A3,A5), and that sn ∈ Bb(Rdx ×Rdx). Then there

exists a constant C < ∞ such that for any ε > 0, y1:t ∈ Rt dy , t ≥ 1

Bs(t, ε) ≤ Cεt

where Bs(t, ε) is defined in (4.17).

Proof. To simplify notation in the subscripts, reference to the parameter vector θ is

suppressed throughout the proof. We use a backward kernel representation of the

smoothing density, making use of the notation introduced in (4.8). For any SSM

one has that:

π(xn:t|y1:t) = π(xt|y1:t)
t−1∏

k=n

Bπk
(xk|xk+1)

where πk is the filter at time k. Hence, we have

Bs(t, ε) =

∣
∣
∣
∣
∣

t∑

n=1

∫
sn(xn−1:n)[π(xn−1:t|y1:t) − πε(xn−1:t|y1:t)]dxn−1:t

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

t∑

n=1

∫
sn(xn−1:n)

[

π(xt|y1:t)
t−1∏

k=n−1

Bπk
(xk|xk+1)

− πε(xt|y1:t)
t−1∏

k=n−1

Bπε
k
(xk|xk+1)

]

dxn−1:t

∣
∣
∣
∣.
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We will deal with each summand directly. We have the telescopic decomposition

∫
sn(xn−1:n)

[

π(xt|y1:t)
t−1∏

k=n−1

Bπk
(xk|xk+1) − πε(xt|y1:t)

t−1∏

k=n−1

Bπε
k
(xk|xk+1)

]

dxn−1:t

=
t−n+1∑

s=1

∫
sn(xn−1:n)

[

π(xt|y1:t)

{ t−1∏

k=t−s+1

Bπε
k
(xk|xk+1)

}{ t−s∏

k=n−1

Bπk
(xk|xk+1)

}

− π(xt|y1:t)

{ t−1∏

k=t−s

Bπε
k
(xk|xk+1)

}{ t−s−1∏

k=n−1

Bπk
(xk|xk+1)

}]

dxn−1:t

+

∫
sn(xn−1:n)[π(xt|y1:t) − πε(xt|y1:t)]

t−1∏

k=n−1

Bπε
k
(xk|xk+1)dxn−1:t.

By Proposition 3.3.2, the final term is controlled by C1ε for some C1 < ∞ which

does not depend upon t or ε. Hence, we treat the sum over s; one can easily rewrite

the summand as

∫
sn(xn−1:n)π(xt|y1:t)

{ t−1∏

k=t−s+1

Bπε
k
(xk|xk+1)

}[

Bπε
t−s

(xt−s|xt−s+1)

− Bπt−s(xt−s|xt−s+1)

]

×

{ t−s−1∏

k=n−1

Bπk
(xk|xk+1)

}

dxn−1:t.

We rewrite this in operator notation:

πtBπε
t−1:πε

t−s+1

[
Bπt−s − Bπε

t−s

]
Bπt−s−1:πn−1(sn)

where

πtBπε
t−1:πε

t−s+1
(ϕ) :=

∫

Rsdx

π(xt|y1:t)

{ t−1∏

k=t−s+1

Bπε
k
(xk|xk+1)

}

ϕ(xt−s+1)dxt−s+1:t

and in an abuse of notation

Bπt−s−1:πn−1(sn)(xt−s) :=

∫

R(t−s−n+1)dx

{ t−s−1∏

k=n−1

Bπk
(xk|xk+1)

}

sn(xn−1:n)dxn−1:t−s−1.
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Now, by standard results, we have

∣
∣
∣πtBπε

t−1:πε
t−s+1

[
Bπt−s − Bπε

t−s

]
Bπt−s−1:πn−1(sn)

∣
∣
∣

≤
∥
∥
∥πtBπε

t−1:πε
t−s+1

[
Bπt−s − Bπε

t−s

]∥∥
∥

TV
×

t−s−1∏

l=n−1

β(Bπl
)‖sn‖∞.

By (A5) for every x, y ∈ Rdx , n ∈ {1, . . . , t − 1},

κ2
1κ2

λ3
1λ2κ1

≤ Bπn(y|x) ≤
λ3

1λ2κ
2
1κ2

κ1

hence for any x, x′, y ∈ Rdx , n ∈ {1, . . . , t − 1}, we have

Bπn(y|x) ≥

κ2
1κ2

λ3
1λ2κ1

λ3
1λ2κ2

1κ2

κ1

Bπn(y|x′)

and thus

β(Bπn) ≤ 1 −

κ2
1κ2

λ3
1λ2κ1

λ3
1λ2κ2

1κ2

κ1

:= ρ ∈ (0, 1).

By using Lemma 4.4.1 one has that for some C2 < ∞ that does not depend on n, ε

or t
∥
∥
∥πtBπε

t−1:πε
t−s+1

[
Bπt−s − Bπε

t−s

]∥∥
∥

TV
≤ C2ε.

Putting together the above arguments, we have that

∣
∣
∣πtBπε

t−1:πε
t−s+1

[
Bπt−s − Bπε

t−s

]
Bπt−s−1:πn−1(sn)

∣
∣
∣ ≤ C3ερ

t−s−n+1

where C3 = C2 ∙ ‖sn‖∞, so that C3 < ∞ and is independent of ε, n and t.

Thus we have that

Bs(t, ε) ≤
t∑

n=1

[
t−n+1∑

s=1

C3ερ
t−s−n+1 + C1ε

]

.
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It is straightforward to show that

t−n+1∑

s=1

ρt−s−n+1 =
1 − ρt−n+1

1 − ρ
,

so that

Bs(t, ε) ≤
t∑

n=1

[

C3
1 − ρt−n+1

1 − ρ
+ C1

]

ε.

The right-hand side can easily be rewritten as

C1εt + C3ε
t∑

n=1

1 − ρt−n+1

1 − ρ
.

Since ρ ∈ (0, 1), this is strictly bounded above by

C1εt + C3ε
t∑

n=1

1

1 − ρ
=

[

C1 +
C3

1 − ρ

]

εt.

Hence

Bs(t, ε) < Cεt

for some positive, finite C ∈ R, independent of n, ε, t.

Lemma 4.4.1. Assume (A2,A3,A5). Then there exist a C < ∞ such that for any

k ∈ {2, . . . , t − 1} ε > 0, {y1:k} and ϕ ∈ Bb(Rdx) we have

sup
x∈dx

∣
∣
∣
∣

∫ [
Bπε

k
(x, z) − Bπk

(x, z)
]
ϕ(z)dz

∣
∣
∣
∣ ≤ Cε

where B∙ is defined in (4.8) and πk and πε
k are the true filter and its ABC approxi-

mation, respectively.

Proof. We have the decomposition:

∫ [
Bπε

k
(x, z) − Bπk

(x, z)
]
ϕ(z)dz =

∫
ϕ(z)q(x|z)

[
πε

k(z) − πk(z)
∫

πε
k(u)q(x|u)du

+ πk(z)

{ ∫
[πk(u) − πε

k(u)]q(x|u)du
∫

πε
k(u)q(x|u)du

∫
πk(u)q(x|u)du

}]

dz
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where we have suppressed both the data and the time index for the transition density

qk+1 from the notation.

Dealing with the first part, we have for some C that does not depend upon x, k, ε

or {y1:k} ∫
ϕ(z)q(x|z)

[
πε

k(z) − πk(z)
∫

πε
k(u)q(x|u)du

]

dz ≤
λ1

κ1

Cελ1κ1‖ϕ‖∞

where we have used (A5) to control q in both the numerator and denominator of

the integrand, and then Proposition 3.3.2. Now, for the second part

∫
ϕ(z)q(x|z)πk(z)

{ ∫
[πk(u) − πε

k(u)]q(x|u)du
∫

πε
k(u)q(x|u)du

∫
πk(u)q(x|u)du

}

dz ≤

(
λ1

κ1

)2

λ1κ1‖ϕ‖∞Cε

where, again (A5) has been applied along with Proposition 3.3.2 and C does not

depend upon x, k, ε or {y1:k}. Using the uniformity in x of the above bounds allows

us to conclude.

Proposition 4.4.1 establishes a linear bound for the error induced by the ABC

approximation of the joint smoothing density. That it is only linear encourages the

use of ABC in this context and motivates the simulation studies that appear in

Section 4.7.

As has been mentioned, it is often useful in practice to set the ABC tolerance

parameter adaptively, in order to encourage the survival of a given proportion of

particles in the resampling step of the SMC algorithms. In this situation, we extend

the above result and state that

Bs(t, ε) ≤ Ct max
1≤n≤t

{εn}.

4.5 Incorporating ABC into SMC Smoothing Procedures

The theoretical results in the previous section motivate the use of the SMC and

PMCMC procedures detailed in Section 4.3 for the estimation of smoothed additive
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functionals, defined with respect to the ABC approximation of the joint smoothing

distribution. This section details the development of particle smoothing and forward

smoothing procedures for implementation in an ABC framework.

As with the design of the ABC filtering procedures, the ABC smoothers will be

constructed by altering the weighting steps within the algorithms. For particle and

forward smoothing, respectively, this is achieved by replacing Step 3 in Algorithms

8 and 10 with the ABC weighting step in Algorithm 12:

3. Set t = t + 1. For i = 1, . . . , N , sample X
(i)
t and U

(i)
t according to the

proposal and observation densities, respectively, and calculate the filtering
weights

W
(i)
t ∝ W

(i)
t−1 ∙

Gεt
t

(
U

(i)
t , yt

)
qt,θ

(
X

(i)
t

∣
∣
∣X(i)

t−1

)

kt

(
X

(i)
t

∣
∣
∣X(i)

t−1

) ,
N∑

i=1

W
(i)
t = 1.

Algorithm 12: A weighting step for an ABC smoothing procedure

As with the ABC filtering algorithms presented in Chapter 3, we focus our

attention on the use of the indicator kernel:

Gε
t (ut, yt) = IAε,yt

(ut) ,

with Aε,yt = {u; ρ (s(u), s(yt)) < ε}, the L1-distance metric ρ and the identity func-

tion s(∙). As in the filtering framework, we note also the availability of a multiple-

pseudo-data (MPD) ABC procedure, where the following kernel, also based upon

the indicator function, is used:

Gε
t (ut, yt) =

1

J

J∑

j=1

IAε,yt
(ut,j) ,

for J ≥ 1 where, in an abuse of notation, ut = {ut,1, . . . , ut,J}.

As previously, the SMC procedures were implemented with dynamic resampling,
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using the estimated ESS as the resampling criterion, with an associated threshold of

N/2 particles. An adapted ABC precision parameter, recalculated at each iteration

such that the survival of a given proportion of particles at that iteration is highly

probable, may prove beneficial in preventing a collapse of the particle system, and

so this approach is adopted for the implementation of the SMC-based smoothing

experiments in Section 4.7.

In Chapter 3, it was observed that the effect of the SMC weight degeneracy issue,

detailed in Section 2.3.1, is a dramatic increase in the resampling rate of the particle

filter. It was noted that the exact particle filter suffers from this degeneracy to an

increased extent as the dimension of the hidden state increases, and it was further

observed in Section 3.6 that the ABC particle filter is less susceptible to SMC weight

degeneracy than the exact particle filter. As a result of its lower susceptibility to this

particular weight degeneracy issue, the performance of the ABC filter was observed

to be more robust to increases in model dimension.

This decrease in susceptibility to the SMC weight degeneracy issue is expected to

carry over to both the particle smoothing and forward smoothing procedures when

targeting the ABC approximation of the joint smoothing density (4.15). Since the

particle filter and smoother are procedurally equivalent, this is intuitive. For the

forward smoother, we note that the calculation of the filtering weights is exactly the

same as in both the particle filter and smoother. It is the recursive nature of this

calculation, and the resulting compounding of large incremental weights that leads

to a significant increase in the variance of the weights at successive iterations, and

it is this issue that is avoided by using the proposed ABC approximations to the

likelihood.

The Rejection SMC smoothing procedures, as detailed in Section 4.3.4, may

also be used to target the ABC approximation of the joint smoothing density. The

resulting procedures for RSMC particle smoothing and RSMC forward smoothing for

an ABC target are obtained by replacing the resampling step in the ABC smoothing
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algorithms with the rejection-resampling step (e.g. Step 2 in Algorithm 11). These

RSMC smoothing procedures are also examined for the ABC approximation of a

nonlinear SSM in Section 4.7.

4.6 Incorporating ABC into PMMH Procedures

In this section, we will consider the use of PMCMC methods for performing infer-

ence with respect to the ABC approximation (4.15) of the joint smoothing density,

motivated by the theoretical results of Section 4.4. In particular, we will use PMMH

procedures to estimate the ABC approximation of the smoothed additive functional

Sε
T . We also use this procedure to learn the unknown parameter vector θ in a batch

setting; we do not perform online parameter estimation.

Consider the particle marginal Metropolis Hastings (PMMH) procedure from

Section 2.4.3. Recall that the acceptance probability at each MH iteration is given

by

α ({x1:T , θ} , {x∗
1:T , θ∗}) = 1 ∧

πθ∗ (y1:T ) π (θ∗)

πθ (y1:T ) π (θ)

k (θ |θ∗ )

k (θ∗ |θ )
,

where k(θ∗|θ) is the proposal density used to generate candidate values θ∗ of the

parameter vector, and π∙(y1:T ) is the marginal likelihood of the observed data. Recall

also that, in practice, the marginal likelihoods in the acceptance probability are

replaced with their particle approximations, provided by the SMC proposal scheme

that generates the candidate state X∗
1:T .

We proceed by proposing two PMMH procedures for estimating the ABC smoothed

additive functional Sε
T .

4.6.1 ABC PMMH with Particle Selection Updates

As with the PMCMC procedures described in Section 2.4, one need only draw a

sample from the empirical SMC representation of πε
1:T,θ, and so an ABC PMMH

procedure is proposed here in which an SMC procedure that targets the ABC ap-
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proximation of the joint smoothing distribution πε
θ(dx1:T |y1:T ) is used at each MH

iteration to generate the system of particles
{

X
(i)
1:T , W

(i)
1:T

}N

i=1
. Selecting from the

generated particle system the single candidate particle X∗
1:T = X

(i)
1:T with probability

W
(i)
T , we calculate a candidate value for the smoothed additive functional,

S∗
T =

T∑

t=1

st(X
∗
t−1, X

∗
t ),

where we recall that X∗
0 = x0 is assumed known. This candidate smoothed addi-

tive functional is then accepted or rejected according to α ({x, θ} , {x∗, θ∗}), defined

as above, where the marginal likelihoods are estimated using the filtering weights
{

W
(i)
1:T

}N

i=1
. Recall that the marginal likelihood estimates can be calculated recur-

sively, and so the filtering weights for each time step t = 1, . . . , T do not need to be

stored.

The standard proposal scheme used here, where one particle from the generated

N -particle system is used as the candidate state, will be referred to in this thesis

as the particle selection update scheme. Similarly, the PMMH procedure described

here will be referred to as particle selection PMMH. We now consider an alternative

update scheme that makes use of all the particles generated at each MH iteration.

4.6.2 ABC PMMH with Forward Smoothing

In the particle selection PMMH procedure, the majority of the particles generated

at each MH iteration are discarded without being used; this is a significant waste

of information about the joint smoothing distribution. We introduce here a PMMH

procedure that uses a forward smoothing update scheme, which makes use of all

the particles generated at each MH iteration. This will be referred to as forward

smoothing PMMH.

The implementation of the forward smoothing PMMH procedure is much the

same as the particle selection PMMH procedure. Indeed, it is stressed in particular
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that this method does not involve a novel proposal scheme, as such; both the parti-

cle selection and forward smoothing update schemes are SMC procedures, and may

use the same methods for generating the particle system
{

X
(i)
1:T , W

(i)
1:T

}N

i=1
. Rather,

the forward smoothing update scheme proposed here can be viewed as simply in-

troducing a post-processing step at each time step of the particle selection update

scheme.

At each MH iteration, the candidate value for the smoothed additive functional

is proposed through the use of a forward smoothing procedure, as described in Algo-

rithm 10. The joint marginal likelihood of the observed data can also be estimated

at each iteration using the filtering weights generated in the forward pass of the

forward smoothing update.

It will be of interest to compare the performance of both the particle selection

PMMH and forward smoothing PMMH procedures when they are used to estimate

both the smoothed additive functional and its ABC approximation. This will be

considered in the next section.

4.7 Example: A Nonlinear SSM

We return to the example from Section 3.6 and consider the use of both parti-

cle smoothing and forward smoothing procedures, as well as a selection of PMMH

procedures for performing inference with respect to the ABC approximation of the

SSM (3.13)-(3.14). The RSMC alternatives to the smoothing procedures will also

be considered.

Throughout, we consider the accuracy of estimating the expected mean state

over the observation period [0, 100], i.e. we are interested in estimating the smoothed

additive functional, S100, defined by (4.2) and specified by the choice of sn (xn−1, xn)

as in (4.3). We will use the nonlinear SSM as defined in (3.13)-(3.14) with dx =
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dy = d, which will be further specified by

Vt ∼ N
(
0, σ2

XId

)
(i.i.d.),

Zt ∼ N
(
0, σ2

Y Id

)
(i.i.d.),

with σ2
X = 10 and σ2

Y = 1. Once again the unobserved state is initialised by X0 = 0d,

the d-length zero vector.

We perform both particle smoothing and forward smoothing for this problem,

and we focus on the effects that the use of the ABC and RSMC methodologies have,

both on the algorithmic performance of each of the procedures and on the accuracy

of the resulting estimates of ST . In particular, we examine the behaviour of each of

the smoothers and their estimates as the number of particles and the dimension d

of the state and observation spaces spaces change.

A direct comparison between the particle smoothing and forward smoothing

procedures in the SMC framework is omitted, as the SMC estimate of a smoothed

additive functional is known to be less accurate when using particle smoothing than

when using forward smoothing. Since both the size of the ABC bias (4.17), and

the degree to which the SMC error is reduced when targeting the ABC smoothing

distribution, are independent of the particular smoothing procedure used, the supe-

rior accuracy of the forward smoothing procedure will hold for the estimation of the

ABC approximation of ST . The numerical comparison of these alternate smoothing

procedures when applied to the ABC approximation is therefore also unnecessary.

4.7.1 Implementation Details

The numerical results presented here will culminate in a comparison of the PMMH

procedures with updates provided by the competing particle selection and forward

smoothing procedures. It will be of particular interest to compare the performance

of these methods when executed with comparable computational cost, which will
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N1 N2 N3 N4 N5

Particle Smoothing 4427 17,139 39,020 68,258 107,007

Forward Smoothing 100 200 300 400 500

N6 N7 N8 N9 N10

Particle Smoothing 155,698 207,938 275,755 343,524 424,085

Forward Smoothing 600 700 800 900 1,000

Table 4.1: Particle system sizes used for the implementation of the forward smooth-
ing and particle smoothing procedures, in order to obtain comparable algorithm
runtimes.

be determined by the number of particles used for each SMC update scheme. Re-

call that the computational cost of the forward smoothing algorithm is O(N2) and

note that the particle selection update scheme will be of the same computational

complexity as the particle smoothing procedure, O(N).

A naïve initial approach to obtaining comparable computational costs would be

to match each N -particle implementation of the forward smoothing procedure with

an N2-particle implementation of the particle smoothing procedure, however this

does not achieve the desired comparability. This is due to the fact that it is only the

estimation procedure within the forward smoothing algorithm that is O(N2); the

particle propagation, particle weighting and resampling mechanisms are all identical

to the corresponding sections of the particle smoothing procedure, and are O(N).

To obtain suitable values of N to use in the final implementations, preliminary

runs of the two smoothing procedures were executed to compare run times; for for-

ward smoothing, N was set to take values from 100 to 1000, at intervals of 100,

and the values of N for which the particle smoothing procedure had a matching

runtime (to within 1% when measured in seconds) are given in Table 4.1. As men-

tioned above, direct comparisons are not made between the particle smoothers and

forward smoothers in an SMC framework. Although the comparability of runtimes

was therefore unnecessary in this setting, the above values of N were used in the

implementation of the SMC smoothers, for sake of consistency.
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In assessing the accuracy of the various SMC and PMMH procedures considered

here, we require a ‘true’ value against which to measure the estimates ŜT . For the

SMC smoothing procedures, we use the mean estimate obtained over 50 implemen-

tations of the forward smoothing procedure with 5000 particles, and for the PMMH

procedures we use the estimate generated by a standard PMMH procedure, using

particle selection updates with 200, 000 particles; both of these procedures targeted

the exact SSM.

The accuracy of each of the smoothing procedures used to estimate ST was

measured using the dimension-adjusted L1-errors calculated as

1

d

d∑

i=1

∣
∣
∣ŜT,i − ST,i

∣
∣
∣ , (4.18)

where ŜT is the SMC or PMMH estimate of the expected mean state sequence over

the interval of interest and ST is the corresponding assumed true value over that

interval. These are the smoothing errors, and will be referred to with reference to

the particular smoothing procedure to which they refer; e.g. if ŜT is calculated using

the particle smoothing procedure then we refer to the particle smoothing errors or

the ABC particle smoothing errors, depending on whether the true SSM or its ABC

approximation was targeted, respectively.

To ensure consistency of the results, each of the SMC smoothing procedures were

repeated, with the aim being to generate 50 independent estimates of St for each

parameter pairing {N, d}. For some combinations of the parameters, however, the

ABC smoothers were observed to collapse due to the ABC weight degeneracy issue.

When an algorithm collapsed, the seed for the pseudo-random number generator

was reset, and that implementation was repeated; a maximum of 50 independent

repetitions per implementation were allowed before continuing to the next imple-

mentation. As a result, a maximum number of 2500 repetitions using the same

parameter pairing {N, d} before moving onto the next set of parameter values.
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For each of the ABC smoothing procedures, a sequence of ABC tolerances {εt}T
t=1

was set adaptively using the scheme described in Section 3.4.2: at time t, the tol-

erance εt was set to be the α-largest distance between the set of auxiliary data

generated at the previous time point,
{

u
(i)
t−1

}N

i=1
, and the corresponding observed

data yt−1. The control parameter α was set at b0.8Nc for all implementations con-

sidered.

When performing PMMH for an ABC target, a fixed value of ε was used for

implementing the SMC proposal schemes across all MCMC iterations. This value

was set at the start of each PMMH procedure, by running a single iteration of the

SMC proposal, with adaptive tuning of the tolerance parameter as described above,

again using α = b0.8Nc. The ABC tolerance for the remainder of the PMMH

procedure was then fixed at the maximum value in the sequence {εt}
T
t=1 generated

by this preliminary run.

4.7.2 Results and Analysis - SMC Smoothing Procedures

ABC Particle Smoothing vs. Particle Smoothing

We note first that none of the tested parameter combinations {N, d} resulted in a

consistent collapse of the ABC particle smoother, where we recall that a consistent

collapse is defined here as the collapse of the smoother at every attempted imple-

mentation, due to the ABC weight degeneracy issue. The lack of observed complete

collapses is to be expected here, as the particle system sizes that were used (see

Table 4.1) were large enough to avoid the ABC weight degeneracy issue.

We proceed by comparing the smoothing errors (4.18) obtained by the particle

smoothing procedure when applied to the nonlinear SSM and its ABC approxima-

tions. The mean smoothing errors, obtained over 50 implementations of each proce-

dure, are presented in Figure 4.1, with the error bars corresponding to the standard

errors obtained from each sample of 50 smoothing errors; the exact smoothing errors
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Figure 4.1: Smoothing errors for the exact (black) and ABC (red) particle smoothing
estimates of the mean smoothed state in the nonlinear SSM (3.13)-(3.14), calculated
over the interval of length T = 100. The crosses and errorbars indicate the mean
and standard errors of the smoothing errors obtained over 50 independent imple-
mentations of each procedure. The nonlinear SSM is specified by σ2

X = 10, σ2
Y = 1.

are displayed in black, with the ABC smoothing errors in red.

From Figure 4.1, we immediately note the expected performance of the exact

particle smoother. As the dimension d increases, the accuracy of the estimates dete-

riorates and for low to moderate dimensions (d ∈ {1, 2, 5}), there is an improvement

in accuracy as N increases, illustrated by a decrease in both the mean and stan-

dard error of the exact particle smoothing errors. For d = 10, there is no such

improvement in accuracy as N increases. As was observed for the particle filter in

Section 3.6, this is indicative of the SMC approximation of the particle distribution

breaking down due to significant SMC weight degeneracy. This is corroborated by
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N = N1 N = N2 N = N3 N = N4 N = N5

d = 1 73.33% 73.13% 72.99% 73.11% 72.81%

d = 2 96.67% 96.57% 96.44% 96.46% 96.42%

d = 5 99.96% 99.94% 100.00% 100.00% 99.98%

d = 10 100.00% 100.00% 100.00% 100.00% 100.00%

N = N6 N = N7 N = N8 N = N9 N = N10

d = 1 72.87% 72.83% 72.85% 72.87% 72.85%

d = 2 96.38% 96.40% 96.26% 96.36% 96.34%

d = 5 100.00% 100.00% 100.00% 100.00% 100.00%

d = 10 100.00% 100.00% 100.00% 100.00% 100.00%

Table 4.2: Average resampling rates obtained over 50 implementations of the exact
particle smoothing procedure, when applied to the nonlinear SSM (3.13)-(3.14) using
N ∈ N1:10.

the observed SMC resampling rates presented in Table 4.2, where a value of 100%

implies that resampling due to weight degeneracy was required at each of the time

steps at which it was considered.

From Table 4.2, it is also evident that there was significant weight degeneracy

observed for d = 5, yet an improvement in accuracy was noted for increasing N .

Indeed, from Figure 4.1, note that the accuracy of the exact particle smoother is

very poor for low values of N , where the weight degeneracy issue has the greatest

effect. For increasing N in this dimension, we note that there is a degree of masking,

where, although the smoother was required to resample at almost every time step,

the use of large particle systems reduced the effects of the particle path degeneracy

phenomenon. It is further noted that additional implementations of the particle

smoothing procedure were executed using values of N up to N = 1, 696, 400, and

no such masking was observed in the exact particle smoothing estimates for d = 10.

Consider now the ABC particle smoothing errors presented in Figure 4.1. As seen

in Sections 3.6 and 3.5 for the ABC particle filter, the mean ABC particle smoothing

error is observed to be dominated by the bias of the ABC approximation, indicated

by the apparent insensitivity of the mean ABC particle smoothing error to significant
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N = N1 N = N2 N = N3 N = N4 N = N5

d = 1 31.92% 32.22% 32.24% 32.32% 32.30%

d = 2 34.08% 34.14% 34.10% 34.28% 34.28%

d = 5 37.21% 37.35% 37.37% 37.37% 37.37%

d = 10 44.08% 44.40% 44.44% 44.44% 44.44%

N = N6 N = N7 N = N8 N = N9 N = N10

d = 1 32.32% 32.32% 32.32% 32.32% 32.32%

d = 2 34.34% 34.32% 34.34% 34.34% 34.34%

d = 5 37.37% 37.37% 37.37% 37.37% 37.37%

d = 10 44.44% 44.44% 44.44% 44.44% 44.44%

Table 4.3: Average resampling rates obtained over multiple implementations of the
particle smoothing procedure, when applied to the ABC approximation of the non-
linear SSM (3.13)-(3.14) using N ∈ N1:10.

increases in N .

Note that, for all d tested, the variance of the errors is observed to decrease as N

increases and, in moderate to high dimensions, the ABC particle smoothing errors

are lower than the corresponding exact particle smoothing errors. Both of these

observations indicate that the SMC approximation of the ABC approximation of the

smoothing distribution has not collapsed, and that the ABC particle smoother is

more resilient to the SMC weight degeneracy issue. This is confirmed by considering

the resampling rates for the ABC particle smoother, presented in Table 4.3.

Although the resampling rates for the ABC particle smoother were observed to

increase with the dimension d, indicating an increase in weight degeneracy, compar-

ison with Table 4.2 confirms that the ABC particle smoother is less prone to weight

degeneracy than the exact particle smoother.

In general, these results are encouraging for ABC particle smoothing, as the ABC

bias, which is observed to dominate the particle smoothing error can be controlled

through the tolerance parameter ε. Furthermore, these results suggest that ABC

particle smoothing can be employed as a valid alternative to exact particle smoothing

in high dimensions.
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ABC Forward Smoothing vs. Forward Smoothing

We now turn to the implementations of the forward smoothing procedure, noting

first that none of the tested parameter combinations {N, d} resulted in a complete

collapse of the ABC forward smoother, although a repeated collapse was observed

when implementing the ABC forward smoother with {N, d} = {100, 10}; for this

implementation, 24 of 50 independent implementations were successful. It is also

noted that, for this parameter pairing, the ABC forward smoother was also observed

to collapse multiple times when using the RSMC methodology of Section 2.3.2; for

this procedure, 36 of 50 implementations were successful. For all other parameter

combinations {N, d} attempted, all 50 independent implementations of the ABC

forward smoothers, using both SMC and RSMC resampling schemes, were successful.

The mean exact and ABC forward smoothing errors, calculated as in (4.18),

along with the standard errors obtained from each sample of smoothing errors, are

presented in Figure 4.2.

Broadly speaking, the observations that can be made here are similar to those

made for the particle smoothing procedures. Consider first the errors presented for

the exact forward smoother. In low dimensions (d ∈ {1, 2}), the accuracy of the

exact forward smoothing procedure, measured in terms of the mean and standard

error of the resulting smoothing errors, is observed to increase as N increases. In

moderate to high dimensions (d ∈ {5, 10}), the exact forward smoothing proce-

dure was also shown to be susceptible to significant SMC weight degeneracy; this is

demonstrated in the smoothing errors with a lack of improvement in accuracy with

increasing N . It should be noted that this is despite the resilience of the forward

smoothing procedure to the particle path degeneracy issue. Here, degeneracy in the

SMC weights at each time step directly affects the accuracy of the recursively cal-

culated estimates of the auxiliary function Rt(xt), which in turn affect the accuracy

of the forward smoothing estimate. This is in contrast to the effect of SMC weight
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Figure 4.2: Smoothing errors for the exact (black) and ABC (red) forward smoothing
estimates of the mean smoothed state in the nonlinear SSM (3.13)-(3.14), calculated
over an interval of length T = 100. The crosses and errorbars indicate the mean and
standard errors of the smoothing errors obtained over 50 independent implementa-
tions of each procedure. The nonlinear SSM is specified by σ2

X = 10, σ2
Y = 1.

degeneracy on the particle smoothing estimates, which is realised indirectly through

the need to resample often and the resulting path degeneracy issue.

Recall that the effect of SMC weight degeneracy on the accuracy of the exact

particle smoother was masked in moderate dimensions by the use of large values of

N . Since the forward smoothing procedures were implemented here with far fewer

particles, a relative lack of masking might be expected for the forward smoothing

results. By increasing N sufficiently, one could achieve masking for the forward

smoothing procedure, however this is an impractical solution due to the O(N2)

computational cost of the algorithm.
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Consider now the ABC forward smoothing errors, presented in Figure 4.2, in red.

We note once again the apparent insensitivity of the magnitude of the ABC forward

smoothing errors to significant increases in N and deduce that the ABC forward

smoothing error is again being dominated by the bias of the ABC approximation of

the smoothing distribution. As before, it is also noted from these results that the

ABC forward smoother is more resilient to the SMC weight degeneracy issue than the

exact forward smoother, and this is demonstrated in the decreasing variance of the

ABC forward smoothing errors and the greater accuracy of these errors in moderate

to high dimensions, relative to their exact counterparts. This relative resilience to

the SMC weight degeneracy issue was also observed in the SMC resampling rates;

the resampling rates for both the exact and ABC forward smoothers are omitted as

they add no further information to that provided by the resampling rates for the

exact and ABC particle smoothers.

As stated above, the O(N 2) computational cost of the forward smoothing proce-

dure means that one is unable to apply a ‘brute force’ approach in high dimensions

by significantly increasing the number of particles in order to overcome the effect

of SMC weight degeneracy. As a result, the superior accuracy of the ABC forward

smoother over the exact forward smoother in moderate to high dimensions has added

significance.

RSMC Smoothing

The particle smoothing and forward smoothing procedures were also implemented

using the RSMC methodology detailed in Section 2.3.2. Recall that the principal ob-

jective here is to observe whether any improvement in the variance of the smoothing

estimates can be observed when incorporating the RSMC methodology. With this

in mind, we consider the standard errors of the smoothing estimates obtained over

multiple independent implementations of each procedure. It will also be of inter-

est, however, to observe any effect on accuracy that the use of RSMC methodology
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might have. We therefore also consider below the mean and standard errors of the

smoothing errors obtained from the implementation of each procedure, both with

and without the use of RSMC.

To begin, we consider the use of both ERSMC and TRSMC for targeting the

exact model; the use of RSMC for performing inference with respect to the ABC

approximation of the smoothing distribution will be considered below. The standard

errors for the RSMC and SMC particle smoothing estimates are presented in Figure

4.3. The standard errors corresponding to those implementations that used N ∈

{N1, N2, N3} were observed to be significantly larger than those corresponding to

N ≥ N4. These were therefore omitted for the sake of clarity in presenting the

standard errors for N ≥ N4, and the vertical axis was scaled accordingly. The

corresponding standard errors for the forward smoothing estimates and their RSMC

alternatives are presented in Figure 4.4.

From Figure 4.3, we note first that, for d ∈ {1, 2, 5}, the standard errors decrease

in general as N increases, confirming the results observed for the SMC particle

smoother above. That this is also observed for the RSMC procedure is expected. In

the one-dimensional case, a consistent marginal improvement over the SMC particle

smoothing procedure can be observed for both the ERSMC (blue) and TRSMC

(green) particle smoothing procedures. As the dimension increases, however, the

advantage of the ERSMC procedure over the SMC benchmark is less evident than

for the TRSMC procedure. There are occasions at which the ERSMC procedure

provides estimates with lower standard error, e.g. for {N, d} = {N9, d2}, however

this advantage is not observed in general as N grows. Despite this, the standard

errors remain competitive for the both the ERSMC and TRSMC particle smoothers,

in comparison to the SMC particle smoother.

From Figure 4.4, we note that no consistent improvement is observed for either of

the RSMC forward smoothers over the SMC forward smoother. It is not surprising

that the lower asymptotic variance offered by the use of RSMC is more evident in
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Figure 4.3: Standard errors of the exact SMC, ERSMC and TRSMC particle
smoothing estimates of the mean smoothed state in the nonlinear SSM (3.13)-(3.14),
calculated over an interval of length T = 100. Each plot illustrates the standard
errors of 50 independent estimates produced by the exact particle smoothers using
SMC (black), ERSMC (blue) and TRSMC (green) kernels. The nonlinear SSM is
specified by σ2

X = 10, σ2
Y = 1.

the particle smoothing estimates than in the forward smoothing estimates, as the

values of N used for the implementations of the particle smoothers were significantly

greater than those used for the forward smoothing procedures; see Table 4.1.

From both Figure 4.3 and Figure 4.4, we further note that the use of RSMC does

not seem to offer any additional protection against the SMC weight degeneracy issue

that causes the SMC smoothing procedures to suffer as the dimension d increases.

We turn now to the use of RSMC in performing smoothing with respect to the

ABC approximation of the nonlinear SSM (3.13)-(3.14), where we recall that the

empirical and theoretical acceptance probabilities coincide in this scenario, and so
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Figure 4.4: Standard errors of the exact SMC, ERSMC and TRSMC forward
smoothing estimates of the mean smoothed state in the nonlinear SSM (3.13)-(3.14),
calculated over a period of length T = 100. Each plot illustrates the standard errors
of 50 independent estimates produced by the exact forward smoothers using SMC
(black), ERSMC (blue) and TRSMC (green) kernels. The nonlinear SSM is specified
by σ2

X = 10, σ2
Y = 1.

the ERSMC and TRSMC procedures are equivalent. The standard errors corre-

sponding to the smoothing estimates produced by the ABC particle smoother and

its RSMC alternative are presented in Figure 4.5, and the corresponding results for

the ABC forward smoother and its RSMC alternative are presented in Figure 4.6.

As with Figures 4.3 and 4.4 above, the results corresponding to the ABC smoothing

procedures using N ≤ N3 particles are omitted from these figures for the sake of

clarity.

For both the ABC particle smoother and the ABC forward smoother, these

figures demonstrate that the advantage of lower asymptotic variance in the CLT
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Figure 4.5: Standard errors of the ABC SMC and RSMC particle smoothing esti-
mates of the mean smoothed state in the nonlinear SSM (3.13)-(3.14), calculated
over a period of length T = 100. Each plot illustrates the standard errors of 50
independent estimates produced by the ABC particle smoothers using SMC (red)
and RSMC (blue) kernels. The nonlinear SSM is specified by σ2

X = 10, σ2
Y = 1.

associated with the RSMC smoothing estimates is clearly realised for finite N . These

figures also reaffirm the general improvement in estimator variance as N increases,

in all dimensions tested, for both the ABC SMC and ABC RSMC particle smoothing

procedures, as well as for the corresponding ABC forward smoothing procedures.

It is important to highlight that these observations are made where the SMC

procedures use dynamic resampling. For the particle smoothing procedure, the use

of dynamic resampling protects, to an extent, against the particle path degeneracy

issue that is prevalent when resampling occurs too often, and so the variance of

the resulting smoothing estimates is expected to be improved with its use. These

empirical results therefore extend and complement the theoretical work of Del Moral
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Figure 4.6: Standard errors of the ABC SMC and RSMC forward smoothing esti-
mates of the mean smoothed state in the nonlinear SSM (3.13)-(3.14), calculated
over a period of length T = 100. Each plot illustrates the standard errors of 50
independent estimates produced by the ABC forward smoothers using SMC (red)
and RSMC (blue) kernels. The nonlinear SSM is specified by σ2

X = 10, σ2
Y = 1.

(2004), who considers the case where resampling is executed at every time step of

the SMC procedure.

We now consider the accuracy of the RSMC smoothing estimates, measured in

terms of the mean smoothing errors (4.18) obtained over all independent implemen-

tations of each procedure. The smoothing errors for the exact SMC and RSMC

particle smoothers are presented in Figure 4.7 and the smoothing errors for the ex-

act SMC and RSMC forward smoothers are presented in Figure 4.8. As before, the

results corresponding to N ≤ N3 have been omitted to clarify the presentation of

the results for N ≥ N4.
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Figure 4.7: Smoothing errors for the exact SMC (black), ERSMC (blue) and TRSMC
(green) particle smoothing estimates of the mean smoothed state in the nonlinear
SSM (3.13)-(3.14), calculated over an interval of length T = 100. The crosses and
errorbars indicate the mean and standard errors of the smoothing errors obtained
over 50 independent implementations of each procedure. The nonlinear SSM is
specified by σ2

X = 10, σ2
Y = 1.

From Figure 4.7, we note that, in terms of the mean smoothing errors obtained,

the accuracy offered by the use of both the exact ERSMC and TRSMC particle

smoothing procedures is extremely comparable to that of the exact SMC particle

smoothing procedure, with neither a consistent improvement or deterioration in

accuracy being evident in the comparison of the RSMC and SMC results, as N grows.

The accuracy of the exact ERSMC and TRSMC forward smoothing procedures is

also observed in Figure 4.8 to be largely comparable to that of the exact SMC

forward smoothing procedures. It is further noted that, as would be expected, the

significant deterioration in the accuracy of the procedure due to the weight and
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Figure 4.8: Smoothing errors for the exact SMC (black), ERSMC (blue) and TRSMC
(green) forward smoothing estimates of the mean smoothed state in the nonlinear
SSM (3.13)-(3.14), calculated over an interval of length T = 100. The crosses and
errorbars indicate the mean and standard errors of the smoothing errors obtained
over 50 independent implementations of each procedure. The nonlinear SSM is
specified by σ2

X = 10, σ2
Y = 1.

particle degeneracy issues is also evident here for the implementation of the particle

smoothers with d = 10 and for the implementations of the forward smoothers with

d ∈ {5, 10}.

It has been seen that the use of RSMC has the potential to improve the variance

of the exact smoothing estimates whilst maintaining a comparable accuracy in terms

of the corresponding smoothing errors. In order to ascertain whether RSMC can

be considered a viable alternative to SMC with dynamic resampling, we need to

also consider the computational cost of each procedure. This is considered below,

however we first consider the effect that the use of RSMC has on the accuracy of the
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Figure 4.9: Smoothing errors for the ABC SMC (red) and ABC RSMC (blue) par-
ticle smoothing estimates of the mean smoothed state in the nonlinear SSM (3.13)-
(3.14), calculated over an interval of length T = 100. The crosses and errorbars
indicate the mean and standard errors of the smoothing errors obtained over 50
independent implementations of each procedure. The nonlinear SSM is specified by
σ2

X = 10, σ2
Y = 1.

ABC smoothing procedures. Figure 4.9 presents the smoothing errors for the ABC

particle smoothing procedures, and Figure 4.10 presents the errors for the ABC

forward smoothing procedures; we consider the ABC forward smoothing procedures

first.

From Figure 4.10, it is noted that the observed accuracy of the SMC and RSMC

procedures for performing ABC forward smoothing are also very comparable, with

the RSMC estimates even appearing to offer a marginal improvement over the SMC

estimates in terms of mean smoothing error. Thus, combining with the clear re-

duction in estimator variance as N increases, observed in Figure 4.6, we need only
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Figure 4.10: Smoothing errors for the ABC SMC (red) and ABC RSMC (blue)
forward smoothing estimates of the mean smoothed state in the nonlinear SSM
(3.13)-(3.14), calculated over an interval of length T = 100. The crosses and error-
bars indicate the mean and standard errors of the smoothing errors obtained over
50 independent implementations of each procedure. The nonlinear SSM is specified
by σ2

X = 10, σ2
Y = 1.

take into account any difference in computational performance of the alternative

procedures before deciding whether the use of RSMC for ABC forward smoothing

is preferable. Again, this is considered below.

Figure 4.9 offers different results to those observed in Figures 4.7, 4.8 and 4.10.

When performing smoothing with respect to a one-dimensional state (d = 1) via

an ABC approximation of the SSM, Figure 4.9 indicates that the use of an RSMC

particle smoothing procedure significantly reduces the accuracy of the resulting es-

timates, in comparison to an SMC procedure with dynamic resampling. In direct

contrast, when performing inference with respect to the ABC approximation of a
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smoothing distribution on two-dimensional space, the use of RSMC particle smooth-

ing is observed to offer a significant and consistent improvement over SMC particle

smoothing in the accuracy of the resulting estimates. Since this discrepancy in

observed accuracies is observed for the RSMC and SMC particle smoothing proce-

dures, yet there is a relative comparability in the corresponding forward smoothing

procedures, we postulate that this can be attributed to excessive resampling in the

RSMC procedure, leading to a path degeneracy issue.

To conclude the analysis of the smoothing procedures considered here, we con-

sider the computational efficiency of the RSMC procedures in comparison with the

corresponding SMC procedures. When performing exact smoothing via the ERSMC

and TRSMC procedures, the processing times were observed to be extremely simi-

lar. This is to be expected, as the only difference in the computational cost of the

two procedures arises from the calculation of the denominator of the acceptance

probabilities. In practice, this value need only be calculated once per time step at

little computational expense. As a result, the processing time for the exact TRSMC

smoothing procedures are omitted, with the processing times for the exact ERSMC

smoothing procedures serving to represent both the empirical and theoretical alter-

natives to RSMC.

The mean processing times for a single implementation of the SMC and RSMC

particle smoothing procedures, applied to both the exact SSM (3.13)-(3.14) and

its ABC approximation, are given in Tables 4.4-4.7. The processing times for the

corresponding forward smoothing procedures are provided in Tables 4.8-4.11.

Recall that, for performing exact particle smoothing, the TRSMC procedure

was observed to compete with the dynamic resampling SMC procedure in terms

of estimator variance, whilst retaining a comparable accuracy as measured by the

dimension-adjusted L1-errors of the smoothing estimates ŜT . We also note from

Tables 4.4 and 4.5 that the RSMC procedure for exact particle smoothing was

observed to have a very comparable runtime, if marginally higher. Thus, we deduce



4.7 Example: A Nonlinear SSM 170

N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 1.0108 4.4258 9.7826 17.1376 27.4512

d = 2 1.5606 6.1820 13.9160 24.3754 38.2332

d = 5 2.7808 11.2390 26.0350 45.5270 70.7568

d = 10 4.9566 20.2906 45.2510 81.8600 123.3148

Table 4.4: Mean processing times (in seconds), obtained over 50 independent appli-
cations of the SMC particle smoother to the exact nonlinear SSM.

N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 1.2396 5.1656 11.6942 20.5058 31.3972

d = 2 1.6046 6.7168 15.0990 26.4816 40.7036

d = 5 2.9214 11.6446 26.6104 47.0046 71.9300

d = 10 5.0624 20.4168 46.7590 82.5646 126.6024

Table 4.5: Mean processing times (in seconds), obtained over 50 independent appli-
cations of the ERSMC particle smoother to the exact nonlinear SSM.

N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 1.8548 7.3596 17.1774 29.5828 44.8888

d = 2 2.4576 9.7208 22.5078 39.7938 60.8722

d = 5 4.1114 16.9964 39.0258 69.4944 101.8816

d = 10 7.4704 29.9406 68.2582 120.8642 188.2086

Table 4.6: Mean processing times (in seconds), obtained over 50 independent appli-
cations of the SMC particle smoother to the ABC approximation of the SSM.

N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 2.0338 8.4888 19.7714 35.7858 52.6326

d = 2 2.6566 11.0972 25.3702 46.1374 70.3412

d = 5 4.5342 18.0778 42.0240 72.5004 110.0044

d = 10 7.6290 30.4364 70.0202 124.0132 188.4936

Table 4.7: Mean processing times (in seconds), obtained over 50 independent appli-
cations of the RSMC particle smoother to the ABC approximation of the SSM.

that, for performing exact particle smoothing, the TRSMC procedure provides an

alternative to the dynamic resampling based SMC procedure that has the potential

to produce estimates with lower variance when using large particle systems. It is

further remarked that, in the situation where the supremum in the denominator

of the TRSMC acceptance probability is unavailable, the ERSMC procedure could

provide an accessible alternative.
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N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 1.1232 4.3686 9.8096 17.2132 26.8020

d = 2 1.5998 6.2580 14.2900 25.0166 39.0418

d = 5 3.1618 12.4266 28.3480 49.9004 77.5224

d = 10 5.8152 24.8182 52.6138 91.6824 142.9032

Table 4.8: Mean processing times (in seconds), obtained over 50 independent appli-
cations of the SMC particle smoother to the exact SSM.

N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 1.1754 4.5314 10.1178 17.9038 27.8734

d = 2 1.6818 6.5414 15.2508 25.9192 41.0166

d = 5 3.3050 12.6654 29.8238 50.5984 79.0068

d = 10 5.8114 23.0792 51.6424 91.7454 143.0206

Table 4.9: Mean processing times (in seconds), obtained over 50 independent appli-
cations of the ERSMC forward smoother to the exact SSM.

N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 1.0736 4.1550 9.4308 16.8312 25.8450

d = 2 1.6112 6.2546 14.1610 24.8502 38.7978

d = 5 3.1330 12.3690 27.9514 50.5372 77.2082

d = 10 5.7852 22.8770 51.7906 91.8502 143.2292

Table 4.10: Mean processing times (in seconds), obtained over 50 independent ap-
plications of the SMC forward smoother to the ABC approximation of the SSM.

N = N2 N = N4 N = N6 N = N8 N = N10

d = 1 1.0370 4.0390 9.0972 16.0752 25.2446

d = 2 1.5590 5.9966 13.5144 23.8274 37.0882

d = 5 2.9958 11.8926 26.5716 47.0250 73.5766

d = 10 5.5552 21.4488 48.2644 85.5338 133.7458

Table 4.11: Mean processing times (in seconds), obtained over 50 independent ap-
plications of the RSMC forward smoother to the ABC approximation of the SSM.

As can be observed in Tables 4.8 and 4.9, the observed runtimes for the exact

SMC forward smoother and its RSMC alternatives were extremely comparable. This

is to be expected, as the computational complexity of the procedures is dominated

by the estimation steps within, which remain unchanged when incorporating the

RSMC methodology. As a result of the O(N 2) computational cost, when perform-

ing exact forward smoothing via RSMC, a consistent observable improvement in
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estimator variance is likely to require a particle system size N that renders the com-

putational expense of the algorithm prohibitive. Based upon the results presented

here, the use of RSMC for performing exact forward smoothing cannot be expected

to produce superior estimates to SMC with dynamic resampling within a reasonable

computational budget, although comparable estimator accuracy may be obtained

when SMC with dynamic resampling is undesirable.

We consider now the viability of the RSMC procedure for performing ABC parti-

cle smoothing. In the one-dimensional case, the improvement in estimator variance

is clear, however this is made less relevant by the significant increase in the ob-

served smoothing errors. In addition, the increase in runtimes observed in Tables

4.6 and 4.7, whilst small in absolute terms, represents a significant relative increase.

Therefore, the use of RSMC for one-dimensional ABC particle smoothing would not

be encouraged, given the above results. For d ∈ {2, 5}, the decrease in estimator

variance is still evident. Further, the smoothing errors in Figure 4.9 indicates a

significant and marginal increase in the accuracy of the estimates for d = 2 and

d = 5, respectively. Although these advantages come with an equally significant

relative increase in the observed runtimes, the improved accuracy could encourage

the use of RSMC in performing ABC particle smoothing. In high dimensions, we

note that the improvement in estimator variance from the incorporation of RSMC

is still clear, as observed in Figure 4.5, and that the smoothing errors displayed in

Figure 4.9 indicate comparable estimator accuracy. Therefore, RSMC can also be

considered as a viable alternative to SMC with dynamic resampling when performing

high-dimensional ABC particle smoothing.

Finally, we consider the use of RSMC for performing ABC forward smoothing.

The improvement in estimator variance is evident in all dimensions d ∈ {1, 2, 5, 10},

and this is complemented by the extremely comparable smoothing errors presented

in Figure 4.10. In addition, the observed runtimes for the ABC forward smoothing

procedure were consistently lower when using the RSMC method. These results
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are extremely encouraging, and they suggest that the use of RSMC would not only

be a viable alternative, but it would be preferable to using SMC with dynamic

resampling when using forward smoothing to perform inference with respect to the

ABC approximation of the smoothing distribution.

4.7.3 Results and Analysis - PMMH Procedures

We consider here the implementation of the various PMMH procedures proposed in

Section 4.6.

PMMH with Particle Selection

We consider here the use of PMMH with particle selection updates, for estimating

ST as specified by (4.2)-(4.4), and its ABC approximation Sε
T . The PMMH setup

used here is similar to that considered in Section 3.1 of Andrieu et al. (2010): we use

N = 2000 particles for the SMC update schemes across M = 50, 000 MH iterations,

discarding a burn-in sample of 10, 000 iterations. If a particular SMC proposal

scheme resulted in collapse, the seed for the pseudo-random number generator was

reset and the proposal scheme was repeated. Each of the PMMH procedures was

implemented 10 times to observe consistency of results.

Figure 4.11a presents the histogram and sample traces for the post-burn-in sam-

ples of ST , obtained from a single implementation of the exact particle-selection

PMMH procedure, whilst 4.11b provides the corresponding plots for Sε
T obtained

using a single implementation of the ABC particle-selection PMMH procedure.

We immediately note from Figure 4.11 that the variance of the PMMH sample is

significantly higher for the estimate of the ABC smoothed additive functional than

for the exact case; this can be linked to both an decrease in the SMC resampling

rate and an increase in the MH acceptance rate when adopting an ABC approxima-

tion. The SMC resampling rates were obtained from the SMC proposal procedures

corresponding to the 40,000 post-burn-in MH iterations; the average resampling
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Figure 4.11: Bar and trace plots showing the distribution and path of the post-burn-
in samples obtained using an exact particle selection PMMH procedure (a) and an
ABC particle selection PMMH procedure (b). These samples are used to estimate
the mean smoothed state in the nonlinear SSM (3.13)-(3.14), over an interval of
length T = 100. The nonlinear SSM is specified by σ2

X = 10, σ2
Y = 1.

rates for the exact and ABC procedures were obtained by averaging, first over the

40,000 post-burn-in iterations, and then again over 10 independent implementations

of each PMMH procedure. The MH acceptance rate for each procedure was also

averaged over 10 independent implementations. The average SMC resampling rate

was observed to drop from 81.39% to 20.97% when adopting the ABC approxima-

tion, whereas the MH acceptance rate, also averaged over 10 independent PMMH
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implementations, increased from 39.46% to 62.59%.

A decreased resampling rate in the proposal schemes results in a more diverse

genealogical tree representation of the smoothing distribution, from which the candi-

date value of ST is selected for the MH procedure. Thus the sample of MH candidate

values is observed to be more diverse. Given this increased diversity in the candi-

dates, the increase in the MH acceptance rate clearly encourages greater diversity

in the accepted sample. It is also remarked that, as well as the decrease in SMC

resampling rate, the increase in MH acceptance rate can also be attributed to the

decrease in SMC weight degeneracy resulting from the use of ABC. The increased

diversity in the importance weights at each time step results in less variable esti-

mates π̂θ(y1:T ) of the marginal likelihood at each MCMC iteration, leading to more

consistent ratios of consecutive marginal likelihood estimates, which in turn lead to

higher MH acceptance rates.

The comparative accuracy of the particle-selection PMMH procedure and its

ABC alternative is somewhat masked by the scale of the axes in Figure 4.11, chosen

to emphasise the increase in sample variance. The PMMH estimates and corre-

sponding MH sample standard errors are therefore presented in Figure 4.12.

It is noted that the ABC bias is clearly evident in the accuracy of the estimates

provided by the ABC particle-selection PMMH procedure. Combining this with the

significant increase in the sample standard errors that results from using an ABC

approximation, we conclude that the ABC particle-selection PMMH procedure does

not provide competitive estimates of one-dimensional smoothed additive functionals

when compared against the corresponding exact procedure.

Particle Selection Updates vs Forward Smoothing Updates

We now consider the use of forward smoothing PMMH, as described in Section

4.6, for estimating both the exact smoothed additive functional ST and its ABC

approximation Sε
T , and we seek to compare the performance of these procedures
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Figure 4.12: PMMH estimates of the mean smoothed state in the nonlinear SSM
(3.13)-(3.14), calculated using the exact (black) and ABC (red) particle selection
PMMH procedures to perform estimation over an interval of length T = 100. The
crosses and errorbars correspond to the estimates and MH sample standard errors,
respectively and the errors for 10 independent implementations of each procedure
are shown. The dashed horizontal line gives the ‘true’ value of ST . The nonlinear
SSM is specified by σ2

X = 10, σ2
Y = 1.

against the corresponding particle selection PMMH procedures. As detailed at the

start of this section, the aim here will be to compare forward smoothing and particle-

selection PMMH procedures with comparable algorithmic runtimes. Therefore, in

order to observe any potential improvement with increasing particle system size,

the procedures were implemented using N ∈ {N1, . . . , N5} particles, as detailed in

Table 4.1. As before, all PMMH procedures were implemented using 50,000 MH

iterations, with a burn-in period of 10,000 iterations.

The smoothing errors corresponding to the estimates provided by each of the
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N = N1 N = N2 N = N3 N = N4 N = N5

PS PMMH
0.0053 0.0037 0.0002 0.0003 0.0003
(0.3054) (0.3073) (0.3088) (0.3055) (0.3068)

ABC PS PMMH
0.2460 0.2401 0.2171 0.2559 0.2451
(0.333) (0.3121) (0.3005) (0.3206) (0.344)

FS PMMH
0.0407 0.0132 0.0026 0.0023 0.0029
(0.0694) (0.0944) (0.0871) (0.0711) (0.0686)

ABC FS PMMH
0.0214 0.0423 0.0540 0.0339 0.0105
(0.3219) (0.2207) (0.1796) (0.1605) (0.1491)

Table 4.12: Smoothing errors for the PMMH estimates of the smoothed additive
functional ST and its ABC approximation Sε

T , obtained using PMMH procedures
with particle selection and forward smoothing updates. The corresponding PMMH
sample standard errors are provided in brackets. Both the smoothing errors and
the PMMH sample standard errors were calculated using the post-burn-in PMMH
sample.

considered PMMH procedures are presented in Table 4.12, with the standard errors

of the corresponding MH sample provided in brackets. The PMMH estimates and

their corresponding MH sample standard errors were calculated post-burn-in, and

are also depicted in Figure 4.13, where the ‘true’ value of ST is given by the horizontal

dashed line.

We immediately note the significant improvement in MH sample variance that

the use of forward smoothing PMMH offers, when estimating both the smoothed

additive functional ST and its ABC estimate Sε
T . This is to be expected, as the

proposed values of the smoothed additive functional at each MH iteration will be

more accurate, in general, than those generated by the particle selection procedure.

Of added interest here is the behaviour of these estimates as N increases. Figure

4.13 suggests that the MH sample variance corresponding to both the exact forward

smoothing PMMH procedure and its ABC alternative, decreases as the particle sys-

tem size increases. In contrast, Figure 4.13 also suggests that the sample variance

for both the exact and ABC particle selection PMMH procedures is relatively insen-

sitive to increasing N . These observations are corroborated by the values reported
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Figure 4.13: PMMH estimates of the mean smoothed state in the nonlinear SSM
(3.13)-(3.14), over an interval of length T = 100. The estimates were obtained using
the exact particle selection PMMH procedure (black, solid lines), the exact forward
smoothing PMMH procedure (black, dashed lines) and their ABC alternatives (red,
solid and dashed lines, respectively), for a variety of particle system sizes N . The
crosses and errorbars correspond to the estimates and MH sample standard errors,
respectively. The dashed horizontal line gives the ‘true’ value of ST . The nonlinear
SSM is specified by σ2

X = 10, σ2
Y = 1.

in Table 4.12.

The significance of the contrasting behaviour of the PMMH procedures with

particle selection and forward smoothing updates is amplified by the fact that the

number of particles used for the particle selection PMMH procedures, and hence

the increase in the number of particles, is much greater than that for the forward

smoothing PMMH procedures. These observations indicate that the variance in the

CLT for the particle smoothing PMMH estimator is dominated by the effect of some-
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N = N1 N = N2 N = N3 N = N4 N = N5

PS PMMH 12,869 51,979 121,362 207,421 324,681

ABC PS PMMH 15,071 56,556 129,825 232,346 361,098

FS PMMH 13,708 53,683 122,379 214,616 335,822

ABC FS PMMH 22,061 66,417 136,193 225,832 347,568

Table 4.13: Processing times, in seconds, for a single implementation of each PMMH
procedure. Each procedure was executed for M = 50, 000 MH iterations.

thing other than N . Taking into consideration the fact that the asymptotic variance

of the SMC particle smoothing estimator is at least O(T 2), and thus dominated by

the length of the observation period (as discussed in Section 4.3.1), we postulate

that this is the case for the particle selection PMMH estimator also. We further

recall that the asymptotic variance of the SMC forward smoothing estimator is lin-

ear in the period T and, as a result, dominated by its inverse quadratic dependence

on N ; we postulate that the asymptotic variance of the forward smoothing PMMH

estimators also follow this dependence structure.

From Figure 4.13, it is once again clear to see that the deterministic bias associ-

ated with the ABC approximation is evident in the ABC particle selection PMMH

estimates. It is extremely interesting to note, however, that this bias is not as evi-

dent in the ABC forward smoothing PMMH estimates. Consulting Table 4.12, and

comparing the smoothing errors for the exact and ABC forward smoothing PMMH

procedures, we see that, whilst the errors for the exact procedure clearly decrease

as N increases, the errors for the ABC procedure do not. This would suggest that,

whilst it is not as evident as in the particle selection PMMH estimates, the ABC bias

is still present in the smoothing error associated with the forward smoothing PMMH

estimator. Based upon these observations, we tentatively conclude that the error

of the ABC forward smoothing PMMH estimator is dominated by the simulation

error.

Table 4.13 displays the CPU times for each of the PMMH procedures considered.



4.7 Example: A Nonlinear SSM 180

Recall that the values of N for which the particle selection PMMH procedures were

implemented (see Table 4.1), were chosen such that the particle selection updates

and the forward smoothing updates were executed with comparable computational

cost. From Table 4.13, we can see that this comparability holds to a certain extent,

with the greatest difference in runtimes being noticed for the ABC forward smooth-

ing PMMH procedures that used low values of N . This can be attributed to the

ABC weight degeneracy phenomenon; for a number of iterations of the ABC for-

ward smoothing PMMH procedure, the SMC approximation of the joint smoothing

distribution has collapsed due to all of the particles being allocated a weight of 0.

Whenever this occurs, the update scheme is repeated (using a different seed for the

pseudo-random number generator). The proportion of iterations at which the ABC

forward smoothing procedure collapsed was observed to decrease as N increased, as

would be expected; using N = 100 particles, the ABC forward smoothing update

procedure had to be executed 85,543 times to generate an MH sample of length

50,000, whereas this number was reduced to 54,120 when using N = 500 particles.

Collapse of the SMC approximation of the smoothing distribution was observed

in some of the other implementations of the PMMH procedures, however the inci-

dence rate was extremely low in comparison to that observed for the ABC forward

smoothing updates, and the effect on the corresponding runtimes was negligible.

This increased computational budget due to the ABC weight degeneracy issue

is obviously a drawback for the ABC forward smoothing procedure, and should be

taken into account in practice when choosing the number of particles with which to

implement the ABC forward smoothing PMMH procedure. Nevertheless, we stress

that the invariance of the particle selection PMMH estimator with respect to N

allows us to conclude that, given an N -particle implementation of particle selection

PMMH, one could find a particle system size with which to implement the ABC

forward smoothing PMMH procedure with the same number of MH iterations, such

that the computational expense will be similar and the variance of the resulting MH
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sample will be significantly smaller.

We now consider the use of these PMMH methods for batch parameter esti-

mation. We consider first the effect on parameter estimation that the use of the

ABC approximation has, and we subsequently consider the effect of using forward

smoothing updates. We return to the 10 independent 2000-particle implementations

particle selection PMMH procedure and its ABC alternative; Figure 4.14 presents

the parameter estimates obtained from the resulting post-burn-in MH parameter

samples, i.e. the parameter values used in the successful SMC update schemes.

For batch parameter estimation, one typically requires a much larger observation

period than has been used here; as a result, the estimates are not expected to be

very accurate with respect to the true parameter values used to generate the hidden

state and observed data. For comparative purposes, we use the parameter estimates

generated by the post-burn-in MH parameter samples provided by the 200,000-

particle implementation of the particle selection PMMH procedure, used above to

generate the ‘true’ smoothed additive functional ST . From Figure 4.14a, we note

that the estimates of the hidden state noise parameter σ2
X , generated using the ABC

approximation of the SSM, are relatively stable across independent implementations,

although they are ultimately inaccurate. The corresponding estimates for the noise

of the observed data, given in Figure 4.14b are both inaccurate and inconsistent

over independent implementations. It is clear from these results that the use of an

ABC approximation is not suitable for performing batch inference with respect to

static parameters associated with the nonlinear SSM (3.13)-(3.14).

We consider now the use of forward smoothing PMMH for performing batch

parameter estimation, and in Figure 4.15, we present the estimates generated by

implementations of the particle selection and forward smoothing PMMH procedures

with particle system sizes N ∈ {N1, . . . , N5}. It is immediately clear from Figure

4.15 that the use of forward-smoothing PMMH for batch parameter estimation pro-

vides results that are, in general, extremely comparable to those produced by the
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Figure 4.14: Parameter estimates obtained from the post-burn-in parameter samples
provided by 10 independent implementations of each of the exact particle selection
PMMH procedure (black) and the ABC particle selection PMMH procedure (red).
For all PMMH procedures considered here, N = 2000. The horizontal dashed lines
correspond to the parameter estimates provided by a 200,000-particle implemen-
tation of the particle selection PMMH procedure, which has been used here as a
benchmark.

particle selection PMMH procedure. Given the advantages offered by this approach

with respect to the estimation of smoothed additive functionals, as mentioned above,
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Figure 4.15: Parameter estimates obtained from the post-burn-in parameter samples
provided by the exact particle selection PMMH (solid error bars) and exact forward
smoothing PMMH (dashed error bars) procedures. Each procedure was implemented
with N ∈ {N1, . . . , N5} particles. The horizontal dashed lines correspond to the
parameter estimates provided by a 200,000-particle implementation of the particle
selection PMMH procedure, which has been used here as a benchmark.
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this adds weight to the conclusion that forward smoothing PMMH is viable, and

can prove to be a preferable alternative to the accepted state-of-the-art, particle

selection PMMH.

4.8 Summary of Results

In this chapter, we have considered the problem of performing inference with respect

to the ABC approximation of the joint smoothing distribution. In particular, the

following contributions have been made:

• We have provided a theoretical analysis of the deterministic bias associated

with the estimation of ABC approximations of smoothed additive functionals.

This bias was shown to grow only linearly with the length of the observation

period T , and also linearly with the ABC tolerance parameter ε.

• We have introduced procedures for performing estimation of these ABC smoothed

additive functionals via particle smoothing and forward smoothing, and we

have analysed the behaviour of the SMC estimators that these procedures

produce.

• We have considered the use of RSMC methodology for reducing the variance of

the particle smoothing and forward smoothing estimators, both independently

of, and in conjunction with the ABC approximation.

• We have also introduced a number of PMMH procedures for targeting the

exact and ABC approximations of a smoothed additive functional.

All of the procedures that have been introduced in this chapter have been numer-

ically analysed in Section 4.7. The principal conclusions of these numerical studies

can be summarised as follows:

• For both ABC particle smoothing and ABC forward smoothing, the accuracy

of the estimators is dominated by the deterministic ABC bias.
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• For hidden states of high dimension, however, ABC particle smoothing can

be more accurate than exact particle smoothing, and ABC forward smoothing

can be more accurate than exact forward smoothing.

• The use of the RSMC methodology was shown to consistently reduce the

variance in both the ABC particle smoothing estimators and the ABC forward

smoothing estimators, as well as providing comparable accuracy in terms of

the L1-errors of the corresponding estimates.

• For exact particle smoothing, the RSMC methodology was not observed to

offer any consistent improvement in estimator variance, although the observed

variances were comparable to those obtained when using dynamic resampling

SMC. For exact forward smoothing, a consistent improvement in estimator

variance cannot be expected within a reasonable comptutational budget.

• When using particle selection PMMH to estimate the mean smoothed state

over the observation interval, the use of the ABC approximation significantly

increases the variance of the resulting post-burn-in MH sample, and induces a

clear bias in the final estimator.

• The use of exact forward smoothing update schemes within a PMMH proce-

dure significantly reduces the variance in the resulting post-burn-in MH sample

and provides final estimates of the mean smoothed state that are of comparable

accuracy, when compared with those produced by an exact particle selection

PMMH procedure of comparable computational expense.

• The use of ABC forward smoothing update schemes within a PMMH proce-

dure provides a post-burn-in sample that has larger variance than that of the

exact forward smoothing PMMH procedure, but a smaller variance than that

of an exact particle selection PMMH procedure of comparable computational

expense. In addition, the ABC forward smoothing PMMH procedure also in-
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duces an ABC bias in the resulting estimator, although one that is significantly

smaller than that of the ABC particle selection PMMH estimator.

• For batch parameter estimation via PMMH, the use of the ABC approximation

was observed here to render the parameter estimates inaccurate and unreliable.

• Comparable parameter estimates were obtained when using exact particle se-

lection PMMH and exact forward smoothing PMMH procedures of similar

computational expense.
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Chapter 5

SMC Samplers for a Class of Point

Process Models

5.1 Introduction

This chapter considers the family of SSMs in which both the observed and latent

processes are point processes (PPs). SSMs in which the latent process is a PP

are referred to in the literature as partially observed PPs, and provide a rich class

of models for describing real data; they have previously been used for stochastic

volatility modelling (Barndorff-Nielsen and Shephard, 2001) in finance, descriptions

of queueing data (Fearnhead, 2004) in operational research, important seismological

models (Daley and Vere-Jones, 2007) and for applications in nuclear physics (Snyder

and Miller, 1998). This chapter will focus on the use of partially observed PPs in

financial modelling, in particular for ultra-high frequency (UHF) data.

Time-inhomogeneous PP models in which the intensity is itself a stochastic pro-

cess, although not necessarily a PP itself, are referred to in the literature as doubly

stochastic PPs (DSPPs) and were first introduced by Cox (1955). In a dynamic

setting, DSPP studies date back to at least Snyder (1972), who considers the time

evolution of a set of statistics describing the posterior distribution of a latent Markov

process, through the observation of a DSPP. Interest here will be on performing infer-
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ence with respect to the latent process, and this will be reflected in the terminology

used here; the model is treated as being a special class of partially observed PP

models, rather than a special class of DSPP models.

Fitting these complex models in a Bayesian context requires the use of MCMC

or SMC methods. The main developments using MCMC in this field include the

work of Green (1995), Roberts et al. (2004) and Centanni and Minozzo (2006a,b).

Relevant developments in SMC include the work of Del Moral et al. (2006, 2007) and

applications of SMC methods to partially observed PPs can be found in Rydberg

and Shephard (2000), Doucet et al. (2006) and Whiteley et al. (2011).

One of the first works applying computational methods to PP models, was Ryd-

berg and Shephard (2000). They focus upon a Cox model where the unobserved PP

parameterizes the intensity of the observations. Rydberg and Shephard (2000) used

the auxiliary particle filter (Pitt and Shephard, 1999) to simulate from the posterior

density of the intensity at a given time point. This was superseded by Centanni and

Minozzo (2006a,b), which allows one to infer the intensity at any given time, up to

the current observation.

Informally, the problem of interest is as follows. A process is observed discretely

upon a given time-interval [0, T ]. The objective is to draw inference at time-points

t0 = 0 < t1 < ∙ ∙ ∙ < tm̃ < T = tm̃+1, on the unobserved marked PP (ktn , φ1:ktn
, ζ1:ktn

),

where φ1:ktn
= (φ1, . . . , φktn

) are the ordered event times (constrained to [0, tn]), with

ktn the number of events up to tn, and ζ1:ktn
= (ζ1, . . . , ζktn

) are marks, given the

observations y1:rtn
, with rtn the number of observations up to tn. In other words to

compute, for n ≥ 1, at time tn

πn(ktn , φ1:ktn
, ζ1:ktn

|y1:rtn
) smoothing (5.1)

πn(ktn − ktn−1 , φktn−1+1:ktn
, ζktn−1+1:ktn

|y1:rtn
) filtering. (5.2)

In addition, there are static parameters specifying the probability model and these
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parameters can be estimated in a Bayesian manner.

Centanni and Minozzo (2006a,b) approach the problem of smoothing in this con-

text using an MCMC-type algorithm, estimating static parameters using stochastic

EM. This methodology cannot easily be adapted to the case where the static pa-

rameters are given a prior distribution. In addition, the theoretical validity of the

approach has not been established; this is verified in Proposition 5.3.1. This chapter

will further consider the application of SMC Samplers to the smoothing problem

described above, with a running example from computational finance. In particular,

a sampler is proposed, incorporating elements of the MCMC literature in a fash-

ion similar to the work of Centanni and Minozzo (2006a,b). A key feature of this

approach is that the user must select:

1. the sequence of distributions,

2. the mechanism by which particles are propagated.

If these points are not properly addressed, there can be a substantial discrepancy

between the proposal and target; thus the variance of the importance weights, cal-

culated at each step of the sampler, will be large and estimation inaccurate. This

issue is particularly relevant when the targets are defined on a sequence of nested

spaces, as is the case for the PP models – the space of the point process trajectories

becomes larger with the time-parameter n. Thus, in choosing the sequence of tar-

get distributions, we are faced with the question of how much the space should be

enlarged at each iteration of the SMC algorithm and how to choose a mechanism

to propose particles in the new region of the space. This issue is referred to as the

difficulty of extending the space.

Two solutions are proposed. The first is to saturate the state-space; a similar

approach was used in a reversible-jump MCMC context by Carlin and Chib (1995).

It is supposed that the observation interval, [0, T ], of the PP is known a priori. The

sequence of target distributions is then defined on the whole interval and one sequen-
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tially introduces likelihood terms. This idea circumvents the problem of extending

the space, at an extra computational cost. Inference for the original density of inter-

est can be achieved by importance sampling (IS). This approach cannot be used if

T is unknown. In the second approach, entitled data-point tempering, the sequence

of target distributions is defined by sequentially introducing likelihood terms. This

is achieved as follows: given that the PP has been sampled on [0, tn] the target is

extended onto [0, tn+1] by sampling the missing part of the PP. Then one introduces

likelihood terms into the target that correspond to the data (as in Chopin (2002)).

Once all of the data have been introduced, the target density is (5.1). It should be

noted that neither of the methods are online, but some simple fixes are detailed.

The rest of the chapter is organised as follows. Section 5.2 introduces the class

of point process models that will be the focus of the rest of the chapter, and this

will be introduced within the context of the modelling of UHF financial data. Two

existing Monte Carlo approaches to the modelling of these point process models are

presented in Section 5.3, including the SMC sampler approach that will be developed

throughout the chapter. In Subsection 5.3.2, we consider the use of a generic SMC

sampler for application to the models of interest; the poor performance of this

algorithm is demonstrated and two alternative modifications to the sampler are

proposed in Section 5.4. The two proposed samplers are implemented using both

synthetic and genuine financial data in Section 5.5 and comparisons are drawn with

the benchmark sampler. The chapter is concluded in Section 5.6.

5.2 The Model

The model we use to illustrate our ideas is from statistical finance. An important

type of financial data is ultra high frequency data which consists of the irregu-

larly spaced times of financial transactions and their corresponding monetary value.

Standard models for the fitting of such data have relied upon stochastic differen-

tial equations driven by Wiener dynamics; a debatable setup due to the implied
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continuity of the sample paths of the latent process and the heavy-tail behaviour

that is generally observable in the distribution of UHF log-returns. As noted in

Centanni and Minozzo (2006b), it is more appropriate to model the data as a Cox

process. Due to the high frequency of the data, it is important to be able to perform

sequential/on-line inference; recall the convention, established in Section 1.5, that

sequential inference refers to the ability to process data as it arrives, and on-line

inference is achieved by sequential procedures that have fixed computational cost

per iteration. Data are observed in [0, T ]. In the context of finance, the assumption

that T be fixed is entirely reasonable. For example, when the model is used in the

context of equities, the model can be run for the trading day; indeed due to different

(deterministic) patterns in financial trading, it is likely that the parameters below

may be fixed at particular values for a given trading day.

A marked PP, of rT ≥ 1 points, is observed in time-period [0, T ]. This is written

y1:rT
= (ω1:rT

, ξ1:rT
) ∈ Ωr,T × ΞrT with Ωr,T = {ω1:rT

; 0 < ω1 < ∙ ∙ ∙ < ωrT
< T},

Ξ ⊆ R. Here the ω1:rT
are the transaction times and ξ1:rT

are the log-returns on

the financial transactions. An appropriate model for such data, as in Centanni and

Minozzo (2006b), is

p(ξ1:rT
|μ, σ) =

rT∏

i=1

p(ξi|μ, σ)

p(ω1:rT
|{λT}) ∝

rT∏

i=1

{
λωi

}
exp

{

−
∫ T

0

λudu

}

where p is the generic notation for a probability density, ξ1:rT
are assumed to be

t-distributed on 1 degree of freedom, with location μ and scale σ, and where λu is

the intensity. The unobserved intensity process is assumed to follow the dynamics

dλt = −sλtdt + dJt with {Jt} a compound Poisson process: Jt =
∑kt

j=1 ζj with {kt}

a Poisson process with rate parameter ν and i.i.d. jumps ζj ∼ Ex(1/γ), Ex(∙) is the
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exponential distribution. That is, for t ∈ [0, T ],

λt =

{

λ0e
−st +

kt∑

j=1

ζje
−s(t−φj)

}

(5.3)

with φj the jump times of the unobserved Poisson process and λ0 fixed throughout.

In practice, this initial intensity is obtained using a short preliminary time series.

We define the following notation:

x̄n = (ktn , φ1:ktn
, ζ1:ktn

),

x̄n,1 = (ktn − ktn−1 , φktn−1+1:ktn
, ζktn−1+1:ktn

),

ȳn = (ω1:rtn
, ξ1:rtn

),

ȳn,1 = (ωrtn−1+1:rtn
, ξrtn−1+1:rtn

).

Here x̄n (respectively ȳn) is the restriction of the hidden (observed) PP to events in

[0, tn]. Similarly x̄n,1 (respectively ȳn,1) is the restriction of the hidden (observed)

PP to events in [tn−1, tn].

The objective is to perform inference at times 0 < t1 < ∙ ∙ ∙ < tm̃ < T = tm̃+1,

that is, to update the posterior distribution conditional on the data arriving in

[tn−1, tn]. To summarize, the posterior distribution at time tn is

πn(x̄n, μ, σ|ȳn) ∝
rtn∏

i=1

{
p(ξi|μ, σ)λωi

}
exp

{

−
∫ tn

0

λudu

}

×
ktn∏

i=1

{
p(ζi)

}
p(φ1:ktn

)p(ktn) × p(μ, σ)

= g[0,tn](ȳn|x̄n, μ, σ) × p(x̄n) × p(μ, σ) (5.4)

with g[0,tn] the likelihood of the observed data over the interval [0, tn], μ ∼ N (αμ, βμ),

σ ∼ Ga(ασ, βσ), φ1:kt |kt ∼ UΦk,tn
, kt ∼ Po(νt) and where UA is the uniform distri-

bution on the set A, N (μ, σ2) is the normal distribution of mean μ and variance
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σ2, Ga(α, β) the Gamma distribution of mean α/β and Po is the Poisson distri-

bution. p(x̄n) is the prior on the latent point-process and p(μ, σ) is the prior on

(μ, σ). Later a π0 is introduced which will refer to an initial distribution. Note it is

possible to perform inference on (μ, σ) independently of the unobserved PP; it will

not significantly complicate the simulation methods to include them.

It is of interest to compute expectations w.r.t. the {πn}1≤n≤m∗ , and this is pos-

sible, using the SMC methods below (Section 5.3.2). However, such algorithms are

not of fixed computational cost; the sequence of spaces over which the {πn}1≤n≤m∗ lie

is increasing. These methods can also be used to draw inference from the marginal

posterior of the process, over (tn−1, tn]; such algorithms can be designed to be of

fixed computational complexity, for example by constraining any simulation to a

fixed-size state-space. This idea is considered further in Section 5.4.3.

5.3 Existing Approaches

5.3.1 MCMC for Latent Point Process Models

One of the approaches for performing smoothing for partially observed PP’s is from

(Centanni and Minozzo, 2006a). In this Section the parameters (μ, σ) are assumed

known. Let

Ēn =
⋃

k∈N0

(

{k} × Φk,tn × (R+)k

)

.

This is the support of the target densities for this method.

The following decomposition is adopted

πn(x̄n|ȳn) =
g(tn−1,tn](ȳn,1|x̄n)

pn(ȳn,1|ȳn−1)
p(x̄n,1)πn−1(x̄n−1|ȳn−1) (5.5)

pn(ȳn,1|ȳn−1) =

∫
g(tn−1,tn](ȳn,1|x̄n)p(x̄n,1)πn−1(x̄n−1|ȳn−1)dx̄n.

At iteration n ≥ 2 of the algorithm, an RJMCMC kernel (although the analysis

below is not restricted to such scenarios) is used for N steps to sample from the
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approximated smoothing density

πN
n (x̄n|ȳn) ∝ g(tn−1,tn](ȳn,1|x̄n)p(x̄n,1)S

N
x,n−1(x̄n−1)

where SN
x,n−1(x̄n−1) := 1

N

∑N
i=1 I{X̄(i)

n−1}
(x̄n−1) with X̄

(1)
n−1, . . . , X̄

(N)
n−1 obtained from a

reversible jump MCMC algorithm of invariant measure πN
n−1. The algorithm for n =

1 targets π1 exactly; there is no empirical density SN
x,0. At time n = 1 the algorithm

starts from an arbitrary point x̄
(1)
1 ∈ Ē1 and subsequent steps are initialized by

a draw from the empirical SN
x,n−1 and the prior p; N − 1 additional samples are

simulated. Let K1(x̄1, ∙) denote the kernel with invariant distribution π1(x̄1|ȳ1). For

n ≥ 2, denote the kernel with invariant distribution πN
n (d(̄x)n|ȳn) as KSN

n−1,n(x̄n, ∙).

Proposition 5.3.1, below, provides an upper bound for the expected Lp-error

of the resulting estimate of the expected value of a bounded test function, where

the latter expectation is taken with respect to the smoothing distribution (5.1),

and the former is taken with respect to the law of the process generated by the

above procedure, given the observed data and an initial value x̄
(1)
1 ∈ Ē1. Under the

restrictive assumption (A6), this result helps to establish the theoretical validity of

this method, which was not established in that paper or, to my knowledge, anywhere

else. In addition, it allows us to understand where and when the method may be of

use; this is discussed in Section 5.3.3.

(A6) There exist an ε1 ∈ (0, 1) and probability measure κ1 on Ē1 such that for any

x̄1 ∈ Ē1

K1(x̄1, ∙) ≥ ε1κ1(∙).

For any n ≥ 2, there exist an εn ∈ (0, 1) and probability measure κn on Ēn \

Ēn−1 such that for any x̄n ∈ Ēn and any collection of points (X̄
(1)
n−1, . . . , X̄

(N)
n−1) ∈

ĒN
n−1

KSN
n−1,n(x̄n, ∙) ≥ εnSN

n−1(∙)κn(∙).
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For any n ≥ 2

sup
x̄n−1∈Ēn−1

∫

Ēn\Ēn−1

∣
∣
∣
∣
g(tn−1,tn](ȳn,1|x̄n)

pn(ȳn,1|ȳn−1)
p (x̄n,1)

∣
∣
∣
∣dx̄n,1 < +∞.

Proposition 5.3.1. Assume (A6). Then for any n ≥ 1, ȳn, p ≥ 1 there exists

Bp,n(ȳn) < +∞ such that for any fn ∈ Bb(Ēn)

E
x̄
(1)
1

[∣∣
∣
∣
1

N

N∑

i=1

fn(X̄(i)
n ) −

∫

Ēn

fn(x̄n)πn(dx̄n)

∣
∣
∣
∣

p∣∣
∣
∣ȳn

]1/p

≤
Bp,n(ȳn)‖fn‖√

N
. (5.6)

The proof of this error bound was provided by Dr. Jasra; see Martin et al. (2012a)

for details.

5.3.2 SMC Samplers for Latent Point Process Models

Through the use of SMC samplers, we aim to approximate a sequence of related

probability measures {πn}0≤n≤m∗ defined upon the common space (E, E). Note that

m∗ > 1 can depend upon the data and may not be known prior to simulation.

For partially observed PPs the probability measures are defined upon nested state-

spaces: this case can be similarly handled with minor modification. SMC samplers

introduce a sequence of auxiliary probability measures {π̃n}0≤n≤m∗ on state-spaces

of increasing dimension (E[0,n] := E0 × ∙ ∙ ∙ × En, E[0,n] := E0 ⊗ ∙ ∙ ∙ ⊗ En), such that

they admit the {πn}0≤n≤m∗ as marginals.

The following sequence of auxiliary densities is used:

π̃n(x0:n) = πn(xn)
n−1∏

j=0

lj(xj|xj+1) (5.7)

where {ln}0≤n≤m∗−1 are the densities admitted by the backward Markov kernels,

with respect to some dominating measure. In our application π0 is the prior, on E1

(as defined below). It is clear that the densities (5.7) admit the {πn} as marginals,

and hence these distributions can be targeted using a standard SMC sampler, as
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Parameters: N , m∗;
Result: An SMC sample from the target distribution πm∗

1. Set n = 0. For i = 1 : N , sample X
(i)
0 ∼ %0 and compute

W
(i)
0 ∝

π0(X
(i)
0 )

%0(X
(i)
0 )

,
N∑

i=1

W
(i)
0 = 1.

2. If ÊSS

({
W

(i)
n

}N

i=1

)

< N
2
, then, for i = 1, . . . , N , resample X

(i)
n

independently from the discrete distribution

π̂ (dxn) =
N∑

i=1

W (i)
n δ

X
(i)
n

(dxn)

and set W
(i)
n = 1

N
.

3. Set n = n + 1. For i = 1, . . . , N sample X
(i)
n ∼ Kn(X

(i)
n−1, dxn), and compute:

W (i)
n ∝ W

(i)
n−1

πn(X
(i)
n )ln−1(X

(i)
n−1, X

(i)
n )

πn−1(X
(i)
n−1)kn(X

(i)
n−1, X

(i)
n )

,
N∑

i=1

W (i)
n = 1. (5.8)

If n = m∗ stop, else return to Step 2.

Algorithm 13: A Generic SMC Sampler.

in Algorithm 13. As with the filtering and smoothing procedures, we use the ESS

to control the degeneracy of the weights in the sampler, performing multinomial

resampling whenever the estimated ESS drops below N/2.

One generic approach is to set Kn as an MCMC kernel of invariant distribution

πn and Ln−1 as the reversal kernel Ln−1(xn, dxn−1) = πn(xn−1)Kn(xn−1, dxn)/πn(xn)

which we term the standard reversal kernel. Extensions to this approach include the

iterative application of an invariant MCMC kernel, and the application of a mixture

of kernels. See Del Moral et al. (2006) for details on the algorithm in the latter

scenario.
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Nested Spaces

As described in Section 5.1, in complex problems it is often difficult to design efficient

SMC algorithms. In the current example, the state-spaces of the consecutive den-

sities are not common. The objective is to sample from a sequence of distributions

defined, at time n, on the space

En =

( ⋃

k∈N0

{k} × Φk,tn × (R+)k

)

× R× R+ 1 ≤ n ≤ m∗ − 1

with E0 = E1. That is, for any 1 ≤ n ≤ m∗− 1, En ⊆ En+1. Two standard methods

for extending the space, as in Del Moral et al. (2006) are to propagate particles by

application of the ‘birth’ and ‘extend’ moves. For the model in Section 5.2, these

are defined at time n as follows:

• Birth. A new jump is sampled uniformly in [φktn−1
, tn] and a new mark from

the prior. The incremental weight function is

w̃n(x̄n−1:n, μ, σ) =
πn(x̄n, μ, σ|ȳn)(tn − φktn−1

)

πn−1(x̄n−1, μ, σ|ȳn)p(ζktn
)

.

• Extend. A new jump is generated according to a Markov kernel that corre-

sponds to the random walk:

log

{
φktn

− φktn−1

tn − φktn

}

= ϑZ + log

{
φktn−1

− φktn−1−1

tn − φktn−1

}

with Z ∼ N (0, 1), ϑ > 0. The new mark is sampled from the prior. The

backward kernel and incremental weight are discussed in Del Moral et al.

(2007, Section 4.3).

Note, as remarked in Whiteley et al. (2011), we need to be able to sample any

number of births. With an extremely small probability, a proposal from the prior is

included to form a mixture kernel.
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In addition to the above steps an RJMCMC sweep is included after the decision

of whether or not to resample the particles is taken. An MCMC kernel of invariant

measure πn is applied; the kernel is much the same as in Green (1995). It is possible

to iterate the application of this RJMCMC kernel, in which case we use the parame-

ter M to define the number of iterates. In applying this MCMC kernel, the aim is to

rejuvenate the particle histories, in a similar fashion to Gilks and Berzuini (2001);

it is expected that this will reduce path degeneracy and improve the accuracy of

inference based upon the smoothing density (5.1).

Simulation Experiment

We applied the benchmark sampler, as detailed in Algorithm 13 and using the

extend move, above, to propagate the particles, to some synthetic data in order to

monitor the performance of the algorithm. Standard practice in the reporting of

financial data is to represent the time of a trade as a positive real number, with the

integer part representing the number of days passed since January 1st 1900 and the

non-integer part representing the fraction of 24 hours that has passed during that

day; thus, one minute corresponds to an interval of length 1/1440. Therefore we

use a synthetic data set with intensity of order of magnitude 103. The ticks ωi were

generated from a specified intensity process {λt} that varied smoothly between three

levels of constant intensity at λ = 6000, λ = 2000 and λ = 4000. The log returns ξi

were sampled from the Cauchy-distribution, location μ = 0 and scale σ = 2.5×10−4.

The entire data set was of size rT = 3206, [0, T ] = [0, 0.9] with tn = n ∗ 0.003. The

intensity from which they were generated had constant levels at 6000 in the interval

[0.05,0.18]; at 4000 in the interval [0.51,0.68]; and at 2000 in the intervals [0.28,0.42]

and [0.78,0.90].

The sampler was implemented with all combinations {M, N} forN ∈ {100, 1000}

and M ∈ {1, 5, 20}, resampling whenever the estimated effective sample size fell

below N/2 (recall N is the number of particles and M the MCMC iterations).
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When performing statistical inference, the intensity (5.3) used parameters γ = 0.001,

ν = 150 and s = 20.

It was found that for this SMC sampler, the system consistently collapses to

a single particle representation of the distribution of interest within an extremely

short time period. That is, resampling is needed at almost every time step, which

leads to an extremely poor representation of the target density. Figure 5.1 shows

the estimated ESS at each time step for a particular implementation. As can be

seen, the algorithm behaves extremely poorly for this model.
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Figure 5.1: Estimated effective sample sizes, calculated at each time step of the
benchmark SMC sampler described in Algorithm 13, implemented with N = 1000
particles and withM = 5MCMC sweeps at each iteration. The dashed line indicates
the resampling threshold at N/2 = 500 particles; resampling is needed at 94.4% of
the time steps.

5.3.3 Discussion

We have reviewed two existing techniques for the Bayesian analysis of partially

observed PP’s. It should be noted that there are other methods, for example in

Varini (2008). In that paper, the intensity has a finite number of functional forms

and the uncertainty is related to the type of form at each inference time tn.
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The relative advantage of the approach of Centanni and Minozzo (2006a) is the

fact that the state-space need not be extended. On page 1586 of Centanni and

Minozzo (2006a) the authors describe the filtering/smoothing algorithm, for the

process on the entire interval [0, tn] at time n; the theory discussed in Proposition

5.3.1 suggests that this method is not likely to work well as n grows. The constant

Bp,n(ȳn) in the upper bound given in that result is, for n ≥ 2

Bp,n(ȳn) =
2

εn(ȳn)
[Bp + 1] + k̂nBp,n−1(ȳn−1)

with Bp,1(ȳ1) = 2
ε1(ȳ1)

[Bp+1], Bp a constant related to the Bürkholder/Davis inequal-

ities (e.g. Shiryaev, 1996), εn(ȳn) ∈ (0, 1) and k̂n > 0 a constant that is model/data

dependent which is possibly bigger than 1. The bound indicates that the error can

increase over time, even under the exceptionally strong assumption (6). This is op-

posed to SMC methods which are provably stable, under similar assumptions (and

under the assumption that the entire state is updated), as n → ∞ (Del Moral, 2004).

In other words, whilst the approach of Centanni and Minozzo is useful in difficult

problems, it is less general with potentially slower convergence rate than SMC. Intu-

itively, it seems that the method of Centanni and Minozzo (2006a) is perhaps only

useful when considering the process on (tn−1, tn], as the process further back in time

is not rejuvenated in any way. As a result, parameter estimation may not be very

accurate. In addition, the method cannot be extended to a sequential algorithm

such that fully Bayesian inference is possible. As noted above, SMC samplers can

be used in such contexts, but requires a computational budget that grows with the

time parameter n.

As mentioned above, SMC methods are provably stable under some conditions

as the time parameter grows. However, some remarks related to the method in

Algorithm 13 can help to shed some light on the poor behaviour in Section 5.3.2.

Consider the scenario when one is interested in statistical inference on [0, t1]. Sup-
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pose for simplicity, one can write the posterior on this region as

π(x̄1) ∝ exp{
rt1∑

i=1

hi(yi|x̄1)}p(x̄1) (5.9)

for fixed rt1 , μ, σ. If one considers just pure importance sampling, then conditioning

upon the data, one can easily show that for any π1−(square) integrable f with
∫

f(x̄1)p(x̄1)dx̄1 = 0, the asymptotic variance in the associated Gaussian central

limit theorem is lower-bounded by:

(∫
f(x̄1)

2 exp{2
rt1∑

i=1

hi(yi|x̄1)}p(x̄1)dx̄1

)
/
(∫

exp{
rt1∑

i=1

hi(yi|x̄1)}p(x̄1)dx̄1

)
.

Then, for any mixing type sequence of data the asymptotic variance will for some

f and in some scenarios, grow without bound as rt1 grows - this is a very heuristic

observation, that requires further investigation. Hence, given this discussion and

our empirical experience, it seems that we require a new methodology, especially for

complex problems.

An important remark related to the simulations in Section 5.3.2, is that it cannot

be expected that simply increasing the number of particles will necessarily lead to

a significantly better estimation procedure. The algorithm completely crashes to a

single particle and it seems that naively increasing computation will not improve

the simulations.

As discussed above, the inherent difficulty of sampling from the given sequence

of distributions is that of extending the state-space. It is known that conditional

on all parameters except the final jump, the optimal importance distribution is the

full conditional density (Del Moral et al., 2006). In practice, for many problems it

is either not possible to sample from this density, or to evaluate it exactly (which is

required). In the case that it is possible to sample from the full conditional, but the

normalizing constant is unknown, the normalizing constant problem can be dealt

with via the random weight idea (Rousset and Doucet, 2006). In the context of this
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problem we found that the simulation from the full conditional density of φktn
was

difficult, to the extent that sensible rejection algorithms and approximations for the

random weight technique were extremely poor.

Another solution, in Del Moral et al. (2007), consists of stopping the algorithm

when the estimated ESS drops below the required threshold, and using an additional

SMC sampler to facilitate the extension of the state-space. However, in this example,

the ESS is so low, that it cannot be expected to help. Due to above discussion, it is

clear that a new technique is required to sample from the sequence of distributions;

two ideas are presented below. It is noted that one further idea that could be

adopted in the context of estimating static parameters is SMC2 (Chopin et al.,

2011), although this is not explored in any further detail in this thesis.

5.4 Proposed Methods

In the following Section, two approaches are presented to deal with the problems

in Section 5.3.2. First, a state-space saturation approach, where sampling of PP

trajectories is performed over a state space corresponding to a fixed observation

interval. Second, a data-point tempering approach. In this approach, as the time

parameter increases, the (artificial) target in the new region is simply the prior and

the data are then sequentially added to the likelihood, softening the state-space

extension problem. Both of these procedures use the basic structure of Algorithm

13, with some refinements, that are mentioned in the text. In particular, when

MCMC kernels are used, one can resample before sampling; this is explained below.

5.4.1 State Space Saturation

A simple idea, which has been used in the context of reversible jump, is to saturate

the state-space. The idea relies upon knowing the observation period of the PP

([0, T ]) a priori to the simulation. This is realistic in a variety of applications. For
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example, in Section 5.2, often we may only be interested in performing inference for

a day of trading and thus can set [0, T ].

In details, it is proposed to sample, in the case of the example in Section 5.2,

from the sequence of target densities defined on the space

E =

( ⋃

k∈N0

{k} × Φk,T × (R+)k

)

× R× (R+)2. (5.10)

The (marginal, that is in the sense of (5.7)) target densities are now, denoted with

an S as a super-script:

πS
n (x̄n, μ, σ|ȳn) ∝

rtn∏

i=1

{
p(ξi|μ, σ)λωi

}
exp

{

−
∫ tn

0

λudu

}

×
ktn∏

i=1

{
p(ζi)

}
pS(φ1:ktn

)pS(ktn) × p(μ, σ) 1 ≤ n ≤ T

where the prior on the point process is φ1:kt |kt ∼ UΦk,T
, kt ∼ Po(νT ). The initial

distribution for each of the particles is the prior, and the initial weights are set

proportional to 1. At time tn, we then use for KS
n (x̄n−1, dx̄n) an MCMC kernel

of invariant measure πS
n to move the particles, and we use the standard reversal

kernel LS
n−1(x̄n, dxn−1) = πS

n (x̄n−1)K
S
n (x̄n−1, dx̄n)/πS

n (x̄n) for the backward kernel,

such that the incremental weight function used at each time-point is simply:

w̃n(x̄n−1, μn−1, σn−1) =
πS

n (x̄n−1, μn−1, σn−1|ȳn)

πS
n−1(x̄n−1, μn−1, σn−1|ȳn−1)

1 ≤ n ≤ T.

Inference w.r.t. the original {πn}1≤n≤m∗ can be performed via IS as the supports of

the targets of interest are contained within the proposals (i.e. via the targets of the

saturated algorithm).

As mentioned previously, since the incremental weight is independent of the

proposed particle x̄n, the weighting and resampling steps of the sampler can be

carried out prior to propagation via the MCMC kernel KS
n . We note further that,
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although the latent PP is proposed from the entire observation interval [0, T ] at

all time points, the generated process over the interval (tn, T ] is not used; thus,

we have a great deal of wasteful sampling at each time step. By combining these

observations, we can save computational effort by

• generating a cloud of particles from the prior over [0, T ] prior to sequential

implementation of the saturated sampler, and

• at each time tn, combining the existing latent PP over [0, tn−1], x̄n−1, with its

pre-proposed extension x̄n,1, and moving this extended particle according to

M ≥ 1 applications of an RJMCMC kernel of invariant density πS
n .

This is the approach that is adopted in practice; the full saturated sampler is pro-

vided in Algorithm 14.

5.4.2 Data-Point Tempering

A second solution to the state-space extension problem, which allows data to be

incorporated sequentially, is as follows. When the time parameter increases, the

new part of the process is simulated according to the prior. Then each new data

point is added to the likelihood in a sequential manner. In other words if there are

rT data points, then there are m∗ = rT + m̃ time-steps of the algorithm.

To illustrate, consider only the scenario of the data in [0, t1], with rt1 > 0.

Then our sequence of (marginal) targets are: πTE0 (x̄1, μ, σ) = p(x̄1)p(μ, σ) and for

1 ≤ n ≤ rt1

πTEn (x̄1, μ, σ|y1:n) ∝
n∏

i=1

{
p(ξi|μ, σ)λωi

}
exp

{

−
∫ t1

0

λudu

}

p(x̄1)p(μ, σ).

Then, when considering the extension of the point-process onto [0, t2], one has a
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Parameters: N , m∗, λ0;
Result: An SMC sample from the target distribution πS

m∗

1. For i = 1 : N , sample k
(i)
T , φ

(i)
1:kT

|k(i)
T , ζ

(i)
1:kT

|k(i)
T according to their respective

priors. For i = 1 : N and for n = 1 : m∗, set
X̄

(i)
n,1 = (k

(i)
tn − k

(i)
tn−1

, φ
k
(i)
tn−1

+1:k
(i)
tn

, ζ
k
(i)
tn−1

+1:k
(i)
tn

) and sample μ
(i)
n and σ

(i)
n

according to their priors.

2. Set n = 1. For i = 1 : N , set X̄
(i)
1 = (k

(i)
t1 , φ

(i)

1:k
(i)
t1

, ζ
(i)

1:k
(i)
t1

), and set W
(i)
1 = 1

N
.

3. Set n = n + 1. Compute:

W (i)
n ∝ W

(i)
n−1

πS
n (X̄

(i)
n−1, μ

(i)
n−1, σ

(i)
n−1|ȳn)

πS
n−1(X̄

(i)
n−1, μ

(i)
n−1, σ

(i)
n−1|ȳn−1)

,
N∑

i=1

W (i)
n = 1. (5.11)

4. If ÊSS

({
W

(i)
n

}N

i=1

)

< N
2
, then, for i = 1, . . . , N , resample

(
X̄

(i)
n−1, μ

(i)
n−1, σ

(i)
n−1

)
independently from the discrete distribution

π̂S
n (dx̄n−1, dμn−1, dσn−1) =

N∑

i=1

W (i)
n δ

(X̄
(i)
n−1,μ

(i)
n−1,σ

(i)
n−1)

(dx̄n−1, dμn−1, dσn−1) .

5. For i = 1, . . . , N sample X̄
(i)
n ∼ KRJ

n ({X̄(i)
n−1, X̄

(i)
n,1}, dx̄n), where KRJ

n is the
composition of M ≥ 1 RJMCMC kernels, each of which is as in Green (1995).

6. Estimate λ̂tn =
∑N

i=1 W
(i)
tn

{

λ0e
−stn +

∑k
(i)
tn

j=1 ζ
(i)
j e−s(tn−φ

(i)
j )

}

.

7. If resampling occurred in Step 4, set W
(i)
n = 1

N
. If n = m∗ stop, else return to

Step 3.

Algorithm 14: An SMC Sampler with State Space Saturation

(marginal) target that is:

πTErt1+1(x̄2, μ, σ|ȳ1) ∝
rt1∏

i=1

{
p(ξi|μ, σ)λωi

}
exp

{

−
∫ t1

0

λudu

}

p(x̄2)p(μ, σ)

When one extends the state-space, we sample from the prior on the new segment,

which leads to a unit incremental weight (up-to proportionality) - no backward
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kernel is required here. Then, when adding data, we simply use MCMC kernels to

move the particles (the kernels as in Section 5.3.2) and the standard reversal kernel

discussed in Section 5.3.2 for the backward kernel. This leads to an incremental

weight that is the ratio of the consecutive densities at the previous state.

Full details of a tempered SMC sampler are given in Algorithm 15. Note that,

as with the saturated sampler, the weighting and resampling steps can be executed

before extending the latent process.

The potential advantage of this idea is that, when extending the state-space,

there is no extra data, to potentially complicate the likelihood. Thus, it is expected

that if the prior does not propose a significant number of new jumps, that the

incremental weights should be of low variance, relative to those obtained when using

the approach in Section 5.3.2. The subsequent steps, when considering the jumps in

[tn, tn+1) are performed on a common state-space and hence should not be subject

to as substantial a variability as when the state-space changes. This idea could also

be adapted to the case that the likelihood on the new interval are tempered instead

(e.g. Jasra et al., 2007).

A theoretical justification of this idea was provided by Dr. Jasra for the paper of

Martin et al. (2012a); it was shown that, under various assumptions, the asymptotic

variance of the estimate, provided by the tempered sampler, of the expected value

of a test function, where the expectation is taken with respect to the smoothing

density πrt1
(x̄1), is bounded. However, the assumptions under which this result

holds are extremely strong and so it is noted that it is potentially over-optimistic in

more general conditions. The assumptions and result are included nonetheless, as it

is illustrative of the potential of the tempered sampler for this class of models, and

goes some way to justifying a numerical examination of the sampler.
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Parameters: N , m∗ = rT + m̃, λ0;
Result: An SMC sample from the target distribution πTE

m∗

1. For i = 1 : N , sample k
(i)
T , φ

(i)
1:kT

|k(i)
T , ζ

(i)
1:kT

|k(i)
T according to their respective

priors. For i = 1 : N and for n = 1 : m∗, set
X̄

(i)
n,1 = (k

(i)
tn − k

(i)
tn−1

, φ
k
(i)
tn−1

+1:k
(i)
tn

, ζ
k
(i)
tn−1

+1:k
(i)
tn

) and sample μ
(i)
n−1 and σ

(i)
n−1

according to their priors.

2. Set n = 0. For i = 1 : N , set X̄
(i)
0 = {k(i)

0 , φ
(i)

1:k
(i)
0

, ζ
(i)

1:k
(i)
0

} = ∅ and set W
(i)
1 = 1

N
.

3. Set n = n + 1. For n′ = rtn−1 + 1 : rtn ,

• Compute:

W
(i)
n′ ∝ W

(i)
n′−1

πTE
n′ (X̄

(i)
n−1, μ

(i)
n−1, σ

(i)
n−1|ȳn′)

πTE
n′−1(X̄

(i)
n−1, μ

(i)
n−1, σ

(i)
n−1|ȳn′−1)

,

N∑

i=1

W
(i)
n′ = 1. (5.12)

• If ÊSS

({
W

(i)
n′

}N

i=1

)

< N
2
, then, for i = 1 : N , resample

(
X̄

(i)
n−1, μ

(i)
n−1, σ

(i)
n−1

)
independently from the discrete distribution

π̂TE
n′ (dx̄n−1, dμn−1, dσn−1) =

N∑

i=1

W
(i)
n′ δ

(X̄
(i)
n−1,μ

(i)
n−1,σ

(i)
n−1)

(dx̄n−1, dμn−1, dσn−1)

and set W
(i)
n′ = 1

N
.

• For i = 1, . . . , N sample X̄
(i)
n−1 ∼ KRJ

n−1(X̄
(i)
n−1, dx̄n−1), where KRJ

n−1 is an
RJMCMC kernel, as in Green (1995).

4. For i = 1, . . . , N sample X̄
(i)
n ∼ KRJ

n ({X̄(i)
n−1, X̄

(i)
n,1}, dx̄n), where KRJ

n is the
composition of M ≥ 1 RJMCMC kernels, each of which is as in Green (1995).

5. Estimate λ̂tn =
∑N

i=1 W
(i)
tn

{

λ0e
−stn +

∑k
(i)
tn

j=1 ζ
(i)
j e−s(tn−φ

(i)
j )

}

.

6. If n = m∗ stop, else return to Step 3.

Algorithm 15: An SMC Sampler with Data Point Tempering

Theoretical Examination of the Tempered Sampler

We return to the discussion of Section 5.3.3 and in particular, where the joint target

density is (5.9). Consider the data-point tempering which starts with a draw from
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the prior and sequentially adds data points; the sampler runs for rt1 + 1 time-steps

with

πn(x̄1) ∝ exp{
n∑

i=1

hi(yi|x̄1)}p(x̄1)

where, for each i, yi, h ≤ hi(yi|x̄1) ≤ h for all x̄ ∈ Ē1, with −∞ < h < h < ∞.

The algorithm is assumed to resample at every time-step and to use MCMC kernels,

which are further assumed to satisfy, for some τ ∈ (0, 1), and for each 1 ≤ n ≤ rt1 ,

with rt1 , x̄1, x̄′
1

Kn(x̄1, ∙) ≥ τKn(x̄′
1, ∙).

A resampling sweep is also assumed after the final weighting of the particles, at

the very final time-step. Write X̄1
1 , . . . , X̄N

1 as the samples that approximate target

(5.9). Suppose f ∈ Bb(Ē1), then there is a Gaussian central limit theorem for

√
N
( 1

N

N∑

i=1

f(X̄ i
1) −

∫

Ē1

f(x̄1)πrt1
(x̄1)dx̄1

)
.

Writing the asymptotic variance as σ2
TE,rt1

(f), we have the following result whose

proof can be found in Martin et al. (2012a).

Proposition 5.4.1. For SMC sampler described above, with final target (5.9) then

we have for any f ∈ Bb(Ē1) that there exists a B ∈ (0, +∞) such that for any

rt1 ≥ 1, ȳ1

σ2
TE,rt1

(f) ≤ B.

The upper-bound does not grow with the number of data. That is, by increasing

the computational complexity linearly in the number of data, one has an algorithm

whose error does not grow as more data (and regions) are added. This is similar to

the observation of Beskos et al. (2011), when increasing the dimension of the target

density.



Chapter 5. SMC Samplers for a Class of Point Process Models 209

5.4.3 Online Implementation

A key characteristic that has not yet been addressed is the fact that each of the

SMC samplers discussed here has a computational complexity that is increasing

with time. In a procedure that would otherwise be well suited to providing online

inference, this is an unattractive feature. A large contribution to this increasing

computational budget derives from the MCMC sweeps at the end of each iteration.

As the space over which the invariant MCMC kernel is being applied is increased, so

does the expense of the algorithm. An improvement to the computational demand

of the samplers can therefore be made by keeping the space over which the MCMC

kernel is applied constant. The reduced computational complexity (RCC) alternative

to each of the samplers is also designed by amending the algorithms such that, at

time tn, the MCMC sweep operates over, at most, 20 changepoints, i.e. over the

interval
[
φktn−19, tn

)
. Due to the well-known path degeneracy problem in SMC,

the estimates will be poor approximations of the true values, when including static

parameters and extending the space of the point process for a long time. We note,

at least for our application, it is reasonable to consider T fixed and thus, this is less

problematic.

5.5 Example: The Finance Problem Revisited

We now return to the example from Section 5.2 and the settings as in Section 5.3.2.

5.5.1 Simulated Data

The saturated and tempered samplers, as well as their RCC alternatives, were im-

plemented using the simulated data set (in Section 5.3.2), in order to compare their

respective performances against the benchmark sampler and to compare the accu-

racy of the resulting intensity estimates against an observed intensity process. All

of the alternative samplers were implemented under the same conditions, using the
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M = 1 M = 5 M = 20
N=100 N=1000 N=100 N=1000 N=100 N=1000

Benchmark 31.3% 52.0% 42.3% 94.4% 74.0% 99.7%
Benchmark - RCC 37.6% 88.1% 69.0% 99.7% 99.4% 99.7%

Saturated 21.0% 21.3% 19.7% 20.1% 18.2% 17.6%
Saturated - RCC 20.7% 20.7% 18.5% 18.8% 15.4% 15.4%

Tempered 2.0% 2.0% 1.9% 1.9% 1.7% 1.7%
Tempered - RCC 2.0% 2.0% 1.7% 1.8% 1.4% 1.4%

Table 5.1: Resampling rates for each of the three SMC samplers and their reduced
computational complexity alternatives, for the six algorithm parameterisations that
were tested. The estimated ESS plots for the saturated and tempered samplers with
N = 1000, M = 5 are given in Figure 5.2 for comparison with the corresponding
estimated ESS plot for the benchmark sampler given in Figure 5.1

algorithm and model parameters as described for the implementation of the bench-

mark sampler. All results are averaged over 10 runs of the algorithm.

In assessing the performance of the sampler, quantities of interest are, once again,

the resampling rate and the processing time, as well as the minimum estimated ESS

recorded throughout the execution of the sampler. The resampling rates for all

three samplers and their RCC alternatives are presented in Table 5.1, with the

corresponding minimum estimated ESS’s attained recorded in Table 5.2 and the

corresponding processing times in Table 5.3. Figure 5.2 displays the evolution of the

estimated ESS over a particular run of the algorithm. Figure 5.3 shows the estimated

intensity at each time tn, given data up to time tn. From Table 5.1, it is clear to

see that, for the saturated and tempered samplers, an increase in M results in a

decrease in the resampling rates, i.e. a decrease in sampler degeneracy, as expected.

It is also plain to see from Table 5.2 that, as N increases, so does the minimum

estimated ESS, and thus the reliability of the estimates. From Tables 5.1 and 5.2,

Figure 5.3 and comparing Figure 5.2 to Figure 5.1 it is clear that the saturated and

tempered samplers significantly outperformed the benchmark sampler.

We use the posterior medians to report intensities. Since we have access to a

‘true’ intensity process, the accuracy of these estimated intensity process is measured
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M = 1 M = 5 M = 20
N=100 N=1000 N=100 N=1000 N=100 N=1000

Benchmark 1.0 1.0 1.0 1.0 1.0 1.0
Benchmark - RCC 1.0 1.0 1.0 1.0 1.0 1.0

Saturated 38.1 410.2 38.6 397.0 38.6 398.9
Saturated - RCC 38.5 401.2 40.6 394.4 43.0 425.9

Tempered 47.6 484.7 47.7 475.5 47.9 483.4
Tempered - RCC 47.8 475.7 48.4 481.7 48.3 486.6

Table 5.2: Minimum estimated ESSs calculated during implementation of each of
the three SMC samplers and their reduced computational complexity alternatives,
for the six algorithm parameterisations that were tested.

M = 1 M = 5 M = 20
N=100 N=1000 N=100 N=1000 N=100 N=1000

Benchmark 612.9 9689.1 2849.7 45690.4 13352.1 144621.3
Benchmark - RCC 449.0 7910.9 1132.7 10657.6 3106.2 31208.5

Saturated 1125.3 10667.8 3234.3 39061.1 15381.9 141817.3
Saturated - RCC 637.5 6215.2 1200.7 11412.6 4391.9 47662.8

Tempered 1160.2 10633.4 3138.4 38679.6 14086.7 130899.1
Tempered - RCC 666.0 6424.4 1156.3 11209.1 3231.3 34795.3

Table 5.3: Processing times, in seconds, for each of the three samplers and their
reduced computational complexity alternatives, for the six algorithm parameterisa-
tions that were tested.
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(a) Saturated
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(b) Tempered

Figure 5.2: Estimated effective sample sizes, calculated at each time step of the
SMC samplers with state space saturation (left) and data point tempering (right),
run with N = 1000 particles and with M = 5 MCMC sweeps at each iteration.
The dashed line indicates the resampling threshold at N/2 = 500 particles; the
corresponding resampling rates are 20.1% for the saturated sampler and 1.9% for
the tempered sampler.

using the root mean square error (RMSE). Table 5.4 presents the RMSEs of the

intensity estimates (given the data up to tn, averaged over each tn) and Table 5.5

presents the RMSEs of the smoothed (conditional upon the entire data set) intensity

estimates resulting from each of the three samplers and their RCC alternatives. The

most important result to note is the performance of the saturated and tempered

samplers in comparison with the unaltered sampler. As can be seen in terms of

accuracy for intensity estimates, the two proposed alterations to the sampler improve

the performance consistently and significantly. Looking at the resampling rates and

processing times, in Tables 5.1 and 5.3 respectively, we can see that, as expected,

although the tempered sampler resampled the particles significantly less than the

benchmark sampler, the individual incorporation of each data point resulted in a

greater computational cost. These two aspects of the benchmark and tempered

samplers appear to have countered each other, resulting in their processing times

being largely similar.

We consider also the effect that changes in M and N have on the accuracy



Chapter 5. SMC Samplers for a Class of Point Process Models 213

of estimates provided by the saturated and tempered samplers. For the saturated

and tempered samplers, the results in Tables 5.4 and 5.5 corroborate the expected

improvement in accuracy, in both for the sequential estimates at tn given data up-to

tn and smoothed estimates (given the entire data), that results from an increase in

the number of particles used. Whilst for the sequential estimates, there is no clear

improvement in accuracy with increasing M , an improvement can be seen in the

accuracy of the smoothed estimates.

M = 1 M = 5 M = 20
N=100 N=1000 N=100 N=1000 N=100 N=1000

Benchmark 688.561 1116.639 620.432 1942.992 1330.232 1501.263
Benchmark - RCC 676.932 2026.956 880.824 2247.313 1472.126 1264.533

Saturated 242.834 192.580 228.390 193.778 237.315 198.223
Saturated - RCC 229.449 189.279 224.692 193.379 225.592 194.623

Tempered 254.396 196.928 247.754 201.681 248.367 202.501
Tempered - RCC 256.012 191.407 227.241 197.043 230.805 200.227

Table 5.4: Table showing the root mean square error of the intensity. This is given
the data up to tn, averaged over each tn and for each of the three samplers and their
reduced computational complexity alternatives, for the six algorithm parameterisa-
tions that were tested.

M = 1 M = 5 M = 20
N=100 N=1000 N=100 N=1000 N=100 N=1000

Benchmark 768.702 670.656 495.019 627.909 489.243 571.107
Benchmark - RCC 698.640 1034.890 572.794 572.841 535.004 599.031

Saturated 360.794 264.331 296.953 114.064 153.444 89.397
Saturated - RCC 478.871 265.477 405.767 266.980 468.853 205.243

Tempered 350.015 170.321 271.712 128.078 157.709 81.666
Tempered - RCC 485.825 249.529 475.348 193.898 514.107 180.914

Table 5.5: Table showing the root mean square error of the smoothed intensity pro-
cess. This is given the entire data set and for each of the three samplers and their
reduced computational complexity alternatives, for the six algorithm parameterisa-
tions that were tested.

Finally, using the simulated data, we consider the performance of the samplers

when limiting the space over which the invariant MCMC kernels are applied, i.e. the

RCC alternatives. As can be seen from Table 5.4, the RCC alteration does not
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Figure 5.3: Estimates (given the data up to tn) of the intensity of a simulated data
set, generated by the benchmark SMC sampler (left) and the samplers with state
space saturation (centre) and data point tempering (right), run with N = 1000
particles and with M = 5 MCMC sweeps at each iteration. The model parameters
were γ = 0.001, ν = 150 and s = 20.

sacrifice any accuracy in the estimates of the intensity (given the data up to each

time tn), however it can be seen from Table 5.5 that the accuracy of the smoothed

intensity estimates is rather poor. This is to be expected, due to path degeneracy;

we note that one cannot estimate static parameters with the RCC approach unless

the time window T is quite small.

5.5.2 Real Financial Data

All three samplers were also tested on real financial data, with the RCC alternatives

also being used to generate intensity estimates, given the data up to tn: the share

price of ARM Holdings, plc., traded on the LSE was used. The entire data set

was of size rT = 1819, [0, T ] = [0, 0.3] (represents 3/10 of a trading day, that is,

3/10 of 24 hours; the first trade is just after 9am and the last around 16:15.) with

tn = n∗0.001. Genuine financial data is likely to correspond to a more volatile latent

intensity process than that which was used to generate the synthetic data set, and so

the parameterisation of the target posterior should be chosen such that large jumps

in the intensity process are possible, and such that the intensity may also revert

quickly to a lower intensity level. Hence, we specify: {γ, ν, s} = {0.001, 500, 250}.
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Data tn Smoothed Processing Resampling
RMSPEs RMSPEs Times (s) Rates

Saturated 2.18876 2.13479 4064.5 39.5%
Saturated - RCC 2.19112 - 2193.1 39.9%

Tempered 2.34671 2.11468 4605.5 19.8%
Tempered - RCC 2.42776 - 2237.3 19.9%

Table 5.6: Table showing the root mean square prediction errors for the intensity
estimates (given data up to time tn and entire data (smoothed)) given by each of
the three samplers for the parameter values N = 1000, M = 5. The RMSPEs for
the smoothed intensity estimates given by the RCC alternatives to the samplers are
also provided, along with the observed processing times and resampling rates for
each sampler.

Each of the samplers were run using N = 1000 particles, applying M = 5 MCMC

sweeps at each iteration, whilst the resampling rates and the minimum estimated

ESS obtained for each procedure were monitored to ensure that the algorithms did

not collapse.

Clearly, there is no ‘known’ intensity process against which to compare the point-

wise estimates produced by the samplers. In addition, any inverse-duration based

representation of the intensity against which useful comparisons could be drawn

would involve making assumptions on the smoothness of the intensity process itself.

Thus, we turn to measuring the one-step-ahead predictive accuracy of the estimators

of the intensity. This is achieved as follows: denoting the intensity estimated over the

interval [tn−j , tn) as λ̂n,j , one predicts the expected number of ticks in the interval

[tn+i−j , tn+i) as
(
λ̂n,j

)−1

for i ≥ 1 and j ≥ 1, where j is the number of periods

over which the prediction is made and i is a lag index. The prediction errors are

then calculated based on the predicted and observed number of ticks in the period

[tn+i−j , tn+i); the root mean square prediction error (RMSPE) will be used. We will

report on the one-step-ahead estimates (i = 1), estimating the intensity over each

interval with j = 1.

Table 5.6 presents the RMSPEs for the intensity estimates resulting from the

samplers and the RCC alternatives. It was observed that, in calculating the RMSPEs
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for lag indices i = 1, . . . , 100 using each sampler, both the saturated and tempered

samplers displayed the smallest error at i = 1, i.e. their respective one-step-ahead

predictions were more accurate than those made for lags up to 2.64 hours (each

observation interval corresponds to 0.0264 days = 1.584 minutes).

The RCC samplers provide significant computational savings and do not seem

to degrade substantially, w.r.t. the error criteria. Again, we remark that in general

one should not trust the estimates of the RCC, but as seen here, they can provide

a guideline for the intensity values.

Finally, an existing intensity estimation procedure for inhomogeneous point pro-

cesses was sought within Matlab and R, against which to compare the predictive

errors of the above samplers; the only available procedure was found within the

spatstat package in R. This procedure, however, simply estimates the intensity over

an interval as the number of events within the observed interval, scaled to suit a

suitable interval of interest (such as the trading day). When applied to the data,

the resulting RMSPE for one-step-ahead prediction was found to be 11.2407. As

would be expected, the model described here significantly outperforms this naïve

estimation procedure.

5.6 Summary

In this chapter we have considered SMC simulation for partially observed point pro-

cesses and implemented them for a particular doubly stochastic PP. Two solutions

were given, one based upon saturating the state-space, which is suitable in a wide

variety of applications and data-point tempering which can be used in sequential

problems. We also discussed RCC versions of these algorithms, which reduce com-

putation, but will be subject to the path degeneracy problem when including static

parameters and considering the smoothing distribution. We saw that the methods

can be successful, in terms of weight degeneracy versus the benchmark approach

detailed in Del Moral et al. (2007). In addition, for real data it was observed that
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predictions using the RCC could be reasonable (relative to the normal versions of

the algorithms), but caution on using these estimates should be used.

5
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Chapter 6

Future Work

6.1 Summary of Contributions

In this thesis, we have presented a number of SMC and PMCMC procedures that

facilitate both filtering and smoothing for SSMs in which traditional methods either

cannot be applied, or typically perform poorly. In Chapter 3, we presented an ABC

approximation of the general SSM, which facilitates the application of both SMC

and PMCMC methods in scenarios where the observation density in the exact SSM

is intractable. It was also shown in Chapters 3 and 4, that even when the observation

density is analytically available, the use of the ABC approximation presented here

can offer improvements in accuracy when performing filtering and smoothing with

respect to a high dimensional hidden state.

We also considered the use of a rejection kernel within the SMC filtering and

smoothing procedures, and it was shown that this can significantly reduce the vari-

ance of the resulting estimators, when targeting the ABC approximation of the SSM.

This is, to our knowledge, the first empirical verification for finite particle system

size N , of the improvement in asymptotic variance that is offered by the use of the

rejection kernel (Del Moral, 2004).

In Chapter 5, we considered the class of SSMs in which both the state and

observation processes are point processes (PPs), with the latent PP specifying the
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time-inhomogeneous intensity process of the observed PP. We demonstrated the

recognised difficulties that are faced when using SMC samplers to perform inference

with respect to these SSMs, and we presented two novel SMC samplers that address

these problems.

6.2 Areas for Expansion

We now present a number of ideas for directions in which this work could be ex-

tended.

1. Recall that, in specifying the ABC approximation of the SSM, one requires

access to the dy-dimensional pseudo-datum, distributed according to the ob-

servation density: ut ∼ gt(∙|xt). It is remarked that it is not always necessary

to be able to sample directly from the distribution of the data, conditional

on the current state. Recent work by Murray et al. (2012) indicates that,

under certain conditions, one can make use of the following ‘collapsed’ ABC

approximation, introduced by Ehrlich et al. (2012), where one is not required

to sample from the likelihood directly. Suppose that the SSM (1.1)-(1.2) can

be written as

Xt = ζt(Xt−1, Vt) t ≥ 1,

Yt = ξt(Xt, Zt) t ≥ 1,

where {Vt}t≥1 and {Zt}t≥1 are i.i.d. random variables corresponding to the

state and observation noise terms, respectively, and ζt : Rdx × Rdx → Rdx

and ξt : Rdx × Rdy → Rdy are functions that may be pointwise evaluated

for each Xt, Vt ∈ Rdx , Yt, Zt ∈ Rdy at each time point t. Then, assuming

one can evaluate the marginal densities of Vt and Zt, and sample from the

corresponding distributions, the joint density of the state and observation noise

processes, conditional on the observed data y1:t may be approximated using
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the collapsed ABC approximation:

πε
t(v1:t, z1:t|y1:t) ∝

t∏

n=1

Gε
n

(

ξn

(
ζ(n)(x0, v1:n), zn

)
, yn

)

p(vn)p(zn).

Marginalising over the sampled values of z1:t provides a collapsed ABC ap-

proximation of the joint density of the state noise process V1:t conditional on

the observed data y1:t, which can be transformed into the original ABC filter.

The ‘trick’ here is that the joint smoothing distribution may be sampled from

where the transition and/or observation densities have no closed form and

cannot easily be sampled from, yet where one may generate samples from the

respective noise terms. Such a situation may arise in high dimensions, for

example, where the distribution of the data given the latent process may have

an extremely complex dependence structure; it may be the case that this can

be represented through the use of a function ξt(Xt, Zt), as above, where the

high-dimensional Zt has a much simpler dependence structure. For further

examples of areas in which a collapsed SSM may be useful, see the work of

Murray et al. (2012).

It would be of interest to explore the filtering and smoothing problems within

the framework provided by a collapsed ABC approximation.

2. Recall that the RSMC procedures presented in Section 2.3.2 are motivated

by the result of Del Moral (2004), who shows the improvement in asymptotic

estimator variance that the RSMC procedures offer over SIR procedures that

use multinomial resampling. In Chapters 3 and 4, this advantage of RSMC

was also observed in finite-N implementations of the ABC filtering and ABC

smoothing procedures. Chopin (2004) shows that the asymptotic estimator

variance is reduced when using residual resampling at every time step instead

of multinomial resampling. In addition, Douc et al. (2005) show that improve-

ments in the variance of the particle filtering estimators can be obtained by
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using either residual or stratified resampling. It would therefore be of interest

to:

• directly compare the behaviour of the asymptotic variances when using

RSMC and residual resampling; and to

• empirically compare the variance of the estimators produced by finite-N

implementations of RSMC procedures and SMC procedures that use resid-

ual/stratified resampling schemes.

3. Propositions 3.3.2 and 4.4.1 are only valid under extremely restrictive, strong

mixing assumptions, which will typically only hold when the hidden state and

observation process evolve on compact or finite state spaces. In the context

of establishing the asymptotic variance of the SMC approximation of the pre-

diction filter (1.9), Whiteley (2011) successfully replaces the strong mixing

assumptions of Del Moral and Guionnet (2001) with a multiplicative drift

condition, weakening the restrictions but maintaining the result. It would be

of great interest to see if the multiplicative drift condition could be similarly

used to weaken the restrictions on these results concerning the bias of the ABC

approximation.

4. In Chapter 4, we considered particle smoothing, which has computational

complexity O(N), and forward smoothing, O(N2), in the ABC framework.

The accuracy of the generalised two-filter smoothing procedure (O(N2); Briers

et al., 2010) could similarly be explored within an ABC framework. Recent

work by Persing and Jasra (2012) shows that the two-filter smoothing proce-

dure can be executed with computational complexity O(N), and this provides

additional motivation, as the accuracy of an ABC two-filter smoothing proce-

dure would be expected to be greater than the ABC particle smoother, with

similar computational complexity.

It would also be of great interest to use an O(N) implementation of the two-
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filter smoothing procedure as an update scheme for a PMCMC procedure

within the ABC framework.

5. The derivative of the log-likelihood, e.g. ∂(log gt,θ)/∂θ, can be of great interest

within the SSM framework; this was briefly discussed in Section 4.2, in the

context of EM algorithms. Some analysis of the properties of this derivative

have been established (Tadić and Doucet, 2005, e.g), although little work has

focussed on the case where the likelihood is intractable. In this scenario, one

could provide an ABC approximation of the derivative, most likely at the cost

of an associated deterministic bias. A theoretical analysis of this bias would

be of great interest.
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