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Abstract

We assume that even the simplest model of the brain is nonlinear and ‘causal’. Proceed-
ing with the first assumption, we need a measure that is able to capture nonlinearity and
hence Mutual Information whose variants includes Transfer Entropy is chosen. The second
assumption of ‘causality’ is defined in relation to prediction ala Granger causality. Both
these assumptions led us to Transfer Entropy. We take the simplest case of Transfer En-
tropy, redefine it for our purposes of detecting causal lag and proceed with a systematic
investigation of this value. We start off with the Ising model and then moved on to created
an amended Ising model where we attempted to replicate ‘causality’. We do the same for
a toy model that can be calculated analytically and thus simulations can be compared to
its theoretical value. Lastly, we tackle a very interesting EEG data set where Transfer En-
tropy shall be used on different frequency bands to display possible emergent property of
‘causality’ and detect possible candidates for causal lag on the data sets.
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Chapter 1
The brain as a complex system

Statistical mechanics works towards understanding the macroscopic behaviour of a system
from the microscopic interaction of its part. Lately the field has taken interest in complex
systems, loosely defined as a system where the components self-organize into a critical
state B, 27, 53]. Criticality (the critical state) occurs when local distortions propagates
throughout the entire system and observables are scale2ffegd. In this introductory
chapter, we will first explain how the brain is essentially a complex system and how it is
logical for it to operate near criticality. Then we look at the methods of analysing neuro
data sets and why EEG data sets suits our purposes. After looking at some of the many
different measures people have used on EEG data sets, we will most importantly explain our
simplistic view of the brain and why we are looking for a measure that should essentially
be nonlinear and be able to detect possible ‘causality’.

1.1 Complexity and the brain

Although there is no universally agreed upon definition of complex system, there are a few
criteria that most will say define the system, mainly that it is composed of a large number
of interacting components that give rise to emergent hierarchical structures and that the
components typically change with tim®4]. There is increasing belief among neurologists

is that the brain is complexX, 43, 92]. In fact, it has been suggested that this wonderful
brain of ours, could possibly be the most complex system of them all, due to its capability to
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represent the complex outer world to us humdjsliphdeed, we are what we are perceived
to be. A simple way to view the brain as a complex system is to imagine the neurons
as individual components and the brain as a whole that emerges from cooperation of the

neurons.

1.1.1 Complex systems and criticality

In other words, the brain is viewed as a system that exhibits complex behaviour where
hundred billions of neurons self organize to function as one entity. However, some neu-
rons seem to work together with one another more than others depending on the performed
function [24, 92]. Consequently, it is believed that the brain can be divided into its func-
tional parts P5, 36]. Therefore, one could also consider the functional parts (encompassing
certain areas of the brain) as the components that cooperate to become the brain as a whole.

This is where a contradiction arises, on one hand the brain needs to be segregated for
it to specialize and efficiently respond to specific stimulus (or lack of it) but on the other
hand scientist have confirmed from many different sources and observations that virtually
all perceptual or cognitive tasks are the end result of large scale and distributed activities,
often times involving spatially disconnected ar2§, [24]. This integration versus segrega-
tion issue is succinctly summarized i8. This apparent contradiction can be explained
beautifully if we look at the brain as complex system. In order to further understand this
currently prevalent paradigm about how the brain works we need to first understand criti-
cality.

Criticality is the emergence of the components to work together as one. A familiar
example will be the phase transition occurring when water evaporates into vapor. A phase
transition with long range interactions (diverging correlation lengths) is critical. Basically
in a complex system, criticality occurs when the system appears to act cooperatively as
the result of individuals interaction2T7, 53]. Therefore as a complex system, the brain is
completely connected (acting cooperatively) and integrated at criticality as well as being
segregated (acting individually or according to its functional speciality).

If a system is critical, there will be long range correlations as well as short range ones;
in fact all scales of correlation should be present. Thus, theoretically the system will appear
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identical no matter the scale at which we probe it, hence the term “scale free”. This self
similar and scale free behaviour is fractal in nature which leads to the belief that a complex
system is also fractaPk[7, 53]. This fact allows us to use scale free and self similarity as
indicators of a system being in a critical state. The ability of certain data sets to appear self
similar regardless of hierarchies and coarse graining is often taken to be an indication of
criticality. However caution must be taken here since there can be other ca04de®f a
system to be fractal.

1.1.2 The Ising model at phase transition

A system is critical in a sense that all members influence each other. In a complex system
the critical state is established solely because of individual interact®2y,[53] but an
equilibrium system needs to be fine tuned to obtain this criticality. Perhaps the simplest
example of an equilibrium system is the Ising mod&f|[ It displays emergent cooper-
ative phenomenon (long range correlations) at its phase transition which is characterised
by scale free behaviour. Therefore, the Ising model is critical at its phase transition. Only
at this critical state, complex systems and equilibrium systems are said to exhibit similar
behaviours27, 53], thus looking into this simple Ising model can help gain insight into the
complexities of a the brain.

Briefly, the Ising model is a model comprised of sites on a lattice, where each site can
only be in two possible states, either up (+1) or down (-1). In this thesis, we restrict the
interaction of the sites to only its nearest neighbour (in two dimensions this will be nodes
to the north, south, east and west). The effective interaction strength increases or decreases
depending on temperature that effects the probability of the sites being in certain configura-
tions. Amazingly, although only nearest neighbour interaction occurs, a specific site is able
to influence other sites across the entire system at the critical temperature. The existence of
this long range correlation at its phase transition, makes the model very interesting despite
of its simplicity.

In fact, Fraiman et al.38] compared the Ising model at criticality and the resting state
of the brain obtained from functional magnetic resonance imaging (fMRI) data sets, and
concluded that both the systems exhibit identical dynamics and statistical properties. They



1.1 Complexity and the brain 14

proposed that resting state (i.e the states when there are no explicit inputs or outputs) could
be the default mode of the brain where certain areas are automatically activated during rest
time and deactivated as soon as the slightest task is engaged upon. They even went further
to suggest that the global changes in the brain (mood, attention etc) could be brought about
the same way temperature drives the Ising model to criticality.

1.1.3 The brain operating near criticality

At first glance it looks like the brain must be critical since it has the capacity to allow
communication between different parts of the brain at a speed that seems instantaneous.
A critical system is highly susceptible to local distortion which resonates throughout the
system. The brain seems to be doing exactly this when it switches between connections to
figure out the appropriate responds to an external stimuli. Even when it is not stimulated
it is perpetually changingg] 20]. Moreover, if the brain was subcritical then only local
correlations will occur and cooperative behaviour cannot be possible as the signals will
die out. On the other hand, if the brain was supercritical there will be chaotic disorder as
neurons will be firing and be massively activated all the time. Thus, it can be argued that
the brain has to be critical for information to propagate and be comprehensible. There are
even some scale free indicators found in the brain to support this hypothesis of criticality
and fractal nature of the brai@%, 34, 36.

The idea that in order to be a dynamical system, the brain would have to operate near
criticality was put forward by Turin in 19501P4]. Being near criticality is very logical
in terms of efficiency. Making use of local and global interaction appropriately as needed
to balance out the integration and segregation as required is efficiency at its best. Brain
scientists have confirmed that interactions in the brain are predominantly $&taNev-
ertheless, it does not work alone in its locality and needs to able to attain criticality very
quickly. The brain connects and reconnects all the time according to its need and amazingly
although the cortex is mainly excitory network it does not explosively propagate and still
transmit information 24]. Thus it has to be near criticality. In fact Tagliazucchi et 8I7]
claims to have evidence proving that in resting state, the brain spends most of its time near
critical point where the dynamics are close to phase transition with long range correlations.
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The main reason for this is that near the critical point, the system is anticipating criticality
therefore a lot of different meta-stable states ex38}.[ This makes the brain elastic and
enhances the plasticity of the brain, to take the form of whatever state required.

One thing that we are very confident about is the fact that the brain handles loads of
information. Thus some parts of the brain would be dependent on others at certain points in
time. It is this flow of information and dependencies that we hope to understand a bit more
of in order to contribute towards our understanding of the inner workings and complexities
of the brain.

1.2 Peeking into the brain

The advances of technology have given us glimpses of what we hope to be the inner work-
ings of the brain. Unfortunately making sense of these glimpses, is not an easy task to
say the least. Adding to the difficulties is the fact that, on one hand it seems that different
parts of the brain are activated at different times but on the other hand it appears almost
like information is reaching all neurons at all times. Consequently, tracing the informa-
tion flow in the brain will require high temporal resolution in order to capture split second
changes. Electroencephalograph (EEG) may be able to do just that. On July 6, 1924 Hans
Berger first used EEG to measure human brain wa#8s34]. EEG is the recording of
electrical activity along the scalp. The EEG can be defined roughly as the mean electrical
activity of certain sites on the scalp4]. The electrical activity is detected as the differ-
ence in potential between two electrodes in a grounded system. With several electrodes
on the scalp, an estimate map of the brain’s electrical charges can be constructed. This
noninvasive technique is still the most widespread method used in laborafljes [
Neuroimaging techniques are techniques used to visualize brain activity. The most
popular of these techniques are functional magnetic resonance imaging (fMRI), positron
emission tomography (PET) and single-photon emission computed tomography (SPECT)
which assess metabolic correlates of neurons in blood flow, blood volume and oxygenation
respectively 20]. The most prominent among those is the fMRI due to the prevalance
of MRI scanners. This method which makes use of a magnet weighing several tonnes,
depends on the magnetic moments of metal ions in our blood. fMRI makes use of the fact
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that the magnetic property of hemoglobin changes with presence and absence of oxygen.
The information gathered by an fMRI scanner is usually processed to construct images of
brain activities R0, 43]. There are many interesting studies that have made use of data sets

produced by fMRI 88, 36, 97].

1.2.1 EEG versus fMRI

The strength of fMRI lies in the spatial resolution. The easy-on-the-eye resulting images
obtained from the MRI scans make it possible to detect cellular activity in structures that
do not contribute to scalp EEG. A main technical drawback of the fMRI method is its slow
temporal resolution40]. EEG on the other hand has a very high temporal resolution but
lower spatial resolution. EEG has come a long way since the time of Hans Berger but
the general idea of recording electrical activity on the scalp remains. Fortunately for us
the temporal resolution now is very high to the point where we could even possibly detect
reactions at a neuronal level.

EEG and fMRI are both non-invasive procedures, however there are plenty of more-
than-invasive experiments performed on the brains of animals includindLétséts P2
and monkeysg7]. In all of these experiments the neurons reacted in order of milliseconds.
Therefore we believe that the human brain reacts similarly, that cooperative neuronal in-
teractions are manifested in the order of milliseconds which can be detected by the EEG
but not the fMRI. The temporal resolution is the most important reason we are interested
in EEG data sets, especially when the brain appears to reorganize itself almost instanta-
neously RQ], in what appears to be the most effective information dissemination process
in the universe. Additionally from a theoretical point of view, the high temporal resolution
renders more data per second which leads to a much better probability estimate when one
takes the average over time relative to the estimates that can be obtained from fMRI data
sets.

Moreover, EEG technology has its advantages over the neuroimaging technique espe-
cially in terms of portability, availability and at least 85 year history of investigation. MRI
machines are typically huge and noisy enclosures which can sometimes intimidate whereas
EEG involves wearing a string of electrodes on ones head. It is simply psychologically and
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physically more convenient. Not to mention that it is also much cheaper than the fMRI.
The simplicity and widespread usage of the EEG gives it the edge. It is much easier for
a pianist for example to play the piano with some electrodes on his head then in an MRI
scanner. Furthermore, the existence of smaller and more efficient EEG recording machines
makes data acquisition less time consuming. In our case, EEG refers to the recording of the
brain’s spontaneous electrical activity over a short period of time, as recorded from eight
electrodes placed on the scalp.

1.2.2 Detalls of the EEG data set

Thanks to the team of EEG experts led byBj Ciiits at Biometrisch Centrum (BMC]],

that make their own EEG recording devices, we have EEG data sets from possibly the most
up-to-date machine. Byn’s team have kindly shared some of their data sets and also gave
very valuable advice with regards of the outcome of the analysis. The team is continuously
working with clinicians all over the Netherlands (and currently expanding to some parts of
Germany) in using EEG in psychological treatments and providing EEG machinery as well
as training to the psychologist. The team strive to use the best quality materials for their
machines and they are constantly trying to improve the efficiency and design of their EEG
machines. The data sets provided to us were recorded at 250Hz (4 millisecond intervals)
with a resolution smaller than 0.1 millivolts. These data sets motivated us to think about
how the brain operates.

1.3 Measures on EEG data sets

In order to make sense of all the acquired EEG data obtained using these technologically
advance machines, a certain type of measure must be used to quantify these data. There are
many to choose from. The ever popular correlation deserves our attention first. But before
that, some definitions that will be adopted throughout the thesis.
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1.3.1 Probability and Expectation

We shall defineP as the probability. The most common way we shall &8 in terms of
expressing variables and its different possible values, that we shall call states. For example,
define two variables{ andY that can be in states € X andx € ) respectively.X is
the state space (set of all possible statesY @nd) is the state space of. P(X = z) =
px(z) is the probability ofX being in stater. P(X = z,Y = y) = pxy(z,y) is the
joint probability of X being in stater andY” being in statg; simultaneously. With regards
to the conditional probability, we shall usg X = z|Y = y) = pxy(x|y) to denote the
probability of X being in stater given thatY” is in statey. These terms can be generalized
for relationship between many variables.

Thus if X ~ px(z) [X has distributionpx (x)] as we have defined above, then the
expected value of random variabf€X) is written [29] as

Epy@lf(X)] =D px(@)f(x) = E[f(X)]. (1.1)
zeX

The last term on the right hand side (RHS) will be used when the probability distribution
is understood from the context. Moreover, sometimes we shall take the liberty of simply
usingP(X) = P(X =z), P(X|Y) = P(X = z|Y = y) and so on, especially when using
P in tandem with expectatioh’ and when the context is clearly understood. However this
is not to be confused with the general usag® ais the probability of an event. For example
if A = {Xdoes not changethenP(A) = P(Xdoes not changas the probability that\
does not change which is equal to the probability of event

1.3.2 Covariance and Correlation

The most common measure on neuro data sets (or any kind of data in statistical mechanics
for that matter) is correlation. Correlation in a general sense of the word is commonly
used to refer to the mutual relationship or connection between two or more things. Even
when discussing the relationship between variables, correlation is often referred to in the
context of whether or not there exist co-relation between them. In statistical mechanics,
correlation often refers to a measure of mutual order existing between varidbgs [
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Unfortunately (and this is where it sometimes get confusing) this is usually done using the
covariance measure. Recall the two variabteandY previously defined. Given that the
joint probability ispxy (x,y), the covariance ok andY is defined as

I'(X,Y) = E[XY] — E[X]E]Y]

= Z Z rypxy (2,y) — Z zpx (z) Z ypy (y)- (1.2)
TEX yey zeEX yey
In some literature this quantity is known as the correlation, we cautiously use the term
covariance here to distinguish it from the statistical correlati 109,
NX,Y) E[XY] - E[X]|E[Y]

LYY = a(X):T(Y) T o(X)a(Y) (1-3)

whereo(X) is the standard deviation of (note thatp is undefined whenX or Y is
constant since (X)) = 0). The variables{ andY are said to be ‘uncorrelated’ or linearly
independent wheh(X,Y) = 0.

Let X7 be the variableX that is shifted byr time steps. For example, X is in state
1 at time stepl, state2 at time ste@ and so on. Denot&,, for value of X at time step.
X7 is the variableX shiftedr time steps so that the values &f arer time step ahead of
X ie. X7 = X, .. The cross correlation is used to measure correlation across time step
such that

E[YXT] — E[Y]E[X"]
oY)o(X7)

p(Y, XT) = (1.4)
Similarly, cross covariance is defined BEY, X™). Autocorrelation is simply the corre-
lation of a variable with a time shifted version of itself (hence the word auto) such that
p(X,X7). Correlation is widely used in measuring quantities in many fields including
neuroscience. Itis extensively used on EEG data Sgts [

1.3.3 Other measures

Measures can be used in time domain or in frequency domain. The previous measures were
mentioned in the context of time domain. There are many other measures that requires the
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EEG data setto be in the frequency domain since there are strong reasons to believe that fre-
guencies are important on EEG data sets. The most basic one would be cohédeh8 [

which is simply correlation as a function of frequencies allowing spatial correlation to be
studied between different frequencies. For a review on how coherence have been used on
EEG seed4]. More recently, popular measures for the frequency domain in neuroscience
include Partial Directed Coherence (PDC) and Direct Transfer Function (DTF) by Taka-
hashi et al. 99].

However, in this thesis we only discuss measures in the time domain. Most of our find-
ings are similarly applicable to the frequency domain by simply replacing the probability
density function with the spectral density function. We will be focusing on entropy based
measures originating from information theory. The use of measures from information the-
ory is aptly appropriate considering that it has been said to be a natural tool set to use on
the brain P8] due to the vast amount of information processed.

1.4 How we humans view the brain

The way we humans picture the brain is constantly evolving. The ancient Egyptians appar-
ently did not consider the brain to be important, thus taking it out and throwing it away from
their dead ones during mummification. The ancient Greeks are the ones usually credited to
be the first to think that the brain was important. The idea that the mind and matter is con-
nected, is known to be propounded by Pythagoras who thought that the mind is somehow
attuned to the laws of mathematics. Whether or not this happened in the brain was prob-
ably not important to him. However, Hippocrates who came decades later argued that the
brain is the most important organ for sensation, thought, emotion and cogré@priur-
thermore, he divided the brain into four humours responsible for different temperaments.
Recent developments in technology and complexity science has resulted in paradigm shifts
in terms of how we look at the brain, most of the neuroscientists are now of the view that
the whole brain is also integrated in addition to having different functionali@gs [
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1.4.1 Simplistic view of the brain

The idea that there exist dedicated parts of the brain for certain functionalities persisted.
In the current literature it is known as functional segregation which refers to specialized
neurons responding to specific input features. There are even claims that every cognitive
act has its specific assembly that causes its emerg@dfdts counterpart, the functional
integration on the other hand, refers to the establishment of a statistical relationship be-
tween different and distant cell populations which may ironically degrade specialization
[92]. From a very machine-like point of view the brain performs two very important and
almost contradictory actions. The first is the need to extract the information from the input
(stimulus) that it receives. This is where segregation is needed. At the same time (or within
a few milliseconds) it has to make sense and then react to the stimulus accordingly. And
this is where integration comes into play. Looking at the brain as a complex system that is
constantly near criticality brings these two functions together.

Nonlinearity is fundamental in any complex system. By definition, the emergence and
criticality expected in a complex system is a nonlinear phenomenon. The fact that we be-
lieve the brain is operating near criticality thus being crucially nonlinear encouraged us to
look for measures that can capture nonlinearities. Nonlinear relationships are prevalent in
the brain, small inputs can stimulate large outputs or sometimes nonezd]all he func-
tional integration (connectivity) of the brain which is defined as the connections between
distant groups of cells are commonly established using temporal correlations (cross corre-
lation by our definition) or temporal covarianc@?]. We are hoping to look at things in a
more nonlinear manner. Therefore, in our simplistic approach to understanding the brain,
nonlinearity will be one of the main issues.

The idea of functional segregation can sometimes be explained in terms of certain spe-
cific parts of the brain controlling certain specific functions. However, these controlling
areas are not the only ones that are active during the operation of the task and sometimes
the communicating areas are not even spatially conne®td Therefore, there must be
some form of communication between the areas especially when reacting to external inputs.
The communication links exist mostly as a series of action potentials forming a connec-
tion. The length of this connection in a single human brain is said to be betiveedD0
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to 10,000, 000 kilometres P2]. This emphasizes the importance of communication in the
brain in order for it to function as a directed network. The key word here is directed, having
a starting point and an end point. The very definition of the functional integration was to
establish a sort of temporal relationship between groups of cells and therefore establishing
‘causal’ (directed) link between these groups. Therefore, the second element that we wish
to incorporate in our simplistic model of the brain is a type of ‘causality’.

Chapter Summary

We have first explored how the brain could be the very definition of a complex system and
how technology can help us understand it better. Subsequently, we explained our interest in
EEG data sets and went through some basic introduction on how people go about measuring
it. The very nature of the brain where there is bound to be ‘causal’ connections in a very
nonlinear environment of a complex system points out the need for a measure that can
incorporate both nonlinearity and ‘causality’. We start by examining how to capture the
nonlinearity and this is where Mutual Information comes into the picture.
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Chapter 2

Mutual Information as a nonlinear

measure

To capture the nonlinearities of the brain, we need a nonlinear measure. The Mutual In-
formation which is based on information theoretic entropy introduced by Shannon in his
seminal paperdl] seems to fit this description. Firstly, we define entropy and its unique-
ness in defining uncertainties. Consequently we define Mutual Information and Kullback
Leibner measure as function of probabilities. We discuss some of the common properties
of these measures. In terms of independence, we show how Mutual Information is tailor
made to capture the very definition of independence in contrast to covariance which is es-
sentially defined to capture linear independence. Lastly, we will take a brief look at some
applications of the Mutual Information including possible ‘causality’ detection.

2.1 Entropy

In statistical mechanics, entropy arises as a measure of uncertainties and disorganization
in a physical system. Information theory deals with entropy in a slightly different man-
ner as it focuses on the quantification of information. Mutual Information is an entropy
based measure widely used in information theory. In order to understand Mutual Informa-
tion, we need to understand entropy. Entropy was first coined in 1865 by Rudolf Julius
Emmanuel ClausiuHp)] in reference to thermodynamics. However in 1948, Shannon de-
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fined a slightly different kind of entropy in terms of measurable dynamics and information
theory. It was reported that he contemplated calling it information or uncertainty but was
convinced by John Von Neumann to call it entropy for two reasons. The first was that
entropy is the uncertainty function of statistical mechanics and secondly according to Neu-
mann, to call it entropy will be advantageous in debates since nobody knows what entropy
really is [59].

On a more general level, the field of complex networks is still looking for a good quan-
tifier of complexity and there seems to be a great need for a new theory of information
of complex networks3]. One way to tackle this issue is to import the key concepts of
information theory that has quantification of information as the main focus where entropy
based measures such as Mutual Information plays a key role. Being able to evaluate the
information transfer of a complex system is one of the main outstanding problems in the
statistical mechanics of the complex systems.

2.1.1 The definition of entropy

Shannon91] defined entropy as the functidii(py, ps, ..., p,,) for probabilitiesp,, ps, ..., pn,

H(pl>p2>"'7pn) = _kzplegpz (21)
=1

wherek > 0 is a constant and the log is to the base 2. The aim was to measure the un-
certainty of the outcome of a certain variable given the probabilitidswas chosen to
represent uncertainty due to it being the only the solution to certain properties that are
outlined to ‘measure’ uncertaint@]] . Khinchin [58] came up with a more mathemati-
cally rigorous proof for uniqueness éf for the chosen properties. Before outlining these
properties in subsectio2 (1.2, we explain more about.

Whenpy, p, ..., p, are the probabilities of discrete random varialleve write

H(X) = H(p1,ps, -, pn) = = > _pilogp; (2.2)
i=1

as the entropy ok [29, 60, 103. Without lost of generality we have skt= 1. Note that
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X is not the argument of the functiaid but it is the random variable the entropy of which
we are trying to measure. For example, say we have a random vakiakith probabilities
p=PX =1)=14,p=PX =2) =5 andp; = P(X = 3) = ¢, then the entropy
would be
H(X):—%log%—%log%—élogé.

Entropy does not actually depend on the values taken by random vakablg only its
probabilities. This entropy definition is also prominent in measure theory and ergodic
theory b2, 59].

More formally, define two random variablé§andY that have probability y (x), z €
X andpy (y),y € ), respectivelyt’ is the state space (set of all states)ofind) is the

state space df’. Their respective entropieg9] are

== px(x)logpx(z) (2.3a)
zeX
and
— > py(y)logpy (y)- (2.3b)
yeY

We will use the conventiod log 0 = 0 which is easily justified by continuity since
x log(z) — 0 asz — 0 and log to the base In terms ofE, we have

==Y px(@)log px(z) = Epyw [logpx(2)] = E[~log P(X)].  (2.4)
TeX
Therefore, the entropy oX can also be interpreted as the expected valuelof px (z)
when X ~ px(x) [29. Recall thatpx(z) = P(X = z) and E is the expectation as

previously defined in subsectioh.B.1).
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2.1.2 The unigueness of entropy

When more than one variable is involved, joint and conditional entropy can be defined
[29, 52]. The joint entropy ofX andY is defined as

= — Z pry(as, yY)logpxy(x,y) = E [—log P(X,Y)]. (2.5)

zeX ye)

Define H(Y|X = z) = =3y pyix(y[z)log py|x (y|x), so that the conditional entropy
can be written as

H(Y[X) = ZPX HY|X =z) ZPX )ZPY|X(?J|$) log pyx (y|r)

reX zeX yey
== ) pxv(@,9) logpyix (Y2) = Epyywyy[—log PY|X)]  (2.6)
rEX yey

where we have substitutegh x (y|z)px (z) = pxy (z,y).
The Unigueness of Entropy was later on proven in mathematically rigorous way by
Khinchin [58] when H has these properties:

1. Givenn possibilities,H is maximum whemx (z) = + for Va € X.
2. ThechainruleH (X,Y) = H(X)+ H(Y|X).

3. Adding an impossible event i.e a zero probability event does not change the value of

H: H(p17p27 7pn70) = H(plap?a ’pTL)

As a side note, we would like to point out a trivial point that will make working with
expectations much simpler. For any function’of f(X) with distribution functiorpx (z),
we have that

px(l’) ZpX ZZPXY x y pry(I y)[f(X)]7 (27)

TeX zeX yeY

where we made use of the joint probability propeyty ., pxv (z,y) = px(z). Conse-
guently, the chain rule o/ (property 2) can be verified by substituting the Bayes theorem
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P(X,Y) = P(X)P(Y|X) into equation 2.5) as follows

H(X)+ H(Y|X) = Ep@)[—log P(X)] + Epyy @y —log P(Y]X)]
= Epyy (a) [ logP(X)P(Y[X)] = Epyy (a) [-log P(X,Y)]
= H(X,Y). (2.8)

This rule links joint and conditional entropy. By symmetry we also ha&MeX,Y) =
H(Y)+ H(X]|Y). Itis possible to include more variables in the definition of joint and
conditional entropy where the definitions can also be linked using the chain rule. If we
define a new random variabfin a similar manner, using the equality from Bayes theorem
pz(2)pxv|z(7,y|2) = pxvz(x,y, 2) and the definition of the conditional entropy, we get

H(X,Y|Z) =) pz(x)H(X,Y|Z = 2)

zZEZ

S sz(z) Z prnz(x; y|2) log pxyz(x,y|z)

2€EZ zeX yey

= — Z Z Zprz(l’, Y, Z) lngxy|Z($7 y’Z)

reEX ye) zeZ

= Epyyy(anz) [—log P(X,Y|Z)]. (2.9)

PXyz

And by substitutingy 2 (y, 2)pxy z(z|y, 2) = pxyvz(z,y, z), we obtain

HX|Y,Z) =Y prz(y,2) HX]Y =y, Z = 2)

yeY z€2
== Z Zpyz(y, z) ZPX|YZ(SU|% z)log pxpy z(x|y, 2)
yeY z€Z reX

_ Z Z ZPXYZ(% Y, z)logp)qyz(x‘ya z)

zeX ye)y zeZ

= Epy 1@y [Flog P(X]Y, Z)]. (2.10)

It is clear that by simple manipulation of the probabilities using Bayes theorem we can get
relations between conditional entropies. For example, using Bayes theorem to manipulate
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the probabilities we get

pxyz(ﬂf Y,z ) _ pY|XZ(y|xvz>pXZ(3772)
pz(2) pz(2)

= py|xz(y\9€, Z)PX|Z($’2)7

PXY|Z($ y| )

so that the entropy ok andY conditioned onZ is equal to entropy oY conditioned on
X andZ plus the entropy oX conditioned or7, i.e.

H(X,Y|Z) = HY|X, Z) + H(X|Z). (2.11)

We are now prepared to define Mutual Information.

2.2 Mutual Information and Relative Entropy

For the same random variabl&sandY’, the Mutual Information29, 60, 61, 64, 73, 103
is defined as

I(X,Y)=H(X)— HX|Y)

= Epx(@)[—log P(X)] = Epyy (@) —log P(X]Y)]
—FEllog P(X)] + Epyy () {logpj(j(({})/)]

_ P(X.Y)

= Evoton [295757 7

= ZZPXY z,y)log p)zy)( ‘?)) (2.12)
TEX yeY

I can be interpreted as the amount of informatioprovides aboufX since it measures
the difference between the uncertainty.ofand the the uncertainty of givenY. The
relationship can also be viewed in a set theoretic setting as in Figube (f we define
H(X)andH (Y) as sets, then we have thdtX,Y) = H(X)NH(Y) and thatd (X,Y) =
H(X)U H(Y). The conditional entropies are given By X|Y) = H(X) \ I(X,Y) and
H(Y|X)=H(Y)\I(X,Y). From the definition and the Venn diagram we can seeltist
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Figure 2.1: Venn diagram depicting relationship betwéamd

symmetric so that the information thetgives aboutX is the same amount of information
X gives aboul’. The symmetry of Mutual Information can be shown using the chain rule
in equation 2.9).

I(XY)=H(X)-H(X|Y)=H(X) - [HX,Y) - HY)]
= HY)-[HX,Y)-HX) =HY)-HY|X)=I1(Y,X). (2.13)

Note that/ (X, X) = H(X)— H(X|X) = H(X) sinceH (X|X) is obviously zero. There-
fore H is a special case df.

2.2.1 Relative Entropy and conditional Mutual Information

Another interesting way of interpreting Mutual Information is through relative entropy.
Relative entropy or Kullback Leibner (KL) distanc2d 52, 63] between two distribution
functionsf(x) andq(z) is defined as

[z JX
DUl = 3 ste) tog 153 = By [l 35
where we take) logg =0 andOlogg = oo. D can be seen as a measure of distance
between distributions. However it should be pointed out that it is not a true metric distance
because it is not symmetric and does not satisfy the triangle inequality. Despite that, it is
often helpful to think ofD as the distance betweghand g, because it seeks to quantify
the difference between these two distributions @nd= 0 when f(z) = g(z). If we let
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f(z) = pxy(z,y) andg(z) = px(z)py(y) then we get that

P(X,Y)

m} = I(X,Y). (2.14)

Dl e 6Oy () = By o [1
It appears thaf is just the special case @ wheref is the joint distribution and is the
product distribution. Using this logic, we can interpfeas measuring how ‘far’ the joint
distribution is from the product distribution.
Analogous to entropy, the definition of Mutual Information can be extended to include
a third random variable’ in the form of conditional Mutual Informatior2p, 52| which
can be written as

I(X,Y|2) = H(X|Z) — H(X|Y, Z) = E[-logp(X|Z)] — E[—log p(X]Y, Z)]

— 5 liog PV D) ] _ p,,, P Y, Z)p(2)
‘E[l p<X\Z>} E[lgp<y,z>p<x,2>1

- F PX.Y|Z) } : (2.15)

zyz) |

Pzl {Og P(Y|Z)P(X|Z)
where one can clearly see that the only difference with the Mutual Information definition
in equation 2.12) is that the probabilities are conditioned gn Conditional Mutual Infor-

mation can be interpreted as the amount of informakioprovides aboul” (or vice versa)
given thatZ is known.

2.2.2 Properties of Entropy, Relative Entropy and Mutual Information

Entropy H is a specific case of Mutual Informatidn Mutual Information/ is a specific
case of relative entropy. So all properties ofD extends to/ and all properties of
extends toH. This does not apply in the other direction. One prevailing property for all
three quantities is non-negativity. This can be proven using Jensen’s Ineqa8)itOg
which states that i is a convex function thei’[¢(X)] > g(E[X]). And if g is a concave
function thenFE[g(X)] < g(E[X]). Let f(x) andq(z) be distribution functions, we claim
thatD(f||¢) > 0andD(f||q) = Oifand only if f(z) = ¢(x) foranyz. For f(z), ¢(x) > 0
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we have that

_ X q(X)
—D(pllg) = —Ej) {ZOQM] = Ey ) [lOQW}
<log By {%} = logzm: f(w)% = log; q(x) =logl =0

where the inequality follows from Jensen’s inequality since the funétigfx) is a concave
function ofz. ThusI(X,Y) = D(pxy(z,y)||px(x)py(y)) > 0 and(X,Y) = 0 if and

only if pxy(z,y) = px(x)py(y). MoreoverH (X) = I(X, X) > 0andH = 0 only when

X is constant29]. However it must be pointed out that

P(X,Y|Z)
I(X,Y|Z) = Epxyz(ay.z) {lOg <X|Z)P(Y’Z):|
P(X,Y|Z)

7 Epxyiz@ale) [logP(X|Z)P(Y|Z)]

= D(pXY|Z(5Ua y‘z)"pX\Z(x‘Z)pWZ(y’Z))’

and thatD > 0 does not necessarily implies that the conditional Mutual Information
I(X,Y|Z) > 0. Howeverl (X, Y|Z) > 0 can also be proven using Jensen'’s inequality.

B P(X,2)P(Y, Z)

P(X,Y|Z) log
pxY 7 (2:Y,2) P(X,KZ)P(Z)

(X Y|Z> pXYZ ,Y,2) {lOg (X|Z) <Y|Z)
P(X,Z)P(Y, Z)
> —log {EPXYZW»%Z)P(X Y, Z>P(Z)}

_ _ZOQZZZPXYZ (2,9, 2 pxz(l' 2)pyz(y, 2)

TEX yeY z€Z pXYZ(CE Y,z )pZ( )

:—lOgZZpYZ Y, < przzz __lagzzpyz Y,z z)

yeY ze2 zeX yeY zeZ
= —log» > pyzly,z) = —log ¥ pz(z) = —log 1 =0.
y€Y 2€2 2€Z

One property ofl not possessed b;?) is symmetry. GenerallyD is not symmetric
sinceD(p|lq) = E,logZx) ) ) £ B, logZX) (X) D(q||p). I however, is symmetric because of
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equation 2.13. Joint entropyH (X, Y') is symmetric since we get that

H(X,Y) = Epyy@y)[—log P(X,Y)] = H(X) + H(Y[X)

= HY)+ H(X|Y)=H(Y,X).
On the other hand, conditioning reduces entropy hence distorting the symmetry i.e

H(X]Y) = =Epyy @y llog P(X[Y)] = H(X,Y) — H(Y) <
H(Y|X) = =Epyy @yllog PY[X)] = H(X,Y) - H(X) <

(X)

H(X),
H(Y),
so thatH (X|Y) # H(Y|X) in general. It is the same case forgenerallyl (X,Y|Z) #

I(X,Z|X) # I(Y, Z|X) since the probabilities could be different although we obviously

still haveI(X,Y|Z) = I(Y, X|Z).

2.3 Mutual Information versus covariance

One feature of Mutual Information is that it enables quantification of relationship between
symbolic sequence$4]. This is due to the fact that Mutual Information only depends on
probabilities rather than the values of the variable itself, consequently the variable does not
have to be a number. It is pointed out that, in this way Mutual Information is somewhat
more flexible than covariance (and correlation) function since it does require the variable to
be a number. In a similar sense we can get relationship between blocks or group of nodes on
the brain since all we need are the probabilities and not the values of the nodes itself. This
could be very useful in identifying any scale free features of the brain to support the claim
in [36]. However the most important difference is in terms of linearity and independence.

2.3.1 Comparing independence

The variablesX andY are said to be linearly independent of each other if

Z Z rypxy (,y) = Z zpx (z) Z ypy (y). (2.16)

reX yey TEX yey
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It can easily be seen that the covariance and correlation is defined to capture linear inde-
pendence. Recall the definition of covariance from equatia?) §o that

I'(X,Y)=E[XY] - E[X]E[Y] =0
= E[XY]= E[X]E[Y]

= Z Z rypxy (T,y) = Z rpx () Z ypy () (2.17)

zeX yey TEX yey

where the last line is the very definition of linear independence. Therdfgk&y| =
E[X]E[Y] implies thatX andY are linearly independent.

It is well known that two variable” andY are independent if and only if their joint
distribution equals their product distributiobdg such that

pxy(x,y) =px(@)py(y) Ve e X,y e . (2.18)

It is a well known fact in statistics that uncorrelated-ness (linear independence) does not
imply (general) independence but independence implies uncorrelatedd4esarjything

that is independent would of course be linearly independent by default. Recall from equa-
tion (2.14 that whenpxy (z,y) = px(z)py(y) i.e when theX andY are independent,

we have that = 0. We have seen thdtcan be interpreted as measuring how ‘far’ the
joint distribution is from the product distribution (which is the joint distribution whén
andY are independent). In other words Mutual Information seeks to measure how depen-
dent these two variables are on each other. One can see this from the definition of Mutual
Information in equationd.12 which renders

I(X,)Y)=FE {log %1 = E[log P(X,Y) —log P(X)P(Y)] =0
= FEllog P(X,Y)] = E[log P(X)P(Y)]. (2.19)

Consequently it is logical to expect that, Mutual Information has the potential to provide us
with insights that have not been obtained using covariance before. The direct approxima-
tion approach should give us a clear indication of independence given that the probabilities
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are accurately estimated. Moreover, eveXifandY are not independent of each other,
one could have

pxv|z(@,y|2) = px1z(x|2)py iz (y|2) V2, ¥, 2

so that variables( andY” are said to be conditionally independent on variableThere-
fore, if X andY are conditionally independent df, we get that/ (X,Y|Z) = 0.

2.3.2 Anillustrative example

The discussion on independence indicatesthat0 = [ = 0but/ =0 = I = 0. This
is demonstrated ir6f] which starts off with a binary sequence where the numerical values
of X andY can only be either O or 1. In this case, we can find a relationship between these
two functions and linear dependence would lead to general dependence. Therefore we have
thatl’ = 0 & [ = 0 for binary sequences.

Let p(a) andp(«v, 3) be the probability and joint probability fax, 5 € {0,1}. The
covariance in equatiori(2) becomes

D(X,Y) = E[XY] - E[X]E[Y] = p(1,1) — p(1)*, (2.20)

so that we can write the probabilities in termslof= I'(X,Y'). Using the property of
joint probability > ; p(a, ) = p(«) and imposing (v, 8) = p(3, «), we get thaip(1) —
p(1,1) = p(0) — p(0,0). Moreover, taking into account(1) + p(0) = 1 (the normalizing
condition for probabilities) we obtain

p(1,1) =T + p(1)?, (2.21a)
p(0,0) =T + p(0)?, (2.21b)
p(0,1) = p(1,0) = =T+ p(0)p(1). (2.21c)

The probabilities can be used to obtain the Mutual Information formula using equation
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(2.12 so that

_ 0. Nlog P B)
TO0Y) =22 ple Dlog 5,5

I I
(1 + 5(1)2) (1 * 02
2
o
(pw)p(l))

2 Ty , _r
+2(0)log (1 ¥ p<o>2) 2(O)p()leg <1 * p<o>p<1>) '

This equation ties in with the fact that the lower bounds on Mutual Informdtitar any

=I" log

) + p(1)%log (1 + p(li)z,)

(2.22)

kind of sequence has been proven to be dependent on the covdriamckethe marginal
probabilities B7]. An approximation when the tern}m are small gives

? 1 1 2 1 T 2
) (p(1)2 IOE p(O)p(1)> T2 (m) : (2.23)

This illustrates thaf decays to zero at a faster rate than the corresporiding

By settinga, 3 € {0, 1,2}, we get ternary sequences. To obtain a relationship between
I andI” using similar methods and constraints does not seem possible for ternary sequences.
However, setting’ = 0 in equation {.2) with current values oKX andY renders

[ = B[XY] - E[X]E[Y] (2.24)
= p(1,1) +2p(1,2) + 2p(2,1) + 4p(2,2) — (p(1) + 2p(2))* = 0

and using this as an additional constraint, gives us probabilities to putarget values

of I corresponding td' = 0. In [64], some non-negative values for the probabilities were
randomly chosen and this made clear that there are values for whieh0 but I # 0.
Thereforel' = 0 = [ = 0 for ternary sequences in general. This demonstrates that the
Mutual Information function is capable of capturing the nonlinear dependencies that the
covariance might have missed.
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2.4 Various applications of Mutual Information

Just like correlation, Mutual Information has also been defined and redefined to serve
different purposes. The most natural extension is to insert an element of time and use
the Mutual Information with its time shifted counterpart ala cross correlation in equation
(1.4) such that/(X,Y") = H(X) — H(X|Y") whereY” denotes a variabl& which

has been shifted by time. This value is known as pairwise cross Mutual Information
[40] or time delayed Mutual Informatiorb[/, 89]. Mutual Information applied to its time
shifted version is sometimes referred to as auto Mutual Informa#pg4, 56] such that
I(X,X")=H(X)— H(X|X")whereX" is the variableX that is shifted byr.

Some go even further by defining the persistent Mutual Information of a variable (some-
times know as Mutual Information between past and future) which is the Mutual Informa-
tion of the past history of a variable and it’'s evolution later in the fut@je Analytical
works has been done on continuous Mutual Information for stochastic differential equa-
tions on Gaussian cases where Mutual Information has been expressed as the mean square
estimation error{, 32, 33]. Mutual Information have also been applied on the frequency
domain L8] and is said to be better than coherence.

2.4.1 Quantifying transitions

Aiming to predict the future of evolving dynamical systems from the past using observed
historical data, §] uses the persistent Mutual Information on the logistic map and con-
cluded that the measure succeeded in detecting different types of associated cascades of
banded chaos in addition to period doubling. This is an example of how Mutual Informa-
tion is utilized to quantify underlying transition in dynamical systems.

In [73], it is claimed that the Mutual Information is able to detect the phase transition
occurring in a two dimensional Ising model. This claim has been corroborated on different
systems on a few occasions. On the Viscek model of self propelled particles for example,
[105 has claimed that Mutual Information is a sensitive indicator and phase transition
locator. Furthermore, 105 claims that on this particular model, the Mutual Information
works even better than susceptibility even when only partial observations are available.
Drawing parallels between market crashes and phase transition under the assumption that
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collective pricing behaviour of the financial market works the like a complex systdis, [
claims that Mutual Information indicates the transition from random to collective behavior
on the data sets.

2.4.2 Clustering and hierarchy detection

There are strong indicators that there exist hierarchies in the 8jn The grouping
property of Mutual Information could provide a natural way for application in clustering
algorithms. For this purpose, one could adopt the definitio®ihguch that

MI(X,Y,Z)=H(X)+ H(Y)+ H(Z) - H(X,Y, Z)

is defined for random variableX, Y, Z as utilized before. This representation is useful
since one could make use of the grouping property of Mutual Information so that

MI(X,Y,Z)=1(X,Y)+ I((X,Y), Z),

wherel ((X,Y),Z) = 1(X,Z) + I(Y, Z|X) [29, 61]. If we again define everything in set
theoretic terms like in Figure2(1) and considei? (X ), H(Y) and H(Z) as sets so that
I(X,Y)=H(X)nHY),I(Y,Z)=H(Y)NH(Z)andI(X, Z) = H(X)NH(Z), then

MI(X,Y,2)=1(X,Y)UI(Y,Z)UI(X,Z) (2.253)

and
I(X,Y),2)=1(X,Z2)Ul(Y, Z). (2.25b)

We can clearly see from Figurg.@) that

MI(X,Y,Z) = I(X,Y,Z)+ I(X,Y|Z) + I(Y, Z|X) + (X, Z|Y). (2.26)
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Figure 2.2: MI(X,Y,Z), H(X), H(YY)andH(Z)

These equalities can be generalized into
MI(Xy, X, -+, Xp) =Y H(X;) = H(X1, Xa, -+, Xp)
=1

I(X1, X+ Xoon), X)) = D T(X5, X X, -+, Xi)
=1

whereH (X1, Xo, -+, X,,) = > 1, H(X;| X1, -+, X;_1) is the generalizatior2] of the
chain rule on entropy that we have defined before. Therefore Mutual Information could
also be used as the proximity measure in a clustering algorithm, where the equations can
be used recursively as a clustering tool. This have been dor&ljrelectrocardiogram
(ECG) data. Examples of Mutual Information used for clustering and classification of EEG
data are given ing6, 2, 55]. Other applications of Mutual Information based clustering can
be seeninll, 4].

2.4.3 Detecting causality

The earliest criticism of ‘causality’ based test is that correlation is not equal to ‘causal-
ity’ due to its symmetry 46]. Correlation and Mutual Information gives no indication of
the direction of the relationship. Coming back to our aim of capturing both nonlinear-
ity and ‘causality’, it would be great if Mutual Information is able to quantify ‘causality’.
Therefore one would logically conclude that inserting an element of time into conditional
Mutual Information will be more suitable for ‘causality’ detection. It so happens that there
is a value called Transfer Entrop89] that is said to be able to do just that. This value is
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simply an extension of the conditional Mutual Information where the conditional Mutual
Information is utilized but now with its time shifted counterpart.

Consider the time shifted variable as in equatibd)and letX! be the variableX that
is shifted byl (so that the values oX'! always comes befor&). Recall the definition of
conditional Mutual Information from equatio2.(l5 and letX = X! andZ = X in the
definition so that

I(X,Y|Z)=H(X|Z) - H(X|Y,Z) (2.27)
= HXYX)-HXY,X)=I(X"Y|X)=Ty_x.

This is a simple example of Transfer Entrdpy_. x as described by89]. The idea is that,

if Y causesX attime lagr = 1, thenI(X!, Y| X) will be large since a lot the uncertainties

of X will be caused by and the termH (XY, X') will be much smaller thari (X*| X).
However, before we delve further into how exactly the Transfer Entropy works we first
need to address the question of ‘causality’.

Chapter Summary

Entropy based measures are at the heart of information theory. There are overwhelming
interest in entropy based measure due to its nonlinearity. Moreover, we have discussed our
interest in Mutual Information due to its direct approach to quantifying ‘independence’ as
opposed to covariance. Popular applications of Mutual Information based measures and
its variants includes quantifying transitions, clustering and possibly ‘causality’ detection.
The relationship between independence and ‘causality’ is eminent. However, it seems that
dependency needs to be coupled with some sort of time element in order to be asymmetric
and therefore ‘causal’. In the next section we explore the idea of ‘causality’ and what can
be done to quantify it.
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Chapter 3

The question of ‘causality’

The question of ‘causality’ is a very tricky one to say the least. The definition of it, is
not something universally accepted. First we examine the conceptualization of ‘causality’
as envisioned by Wiener and formulated by the nobel prize winning Granger. It is in this
framework of ‘causality’ that we wish to build upon. We shall discuss some terms and is-
sues related to this kind of ‘causality’ for the sake of clarity. Next, we expound on what type
of ‘causality’ do we expect in the brain and how we intend to detect this using asymmetric
measures. The most popular ‘causality’ measure is Granger Causality (G-causality), there-
fore we venture into taking a closer look at G-causality and the challenges it faces. Lastly,
we go through some generalizations of G-causality (which surprisingly includes Transfer
Entropy) that aims to address the challenges.

3.1 The concept of ‘causality’

In his bookl Am A Mathematiciap106, Norbert Wiener wrote that

“.. If we can measure degrees of causality ... We can then observe how much
a change in one aspect of the universe will bring out changes in others.”

Wiener implied in his speech (and later in his book and papers) that it is possible to quantify
‘causality’ by virtue of quantifying the changes in a certain variable that incites changes
in another. Wiener had the idea that the ‘causality’ of a variable in relation to another can
be measured by how well the variable helps to predict the other. In other words, variable
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A ‘causes’ variable B if the ability to predict B is improved by incorporating information
about A in the prediction of B. Moreover, Wiener also saidlifg that

“.. lwas forced to consider the theory of information, and above all, that partial
information which our knowledge of one part of the system gives us the rest of
it.”

The multi-talented Wiener is considered to be one of the pioneers of information theory.
He believed that information theory could really contribute to detecting ‘causality’ and
uncovering hidden information.

3.1.1 Different point of views on ‘causality’

From a philosophical point of view there has never been a clear agreement on what could
be defined as ‘causality’, for an interesting review of the mathematical theory of causation
from a philosophical point of view refer t&df]. Some philosophers even hold the view
that ‘causality’ is impossible to quantifyp, 52].

Statisticians often meet with ‘causality’ when dealing with correlation coefficient and
regression45]. Granger has written a review (mainly intended for econometricians) about
the concept of ‘causality46]. A more recent overview of causal related statistics albeitin a
slightly different area is written by Judea Pe&Q0]who is known as one of the pioneers of
the Bayesian networks. According to him, the recent statistical ideas are moving away from
traditional statistical analysis and more towards causal analysis. He differentiates between
these two by saying that traditional statistical analysis focuses more on describing the data
and inferring distribution parameter from samples while causal analysis requires explicit
articulation of the underlying causal assumptions which is not what Bayesian statistician
normally do.

In Bayesian statistics (the name derived from Bayes theorem for conditional probabil-
ity), graphical models are often used. Graphical models are probabilistic models denoting
conditional independence structure between random variable80JirFear| proposes us-
ing Structural Causal Model (SCM) to define causal quantities, causal assumptions and all
the other concepts needed in a causal discourse. SCM is an extension on the Structural
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Equation Modelling on linear systems. Granger admitted that it is possible to incorporate
a more Bayesian viewpoint to the idea of ‘causality’ by incorporating dynamics of prior
beliefs in the model46]. One thing all the methods mentioned previously have in common

is that one will first need to fit a model to the data in order to extract the ‘causality’ and that
most of the models are essentially linear or at least based on a linear model. The model-free
guantifications of ‘causality’ seem to have their root in information theory.

In agreement with Pearl that causal statistics is one of the most important statistics,
[52] summarizes the information-theoretic and dynamical systems approach to causality.
The paper explains that the link between these two fields is due to the fact that many
of the approaches to inferring causality from experimental time series came about from
studying synchronization of chaotic systems where the Shannon’s entropy definition has
been adopted to study dynamical systems in the ergodic thB8fy\farious information-
theoretic functionals have been used to estimate, classify and and explain chaotic data
[8,52).

3.1.2 The arrow of time and prediction

Despite all those differing views on ‘causality’ even the philosophErsd7, 50] agree on

the fact that the causal variable must come before the affected variable. As far as we know,
the future cannot cause the past and the arrow of time persists. Hence, there must exist a
certain time lag however small between the cause and the effect, this will be henceforth
referred to as the causal lagd]. Granger himself said that the flow of time clearly plays a
central role and there is no use attempting to discuss ‘causality’ without time.

Another recurring theme is the use of prediction in ascertaining whether or not the
causal variable has unique information about the affected variable which implies that we
can infer ‘causality’ by comparing predictions. Consequently, we outline standard steps
of inferring ‘causality’ derived from Wiener’s idea, Granger’s formulation and the basic
assumption that the knowledge of the causal variable helps forecast the affected variable. It
is this definition of ‘causality’ that we will adopt in this thesis. Say we want to test whether
variableY causes variabl&'. The first step would be to predict the current valueXof
using the historical values of. The second step is to do another prediction where the
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historical values ol and X are both used to predict the current valueXaf And the last
step would be to compare the former to the latter. If the second prediction is judged to be
better than the first one, then one can concludeltheausesX .

3.2 Issues in ‘causality’

3.2.1 Directionality and information transfer

In networks literature the references to ‘causality’ take many guises. The term directional-
ity, information transfer and sometimes even independence can possibly refer to some sort
of ‘causality’ in line with our previously defined concept. ‘Causality’ plays a main role
when [76] discusses flow of information in Bayesian systems and wbéhgxpounds on

way to formalize information transfer on fully known dynamical systems. Our definition

of ‘causality’ is based on how well a variable helps the prediction of another variable. Now
let us assume thaft causesX.

We would expect the relationship betwe&nandY to be asymmetric and that the
information flows in a direction fronY to X. [68, 66, 52] highlights the importance of
asymmetry in information transfer. When it comes to directionality it is paramount to
point out that the main reason correlation is not equal to causation is due to the fact that
causation has direction and thus essentially asymmetdic When one variable causes
another variable obviously the affected variable depends on the causal variable. Therefore,
one could also say that our prediction based definition of ‘causality’ is equivalent to looking
for dependencies between the variables at a certain causal lag.

Information transfer needs a source and target. The source where the information is
from and the target where it is transferred to. Thus in the case of ‘causality’ the source will
be the causal variable and the target is the affected one. One can assume that this informa-
tion transfer is the unique information provided by the causal variable to the affected one.
However this does not mean that the causal variable has complete control over the affected
variable.
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3.2.2 Deterministic variables and instantaneous casuality

If a variable has complete control of another variable then it is deterministically determined
by the control variable and thus indistinguishable from it. A purely deterministic variable
cannot be said to have any other causal influence other than its own past and a simple
example of a deterministic case given ] illustrates this. Let there be variables
andY whereX; = bt andY;_; = c¢(t + 1). ThenX can exactly be predicted by the
equationX; = b + X;_; or equally by the equatioX’; = f—jYH. The predictions using
both X;_; andY;_; are exactly the same hence indistinguishable. Moreover, one can also
express; in terms ofX;_; through the formul&’; = 7(X;_, + 2b) which is equivalent to
Y, = Y,.1+c. Consequently it seems that ‘causality’ requires the variables to be stochastic.
With the uncertainty one is able to measure the ‘causal’ element and the directionality. The
‘causal’ and affected variable needs to have an independent source of vaBétion [

The notion of instantaneous causality is discussedh [The idea that two variables
can instantaneously cause each other with no causal lag at all has been said to be impossible.
Granger maintains that true instantaneous causality can never dé&wanf if anything
appears to be like it, then the ‘causality’ is either not measured at the correct time scale (the
causal lag is smaller than the measured time scale) or there is another variable jointly (or
indirectly) causing it which is not observed (not incorporated in the model).

3.2.3 Indirect ‘causality’ and independence

Granger pointed out that apparent instantaneous causality could be caused by variables
that were not incorporated in the model. He also brought to attentioA@in that any
two variables that are independent may not be conditionally independent. Referring back
to subsectionZ.3.1), if two variables are statistically independent then it means that their
joint distribution is the product of their marginal distributions. Therefore what Granger is
implying is that variables( andY” may be independent but at the same time variaklgs
and X |Z may not be independent.

Thus one can say thatbrought about the dependency betweéeandY . And since we
have defined ‘causality’ as a sort of dependency over a certain causal lag, then one can also
expect that there will be cases whefdrings about a causal effect betweErandY'. [17]
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speaks about latent variables (hidden variables not directly incorporated in the model) that
might give rise to correlations in a model where ‘causality’ is supposed to be inferred from.
Dufour [31] mentions indirect causality that might be induced by an auxiliary variable
on the ‘causal’ relationship betweéhandY . Pearl talks about mediation in his pap&]
where the term direct effect refers to an effect that is not mediated by other variables in the
model and by saying this he acknowledges that there exist medid#ip83] needed for
some (or most) type of causal relationship.

The previous discussions clearly indicates that there is a need to include more than just
two variables in a ‘causal’ analysis. Take lightning and thunder for exampleWye now
know that the reason we usually observe lightning before thunder is because light is much
faster than sound. We also know the fact that lightning and thunder are both essentially the
same event manifested at different times and caused by the same electrical discharge. Let
X be thunderY be the lightning and be the electrical discharge. If we only look &t
andY we will mistakenly say that” causesX i.e. lightning causes thunder. However if
we includeZ then we will be able to infer that (the electrical discharge) is the real cause
of X andY as well as the fact that the very existence of a relationship betweandY
depends completely af.

This kind of ‘causality’ is what we shall refer to as indirect ‘causality’ wh&rendi-
rectly causes the relationship betweErandY. Whereas the relationship betwegrand
X as well as the relationship betwegnandY can be said to be a direct cause. By that
definition, the electrical discharge directly causes the thunder and it also directly causes
the lightning but the electrical discharge indirectly causes the thunder to be related to the
lightning. The condition that a causal relation cannot be due to a common cause is referred
to as causal sufficiency and some philosophers claim that only direct ‘causality’ can be
considered to be a real ‘causalitys(]]. Indirect ‘causality’ is a problem in many fields
[45] and we believe that the brain is no exception. To incorporate this indirect ‘causality’
is very much a problem when the ‘causality’ measure is not model-free since we have to
incorporate all the right variables into the model to begin with. This is one of the main
reasons why we will mainly be in favor of model-agnostic ‘causality’ measures.
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3.3 Causality on the brain

Unfortunately, in a complex system where one would expect synchronization and coop-
erative behaviour, the causal relationship is very compsk §nd the understanding of
cause and effect in complex system is definitely lackihd.[ To approximate ‘causality’

for complex system such as the brain, we first need to have an idea of what we seek from
the data sets.

3.3.1 Causal connectivity on the brain

We seek to understand the information transfer and causal connectivity of the brain. The
main reason we wanted to establish ‘causality’ in the brain is to uncover the directed con-
nectivity of the brain. The kind of ‘causality’ measures we utilize depend on what kind of
connectivity we wish to uncover in the brain. In neuroscience, effective connectivity is the
term often used for the connectivity that aims to identify the underlying physiological influ-
ences of neurons using available time series data. The effective connectivity is defined as
the directed influence that a neuronal populations in one brain area exerts on affjther [

Another type of connectivity that does not necessarily require any physiological veri-
fication is coined as the dynamical connectivity’]. The dynamical connectivity is valid
when a few issues are taken into account. The first one is the fact that studies have demon-
strated 2] that the same physical network structure on the brain can give rise to multiple
distinct connectivity depending on interactions with environment. Secondly, neural dynam-
ics is said to alter underlying structural dynamitg][ for example in terms of memory and
learning.

Furthermore in our current state of knowledge, knowing all the variables involved with
a certain structure will be quite impossible making effective connectivity perpetually pro-
visional (unless perhaps validated by intervention procedures). On the other hand, the dy-
namical connectivity is a description of dynamical relations between variables regardless.
It will be best if one did obtain the effective connectivity where the dynamics and structure
go hand in hand and one verifies the other, however in light of the brain as a complex sys-
tem, this effective connectivity will surely be ever changing. We might want to take things
one step at a time and make sure we understand the dynamics first.
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3.3.2 Approaches to determining neural causal connectivity

There exist different approaches to achieving causal connections in the brain. One ap-
proach to modelling the brain is by utilizing the knowledge of biology and neuroscience to
preemptively make the best guess of a model that will fit the brain. Afterwards data sets are
fitted to verify the model, this approach is called confirmatory approéth The second
approach called the exploratory approach takes the opposite position of inferring the model
from the data. This approach does not rely on any preconceived idea and let the data from
the brain shape the directed model of the brain. This view of modelling is also taken by
other fields and there is a growing general view that biology should move from hypothe-
sis directed research to exploratory methd.[Indeed, nature has so many secrets that
humans might benefit from putting assumptions aside and listening to it without attaching
preconceive notions.

One can think of the different approaches as being on a spectrum from purely confirma-
tory to purely exploratory. An example of a method that is often classed as being near the
confirmatory end of the spectrum is the Direct Causal Model (DCM) introduced by Fris-
ton [41] and the graphical modelp]. DCM incorporates explicit model of the neuronal
causes and is usually used to infer effective connectilify. [One can say that G-causality
and Transfer Entropy resides near the other end of the spectrum since both derive infer-
ences directly from data and conclusions are made based on distribution of the sampled
data. Henceforth we will focus more on the exploratory end.

However, G-causality is also confirmatory in sense that it assumes autoregressive pro-
cess. Transfer Entropy seems more exploratory than G-causality from this point of view.
Recent implementations of DCM incorporate evidences from data in model selection pro-
cess thus becoming somewhat exploratdrgj.[ The two approaches seems to be converg-
ing more and more.

3.3.3 Establishing connectivity through EEG

If one intends to pursue ‘causality’ the exploratory way, EEG or MEG data would be the
preferable to the fMRI. This is due to the fact that fMRI data changes with the structural
model which implies that one cannot directly compare different regions of the brain without
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a certain amount of structural model selectidi][ What we want to do is to get an
insight of the inner workings of the brain through a method which does not require direct
intervention in the brain by analysing EEG data sets. Wiener being keen on causality and
information theory has pointed out how EEG may be useful for this purpose whédTe [
wrote:

“Or again, in the study of brain waves we may be able to obtain electroen-
cephalograms more or less corresponding to electrical activity in different parts
of the brain. Here the study of the coefficients of causality running both ways
and of their analogs for sets of more than two functions may be useful in de-
termining what part of the brain is driving what other part of the brain in its
normal activity”.

The normal activity Wiener is referring to here is activity on the brain without any inter-
vention of artificial stimuli which he claims might bring about artifacts.

Artifacts such as movements and eye twitches (manually removed by neuroscientist)
are usually an issue when dealing with EEG data sets because it gets in the way of time
relation. The bandpass filtering that often has to be done on EEG data sets is also said to
be damaging to G-causality estimatidt]. In terms of the data sets we have obtained,
due to the use of the best possible equipments supplieddy’Bjteam, almost no artifact
removal is needed and very minimal filtering is required. Therefore we are confident that
we have a good set of data to test our results on.

Recall that in our data sets, EEG refers to the recording of the brain’s spontaneous
electrical activity over a short period of time, as recorded from eight electrodes placed
on the scalp. It has been said that although the application of ‘causality’ measures on
EEG data can be extremely useful due to its sub-millisecond time resolution, it also suffers
from uncertainties in source space localizati@i][ However, if we are focusing on the
dynamical connectivity of the brain, this is a question that we can put aside for the moment.
Here we assume that each electrode detects an average voltage of its surroundings thus each
electrode represents a spatially averaged electrical activity at one point on the skull. We
can think of it as the collective activity of neurons in that area of the scalp.
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The notion thatA causesB if A in the past incites3 in the present (or it's relative
future) is what we will define as ‘causality’ in our context. And this is what we will be
looking for in the brain. In terms of EEG electrodes, if a certain electtdde the past
consistently incites a certain electroBan the present, then we shall say that electrdde
causes electrodB and this then translates to the area of the scalp. The general idea is that
if electrodeA causes electrodB we would want to be able to detect it.

3.4 Granger Causality

First introduced by nobel prize winning Clive Grangéd][in the context of linear autore-
gressive (AR) model, G-causality is the most commonly used ‘causality’ indicatr [

In his paper Granger explains the direction of ‘causality’ in a simple two-variable (binary)
model. G-causality is also often known as the Granger-Wiener causality especially since
Granger himself quoted that Wiener inspired him in his nobel lects@f [Granger out-

lined two things about ‘causality’ in that same lecture. The firstis that the cause must come
before the effect (the arrow of time) and secondly that the cause should contain unique
information about the effect that cannot be found in any other varidible [

3.4.1 G-causality: An overview

Referring back to our three steps in ascertaining whether vaiabbauses variabl&’. We

shall go through these steps again with a Granger causality point of view. The first step
was to predict the current value &f using the historical values of. The second step is

to do another prediction where the historical value¥ @nd.X are both used to predict the
current value ofX . In order to accomplish the first and second step, we need to fit variables
X andY into a model.

It is worth pointing out that, this is not a trivial task. First and foremost to fit variables
[68,52] X andY into a model (usually some form of AR process) requires some kind of
method (usually standard linear regression method). Amongst the more popular ones are
the least square method or the Yule methbd.[For example one could use valued &f),
to (X),, to predict(X ), and for the second prediction one could utilizé), to (Y),, as
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well as(X); to (X), to predict(X ), ;. However, how long a history should be taken into
account for prediction also needs to be decided upon. This process is usually referred to as
determining the order of the model and it requires fitting to the data sets. The order (model
fit) is determined using certain criterions for example Bayesian Information Criterion and
Akaike Information Criterion 17]. Only after satisfying ourselves that the model with a
certain order is a good fit, does one proceed into predicting the values.

After the first and second prediction, the third step is comparing the former to the latter
i.e. ascertaining whether the second prediction is any better than the first. In order to do this,
statistical significance is required and test statistics are used, amongst them the Granger-
Sargent$2, 17] and the Granger-Wald tesi?]. And if the chosen test is satisfied, one can
conclude that” Granger cause& which is often written a§” G-causesX.

In short, one can say that G-causality works on the premise of comparing predictions
based on linear regression. The variables need to be linearly regressed in order to get linear
equations in an AR model. The equations will be utilized in the form of two predictions.
The first to predictX using its history and the second preditagain using the history of
both X andY'. If the second prediction is deemed to be better than the first, we can happily
say thaty” G-causesX.

3.4.2 Challenges to G-causality

There are a few issues to focus on here, first and foremost the very fact that we need to
linearly regress the data to obtain the prediction means that we will loose a lot of nonlinear
information. The usual argument of the proponents of G-causality is that linear approxima-
tion works well on large scale interactioris/]. However, to Granger’s credittfi, 45, 46]
he has always been clear that G-causality is not absolute ‘causality’ and he himself ac-
knowledges that the optimal predictor may very well be nonlinédl [t has been pointed
out by many 15, 17, 68] that due to obvious nonlinear dependencies on neuro data sets,
using G-causality may not suitable.

This brings us to an essential point which is the modelling itself. Granger concedes that
it is not an easy task to get the modelling right and missing variables may lead to spurious
values §4]. The fitting of the linear regression to the data sets, the order of the model and
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the determination of which predictor is better are all determined by some form of criterion
that has to be decided upon and serves in itself as a varying parameter. The order of the
model is always a problem, too low an estimation leads to a poor representation of the data
and too high an estimation could also lead to various problérs [

Moreover, G-causality was designed as a pairwise measure and is not suitable to deal
with three variables or mord.()]. This is important since not only do we want to incorpo-
rate general dependencies but we also want to be able to eventually work with more than
two variables. Latent variables (or indirect causality) have been known to cause spurious
causal interaction when using G-causality]|

3.4.3 Generalization and extensions of G-causality

The need to include more variables and nonlinear elements in examining data sets has
resulted in many new forms of generalized G-causality. Generally these extensions fall
into a few categories. The first category includes attempts to extend G-causality to be
able to include more than two variables. One example of this, is called the multivariate
Granger causality (MVGC)10, 17] is also an extension of another variant of G-causality
called conditional Granger causality. The MVGC utilizes the determinant of the residual
covariance (the generalized variance).

Another slightly different extension utilizes total variance which is the trace of the
residual covariance matrix instead of the determina®t17]. MVGC is said to be superior
to G-causality since it is not only able to quantify more than two variables but it can even
guantify interaction between groups of variables. Moreover MVGC has been proven to be
equivalent to Transfer Entropy on a Gaussian distributidn10]. To address the problem
of indirect causality, Partial G-causality was introduced. It is said to be able to mitigate the
influence of latent variable4d7].

The second category of extensions aim to extend the definition of G-causality to include
nonlinearity. One example is the attempt to extend the definition of G-causality to nonlinear
bivariate time series by utilizing nonlinear radial basis functid®® L7]. Another idea
for incorporating nonlinearity involves locally linear models. The idea is to divide the
data into local neighborhoods where it will be approximated by a linear model and G-
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causality is applied. The extended Granger causality indices is given by averaging over the
neighborhood samplind.f/, 69].

Another category of extensions can be classed as the nonparametric approach to gen-
eralizing G-causality. The most pressing issue with G-causality so far is that model must
be matched to underlying dynamics and may lead to spurious values. Nonparametric ap-
proaches are intended to be model free. Most of these types are rooted in information
theory. Generalized correlation integrals and conditional entropy among th@mThe
Transfer Entropy is also said to be the information theoretic approach to G-cauSality [

This is because of the similarities they have in concept and approach to quantifying ‘causal-

ity’.

Chapter Summary

The notorious question of ‘causality’ has long been debated. The definition of it is yet
to be agreed upon and can lead to intense philosophical debate. In this chapter, we have
defined ‘causality’ as being prediction based and we have addressed some issues related to
it. We then went on to consider the brain itself and the differing views of how to understand
its causal relationships. We discussed how we decided to focus more on the exploratory
end of the modelling spectrum to establish dynamical rather than effective connectivity.
G-causality was considered given its popularity, thus some challenges and extensions of G-
causality was discussed. One of the information theoretic extension of G-causality is said
to be the Transfer Entropy. It appears that we have come full circle, arriving at Transfer
Entropy from both the nonlinearity and the ‘causality’ end. It is now high time we proceed

to look into this measure with more clarity.
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Chapter 4
Transfer Entropy

From previous chapters it seems apparent that the Transfer Entropy could be key in achiev-
ing our aims of capturing nonlinearity and ‘causality’ in the brain. We first explain the
idea behind this measure and how the Markov property plays a key role in the definition.
We highlight the difference between Transfer Entropy and conditional Mutual Information

in terms of transition and marginal probability. We then look at the definition of Transfer
Entropy from a prediction point of view and contrast it with G-causality. We point out the
weaknesses and strong points of this measure. Subsequently, we go through some Transfer
Entropy literature and examine more of the challenges it faces. Last but most certainly
not least, the simplest case is revisited and Transfer Entropy for causal lag detection is
highlighted.

4.1 Transfer Entropy and the Markov property

Recall the definition of Transfer Entropy in equatiéh??), where it was introduced as a
conditional Mutual Information variant with incorporated time delays. Schreiber’s original
definition of the Transfer Entropy however was based on the generalized Markov Property
and transition probabilitieslp, 11, 57, 89].



4.1 Transfer Entropy and the Markov property 54

4.1.1 The transition probability

In [89], Schreiber points out that in order to incorporate the dynamical structures, transition
probability should be used instead of simultaneous (static) probability. To illustrate the
difference, imagine a ball that can be red or blue at any given time step and let the process
run for 10 time steps. If the ball was red 6 out of 10 times, counting the frequencies yield
that the static probabilities of the ball being refl) (and blue B) is, P(R) = 0.6 and

P(B) = 0.4 respectively.

The transition probabilities however, take into consideration the order of change. If the
ball was red six times before it was blue i.e RRRRRRBBBB then the probability for the
ball to stay red isP(R — R) = g and the probability for it to change from red to blue
is P(R — B) = 5. Similarly P(B — B) = 3 andP(B — R) = 0. While the static
probabilities remain the same for the case where the order of change is RBRBRBRBRB,
the transition probabilities do not. Now, we have ti#{tR — B) = 2, P(B — R) = 4,

P(B — B) =0andP(R — R) = 0. Transition probabilities of higher order (more than
one time step) can also be defin@d]|

Basically, the transition probability considers the state of the ball (red or blue) at differ-
ent time steps and the changes it makes, instead of calculating the frequencies of the ball
being red or blue throughout the time steps. The transition probabilities, capture the dy-
namics in this sense. The essential difference between conditional Mutual Information and
Transfer Entropy is that the latter utilizes transition probabilities in place of static prob-
ability. It is worth pointing out again that in order to get some sort of directionality or
‘causality’, measuring values across different time steps is somewhat inevitable.

A Markov process (also known as a Markov chain) is a random process that retains
no memory of where it has been in the past][ Therefore, the state of the system in
the future only depends on the presentXlis Markov processq9] with possible values
z;,1 = 1---n, then we have that

P(Xn-‘,-l = xn—l—lle = C(:1’)(2 = Ty, 7Xn = xn) - P(Xn-‘,-l = xn-{—lan = xn)

This memoryless property is called the Markov property. 86],[ a system of Markov
process of ordek was considered. A Markov process of ordes a random process that
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retains memory of only steps in the past so that

P<Xn+1 = In—l—l‘Xl =Ty, 7Xn—k—1 = xn—k—lan—k = Tn—fk, >Xn = xn) (41)
= P<Xn+1 = xn+1|Xn7k =Tp—k, " 7Xn = xn)

Letthe X" = (X,_ = Zp_p, ..., Xn = ), SO that the Markov property in equatiofi )
can be written a® (X1 = 2,1 | X" ) = P(Xi1 = g | X)),

A generalization to this property8] is when we include another variable in the con-
dition P(X,p1 = 2ot | XUV V™) = P(Xopr = 20 | X0, V), whereY is a
Markov process of orddr This implies that variabl& depends on the history of variable
Y up to order. The idea of Transfer Entropy incorporates the generalized Markov property

in determining whether there is a flow of information from one process to another.

4.1.2 Schreiber’s Transfer Entropy

Noticing that Mutual Information and the other entropy based measures mentioned before,
did not capture directional information and the dynamics, SchreR@rifitroduced the
Transfer Entropy. The Transfer Entropy Bfto X, Ty . x [11, 52, 57, 89] (where X is a
Markov process of ordér andY is a Markov process of ordé is given by

P(X,i1 = i [Y, X))
P(Xoi1 = Ton| X5

P(X, .1 =z, V0, x®
Y YN P = e ¥, X g Pt = V)
P(Xn_l,_l :.I'n+1|Xn )

(4.2)

Ty_>X =F lOg

Tn+1 Tn Yn

We again take the valuglog0 = 0. If Ty _.x # 0 andTx_y = 0 then one can say that

Y ‘causes’X [89, 57]. The Transfer Entropy can be identified as a variant of conditional
Mutual Information. Recall the definition of Transfer Entropy in equati®r2T), where
Transfer Entropy was introduced as a version of time delayed conditional Mutual Informa-
tion such that (X', Y |X) = H(X'|X) — H(X'|Y, X). HereX! is the variableX shifted

one time step so that the valuesXtf is always one time step aheadXf This is a simple
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case of Schreiber’s definition of the Transfer Entropy whea 1 and/ = 1 such that

P(Xpp1 = 2pp|Yy = n;Xn: n PX1Y7X
Ty_x = E | log (Xot1 = Ton Y )x)]:E{l (X] )

P(Xpp1 = nat| Xn = a0 ° TPXT|X)
= HXYX) - HX'Y,X)=I(X"Y|X).

} (4.3)

Clearly it is the transition probabilitie® (X, .1 = z,41|Y, = yn, X, = x,) as well as
P(X,11 = z,41]X, = x,) that are taken into account. Contrast this with the definition
of conditional Mutual InformatiorT (X, Y| Z) in equation 2.15 whereP(X,, = z,|Y,, =

Yn, Zn = 2zp) @NdP(X,, = x,|Y,, = y,,) are considered instead.

In the original paper, Transfer Entropy was intended to measure the deviation from
Markov property. Schreiber’s aim was to incorporate the properties of Mutual Information
and the dynamics captured by transition probabilities in order to understand the concept and
exchange of information. Taking into account two processes at different time steps comes
about naturally as soon as transition probabilities are considered. Both Transfer Entropy
and time delayed Mutual Information were defined to incorporate time delay, however time
delayed Mutual Information does not utilize transition probabilities. Recall the definition
of time delayed Mutual Information such thetX,Y ") = £, (2.4 [log%]. The
probabilities that are taken into account are the joint probalil{ty, Y ™) and the marginal
probabilitiesP(X) as well asP(Y'7).

Schreiber in 89, 57] claims that time delayed Mutual Information fails to distinguish
common history of the stochastic process. To prove his point he experimented on spa-
tiotemporal systems with no coupling where both time delayed Mutual Information and
Transfer Entropy gave zero values. However when coupling was pré&&if], the time
delayed Mutual Information reflected static (as opposed to dynamical) properties and gave
nonzero values in both directions whereas Transfer Entropy was nonzero for one direc-
tion only and hence indicating clear directionality. This is also the finding4@f yvhich
addresses indirect ‘causality’ within the time lags of a certain procesXsdye Trans-
fer Entropy on itselfl’y . x is compared to the auto Mutual Informatidii,X, X7) on a
coupled Lorentz system where the coupling is controlled. The results clearly indicate that
while auto Mutual Information could not differentiate direct and indirect ‘causes’ within
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the different time steps, the Transfer Entropy correctly detected only the direct ‘causes’.

4.1.3 Directionality of couplings in dynamical systems

As mentioned before, many approaches of inferring ‘causality’ came about due to inves-
tigations on synchronization of chaotic systems. In the introduction p&8krTransfer
Entropy was introduced as a measure to detect the direction of couplings in dynamical
systems when it was tested on a unidirectionally coupled maps and the Ulam map before
application on real data sets. 187, the Transfer Entropy is used to study the informa-
tion content in relation to synchronization. Similarly Transfer Entropy or some closely
related variant of conditional Mutual Information was tested on logistic m&gs Plam

maps B8], Henon map§8], Lorentz systems40, 82], Rossler models]01, 78], Ornstein-
Uhlenbeck process$p] and various other forms dynamical systems. 18,[101, 40, 82,

the conditional Mutual Information is applied directly on the generated values of these dy-
namical systems. However, iii§] the phase of the coupled oscillator in used instead of the
actual values. In all these papers the results from using these variants of Transfer Entropy
on the dynamical systems were dominantly positive.

In [68], the performance of a few different methods for testing ‘causality’ were evalu-
ated on various forms of Ulam maps andrtbn maps. This was done in order to assess the
usefulness of these methods for detecting asymmetric couplings and directional of infor-
mation flow in a deterministic chaotic system. Among the methods tested include Transfer
Entropy and some extensions of G-causality. The conclusion of the paper was that their
first choice given a priori unknown dynamics will be Transfer Entropy. On a more theoreti-
cal end of the spectrumg ] attempts to rigorously formalize information transfer between
dynamical system components for systems with fully known dynamics. The transfer of en-
tropy (the amount of entropy transferred between processes) is the focus this paper. It was
remarked in §6] that the findings are consistent with Schreiber’'s Transfer Entropy. The
results were applied on systems witembn map and Baker transformation.
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4.2 Transfer Entropy and G-causality

Schreiber 89] defined Transfer Entropy to measure deviation from the generalized Markov
property. One can also look at Transfer Entropy as a generalization of G-causd|ias|

well as a ‘causality’ measure that is inline with G-causality in terms utilizing prediction as
a means to infer ‘causality’l[l]. Indeed there are papers claiming that Transfer Entropy
equals G-causality when the distribution is Gaussidn 10].

4.2.1 Transfer Entropy as a method that compares predictions

Transfer Entropy can be compared to Granger Causality step by step as a prediction method.

Say we have processes (variabléSlandY. We wish to test whetheY causesX. To
(Xn+1:ﬂ?n+1|Y7§l)va(mk))]
P(Xn+1:zn+1|X7(Lk))
definition. Referring back to the three steps we have outlined for ascertaining ‘causality’,

visualize Transfer Entropy we shall refer to thie_.x = F | log L

the first step would be to predict the current valueXotising the historical values of.
In Transfer Entropy this will be the process of obtaining the value of transition probability
P(X,1 = znsa| X)), Contrasting this to the first step when using G-causality, at this
stage we should first have a model (usually Auto Regressive) that can incorporate both
variablesX andY. We have pointed out in subsectidh4.]) that finding the right order
of the model is an issue for G-causality application. This is also true for Transfer Entropy
which requires the denominatét( X,,.; = xn+1|X7(f”)) to be estimated for the prediction.
The order comes in the form of deciding what the valué &f. By assuming:th order of
the Markov property, one is incorporatikghistorical values into the prediction.

Second step, another prediction where the historical values df amed X are both
used to predict the current value &f. For Transfer Entropy this requires the estimation
of P(Xni1 = znar |V, XF). The same issue of determining the valud of relation
to Y needs to be taken into account. G-causality makes use of the preconceived model to
do its prediction at this second step. The last step is to compare the former prediction to
the latter. If the second prediction is judged to be better than the first, one can say that
Y causesX. Transfer Entropy utilizes the expected log ratio between the two probability
distributions to compare the predictions hefi¢e, y = E [log P(X"“:”"“'Y*g)’X’(lk))]

P(Xn+1:xn+l|X7(Lk))
causality mainly compares the variance of the error terms of both predictions in the model
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to determine which one is better. In order to do this for G-causality test statistic are used
[52, 17, 11]. According to Schreiber’s definitior8p, 57] for Transfer Entropy, only if
Tx_.y = 0andTy_x # 0 can we conclude that” causesX. In later papers it has
been suggested that significant tests in the form of surrogadds102 78, 75 could be
sufficient.

Transfer Entropy and G-causality was proven to be equivalent on the Gaussian model
[11, 10]. This is due to the fact that Gaussian distributions can be calculated analytically
from the covariance matriX. The definition of entropy given a Gaussian distribution is

H(X) = % In(|5(X)]) — % In(2re)

where|X(X)| is determinant of the covariance matrix6f One can also obtain the residu-

als of a linear regression in terms of this covariance matrix therefore enabling one to link the
G-causality and Transfer Entropy analytical§7]. It appears that under the Gaussian as-
sumption there is nothing additional to account for the nonlinear extensions of G-causality
since the Gaussian AR process is necessarily lirfefr [

4.2.2 Transfer Entropy versus G-causality

Other than being model agnostic and nonlinear, Transfer Entropy also easily extends to
multivariate applications. One example of this is the generalization of Mutual Information
MI(X,Y,Z)=H(X)+H(Y)+H(Z)—-H(X,Y, Z) in subsectionZ.4.2. More than one
variable can be incorporated &5 Y or Z since the only thing that matters is the probabil-
ity distribution. In fact the multivariate concept of Transfer Entropy together with entropies
and Mutual Information have been suggested as unifying frameworks for determining di-
rected networksZ6, 86]. However, the estimation of the probability distribution remains
a big obstacle to successfully implementing this framework. Non-information theoretic
based extension of G-causality to multivariate concept is not generally straightforward as
explained in subsectior34.3 and the estimations of many variable brings about similar
estimation challenges.

Being model free, Transfer Entropy is usually preferred for the exploratory approach,
however not having an underlying model is not always advantageous, the high sensitivity
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and the uncertainty of how to interpret the outcome may be a prodea). [ The main
strength of G-causality is that it is well defined and pragmatic as a result of being applied
in a well understood framework. Although one does not expect this to be the case where
the nonlinearities of a complex systems is considered (EEG data sets have been said to
be not even approximately Gaussidv]), it is well known that if the interactions are
indeed linear, linear methods such as G-casuality will usually outperform Transfer Entropy
[17,1027. Moreover it was pointed out irlfl] that even though for most empirical data it is
difficult to establish the extent to which Gaussian assumptions are tenable, it is nonetheless
widely employed. If this is indeed the case (such that Gaussian distributions apply) then
the two methods are interchangeable.

Furthermore, G-causality is simpler to deal with because the sample statistic is known
and therefore there exist many forms of significant test to choose from when comparing the
predictions (in the last step). For Transfer Entropy it has been said that a significant test
would be hard to devise due to the unknown sample statiktic However as we pointed
out before, in current applications of Transfer Entropy, surrogates are used as a form of
significant testing]01, 102, 78, 75].

4.3 Challenges to Transfer Entropy

The main challenge to applying Transfer Entropy would have to be the estimation on real
data sets due to probability estimation. However, we put aside this issue for a while and
we will return to this issue in later chapters before the treatment on real data sets. The
challenges addressed in this section apply to both Transfer Entropy and G-causality. Essen-
tially, these are the challenges that are usually associated with prediction based ‘causality’
measures.

4.3.1 In addressing deterministic cases and full synchronization

At the very beginning, SchreibeB$)] pointed out that Transfer Entropy was meant for
cases where neither of the systems nor their couplings may be assumed to be deterministic.
Consequently, it is completely determined by, thenTy_. x = 0. This will be the case
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for deterministic coupling since the probabilities ¥fwould be exactly the same as.
Thus Transfer Entropy with itself would be
- P(Xop = $n+1|Xr(Lk)aXr(Lk))
TX—>X =F lOg D)
P(Xpi1 = xp1|Xn")
P(Xp1 = 2] X3)
P(Xpi1 = To| X10)

=F | log

] =logl=0.

This constitutes the reason why Mutual Information and Transfer Entropy is invariant un-
der diffeomorphic (isomorphic on smooth manifolds) transformati&is [On one hand,

it makes sense that if the relationship betwéémndY makes them practically indistin-
guishable (from the equation above we can see this is due to the probabilities) from each
other, there should be no information flow.

However one could argue that, instead of having no flow of information at all, that this
is the case where there is a complete flow of information from one process to another, or
in other words that it is fully synchronized. Indeed, not only is Transfer Entropy zero for
deterministic cases but it is also zero for complete synchroniz&igrip2. In a way, this
is a bit worrying since on one harid- . x = 0 implies thatY” is completely independent
of X, but as we have just se@i . x = 0 could also imply that” is completely dependent
on X (deterministically coupled or fully synchronized). This issue has been pointed out
by [76] which claims that Transfer Entropy does not coincide with information flow and
suggests a new measure in the causal Bayesian network to overcome this.

This same issue is touched upon 49 where it is said that conditional Mutual Infor-
mation will only work if the underlying processes has a varying source of entropy (stochas-
tic or chaotic) and thus one process is not function of the other. This is the kind of infor-
mation that is addressed by Transfer Entropy where the reduction in uncertainty is taken
as information transfer. Hence, according to Transfer Entropy there is no information flow
when the variables are indistinguishable and at complete synchronization. Moreover, one
could say that a causal direction is impossible to establish in this case (refer to discussion
in subsection3.2.2).
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4.3.2 Indirect ‘causality’

We have touched upon the issue of indirect ‘causality’ in subsec3@3. There is a real
need to differentiate instances of direct and indirect dependencies. If there was only three
stochastic processes, Y andZ in a system, then theoretically X,Y) = I(X,Y|Z) > 0
implies thatX is directly dependent of” and vice versa. One could say that the link
betweenX andY is direct and does not depend on any other variable. However if we have
that /(X,Y) # I(X,Y|Z), then one can say that the dependencykobn Y (or Y on
X) is indirect and depends aofi. In other words, the interdependency betweéemandY
indirectly depends ow.

In order to incorporate time and direction into this ide)] has made used of this idea
with values ofY = X™ andZ = X™ whereX™ and X™ are both time shifted versions
of time lagr, and, respectively, so that(X, X™) andI(X, X™|X™) can be compared
on a Lorentz systems where the coupling can be controlled. The auto Mutual Information
I(X,X™) could detect the dependencies over time but could not differentiate between
direct and indirect ones. Whereas the conditional Mutual Information (or the Transfer
Entropy value used on a single variablé)X, X™|X ™) gives clear indications of which
time lags is directly ‘causing’ the others. 1A(], the conclusion was that the conditional
Mutual Information is able to reveal direct and indirect causality.

The idea is that one can always condition out other variables (be it time shifted or not)
by incorporating the variables i (which can be multivariate) in the terd(X,Y|2)
(which also applies to Transfer Entropy) and say that this represents the direct interdepen-
dency of X andY without the effects ofZ. However, Schreiber89] has forewarned
that conditioning on too many variables is dangerous as the estimations will be much
more difficult. To overcome this problem several alternative solutions have been proposed
[86, 82, 31].

4.4 Incorporating time delays

The idea of indirect ‘causality’ is often related to the existence of time delay between
cause and effect. In subsectidh4.3, the fact that causal lags will inevitably exist for



Chapter 4. Transfer Entropy 63

‘causality’ to be manifested was established. The example of the lightning and thunder
was highlighted where lightning would appear to be causing thunder if the real cause of
electrical discharge was not taken into account. In a way one could say that lightning
indirectly causes thunder, on the other hand one could also say that lightning and thunder
are the same events manifested at different time lags. In other words, thunder can be
considered as a delayed effect of lightning. Thus, identifying time delay is a big step
towards identifying indirect ‘causality’.

4.4.1 The detection of ‘causal’ lags

The ‘causal’ lag is the time delay that exist between the ‘cause’ and effect. It could be
interpreted as the time taken to deliver the information from the causal variable to the
affected one. We suspect that these types of delays should be present in the brain where
neurons are constantly firing. Therefore the past and future (in terms of the lags) must be
at a rate that is meaningful and this is where EEG with its high temporal resolution should
be most helpful.

This was exactly the point made out b}0f] which claims that in neuroscience, the
interaction may involve large time delays of unknown duration. Thereft®g] [fecom-
mends that a time shift test in taken addition to Transfer Entropy whenever multiple source
signal is likely to be present especially in EEG data. The time shift test proposed was
simply looking at various Transfer Entropy values for different time shifted version of a
certain variable (process). In particular, wha®f] implemented was that if two variables
X andY has Transfer Entropy values that indicatésausesX, let this be the hypothe-
sis. Ty1_ x is calculated wher&! is the time shifted variabl® such that}! = Y, ;. If
Tyi_x > Ty_x, then it is concluded that the relationship is due to instantaneous mixing
and the idea that” causesX is discarded. Otherwise the hypothesis is accepted. The usage

of Transfer Entropy in combination with time shift test was recommended on EEG data.
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4.4.2 Simplest case and ‘causal’ lag detection

The simplest case of equatiof?) is when we lef = 1 andk = 1 so that

1 1
Ty_x =F | log P(Xps1 = Tpa |V ),(f)(r(z ))]
P(Xn-i-l = xn-l-l‘X” )
P(Xni1 = Tpa|Yn = yn, X = xn)}
P(X,i1 = 21| Xy = x0)
P(Xy = 2|Yo1 = Yn—1, X1 = xn—l):|
P(X, =2, X1 =2y_1) '

= FE | log

=FE | log

We seek to investigate this form especially since Schreiber himself warns against condi-
tioning on too many variables. Notice that the calculation will be just as simple if we
defined

P(X, = 2,| X1 = nfvynf‘r: n—r
Ty}(:E{log ( Tl X1 = Tua y )]

P(Xn = xn|Xn—1 = xn—l)

= Z Z Z P<Xn+1 = xn—&—len—l = xTL—:l?Yn—T = yn—T)X
Tn4leX TneX Yncy

P(Xn—l—l = xn+1|Xn—1 = Tn-1, Y, r = yn—T)

P(Xn+1 - xn—i—l‘Xn—l = xn—l)

log (4.4)

whereX is the state space of and) is the state space &f. We take the valuelog 0 = 0.
Writing this equation in terms of shifted variabl&s ! andY ~" we have that

P(Xn = In|Xn71 = Tp_1,Ypn_r = ynf‘r) P(X’X_l Y_T)

T =E | 1 ! —E|l !

Yx { o9 P(X, = 2| Xp1 = 2n_1) T P(X|X )
pxix-1y-- (x|, y

= Z Z ZpXX_ly_T(x,x’,y) log XY (2] ) (4.5)

rzeX z'eX ye)y pX‘Xil (l‘|l’/)

In relation to equation.27), we highlight that the formula of the Transfer Entropy in
equation 4.5) is related to conditional entropy and conditional Mutual Information in this
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way,
) _ P(X]X_l,Y_T) B P(X,X_l,Y_T)
Ty =F {log P(XX) } = {log PX-LY ") P(X|XT)
B PXY X)) 1o
= {Z09P<Y—T|X—1>P<X|X—l>]”X’Y )
= HX| XY -HX|Y ", X1). (4.6)

This simple form allows us to vary the valuesmofn investigating whether there is a
certain causal lag required in order to manifest the dependency. This was the form sug-
gested in the time shift test 01Q2Z. This was also the form suggested #b] where it was
called Transfer Entropy. In7p] time delayed Mutual Information was compared to time
delayed Transfer Entropy and the conclusion was in favour of Transfer Entropy. A similar
idea of causal lag detection called horizons on G-causality is discuss&d]inJeveral
other approaches to tackling the issue by utilizing permutation entropy are proposed in
[65, 82]. If we were to reformulate the time shift test previously discussed, the test will be
that if Tff))( > TS))( then the idea that” causeX should be discarded. In this thesis, we do
not necessarily agree with this. We intend to show this situation can occur Yvicanses
X but not detected at the exact time lag. In fact we shall shoWIfﬁ;\ltfor our purposes
will be largest at exact causal lag

Chapter Summary

Despite all the challenges facing Transfer Entropy, the usage of the measure has made it
one of the most prominent measures in capturing ‘causality’, often mentioned together or
as an extension of G-causality. Even when new measures are proffésé8,[82], the
Transfer Entropy becomes the benchmark measure for comparison. This is especially true
in the field of neurosciencelf, 102 5] and in particular when examining EEG data sets
[70, 69, 99]. In fact given unknown dynamics, Transfer Entropy was crowned as the first
choice among methods for quantifying causal structure of bivariate time seriégby [
Therefore, the Transfer Entropy seems ideal for our purposes. It is a variant of condi-
tional Mutual Information thus non-linear and general when it comes to independence. At
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the same time it incorporates the time element that enables ‘causality’ detection. We have
taken the simplest Transfer Entropy case and redefined it for causal lag detection. Now
we shall put this measure to the test. We have seen that most of the testing on conditional
Mutual Information and Transfer Entropy were done on dynamical systems. We aim to
look at these values more from a statistical mechanics point of view and we think there is
no better testing ground to start with than the famous Ising model.
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Chapter 5
The Ising model

The Ising model is a simple mathematical model used in statistical mechanics. Its sim-
plicity makes the two dimensional case exactly solvat P7]. In the first part of the
chapter we will explain the concept and some history of the Ising model as well as how it
achieves criticality. Some theoretical values of the measures we wish to investigate on the
model are introduced. Afterwards, we go on simulating the model using the Metropolis
Monte Carlo algorithm. Consequently, we outline the simulation results. Firstly we verify
crossover values and a further discussion of what this values implies. Then, we proceed to
take a closer look at the Mutual Information, conditional Mutual Information, time delayed
Mutual Information and Transfer Entropy applied on the simulated data and what they im-
ply. Lastly, we discuss how Mutual Information and covariance can be related on the Ising
model and what this means in relation to dependence of sites on each other.

5.1 Concept of the Ising model

The quest of seeking to explain the macroscopic behaviour of a system on the basis of its
microscopic structure in statistical mechanics has its root in the analysis of simplified math-
ematical models42]. The Ising model is the simplest of these models. More importantly,
phase transition is manifested on the model where a small change in temperature causes a
huge change in long range correlative behavi@r £8].
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5.1.1 About the Ising model

The Ising model was introduced as a simplified representation of intermolecular forces on
ferromagnetic metal. This is due to the fact that ferromagnetic metal can be regarded as
being composed of elementary magnetic moments called spins which are arranged on the
vertices (sites) of a crystal lattice. The phase transition on this lattice is said to be the
spontaneous emergence of magnetization in zero external magnetic field as temperature is
lowered below a certain critical temperatugg]

The Ising model got its name from the German physicist Ernst Ising who wrote his
doctoral thesis on this particular model in 192%3,[19] where he utilized the model in
trying to explain certain empirically observed facts about ferromagnetic materials. He was
a student of Wilhelm Lenz who had earlier roughly proposed the idea in 1920. At first,
even Ernst Ising himself gave up research in physics after thinking that he had proven that
his model had no physical usefulned$][ It physically appeared that an oversimplified
model representation of intermolecular forces on which this model is based on would make
it unapplicable to any real system.

It was only20 years later that Ising found out that he was famous for other peoples work
on his abandoned mod&§]. Although his work on the one dimensional Ising model did
not achieve phase transition, the two dimensional model does. In fact, an analytical solution
has been given by the nobel prize winning Onsag&t. [ Currently, the model has been
applied to biology, sociology and economics (just to name a f&®)J8]. Practically, any
case where you have two possible states of interacting components to take into account and
where cooperative behavior is studied, some form of Ising model can be applied. Indeed,
the importance of the Ising model cannot be overstated.

The model may be summarized as follows. Assuming that the physical system can be
represented by a regular lattice arrangement and that the sites (particles) are positioned at
points of some lattice embedded in Euclidean space. Each site may either be in two states,
representing the physical state of spin-up and spin-down. The orientation of each spin is
random but subject to spin-spin interaction which favours their alignment. Spin values are
chosen at random according to a certain probability measure, known as Boltzmann distribu-
tion or Gibbs measure, which is governed by interactions between neighbouring particles.
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The theory of Gibbs measure is a branch of classical statistical physics which also can be
viewed as part of probability theory. It was proposed as a natural mathematical description
of an equilibrium state of a physical system which consists of a very large number of inter-
acting components (such as spins on ferromagnég) [n probabilistic terms, it is none

other than the distribution of a countably infinite family of random variables which admit
some prescribed conditional probabilities. This notion has received considerable interest
from both mathematical physicist and probabilists. The Gibbs measure has been proven to
be the unique measure that maximizes entropy and underlies the maximum entropy method.

5.1.2 The mathematical formulation

One can visualize the Ising model as a two dimensional square lattice with |Erogtim-
posed ofN = L? sites (verticesy;,i € N' = {1--- N}. These sites can only be in two
possible states, spin-up;(= 1) or spin-down §;, = —1). The full description of a mi-
crostate or a configuration will be denoted by= {s; ---sy}. Let (s;). be the number
which appears as thi#h component inv. This number represents the state of ithesite
in configuration (microstate). We shall take the liberty of using instead of(s;),, when-
ever the configuratiow is understood from the context. Latbe the set of all possible
configurations or microstates such that A.

The interactions between these sites are given by the interaction strength. In this thesis,
we restrict the interaction of the sites to only its nearest neighbour (in two dimensions this
will be sites to the north, south, east and west). Let the interaction strength betaegn
j be denoted by

J >0, if iandj are nearest neighbours and € N/
0, otherwise.

The nearest neighbour restriction will shape the Ising model to be Markovian in a sense
that the probability of a given sitec N being in statex is given by

P(s; = als;,i # j) = P(s; = als;, j is nearest neighbour 6f,
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where instead of being dependent on all other sites on the lattice it is only dependent on the
nearest neighbour. This property is sometimes referred to as the Markov randomZjeld |
The Hamiltonian (energy), for any configurationv € A is given by P7, 28]

Hw) =D > Jij(si)ulsi)e (5.2)
ieN jeN
whereJ;; is taken from equatiorb(1) which incorporates nearest neighbour interactions.
The probability of configuratiow € A is given by the Boltzmann (Gibbs) distribution

exp(—fH(w))

Pl = o e (H(@))

(5.3)

whereg = ﬁ such thatKp is the Boltzmann constant arid is temperature.j is

very important since this is how the temperature effects the probability. The strength of
the Boltzmann distribution lies in the fact that for small valueg ¢high temperature) the
distribution tends to be uniform and for large valueg ¢fow temperature) the probabilities

of lowest energy state is accentuat8,[77]. Therefore, the effective interaction strength
increases or decreases depending on temperatterough ) that in turn effects the
probability of the sites being in certain configurations.

5.2 Simulating the Ising model

We shall first give a brief outline of the Metropolis Monte Carlo (MMC) before discussing
how we simulated the Ising model using this algorithm. Subsequently we discuss the esti-
mations of probabilities and transition probabilities using temporal averages.

5.2.1 Metropolis Monte Carlo (MMC) algorithm

The definition of Ising model contains no information on its dynamics. However, what one
does know is the fraction of the system in a particular configuration (microstate) which is
given by the Boltzmann distribution in equatidng). The algorithm proposed by Metropo-

lis in 1953 was designed to sample the Boltzmann distribution by artificially imposing
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dynamics on the Ising modeb?, 27, 77]. This is done by controlling the transition proba-
bilities from one configuratiow € A to another.’ € A such that

g = Pl — o) = {exp[ﬂ(H(w) —H(W))l; ?f H(w') > H(w) 54
L, if H(w/) < H(w)

The HamiltoniarH is taken as in equatiorb(2) such that it represents the state of energy
at the particular configuration. The transition probabijtyis favoring lower energy con-
figurations. The Metropolis algorithm can be summarized in these few €2{37]. First
prepare the system in an arbitrary configuratioand calculaté{(w). Afterwards choose

a random sitg so that one can calculaté(w’), wherew' is the configuration that will be
obtained fromw by changing the state gfsuch thats;), = —(s;). and(s;). = (s;).s for

any: € N,i # j. The change on sitgis accepted with probabilitys given by equation
(5.4). The process of choosing a new site to flip (upwards or downwards) and comparing
the resulting Hamiltonian is then repeated.

Monte Carlo simulations are Markov processes. Based on the Markov chain Monte
Carlo procedure, the simulation is primely interested is the invariant distribution of the
Markov chain (another name for Markov processes) and not the chain it¢If The
Metropolis algorithm is Markovian in a sense that the transition probability only depends
on the current configuration to decide the next configuration. Therefore the product of
the Metropolis algorithm is a Markov chain. The most important point is that, Markov
chains have invariant distribution. The validity of the Metropolis algorithm depends on the
attainability of this invariant distribution (sometimes also known as stationary distribution
or the steady state). In the Metropolis algorithm, the intended invariant distribatprs|
the Bolzmann distribution in equatioB.B) which is incorporated into the algorithm as the

ratio
Pw) _ exp(—fH(w))
P(w)  exp(—=FH(W))

in equation $.4). However the choice of transition probabildy; in equation $.4) is not

— exp[—ﬂ(H(w) - H(w/))]

unique. There are other existing choices that may also satisfy the Boltzmann distribu-
tion [27].
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The implementation of the MMC algorithm in this thesis is outlined as follows. Recall
that L is the length of the lattice so thaf = L? is the number of sites on the lattice. A
site is chosen at random (in our case using MATLAB’s random number generator) to be
considered for flipping (change) with probability;. The event of considering the change
and afterwards the actual change (if accepted) of the configuration, shall henceforth be
referred to as flipping consideration. A sample (or sweep) is taken after/édlipping
considerations. The logic being that, since sites to be considered are chosen randomly one
at a time, we can assume that afférflips, each site has been selected for consideration
once. These samples are the values that we shall refer to when talking about time steps of
the resulting Markov chain.

The interaction strength is set to be= 1 and the Boltzmann constant is fixed as
Kp = 1 for all the simulations. For illustration purposes, = 10 is usually utilized
unless stated otherwise. We let the system run @p@6 samples before sampling at every
N = L? time steps. This is done for more tha®) temperature values @f ranging from
0to5.

5.2.2 Temporal average

On the Ising lattice, when one wants to talk about expectations, it must be under the Boltz-
mann distribution. Therefore for any site on the lattice, the expectation of < {—1,1}
is given by

Epwlsx] =Y (sx)uPW) = (1) Y Plw) +(=1) Y P(ws), (5.5)
wEA w1 €A w2€EA

whereP(w) is the probability of the existence of configuration (microstat@jven by the
Boltzmann distribution in equatiorb(3). w, are the configurations whesg: = 1 andws
are the configurations whesg = —1. The average considered here is known in statistical
mechanics as the ensemble averajd. [ Under certain conditions given by the ergodic
theorem, the ensemble average is equal to the temporal avéfadge/]. The temporal
average is where the probability of a variable is obtained by averaging over the frequencies
of different states over time.
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When one generates the values of the Ising model using MMC algorithm, a Markov
chain (process) is formed for every site on the lattice. Therefore rather than focusing the
state of a site at each configuratitsy )., (where the configuration has to be taken into
account), one focuses on the state of a site at each time step (as obtained from the samples)
of the Markov chain(sy),, wheren is the time step of the Markov chain. L&t be the
length of the Markov chains. To get the temporal average from the Markov chains, one
simply counts the frequency of a certain state and then divide it with the length of the
Markov chain such that for any € {—1, 1},

7 =
Ploy —a) = Lot =)y o (5.6)

whered is the function defined as:

503 1, ifthe statementid } is true
0, otherwise

For joint distributions we count the joint frequencies, so that forany € {—1, 1},

ST 0{(sx)n = aand(sy), = )}

P(SX:&asY:ﬁ): |T’

= Psysy (@, ). (5.7)

The Markov chains generated by the Metropolis Monte Carlo algorithm are known
to be able to achieve invariant distribution as well as ergodidi#i}. [ Consequently, the
expectation oky can now be written as

Epplsx] =Y (sx)uPW) = D (sx)psx (@) (5.8)

wEA a==*1

and the joint expectation would be

Eplsxsy] =D (sx)ulsv)uP@) = D Y sxsybaxsy (@, 5). (5.9)

weA a=+1 =41
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In relation to equationl(.2), the covariance on the Ising model could be given as

I'(X,Y) =T(sx,sy) = Epw)[sxsy| = Epw)[sx]Epw)[sy]

- Z Z SXSYPSXSY(Q’Q> - Z (SX)pr (a) Z (SY)pSY (ﬁ)

a=%£1 p=+1 a=+1 B==+1
= D D sx8y Paxey (@05) = Doy (@)pey (B)] (5.10)
a=+1p3=+1

whereX,Y € N are two sites on the lattice and the temporal average is applied. All the
numerical probabilities obtained for Ising model in this thesis will have been obtained using
the temporal average method on MMC simulations where the resulting Markov chains will
be of lengthZ7 = 100000 unless stated otherwise.

5.2.3 Estimating transition probabilities

To get transition probabilities, again we utilize the fact that under the Metropolis Monte
Carlo simulations each site is considered as a Markov chain. One way of doing this is to
simply count and get the fraction of the occurance of these transition. For example to get
the transition probability of x from states to statex at time lagl, we have

D oes 3(sx)a = o given (sx)u-1 = 5)}

P((sx)n = a|(8x)n1=0) = 17 — 1

whered is again the function defined in equatidn@). In other words, we use temporal
average to obtain the transition probabilities. Generally for any time &g can calculate
the transition probability such that for anyg € {—1,1}

Sy 0{(5)n = a given(sx). . = A)}

P((sx)n = al(sx)a—r = ) = e

However if this is done, the marginal probability in equati@ng) will also need to be
altered so that the probabilities will tally. The marginal probability for ang

S 0{(5x)n = o}

P(sx =a) = T—r]

= Psy (Q). (5.11)
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Consequently, when using this method one needs to recalculate the marginal probabilities
for each different value of time lag In order to avoid the need to recalculate at every time
lag, one can utilize a different method.

Alternatively, considerX™ to be a different Markov chain whet¥” is the process(
that is shifted byr time steps. In doing this, we do not change the length of the Markov
chain but instead we shift the Markov chain in a circular manner so that the marginal
probabilities remain the same for any time tagn other words, the first time steps ofX’
becomes the lasttime steps ofX” such thatsx-)7_,., = (sx), forn=1,--- 7, and
(sx7)n—r = (sx)nforn=7+1,--- 7. We simply letY” = X7 in equation §.7) so that

ST 8{(sx)n = avand(sx-), = )}

P(SX:aasx"':ﬁ): |T’

= Psysx- (@, 3). (5.12)

In both these methods, it is important that<< 7 so that the probability estimation
obtained from the simulated Markov chain is as accurate as possible.

5.3 Measures on Ising model

Utilizing the time average method of approximation, we are able to approximate the mea-
sures that we have defined in previous chapters on the Ising model and some new ones due
to the nature of the Ising model. First we explore the measures or observables that may
be of interest due to their relationship with phase transition and critical values on the Ising
model. After that, we revisit covariance and various forms of Mutual Information including
conditional Mutual Information and Transfer Entropy.

5.3.1 Observables for verification of the critical point

In an infinite two dimensional lattice, the phase transition of the Ising model Wvith 1
2 ~
v & 2:269185 [27).
In a finite system, due to finite size effects, the critical values will not be quite as exact,

and Kz = 1 is known to occur at the critical temperatufe=

we will refer the temperature where the transition occurs in the simulation as the crossover
temperature/.. MagnetisationV/ and susceptibilityy are observables that are normally
used to identifyl. on the Ising model.
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In order to definel/ andy, letm(n) = vazl(si)n be the sum of spins on a lattice of

size N attime steps = 1,--- ,7. The magnetisation/ is defined as

T

1 1|1 1 G
M = S Elm(n)] = + [? Zm(n)] =57 > Z(si)n. (5.13)

n=1 =1

We utilized E[.] in terms of temporal average by averaging over all the time stefSsib-
sequently, withK'z = 1 the susceptibility per spir2[/] can be written as

1 N 2 | LN 2
= [Z ] [7 > Z(s»n] (5.14)
i=1 n=1 i=1

whereT' is the temperature. Using MMC algorithm for temperatufes 0, - - - , 5 (taking
x = 0 atT = 0) and chain length (number of samples for each site} 100000 we get
M in Figure 6.1) andy in Figure 6.2). The M values in Figureq.1) was initialized with
valuesl (all spins-up) therefore the initial magnetisation idf the initialization was with
spins-down values<{1), then the initial magnetisation would have beeh

0.8

0.6

0.4

Magnetisation

0.2

-0.2 +

-0.4

0 1 2 3 4 5
Temperature

Figure 5.1: Magnetisation/ using equation.13 stabilizes ta) at 7T,
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Figure 5.2: Susceptibility of equation $.14) peaks afl,.

The Mutual Information between sitésandY” on the lattice, in relation with equation
(2.12, (5.6) as well as%.7), can be written as

B B P(Sx,SY)
I(X,Y) =I(sx,sy) = E {logm}
B o A lo Paxsy (@, )
= Z Z psxsy( 75)1 gpsx (a)pSY (6) . (515)

a=+1p3==+1

Consequently conditional Mutual Information involving another gitean be written as

P
I(X,Y|2) = I(sx.sy|s7) = E [zog (s 5v]sz) 1

P(Sx|Sz)P(Sy’SZ)
= YD paxayss(a, 8,7) log Paxevies (@ 51) (5.16)

a==+1 B::tl’)/::t]. pr‘Sz(a’f}/)psy|Sz(/8|7>'

To see the effect of Mutual Information over different temperatures we choose three sites
A, B and G representing coordinatds, 1] , [2,2] and [3, 3] on the lattice. In a lattice

with L = 10 with N = 100 sites, we have thatl = 1,B = 12 andG = 23 so that

A, B,G € N. Matsuda 73] concluded that the Mutual Information and covariance shows
singular behaviour near critical point and this is what we observe in Figuse (
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Figure 5.3: Values of covariancE(A, B) using equation §.10, Mutual Information
I(A, B) using equationg.15), time delayed Mutual Informatiof( A, B') us-
ing equation $.17) and susceptibilityy using equationk.14) on the simulated
values of the Ising model across temperatlire

5.3.2 Measuring values across time lags

In Figure 6.3) we have plotted time delayed Mutual Informatibf, B*) which is almost
indistinguishable from Mutual Informatiof( A, B). Utilizing the probability estimation in
equation §.6) and 6.12, the time delayed Mutual Information between any sitandY
on the lattice can be defined as

T _ . P(SX, SYT)
[(X,Y ) = [(Sx,Syr) =F [ZOQW]
=> Psxsye (@, 0)
- a==+1 ﬂ::l:lpSXSYT (a7 /6) logpsx (a)psYT (6) (517)

whereY™ is the variableY” shifted byr time steps. Previously we have also defined auto
Mutual Information or the Mutual Information over time AsX, X7), this is a special case

of time delayed Mutual Information on itself. From our investigations on the simulated
data, neither time delayed nor auto Mutual Information values will be very different from
Mutual Information values on the model.
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The Transfer Entropy on the Ising model can be calculated using the equatpn (

P -1 -7
) — 1)~ E[z()g (sx|sx1,5v-)

e P(sx|sx-1)
ps S 7377_(Of|/8,7>
- Z Z Z pSXSX*lsyfT <a767f}/) lOg X‘ XY ( |/6) . (5-18)
a=+1pB=+1y=*1 Dsxlsy—1\&

In Figure 6.4) we plot the valueggjl andTg alongside susceptibility. Despite the
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Figure 5.4: Values ngjl ande(‘g both using equatiorb(18 and susceptibilityy using
equation $.14), across temperatufe.

smaller values of Transfer Entropy it still does peak riEarOne can see that there is no
clear difference betweeR( A, B) and (A, B') in Figure 6.3) nor betweerTgf, andefg

in Figure 6.4), thus no direction of ‘causality’ can be established betwéemd B. This

is true for anyr used in equationss(17) and 6.18 between any two site on the lattice.
What we observed was the effect of the distance between the sites.

5.3.3 The influence of distance

In this subsection we shall use reduced temperatgfe for visualization. From)M in
Figure 6.1) andy in Figure 6.2), the crossover value is estimated to'e= 2.15. The
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effect of distance is observed in the values of Mutual Information and covariance as seen
in Figures 6.5) and 6.6).

0.4 :
—e—|(A,B)
0.35F -==1(AG)|]
—(B,G)
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o
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Mutual Information
o
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&) -0.5 0 05 1

Reduced Temperature

Figure 5.5: Mutual Informatiord (A, B), I(A,G) and (B, G) of equation $.15 versus
reduced temperature=. (A, G) < I(A, B) = I(B,G) due to distance.
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Figure 5.6: Covariancé(A4, B), I'(A, G) andI'(B, G) of equation §.18 versus reduced
temperaturé1=. T(A, G) < (A, B) = I'(B, () due to distance.
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The fact thatd, B and G represents coordinaték 1], [2,2] and [3, 3] means that the
distance fromA to B and B to G is equal but half the distance df to G. Due to strictly
nearest neighbour interactions as well as the translational and rotational invariance nature
of the Ising model, two sites on the lattice with the same distance between them will have
the same marginal and joint probability. This is evident from Hgw, B) ~ I(B,G) in
Figure 6.5 andI'(A, B) =~ I'(B, G) in Figure 6.6). The values of (A, G) andI'(A, G)
are smaller in the respective figures due to the larger distances between the sites.
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Figure 5.7: Conditional Mutual Informatioi(A, B|G), [(A,G|B) and I(B,G|A) of
equation $.16 versus reduced temperatufg’=. 1(A,G) < I(A,B) ~
I(B, G) due to distance.

B is situated betweeA andG on the lattice. AlthougHh2, 2] is not the nearest neigh-
bour of eithef1, 1] or [3, 3], interactions between to the two sites will logically pass through
2,2]. In a way, this makes the interaction betweémnd G dependent oB. When the
conditional Mutual Information values between the three site® andG are plotted in
Figure 6.7), among the three value$(A, G| B) is the smallest. This is not only due to
the fact thatd andG is further away from each other, but also becatisghich is situated
between the other two sites is conditioned ouf (i, G| B). Therefore one can say that
the conditional Mutual Information uncovers indirect dependence in a sense that the inter-
action betweeml andG depends oB. We have discussed a possible relationship between
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conditional Mutual Information and indirect ‘causality’ in subsectidr8(2.
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Figure 5.8: Transfer Entropﬁﬂ, ng1 andT((;lj1 of equation $.18 versus reduced tem-
perature’7 1= 1Y) < T due to distance.

The Transfer Entropy and the conditional Mutual Information is relate(T,Bfi/ =
I(X,Y 7| X 1) asin equation4.6), therefore the distance and conditioning will also effect
the values of Transfer Entropy. In Figug§), one can see thafﬂ =I1(AA7HATY) =
0andT\) = I(A,BYA™Y) > TL) = I(A,G!|A™1). Therefore it can be said that
distance is the only factor effecting Transfer Entropy values in this figure and from Figure
(5.4) there seems to be no particular causal direction either. We suspect that this is due to
the symmetric nature of the Ising model that distributes influences equally in all direction.

5.3.4 Measures oh = 25

Up to this point we have utilized lattice length 6f= 10. In this subsection we contrast
L = 10to L = 25 with Markov chain lengths of = 100000. In Figure 6.9) we observe
that the value ofy increases a4, increases sincg — oo asL — oo. The crossover
temperature of. = 25 is 7, ~ 2.2 which is closer to the redl.. In a lattice of length
L = 25 with N = 625 sites, sitesA, B andG representing coordinatés, 1] , [2,2] and
3, 3] will have values ofA = 1, B = 27 andG = 53 such that4, B,G € N.
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Figure 5.9: Susceptibility of equation $.14) for lattices of lengthd. = 10, 25.
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Figure 5.10: CovariancE(A, GG) in equation $.10) for lattices of lengthd. = 10, 25.

Figures 6.10, (5.11) and 6.12 depicts the behaviour of covariance, Mutual Infor-
mation and Transfer Entropy values across temperatfiires 0 - - -5 between sited at
coordinate[1, 1] and siteGG at coordinatd3, 3] in all three different lattices. We suspect
that the explanation to what we observe in these graph is thdt for25 where the lattice
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Figure 5.11: Mutual Informatio (A, G) using equationq.15 on simulated data of lat-
tices with lengthd. = 10, 25.
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Figure 5.12: T((;lj) using equation{.18 on simulated lattices with lengtis= 10, 25.

is much bigger, the influence of the two sites on each other is much weaker than in the
= 10 lattice especially with periodic boundary boundary conditions, hence the sharper

and more precise detection @f in the L = 25 lattice. Nevertheless, the fact that the

measures attained maximum values nEas consistent to our observation én= 10.
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5.4 Binary sequences

A binary sequence or a Bernoulli process is a process that only allows only two possible
states. The fact that Ising model is a binary sequence simplifies a lot, so much so that even
Ising himself wrongly came to the conclusion that his model was of no use. Its contribution
to the world statistical physics is undeniable, however when we look closer we find that in
binary sequences covarianteand Mutual Information/ are in fact interchangeable in
terms of independence. A relationship between the two measures on Ising model will
be used to explain Figured@). We will see that given a few assumptions, on a binary
sequence, the linear independence of the covariance will be enough to indicate general

independence.

5.4.1 Independence of binary sequefi@nd1

We leave the Ising model for a while in the quest to explain things in the more general
setting. There are some special cases where uncorrelated-ness does imply general indepen-
dence. One of these cases is when the variables have only two possible values i.e the binary
sequence. The binary sequence is usually representédabygl 1. Let px(z) andpy(y)

be the marginal probabilities and:y (x, ) be the joint probability for variableX andY

wherez, y € {0,1}. The covariance in equatiod.Q) becomes

I'=T(X,Y) =pxy(1,1) — px(1)py(1). (5.19)

If X andY are uncorrelatedl{ = 0) thenpxy(1,1) = px(1)py(1) and using this in
relation to the property of joint probabiliti€s,, pxy (z,y) = px(x) gives us

px(1) = pxv(1,1) + pxv(1,0)
= px(py (1) + pxy(1,0)
px(D[1 = py(1)] = pxv(1,0)
px(1)py(0) = pxy(1,0). (5.20)



5.4 Binary sequences 86

Proceeding in a similar manner, it is possible to get0)py (1) = pxy(0,1) as well
aspx(0)py(0) = pxy(0,0), so thatpyy(x,y) = px(z)py(y) for all z € {0,1} and

y € {0,1}, making X andY independent of each other based on definition of general
independence. Therefore linear independence implies general independence, wien
{0,1}. Consequenthy’(X,Y) = 0= I(X,Y) = 0 in this case.

We have briefly discussed a similar example in subsecBd3) but the independence
was not explicitly highlighted. In subsectio.8.2, a formula that linksl" to I have
been obtained by writing the probabilities in termslof= I'(X,Y"). This was proposed
by [64], which imposes symmetric conditiopyy (0,1) = pxy(1,0) so that using the
joint probabilities we gepx(0) = py(0), px(1) = py(1l) andpx (1) — pxy(1,1) =
px(0) — pxy(0,0). We highlight here that even without the symmetric condition, the
independence between andY have already been establish.

Taking into accounpx (1) + px(0) = 1 (the normalizing condition) and substituting
values in equationy(19) yields

pxy(L,1) =T +px(1)%, (5.21a)
pxy(0,0) =T + px(0)?, (5.21b)
pxy(0,1) = pxy(1,0) = =T+ px(0)px (1). (5.21c)

The probabilities can be used to obtain the Mutual Information formé4pdy substituting
the probabilities into equatior2(12) such that

I(X,)Y) = Z Z pxy(T,7) log%

I I
T <1 + PX(1)2> (1 + PX(0)2>
0og - 2
(1 - P_X(O)P_X(1)>

+px(0)*log (1 + ﬁ) + 2px (0)px(1)log (1 —

+ px(1)?log (1 + ﬁ)

I
px<o>px<1>) - (5.22)

When the termm are small, one common method of approximation is to use the
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second order Taylor approximation in obtaining

log (1 + prl)2) ~ pr1)2 [1 N QPXL(UQ]

log g (1 * proy) b pxl(jo)2 [1 R QPXLW]

l

o9 (1 - pX(O)PX(l)) N O (D) {1 - 2px(0)px(1)} . (529
Taking only the second order termslofthe first order cancels out), we have
2 1 1 2
IN? (px(l) +p (0)2 * X(O)px(1)>
_r (px(l) + px(0)2 + 2px (0)px (1))
2 x(0)px (1))
2 (px () +px(0))°_ 1 I
2 ( px(0)px(1) ) T2 <pX(0)pX(1)) ‘ (5.24)

What we can observe from this equation is thatecays to zero at a faster rate than the
corresponding’ and more importantly we can clearly see the fact that0 < I' = 0 for

this particular approximation. It has to be said that this is not true as soon as one goes into
ternary sequences. Exampleslof= 0 = [ = 0 beyond binary have been discussed in
subsectionZ.3.2 and [64].

5.4.2 Covariance and Mutual Information for general binary sequence

We show how the works oft{] extends to general binary sequence with statesd j.
Now, defineX andY just like X andY except thati, j € {«a, 3} as opposed ta,y €
{0,1}. Let statex correspond t@ and state3 correspond td so that same distributions

are maintained i.ep (o) = px(0), pgy(a, B) = pxy(0,1) on so on (also imposing the
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symmetry constraint). Using the fact th/ﬁtg =0 andg:—g = 1 we haveva, 3, a # 3,

T aV-a) (f-aV_o %) (T a
(e = (mee) = (50) = (52)
—Zz(“”‘a)m@@

(525 no X (525 ) mo
—ZZ zy) pxy (2,Y) Z( )px ()Y () py ()

Y

=I'(X,Y) = pxy(L,1) = px(1)py(1). (5.25)

Therefore, the relationship betweEfX, Y) andI'(X,Y) is such that

X—aY-a
F(X,Y)zl“(ﬁ_a,ﬁ_a>

7 ay
_ B(Y) - BROE() _ I(X,7)
I A N G 2

Since(8 — )2 is constant, thel (X, Y) = (5 — a)?T'(X,Y) implies thatl' (X, Y) is pro-
portional toI'(X,Y). Wheneve(X,Y) = 0 we have thal'(X,Y) = (F(XJ) 0 since
and( # « (otherwise the variables are just constants), therefore we have independence.

In short, for any binary sequence wherg; € {«, 5}, linear independence (uncorrelated-

ness) implies general independence since we have

F(X,Y/) =0=T(X,Y)=0= pxy(z,y) = px(x)py(y), >,y € {0,1} (5.27)

= pxy(T,9) = px(T)py(9), 7,7 € {a, B}
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Recall that/ (X,Y) = I(X,Y) since the probabilities are identical and Mutual Information

only depends on probabilitie§9, 57]. Letting "' = T'(X, Y) and substituting® = (ﬁ_fW

as well as the probabilities in equatidn22) yields

I(X,Y)=I(X,Y)

. 1+—L ) (1+ ;)
r < [p;(w)(ﬁ—a)F) ( [P (@)(8—a)]’

= log

(6—a)

(1 ~ @ B B—ar

P r
% 2[0 3 P el 2[0 2
+oe(d) g(r+md@w_a”>+p(> 9<“+maww—an>

(5.28)

S
o
2
=
b
=
=
|

Q

e
N——

+2px(a)px(B) log (1 -

Clearly for any binary sequence with any value of state%,Y) =0 = I(X,Y)=0ie
uncorrelated-ness is enough to imply general independence. Approximating as in equation
(5.29), we get that

I~

N | —

(o) =2 (7=am
px(0)px(1) 2 (B — a)*px(0)px (1)

1 I i
_%ﬁ—®4Qm®mﬂD>' 2

The relationship betweehandI' depends on the difference between the possible binary

states 7 — «). This makes sense since the value¥ wfill be larger for larger values af
andg.

5.4.3 Ising model as a binary sequence

We now return to the Ising model and its notation. The Ising model is a particular example
of the binary sequence whetie= —1 andg = 1. However as previously defined, the vari-
ables on the Ising model asg andsy . It is the state of siteX andY” that is considered as

the Markov chains. Two site¥ andY on the Ising lattice is said to be independent of each
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other when the probabilities, . s, (a, ) = ps, (a)ps, (8), Vo, B € {—1,1} which can be
obtained by referring to equatio®.@7). As special case of the binary sequence, linear
independence implies general independence on the Ising model. Thef&foresy, ) = 0

= I(sx,sy) = 0. In conclusion, on the Ising lattice, covariance is sufficient to indicate
general independence.

Moreover, given the symmetry condition of the Ising Model which is justified by the
fact the Ising model is translational and rotational invariance, one can obtain the Mutual
Information in terms of covariancé = I'(sx, sy) on the Ising model utilizing equation
(5.28, such that

o (e ater) ()

I(sx,sy) = log - 2
(1 - —4psx<1>—psx<—1>>

1
+ Py (1) log (1 + m> + sy (—1)% log (1 + m)

+2psx<1>psx(_1> log (1_ 4]93 (1)25 (_1)> : (530)

Clearly I = 0 whenI" = 0. One can also apply the approximation in equat®29 to

obtain
= I(sx,sy) =~ ! P(sx, sv) 2: 1 I'(sx, sy) ?
e Gy <psx<—1>st<1>) 2(2)* (psx<—1>psx<1>)
_i F(SXst) 2
32 (psx(—l)psx(l)> ' (5.31)

Thus! ~ I'? as seenin Figurés(13. The fact the Ising model is translational and rotational
invariance enables sites to be grouped by distances such that the probability of two sites
with the same distance from each other is taken to be the same as other with the same
distance 73] as we have seen in subsectidn3.3. Plotting equations%.10 and 6.15

forall X, Y € N (grouped by distances) against each other for temperdifute$, - - - , 5,

we get Figure %.13 which verifies the previous equation as well as equatiA9 by
showing thatl ~ I'2.
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Figure 5.13: Mutual Informatior versus covarianck values displaying thé ~ I'? rela-
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Chapter Summary

The Ising model is a system that displays phase transition (denoted by crossover tempera-
ture in the simulations). The effect of distance is evident for all the measures tested on the
model and the conditional Mutual Information seem to able to detect indirect dependence
of the sites due to nearest neighbour interaction, however the Mutual Information and time
delayed Mutual Information as well as the Transfer Entropy does not yield a direction or
any indication of ‘causality’. We suspect that this is because Ising model is intrinsically
symmetrical and thus the interactions are more or less equal in all directions. This is the
fact which was used to obtain the formula that relates covariance and Mutual Information.
Therefore, in the next chapter we discuss how to break the symmetry and how we ‘amend’
the Ising model to incorporate our idea.
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Chapter 6
The amended Ising model

The amendment that shall be made on the well established Ising model in this chapter is
meant to incorporate ‘causality’ on the model. We will begin by discussing different at-
tempts to break the symmetry and how the amendment came about. Next we take a closer
look at how we altered the Metropolis Monte Carlo (MMC) algorithm so that some transi-
tion probabilities are altered. We then simulated the amended Ising model and evaluated the
results obtained by contrasting it with the results from the previous chapter. The amended
model enables us to demonstrate that Transfer Entropy has the capability to detect the di-
rection of ‘causality’ and furthermore identify the actual causal lag.

6.1 Replicating ‘causality’

In order to replicate ‘causality’ on the model, we need elements of time and dependency.
Moreover since ‘causality’ is asymmetrical by nature, something needs to be done about the
symmetrical nature of the Ising model. We tried a few alterations to break the symmetry,
in order to see whether this will effect the values of the measures applied on the model and
the relationship between them. We would like to tip the balance of some sites and create
some sort of artificial ‘causality’ on the model so that we can verify the measures that claim

to be able to detect ‘causality’.
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6.1.1 Attempts and ideas

In our quest to observe the effects of ‘causality’, first we tried fixing the value of assite

on the lattice i.e,, (1) = 1 andp,, (—1) = 0 to see the ripple effect it has onto the other
sites. Unfortunately the values of covariance, Mutual Information and Transfer Entropy of
any other site with the sit& would be0, since by fixing the valuesy becomes a constant
andps, s, (a, B) = psysy (1, 8) = psy(8),Va, B € {—1,1} for any siteY # X on the
lattice. Thusps, s, (@, B) = psy (@)psy (B), Vo, 5 € {—1,1} and X is independent of any
other siteY in the lattice. It becomes obvious when the covariance is written this way:

F(Sx, Sy) = E(sty) — E(Sx)E(8y> = 8)(E<Sy) — SxE(Sy) =0. (61)

Therefore, we proceed to other alterations.

Secondly, we tried to create a dependence of sitasd B on the siteG in the lattice
by equating the spins of the sites. We did this by interfering in the MMC algorithm so
that when the sit&7 is chosen for flipping consideratior,, = sp = s is imposed
with probability 1 — p,. And with probabilityl — p the normal MMC algorithm flipping
consideration applies (just like if all the other sites was chosen). However as we later found
out, if sy = sp = s is imposed whelt is selected then one would have problems when
it comes to getting the probabilities, due to the fact that we do not know the order in which
A, B andG is selected for flipping considerations. The estimated valud3(0f,), 1 #
(sa)n) @ndP((sp)n—1 # (sB)n) Will be different for each order.

To remedy this, we decided to change the mechanism so that the probabilities can be
understood better. Instead of interfering when &ites chosen for flipping consideration,
we decided to interfere whefiand B is selected. The normal MMC process is maintained
except whemd and B is chosen for flipping consideration, when either of this happens we
look at the value ok at the last sampled time (regardless of whethehas changed or
not from the last sampling value) andsif = 1 we let the site be considered as usual but
if s¢ = —1 we do not allow any changes to the current state of the selected site. Notice
that the probabilities of; changing is just like any other site (excludidgand B) on the
lattice and is not interfered with. This is the algorithm that will shape the amended Ising
model.
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Essentially what this amendment does is make the changesarfd sz dependent on
sq. Inaway this givegs some control over the state dfand B, however it must be pointed
out that this is not complete control due to the fact that when given permission to change
by GG, A and B can still chose not to change (since the change is done with probafj)ity
The condition (or the amendment) works in such a way tkaj,,_; limits the ability of
(sa)n—1 @and(sp),—1 to change so that the transition probabilitlt§s),—1 # (s4),) and
P((sg)n-1 # (sB)n) Will be altered. It must be pointed out the algorithm does not dictate
what the states off and B are supposed to be or whether it should be similatFtdNote
that in our definition of the amended Ising model we have determined that the condition
for letting s, and s be considered for flipping consideration (each time it is randomly
selected) is thatss),—1 = 1. One could chose the condition to be;),_; = —1 and the
outcome would remain unchanged.

6.1.2 The Generating Mechanism

The two dimensional amended Ising model is generated using the standard MMC algorithm
[62, 77, 27] as outlined in subsectiorb(2.]) albeit interference whenever siteor B is
chosen for flipping consideration. More formally, we will generate the amended Ising
model using the algorithm outlined as follows. At each step in the algorithm a site chosen
at random will be considered for flipping with a certain probabityin equation $.4).
This apply for all sites except whet or B is selected. When this happens we look at the
value ofs¢ at the last sampled time andsif = 1 we let the site be considered for flipping
with probability v5 as usual, however i§; = —1, no change is allowed. Thus only one
state ofGG (s = 1 in this case) allows sited and B to be considered for flipping and
therefore actually change. Hence, one can say that in this way any changesnaf3
depends oid-.

Let X be any site on the lattice not affected by our imposed condition. Then the transi-
tion probabilities (from one sample to the next)sgfis approximately

P((sx)n = al(sx)n1=0) =

1— g, ifa=gforanya,ge{-1,1}
VB, if o £ (3 foranya, € {—1,1}
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where~; is the probability in equatiorb(4). With the amendment, the values(ef, ),, and
(sp), depends orisg),—1. For anya, g € {—1,1} the transition probability of 4 can be
written as

L=7P((s¢)n1=1) =1 =78ps(1), iTa=
P((SA)na(sA)nlﬁ){ 18P ((s¢) ) VBDse (1), i I

e PU(s6)net = 1) = vmpa (D), it o 6,

and P((sg)n = a|(sp)n-1 = B) = P((sa)n = @|(sa)n—1 = B). We denotep,,(1) =
P(s¢ = 1) = P((s¢)n—1 = 1) since the marginal probabilities are the same for aras
we are taking the time average as discussed in subsebtid@d)( Note thats; is not altered
in any way and should be treated just like any other unamended site on the lattice. Due to
the nearest neighbour nature of the Ising model, the interactions between neighbours are
accounted for through the Hamiltoni&hin ~z, therefore the neighbours dfand B might
also have their transition probabilities altered.
If a certain siteY” does not affect another sifé,

P((sx)n = al(sx)n1= B, (sy)n1 = 7) = P((sx)n = | (sx)n-1 = 0)

foranya, 5,v € {—1,1}. However, due to our amendment, this not true for probabilities

P((s4)n = a|(54)n-1 = B, (5¢)n—1 = 7) @ndP((sp)n = &|(sB)n-1 = B, (5¢)n-1 = 7).
DefineQ'?  such that

Qg ;(7) — P(condition fulfilled (s¢)n_r = 7) = P((s¢)n-1 = 1|(s¢)nr =7) (6.2)

where

+ ify=1
sgn(y) = y
- Ifty=-1

With this, for any«, 5,7 € {—1, 1} we get that

1- ’YBQSy)n(V)’ ifa=p

P((SA)H - a‘(SA)n—l = ﬁa (SG)n—l = ’7) = { ) )
7Bngn(7)a if o # 3.
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Therefore the corresponding ratios become

1BQ%,), :
P((SA)'FL = a|(3A>n71 = ﬁa (SG>n71 = 7) _ WS?J(({Y)}’ if o = ﬁ
P((sa)n = a|(54)n-1 = 0) 1) _ Qg
'YBpng(l’y) B png(l’y) ’ If @ ?é ﬁ’
and the values differ foy = 1 andy = —1. The same applies for sitB. This ratio is

exactly what the Transfer Entroﬂyé}j1 and ng as in equationg.18 takes into account
and sums up. To illustrate how this works, we highlight the fact th&tdf),, ; = 1 i.e
Q'Y = P((s¢)n-1 = 1|(s¢)n_1 = 1) = 1, we obtain

1-y5Q" 1— .

P(<5A)n = a|(5A)n—1 =, (SG)n—l = 1) _ 1_731)5;(1) = 1_73;312(1)7 if a =0
P((sa)n = a|(s4)n-1 = B) QY _ 1 -

psG+(1) - psg(”’ If a # ﬁ’

and when(s¢),_; = —1, we getQ"") = P((s¢)n_1 = 1|(sg)n_1 = —1) = 0 so that

1—v5Q" o 1 i _
P((SA)n = a’(SA)nfl - ﬁa (SG)nfl = _1) — 1-vBpse(1) = 1-vBpsg (1)’ o= 6
P((sa)n = a|(54)n-1 = B) QW _ 0, if o £ 3.
ps@(l)

6.1.3 Incorporating causal lags

We can generalize the ‘dependency’ to be at a chosen causal lggmposing thatd and
B can only change states at timéi.e having different states than at time- 1) if the state
of G is equal tol at time step: — ¢. Now the condition is set to bg¢),—¢, = 1 instead
of (s¢)n—1 = 1. For sitesA and B the transition probabilities of their states will be

1— BPS n—tG:]- :]-_Bsgla if a =
P((s)s = al(52)re = §) = 18P ((s6) ) V8Dsc (1) l 3
/VBP((SG)n—tG = 1) = VBpsc(l)a If « 7é ﬁ)

wheret; = 1is a special case explained in the previous subsection. Once again, we denote
pse(1) = P(sq¢ = 1) = P((s¢)n-t, = 1) since the marginal probabilities are the same for
anyn — tg due to the utilization of time average approximation as discussed in subsection
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(5.2.9. With the condition(sg),_+. = 1 the value ofQ can be written as
Q) ., = P(condition fulfilled (s¢),—r = 7) = P((s6)tg = Ll(s6)ar = 7).

Therefore the ratios in Transfer Entroﬁgj as in equation.18 will be

I_WBQS,;,),L(A/) .
P((sa)n = a|(sa)n-1= B, (86)n—r =) _ TM’ . ifa=p
P((sa)n = al(s4)n-1 = B) 18Qun) _ Qsgniy) i
'YBpsz;(lﬁ/) o Psz;(lﬁ/) ’ If « 7é ﬁ

for any o, 8,7 € {—1,1}. The value Ongz(v) changes for different and this is the

heart of the Transfer Entropy value. The change@éﬁm enables us to use the Transfer

Entropy to detect the exact causal tagoy comparing different values of Transfer Entropy

(ta)
sgn(y

Again, for all the simulations the interaction strength is set to’'be 1 and the Boltz-

with differentr vaIues.ng should be the largest when= i as@, ;. is eitherl or 0.

mann constant is fixed asz = 1 for all the simulations. As in the Ising model, we let
the system run up t000 samples before sampling at eve¥y= L? time steps and this

is done for more tham00 temperature values ranging fromo0 to 5. For illustration pur-
poses,L = 10 is usually utilized unless stated otherwise. The simulations displayed in
this chapter will be displaying values of the amended Ising model with periodic boundary
conditions andl’ = 100000 samples for each site.

6.2 Measures on the amended Ising model

The formulas that we have defined in subsect®®)(apply here as well. We would like
to point out that it is the probabilities that change not the formulas. RecallthatandG
are sites on the lattice at coordinatésl|, [2, 2] and[3, 3] respectively. The amendment on
the model are intended to make changes cndsz dependent oRg.

6.2.1 Observables for verification of the critical point

The amended Ising model also generates a crossover températwinere most measures
peak due to the fully connected lattice which can be seen from values of magnetigation
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Figure 6.1: Values of magnetisatidri using equationq.13 on amended Ising model with
te = 1 approaches atT..
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Figure 6.2: Values of susceptibility using equationg.14) on amended Ising model with
tg = 1 peaks aff..

Figure 6.1), susceptibilityy in Figure 6.2 and covariance as well as Mutual Information
in Figure 6.3). We say most measures because, in Figard (ve see that this does not
apply to Transfer Entropy for one of the directions. The Transfer EntropytofA at time
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Figure 6.3: Values of covariancE(A, G) using equation §.10, Mutual Information
I(A, G) using equation.15, time delayed Mutual Informatiod(A, G™1)
using equationq.17) and susceptibilityy using equationf.14) across temper-
ature7 on amended Ising model witlg, = 1.
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Figure 6.4: Values of susceptibility using equationg.14) as well as Transfer Entropy
Tg}, and Tffc); both using equation5(18 across temperatur€ on amended
Ising model witht; = 1. TC(})1 does not decrease toafter 7. which indicates
thatG causesA.
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1, TC(})‘ does not decrease ofor larger temperatures aft@t.. This difference coincides

with the condition that we have imposed on the model. This only happens when Transfer
Entropy is applied on the correct direction and exact causalJamposed on the model.

One can see in Figuré (3) that once again (as was the case on the unamended Ising model)
there is almost no difference betweg, G) andI(A, G™'), even though the causal lag
was imposed at; = 1. From Figures.1) and 6.2) we will useT,. = 2.1 in obtaining

the value of reduced temperatlﬂef—c for figures in this chapter resulting from = 10
simulation of the amended Ising model with = 1.

6.2.2 The influence of distance

In subsectionq.3.3, we have seen that on the unamended Ising model, distance is the main
factor that influences the strength of the different measures between sites. We observe the

0.9

—e—T(AB)
- = =T(AG)[]
r(B,G)

0.8

0.7

Covariance

0 0.5 1
Reduced Temperature

Figure 6.5: CovariancB(A4, B), I'(A, G) andI'(B, G) using equation.10 in amended
Ising model witht; = 1. I'(A, G) < I'(A, B) =~ I'(B, G) due to distance.

same behaviour in Figure6.p), (6.6) and 6.7) where the covariance, Mutual Information

and the time delayed Mutual Information between the three ditfésandG are plotted.
Recall that for the amended model, we makand B dependent oidx, however this

does not change the fact thatis situated betweed andG. It seems that these measure
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Figure 6.6: Mutual Information (A, B), I(A,G) and I(B, G) using equation¥.15 in
amended Ising model with; = 1. I(A,G) < I(A,B) ~ I(B,G) due to
distance.
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Figure 6.7: Time delayed Mutual InformatidiA, B—'), I(A,G~') andI(B,G~') using
equation §.17) versus reduced temperatufg’= in amended Ising model with
te=1.1(A,G7') < I(A, B™') ~ I(B,G™") due to distance.
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are oblivious to the imposed mechanism and their values reflect those on the unamended
Ising model. From comparing Figuré.6) and Figure §.7) one can see that there are
minimal differences between the Mutual Information and time delayed Mutual Information
simulation outcomes. This is because time delayed Mutual Information only takes into
account the static probabilities at different time steps (sampled time from simulation) and
basically compares the state of the sites. Recall that Yaaf,_, does is limit the ability

of (sa),—1 and(sp),_1 to change but does not dictate that the states between the three sites
will be identical therefore the average and join average valueg ahdsz may very well

remain unchanged although the transition probabilities were altered. Thus it seems that
even time delayed Mutual Information cannot detect the imposed mechanism.
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Figure 6.8: (A, B|G), I(A, G|B) andI(B, G|A) equation §.16) versus'=I= for t; = 1

Figure 6.9) is in agreement with Figures(7) of the unamended Ising model where
both shows quite distinctly thd{ A, G| B) gives the lowest conditional Mutual Information
value when the values @ A, B|G), I(A, G|B) andI(B, G|A) are compared. The fact that
we have imposed the condition so tkaand B depend orz seems to make no difference.
Again this is due to the fact that is situated betweeA andG on the lattice and this is what
both time delayed and conditional Mutual Information detect rather than the implanted
dependency. If one says that conditional Mutual Information in Figéi® (ndicate that
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B causes the relationship betwegmandG, this is a contradiction since we clearly have set
the model so that’ causesA as well asB. Therefore we conclude that conditional Mutual
Information without time delays where transition probabilities are not taken into account
will not be useful in detecting our definition of ‘causality’ and the imposed mechanism. We
move on to time delayed version of conditional Mutual Information which is better known
as Transfer Entropy.

6.2.3 Measures oh = 25

From most of the other figures in this chapter, one can clearly see that the p&aks at

not as clear cut as it was the unamended Ising model. There seems to be an initial lower
peak before the actual peakitin the L = 10 lattice with sample size af = 100000 for

anytq that is used. We claim that this is just a fluctuation due to the small length of the
lattice and the general behaviour on the lattice is not affected by this. We shall illustrate
by displaying values on lattice with length = 25 alongside the. = 10 analogous to
subsection§.3.4.

150 T T T T

x of L=10
x of L=25

100

Susceptibility

50

0 1 2 3 4 5
Temperature

Figure 6.9: Values of susceptibilityin equation $.14) across temperatufe on amended
Ising model witht; = 10 for L = 10, 25.
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Figure 6.10: Values of covariand# A, G) using equation.10 across temperatufg on
amended Ising model with; = 10 for L = 10, 25.
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Figure 6.11: Values of Mutual Informatioh(A, G) using equation{.15 on amended
Ising model witht, = 10 for varying values of_.
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Figure 6.12: Values defGO) using equationg.18 across temperatufé on amended Ising
model witht; = 10 for L = 10, 25.
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Figure 6.13: Values dt“fllé)) using equationq.18 across temperatufe on amended Ising
model witht; = 10 for L = 10, 25. Both indicates thats causesA.
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Figures 6.9), (6.10, (6.11), (6.12 and 6.13 display the values of susceptibility,
covariancel'(A, G), Mutual Information/(A, G) and Transfer Entropgff‘gj) as well as
Tgf) on the amended Ising model with = 10 for lattice lengths ofL. = 10, 25 so that
N = 100, 625. The peaks clearly show th@t does indeed exist in our model. In Figure
(5.9 we observe that the value gfincreases a# increases sincg — oo aslL — oo.
The crossover temperature 6f = 25 is T, ~ 2.25 which is closer to the redl,.. As
in subsection{.3.9, the figures indicate sharper and more precise detectidn of the
L = 25 lattice. We reiterate our suspicion that this is due to much bigger lattiée-eR5
where the influence of the two sites on each other is weaker than inthe0 lattice. The
fact that the measures attained maximum values hg& consistent to our observation
on L = 10. Moreover, Figure@.13 that displays the behaviour of Transfer Entropy in
indicating direction of7 causes4 does not seem to be affected by the lattice sizes.

6.3 Transfer Entropy results

Figure 6.4) showed that Transfer Entropy indicating causal directiodof~ A at the
implanted causal laty; = 1, as the values dffllg; go down to zero aftef.. This is also the
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Figure 6.14:Tfa, Téljl andng using equationq.18 versus reduced temperat T on
the amended Ising model withy = 1. ClearlyG — A atT = 1.
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case Whe@gé is compared td’é%. This is something we do not see for the unamended
Ising model where all values of Transfer Entropy peakg.aind then goes down tofor
higher temperatures. In Figuré.{4), we see that Transfer Entropy of sieis illustrated.
Contrast this to Figures(8) where the exact same values were plotted on the unamended
Ising model. Firstly we see thé’[ﬁf)x is zero as expected, but more importantly we see that
T&)l is very different frorriﬂgj1 and this clearly indicates that causesd atT = 1 and B

does not. Values Iiké‘ffg) in Figure 6.4) ande(;}1 in Figure 6.14) peak atl,. and then they
reduce td) at higher temperature. We suspect that this is due to the fact thatret whole
lattice is strongly correlated thus there is no clear direction in which ‘causality’ may occur.
From a different point of view, one could say that any site may equally likely influence or
‘cause’ any other sites hence we have that the Transfer Erﬂ?ﬁb;peaks afl;, whenever

X #GandX #£Y.

6.3.1 Transfer Entropy as a causal lag indicator

In Figure 6.15), values ofr = 1,2, 3 of ng are plotted. The first plot dfég Is exactly
the same a%. in Figures 6.4) and 6.14). Figure 6.15 shows that for values other than
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Figure 6.15Té121, ng andng using equation¥.18 versusI for amended Ising model
withtg = 1. TC(}), indicatesG' — A att = 1.
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Figure 6.16TC(})1, ng andTg})1 using equationq.18 versusI for amended Ising model
with tg = 2. TC@, correctly indicatesy — A att = 2.

tq = 1, the Transfer Entropng eventually goes t0 after7,.. Therefore, in Figuregq.15
the Transfer Entropy correctly indicates that= 1 in the model. However, the value of
T((f)l > ng since the transition probabilit] ((s4),|(s4)n—2) IN Tc(i), is effected more than
transition probabilityP((s4),[(s4)n_3) in ng by the changes imposed by = 1.

This is also manifested in Figuré.(6 where the causal lag is set to hg= 2 in the
amended model arﬂ.‘]’éﬂi is calculated forr = 1,2,3. We see that it clearly shows that
T((i)l has the highest value so that the detected causal lag is comtgcty2. Moreover the
values ong}1 andTg’)l are almost identical, due to the fact that= 1 andr = 3 are the
same distance away froma = 2 so that the transition probabilit]((s4).|(s4).—1) and
transition probabilityP((s4).|(s4)n—3) are equally affected. This effect of distance from
the predetermined causal lag can be clearly seen in Figuré.(7) where we usé’gj on
the amended Ising model with = 10. We have plotted Transfer Entropy valuesfor 6
tor = 10, clearly illustrating thaifgﬁ) gives the highest value thus indicating that= 10.
The rest of the Transfer Entropy values reducdslbat at different rates depending on the
distance of- fromts. The further away from;, the faster it decreasesioWe will discuss
more about the relationship of distancerdfom ¢, in relation with transition probabilities
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Figure 6.17: Té)l, ng, TC@‘, ) andT using equation{.18) versus!’ for amended
Ising model witht; = 10. T, (10 indicatesG — A atr = 10.

and its effect on the value (j( |n subsection.2.]). Nevertheless, the clear difference

sgn(y

betweeﬁFG LT # e andTth that differentiateg.; from the otherr essentially identifies

the causal lag.

6.3.2 Discussions on the nature of Transfer Entropy

We have seen that covariance, Mutual Information, conditional Mutual Information and
even time delayed Mutual Information have failed to detect the amendment we have made
on the Ising model. This is mostly due to the fact that the amendment on the model effects
the transition probabilities and not the static probabilities of the states of the sites. The
transition probability quantifies the possible changes that can occur in a system and change
is what happens in ‘causality’.

The static probabilities being the Boltzmann distribution influenced only by nearest
neighbour interactions are manifested in these other measures. Used individually on each
site, the measures indicate the distance of the sites from each other which is logical on a
lattice where nearest neighbour interaction is the main interaction. In addition to detecting
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the implanted changes, the Transfer Entropy also takes into account the distances in terms
of the amplitude of the measure. We have seen an example of this in Fig8reif the
unamended Ising model for Transfer Entropy values that pe@k at

o
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0.02

-1 -0.5 0 0.5 1
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Figure 6.18: Transfer Entrog; ) andT} using equationg.18 for the unamended Ising
model witht, = 1. Generallyfég > ng due to distance on the lattice.

Another example on Transfer Entropy values that actually detect the causal lag is given
in Figure 6.18 Whereng% is mostly larger tharng since( is closerB than to A, al-
though both values do not reduce to zero. We suspect that the reason these values increase
afterT, is simply because of the nature of Boltzmann distribution where probability of each
site getting selected for flipping consideration is approaching uniform for higher temper-
atures, therefore allowing our mechanism to be implemented much more frequently than
at lower values. Figures(19 illustrates that the values seem to be stabilizing to a certain
fixed value. In the next chapter, the simple model approximates the values of the amended
Ising model at these higher temperatures.

It is worth mentioning again that the restriction and conditioning that is done on the
model is to create a ‘causal’ relationship. We have seen that the interpretation of Transfer
Entropy relates to detecting the change through transition probabilities and also in terms
of influences apparent in predictions. However what we have done here is to define the
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Figure 6.19: Transfer Entropzigj, for values up to temperatufE = 15 using equation
(5.18 on the amended Ising model with = 1.

influence more as a restriction of one variable on another, in a way that a value of a variable
will affect the possible changes of the other variable. It is this idea that we will continue to
expand on the toy model in the coming chapters.

Chapter Summary

We have seen that the Transfer Entropy successfully indicated the direction of our artifi-
cially implanted ‘causality’ as well as the causal lag at which it was implanted. The values
of conditional Mutual Information and time delayed Mutual Information gives more or less
the same values as in the unamended Ising model and completely misses the amended part.
From the figures one can see that like the other measures Transfer Entropy values peak at
T, and then reduces tbfor most sites and direction where no ‘causality’ is detected. How-
ever when a ‘causal’ relationship is identified at the exact causal lag, the values of Transfer
Entropy for that direction will keep on increasing even afigmuntil the probability sta-

bilizes at higher temperatures. We conclude that the Transfer Entropy is certainly worth
focusing our attention on and thus proceed to investigate this measure for processes with
higher number of states.
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Chapter 7
A toy model

In an attempt to understand Transfer Entropy better, we apply it to a toy model where we

can control the ‘causal’ connections. To incorporate a higher number of states, we decided
to go back to basics and simply generate three random variables (in the form of stochastic
processes) over a certain length of time. However, similar to the amended Ising model we
restrict the changes for two of the variables and impose a condition to make to it dependent
on another variable. We do this for three different cases of the general model. The challenge
is to use Transfer Entropy to detect these ‘causal’ relationships and the exact causal lags.

7.1 A simple model

Assume we have a model of stochastic processe¥” and Z that can assume values in
the set of statesl = {—1,1} at every time stem = 1,---,S whereS is the length

of stochastic process. Defing,, Y, and Z, to be the values of process,Y and Z

at time stepn respectively. Letuyx, py andpuz be the independent (not influenced by
other processes) probabilities that the variabfesY” and Z changes at every time step
respectively. We supplement the dynamics by the special restrictioh@amdY” such that
they are only allowed to do the stochastic swap with probabilityand py- if the state

of Z,_., fulfills a certain condition. For this simple model, we choose the condition to
be Z,_.;, = 1. Without loss of generality, from here on we use= 1 unless specified
otherwise. To illustrate the mechanism, see Figuré&)( where one can clearly see that
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Figure 7.1: Simple model with = 11 andt; = 1

whenZ, = —1 (at time stepss = 1,7,9,10,11), X,,,; = X,, andY,,.; = Y, since it is
not allowed to change state. Figuréd) is just the same graph with more of time steps
displayed for a clearer depiction.

In Figure (7.2 the processes were initialized randomly and independently, and this
is not unlike the situation in the Ising model at higher temperatures due to the nature of
Boltzmann distribution that tends to flatten out distributions for higher temperature. In
higher temperature of the Ising model the distribution approaches uniformity, thus in a way
the simple model is modelling the amended Ising model at higher temperatures. On the
amended Ising model we had that = uy = uz = g given by transition probability
in equation $.4). Therefore we expect to see that Transfer Entropy will clearly distinguish
the direction as we have seen on the amended Ising model.
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Figure 7.2: Simple model witly = 200 andt; = 1

7.1.1 Probabilities on the simple model

If the processes are initialized randomly and independently so that all initial probabilities
are uniformi.eP(X; = —1) = P(X; =1) = --- = P(Z; = 1) = 3, then fora € A,

P(X2 = &) = P(Xl = CE)P(XQ = Xl) + P(X1 = —OZ)P(XQ 7& Xl)

= L= P(Xo £ X)) 4 5P(Xo # X)) = o

One can apply this recursively so thatx, = —1) = P(X,, = 1) = % for anyn. The
same applies fo¥ and Z. Therefore if the processes are initialized uniformly, the static
probabilities do not depend on the transition probabilities and will alwa)és Beint prob-
abilities are the product of marginal probabilities. All joint probabilities of two processes
becomes}l. Joint probabilities of three processes beco@emd so on. An example for

n = 1would be,P(X; = a,Z; = ) = P(X; = a)P(Z, = B) = ; foranya, 8 € A.
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Consequently fon = 2, we have that forang, 5 € A = {—1,1},

P(Xo=0a,Zy=f) = P(X, =, Z = B)P(X,
+P(Xi =0, 71 = —B)P(Xy = X1)P(Zo # 7))
+P(Xy = —a, 71 = B)P(Xy # X1)P(Zo = 7))
+P(X) = —a, 21 = —B)P(Xs # X1)P(Zy # Z1)

Xl)P(ZQ - Zl)

= (1= P(Xo # X0)[P(Z: = 2) + P(Zo # 20)
+ APy £ XOP( = 2) + P(2a # 20)] = 2.

The same applies recursively for the other joint probabilities so that it applies to all
Therefore, if one were to calculate the covariance or Mutual Information values between
these processes they will all be the same. In fact both of the measures waul&hee
E(XY) = E(X)E(Y) due to independent probabilities, the covariance is,

I'(X,Y)=E(XY) - E(X)E(Y) =0.

The Mutual Information will be

I(X,Y)=E [log %} —E {log %i%} = 0.

Evidently, in this case, covariance and Mutual Information are unable to provide any infor-
mation regarding the relationship between the processes.

In relation to probabilities of the amended Ising model outlined in subsedidn3
the transition probabilities of processes can be written as

1 —uxP(Z,—1=1) :1—%;@(, ifa=p

P<Xn = 05|an1 = 6) = ]
ﬂXP(anlzl):%:u)ﬁ |fOé7éﬂ

1—pyP(Zpa=1)=1—gpy, fa=p

P(Y,=alY, 1 =0) =
py P(Zy1 = 1) = 3py, if o #
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and
]-_:uZ7 |fOé:6

[z, if o # 3

whereP(Z, 1 =1) = % as per discussion above. If a certain process does not affect the

P(Z,=alZ, 1= )=

other process at time — 1, for exampleY,,_; does not influence,,, then we have that
P(Xn = a|Xn—l = ﬁ7 Yn—l = ’7) = P<Xn = a|Xn—l = ﬁ)

foranya, 5,7 € A. This s true for all the other possibilities except when we condition on
Z,.eP(X,=a|X,.1=0,Z,-1 =) andP(Y,, = a|Y,_1 = 5, Z,_1 = 7). Recall that
this is because we have imposed thgt ; andY,,_; can only change i¥,,_; = 1.

Let ngn(,y = P( condition fulfiled|Z,,_, = ~) = P(Z,-1 = 1|Z,.1 = 7) as in
equation 6.2). Given thatZ,,_; = —1, we getQ(_l) =P Z,1=1Z,1=-1)=0s0
that

1—MXQ9):1, fa=0

P(Xn - a|Xn—1 - 57 Zn—l — _1) - 1
pxQY =0, if o #

and
1—uyQW =1, ifa=2
P(Yn - alyn—l - 57 Zn—l - _]-) — ’uf
1y QY =0, if a £ 3.
Otherwise ifZ,_; = 1 we getQ(l) P(Z,1=1|Z,1=1)=1sothat

1_MXQS-1):1_/“LX’ ifa=p

P<Xn - a|Xn—1 - ﬁ? Zn—l - 1) - 1
nx QY = px, if a5

and
1_MYQS_1):]_—/Ly, ifa=p

QY = py, if o # 3.

Therefore if we divide these probabilities with the corresponding transition probabilities,

P(Yn = CV|Ytrz—l = B: Lpo1= ]-) =
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we get that,

P<Xn:a‘Xn71:ﬁ,Zn71:—1) B 1_1 :Z—ZX’ |fa:ﬁ

0, if a3,
P(Yn — 05|Yn—1 — /8’ Zn—l et —]_) _ —1_:%[“}/ — 2_2;U'Y’ If o = ﬁ
P(Yn = O{|Yn_1 = ﬁ) 0’ |f (07 7& ﬂ,
P(Xn — 06|an1 — /6, anl — 1) _ 11__%#;5; — 2(21:5;()7 |f o = ﬁ
P Xn - an = = .
( a| X1 = 3) o =2, if a # 3,
and
Lopy - 20-ny) - f o =
P(Yn = O(lYn,1 = ﬁ7 anl = ) — 17%“3’ 2=py
P(Y, =alY,_1 = B) Ly — -
Bo=2 fa#s

The Transfer Entropy is defined to quantify this ratio.

7.1.2 Transfer Entropy on the simple model

Recall from equation45) that 7.2 = E [log P(X";&'f;;i;f f:g)f”)]. Therefore the

Transfer Entrop;Tél))( is calculated as,

(1) P(Xn = a|Xn—1 = ﬁa Zn—l = 7):|
T,,, =FE | lo
29 { g P(X, = a|X,_1 = 5)

_ _ _ o P(Xn = a|Xn—1 - ﬁ’ Zn-1= /Y)
=33 P(Xy =0, X1 = B, Zy1 =) log P(X, = a|X,_1 =)

a€A BEAYEA
1 2 1 21 —px) 1
=2-(1)1 —-(1- log ————+ - log 2
[4( ) 092—MX+0+4( fix) log > ik + 7 (1x) log
1
= log 2+ B [(1 = px) log (1 = px) — (2 — px) log (2 — pix)] (7.1)
where

1
P(Xn = Q, Lp_1 = ’%Xn—l = 5) = ZP(X’I’L = a|Zn—1 = ’YaXn—l = 5)
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In the same way, we get that
1
Tyy =1log 2+ 5 (1= juv) log (1= py) = (2 = ) log (2 = py)].

From Figure 7.3) where equationq.1) is analytically plotted, we can say trﬁﬁ))( £ 0
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Figure 7.3: Analytical values df’él))( versusux in equation 7.1) of the simple model with
ty =1. Tél))( in equation 7.1) is a monotonically increasing function pofs.

exceptwheny = 0inwhich case X becomes a constant. If we assign a value for example
px = 1, we getthatlyy = T = 3log2 — 3log3 ~ 0.2158 whereasl'y) = T\ = 0
which clearly indicates a causal direction frath— X andZ — Y. Analytically, the
values of]}%l = TS}( = 0 since the ratios will bé. This correctly indicates that andY’
does not have a causal relationship.at 1.

7.2 The general model

Previously in the simple model, we only had two states in the model sinee{—1, 1},
but in the real world, we do not always have this luxury. bet> 2 be the number of states
we have in the model, and define= {1, ...,n,} as the set of possible states. Note that
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the simplest case, = 2 is equivalent to the previous simple model. As beforeulet iy
anduz, be the independent probabilities for the stochastic swaps of the variéblésand
Z at every time step respectively. Again we impose a special restriction andY such
that they are only allowed to do the stochastic swap with probabiltand.y if the state
of Z,,_., fulfills a certain condition. This restriction means tiatandY can only change
states ifZ is in the conditioned state at time step- t; thus creating a ‘dependence’ én
The processes are initialized randomly and independently so that the probabilities are
uniformi.e. P(X; = 1) = --- = P(Z, = n,) = ;- We set the model to be such that
if a process chooses to change it must choose one of the other states equally, thus we have
thatP(X; = a| X, = B,a # ) = ;5 P(X, # X)), since,— is the probability that¥

ns—1

choosesy given that it must change. Therefore fors € A,

P(XQZOC):P<X1:CK)P(XQZXl)—FP(Xl#@)P(XQZOAXl:/B,Oé#ﬂ)

1 s—1 1
= — (1= P(X # X)) + —P(Xy # X))
1 1
Applying this recursively give(X,, = 1) = ... = P(X,, = ng) = ni for anyn. The

same goes fo¥ and Z. It also follows that since the processes are initialized randomly
and independently, fon = 1 all the joint probabilities are the product of the marginal
probabilities thus the value of the joint probability of two processes becg}gn@e joint
probability of three processes becorﬁ;e This generalizes to any numbe'r of processes,
so that the joint probability becomes simply a product of the marginal ones. For example
P(X) = a,Zy = p) = P(X, = a)P(Z, = ) = ; foranya, § € A. We make use of

the equation

PXi=a £ D) =S PNy =0,z =) =3 = =2
Y78

2 2
n n
v#B s 5
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to get

P(X2 =Q, Z2 = 6) = P(X1 = Q, Z1 = B)P(Xg = Xl)P(ZQ = Zl)
1

S

! P(Xa # X\)P(Zy= 70)

L px, £ x)— 1P(227AZI):i

ng — 1 Ng — n?

+P(X1 = Q, Z1 7& 6)P(X2 = X1>

1P(Z2 # 7Z1)

+P(X1 # o, Zy =P)

S

+ P(X1 # a, Z1 # f3)

for a, 3 € A. Recursively we get that it applies to al] and for joint probabilities of

other variables as well, therefore joint probabilities arenlsgglrlegardless of the values of the

transition probabilities. Also, if we were to calculate the covariance, Mutual Information

or even conditional Mutual Information values between these processes they wilball be
To get nonzero values one has to look at the transition probabilities,

1—pux2 ifa=p
P(X,=olX,1=0)=

1

ns_lll)(Q |f047é5

1—puyQ ifa=p
PY,=alY,1=p) = 1

v ifa# S

and

1—puy; fa=p
P(Z,=a|Z,1=0)=

Lnz ot

where(2 = P( condition fulfilled) such that

P(X, # Xpo1) = Y P(X, = a] X, = 8) = px©
B#a
and similarlyP(Y,, # Y,_1) = uyQ. We can change to what extend the ‘dependence’ on
Z is by alteringQ2. To understand how the values of affects the value dfg,z through
nglm, we will need to look at the relationship betwe@rand().
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7.2.1 The relationship betweéhand(

Recall that for the simple model and the amended Ising model where there are only
two possible states, we have defin@é&m = P( condition fulfilled|Z,_; = ~) =
P(Z,_:, = 1|Z,_, = ~) in equation 6.2) where

+ ify=1
sgn(7y) = { (7.2)
— ify=-1

Now in the general model wherec A = {1,...,n,} are all positive integers, the pos-
sible states are different. The value@sfgzl(v) will depend onry, and in our model here,
particularly whether or nof,,_,, = v satisfies the condition. One can divide the possible
statesy of all the processes into two groups such that

Gu ={y € A, Z,_,, = v fulfills the condition} and

Gp={y€ A, Z, ., =~ does not fulfill the conditiok.

Note that|Gy| = n,Q and|Gp| = ns(1 — ) since2 = P( condition fulfilled) such that
(2 can be interpreted as the proportion of state& tiat fulfill the condition.) represents
the probability that the condition is fulfilled given current knowledge at tinsuch that
ngm) = P( condition fulfilled | knowledge at time"). Due to equiprobability of spins

and uniform initial distribution, for any there are only two possible values@sm(w, one
for v € Gy and one fory € GGp. Therefore we need to redefingn () such that
+ ifvyeGy
sgn(v) = _ (7.3)
— ifyeGp

to get

@ ifyvea
lem: “ e (74)
Q" ifyeGp.
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For the general model, we shall defig¢)) = = P( condition fulfilled|Z,_, = ) with
the sgn () as in equationq.3).

The relationship betweeﬂjg;(v) and(2 can be defined using the formula for total prob-
ability P(B) = >_ P(B|Z = v)P(Z = 7). Let B = { condition fulfilled } and using the
factthatP(Z, ., =) = nl we get that

Q=P(B) =Y P(B|Zyr =) P(Znr =) = ni > QU (7.5)
v 5y

Due to the sole dependencesn yiz, puy = "T‘l will make the transition probability of
Z uniform such that”(Z,, = o|Z,_1 = ) = ni for anyn since we have that

1—/,Lzz1—n;71:’r% |fa:ﬁ

1 1 me—1 1
ns—l'uZ_ns—l ns N |f06%ﬁ

P(Z, =a|Zy = B) =

foranya,3 € A = {1,--- ,n,}. Consequentlyu, = “==! also makes all values of

Ns

lew uniform so that equatiorv(5) becomes
1 @ 1 @ A
= ng Z Qugni) = n_snSngn(v) = Qugn(s)- (7.6)
v

Therefore on the model when thg = =1, we have thaf2 = QS}ZM) foranyr = t5.

Ns

For anyuz, the relationship betwe@f) andQ(_T) can be derived from equatioi.p)
where

nQ=>0Q0 =3 Q0 + > Qb =167 +1GolQT  (7.7)
v

v€GU v€Gp

nsQ = n,N QELT) + ng(1 — Q)Q(_T)
Q1 -0Q")=@1-92q"

Note that whem, = 2 (hencef2 = 1) this simplifies toQ " + Q) = 1.
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7.2.2 Transfer Entropy on the model
Using Qgil as in equationq.4) we have that
POy = alXs = 2y =) _ | fa=p
P(X, = a|X_r = B) e 1;”;3)?95@) _ Qi%(v) if o £ 8,
which gives us
r=7)

T P(Xn = 04‘an1 =0, Zn-
TR =333 P = X = B 2 = )log =,
« B ¥

Xn == a|Xn—1 = 5)

()
— 15y
1-— /LxQ
()
Ne— ILL Qs n QS mn
-wX%&ﬁﬁjslng log ="

S

G .
—{ X, = X 1}|Z[ MQSQ” ) log

1- “Xngn(v) log 1- ”Xngn(“/)
n? 1—pux§2

1 (7) ()
ns— 'uXan an
+ns(ns _ 1)2 [ s—1 ~ gn(v) lOg ?2(7)]

() (7)
1 (1) 1-— /LXngn(,y) () sgn(v)
:n_s [(1 - ILLXngn(fy)) log 1_ ,uxQ + /J/Xngn('y) log T
v€Gu
1 ) L= uxQipy ) Qugnia)
+ Ns Z (1 = nxQygny) log 1— ux® + 1xQygniy) l0g Q
v€Gp
1 T 1— MXQ( Q
:n_s(nsQ) [(1 - MXQ(+)) log 1_—/0(5 + HXQJr log —— +
1 1 - IUXQ(_ 7) Q(T)
—n, 1—0 1 — (1) l - A l
+ sn( )[( 1xQ2") log = +px Q" log <= 0

() ()

_ala_ o) nxQy QY
[( uxQ+)109—1 ) + 1x QY log ==~ 0

1— pxQ QY
1

1-Q)|(1- )
+( )[( nxQ2") log Sy +1x Q7 log <= Q

(7.8)
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where we used the Bayes theorem i.e

1
P(Xn = Q, Zn—l = 77Xn—1 = 6) = EP(Xn = O"Zn—l = 77Xn—1 = 6)

Due to independence, ¥ were to be conditioned oN we would have that

P(Yn = Oé’Yn,1 - BaanT = 7) _ P(Yn = @‘Ynfl - ﬂ)

P(Yn = a|Yn—1 = ﬁ) B P(Yn = 05|Yn—1 = ﬁ) =

Therefore for values other than whéhandY conditioned onZ, this ratio will yield 1.
This renders’(), = T7) = T) = TY) = 0. And if we get thatl[;} = T # 0, we can
say that Transfer Entropy indicates ‘causality’ fréfrto X andZ to Y, which is exactly
what we want. In a similar manner for, 3, v € A we have that

P(Yn — alyn—l = 57 In—g = ’7) _ 1- lﬂsfg(;ﬁ o= ﬁ
P(Y,=alY, =0 T E Qe _ Qo
( Yoy = 05) e s e

such thatF(TY) in exactly like equationq.8) except thaj.x is replaced withuy .

Whenr = t; we have thaQ tZ) |s either0 or 1 since the condition was placed at
n — tz. More specifically we WI|| have tha(f)+ = 1 and thatQ* tz) — o, Putting these
two values in equation/(8) we obtain

(tz)

t t 1- MXQ(t t
Y = | (1 = ix Q) log —F2E 1 QU7 log =—

1-— /LXQ
(tz) — BX Q (tz) Q(tZ)
1—Q) (1 = - PAaxs X=
+( )| (1= pxQZ )log ) + uxQ=""log ==
= (1 = pix) log ——PX 4 Qg log =+ (1— Q)1 (7.9)
PXIR9 T TR 1 '

When§2 = 0.5 andtz = 1 in equation {.9), we have that the formula is exactly like the
equation 7.1) for the simple model. This is shown in Figurg4) where it is the red dotted
line (more on this special case later) is exactly Figur8)( Tg;) values forQ2 = 0.25 and

Q = 0.75 in Figure (7.4) converges since equation.9) becomes equal for any pair of
andl — Q atuy = 1. In other words equatior?(9) is symmetrical ovef2 whenuy = 1.
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Also notice that for2 = 1 we have thatfétf() = 0 since this means that the condition is
fulfilled all the time which is equal t& being not restrictive at all.

0.7 T T T T T T T T T

Figure 7.4: Analytical value ng)Z() versusu x in equation 7.9) of the general model for

different values of2 = P( condition fulfilled). For fixed?, Tgf() in equation
(7.9 is a monotonically increasing function pf .

7.2.3 Transfer Entropy for causal lag detection

If there exists a specific causal lag in the model where eikhéf or Z causes each other,
then the Transfer Entropy should be able to detect the direction and the exact causal lag
using equation4.8). In this model where we have imposed thiatcauses’ X andY at
causal lag 7, we shall show thafy), < T2 (and similarlyT(,) < TU7)). Consequently
the largest value that we get fiﬁg))( (andTgQ) indicates the actual causal lag. For the most
part of the thesis, we will mostly focus d@?{ fully realizing the fact thggy) has exactly
the same probability agg)z and therefore what applies to the relationship betw&emnd
Z applies equally to the relationship betweéérand 2.

We have seen thai; = ”n—*l (resulting in uniform transition probability) leads to
Qigzl(w = 2 in equation {.6), which in turn renderf}@ = 0 wheneverr # t;. One
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can clearly see this by substituti@;(v) = Q in equation {.8). This is due to the fact
that Q")

sgn
Zn—t, SO that whenr = tg, Qfgib)(,y) is either1 or 0 hence resulting in equatiory.Q).
We can clearly use the fact th Q # 0 only atT = ¢t to detect time lags since this
obviously impliesT) < T'Z). To illustrate, letr, = 2 so thatA = {1,2}. Note that the

probabilities are equivalent to the simple model. Let the conditio?,hg, = 1 so that

(y = P(condition fulfilled|Z,_. = ~) and the condition is manifested only at

O =P(Zyy,=1)=1andQ\?) = P(Z, ., =1|Z,_, = ). Thus (.8) becomes
() _1 oy, 201 = pxQY) (7) ()
T, :é (1 —puxQY ) log 9 _ + pux QL log 2Q% (7.10)
()
1 T 2(1 — - T T
+5 | (1= 1xQ7) log ( . O Qt) long”] .

Whenpuy,; = ";:1 = % transition probability is uniformly distributed thus we get Figure

0.7 ‘
— 11, =0.25
o6l - = =1, =050,
—+—1,=0.75
=1.00
0.5F —6— My i
0.4} .
X
'_
0.3} .
0.2} .
0.1f i
0® @ @ @ @ ®
1 2 3 7 8 9

Figure 7.5: Analytica]FéQ versusr in equation .10 with fixed values of.; = % tz =5
andn, = 2 (so that2 = %). ux effects the values cﬁ‘g} atT =t,.
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(7.5 which is equation {.10 plotted forr = 1,---,9 with four different .y values.
tz = 5 was chosen for illustration purposes. The valuegﬁ,ﬂ in this figure are only
dependent.x and time lag detection is straight forward. We get fﬂgj) increases agx
increases in Figurer(5). Settingu, = ”n—‘l causes aIQiZiL(W) = () so that aIITé}% = ( for
anyr # tz. This can be verified by a brief inspection of equati@rg).

However for varying. values we get quite a different picture. Only when# ”n—‘l
do we get cases Wheﬂégz # 0 whent # t4. Figure (.6) is equation 7.10 plotted for
7 =1,---,9 with four differenty; values whenix = 5 is fixed. Fixinguy = "= = |
makes the transition probability of uniform (except for the bit influenced by). The
red dotted line (when bothy = % anduy = %) in Figure (/.5 and Figure 7.6) are
equivalent. Agairt; = 5 was chosen for illustration purposes. The fact tﬁgf) values
only depend onux is manifested in Figurer(6) wherep x is fixed and we can see that the

peaks converge at a single value. We can also clearly see in Fig@y¢hat whenu, = 1

0.25

. .Y
~

0.15

T(T)
ZX

0.1

0.051

\
\
\
\
\
\
\
\
\
\
\
\
\
\
6

Figure 7.6: AnalyticaTg)z versusr in equation 7.10 with fixed values of.x = % tz; =5
andn, = 2 (so that2 = %). 1z only effects the values dl”égg atr #£ty.
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for any 7, ng = Tgf{). This situation is unique fon, = 2 (the simple model) since

1z = 1 leads toZ being deterministic (changes at every time step). This only happens
when there are only two possible states due to the fact that if it needs to change, it only has
one other spin to go to (for, > 2, more states are available to choose from thus retaining
the stochastic element). Therefore given any single valdgéaifany time step, one will be

able to determine the value &f,_,,. For example iZ; = 1, one would know thaf, = 2,

Z3 = 1 and so on. Consequently fog, = 1, for o, 5,7 € A = {—1, 1} we have that

P(Xn = a|X7z—1 =0, Zp—r = 7)
T(T) = F ’
z {log P(X, = a|X,—1 = 0)
P(X, =a|Xn1=0,Zny, =7) (t2)
— | : =175
{ g P(X, = o|X,_1 =) zx

Which leads us to conclude that if the variable we are conditioning on (in this£pse
is deterministic, the Transfer Entropy value is independent of the time lags in the simple
model. This is an interesting case in point, singe = 1 makesZ deterministic and
havinguyx = % keepsX stochastic while still depending on, thus this is a case where a
stochastic process is dependent on a deterministic process. Transfer Entropy gives a clear
direction fromZ — X sinceT)((T% =0 andTg,z # 0 for any . Therefore, although causal
lag detection cannot be established, in this case Transfer Entropy does indeed succeed in
giving a direction despite one of the processes being deterministic. The original definition
in [89] excluded cases when one or both process is deterministic as previously discussed in
subsection4.3.7).

Essentially Figure.6) depicts how the distance froty influences the value (Tg}
Therefore letv = |7 — t| be the distance of fromt,. Whenv = 0 (for exampler = 5
in Figure (7.6)) sinceQS:) =P(Zyt, =12, =1)=1 andQ(_T) = 0, equation 7.10
will simply become

1 2(1 - 2
Tg)z() =3 (1 — pux)log —(2_:;() + pux log2 + ZOQQ—MX

—log 2 + % [(1 = px) log (1 = px) — (2 = px) log (2 — pix)] ,

which coincides with equatiory(1) of the simple model. This equation is independent of
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1z. However ifv = 1, for exampler = 4,6 in Figure (7.6), the values of) are now

different sincer is one time step away fromy, so that
O =P(Znr, = Znr =1) =1 pzandQ” =1- Q" = pz.
Therefore now equatiory (10 is dependent op, since

T 1 T 2(1 - MXQ(T) T T
Té))( D) [(1 - H’XQS’)) log (2_—,UX+) + MXQSF) log QQSF)

(7)
1 T 2 1 - — T T
(1 Q) tog 211D )+HXQ(_)1092Q(_)]
1 2(1 — px (1 —
=5 [(1 — (1 = i) log 2 SX( 12)) 4 (1 = ) log 2(1 - uz)]
— Hx
1 2(1 —
+3 {(1 — pxpiz)log % + pxpz log 2#4 :

Whenv = |7 — tz| = 2, for exampler = 3,7 in Figure (7.6), we have that
Q7 = (1 — pz)* + % andQ"” = 2u7(1 — piz).

And if we put these values in equation 10), the equation also becomes dependent gn

In the same way, whem = 3, for exampler = 2,8 in Figure (7.6), then
QY = (1— z)* + 3u%(1 — pz) andQ"™” = i + 312 (1 — puz)*.

Forn, = 2, we can generalize this for amy where

. ~ (v Ve
QU= 3 (k)(l—uz) “uy and

k=0,k even
(n _ - v v—k k
QU= > ) (L= nz)" " g,
k=1,k odd

sothatQ'” + Q7 =S, () (L= pz)"*ul = (1 = py + pz)” = 1 using the binomial
theorem. Basically forn, = 2 (thus also for simple modeIQ(f) are the even terms and
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Q") are the odd terms of the binomial theorem which depends en |7 — tz|. This
explains the varying values Gf{j on the amended Ising model that is illustrated in Figures
(6.16), (6.17) and 6.15.

Therefore as soon as+# ¢, we have thaTéQ becomes dependent gny. This is true
foranyn, > 2 whenuy # ”n—‘l The value offg)( does indeed increasesag increases
in the general model. The dependency onvalues, comes into the Transfer Entropy
values through different values &f. Generally foru, # ”n—‘l we get thatfg))( — gf()
ast — tz similar to the situation in Figurer(6).

7.3 Cases of the general model

We have seen that the static probabilities stays uniform if we initialize with uniform and
independent probabilities. If we want the transition probabilityZofo stay uniform we

needu, = "L and if we want the transition probability df andY” to be uniform (with

Ns

the exception of) influence) then letx = py = ”n—‘l However for the rest of this chapter

T (tz)
zx

Figure 7.7: AnalyticaTg;) versus() of equation 7.9) for different..x values. The maxi-
mum valueTg;) = log(2) ~ 0.6931 is obtained whepy = 1 and2 = 3.
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we will focus on Transfer Entropy valuesiat, T%), which is independent gi ;. Figure
(7.7) is equation 7.9 plotted over variou$? values. In Figure{.7) whenux = 1, Tgf{)
values are symmetrical ovér as opposed to the other displayed valueg pfwhere it is
slightly skewed. Whem x = 1, the first term of equatiori7(9) becomes), leaving us with
a function that is symmetric ové2. One can see that Transfer Entropy value is highest
when(2 = 0.5, the maximum value beingg(2) ~ 0.6931. Whenuyx = ”n—‘l (in this case
n, values ranging from to 100 is plotted) the Transfer Entropy values approaches that of
ux = 1 as more and more values of differentis plotted. This is becauge, = "n—‘l —1
asn, — oo. Itis worth pointing out that a@ = 0 andQ = 1, Ty%' = 0. The former is
due to the fact thak  is not allowed to change at all hence becoming a constant. The latter
is because whef¥ = 1, the transition probabilities ok becomes dependent @i only
with no extra restriction fronZ and X becomes completely independentof Thus in
both cases Transfer Entropy correctly indicates independence beiveed 7. We will
further investigate the general model in terms of varying the valée of

Substitutingux = ”n—‘l into equation 7.9 makesTg)Z() dependent om, and(2 such
that

Px 1 1

1_

T2 —(1 — Q _ Q — 1-Q _ 7.11
zx =1 — px) lOgl_ﬂXQ‘F,UX log & + ( >logl_ﬂXQ (7.11)

Q -L ns — 1 1

=—1 Bs 2 Qlog — 1-Q)log ————+—

n 9T (menyg t o, Mewg H - Dler g

Q 1 ng — 1 1 n

=1 u Qlog = 1-Q)1 2 )

N Ogns—(ns—l)ﬂ+ N 0g§2+( )Ogns—(ns—l)Q

We shall see thd® can be a function of thusTg;) can be made completely dependent
on the number of states.

731 Casel)=P(Z,,=1)

SettingQ? = P(Z,—+, = 1) = ni means imposing the same condition as previously used,
namely thatX,, andY,, can only change i¥Z,, = 1. However, as, increasess,,;, = 1
becomes more and more restrictive (the state¥ @hdY becomes less and less able to
change) sinc€ = P(Z,_, = 1) = ni gets smaller and smaller. Substitutiig= nl in
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equation 7.9 renders

1— 1
T2 =(1 - jix)Qog ——2 4 j1xQlog o+ (1=0)log

L — pux$ I — pux$2
1-— s 1-— 3_1 S
= Hx log ns(1 = ix) + Hx logngs + n log n
Ng Ns — ix N N ns — Ux
1
=log ng + - [(1—px)log(1—px)— (ns— px)log (ns — pux)] - (7.12)

This equation is illustrated in Figur@.Q) for various values of.x. Furthermore if we

0.7 T .
\/
\/
\ —
06F 7y — 11,7025
Yy - = =1 =050
\ —
0.5f “ : : ux—0.75
R A R ule.oo
0.4} S
N \,
|_§ .
0.3t A3

Figure 7.8: Analyticall''’Z’ versusn, in equation 7.12) for Casel.
substitutex = 2=~ in equation .12 then we get

1|1 1 ngns—1)+1 ng(ns —1)+1
Tg;):lognan— n—logn—— ( n) log ( n)

(7.13)

in line with equation 7.11) and the equation is completely dependentgnFigure (7.8
shows thaﬂ’gf() — 0 asn, — oo since = .- — 0 asn, — oo. When this happens the
condition onZ becomes so strict thaf andY” can barely change thus practically becoming
constants.
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7.3.2 Case2)=P(Z,, #1)

This case is the opposite of Cakesince? = P(Z,_;, # 1) and consequently, and
Y, can freely change as long &5 # 1 i.e the change is only restricted 4, = 1. This
condition gets less strict (the processes becomes less and less dependgaisan get
bigger since) = "n—*l gets closer and closer to 1. The difference lay in the transition

0.7
\/
\_
06l v u,=0.25
M - = =1 =050
‘,
0.5f ' H,=0.75
\ —
S L T I 1,=1.00
\ X
0.4F N
N -
= < \
I—N N
0.3F

Figure 7.9: Analyticall''’Z’ versusn, in equation 7.14) for Case.

probabilities of X andY’, sinceQ = P(Z,_, # 1) = ”n—‘l and notnis (as in Casd), so
that equation{.9) is

(t2) 1 —px 1 1
T, =(1 Qlog ———— Qlog — 1—-Q)log ———
zx =1 — px) 09T T 0g 5+ ( )Ogl—uXQ
5—1 31— 3_1 S
s S s B Pt
N ns — px(ns — 1) Ng ng — 1
N
+ —log

S nS
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Figure (7.9) where equationq.14) is plotted for varioug:x shows that sinc@ = ”n—‘l we

have that? — 1 asny; — oco. 2 = 1 implies that the condition is fulfilled all the time

therefore there is no dependencesanymore. Thus in this modd&, Y andZ becomes

more and independent as — oo and thereford“gf() — 0 asn, — oo asin Casd.
Substitutinguyx = ”n—‘l in equation 7.14) we get that

(-1, 1 (n,—1

Tét)z() =log n, + P log n—s — T(ns —1)log (ns — 1) (7.15)
ne= + (ma—1) 1 -1
_ (ns7 ns >l0g <ns_ (15 ))
N s Ux
(ns —1) 1 (ng—1)° 2n, — 1 ong — 1
=log ns + o [ o : log (ns — 1) — 2 log :

733 Case3 =1

Figure (7.10 is equation 7.8) plotted forQ2 = % over differentn, for variousu y values.
This can be achieved in simulations by setting the condition so that it is fulfilled by half of
the possible state space all the time so that Zi = 3. One can clearly see in Figure
(7.10 thatTg)Z() becomes:, independent and only dependsop. This can be understood

by substituting = 3 in equation 7.9) so that

1-— 1
Tét)z() =(1 _MX>Qlogi +MXQZOQE + (1 =) log

1—,uXQ 1—,u)(Q

l—px, 2(1—px)  px 1
= X 1og2 + =
5 log 2 ix + 2log +2log2_ux
1
=log 2+ B [(1 = px)log (1 — px) — (2 = px)log (2 — px)]. (7.16)

As we have seen before, when wedet= 1 we get a the simple model equatiohX).
However, we do get a dependencerqn(in line with equation 7.12)) if ux = ”n—‘l is
substituted in equatiory (16 so that

111 1 ng+ 1 ng + 1
TV2 —log2+ = | —log — — ———log —*
zx —log 2+ 5 | n. 0g . . og .
1 s+1
=log 2 + ) logng — n2: log (ns + 1). (7.17)
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Figure 7.10: Analytica[Fg;) versusn, in equation 7.8) for Case3. Transfer Entropy
values are independent of and completely dependent qry akin to the
simple model.

In equation 7.17) one can see that even if initially there is some independence,dhe
T%) value in converges quite rapidly tog (2) asn, — oo, which is the value o’rfgf()
with zx = 1 of equation 7.8) as seen in Figure/(10).

7.3.4 Discussion

For any restriction that we place dfy_,,, itis 2 = P( condition fulfilled ), the probability
of the fulfilling the condition that matters. The different cases highlight the fact that there
can be different types of restrictions (conditions) that will affect the values of Transfer
Entropy in different ways. In Casewhere() = P(Z,_; = 1) and Case where{) =
P(Z,.1 # 1), for n, = 2 they both become the simple model and thus a type of Case
3. This is due to the fact that, = 2 leads tof) = % sinceP(Z, 1 =1) = P(Z, 1 #

1) = 5. Basically forn, = 2, all the cases are indistinguishable. Figurel() plots
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equations 7.13), (7.15 and (.17 whereux = “=—1 is substituted intdf’ét)z() making the

Ns

transition probability ofX" uniform save for the influence 6f for Casel, Case2 and Case
3 respectively. The figure showcases the asymptotical behaviour of each case.
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Figure 7.11.: AnalyticaTg;) versusn, with ux = “==! in equations 7.13, (7.15 and

Ns

(7.17) for Casesl — 3 respectively. Caseé and?2 approache$. Case3 ap-
proachesgog(2).

What we have illustrated are two extreme cases in the form of Card Case and a
middle ground in the form of Cask. For Casd , 2 = nl and thug? — 0 asn, — oo. For
Case2, ) = "n—‘l and thus)? — 1 asn, — oo. This makes sense becauge= 0 simply
implies thatX andY are not allowed to change thus becoming constant$aadl implies
that the condition is always fulfilled making andY” just like Z, randomly assigned values
depending only omy andy respectively with no restrictions or driving factor. For Case
3 however,Tg;) stabilizes to constaribg (2) ~ 0.6931 asn, — oo. This asymptotic
behaviour can be attributed to, = ”n—*l — 1 asny — oo. Therefore, theoretically the

s

Transfer Entropy does indeed captures the relationship between these stochastic processes.
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Chapter Summary

From the analytical values of this model we see that Transfer Entropy successfully detects

the ‘dependency’ of different restrictions that was implanted in the model. While covari-

ance, Mutual Information and conditional Mutual Information fails to detect anything and

givesO, the Transfer Entropy clearly gives us nonzero values that can be taken as an indi-

cation of ‘causality’.) stands for the percentage of statesZathat allows changes iX

andY and serves as an indication of the level of restriction imposed lop X andY'.

The experiments with different values pf and(2, highlights how the different magni-

tudes ong% reflects values ofix, the intrinsic probability tha’ will change regardless

of outsides influence, as well as the value$lpfepresenting the outside influence &n
Furthermore the variabl@g;(y) which represents the probability of the condition be-

ing fulfilled given the current information available time enables us to understand how

iz ianuencesTg))( SO thatTg} # 0 even whenr # tz. This shows the importance of

testing for different causal lags, as only the largest vﬁrﬁ/é is the real lag. Therefore,

the intrinsic probabilities of both causal and effected processes are also very important in

determining the values of Transfer Entropy between them and should be taken into account

whenever one is trying to make sense of the different magnitudes of Transfer Entropy.

More importantly, we have proved that using the theoretical value of Transfer Entropy it

is possible to pinpoint the exact time lag in which this ‘causal’ connection occurs in this

analytically solvable model. We now proceed to simulations.
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Chapter 8
Finite sampling effects and estimations

We have shown that theoretically, Transfer Entropy has the potential to detect the causal
lag involved in the imposed causal relationship on the model. The next step is to simulate
the model to develop some experience for how sample sizes (i.e. limited data sets) will
influence the behaviour of the Transfer Entropy as we increase the number ofistatés
simulate the model in MATLAB by generating stochastic processes andZ with sam-

ple sizeS. We also simulated a null model to further illustrate these finite sampling effects
as well as some proposed corrections along the lines of significant testing. Furthermore
we discuss some popular methods of entropy estimation in relation to applying Transfer
Entropy on real data sets and how we decided to use the most common classical histogram
method.

8.1 Simulation of the toy model

As we increase the number of states we will need to increase the simulated data
required to get accurate probabilities and the effect will be evident in the simulation.
We will see the effects of different sample sizes (length of each stochastic process) in
probability estimation. Recall that the Transfer Entropy definition in equatob) (s

T} = E |log % . The Transfer Entropy values displayed in this section are
the product of applying equatiod.6) on the simulated data of the toy model.
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8.1.1 Simulation ofi, = 2

We simulaten, = 2 with t; = 5. The usage of sample size= 10000 for n, = 2 appears
to give sufficient statistics since Figure® 1) and @.2) look identical to their analytical
counterparts Figureg (5 and (7.6).
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Figure 8.1: T}Q values obtained using equatiof.§) on simulated toy model with fixed
values ofu; = 1, ¢, = 5 andn, = 2. Simulated version of Figur& (5).

0.25

o)

Figure 8.2: Tg} values obtained using equatiof.§) on simulated toy model with fixed
values ofux = % tz = 5 andn, = 2. Simulated version of Figure (6).
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To illustrate the effect of sample size, Figur8s3[ and 8.4) depicts Transfer Entropy
betweenX andZ in both directions whemy = uy; = % for sample sizes' = 10000
and.S = 100 respectively. We know from equatiod.(0), thatT.y ~ 3log2 —2log3 ~
0.2158 and by definition all the other Transfer Entropy values in both direction are supposed
to beO.
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Figure 8.3: Tg} and T)@ values obtained using equatiof.§) on simulated toy model
with n, = 2,t; =5, ux = iz = 3 and sample sizé = 10000.
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Figure 8.4: T\) andT{") values obtained using equatiof.%) on simulated toy model
withn, = 2,t7 =5, ux = pz = 3 and sample siz8 = 100.
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The values oﬂf}( stands out in both Figure8.Q) and 8.4), thus correctly indicating
the implanted causal lag & = 5. However in Figure §.4), one can see that the value
T} is now much further from the theoretical value®®158 andT) for  # 5 values
are not as close t0 as Figure 8.4). We attribute this to the lack of statistics or in other

words insufficient data points to get the actual probabilities.

8.1.2 Simulation of Casg

In this subsection we measure the Transfer Entropy values of simulated @ageompare
them to the theoretical values in subsecti@B3(3. In simulation of Case, the value
of @ = ; can be replicated by making ~ Zi such that the condition is fulfilled by
approximately half of the states all the time. We set the sample$ize]0000 andt, = 5
for illustration purposes. In Figure8.6) and 8.6), Transfer Entropy applied on simulated

Figure 8.5: ng obtained using equatior}6) on simulated toy model of Casewith
px = ==Landu, = %= for n, = 5,10, 15, 20. The only nonzero analytical

values (correct the decimal places) of peaks ”ﬁf}( given by equationq.17)
are0.4228, 0.5256, 0.5685 and(0.5926 respectively.

data of Case is plotted. The theoretical values ’oﬁg’}( in Figure @.5 can be obtained
by substituting the appropriate, value into equation®.17). One can clearly see that the
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largern, gets the more inaccurate it becomes. Some of the peak values are clearly different

from its theoretical value since they are larger thay(2) ~ 0.6931 whereas the values of
equation 7.17) would be approachingpg(2) from below forn, — oo as seen in Figure
(7.1). Whenr £ ¢z, the values off ;. for iz = "= are theoreticallp.

Figure 8.6: Tg} obtained using equatiort®) on simulated toy model of Casewith

n

px = "=t anduy = j for n, = 5,10,15,20. The analytical values (correct

the4 decimal places) of peaks 5))( given by equation{.16) are alsd).4228,
0.5256, 0.5685 and0.5926 respectively.

In Figure 8.6), we havey; = 5 instead ofy; = "= in Figure 8.5. This is the
only difference between the two figures. Recall from discussions in subsettib (hat
the values off%) are not influenced by.,, therefore at; = 5 the theoretical values
of Tgf() of Figures 8.6) and 8.5 are exactly the same. This can be verified for each
by substitutinguy = ”;:1 into equation 7.16. However, the figures differ for values of
ng,T =+ tz. Also discussed in subsection.2.3, is the fact that whem, # ”n—*l asin
Figure @.6), there exist nonzero values foi Q, T # tz which is influenced by:, through
values of@). The influence of) can be understood by examining equati@r8(that is the
general equation for Transfer Entropy on the toy model in which both equafidhg and

(7.16 are derived from.
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8.1.3 Different cases of the general model

We proceed to investigate how much the sample size affects the different cases on the
general model. In this subsection we plot values of Transfer Entfétﬁf/with pz ="t
Without loss of generality we utilize; = 1 for all the simulations. Obviously the larger

S is, the closer the approximation from simulated data sets are to the analytical values.
In Figure @.7), we plot the analytical value of equation.{3 for eachn, alongside the
simulations with varying lengths (sample sizes) of simulated data sets forlGalkere

the condition gets stricter as, gets bigger sincé) = nl — 0. One can see that the
approximation does not stray too far from the analytical value as opposed to other two

cases. Caseis the opposite of Casewhere the condition gets less and less strict which

0.4

T T

analytics

simulation S=1000
simulation S=10000 |
= = = simulation S=100000

0.351

0.3H

T e

0.05

Figure 8.7: Transfer Entroﬁyg;) versus number of state, for Casel. Analytical values
obtained from equation/7(13 and simulated values acquired using equation
(4.5 on simulated data of varying sample size

is probably why some of the values seen in Fig@&)(that are supposed to converge to
0 analytically, diverge instead. Figur8.g) represents CasgwhereQ) = ;. One can see
that some of the approximated values also diverge and does not convésg&ioas it is

supposed to.
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Figure 8.8: Transfer Entrogy!'Z’ versus number of state, for Case2. Analytical values
obtained from equation7(15 and simulated values acquired using equation
(4.5 on simulated data of varying sample size
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Figure 8.9: Transfer Entrogy!'Z’ versus number of state, for Case3. Analytical values
obtained from equation7(17) and simulated values acquired using equation
(4.5 on simulated data of varying sample size
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8.2 The null model

To differentiate what is happening because of lack of statistics and what is really happening
in the model, we look at a null model where no conditions are imposed. This null model
can be described as the general model Witk 1 whereZ does not effeck orY'. Let the

model be contained of stochastic processe¥” andZ that can assume values in the set of
statesA = {1,--- ,n,} atevery time step = 1, ..., S. Let uy, py andu be the internal

(not influence by other processes) probabilities that the variables and Z changes at
every time step respectively, so that the transition probabilities become

l—pux ifa=p
nsl_lluX |f0{7£ﬁ

P(X, =a|X,-1 =0) =

l—py ifa=p
oy ffa B

P(Y, = a|Y,_, = §) =

and
l—py ifa=p

oy ot p

P(Z,=alZ,1=0) =

8.2.1 Transfer Entropy on the null model

Due to independence, one would expect the transition probabilities between the processes
to be independent of each other. For example, the transition probability befvaed 7
becomes

P(X, =a|X,1=0,Z,—7 =) = P(X,, = o|X;,-1 = B)

R(Xn=a\Xn—1=ﬂ,Zn—r=’Y
hd P(Xn:a‘Xn—lzﬁ)

always bel therefore the Transfer Entropy values should aldbEigures 8.10 and 8.11)

foranya, 3,7 € A and time step. Consequently, the rati L will

display that the Transfer Entropy diverge frorfor largern, especially for smaller sample
sizes. The aim of doing this is to get some feel of what values afre appropriate for the
different sample sizes (data set lengths) that we have. We clearly see that approximations
on insufficient sample size leads to spurious values.
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Figure 8.10: Transfer Entropygf() versus number of state, for null model. Analytical
values ard) and simulated values acquired using equat#B)(on simulated
data of varying sample size.
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Figure 8.11: Figure§.10 with log values on y axis



Chapter 8. Finite sampling effects and estimations 147

8.2.2 Mutual Information and covariance on the null model

We see that this problem is not only exclusive to Transfer Entropy. It applies to any case
where probability needs to be estimated. We illustrate the situation for Mutual Information
in Figures 8.12 and @.13 . The covariance values are displayed in Fig@.é4).

= = = gsimulation S=100 ’

o5l | ==~ simulation S=1000 - P e
—%— simulation S=10000 '

—+— simulation S=100000 i

simulation S=1000000 1

Figure 8.12: Mutual Informatioi(.X, Z) versus number of states for null model. Ana-
lytical values ard). Simulated values acquired using equatiarip on sim-
ulated data of varying sample sige

8.3 Correcting for finite sampling effects

The observed existence of spurious detection or overestimaiéms[not uncommon and

has been reported in relation to causality measureld@ p1, 101, 79, 71]. These spurious
values are caused by bias in relation to individual dynamics, state space reconstruction,
coupling measure on so on so forth. The bias of an estimator is the difference between
estimators expectation value and it's theoretical value. Bias in estimation causes non-zero
spurious values when there is no causal effect and this problem is not only unique for
Transfer Entropy 79]. This is a problem in which positive bias may be misinterpreted
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Figure 8.13: Figure§.12 with log values on y axis
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Figure 8.14: CovariancB(X, Z) versus number of states for null model. Analytical
values aré) and simulated values acquired using equatibf) (on simulated
data of varying sample size.
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as weak coupling when there is actually no causal effect. Therefore there needs to be
way to indicate significance and reduce bias so that the causal measure gives zero values
when there is no causal relationship. IO, 51] correction terms to cancel out the bias
related errors are suggested. Another alternative to cope with the finite sampling effects
is significant testing. Surrogates have been suggested as a form of significant testing for
Transfer Entropy101, 102, 78, 75|.

8.3.1 Surrogates for significant testing

When compared to G-causality, it is often pointed out that significant testing is not present
for Transfer Entropy. Schreiber outlined that directionality can only be concluded if the
value of Transfer Entropy i8 in one direction and nonzero in another. However due to
bias, the valu® is not normally obtained for Transfer Entropy in real data s&g. goints

out the importance of having significant test for causality measures in terms avoiding false
directionality conclusions.

[78] claims that the only practical significant testing for Transfer Entropy is probably in
the form of surrogates. Surrogates data sets are synthetically generated data which ideally
preserve all properties of the underlying system except the one being te31pdihere are
many different types of surrogates to serve different purposes. Fourier surrogates are used
to randomize frequencie9(, 101]. Randomizing temporal values have been done using
permutation surrogateg @, time shift test L02 and twin surrogateslfD1]. Surrogates
have also been used in testing whether or not data sets are nonlibpaB{irrogates in
the form of reshuffled time series are utilized #2[ 18]. The idea is to break the coupling
(causal link) but maintain dynamics in hope that one can differentiate cause and effect from
the any other dynamics.

Significant testing with surrogate is usually done as a standard one sided hypothesis test
where the null hypothesis is that the two systems (time series) are independent. Attempts
are made to reject the null hypothesis with a certain confidence level. A more inclusive test
taking into account different directions and non-directionality is proposeddh Rather
than testing for surrogates separately it has also been suggested that significant testing can
be done in a form of modified information theoretic function&s] [
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8.3.2 Effective and Corrected Transfer Entropy

From Figures 8.5 and 8.6), it seems like the values are simply shifted upwards and if
one could simply subtract values related to the shift then perhaps the true values would be
obtained. This is the idea behind the effective and corrected Transfer Entropy. Effective
Transfer Entropy 71] between two time series is the modification of Transfer Entropy
defined as the difference of Transfer Entropy computed on the original time series and
Transfer Entropy computed between a surrogate time series where the driving process is
randomly shuffled. Therefore in relation to our definition of Transfer Entropy in equation
(4.5) the effective Transfer Entropy can be defined as

BT} — 16) ~ T, )

whereYys is the randomly shuffled surrogate of time seriés Figures 8.15 and 8.16
displays the values on effective Transfer Entropy on Gaskthe general model and null
model in direct contrast to Figure8.9) and 8.10.
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Figure 8.15: Effective Transfer Entrop’;‘iTg)? versus number of states for Case3.
Analytical values are obtained with equatioh)7) and simulated values ac-
quired using equatior8(1) on simulated data of varying sample size
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Figure 8.16: Effective Transfer Entro;E/Tg)Z() versus number of states for null model.
Analytical values ar® and simulated values acquired using equati)(©on
simulated data of varying sample sige

The corrected Transfer Entropy suggested88] [generalizes the effective Transfer
Entropy by taking the average valuesidfpermutation surrogates instead of just one real-

isation such that
M
BTy =Tox — Y Ty x (8.2)
=1

whereYy, is theith randomly shuffled surrogate of time seriés The reasoning behind

this is that surrogate have bias of their owl®]] and by taking the average of different
realisations the bias and variance is reduced producing a much stable and smooth estimate
of Transfer Entropy on the shuffled surrogate. From Fig8r&€), using sufficient surro-

gate estimate, it may be possible to identifyalues of Transfer Entropy on the toy model
where overestimation is only due to insufficient data to get good probabilities. However,

in real data sets there are many other factors to be taken into account in terms of obtaining

good probability.
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8.4 Estimation of Entropy

The estimation of the information theoretic values on real data sets is where the true chal-
lenge lies. The finite sampling effect is just one of many problems faced in estimating
probability of real data sets. In the toy model and the Ising model we knew exactly what
the numbers of states, and what the discrete values of the states were. In EEG data sets,
most of the values are approximately continuous and to account for each state separately
would generally not be feasible. State space will need to be reconstructed with certain es-
timates. There exist a whole range of literature with regards to entropy estimates, a good
summary of entropy estimation in relation to causality detection is givebdn [

Entropy is simply the expectation of log values of probabilities. Therefore entropy de-
pends completely on probability estimation and so does the other entropy based measures
such as Mutual Information and Transfer Entropy. Analytical values of Mutual Informa-
tion and Transfer Entropy can be defined for discrete values as we have done in previous
chapters and also for continuous valugg, [32, 33]. Parametric estimations works di-
rectly with continuous values when there are reasons to believe that assumption of a certain
distribution may be true. The most common assumption is the Gaussian assuription [
The Edgeworth expansion is an example of a parametric estimator which approximates
entropy through asymptotic expansio$,[96]. Unfortunately on EEG data sets there is
no reason to expect any type of underlying distribution and therefore we proceed with the
nonparametric estimators. Non parametric estimators that will be mentioned here includes
histogram, nearest neighbour estimates, rankings and kernel estimation methods.

8.4.1 Classical histogram (equidistant binning)

Probabilities of discrete values are relatively easy to obtain. Therefore coarse graining
techniques converting continuous (or approximately continuous) data into discrete states
are often utilized $7], so that the data can be treated as discrete values. This is done
with the assumption that the coarse grained values converges to continuous values as the
coarse graining gets more and more refined. For classical histogram, convergence of Mu-
tual Information and Transfer Entropy estimates to continuous values have been theoreti-
cally proven p7] . The action of course graining is the partitioning of the continuous data
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in order to use discrete probability estimation tools. This is also known as the state space
reconstructionT9).

In the toy modeln, was the number of states that we had on the model. In real data
sets with continuous values, one can never have enough states to accommodate all the pos-
sible values hence coarse graining is applied. Our approach to coarse graining would be
to set the values af, that is required and then divide the interval between the maximum
and minimum amplitude inta, equal sized bins where the values will be grouped accord-
ingly. The probabilities will then be obtained by counting the visitation frequencies. This
approach is known as the classical histogram or equidistant binning approach. It is said
to be the simplestl[01] and most widely used form of course grainir@ll]. For an in-
teresting example se&4], where classical histogram is utilized for estimation of Mutual
Information on EEG data sets.

For example if there are two process€sandY’, the probabilities will be obtained by
counting the numbers of values in various bins that were obtained by partitioning the range
of X andY into finite size bins. Let,j € {1,---ns} such thatCx (i) be the number of
values falling into theth bin of X, Cy (j) is the number of values falling into thgh bin
of Y andCxy (i, j) is the number of values in their intersection. Then the probabilities are
approximatelypx (i) ~ <X, py(j) & “42 andpyy (i, j) &~ %5 whereC s total
number of values ané' is the total number of pairs. The Mutual Informatlon estimation is
then obtained by

I(X,Y) & Lyjmea(X,Y) Zszy i, ) log )E )( J(;) (8.3)

Similarly, the Transfer Entropy estimation can also be obtained.

Having uniformly sized bins is the simplest implementation of this appraatHp5g,
there are alternative ways of partitioning into unequal sized bins. This is known as adaptive
binning, one example on Mutual Information have been propose®%y Where boxes
are subdivided only locally in places where the structure is statistically significant in order
to avoid too few sample points in a certain bin. Other algorithm for adaptive binning
are explored in§8, 30, 23, 101]. As n, grows bigger and bigger, the actual bin size gets
smaller and the values for the estimated measures should converge to the continuous values.
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It has been theoretically proven iB7] that uniform partition converges for both Mutual
Information and Transfer Entropy. However for adaptive partitioning convergence is only
proven for Mutual Information but not for Transfer Entropy. This is one of the reasons we
shall choose to use uniform partitions.

8.4.2 Rankings and symbolic analysis

Symbolic analysis is a special way of partitioning the state space. Firstly, coarse graining
is done as usual. The difference is that these symbols are given ranks enabling the coarse
grained data to be arranged in ascending or descending order. Each value is replaced by
it's rank in the sorted sequence. The ranking converts any type of arbitrary probability
distribution into uniform distributiong2).

A variable called permutation entrop9,[48, 82] can be defined to measure the infor-
mation on the order relations of the symbols. This variable is defined just like the Shannon
entropy in equationd.3g except that it is the probability of the orderings between val-
ues that are taken into account instead of the probability of the values themselves. When
permutation entropy is used instead of Shannon entropy in the definition of Mutual Infor-
mation, conditional Mutual Information and Transfer Entropy, then the measures becomes
Mutual Sorting Information, conditional Mutual Sorting Informatid82] and symbolic
Transfer Entropy94] respectively.

In some special cases where duality between values and orderings can be established
[48, 49] the symbolic Transfer Entropy is shown to be equal to Transfer Entropy. Indeed,
the issues in Transfer Entropy estimations such as coarse graining, embedding vectors (the
values to be conditioned on) and time delays persist for symbolic Transfer Entropy. Thus
generally, whatever one does with Transfer Entropy can be done with symbolic Transfer
Entropy. In certain circumstances where ordinal time series are available it is logical to
apply symbolic Transfer Entropy. The resulting uniform distribution makes it easier to
deal with as well. Several other variations of symbolic Transfer Entropy is proposed in
[65, 82, 79, 72].
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8.4.3 Other nonparametric estimations

Kernel density estimation (KDE) estimates the probability density using a k&rméhich
must be a normalized probability density function.Slis the number of samples of vari-
ablesX, the approximate density functioB] is px(z) ~ ¢ ZiN:1 K(zx — x;, h) wherexz;
is theith sample ofX and# is the bandwidth (kernel width parameter). For example when
the kernel is Gaussian
1 R |z — ]|
px(x) ~ EZK(a:—xi,h) = W;exp (_T> (8.4)

i=1

with d being the dimension arfdin the Gaussian case is simply the variance. Similarly, the
estimations are done fof and the joint probabilities before putting them into the Mutual
Information formula. The correlation integrasJq used in Schreiber’s original pape3d]
to estimate Transfer Entropy is also a type of kernel estimator.

The k£ Nearest Neighbourk(NN) estimation is an example of a metric method of esti-
mation. The algorithm proposed i6(] uses distance defined tfjy||. = max{||z|, ||y||}
for a pointz = (x,y), where||.|| denotes Euclidean norm. Definé. (i) to be the set of
nearest neighbour samples:pf= (z;, y;) with respect to the norr.||.. Let

e(1) = maz{||lz; — z;|| |(2;,37) € Ne(i)}, (8.5)
ey (1) = max{||y; — y;|| |(2;,93) € Ni(i)} (8.6)

so that we can calculate the number of elements within a distanaesiody

ng (1) = {z; | |2 — 2| < ex(2)}], (8.7)
ny (i) = {2 | 1y — will < ey (0)}] (8.8)
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and an estimator for Mutual Information formula in equati@ri@ is given by,

n

IO Y) R(R) + ) = 3 = = S [9nali)) + ()], 89)

n -
=1
n

IO(X, )~ (k) + ) = S mali) + 1)+ w(ny (i) + )] (8.10)
=1

wherey is the digamma function such thatz) = I'(z) " 'dl(z)/dx, Y(x + 1) = (x) +
1/x andy (1) = —C whereC = 0.57772156 is the Euler-Mascheroni constant. This algo-
rithm has been generalized for conditional Mutual Informationdig].[ Some advantages
of the kNN estimator is that it has small bias for smalfalues and the fact that it is de-
signed so that individual error of entropy estimations cancels out. It has also been reported
that kNN performs better than the KDE given thais appropriately choser®p, 8, 40Q].
However, as far as our knowledge goes, there is no systematic strategy to £hoose

There are many other alternatives trying to address the various deficiencies in these
estimation methods. An estimator that utilizes density ratio estimation with maximum
likelihood method is presented 9%, 96]. Plug in estimates where consistent density
estimations are substituted for actual densities are discussé@,ifj. No matter what
the method there is always a parameter that needs to be decided upon, for exafople
histogramsk for KNN andh for KDE. The choice of these parameters depends on the size
of data samples and also what level of variance and bias that one aims to achieve.

When choosing the value of a parameter one needs to strike a balance between bias
and variance. Recall that the bias of an estimator is the difference between estimators
expectation value and it's theoretical value. Obviously the smaller the bias the better. On
the other hand the variance which is the range of the expectation value is also needed.
An estimator has to be flexible to fit the data well, hence the need for a certain variability.
Balancing the bias and the variance is a delicate process in any estimation. Here, we depend
on our knowledge from experiments on the models to help us through applications on real
data sets.
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8.4.4 Transfer Entropy estimators

No single estimator can claim to be the best as each has it own parameters and com-
plications to take into accounb®]. Therefore we have decided to utilize the simplest
and most common estimator, the classical histogram. In estimating Transfer Entropy, we
also need to consider the fact that Mutual Information and Transfer Entropy has been uti-
lized in many different ways usually involving summing up values of different time lags
[105 78, 47], normalizing the values32] and subtracting or dividing values of opposite
direction to attain a directionality inde®38]. Not to mention the ones with corrections as
discussed in subsectioB.8.9. In Schreiber’s original definition in equatiod.@) where

Ty_x =F [log L (ﬁ(;:f:;zf;ﬁ;)) . Clearly, in order to apphf}_ x to processes(
andY in this manner, one needs to determine the order of both the Markov processes such
that! and k are obtained. Thesg” and X\* values are also known as the embedding
dimension. Schreiber warned that having large embedding dimensions may lead to ma-
jor inaccuracies. Therefore as in the toy model we shall apply the simplest form Transfer
Entropy estimate as in equatiof.) where conditioning is minimized and the objective

is to detect the causal lag. The act of utilizing various different time lags in embedding

dimension is sometimes referred to as horiz@is $2].

Chapter Summary

We have seen from simulations of the toy model for higher numbey, ¢iiat insufficient
sample size leads to spurious values. On the other handisftoo small, we may loose
some of the information. Not only is this true for Transfer Entropy but for Mutual Infor-
mation and covariance as well. One of the aims of the toy model was to shed some light
on how large the bin size should be in relation to sample size to avoid finite sampling ef-
fects. In order to determine the appropriate values,dbr a given sample siz& (data set
lengths) we shall refer to Figure8.00 and @.11). Another option is to use corrections in

the form of surrogates or effective Transfer Entropy. On real data sets there is much more
to be taken into account in addition to sample sizes. There exist many forms of possible
estimation methods with their own pros and cons. Despite the difficulties in estimations,
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there is overwhelming interest in information theoretic causal related measures and while
we are fully aware of the various estimation methods available, for the rest of the thesis
we shall utilize the most straightforward classical histogram method as well as the simple

form of Transfer Entropy in equatiod ).
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Chapter 9

Application to EEG Data Sets

We have electroencephalography (EEG) data sets from recordings luealthy subjects
that were asked to do nothing but close and open their eyes for a certain period of time. For
every subject we get two sets of EEG data, one with their eyes closed (EC data) and another
with their eyes opened (EO data). Eight electrodes at 250Hz (4 milliseconds sampling rate)
were placed on the scalp of each individual which is numbered as in Taldle (The
approximate brain function of different electrodes in relation to Ta®l® @re highlighted
in Table @.2).

The EC and EO data were recorded for approximately seconds int millisecond
time interval thus giving us sample size of approximatehl 30000 data points. Therefore
for each individual we shall havgtime series representirtyareas of the brain for both
EC and EO, each of length approximat8ly000. The data, recording machinery and pre-

CORTEX | ELECTRODE | SIDE OF THEBRAIN
Frontal | Frontal LOt(LE)
Central i Ppaarir(iaet?almlliigfrtl(fi():)

Temporal 2 Tﬁer?np;or?alllRLingt((ﬂ'Fg)
el || e e

Table 9.1: Numbering and labelling of the electrodes
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CORTEX APPROXIMATE FUNCTIONS
Frontal | attention, planning, working memory andibition
Central controlling mogments

Temporal sounds, languages and multi sensorgraten
Parietal visual, spatial positioning and short tememory

Table 9.2: Cortices and its approximate brain functions

processing of the data was provided by the team led byrBE1its at Biometrisch Centrum
(BMC) [1]. Bjorn’s team have kindly shared their data sets and also gave very valuable
advice regarding the interpretation of the data and the outcome of the analysis.

9.1 Visualizing the data

First and foremost we need to visualize the actual data to understand the nature of it. In
Figures 0.1) and 0.2) the first 1000 data points of subject 1 where electrodes 1 and 2
(frontal cortices) and electrodes 7 and 8 (parietal cortices) are visualized for EC and EO
cases respectively. One can see that the data is sinusoidal in nature and that the amplitude
of the EC data is mainly larger than EO especially for the parietal cortices that is supposed
to be processing the visuals. This coincides with our implementation of ‘causality’ on the
models, where the causal link is imposed by imposing restrictions on certain variables such
that it cannot change according to its internal dynamics as much. Therefore if the values of
EC seems to be changing more rapidly and more regularly this could probably mean that it
is less restricted than that of the EO where information needs to be exchanged and causal
links are present.

According to Bprn’s team, the difference in amplitude is due to a well known fact in the
neuroscience community that the Alpha band will dominate the parietal cortices whenever
the eyes are closed. There are various opini@ds I3] on what is the actual frequency
of the Alpha band is, however here we choose to stick with the advised range of 8 to
12Hz. The Alpha band is mainly a sine like wave that can sometimes be easily detected
by looking at the EEG data itself as evident in Figuréd)and ©0.2). The Alpha band is
not the only frequency band common in EEG data sets. The other bands that we will use
to show differences in Transfer Entropy values are the Beta band (12 to 20Hz) and the fast
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EYES CLOSED

Electrode 1 (FR) Electrode 2 (FL)
0.02 0.02
-0.02 -0.02
0 500 1000 0 500 1000
Electrode 7 (PR) Electrode 8 (PL)
0.02 0.02
0 0
-0.02 -0.02
0 500 1000 0 500 1000

Figure 9.1: EC data of subjettfrom7 = 0--- 1000 for FR, FL, PR and PL

EYES OPEN
Electrode 1 (FR) Electrode 2 (FL)
0.02 0.02
o MM ) oy
-0.02 -0.02
0 500 1000 0 500 1000
Electrode 7 (PR) Electrode 8 (PL)
0.02 0.02
-0.02 -0.02
0 500 1000 0 500 1000

Figure 9.2: EO data of subjettfrom~ = 0--- 1000 for FR, FL, PR and PL

Beta band (20 to 32Hz).

In order to investigate the effects of these frequency bands, filters will have to be uti-
lized. There are many different types of filters with their own strengths and weaknesses.
Here we chose to use the Fast Fourier Transform (FFT) and the inverse Fast Fourier Trans-
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form (iFFT) for all the frequency filtering mainly because we consider it to be the simplest
form of filtering and it is readily available in MATLAB.

9.1.1 Transfer Entropy on sine waves

The sine-like pattern that appears in the EEG data for these electrodes will effect the Trans-
fer Entropy estimations. One can see this by using Transfer Entropy between two sine
functions. Replicating the data with a 250Hz sampling raterd30000, let A be a sine
function with frequency 10Hz an8 be a sine function with frequency 4Hz. The first 100
time steps (4 milliseconds each) 4fand B are visualized in Figured(3).

0 20

0 26 4‘0 66 E;O 100
Figure 9.3: The first 100 data points of two sine waves with different frequencies

The Transfer Entropy values betwednand B displayed in Figureq.4) shows that
the resulting Transfer Entropy estimations for both directions has 16 peaks as a result of
adding the four peaks of to the two peaks o3 and multiplying the sum by two (account
for both peaks and troughs since Transfer Entropy is positive definite). This is due to the
fact the estimations of Transfer Entropy k%) is supposed to detect patterns over certain
time lags and the cyclical sine waves contributes to this (since we use the time average).
We then look at the estimations fmﬁ in Figure @.5) which is supposed to be by
definition. It has roughly 8 repeated cycle of patterns due to the 4 peaks and 4 troughs
in A. By using larger and larget, we expect the values to get values closer and closer
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Figure 9.4: Tflg andeBTj usingn, = 10 to approximate data far = 0- - - 100

to analytical valued. At first glance this appears to be the case but this is not the case
since estimations fon, = 25 are larger than values for, = 20 when we expect it to

be smaller. The estimated values when using= 30 are smaller again. This confusing
indication in terms of values of, to be used is most probably because of the finite sampling
effect discussed on the toy model. One particular thing these values have in common is
the minimum value of) at four points in the figure. Thus using corrections of shuffled
surrogates will give negative values and could potentially be even more confusing.

We look once again at the estimations]fﬁ'j, now with variousn, values in Figure
(9.6) where do not expect the values to convergé.t®ne can see that the estimations for
ns = 20, 30 leads to spurious values since the maximum value of Transfer Entropy is only
log(2) = 0.6931 as discussed in the toy model and indicated in FiguseE) and 8.9).
However, the largen, estimations does indicate that the values are converging towards a
single value which is what we should expect.

So here is the conundrum, on one hand using largealues lead to spurious estima-
tions but smaller values have much higher variance. Moreover there is the question of how
small a variance of the estimations on sinusoidal waves should be sufficient in order to be
able to differentiate it from peaks due to causal lag. One important feature about all the
estimations (even for smallex, values) is that the repeated patterns can be visible by using
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Figure 9.6: Téj using different number of states to approximate data

7 = 100 for large enough frequencies. Another feature of the Transfer Entropy of regular
(unchanging height and phase likeand B) sinusoidal waves is that the amplitudes are

more or less unchanged and changes could be indicated by damping effect.
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9.1.2 Stationarity and ergodicity

As discussed in subsectioh.2.2, under certain conditions given by the ergodic theorem,
the ensemble average is equal to the temporal average{]. On data sets, the ensemble
average is obtained by averaging over different realisations of the data sets. The tempo-
ral average is where the probability of a variable is obtained by averaging the frequencies
of different states over time. However, a prerequisite for the ergodic assumption is sta-
tionarity, and on EEG data sets stationarity is not always guaranteed. Statistical tests of
stationarity has revealed a variety of estimates on the amount of time during which EEG
remains stationary varying from several seconds to several mirides [

If one has enough realisations of a certain data set, ergodicity does not have to be
assumed and the probabilities can obtained using the realisations (ensembles). However
we only have data fromO different subject. When different realisations are not available,
what is usually done is that local stationarity is assumed for a certain range of time lags and
then averages over moving windows will give meaningful result despite statistical errors
[57]. Choosing the size of the moving window is also delicate process, since on one hand
we have seen that insufficient statistics leading to spurious values and on the other hand we
need the data to be local enough to capture the dynamics. Therefore if we were to use time
windows some form of correction will need to be utilized. We have tried using moving
windows of lengthd000 to 5000 (with corrections) with results mimicking those obtained
by using the whole length of data which is approximatetyinutes. Due to these reasons
we have decided to simply use to whole length of the data.

Taking lessons from the toy model, we proceed with the appropriate number of bins for
the available sample size. If we were to use a simple classical histogram Transfer Entropy
estimate on the whole length of data sets, from FiguBe) and @.9), to avoid confusing
finite sampling effects, it looks like, = 10 would be the safest value to choose. Moreover
from the previous discussions of Transfer Entropy on sinusoidal waves, in certain cases one
can distinguish which effects comes from the sinusoidal nature. Furthermore all Transfer
Entropy results given in this chapter is averaged oveil thgubjects.
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9.2 Transfer Entropy between hemispheres of the brain

Naturally we will first look at the parietal cortices (electrodes 7 and 8), the ones that are
supposed to be processing the visuals. Afterwards we move on to the frontal ones (elec-
trodes 1 and 2) which exhibits interesting differences between the EC and EO data.

9.2.1 Transfer Entropy of parietal cortices

We display values obtained by utilizing the Transfer Entropy formula in equati&nhfor
different frequency ranges in Figureés ) and ©.8). Firstly we do this on the raw data (in-
corporating all frequencies) for the graph labelled ALL. The graph labelled ALPHA is the
Transfer Entropy on the data obtained by filtering out the other frequencies save the Alpha
band between 8Hz and 12Hz. Similarly, the graph labelled BETA is Transfer Entropy when
other frequencies are filtered out except the Beta band (between 12Hz and 20Hz) and the
FASTBETA graph is Transfer Entropy when only the fast Beta band (between 20Hz and
32Hz) is preserved.

ALL ALPHA
0.015 0.08
EC EC
EO 0.06 EO
0.01
ER R 0.04
0.005
0.02
0 0
20 40 60 80 100 20 40 60 80 100
T T
BETA FASTBETA
0.06 0.2
EC EC
EO 0.15 EO
0.04
er €F 01
0.02
0.05
0 0
20 40 60 80 100 20 40 60 80 100
T T

Figure 9.7: T (PR— PL) for 7 = 0 - - - 100 for different frequency ranges
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ALL ALPHA
0.015 0.08
EC EC
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0.01
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20 40 60 80 100 20 40 60 80 100
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0.06 0.2
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EO 0.15 EO
0.04
ek €% 01
0.02
0.05
0 0
20 40 60 80 100 20 40 60 80 100
T T

Figure 9.8: Tég) (PL — PR) forr = 0--- 100 for different frequency ranges

What one can clearly see in Figur@. ) and Figure 9.8) is that calculating Transfer
Entropy within different frequencies render different results and that generally the Transfer
Entropy values of EC is bigger than EO especially for the Alpha band where the relative
difference is clear and the values are not converging even-at 100. We suspect the
main reason is because the frequencies are more regular in EC data. Another observation
of Figure ©.7) and Figure 9.8) is that Transfer Entropy values in the ALL graph are not
only very much influenced by the alpha band frequencies, but also by the electrical mains
that will influence the data at 50Hz frequency therefore this needs to be filtered out. One
common thing about all the graphs is that the sinusoidal values are damping out, possibly
indicating that influences (amplitudes) of certain frequencies only last for a certain amount
of time lag, approximately = 50 i.e. around 0.2 seconds lag.

The question is now whether the ALL graph in Figuée7j and Figure 9.8) is simply
a superposition of all the frequencies values or can some emergent causal behaviour be
observed. To better see the underlying differences we shall venture to filter out some the
frequencies. We apply upper bound of 32 Hz and lower bound of 1 Hz as well as filtering
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Figure 9.9: T\%) andT.Y for 7 = 0- - - 100 without the Alpha band

the Alpha band out to get Figur8.9). Both directions of Transfer Entropy are displayed
together in the figure and the values are almost identical for both direction where the am-
plitude seems to be dampening out. From this figure we may think that nothing much else
happens in frequencies other than the Alpha band and perhaps causality between the two
nodes of the parietal lobes really does depend only on the Alpha band. Before coming to
any conclusion, we continue to look at some other electrodes.

9.2.2 Transfer Entropy of the frontal cortices

Now we focus on electrodes 1 and 2 that roughly represents the frontal cortex. Recall that
the frontal cortices are supposed to be controlling attention, planning, working memory
and inhibition. We begin by displaying Figur@.{0 and Figure 9.11) which is the coun-
terparts of Figureq.7) and Figure 9.8) on frontal cortices. However, a striking difference

is that the ALL and ALPHA graphs in both Figures 10 and ©.11) looks more like a dif-

ferent approximation (using different amplitudes) for the same underlying values, whereas
the Transfer Entropy values in the ALL and ALPHA graphs of EC and EO data in Figures
(9.7) and 0.8) looks like they are distinctly approaching a different value. This is more
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Figure 9.10: 7.7’ (FL — FR) forr =0 --
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Figure 9.11: 7'}’ (FR— FL) for 7 = 0 - - - 100 for different frequency ranges

()

21

()

21

T(T)

(1)

12

12

0.06

0.04

0.02

0.06

0.04

0.02

- 100 for different frequency ranges

0.06

0.04

0.02

0.06

0.04

0.02

ALPHA
EC
EO
20 40 60 80 100
T
FASTBETA
EC
EO
20 40 60 80 100

ALPHA
EC
EO
20 40 60 80 100
T
FASTBETA
EC
EO
20 40 60 80 100




9.2 Transfer Entropy between hemispheres of the brain 170

obvious for the ALPHA graph in Figure(10 than for the one in Figured(11) and this
could imply more FR— FL causation in the Alpha band for EC than EO. There does not
look like there is much difference in terms of the other bands.
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U]
0.015 T12 M

—_T®
T21

0.01 b
0.005 b

| | | = T — r
10 20 30 40 50 60 70 80 90 100
EYES OPEN
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)
T21
0.01 g
0.005 ]
| | | | | | | I J
10 20 30 40 50 60 70 80 90 100

T

Figure 9.12: 73’ and 7] for r = 0- - - 100 without Alpha band

In Figure .12, we display the values of Transfer Entropy for both directions on data
filtered for and upper bound of 32Hz and a lower bound of 1Hz as well as the Alpha band
between 8Hz and 12Hz. One can clearly see that the EO and EC is different even though the
Alpha band is not there. In the EC data the initial Transfer Entropy entropy peaks seems
to be alternating in their values but not so much in the EO data. There could be a few
explanations as to the reason of this. One explanation is that the alternating values in EC
is normal pattern of information exchange (or non exchange) between the two hemispheres
which is disrupted in EO due to the need to process the information obtained. Another
possible explanation for the alternating values is that in EC the two hemisphere are simply
out of phase, in this case by approximatior= 2 (8 milliseconds). This could be due to
different interaction rate with other electrodes. However if we look at Fig@d$)(and
(9.17) we shall see that both EC and EO are out of phase. Therefore the difference between
EO and EC in Figure9.12 must be due to actual difference in the dynamics. We now
proceed to look at interactions between parietal and frontal cortices.
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9.2.3 The interaction between frontal and parietal cortices

We now focus on the interaction between the frontal and parietal cortices where we shall
look at the right part of the brain (electrodes 1 and 7) and the left part (electrodes 2 and 8)
separately. Figure®(13 and 0.14) looks at Transfer Entropy values where the parietal

cortices causes frontal ones. Once again the graph labelled ALL refers to the Transfer

NET ALL ALPHA
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8 EO EO
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2 0
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0.01 0.02
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0 0
20 40 60 80 100 20 40 60 80 100
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Figure 9.13: T7(1T) (PR— FR) forr = 0--- 100 for different frequency ranges

Entropy applied to the whole range of frequencies and the graph labelled ALPHA is the
Transfer Entropy on the data obtained by filtering out the other frequencies save the alpha
ones between 8Hz and 12Hz. Similarly the graphs labelled BETA and FASTBETA were
obtained by focusing on their respective frequencies. Figaré8(@and 0.14) are different

from the graphs of previous section because the former is exclusively on the right hand side
of the brain and the latter is on the left side and not the interaction between the two sides.
The first thing to notice is that the amplitudes of the values are all graphs in both figures are
generally smaller than amplitudes in Figur8srj, (9.8), (9.10 and 0.11). As we can see

there are some differences between the two interactions however the similarities are more
prominent especially in seeing that the Alpha band values are definitely larger for EC data
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Transfer Entropy between hemispheres of the brain
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Figure 9.14: T§;> (PL — FL) for 7 = 0 - - - 100 for different frequency ranges

and the sinusoidal effects lasting relatively much longer than the EO values.

The interaction between the parietal and frontal cortices when Alpha bands are filtered

out is displayed in Figure®9(15 and ©0.16. At first glance it show clear difference be-

tween EC and EO even with the absence of Alpha band. We have similar behaviour in

alternating peaks in EC like in Figur8.@2 and the interpretation could be of similar na-

ture as well. In the EO there is one clear peak and trough before a kind of lump in both

Figures 0.15 and ©.16). This is one clear peak happensrat 3,4, 5 in the EO data of

both figures before the lump between= 10 andr = 30 (a time lag of 80 milliseconds)

where values in both direction are more or less equal. Although directionality cannot be

inferred since values in both direction is equally high, it is very possible that information is

exchanged in both directions. One can speculate that since this lump comes after the initial

peak and trough, it is the rapid exchange of information in deciphering visual data from the

parietal cortices which disrupts the patterns of EC in relation to the idea that ‘causality’ is

a form of restriction on changes of the affected variables.
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Figure 9.16: 7.7’ andT. for 7 = 0 - - 100 without Alpha band
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9.3 Discussion

From Figures9.7), (9.9), (9.10, (9.11), (9.13 and 0.14) one can see that Transfer Entropy

on the data set are different when estimated within different frequencies. The obvious
difference between EC and EO data lies in the Alpha band and this begs the question
wether causality in this case depends solely on the Alpha band frequencies. It seems that
this might be the case for the interactions between the parietal cortices. However, from
Figures 0.12), (9.19 and ©.16 we say that the answer is no. Even without the Alpha
band the difference between EC and EO data is clear. The difference is actually the clearest
in the frontal cortices.

9.3.1 Frontal cortices

All three Figures 9.12), (9.19 and 0.16) is related to the frontal cortices. However, the
most striking difference between EO and EC can be seen when the Transfer Entropy is used
on itself.
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Figure 9.17: Tl(f) for 7 = 0--- 100 without Alpha band
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Figure 9.18: 7 for 7 = 0 - - - 100 without Alpha band

Figures 0.17) and ©.18 are the Transfer Entropy values on the data filtered for upper
and lower bound as well as the Alpha band. To say that the peaks in the figures are simply
a reflection of Transfer Entropy in the Beta and fast Beta bands is quite difficult in this case
since we see that in Figure8.19 and @.20 that the Beta and fast Beta band in the EC
and EO are not very different in their behaviour. In fact even the Alpha band in the figures
looks like its approximating the same value. It seems like something different has emerged
in the cumulative frequencies that cannot be detected by examining the bands separately.

9.3.2 Causal lag detection

In the EO graph of Figure®(17) and @.18 the Transfer Entropy values peak at approx-
imately 7 = 10 (40 milliseconds). There is also the second highest peak which actually
comes first at = 3 (15 milliseconds). One can interpret Transfer Entropy value when used
on itself in accordance with equatiofh.p) as a kind of feedback loop where the changes in
current values depend on the values ptevious time steps. Thus in a way, we can say that
for EO data of both electrodes 1 and 2, the feedback loop (causal lag on itself) is approxi-
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mately 15 and 40 milliseconds. Why the second peak is higher than the first might have to
do with the processing time of the information obtained from the parietal cortex. The good
thing about these data sets is that the only difference between EO and EC is supposed to
be in the visual and nothing else. Therefore based on that assumption, the changes in the
frontal cortices should also be due to the extra information processing and communication
due to visualsr = 10 (40 milliseconds) could possibly just be the time the frontal cortices
need to process a certain amount of visual before reacting (or causing itself to react).

We would like to think that this is also the case in for EO values Figudekb( and
(9.16 with regards to the peaks at= 3, 4, 5. It could possibly be the causal lags at which
neuron of different parts of the brain communicate sih2eand 15 milliseconds could
quite plausibly 12, 22, 67] be the cumulative neuron firing rates. However in this case the
suspicion that this is simply the influence of other frequency bands is more probable since
the the Transfer Entropy estimation of fast Beta band usually has peaks areuddb.

Chapter summary

We have seen that the Transfer Entropy values are different when different frequencies are
filtered out. Although a lot EEG data analysis research focuses on the frequency domain,
the outcome of our analysis points out that focusing on a single frequency band may not
capture the bigger picture. The Alpha band seems to be very important in the parietal
cortices and its interactions with the frontal cortices, however it does not seem to be very
important in the frontal cortices which seem to be doing the processing. We conclude that
Transfer Entropy on the combined frequencies gives more than Transfer Entropy on indi-
vidual frequency bands. Furthermore we have identified a possible causal lag (feedback
time) of the frontal cortices of 12 milliseconds and a possible processing time of 40 mil-
liseconds as well as possible causal lag between frontal and parietal of 12 to 15 milliseconds
with a possible processing time of 80 milliseconds.
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Chapter 10

Conclusion and Future Research

In Chapter 1 to 3 we discussed issues of nonlinearity as well as ‘causality’ as we envisioned
it to be in the brain and this led to the examining of Transfer Entropy in Chapter 4. We
tested this measure on the Ising model in Chapter 5 as well as 6 and on the a toy model
with analytical values in Chapter 7 and estimations in Chapter 8. In Chapter 9 we applied
Transfer Entropy on EEG data sets with interesting results. There is much more to be done
in furthering our understanding of Transfer Entropy and ‘causality’ in general.

Throughout the thesis we have set to define causality. Firstly as a sort of independence
across time lags and then in relation to G-causality and Transfer Entropy as something
that will affect prediction. By focusing on Transfer Entropy and transition probabilities we
see that causality in this sense has a lot to do with changes in the affected variable that
is caused by certain values of the causal variable. When it comes to translating this to be
replicated on a model, we made certain values of the causal variable restrict the changes
in the affected variable. It is crucial that both these variables maintain some stochastic
element as a deterministic relationship cannot be considered causal. When looking at the
data set which should differ only by one action of processing visual, we found out that when
there is no visual input (eyes closed) the amplitude of the EEG waves are bigger and more
regular. Therefore this coincides with our idea of causality being imposed by restrictions
and where no information is received (therefore no causal link required), the behaviour of
the data is unrestricted.
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10.1 EEG data analysis

There are a few main issues that was of concern when analysing the data, firstly was of
course estimation and how the sinusoidal nature of the data was affecting the estimation.
The Transfer Entropy on sinusoidal values are interesting in itself since sine waves are
actually deterministic and we have seen that deterministic values eithefgivesnstantly

gives the maximum values as seen in Figur€)(on the toy model.

The difficulty of Transfer Entropy estimation on the sine function is in relation to de-
termining the number of states where variance of Transfer Entropy is small enough and
making sure to exclude spurious effects (corrections may results in negative values). We
saw from Figure 9.5 that this can be very tricky and to make any judgement based on
Transfer Entropy amplitude in determining directionality at this stage could be misleading.
This is due to the fact that the values of Transfer Entropy that should peak for the causal
lag as in the models interfere with the sinusoidal nature of the data that effects the estima-
tion of data done using time average. How small should an acceptable variance of Transfer
Entropy be in order for the sinusoidal effect to be accurately differentiated from and causal
lag remains the main question.

In fact, there is the question of whether there actually exist differentiable peaks at all. It
is entirely possible that these part of the brain are in communication all the time and that it
will be hard to detect any outstanding lag in Transfer Entropy values unless something very
different happens (epileptic seizures for example). This is where complete understanding
of the magnitudes of Transfer Entropy and the relative differences in values would come in
very handy. Therefore a thorough investigation on the toy model in terms of understanding
the values of Transfer Entropy and more detail testing on the data set is needed.

10.1.1 What is causality of EEG data sets?

More importantly, there is the question of what kind of causality exist in EEG data sets. Al-
though we have assumed that the waves behaves in tandem with our definition of causality
in relation to restrictions, there are also other possibilities. Is it possible that causality can
exist in terms of communicating the lack of input through regular waves? Could causality
occur both ways simultaneously?
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We found out that there are certain frequencies that dominates for certain areas of the
brain for certain task. The prime example here is the situation where the Alpha band is
known to dominate the waves when eyes of the subject is closed and this is known to be
clearest in the parietal cortices. We have seen that this influences most of the electrodes
in the EC data. The question is, would this be considered a sort of causal influence of the
parietal cortices (where Alpha band is strongest) to the other electrodes, after all it could
still be signalling the other parts of the brain that the eyes are closed and are still closed
over a period of time. Moreover some researchers that believe phase synchronization of
two electrodes is sufficient to infer interactiatf].

If this is true then Figure$(12, (9.15 and ©.16 would imply non interaction in most
of the EC data since the phase is shiftedrby 2 (8 milliseconds) when both directions
are compared. Or perhaps it could mean that information takes 8 milliseconds to go back
and forth hence the shift. Moreover, in the EO data of Figuget?, (9.15 and ©.16),
one can see that the initial peak and the lump that comes afterwards are consistent features
for EO data of these three figures. This could imply communication in both direction is
actively happening simultaneously. So now the question is, can causality occur in both
directions at the same time? According to Schreiber’s definition of Transfer Entropy in
[89], directionality can only be concluded if one direction is determined to haaues
and the nonzero in the other. Therefore according to him, in Transfer Entropy directionality
can only occur is one direction. Again if one had a better understanding of the different
magnitudes of Transfer Entropy perhaps different levels of causality could be determined.
Hopefully with performing more experiments on different types of EEG data sets some of
our suspicions could be verified or negated.

Moreover we have concluded that more than a single frequency band is needed in de-
ciphering the causality for EEG data sets. It is our opinion that if estimated properly the
Transfer Entropy on the accumulation of the various frequencies in the unfiltered data could
be something very different than looking at the Transfer Entropy values of the frequency
bands separately. It would be very interesting to see if the same results will be achieved
if data sets with more complicated task should be tested. If the same conclusion can be
achieved, this could imply that causality is an emergent property.
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10.2 The models and its potential

The many factor influencing the magnitude of Transfer Entropy can include the individual
dynamics of the causal and affected variable as well as the strength of the causal link (in
the model indicated by how much restriction is imposed). For example in Figude (
representing equatiort (1) we see that even thég on the simple model depends og.

Which means that the Transfer Entropy depends on the intrinsic probabilities (which is
caused by individual dynamics) on the affected variable. In real data sets, this is something
that we cannot measure unless we can find a way to distinguish individual dynamics from
external influences. However from analysis on the data set we have sefé’g;{ j.h'atable to
provide some interesting results. Therefore it would be very interesting to investigate more
about the value o'} and how it changes in relation ) andT;) as well ag..

In the current toy model, we fixed the level of restriction that a certain stochastic process
Z has overX andY by controlling 2 which represents the percentagesWalues that
allow changes inX andY values. Thereforel, — Q2 represents the percentagesbfalues
that restricts the changes X andY values. It is this restriction that creates the causal
effect in the model. If we could somehow identify if there exist this form of restriction in
the real data set them could be used to gage the level of restriction and thus potentially
the level of causality on real data sets. This could be very useful in addressing the problem
related to the existence of causality in both directions and possible differentiation of weak
and strong causal couplings.

Another finding on the toy model that can be proven analytically and alludes to the
need of a formalism to quantify different levels of causality (or restriction) at least in terms
of the amplitudes of Transfer Entropy, is the fact that there @Qgt such thafrg)} #0
even whenr # tz. In the toy model this happens when, = ”n—‘l and the influence
comes through the variab@glm which represents the probability of the condition being
fulfilled given the current information available time SinceTg} #0 andT)(g% = 0,
based on Schreiber'89, 57] way of determining direction, one will have to conclude that
there exist a direction for all these valuesrond not only at the causal lag. But the
magnitude of Transfer Entropy correctly indicates that the direction (hence the causal link)
is the strongest d@t; and the other are just the side effects. This highlights the importance of
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actually detecting causal lags in order to be able to distinguish side effects. We believe that
further investigations in relation to the magnitudes of Transfer Entropy will be beneficial
to the general formalism of quantifying causality.

The same can be said about the amended Ising model which provide a more realistic
interactions in terms of the imposed ‘causality’ versus nearest neighbour interactions. We
could try putting sitesA, B andG further apart in a larger lattice or add much more inter-
actions and link just to see the effectfat Looking at the temperatures very clos€elto
and working out an exponent for Transfer Entropy would also be an interesting direction to
pursue.

10.2.1 Linking the model and data sets

On the models we have shown that the amplitude of Transfer Entropy can be affected by
many factors which are very complicated to identify in the real data sets. One of the reason
is that in the toy model we have set the distributions to be uniform so that values are simpler
to estimate and the causal lag detection is more straightforward. The symbolic analysis
and ranking discussed in subsecti@¥4(? is reported to convert any type of arbitrary
probability distribution into uniform distribution5p]. If this is true then this symbolic
Transfer Entropy could make our toy model even more relevant for real data applications.
More importantly it might be able to provide us with some insighf2tealues defined on

the toy model since we know thak = "n—*l leads to uniform distribution for any variable

X. Moreover, recently there have been a lot of interest in using the symbolic Transfer
Entropy due to supposedly better estimatio8s, 82, 79, 72] especially in the case of
multi-fractal phenomena/[l]. Therefore the symbolic Transfer Entropy certainly will be
worth exploring in relation to the toy model.

Even if these values cannot be explicitly identified on the data sets, the toy model is
no less valuable. What we have currently done is place the causality in one clear direction
at one clear causal lag. However, in the brain it would be more logical to put more causal
direction between many different stochastic processes and see how the direction and the
influence clashes. The modelling possibility is endless, we could include different causal
connections at different level of influences as determined bypd we could test the effects
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of the stochastic processes being sinusoidal with dampening effects in order to gage the
actual appropriate size af, needed in order to clearly establish causal lags. We think that
the model itself can be a powerful tool in terms of aiding our understanding of causality not
just in terms of Transfer Entropy but also in terms of general causality replication where
any causal connections needs to be replicated in models.

10.3 Information theoretic measures

We have identified a measure that can capture features of the brain being nonlinear and
‘causal’ namely Transfer Entropy. There is much to be done, applying the measure with the
knowledge obtained from the models remains one of the most important lesson of the thesis
as different application may lead to different interpretation. Nevertheless the theoretical
side remains as interesting as ever, with a lot more variations of Transfer Entropy definitions
to test out and even more generalizations of Mutual Information are being proposed to unify

frameworks of our understanding.

10.3.1 \Variations of Transfer Entropy

There is so much more to be achieved by using these information theoretic measures in any
type of data especially in neuroscience as demonstrated by the ample interest shown in the
literature. Here, we propose some possible future directions that might be promising and
interesting to pursue.

In this thesis one of our aim was to show tﬁé@( will be largest at exact causal lag
given that the change IX occurs directly at the next time step. We utilized the previous
formula of Transfer Entropy aEf/?( = I(X,Y~"|X~!) in equation 4.6), fully aware that
this is not the only possibility of utilization. One interesting example would be, also varying

the time steps foX such that

TR — H(X|X ™) — H(X|Y ™, X 1) = [(X,Y 2| X ™), (10.1)



10.3 Information theoretic measures 184

Another variation could be conditioning on two different variables

P(Xn = xn‘Xn—l = Tn-1, Zn—rl = Z’I’L—T17Y’I’L—T2 = yn—Tg)
P(Xn = xn’anl = xnfl)

=HX| XY -HX|X LYy ™ 2z™).

Ty = E | log (10.2)

All this will have to be done is a systematic way so that differences and similarities in

conjunction with equation4(5) be fully understood.

10.3.2 Generalized Mutual Information

As we have mentioned before there are various generalizations of Mutual Information that
are proposed within different envisioned unifying frameworks. These generalizations could
also be tested on the Ising model and the toy model. There any many forms of attempted
generalizations of Mutual Information. We discuss one example here.

Recall that!(X,Y|Z) = E |logsiizipiez | for random variablesy,Y and Z. It
would be very interesting to compare this quantity to the actual Mutual Information and
one way to do this is to define the Mutual Information of three variables. The Mutual

Information of X, Y andZ can be defined9 as

I(X,Y,2) = I(X,Y) — I(X,Y|Z)
B P(X, Y) P(X,Y]Z)
=F “’QP(X)P(YJ - {l"g P<Y|Z>P<X|Z>}

=& oops v | - (v - (o)
5 [0rP 2] [P g [0y PEMID] a0

The equation captures how the probabilities are different when it is condition&d Mote
that this quantity is symmetric with respectXg Y andZ since we have that

I(X,Y,2)=1(X,Y) = I(X,Y|2)=1(Y,2) - I(Y, Z|X) = [(X, Z) — [(X, Z|Y).

Figure (L0.]) clearly depicts this in a set-theoretic setting. Another example of generalized
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0/
\/

Figure 10.1: I(X,Y, Z), H(X), H(Y) andH(Z)

Mutual Information has been introduced in subsect@d.@) in relation to clustering and
another version known as Multi-Information is introduced by Ay38|[

Conclusion

In Chapter 1, we outlined our view that even the most simplistic model of the brain should
be nonlinear and should very logically be causal. Proceeding with the first assumption,
we need a measure that captures nonlinearity hence Mutual Information whose variants
include conditional Mutual Information and its time varied counterpart Transfer Entropy,
was taken into account in Chapter 2. The second assumption of causality needs more ex-
pounding which led us to define causality very carefully in Chapter 3 as a dependency at
a certain causal lag as proposed by Wiener and Granger ala G-causality. As opposed to
G-causality which is linear by default, Transfer Entropy which can be interpreted as a non-
linear extension to G-causality seemed poised to capture both nonlinearity and causality.
Therefore in Chapter 4, we looked very carefully at this propounded Transfer Entropy
and it's pitfalls. We decided to avoid some of the pitfalls by taking the simplest case and
utilizing it for causal lag detection, bearing in mind that there are many other possible way
of utilizing Transfer Entropy. This simple definition of Transfer Entropy was utilized for
causal lag detection on the Ising model in Chapter 5 and to our knowledge we are the first to
apply it in this manner. What we saw was that the Transfer Entropy and conditional Mutual
Information gave identical indications and thus concluded that some element of time in
the sense of induced causal lag needed to be introduced to the model. The amended Ising
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model was produced in Chapter 6 by restricting two of the sites on the lattice. The two sites
were made dependent on a third sites in order to create a ‘causal’ relationship. Transfer
Entropy had no difficulty in detecting this form of ‘causality’ and our suspicions were
verified. The Ising model being binary in nature means that we loose a lot of nonlinearity
and/ =0 < [ = 0. Thus, we need to be able to increase the number of states in order
to further investigate the effects of nonlinearity.

The toy model in Chapter 7 allows us to do just this. Taking inspiration from our results
on the Ising model, we set to model only three stochastic variables where two of them
depend in a ‘causal’ way on one of the variable as in the amended Ising model. The toy
model with two states{, = 2) or the simple model can be interpreted as the amended Ising
model at higher temperatures where probabilities are uniforra. iff the causal variable
and X andY are the affected variable théhstands for the percentage of statesZahat
allows changes i’ andY and serves as an indication of the level of restriction imposed
on the model at a chosen causal tag It is this restriction that makes the relationship
causal from a Transfer Entropy point of view.

In addition to thathL(v) which represents the probability that the there are no restric-
tions onX andY given the current knowledge available abguat time lagr, enables us
to understand how the, ianuencesTg)z whent # t;. We showed that through values
of Q7

sgn

() ng # 0 for values ofr close tot;. On the other hand, we also found out

that att, 11z does not influence the value ?Ef)z() at all. More importantly, we were able

to show that given that the causal lgg T}'}) > Tg, V7 and therefore Transfer Entropy

can be used for causal lag detection. This toy model can be modelled exactly and thus the
simulation can be compared to its theoretical value. The simulations in Chapter 8 verified
our theoretical formulation in Chapter 7, however it brings to light a problem in the form of
finite size effects. As, gets bigger, more and more data is needed in order to obtain accu-
rate probabilities and when the sample sizes becomes insufficient we get spurious values.
One way to rectify this is by using surrogates.

On real data sets, there is no way to tell if exact probabilities are obtained. There
exist many forms of possible estimation methods with their own pros and cons. We discuss
some of the methods used for estimation of entropy in Chapter 8 and how the most common
one is the classical histogram method. For data sets with continuous values, one does not
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know what values ofi, to utilize on the data and this is where the null model is needed

to provide information about the relationship betwegrand sample size. We decided to
simply utilizen, = 10 to avoid spurious values in applying the classical histogram method
on the two data sets of EEG recordings from 10 subjects, one with eyes closed (EC) and
the other with eyes opened (EO) in Chapter 9. While acknowledging that there is a lot of
issues to be resolved in terms of estimation and what can be considered causality on EEG
data sets, we point out that we have done a simple analysis that highlights the difference
between the Transfer Entropy values of EO and EC on different frequency bands.

We observed that Transfer Entropy values are different for different frequency ranges
and there are some frequencies bands that show more effect than the others and one obvious
example is the Alpha band. Therefore we wondered if causality could simply be determined
by a single band. However when examining the other frequencies we found out that even
when the Alpha band is filtered out, the Transfer Entropy on the rest of the frequencies
still indicates the differences between EO and EC. Thus we concluded that in this case
causality is not something that can be determined by a single frequency band. In addition
to that we have identified a possible causal lag (or feedback time) of the frontal cortices and
its interaction with parietal cortices on the EO data which is in the order of 10 milliseconds.

We conclude that causality as determined by Transfer Entropy on EEG data sets is
something very promising yet much more work should be done before anything strongly
conclusive can be claimed. It would particularly interesting if causality can be viewed
as an emergent property of different frequency bands and this is something that would
probably be much clearer in EEG data sets with much more complicated task. The toy
model developed in this thesis should be very helpful in furthering our investigations in
doing a systematic analysis on the effects of Transfer Entropy in relation to ‘causality’.
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Nomenclature

X Susceptibility

r Covariance

Q P( condition fulfilled )

P Correlation

D Kullback Leibner

E Expectation

H Entropy

1 Mutual Information

L Length of lattice

M Magnetisation

N Number of sites on the lattice
Mg Number of states

P Probability

Q7 ., P(condition fulfilled given thatz, _, = )
S Sample size

Sx State of siteX
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T Temperature
T. Crossover Temperature

T@( Transfer Entropy ot” to X at timer
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