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Abstract

We assume that even the simplest model of the brain is nonlinear and ‘causal’. Proceed-

ing with the first assumption, we need a measure that is able to capture nonlinearity and

hence Mutual Information whose variants includes Transfer Entropy is chosen. The second

assumption of ‘causality’ is defined in relation to prediction ala Granger causality. Both

these assumptions led us to Transfer Entropy. We take the simplest case of Transfer En-

tropy, redefine it for our purposes of detecting causal lag and proceed with a systematic

investigation of this value. We start off with the Ising model and then moved on to created

an amended Ising model where we attempted to replicate ‘causality’. We do the same for

a toy model that can be calculated analytically and thus simulations can be compared to

its theoretical value. Lastly, we tackle a very interesting EEG data set where Transfer En-

tropy shall be used on different frequency bands to display possible emergent property of

‘causality’ and detect possible candidates for causal lag on the data sets.
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Chapter 1

The brain as a complex system

Statistical mechanics works towards understanding the macroscopic behaviour of a system

from the microscopic interaction of its part. Lately the field has taken interest in complex

systems, loosely defined as a system where the components self-organize into a critical

state [6, 27, 53]. Criticality (the critical state) occurs when local distortions propagates

throughout the entire system and observables are scale free [27, 53]. In this introductory

chapter, we will first explain how the brain is essentially a complex system and how it is

logical for it to operate near criticality. Then we look at the methods of analysing neuro

data sets and why EEG data sets suits our purposes. After looking at some of the many

different measures people have used on EEG data sets, we will most importantly explain our

simplistic view of the brain and why we are looking for a measure that should essentially

be nonlinear and be able to detect possible ‘causality’.

1.1 Complexity and the brain

Although there is no universally agreed upon definition of complex system, there are a few

criteria that most will say define the system, mainly that it is composed of a large number

of interacting components that give rise to emergent hierarchical structures and that the

components typically change with time [54]. There is increasing belief among neurologists

is that the brain is complex [20, 43, 92]. In fact, it has been suggested that this wonderful

brain of ours, could possibly be the most complex system of them all, due to its capability to
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represent the complex outer world to us humans [6]. Indeed, we are what we are perceived

to be. A simple way to view the brain as a complex system is to imagine the neurons

as individual components and the brain as a whole that emerges from cooperation of the

neurons.

1.1.1 Complex systems and criticality

In other words, the brain is viewed as a system that exhibits complex behaviour where

hundred billions of neurons self organize to function as one entity. However, some neu-

rons seem to work together with one another more than others depending on the performed

function [24, 92]. Consequently, it is believed that the brain can be divided into its func-

tional parts [25, 36]. Therefore, one could also consider the functional parts (encompassing

certain areas of the brain) as the components that cooperate to become the brain as a whole.

This is where a contradiction arises, on one hand the brain needs to be segregated for

it to specialize and efficiently respond to specific stimulus (or lack of it) but on the other

hand scientist have confirmed from many different sources and observations that virtually

all perceptual or cognitive tasks are the end result of large scale and distributed activities,

often times involving spatially disconnected area [25, 24]. This integration versus segrega-

tion issue is succinctly summarized in [92]. This apparent contradiction can be explained

beautifully if we look at the brain as complex system. In order to further understand this

currently prevalent paradigm about how the brain works we need to first understand criti-

cality.

Criticality is the emergence of the components to work together as one. A familiar

example will be the phase transition occurring when water evaporates into vapor. A phase

transition with long range interactions (diverging correlation lengths) is critical. Basically

in a complex system, criticality occurs when the system appears to act cooperatively as

the result of individuals interactions [27, 53]. Therefore as a complex system, the brain is

completely connected (acting cooperatively) and integrated at criticality as well as being

segregated (acting individually or according to its functional speciality).

If a system is critical, there will be long range correlations as well as short range ones;

in fact all scales of correlation should be present. Thus, theoretically the system will appear
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identical no matter the scale at which we probe it, hence the term “scale free”. This self

similar and scale free behaviour is fractal in nature which leads to the belief that a complex

system is also fractal [27, 53]. This fact allows us to use scale free and self similarity as

indicators of a system being in a critical state. The ability of certain data sets to appear self

similar regardless of hierarchies and coarse graining is often taken to be an indication of

criticality. However caution must be taken here since there can be other causes [104] for a

system to be fractal.

1.1.2 The Ising model at phase transition

A system is critical in a sense that all members influence each other. In a complex system

the critical state is established solely because of individual interactions [6, 27, 53] but an

equilibrium system needs to be fine tuned to obtain this criticality. Perhaps the simplest

example of an equilibrium system is the Ising model [27]. It displays emergent cooper-

ative phenomenon (long range correlations) at its phase transition which is characterised

by scale free behaviour. Therefore, the Ising model is critical at its phase transition. Only

at this critical state, complex systems and equilibrium systems are said to exhibit similar

behaviours [27, 53], thus looking into this simple Ising model can help gain insight into the

complexities of a the brain.

Briefly, the Ising model is a model comprised of sites on a lattice, where each site can

only be in two possible states, either up (+1) or down (-1). In this thesis, we restrict the

interaction of the sites to only its nearest neighbour (in two dimensions this will be nodes

to the north, south, east and west). The effective interaction strength increases or decreases

depending on temperature that effects the probability of the sites being in certain configura-

tions. Amazingly, although only nearest neighbour interaction occurs, a specific site is able

to influence other sites across the entire system at the critical temperature. The existence of

this long range correlation at its phase transition, makes the model very interesting despite

of its simplicity.

In fact, Fraiman et al. [38] compared the Ising model at criticality and the resting state

of the brain obtained from functional magnetic resonance imaging (fMRI) data sets, and

concluded that both the systems exhibit identical dynamics and statistical properties. They
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proposed that resting state (i.e the states when there are no explicit inputs or outputs) could

be the default mode of the brain where certain areas are automatically activated during rest

time and deactivated as soon as the slightest task is engaged upon. They even went further

to suggest that the global changes in the brain (mood, attention etc) could be brought about

the same way temperature drives the Ising model to criticality.

1.1.3 The brain operating near criticality

At first glance it looks like the brain must be critical since it has the capacity to allow

communication between different parts of the brain at a speed that seems instantaneous.

A critical system is highly susceptible to local distortion which resonates throughout the

system. The brain seems to be doing exactly this when it switches between connections to

figure out the appropriate responds to an external stimuli. Even when it is not stimulated

it is perpetually changing [6, 20]. Moreover, if the brain was subcritical then only local

correlations will occur and cooperative behaviour cannot be possible as the signals will

die out. On the other hand, if the brain was supercritical there will be chaotic disorder as

neurons will be firing and be massively activated all the time. Thus, it can be argued that

the brain has to be critical for information to propagate and be comprehensible. There are

even some scale free indicators found in the brain to support this hypothesis of criticality

and fractal nature of the brain [25, 34, 36].

The idea that in order to be a dynamical system, the brain would have to operate near

criticality was put forward by Turin in 1950 [104]. Being near criticality is very logical

in terms of efficiency. Making use of local and global interaction appropriately as needed

to balance out the integration and segregation as required is efficiency at its best. Brain

scientists have confirmed that interactions in the brain are predominantly local [92]. Nev-

ertheless, it does not work alone in its locality and needs to able to attain criticality very

quickly. The brain connects and reconnects all the time according to its need and amazingly

although the cortex is mainly excitory network it does not explosively propagate and still

transmit information [24]. Thus it has to be near criticality. In fact Tagliazucchi et al. [97]

claims to have evidence proving that in resting state, the brain spends most of its time near

critical point where the dynamics are close to phase transition with long range correlations.
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The main reason for this is that near the critical point, the system is anticipating criticality

therefore a lot of different meta-stable states exist [38]. This makes the brain elastic and

enhances the plasticity of the brain, to take the form of whatever state required.

One thing that we are very confident about is the fact that the brain handles loads of

information. Thus some parts of the brain would be dependent on others at certain points in

time. It is this flow of information and dependencies that we hope to understand a bit more

of in order to contribute towards our understanding of the inner workings and complexities

of the brain.

1.2 Peeking into the brain

The advances of technology have given us glimpses of what we hope to be the inner work-

ings of the brain. Unfortunately making sense of these glimpses, is not an easy task to

say the least. Adding to the difficulties is the fact that, on one hand it seems that different

parts of the brain are activated at different times but on the other hand it appears almost

like information is reaching all neurons at all times. Consequently, tracing the informa-

tion flow in the brain will require high temporal resolution in order to capture split second

changes. Electroencephalograph (EEG) may be able to do just that. On July 6, 1924 Hans

Berger first used EEG to measure human brain waves [43, 84]. EEG is the recording of

electrical activity along the scalp. The EEG can be defined roughly as the mean electrical

activity of certain sites on the scalp [84]. The electrical activity is detected as the differ-

ence in potential between two electrodes in a grounded system. With several electrodes

on the scalp, an estimate map of the brain’s electrical charges can be constructed. This

noninvasive technique is still the most widespread method used in laboratories [20].

Neuroimaging techniques are techniques used to visualize brain activity. The most

popular of these techniques are functional magnetic resonance imaging (fMRI), positron

emission tomography (PET) and single-photon emission computed tomography (SPECT)

which assess metabolic correlates of neurons in blood flow, blood volume and oxygenation

respectively [20]. The most prominent among those is the fMRI due to the prevalance

of MRI scanners. This method which makes use of a magnet weighing several tonnes,

depends on the magnetic moments of metal ions in our blood. fMRI makes use of the fact
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that the magnetic property of hemoglobin changes with presence and absence of oxygen.

The information gathered by an fMRI scanner is usually processed to construct images of

brain activities [20, 43]. There are many interesting studies that have made use of data sets

produced by fMRI [38, 36, 97].

1.2.1 EEG versus fMRI

The strength of fMRI lies in the spatial resolution. The easy-on-the-eye resulting images

obtained from the MRI scans make it possible to detect cellular activity in structures that

do not contribute to scalp EEG. A main technical drawback of the fMRI method is its slow

temporal resolution [20]. EEG on the other hand has a very high temporal resolution but

lower spatial resolution. EEG has come a long way since the time of Hans Berger but

the general idea of recording electrical activity on the scalp remains. Fortunately for us

the temporal resolution now is very high to the point where we could even possibly detect

reactions at a neuronal level.

EEG and fMRI are both non-invasive procedures, however there are plenty of more-

than-invasive experiments performed on the brains of animals including rats [12], cats [22]

and monkeys [67]. In all of these experiments the neurons reacted in order of milliseconds.

Therefore we believe that the human brain reacts similarly, that cooperative neuronal in-

teractions are manifested in the order of milliseconds which can be detected by the EEG

but not the fMRI. The temporal resolution is the most important reason we are interested

in EEG data sets, especially when the brain appears to reorganize itself almost instanta-

neously [20], in what appears to be the most effective information dissemination process

in the universe. Additionally from a theoretical point of view, the high temporal resolution

renders more data per second which leads to a much better probability estimate when one

takes the average over time relative to the estimates that can be obtained from fMRI data

sets.

Moreover, EEG technology has its advantages over the neuroimaging technique espe-

cially in terms of portability, availability and at least 85 year history of investigation. MRI

machines are typically huge and noisy enclosures which can sometimes intimidate whereas

EEG involves wearing a string of electrodes on ones head. It is simply psychologically and
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physically more convenient. Not to mention that it is also much cheaper than the fMRI.

The simplicity and widespread usage of the EEG gives it the edge. It is much easier for

a pianist for example to play the piano with some electrodes on his head then in an MRI

scanner. Furthermore, the existence of smaller and more efficient EEG recording machines

makes data acquisition less time consuming. In our case, EEG refers to the recording of the

brain’s spontaneous electrical activity over a short period of time, as recorded from eight

electrodes placed on the scalp.

1.2.2 Details of the EEG data set

Thanks to the team of EEG experts led by Björn Cr̈uts at Biometrisch Centrum (BMC) [1],

that make their own EEG recording devices, we have EEG data sets from possibly the most

up-to-date machine. Björn’s team have kindly shared some of their data sets and also gave

very valuable advice with regards of the outcome of the analysis. The team is continuously

working with clinicians all over the Netherlands (and currently expanding to some parts of

Germany) in using EEG in psychological treatments and providing EEG machinery as well

as training to the psychologist. The team strive to use the best quality materials for their

machines and they are constantly trying to improve the efficiency and design of their EEG

machines. The data sets provided to us were recorded at 250Hz (4 millisecond intervals)

with a resolution smaller than 0.1 millivolts. These data sets motivated us to think about

how the brain operates.

1.3 Measures on EEG data sets

In order to make sense of all the acquired EEG data obtained using these technologically

advance machines, a certain type of measure must be used to quantify these data. There are

many to choose from. The ever popular correlation deserves our attention first. But before

that, some definitions that will be adopted throughout the thesis.
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1.3.1 Probability and Expectation

We shall defineP as the probability. The most common way we shall useP is in terms of

expressing variables and its different possible values, that we shall call states. For example,

define two variablesX andY that can be in statesx ∈ X andx ∈ Y respectively.X is

the state space (set of all possible states) ofX andY is the state space ofY . P (X = x) =

pX(x) is the probability ofX being in statex. P (X = x, Y = y) = pXY (x, y) is the

joint probability ofX being in statex andY being in statey simultaneously. With regards

to the conditional probability, we shall useP (X = x|Y = y) = pX|Y (x|y) to denote the

probability ofX being in statex given thatY is in statey. These terms can be generalized

for relationship between many variables.

Thus if X ∼ pX(x) [X has distributionpX(x)] as we have defined above, then the

expected value of random variablef(X) is written [29] as

EpX(x)[f(X)] =
∑

x∈X

pX(x)f(x) = E[f(X)]. (1.1)

The last term on the right hand side (RHS) will be used when the probability distribution

is understood from the context. Moreover, sometimes we shall take the liberty of simply

usingP (X) = P (X = x), P (X|Y ) = P (X = x|Y = y) and so on, especially when using

P in tandem with expectationE and when the context is clearly understood. However this

is not to be confused with the general usage ofP as the probability of an event. For example

if A = {Xdoes not change} thenP (A) = P (Xdoes not change) is the probability thatX

does not change which is equal to the probability of eventA.

1.3.2 Covariance and Correlation

The most common measure on neuro data sets (or any kind of data in statistical mechanics

for that matter) is correlation. Correlation in a general sense of the word is commonly

used to refer to the mutual relationship or connection between two or more things. Even

when discussing the relationship between variables, correlation is often referred to in the

context of whether or not there exist co-relation between them. In statistical mechanics,

correlation often refers to a measure of mutual order existing between variables [109].
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Unfortunately (and this is where it sometimes get confusing) this is usually done using the

covariance measure. Recall the two variablesX andY previously defined. Given that the

joint probability ispXY (x, y), the covariance ofX andY is defined as

Γ(X, Y ) = E[XY ] − E[X]E[Y ]

=
∑

x∈X

∑

y∈Y

xypXY (x, y) −
∑

x∈X

xpX(x)
∑

y∈Y

ypY (y). (1.2)

In some literature this quantity is known as the correlation, we cautiously use the term

covariance here to distinguish it from the statistical correlation [36, 109],

ρ(X, Y ) =
Γ(X, Y )

σ(X)σ(Y )
=

E[XY ] − E[X]E[Y ]

σ(X)σ(Y )
(1.3)

whereσ(X) is the standard deviation ofX (note thatρ is undefined whenX or Y is

constant sinceσ(X) = 0). The variablesX andY are said to be ‘uncorrelated’ or linearly

independent whenΓ(X, Y ) = 0.

Let Xτ be the variableX that is shifted byτ time steps. For example, ifX is in state

1 at time step1, state2 at time step2 and so on. DenoteXn for value ofX at time stepn.

Xτ is the variableX shiftedτ time steps so that the values ofXτ areτ time step ahead of

X i.e. Xτ
n = Xn+τ . The cross correlation is used to measure correlation across time step

such that

ρ(Y, Xτ ) =
E[Y Xτ ] − E[Y ]E[Xτ ]

σ(Y )σ(Xτ )
. (1.4)

Similarly, cross covariance is defined asΓ(Y, Xτ ). Autocorrelation is simply the corre-

lation of a variable with a time shifted version of itself (hence the word auto) such that

ρ(X, Xτ ). Correlation is widely used in measuring quantities in many fields including

neuroscience. It is extensively used on EEG data sets [5].

1.3.3 Other measures

Measures can be used in time domain or in frequency domain. The previous measures were

mentioned in the context of time domain. There are many other measures that requires the
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EEG data set to be in the frequency domain since there are strong reasons to believe that fre-

quencies are important on EEG data sets. The most basic one would be coherence [44, 18],

which is simply correlation as a function of frequencies allowing spatial correlation to be

studied between different frequencies. For a review on how coherence have been used on

EEG see [84]. More recently, popular measures for the frequency domain in neuroscience

include Partial Directed Coherence (PDC) and Direct Transfer Function (DTF) by Taka-

hashi et al. [99].

However, in this thesis we only discuss measures in the time domain. Most of our find-

ings are similarly applicable to the frequency domain by simply replacing the probability

density function with the spectral density function. We will be focusing on entropy based

measures originating from information theory. The use of measures from information the-

ory is aptly appropriate considering that it has been said to be a natural tool set to use on

the brain [98] due to the vast amount of information processed.

1.4 How we humans view the brain

The way we humans picture the brain is constantly evolving. The ancient Egyptians appar-

ently did not consider the brain to be important, thus taking it out and throwing it away from

their dead ones during mummification. The ancient Greeks are the ones usually credited to

be the first to think that the brain was important. The idea that the mind and matter is con-

nected, is known to be propounded by Pythagoras who thought that the mind is somehow

attuned to the laws of mathematics. Whether or not this happened in the brain was prob-

ably not important to him. However, Hippocrates who came decades later argued that the

brain is the most important organ for sensation, thought, emotion and cognition [20]. Fur-

thermore, he divided the brain into four humours responsible for different temperaments.

Recent developments in technology and complexity science has resulted in paradigm shifts

in terms of how we look at the brain, most of the neuroscientists are now of the view that

the whole brain is also integrated in addition to having different functionalities [92].
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1.4.1 Simplistic view of the brain

The idea that there exist dedicated parts of the brain for certain functionalities persisted.

In the current literature it is known as functional segregation which refers to specialized

neurons responding to specific input features. There are even claims that every cognitive

act has its specific assembly that causes its emergence [24]. Its counterpart, the functional

integration on the other hand, refers to the establishment of a statistical relationship be-

tween different and distant cell populations which may ironically degrade specialization

[92]. From a very machine-like point of view the brain performs two very important and

almost contradictory actions. The first is the need to extract the information from the input

(stimulus) that it receives. This is where segregation is needed. At the same time (or within

a few milliseconds) it has to make sense and then react to the stimulus accordingly. And

this is where integration comes into play. Looking at the brain as a complex system that is

constantly near criticality brings these two functions together.

Nonlinearity is fundamental in any complex system. By definition, the emergence and

criticality expected in a complex system is a nonlinear phenomenon. The fact that we be-

lieve the brain is operating near criticality thus being crucially nonlinear encouraged us to

look for measures that can capture nonlinearities. Nonlinear relationships are prevalent in

the brain, small inputs can stimulate large outputs or sometimes none at all [20]. The func-

tional integration (connectivity) of the brain which is defined as the connections between

distant groups of cells are commonly established using temporal correlations (cross corre-

lation by our definition) or temporal covariance [92]. We are hoping to look at things in a

more nonlinear manner. Therefore, in our simplistic approach to understanding the brain,

nonlinearity will be one of the main issues.

The idea of functional segregation can sometimes be explained in terms of certain spe-

cific parts of the brain controlling certain specific functions. However, these controlling

areas are not the only ones that are active during the operation of the task and sometimes

the communicating areas are not even spatially connected [98]. Therefore, there must be

some form of communication between the areas especially when reacting to external inputs.

The communication links exist mostly as a series of action potentials forming a connec-

tion. The length of this connection in a single human brain is said to be between100, 000
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to 10, 000, 000 kilometres [92]. This emphasizes the importance of communication in the

brain in order for it to function as a directed network. The key word here is directed, having

a starting point and an end point. The very definition of the functional integration was to

establish a sort of temporal relationship between groups of cells and therefore establishing

‘causal’ (directed) link between these groups. Therefore, the second element that we wish

to incorporate in our simplistic model of the brain is a type of ‘causality’.

Chapter Summary

We have first explored how the brain could be the very definition of a complex system and

how technology can help us understand it better. Subsequently, we explained our interest in

EEG data sets and went through some basic introduction on how people go about measuring

it. The very nature of the brain where there is bound to be ‘causal’ connections in a very

nonlinear environment of a complex system points out the need for a measure that can

incorporate both nonlinearity and ‘causality’. We start by examining how to capture the

nonlinearity and this is where Mutual Information comes into the picture.
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Chapter 2

Mutual Information as a nonlinear

measure

To capture the nonlinearities of the brain, we need a nonlinear measure. The Mutual In-

formation which is based on information theoretic entropy introduced by Shannon in his

seminal paper [91] seems to fit this description. Firstly, we define entropy and its unique-

ness in defining uncertainties. Consequently we define Mutual Information and Kullback

Leibner measure as function of probabilities. We discuss some of the common properties

of these measures. In terms of independence, we show how Mutual Information is tailor

made to capture the very definition of independence in contrast to covariance which is es-

sentially defined to capture linear independence. Lastly, we will take a brief look at some

applications of the Mutual Information including possible ‘causality’ detection.

2.1 Entropy

In statistical mechanics, entropy arises as a measure of uncertainties and disorganization

in a physical system. Information theory deals with entropy in a slightly different man-

ner as it focuses on the quantification of information. Mutual Information is an entropy

based measure widely used in information theory. In order to understand Mutual Informa-

tion, we need to understand entropy. Entropy was first coined in 1865 by Rudolf Julius

Emmanuel Clausius [59] in reference to thermodynamics. However in 1948, Shannon de-
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fined a slightly different kind of entropy in terms of measurable dynamics and information

theory. It was reported that he contemplated calling it information or uncertainty but was

convinced by John Von Neumann to call it entropy for two reasons. The first was that

entropy is the uncertainty function of statistical mechanics and secondly according to Neu-

mann, to call it entropy will be advantageous in debates since nobody knows what entropy

really is [59].

On a more general level, the field of complex networks is still looking for a good quan-

tifier of complexity and there seems to be a great need for a new theory of information

of complex networks [3]. One way to tackle this issue is to import the key concepts of

information theory that has quantification of information as the main focus where entropy

based measures such as Mutual Information plays a key role. Being able to evaluate the

information transfer of a complex system is one of the main outstanding problems in the

statistical mechanics of the complex systems.

2.1.1 The definition of entropy

Shannon [91] defined entropy as the functionH(p1, p2, ..., pn) for probabilitiesp1, p2, ..., pn,

H(p1, p2, ..., pn) = −k

n∑

i=1

pi log pi (2.1)

wherek > 0 is a constant and the log is to the base 2. The aim was to measure the un-

certainty of the outcome of a certain variable given the probabilities.H was chosen to

represent uncertainty due to it being the only the solution to certain properties that are

outlined to ‘measure’ uncertainty [91] . Khinchin [58] came up with a more mathemati-

cally rigorous proof for uniqueness ofH for the chosen properties. Before outlining these

properties in subsection (2.1.2), we explain more aboutH.

Whenp1, p2, ..., pn are the probabilities of discrete random variableX we write

H(X) = H(p1, p2, ..., pn) = −
n∑

i=1

pi log pi (2.2)

as the entropy ofX [29, 60, 103]. Without lost of generality we have setk = 1. Note that
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X is not the argument of the functionH but it is the random variable the entropy of which

we are trying to measure. For example, say we have a random variableX with probabilities

p1 = P (X = 1) = 1
3
, p2 = P (X = 2) = 1

2
andp3 = P (X = 3) = 1

6
, then the entropy

would be

H(X) = −
1

3
log

1

3
−

1

2
log

1

2
−

1

6
log

1

6
.

Entropy does not actually depend on the values taken by random variableX but only its

probabilities. This entropy definition is also prominent in measure theory and ergodic

theory [52, 59].

More formally, define two random variablesX andY that have probabilitypX(x), x ∈

X andpY (y), y ∈ Y , respectively.X is the state space (set of all states) ofX andY is the

state space ofY . Their respective entropies [29] are

H(X) = −
∑

x∈X

pX(x)log pX(x) (2.3a)

and

H(Y ) = −
∑

y∈Y

pY (y)log pY (y). (2.3b)

We will use the convention0 log 0 = 0 which is easily justified by continuity since

x log(x) → 0 asx → 0 and log to the basee. In terms ofE, we have

H(X) = −
∑

x∈X

pX(x)log pX(x) = EpX(x) [−log pX(x)] = E [−log P (X)] . (2.4)

Therefore, the entropy ofX can also be interpreted as the expected value of−log pX(x)

whenX ∼ pX(x) [29]. Recall thatpX(x) = P (X = x) andE is the expectation as

previously defined in subsection (1.3.1).



2.1 Entropy 26

2.1.2 The uniqueness of entropy

When more than one variable is involved, joint and conditional entropy can be defined

[29, 52]. The joint entropy ofX andY is defined as

H(X, Y ) = −
∑

x∈X

∑

y∈Y

pXY (x, y)log pXY (x, y) = E [−log P (X, Y )]. (2.5)

DefineH(Y |X = x) = −
∑

y∈Y pY |X(y|x)log pY |X(y|x), so that the conditional entropy

can be written as

H(Y |X) =
∑

x∈X

pX(x)H(Y |X = x) = −
∑

x∈X

pX(x)
∑

y∈Y

pY |X(y|x) log pY |X(y|x)

= −
∑

x∈X

∑

y∈Y

pXY (x, y) log pY |X(y|x) = EpXY (x,y)[−log P (Y |X)] (2.6)

where we have substitutedpY |X(y|x)pX(x) = pXY (x, y).

The Uniqueness of Entropy was later on proven in mathematically rigorous way by

Khinchin [58] whenH has these properties:

1. Givenn possibilities,H is maximum whenpX(x) = 1
n

for ∀x ∈ X .

2. The chain rule:H(X, Y ) = H(X) + H(Y |X).

3. Adding an impossible event i.e a zero probability event does not change the value of

H: H(p1, p2, ..., pn, 0) = H(p1, p2, ..., pn).

As a side note, we would like to point out a trivial point that will make working with

expectations much simpler. For any function ofX, f(X) with distribution functionpX(x),

we have that

EpX(x)[f(X)] =
∑

x∈X

pX(x)f(x) =
∑

x∈X

∑

y∈Y

pXY (x, y)f(x) = EpXY (x,y)[f(X)], (2.7)

where we made use of the joint probability property
∑

y∈Y pXY (x, y) = pX(x). Conse-

quently, the chain rule onH (property 2) can be verified by substituting the Bayes theorem



Chapter 2. Mutual Information as a nonlinear measure 27

P (X, Y ) = P (X)P (Y |X) into equation (2.5) as follows

H(X) + H(Y |X) = EpX(x)[−log P (X)] + EpXY (x,y)[−log P (Y |X)]

= EpXY (x,y)[−logP (X)P (Y |X)] = EpXY (x,y) [−log P (X, Y )]

= H(X, Y ). (2.8)

This rule links joint and conditional entropy. By symmetry we also haveH(X, Y ) =

H(Y ) + H(X|Y ). It is possible to include more variables in the definition of joint and

conditional entropy where the definitions can also be linked using the chain rule. If we

define a new random variableZ in a similar manner, using the equality from Bayes theorem

pZ(z)pXY |Z(x, y|z) = pXY Z(x, y, z) and the definition of the conditional entropy, we get

H(X, Y |Z) =
∑

z∈Z

pZ(z)H(X, Y |Z = z)

= −
∑

z∈Z

pZ(z)
∑

x∈X

∑

y∈Y

pXY |Z(x, y|z) log pXY |Z(x, y|z)

= −
∑

x∈X

∑

y∈Y

∑

z∈Z

pXY Z(x, y, z) log pXY |Z(x, y|z)

= EpXY Z(x,y,z) [−log P (X, Y |Z)] . (2.9)

And by substitutingpY Z(y, z)pX|Y Z(x|y, z) = pXY Z(x, y, z), we obtain

H(X|Y, Z) =
∑

y∈Y

∑

z∈Z

pY Z(y, z)H(X|Y = y, Z = z)

= −
∑

y∈Y

∑

z∈Z

pY Z(y, z)
∑

x∈X

pX|Y Z(x|y, z)log pX|Y Z(x|y, z)

= −
∑

x∈X

∑

y∈Y

∑

z∈Z

pXY Z(x, y, z)log pX|Y Z(x|y, z)

= EpXY Z(x,y,z) [−log P (X|Y, Z)] . (2.10)

It is clear that by simple manipulation of the probabilities using Bayes theorem we can get

relations between conditional entropies. For example, using Bayes theorem to manipulate
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the probabilities we get

pXY |Z(x, y|z) =
pXY Z(x, y, z)

pZ(z)
=

pY |XZ(y|x, z)pXZ(x, z)

pZ(z)

= pY |XZ(y|x, z)pX|Z(x|z),

so that the entropy ofX andY conditioned onZ is equal to entropy ofY conditioned on

X andZ plus the entropy ofX conditioned onZ, i.e.

H(X, Y |Z) = H(Y |X, Z) + H(X|Z). (2.11)

We are now prepared to define Mutual Information.

2.2 Mutual Information and Relative Entropy

For the same random variablesX andY , the Mutual Information [29, 60, 61, 64, 73, 103]

is defined as

I(X, Y ) = H(X) − H(X|Y )

= EpX(x)[−log P (X)] − EpXY (x,y)[−log P (X|Y )]

= −E[log P (X)] + EpXY (x,y)

[

log
P (X, Y )

P (Y )

]

= EpXY (x,y)

[

log
P (X, Y )

P (X)P (Y )

]

=
∑

x∈X

∑

y∈Y

pXY (x, y)log
pXY (x, y)

pX(x)pY (y)
. (2.12)

I can be interpreted as the amount of informationY provides aboutX since it measures

the difference between the uncertainty ofX and the the uncertainty ofX given Y . The

relationship can also be viewed in a set theoretic setting as in Figure (2.1). If we define

H(X) andH(Y ) as sets, then we have thatI(X, Y ) = H(X)∩H(Y ) and thatH(X, Y ) =

H(X) ∪ H(Y ). The conditional entropies are given byH(X|Y ) = H(X) \ I(X, Y ) and

H(Y |X) = H(Y )\I(X, Y ). From the definition and the Venn diagram we can see thatI is
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Figure 2.1: Venn diagram depicting relationship betweenI andH

symmetric so that the information thatY gives aboutX is the same amount of information

X gives aboutY . The symmetry of Mutual Information can be shown using the chain rule

in equation (2.8).

I(X, Y ) = H(X) − H(X|Y ) = H(X) − [H(X, Y ) − H(Y )]

= H(Y ) − [H(X, Y ) − H(X)] = H(Y ) − H(Y |X) = I(Y, X). (2.13)

Note thatI(X, X) = H(X)−H(X|X) = H(X) sinceH(X|X) is obviously zero. There-

foreH is a special case ofI.

2.2.1 Relative Entropy and conditional Mutual Information

Another interesting way of interpreting Mutual Information is through relative entropy.

Relative entropy or Kullback Leibner (KL) distance [29, 52, 63] between two distribution

functionsf(x) andq(x) is defined as

D(f ||q) =
∑

x∈X

f(x) log
f(x)

q(x)
= Ef

[

log
f(X)

q(X)

]

,

where we take0 log 0
q

= 0 and0 log f
0

= ∞. D can be seen as a measure of distance

between distributions. However it should be pointed out that it is not a true metric distance

because it is not symmetric and does not satisfy the triangle inequality. Despite that, it is

often helpful to think ofD as the distance betweenf andq, because it seeks to quantify

the difference between these two distributions andD = 0 whenf(x) = q(x). If we let
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f(x) = pXY (x, y) andq(x) = pX(x)pY (y) then we get that

D(pXY (x, y)||pX(x)pY (y)) = EpXY (x,y)

[

log
P (X, Y )

P (X)P (Y )

]

= I(X, Y ). (2.14)

It appears thatI is just the special case ofD wheref is the joint distribution andq is the

product distribution. Using this logic, we can interpretI as measuring how ‘far’ the joint

distribution is from the product distribution.

Analogous to entropy, the definition of Mutual Information can be extended to include

a third random variableZ in the form of conditional Mutual Information [29, 52] which

can be written as

I(X, Y |Z) = H(X|Z) − H(X|Y, Z) = E[− log p(X|Z)] − E[− log p(X|Y, Z)]

= E

[

log
p(X|Y, Z)

p(X|Z)

]

= E

[

log
p(X, Y, Z)p(Z)

p(Y, Z)p(X, Z)

]

= EpXY Z(x,y,z)

[

log
P (X, Y |Z)

P (Y |Z)P (X|Z)

]

, (2.15)

where one can clearly see that the only difference with the Mutual Information definition

in equation (2.12) is that the probabilities are conditioned onZ. Conditional Mutual Infor-

mation can be interpreted as the amount of informationX provides aboutY (or vice versa)

given thatZ is known.

2.2.2 Properties of Entropy, Relative Entropy and Mutual Information

EntropyH is a specific case of Mutual InformationI. Mutual InformationI is a specific

case of relative entropyD. So all properties ofD extends toI and all properties ofI

extends toH. This does not apply in the other direction. One prevailing property for all

three quantities is non-negativity. This can be proven using Jensen’s Inequality [29, 108]

which states that ifg is a convex function thenE[g(X)] ≥ g(E[X]). And if g is a concave

function thenE[g(X)] ≤ g(E[X]). Let f(x) andq(x) be distribution functions, we claim

thatD(f ||q) ≥ 0 andD(f ||q) = 0 if and only if f(x) = q(x) for anyx. Forf(x), q(x) > 0
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we have that

−D(p||q) = −Ef(x)

[

log
f(X)

q(X)

]

= Ef(x)

[

log
q(X)

f(X)

]

≤ log Ef(x)

[
q(X)

f(X)

]

= log
∑

x

f(x)
q(x)

f(x)
= log

∑

x

q(x) = log1 = 0

where the inequality follows from Jensen’s inequality since the functionlog(x) is a concave

function ofx. ThusI(X, Y ) = D(pXY (x, y)||pX(x)pY (y)) ≥ 0 andI(X, Y ) = 0 if and

only if pXY (x, y) = pX(x)pY (y). MoreoverH(X) = I(X, X) ≥ 0 andH = 0 only when

X is constant [29]. However it must be pointed out that

I(X, Y |Z) = EpXY Z(x,y,z)

[

log
P (X, Y |Z)

P (X|Z)P (Y |Z)

]

6= EpXY |Z(x,y|z)

[

log
P (X, Y |Z)

P (X|Z)P (Y |Z)

]

= D(pXY |Z(x, y|z)||pX|Z(x|z)pY |Z(y|z)),

and thatD ≥ 0 does not necessarily implies that the conditional Mutual Information

I(X, Y |Z) ≥ 0. HoweverI(X, Y |Z) ≥ 0 can also be proven using Jensen’s inequality.

I(X, Y |Z) = EpXY Z(x,y,z)

[

log
P (X, Y |Z)

P (X|Z)P (Y |Z)

]

= EpXY Z(x,y,z)

[

−log
P (X, Z)P (Y, Z)

P (X, Y, Z)P (Z)

]

≥ −log

[

EpXY Z(x,y,z)
P (X, Z)P (Y, Z)

P (X, Y, Z)P (Z)

]

= −log
∑

x∈X

∑

y∈Y

∑

z∈Z

pXY Z(x, y, z)
pXZ(x, z)pY Z(y, z)

pXY Z(x, y, z)pZ(z)

= −log
∑

y∈Y

∑

z∈Z

pY Z(y, z)

pZ(z)

∑

x∈X

pXZ(x, z) = −log
∑

y∈Y

∑

z∈Z

pY Z(y, z)

pZ(z)
pZ(z)

= −log
∑

y∈Y

∑

z∈Z

pY Z(y, z) = −log
∑

z∈Z

pZ(z) = −log 1 = 0.

One property ofI not possessed byD is symmetry. Generally,D is not symmetric

sinceD(p||q) = Eplog
p(X)
q(X)

6= Eqlog
q(X)
p(X)

= D(q||p). I however, is symmetric because of
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equation (2.13). Joint entropyH(X, Y ) is symmetric since we get that

H(X, Y ) = EpXY (x,y)[−log P (X, Y )] = H(X) + H(Y |X)

= H(Y ) + H(X|Y ) = H(Y, X).

On the other hand, conditioning reduces entropy hence distorting the symmetry i.e

H(X|Y ) = −EpXY (x,y)[ log P (X|Y )] = H(X, Y ) − H(Y ) ≤ H(X),

H(Y |X) = −EpXY (x,y)[ log P (Y |X)] = H(X, Y ) − H(X) ≤ H(Y ),

so thatH(X|Y ) 6= H(Y |X) in general. It is the same case forI, generallyI(X, Y |Z) 6=

I(X, Z|X) 6= I(Y, Z|X) since the probabilities could be different although we obviously

still haveI(X, Y |Z) = I(Y, X |Z).

2.3 Mutual Information versus covariance

One feature of Mutual Information is that it enables quantification of relationship between

symbolic sequences [64]. This is due to the fact that Mutual Information only depends on

probabilities rather than the values of the variable itself, consequently the variable does not

have to be a number. It is pointed out that, in this way Mutual Information is somewhat

more flexible than covariance (and correlation) function since it does require the variable to

be a number. In a similar sense we can get relationship between blocks or group of nodes on

the brain since all we need are the probabilities and not the values of the nodes itself. This

could be very useful in identifying any scale free features of the brain to support the claim

in [36]. However the most important difference is in terms of linearity and independence.

2.3.1 Comparing independence

The variablesX andY are said to be linearly independent of each other if

∑

x∈X

∑

y∈Y

xypXY (x, y) =
∑

x∈X

xpX(x)
∑

y∈Y

ypY (y). (2.16)
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It can easily be seen that the covariance and correlation is defined to capture linear inde-

pendence. Recall the definition of covariance from equation (1.2) so that

Γ(X, Y ) = E[XY ] − E[X]E[Y ] = 0

⇒ E[XY ] = E[X]E[Y ]

⇒
∑

x∈X

∑

y∈Y

xypXY (x, y) =
∑

x∈X

xpX(x)
∑

y∈Y

ypY (y) (2.17)

where the last line is the very definition of linear independence. ThereforeE[XY ] =

E[X]E[Y ] implies thatX andY are linearly independent.

It is well known that two variablesX andY are independent if and only if their joint

distribution equals their product distribution [108] such that

pXY (x, y) = pX(x)pY (y) ∀ x ∈ X , y ∈ Y . (2.18)

It is a well known fact in statistics that uncorrelated-ness (linear independence) does not

imply (general) independence but independence implies uncorrelated-ness [46]. Anything

that is independent would of course be linearly independent by default. Recall from equa-

tion (2.14) that whenpXY (x, y) = pX(x)pY (y) i.e when theX andY are independent,

we have thatI = 0. We have seen thatI can be interpreted as measuring how ‘far’ the

joint distribution is from the product distribution (which is the joint distribution whenX

andY are independent). In other words Mutual Information seeks to measure how depen-

dent these two variables are on each other. One can see this from the definition of Mutual

Information in equation (2.12) which renders

I(X, Y ) = E

[

log
P (X, Y )

P (Y )P (X)

]

= E[ log P (X, Y ) − log P (X)P (Y )] = 0

⇒ E[ log P (X, Y )] = E[ log P (X)P (Y )]. (2.19)

Consequently it is logical to expect that, Mutual Information has the potential to provide us

with insights that have not been obtained using covariance before. The direct approxima-

tion approach should give us a clear indication of independence given that the probabilities
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are accurately estimated. Moreover, even ifX andY are not independent of each other,

one could have

pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z) ∀ x, y, z

so that variablesX andY are said to be conditionally independent on variableZ. There-

fore, if X andY are conditionally independent onZ, we get thatI(X, Y |Z) = 0.

2.3.2 An illustrative example

The discussion on independence indicates thatΓ = 0 ; I = 0 but I = 0 ⇒ Γ = 0. This

is demonstrated in [64] which starts off with a binary sequence where the numerical values

of X andY can only be either 0 or 1. In this case, we can find a relationship between these

two functions and linear dependence would lead to general dependence. Therefore we have

thatΓ = 0 ⇔ I = 0 for binary sequences.

Let p(α) andp(α, β) be the probability and joint probability forα, β ∈ {0, 1}. The

covariance in equation (1.2) becomes

Γ(X, Y ) = E[XY ] − E[X]E[Y ] = p(1, 1) − p(1)2, (2.20)

so that we can write the probabilities in terms ofΓ = Γ(X, Y ). Using the property of

joint probability
∑

β p(α, β) = p(α) and imposingp(α, β) = p(β, α), we get thatp(1) −

p(1, 1) = p(0) − p(0, 0). Moreover, taking into accountp(1) + p(0) = 1 (the normalizing

condition for probabilities) we obtain

p(1, 1) = Γ + p(1)2, (2.21a)

p(0, 0) = Γ + p(0)2, (2.21b)

p(0, 1) = p(1, 0) = −Γ + p(0)p(1). (2.21c)

The probabilities can be used to obtain the Mutual Information formula using equation
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(2.12) so that

I(X, Y ) =
∑

α

∑

β

p(α, β)log
p(α, β)

p(α)p(β)

=Γ log

(
1 + Γ

p(1)2

)(
1 + Γ

p(0)2

)

(
Γ

p(0)p(1)

)2 + p(1)2log

(

1 +
Γ

p(1)2

)

+ p(0)2log

(

1 +
Γ

p(0)2

)

− 2p(0)p(1)log

(

1 +
Γ

p(0)p(1)

)

. (2.22)

This equation ties in with the fact that the lower bounds on Mutual InformationI for any

kind of sequence has been proven to be dependent on the covarianceΓ and the marginal

probabilities [37]. An approximation when the terms Γ
p(α)p(β)

are small gives

I ≈
Γ2

2

(
1

p(1)2
+

1

p(0)2
+

2

p(0)p(1)

)

=
1

2

(
Γ

p(0)p(1)

)2

. (2.23)

This illustrates thatI decays to zero at a faster rate than the correspondingΓ.

By settingα, β ∈ {0, 1, 2}, we get ternary sequences. To obtain a relationship between

I andΓ using similar methods and constraints does not seem possible for ternary sequences.

However, settingΓ = 0 in equation (1.2) with current values ofX andY renders

Γ = E[XY ] − E[X]E[Y ] (2.24)

= p(1, 1) + 2p(1, 2) + 2p(2, 1) + 4p(2, 2) − (p(1) + 2p(2))2 = 0

and using this as an additional constraint, gives us probabilities to put inI to get values

of I corresponding toΓ = 0. In [64], some non-negative values for the probabilities were

randomly chosen and this made clear that there are values for whichΓ = 0 but I 6= 0.

ThereforeΓ = 0 ; I = 0 for ternary sequences in general. This demonstrates that the

Mutual Information function is capable of capturing the nonlinear dependencies that the

covariance might have missed.
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2.4 Various applications of Mutual Information

Just like correlation, Mutual Information has also been defined and redefined to serve

different purposes. The most natural extension is to insert an element of time and use

the Mutual Information with its time shifted counterpart ala cross correlation in equation

(1.4) such thatI(X, Y τ ) = H(X) − H(X|Y τ ) whereY τ denotes a variableY which

has been shifted by timeτ . This value is known as pairwise cross Mutual Information

[40] or time delayed Mutual Information [57, 89]. Mutual Information applied to its time

shifted version is sometimes referred to as auto Mutual Information [2, 55, 56] such that

I(X, Xτ ) = H(X) − H(X|Xτ ) whereXτ is the variableX that is shifted byτ .

Some go even further by defining the persistent Mutual Information of a variable (some-

times know as Mutual Information between past and future) which is the Mutual Informa-

tion of the past history of a variable and it’s evolution later in the future [8]. Analytical

works has been done on continuous Mutual Information for stochastic differential equa-

tions on Gaussian cases where Mutual Information has been expressed as the mean square

estimation error [7, 32, 33]. Mutual Information have also been applied on the frequency

domain [18] and is said to be better than coherence.

2.4.1 Quantifying transitions

Aiming to predict the future of evolving dynamical systems from the past using observed

historical data, [8] uses the persistent Mutual Information on the logistic map and con-

cluded that the measure succeeded in detecting different types of associated cascades of

banded chaos in addition to period doubling. This is an example of how Mutual Informa-

tion is utilized to quantify underlying transition in dynamical systems.

In [73], it is claimed that the Mutual Information is able to detect the phase transition

occurring in a two dimensional Ising model. This claim has been corroborated on different

systems on a few occasions. On the Viscek model of self propelled particles for example,

[105] has claimed that Mutual Information is a sensitive indicator and phase transition

locator. Furthermore, [105] claims that on this particular model, the Mutual Information

works even better than susceptibility even when only partial observations are available.

Drawing parallels between market crashes and phase transition under the assumption that
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collective pricing behaviour of the financial market works the like a complex systems, [47]

claims that Mutual Information indicates the transition from random to collective behavior

on the data sets.

2.4.2 Clustering and hierarchy detection

There are strong indicators that there exist hierarchies in the brain [20]. The grouping

property of Mutual Information could provide a natural way for application in clustering

algorithms. For this purpose, one could adopt the definition in [61] such that

MI(X, Y, Z) = H(X) + H(Y ) + H(Z) − H(X, Y, Z)

is defined for random variablesX, Y, Z as utilized before. This representation is useful

since one could make use of the grouping property of Mutual Information so that

MI(X, Y, Z) = I(X, Y ) + I((X, Y ), Z),

whereI((X, Y ), Z) = I(X, Z) + I(Y, Z|X) [29, 61]. If we again define everything in set

theoretic terms like in Figure (2.1) and considerH(X), H(Y ) andH(Z) as sets so that

I(X, Y ) = H(X)∩H(Y ), I(Y, Z) = H(Y )∩H(Z) andI(X, Z) = H(X)∩H(Z), then

MI(X, Y, Z) = I(X, Y ) ∪ I(Y, Z) ∪ I(X, Z) (2.25a)

and

I((X, Y ), Z) = I(X, Z) ∪ I(Y, Z). (2.25b)

We can clearly see from Figure (2.2) that

MI(X, Y, Z) = I(X, Y, Z) + I(X, Y |Z) + I(Y, Z|X) + I(X, Z|Y ). (2.26)
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Figure 2.2: MI(X, Y, Z), H(X), H(Y ) andH(Z)

These equalities can be generalized into

MI(X1, X2, ∙ ∙ ∙ , Xn) =
n∑

i=1

H(Xi) − H(X1, X2, ∙ ∙ ∙ , Xn)

I((X1, X2, ∙ ∙ ∙ , Xn−1), Xn) =
n∑

i=1

I(Xi, Xn|X1, ∙ ∙ ∙ , Xi−1)

whereH(X1, X2, ∙ ∙ ∙ , Xn) =
∑n

i=1 H(Xi|X1, ∙ ∙ ∙ , Xi−1) is the generalization [29] of the

chain rule on entropy that we have defined before. Therefore Mutual Information could

also be used as the proximity measure in a clustering algorithm, where the equations can

be used recursively as a clustering tool. This have been done in [61] electrocardiogram

(ECG) data. Examples of Mutual Information used for clustering and classification of EEG

data are given in [56, 2, 55]. Other applications of Mutual Information based clustering can

be seen in [21, 4].

2.4.3 Detecting causality

The earliest criticism of ‘causality’ based test is that correlation is not equal to ‘causal-

ity’ due to its symmetry [46]. Correlation and Mutual Information gives no indication of

the direction of the relationship. Coming back to our aim of capturing both nonlinear-

ity and ‘causality’, it would be great if Mutual Information is able to quantify ‘causality’.

Therefore one would logically conclude that inserting an element of time into conditional

Mutual Information will be more suitable for ‘causality’ detection. It so happens that there

is a value called Transfer Entropy [89] that is said to be able to do just that. This value is
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simply an extension of the conditional Mutual Information where the conditional Mutual

Information is utilized but now with its time shifted counterpart.

Consider the time shifted variable as in equation (1.4) and letX1 be the variableX that

is shifted by1 (so that the values ofX1 always comes beforeX). Recall the definition of

conditional Mutual Information from equation (2.15) and letX = X1 andZ = X in the

definition so that

I(X, Y |Z) = H(X|Z) − H(X|Y, Z) (2.27)

= H(X1|X) − H(X1|Y, X) = I(X1, Y |X) = TY →X .

This is a simple example of Transfer EntropyTY →X as described by [89]. The idea is that,

if Y causesX at time lagτ = 1, thenI(X1, Y |X) will be large since a lot the uncertainties

of X will be caused byY and the termH(X1|Y, X) will be much smaller thanH(X1|X).

However, before we delve further into how exactly the Transfer Entropy works we first

need to address the question of ‘causality’.

Chapter Summary

Entropy based measures are at the heart of information theory. There are overwhelming

interest in entropy based measure due to its nonlinearity. Moreover, we have discussed our

interest in Mutual Information due to its direct approach to quantifying ‘independence’ as

opposed to covariance. Popular applications of Mutual Information based measures and

its variants includes quantifying transitions, clustering and possibly ‘causality’ detection.

The relationship between independence and ‘causality’ is eminent. However, it seems that

dependency needs to be coupled with some sort of time element in order to be asymmetric

and therefore ‘causal’. In the next section we explore the idea of ‘causality’ and what can

be done to quantify it.
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Chapter 3

The question of ‘causality’

The question of ‘causality’ is a very tricky one to say the least. The definition of it, is

not something universally accepted. First we examine the conceptualization of ‘causality’

as envisioned by Wiener and formulated by the nobel prize winning Granger. It is in this

framework of ‘causality’ that we wish to build upon. We shall discuss some terms and is-

sues related to this kind of ‘causality’ for the sake of clarity. Next, we expound on what type

of ‘causality’ do we expect in the brain and how we intend to detect this using asymmetric

measures. The most popular ‘causality’ measure is Granger Causality (G-causality), there-

fore we venture into taking a closer look at G-causality and the challenges it faces. Lastly,

we go through some generalizations of G-causality (which surprisingly includes Transfer

Entropy) that aims to address the challenges.

3.1 The concept of ‘causality’

In his bookI Am A Mathematician[106], Norbert Wiener wrote that

“ .. If we can measure degrees of causality ... We can then observe how much

a change in one aspect of the universe will bring out changes in others.”

Wiener implied in his speech (and later in his book and papers) that it is possible to quantify

‘causality’ by virtue of quantifying the changes in a certain variable that incites changes

in another. Wiener had the idea that the ‘causality’ of a variable in relation to another can

be measured by how well the variable helps to predict the other. In other words, variable
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A ‘causes’ variable B if the ability to predict B is improved by incorporating information

about A in the prediction of B. Moreover, Wiener also said in [106] that

“.. I was forced to consider the theory of information, and above all, that partial

information which our knowledge of one part of the system gives us the rest of

it.”

The multi-talented Wiener is considered to be one of the pioneers of information theory.

He believed that information theory could really contribute to detecting ‘causality’ and

uncovering hidden information.

3.1.1 Different point of views on ‘causality’

From a philosophical point of view there has never been a clear agreement on what could

be defined as ‘causality’, for an interesting review of the mathematical theory of causation

from a philosophical point of view refer to [50]. Some philosophers even hold the view

that ‘causality’ is impossible to quantify [45, 52].

Statisticians often meet with ‘causality’ when dealing with correlation coefficient and

regression [45]. Granger has written a review (mainly intended for econometricians) about

the concept of ‘causality’ [46]. A more recent overview of causal related statistics albeit in a

slightly different area is written by Judea Pearl [80] who is known as one of the pioneers of

the Bayesian networks. According to him, the recent statistical ideas are moving away from

traditional statistical analysis and more towards causal analysis. He differentiates between

these two by saying that traditional statistical analysis focuses more on describing the data

and inferring distribution parameter from samples while causal analysis requires explicit

articulation of the underlying causal assumptions which is not what Bayesian statistician

normally do.

In Bayesian statistics (the name derived from Bayes theorem for conditional probabil-

ity), graphical models are often used. Graphical models are probabilistic models denoting

conditional independence structure between random variables. In [80], Pearl proposes us-

ing Structural Causal Model (SCM) to define causal quantities, causal assumptions and all

the other concepts needed in a causal discourse. SCM is an extension on the Structural
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Equation Modelling on linear systems. Granger admitted that it is possible to incorporate

a more Bayesian viewpoint to the idea of ‘causality’ by incorporating dynamics of prior

beliefs in the model [46]. One thing all the methods mentioned previously have in common

is that one will first need to fit a model to the data in order to extract the ‘causality’ and that

most of the models are essentially linear or at least based on a linear model. The model-free

quantifications of ‘causality’ seem to have their root in information theory.

In agreement with Pearl that causal statistics is one of the most important statistics,

[52] summarizes the information-theoretic and dynamical systems approach to causality.

The paper explains that the link between these two fields is due to the fact that many

of the approaches to inferring causality from experimental time series came about from

studying synchronization of chaotic systems where the Shannon’s entropy definition has

been adopted to study dynamical systems in the ergodic theory [59]. Various information-

theoretic functionals have been used to estimate, classify and and explain chaotic data

[8, 52].

3.1.2 The arrow of time and prediction

Despite all those differing views on ‘causality’ even the philosophers [17, 87, 50] agree on

the fact that the causal variable must come before the affected variable. As far as we know,

the future cannot cause the past and the arrow of time persists. Hence, there must exist a

certain time lag however small between the cause and the effect, this will be henceforth

referred to as the causal lag [44]. Granger himself said that the flow of time clearly plays a

central role and there is no use attempting to discuss ‘causality’ without time.

Another recurring theme is the use of prediction in ascertaining whether or not the

causal variable has unique information about the affected variable which implies that we

can infer ‘causality’ by comparing predictions. Consequently, we outline standard steps

of inferring ‘causality’ derived from Wiener’s idea, Granger’s formulation and the basic

assumption that the knowledge of the causal variable helps forecast the affected variable. It

is this definition of ‘causality’ that we will adopt in this thesis. Say we want to test whether

variableY causes variableX. The first step would be to predict the current value ofX

using the historical values ofX. The second step is to do another prediction where the
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historical values ofY andX are both used to predict the current value ofX. And the last

step would be to compare the former to the latter. If the second prediction is judged to be

better than the first one, then one can conclude thatY causesX.

3.2 Issues in ‘causality’

3.2.1 Directionality and information transfer

In networks literature the references to ‘causality’ take many guises. The term directional-

ity, information transfer and sometimes even independence can possibly refer to some sort

of ‘causality’ in line with our previously defined concept. ‘Causality’ plays a main role

when [76] discusses flow of information in Bayesian systems and when [66] expounds on

way to formalize information transfer on fully known dynamical systems. Our definition

of ‘causality’ is based on how well a variable helps the prediction of another variable. Now

let us assume thatY causesX.

We would expect the relationship betweenX and Y to be asymmetric and that the

information flows in a direction fromY to X. [68, 66, 52] highlights the importance of

asymmetry in information transfer. When it comes to directionality it is paramount to

point out that the main reason correlation is not equal to causation is due to the fact that

causation has direction and thus essentially asymmetric [44]. When one variable causes

another variable obviously the affected variable depends on the causal variable. Therefore,

one could also say that our prediction based definition of ‘causality’ is equivalent to looking

for dependencies between the variables at a certain causal lag.

Information transfer needs a source and target. The source where the information is

from and the target where it is transferred to. Thus in the case of ‘causality’ the source will

be the causal variable and the target is the affected one. One can assume that this informa-

tion transfer is the unique information provided by the causal variable to the affected one.

However this does not mean that the causal variable has complete control over the affected

variable.
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3.2.2 Deterministic variables and instantaneous casuality

If a variable has complete control of another variable then it is deterministically determined

by the control variable and thus indistinguishable from it. A purely deterministic variable

cannot be said to have any other causal influence other than its own past and a simple

example of a deterministic case given by [44] illustrates this. Let there be variablesX

andY whereXt = bt andYt−1 = c(t + 1). ThenX can exactly be predicted by the

equationXt = b + Xt−1 or equally by the equationXt = b
c
Yt−1. The predictions using

bothXt−1 andYt−1 are exactly the same hence indistinguishable. Moreover, one can also

expressYt in terms ofXt−1 through the formulaYt = c
b
(Xt−1 + 2b) which is equivalent to

Yt = Yt+1+c. Consequently it seems that ‘causality’ requires the variables to be stochastic.

With the uncertainty one is able to measure the ‘causal’ element and the directionality. The

‘causal’ and affected variable needs to have an independent source of variation [50].

The notion of instantaneous causality is discussed in [46]. The idea that two variables

can instantaneously cause each other with no causal lag at all has been said to be impossible.

Granger maintains that true instantaneous causality can never occur [46] and if anything

appears to be like it, then the ‘causality’ is either not measured at the correct time scale (the

causal lag is smaller than the measured time scale) or there is another variable jointly (or

indirectly) causing it which is not observed (not incorporated in the model).

3.2.3 Indirect ‘causality’ and independence

Granger pointed out that apparent instantaneous causality could be caused by variables

that were not incorporated in the model. He also brought to attention in [46], that any

two variables that are independent may not be conditionally independent. Referring back

to subsection (2.3.1), if two variables are statistically independent then it means that their

joint distribution is the product of their marginal distributions. Therefore what Granger is

implying is that variablesX andY may be independent but at the same time variablesX|Y

andX|Z may not be independent.

Thus one can say thatZ brought about the dependency betweenX andY . And since we

have defined ‘causality’ as a sort of dependency over a certain causal lag, then one can also

expect that there will be cases whereZ brings about a causal effect betweenX andY . [17]
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speaks about latent variables (hidden variables not directly incorporated in the model) that

might give rise to correlations in a model where ‘causality’ is supposed to be inferred from.

Dufour [31] mentions indirect causality that might be induced by an auxiliary variableZ

on the ‘causal’ relationship betweenX andY . Pearl talks about mediation in his paper [80]

where the term direct effect refers to an effect that is not mediated by other variables in the

model and by saying this he acknowledges that there exist mediation [16, 83] needed for

some (or most) type of causal relationship.

The previous discussions clearly indicates that there is a need to include more than just

two variables in a ‘causal’ analysis. Take lightning and thunder for example [45], we now

know that the reason we usually observe lightning before thunder is because light is much

faster than sound. We also know the fact that lightning and thunder are both essentially the

same event manifested at different times and caused by the same electrical discharge. Let

X be thunder,Y be the lightning andZ be the electrical discharge. If we only look atX

andY we will mistakenly say thatY causesX i.e. lightning causes thunder. However if

we includeZ then we will be able to infer thatZ (the electrical discharge) is the real cause

of X andY as well as the fact that the very existence of a relationship betweenX andY

depends completely onZ.

This kind of ‘causality’ is what we shall refer to as indirect ‘causality’ whereZ indi-

rectly causes the relationship betweenX andY . Whereas the relationship betweenZ and

X as well as the relationship betweenZ andY can be said to be a direct cause. By that

definition, the electrical discharge directly causes the thunder and it also directly causes

the lightning but the electrical discharge indirectly causes the thunder to be related to the

lightning. The condition that a causal relation cannot be due to a common cause is referred

to as causal sufficiency and some philosophers claim that only direct ‘causality’ can be

considered to be a real ‘causality’ [50]. Indirect ‘causality’ is a problem in many fields

[45] and we believe that the brain is no exception. To incorporate this indirect ‘causality’

is very much a problem when the ‘causality’ measure is not model-free since we have to

incorporate all the right variables into the model to begin with. This is one of the main

reasons why we will mainly be in favor of model-agnostic ‘causality’ measures.
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3.3 Causality on the brain

Unfortunately, in a complex system where one would expect synchronization and coop-

erative behaviour, the causal relationship is very complex [52] and the understanding of

cause and effect in complex system is definitely lacking [17]. To approximate ‘causality’

for complex system such as the brain, we first need to have an idea of what we seek from

the data sets.

3.3.1 Causal connectivity on the brain

We seek to understand the information transfer and causal connectivity of the brain. The

main reason we wanted to establish ‘causality’ in the brain is to uncover the directed con-

nectivity of the brain. The kind of ‘causality’ measures we utilize depend on what kind of

connectivity we wish to uncover in the brain. In neuroscience, effective connectivity is the

term often used for the connectivity that aims to identify the underlying physiological influ-

ences of neurons using available time series data. The effective connectivity is defined as

the directed influence that a neuronal populations in one brain area exerts on another [41].

Another type of connectivity that does not necessarily require any physiological veri-

fication is coined as the dynamical connectivity [17]. The dynamical connectivity is valid

when a few issues are taken into account. The first one is the fact that studies have demon-

strated [92] that the same physical network structure on the brain can give rise to multiple

distinct connectivity depending on interactions with environment. Secondly, neural dynam-

ics is said to alter underlying structural dynamics [17], for example in terms of memory and

learning.

Furthermore in our current state of knowledge, knowing all the variables involved with

a certain structure will be quite impossible making effective connectivity perpetually pro-

visional (unless perhaps validated by intervention procedures). On the other hand, the dy-

namical connectivity is a description of dynamical relations between variables regardless.

It will be best if one did obtain the effective connectivity where the dynamics and structure

go hand in hand and one verifies the other, however in light of the brain as a complex sys-

tem, this effective connectivity will surely be ever changing. We might want to take things

one step at a time and make sure we understand the dynamics first.
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3.3.2 Approaches to determining neural causal connectivity

There exist different approaches to achieving causal connections in the brain. One ap-

proach to modelling the brain is by utilizing the knowledge of biology and neuroscience to

preemptively make the best guess of a model that will fit the brain. Afterwards data sets are

fitted to verify the model, this approach is called confirmatory approach [41]. The second

approach called the exploratory approach takes the opposite position of inferring the model

from the data. This approach does not rely on any preconceived idea and let the data from

the brain shape the directed model of the brain. This view of modelling is also taken by

other fields and there is a growing general view that biology should move from hypothe-

sis directed research to exploratory methods [16]. Indeed, nature has so many secrets that

humans might benefit from putting assumptions aside and listening to it without attaching

preconceive notions.

One can think of the different approaches as being on a spectrum from purely confirma-

tory to purely exploratory. An example of a method that is often classed as being near the

confirmatory end of the spectrum is the Direct Causal Model (DCM) introduced by Fris-

ton [41] and the graphical model [76]. DCM incorporates explicit model of the neuronal

causes and is usually used to infer effective connectivity [17]. One can say that G-causality

and Transfer Entropy resides near the other end of the spectrum since both derive infer-

ences directly from data and conclusions are made based on distribution of the sampled

data. Henceforth we will focus more on the exploratory end.

However, G-causality is also confirmatory in sense that it assumes autoregressive pro-

cess. Transfer Entropy seems more exploratory than G-causality from this point of view.

Recent implementations of DCM incorporate evidences from data in model selection pro-

cess thus becoming somewhat exploratory [17]. The two approaches seems to be converg-

ing more and more.

3.3.3 Establishing connectivity through EEG

If one intends to pursue ‘causality’ the exploratory way, EEG or MEG data would be the

preferable to the fMRI. This is due to the fact that fMRI data changes with the structural

model which implies that one cannot directly compare different regions of the brain without
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a certain amount of structural model selection [41]. What we want to do is to get an

insight of the inner workings of the brain through a method which does not require direct

intervention in the brain by analysing EEG data sets. Wiener being keen on causality and

information theory has pointed out how EEG may be useful for this purpose when he [107]

wrote:

“Or again, in the study of brain waves we may be able to obtain electroen-

cephalograms more or less corresponding to electrical activity in different parts

of the brain. Here the study of the coefficients of causality running both ways

and of their analogs for sets of more than two functions may be useful in de-

termining what part of the brain is driving what other part of the brain in its

normal activity”.

The normal activity Wiener is referring to here is activity on the brain without any inter-

vention of artificial stimuli which he claims might bring about artifacts.

Artifacts such as movements and eye twitches (manually removed by neuroscientist)

are usually an issue when dealing with EEG data sets because it gets in the way of time

relation. The bandpass filtering that often has to be done on EEG data sets is also said to

be damaging to G-causality estimation [17]. In terms of the data sets we have obtained,

due to the use of the best possible equipments supplied by Björn’s team, almost no artifact

removal is needed and very minimal filtering is required. Therefore we are confident that

we have a good set of data to test our results on.

Recall that in our data sets, EEG refers to the recording of the brain’s spontaneous

electrical activity over a short period of time, as recorded from eight electrodes placed

on the scalp. It has been said that although the application of ‘causality’ measures on

EEG data can be extremely useful due to its sub-millisecond time resolution, it also suffers

from uncertainties in source space localization [17]. However, if we are focusing on the

dynamical connectivity of the brain, this is a question that we can put aside for the moment.

Here we assume that each electrode detects an average voltage of its surroundings thus each

electrode represents a spatially averaged electrical activity at one point on the skull. We

can think of it as the collective activity of neurons in that area of the scalp.
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The notion thatA causesB if A in the past incitesB in the present (or it’s relative

future) is what we will define as ‘causality’ in our context. And this is what we will be

looking for in the brain. In terms of EEG electrodes, if a certain electrodeA in the past

consistently incites a certain electrodeB in the present, then we shall say that electrodeA

causes electrodeB and this then translates to the area of the scalp. The general idea is that

if electrodeA causes electrodeB we would want to be able to detect it.

3.4 Granger Causality

First introduced by nobel prize winning Clive Granger [44] in the context of linear autore-

gressive (AR) model, G-causality is the most commonly used ‘causality’ indicator [17].

In his paper Granger explains the direction of ‘causality’ in a simple two-variable (binary)

model. G-causality is also often known as the Granger-Wiener causality especially since

Granger himself quoted that Wiener inspired him in his nobel lecture [52]. Granger out-

lined two things about ‘causality’ in that same lecture. The first is that the cause must come

before the effect (the arrow of time) and secondly that the cause should contain unique

information about the effect that cannot be found in any other variable [46].

3.4.1 G-causality: An overview

Referring back to our three steps in ascertaining whether variableY causes variableX. We

shall go through these steps again with a Granger causality point of view. The first step

was to predict the current value ofX using the historical values ofX. The second step is

to do another prediction where the historical values ofY andX are both used to predict the

current value ofX. In order to accomplish the first and second step, we need to fit variables

X andY into a model.

It is worth pointing out that, this is not a trivial task. First and foremost to fit variables

[68, 52] X andY into a model (usually some form of AR process) requires some kind of

method (usually standard linear regression method). Amongst the more popular ones are

the least square method or the Yule method [17]. For example one could use values of(X)1

to (X)n to predict(X)n+1 and for the second prediction one could utilize(Y )1 to (Y )n as
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well as(X)1 to (X)n to predict(X)n+1. However, how long a history should be taken into

account for prediction also needs to be decided upon. This process is usually referred to as

determining the order of the model and it requires fitting to the data sets. The order (model

fit) is determined using certain criterions for example Bayesian Information Criterion and

Akaike Information Criterion [17]. Only after satisfying ourselves that the model with a

certain order is a good fit, does one proceed into predicting the values.

After the first and second prediction, the third step is comparing the former to the latter

i.e. ascertaining whether the second prediction is any better than the first. In order to do this,

statistical significance is required and test statistics are used, amongst them the Granger-

Sargent [52, 17] and the Granger-Wald test [52]. And if the chosen test is satisfied, one can

conclude thatY Granger causesX which is often written asY G-causesX.

In short, one can say that G-causality works on the premise of comparing predictions

based on linear regression. The variables need to be linearly regressed in order to get linear

equations in an AR model. The equations will be utilized in the form of two predictions.

The first to predictX using its history and the second predictX again using the history of

bothX andY . If the second prediction is deemed to be better than the first, we can happily

say thatY G-causesX.

3.4.2 Challenges to G-causality

There are a few issues to focus on here, first and foremost the very fact that we need to

linearly regress the data to obtain the prediction means that we will loose a lot of nonlinear

information. The usual argument of the proponents of G-causality is that linear approxima-

tion works well on large scale interactions [17]. However, to Granger’s credit [44, 45, 46]

he has always been clear that G-causality is not absolute ‘causality’ and he himself ac-

knowledges that the optimal predictor may very well be nonlinear [44]. It has been pointed

out by many [15, 17, 68] that due to obvious nonlinear dependencies on neuro data sets,

using G-causality may not suitable.

This brings us to an essential point which is the modelling itself. Granger concedes that

it is not an easy task to get the modelling right and missing variables may lead to spurious

values [44]. The fitting of the linear regression to the data sets, the order of the model and
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the determination of which predictor is better are all determined by some form of criterion

that has to be decided upon and serves in itself as a varying parameter. The order of the

model is always a problem, too low an estimation leads to a poor representation of the data

and too high an estimation could also lead to various problems [17].

Moreover, G-causality was designed as a pairwise measure and is not suitable to deal

with three variables or more [10]. This is important since not only do we want to incorpo-

rate general dependencies but we also want to be able to eventually work with more than

two variables. Latent variables (or indirect causality) have been known to cause spurious

causal interaction when using G-causality [17].

3.4.3 Generalization and extensions of G-causality

The need to include more variables and nonlinear elements in examining data sets has

resulted in many new forms of generalized G-causality. Generally these extensions fall

into a few categories. The first category includes attempts to extend G-causality to be

able to include more than two variables. One example of this, is called the multivariate

Granger causality (MVGC) [10, 17] is also an extension of another variant of G-causality

called conditional Granger causality. The MVGC utilizes the determinant of the residual

covariance (the generalized variance).

Another slightly different extension utilizes total variance which is the trace of the

residual covariance matrix instead of the determinant [10, 17]. MVGC is said to be superior

to G-causality since it is not only able to quantify more than two variables but it can even

quantify interaction between groups of variables. Moreover MVGC has been proven to be

equivalent to Transfer Entropy on a Gaussian distribution [11, 10]. To address the problem

of indirect causality, Partial G-causality was introduced. It is said to be able to mitigate the

influence of latent variables [17].

The second category of extensions aim to extend the definition of G-causality to include

nonlinearity. One example is the attempt to extend the definition of G-causality to nonlinear

bivariate time series by utilizing nonlinear radial basis functions [68, 17]. Another idea

for incorporating nonlinearity involves locally linear models. The idea is to divide the

data into local neighborhoods where it will be approximated by a linear model and G-
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causality is applied. The extended Granger causality indices is given by averaging over the

neighborhood sampling [17, 68].

Another category of extensions can be classed as the nonparametric approach to gen-

eralizing G-causality. The most pressing issue with G-causality so far is that model must

be matched to underlying dynamics and may lead to spurious values. Nonparametric ap-

proaches are intended to be model free. Most of these types are rooted in information

theory. Generalized correlation integrals and conditional entropy among them [17]. The

Transfer Entropy is also said to be the information theoretic approach to G-causality [52].

This is because of the similarities they have in concept and approach to quantifying ‘causal-

ity’.

Chapter Summary

The notorious question of ‘causality’ has long been debated. The definition of it is yet

to be agreed upon and can lead to intense philosophical debate. In this chapter, we have

defined ‘causality’ as being prediction based and we have addressed some issues related to

it. We then went on to consider the brain itself and the differing views of how to understand

its causal relationships. We discussed how we decided to focus more on the exploratory

end of the modelling spectrum to establish dynamical rather than effective connectivity.

G-causality was considered given its popularity, thus some challenges and extensions of G-

causality was discussed. One of the information theoretic extension of G-causality is said

to be the Transfer Entropy. It appears that we have come full circle, arriving at Transfer

Entropy from both the nonlinearity and the ‘causality’ end. It is now high time we proceed

to look into this measure with more clarity.
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Chapter 4

Transfer Entropy

From previous chapters it seems apparent that the Transfer Entropy could be key in achiev-

ing our aims of capturing nonlinearity and ‘causality’ in the brain. We first explain the

idea behind this measure and how the Markov property plays a key role in the definition.

We highlight the difference between Transfer Entropy and conditional Mutual Information

in terms of transition and marginal probability. We then look at the definition of Transfer

Entropy from a prediction point of view and contrast it with G-causality. We point out the

weaknesses and strong points of this measure. Subsequently, we go through some Transfer

Entropy literature and examine more of the challenges it faces. Last but most certainly

not least, the simplest case is revisited and Transfer Entropy for causal lag detection is

highlighted.

4.1 Transfer Entropy and the Markov property

Recall the definition of Transfer Entropy in equation (2.27), where it was introduced as a

conditional Mutual Information variant with incorporated time delays. Schreiber’s original

definition of the Transfer Entropy however was based on the generalized Markov Property

and transition probabilities [10, 11, 57, 89].
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4.1.1 The transition probability

In [89], Schreiber points out that in order to incorporate the dynamical structures, transition

probability should be used instead of simultaneous (static) probability. To illustrate the

difference, imagine a ball that can be red or blue at any given time step and let the process

run for 10 time steps. If the ball was red 6 out of 10 times, counting the frequencies yield

that the static probabilities of the ball being red (R) and blue (B) is, P (R) = 0.6 and

P (B) = 0.4 respectively.

The transition probabilities however, take into consideration the order of change. If the

ball was red six times before it was blue i.e RRRRRRBBBB then the probability for the

ball to stay red is,P (R → R) = 5
9

and the probability for it to change from red to blue

is P (R → B) = 1
9
. Similarly P (B → B) = 3

9
andP (B → R) = 0. While the static

probabilities remain the same for the case where the order of change is RBRBRBRBRB,

the transition probabilities do not. Now, we have thatP (R → B) = 5
9
, P (B → R) = 4

9
,

P (B → B) = 0 andP (R → R) = 0. Transition probabilities of higher order (more than

one time step) can also be defined [77].

Basically, the transition probability considers the state of the ball (red or blue) at differ-

ent time steps and the changes it makes, instead of calculating the frequencies of the ball

being red or blue throughout the time steps. The transition probabilities, capture the dy-

namics in this sense. The essential difference between conditional Mutual Information and

Transfer Entropy is that the latter utilizes transition probabilities in place of static prob-

ability. It is worth pointing out again that in order to get some sort of directionality or

‘causality’, measuring values across different time steps is somewhat inevitable.

A Markov process (also known as a Markov chain) is a random process that retains

no memory of where it has been in the past [77]. Therefore, the state of the system in

the future only depends on the present. IfX is Markov process [29] with possible values

xi, i = 1 ∙ ∙ ∙n, then we have that

P (Xn+1 = xn+1|X1 = x1, X2 = x2, ..., Xn = xn) = P (Xn+1 = xn+1|Xn = xn).

This memoryless property is called the Markov property. In [89], a system of Markov

process of orderk was considered. A Markov process of orderk is a random process that
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retains memory of onlyk steps in the past so that

P (Xn+1 = xn+1|X1 = x1, ∙ ∙ ∙ , Xn−k−1 = xn−k−1, Xn−k = xn−k, ∙ ∙ ∙ , Xn = xn) (4.1)

= P (Xn+1 = xn+1|Xn−k = xn−k, ∙ ∙ ∙ , Xn = xn).

Let theX
(k)
n = (Xn−k = xn−k, ..., Xn = xn), so that the Markov property in equation (4.1)

can be written asP (Xn+1 = xn+1|X
(n−1)
n ) = P (Xn+1 = xn+1|X

(k)
n ).

A generalization to this property [89] is when we include another variable in the con-

dition P (Xn+1 = xn+1|X
(n−1)
n , Y

(n−1)
n ) = P (Xn+1 = xn+1|X

(k)
n , Y

(l)
n ), whereY is a

Markov process of orderl. This implies that variableX depends on the history of variable

Y up to orderl. The idea of Transfer Entropy incorporates the generalized Markov property

in determining whether there is a flow of information from one process to another.

4.1.2 Schreiber’s Transfer Entropy

Noticing that Mutual Information and the other entropy based measures mentioned before,

did not capture directional information and the dynamics, Schreiber [89] introduced the

Transfer Entropy. The Transfer Entropy ofY to X, TY →X [11, 52, 57, 89] (whereX is a

Markov process of orderk andY is a Markov process of orderl ) is given by

TY →X = E

[

log
P (Xn+1 = xn+1|Y

(l)
n , X

(k)
n )

P (Xn+1 = xn+1|X
(k)
n )

]

(4.2)

=
∑

xn+1

∑

xn

∑

yn

P (Xn+1 = xn+1, Y
(l)
n , X(k)

n ) log
P (Xn+1 = xn+1|Y

(l)
n , X

(k)
n )

P (Xn+1 = xn+1|X
(k)
n )

.

We again take the value0 log 0 = 0. If TY →X 6= 0 andTX→Y = 0 then one can say that

Y ‘causes’X [89, 57]. The Transfer Entropy can be identified as a variant of conditional

Mutual Information. Recall the definition of Transfer Entropy in equation (2.27), where

Transfer Entropy was introduced as a version of time delayed conditional Mutual Informa-

tion such thatI(X1, Y |X) = H(X1|X)−H(X1|Y, X). HereX1 is the variableX shifted

one time step so that the values ofX1 is always one time step ahead ofX. This is a simple
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case of Schreiber’s definition of the Transfer Entropy whenk = 1 andl = 1 such that

TY →X = E

[

log
P (Xn+1 = xn+1|Yn = yn, Xn = xn)

P (Xn+1 = xn+1|Xn = xn)

]

= E

[

log
P (X1|Y, X)

P (X1|X)

]

(4.3)

= H(X1|X) − H(X1|Y, X) = I(X1, Y |X).

Clearly it is the transition probabilitiesP (Xn+1 = xn+1|Yn = yn, Xn = xn) as well as

P (Xn+1 = xn+1|Xn = xn) that are taken into account. Contrast this with the definition

of conditional Mutual InformationI(X, Y |Z) in equation (2.15) whereP (Xn = xn|Yn =

yn, Zn = zn) andP (Xn = xn|Yn = yn) are considered instead.

In the original paper, Transfer Entropy was intended to measure the deviation from

Markov property. Schreiber’s aim was to incorporate the properties of Mutual Information

and the dynamics captured by transition probabilities in order to understand the concept and

exchange of information. Taking into account two processes at different time steps comes

about naturally as soon as transition probabilities are considered. Both Transfer Entropy

and time delayed Mutual Information were defined to incorporate time delay, however time

delayed Mutual Information does not utilize transition probabilities. Recall the definition

of time delayed Mutual Information such thatI(X, Y τ ) = EpXY (x,y)

[
log P (X,Y τ )

P (X)P (Y τ )

]
. The

probabilities that are taken into account are the joint probabilityP (X, Y τ ) and the marginal

probabilitiesP (X) as well asP (Y τ ).

Schreiber in [89, 57] claims that time delayed Mutual Information fails to distinguish

common history of the stochastic process. To prove his point he experimented on spa-

tiotemporal systems with no coupling where both time delayed Mutual Information and

Transfer Entropy gave zero values. However when coupling was present [89, 75], the time

delayed Mutual Information reflected static (as opposed to dynamical) properties and gave

nonzero values in both directions whereas Transfer Entropy was nonzero for one direc-

tion only and hence indicating clear directionality. This is also the findings of [40], which

addresses indirect ‘causality’ within the time lags of a certain process sayX. The Trans-

fer Entropy on itselfTX→X is compared to the auto Mutual InformationI(X, Xτ ) on a

coupled Lorentz system where the coupling is controlled. The results clearly indicate that

while auto Mutual Information could not differentiate direct and indirect ‘causes’ within
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the different time steps, the Transfer Entropy correctly detected only the direct ‘causes’.

4.1.3 Directionality of couplings in dynamical systems

As mentioned before, many approaches of inferring ‘causality’ came about due to inves-

tigations on synchronization of chaotic systems. In the introduction paper [89], Transfer

Entropy was introduced as a measure to detect the direction of couplings in dynamical

systems when it was tested on a unidirectionally coupled maps and the Ulam map before

application on real data sets. In [57], the Transfer Entropy is used to study the informa-

tion content in relation to synchronization. Similarly Transfer Entropy or some closely

related variant of conditional Mutual Information was tested on logistic maps [82], Ulam

maps [68], Hènon map [68], Lorentz systems [40, 82], Rössler models [101, 78], Ornstein-

Uhlenbeck process [86] and various other forms dynamical systems. In [78, 101, 40, 82],

the conditional Mutual Information is applied directly on the generated values of these dy-

namical systems. However, in [78] the phase of the coupled oscillator in used instead of the

actual values. In all these papers the results from using these variants of Transfer Entropy

on the dynamical systems were dominantly positive.

In [68], the performance of a few different methods for testing ‘causality’ were evalu-

ated on various forms of Ulam maps and Hènon maps. This was done in order to assess the

usefulness of these methods for detecting asymmetric couplings and directional of infor-

mation flow in a deterministic chaotic system. Among the methods tested include Transfer

Entropy and some extensions of G-causality. The conclusion of the paper was that their

first choice given a priori unknown dynamics will be Transfer Entropy. On a more theoreti-

cal end of the spectrum, [66] attempts to rigorously formalize information transfer between

dynamical system components for systems with fully known dynamics. The transfer of en-

tropy (the amount of entropy transferred between processes) is the focus this paper. It was

remarked in [66] that the findings are consistent with Schreiber’s Transfer Entropy. The

results were applied on systems with Hènon map and Baker transformation.
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4.2 Transfer Entropy and G-causality

Schreiber [89] defined Transfer Entropy to measure deviation from the generalized Markov

property. One can also look at Transfer Entropy as a generalization of G-causality [52] as

well as a ‘causality’ measure that is inline with G-causality in terms utilizing prediction as

a means to infer ‘causality’ [11]. Indeed there are papers claiming that Transfer Entropy

equals G-causality when the distribution is Gaussian [11, 10].

4.2.1 Transfer Entropy as a method that compares predictions

Transfer Entropy can be compared to Granger Causality step by step as a prediction method.

Say we have processes (variables)X andY . We wish to test whetherY causesX. To

visualize Transfer Entropy we shall refer to theTY →X = E
[

log P (Xn+1=xn+1|Y
(l)
n ,X

(k)
n )

P (Xn+1=xn+1|X
(k)
n )

]

definition. Referring back to the three steps we have outlined for ascertaining ‘causality’,

the first step would be to predict the current value ofX using the historical values ofX.

In Transfer Entropy this will be the process of obtaining the value of transition probability

P (Xn+1 = xn+1|X
(k)
n ). Contrasting this to the first step when using G-causality, at this

stage we should first have a model (usually Auto Regressive) that can incorporate both

variablesX andY . We have pointed out in subsection (3.4.1) that finding the right order

of the model is an issue for G-causality application. This is also true for Transfer Entropy

which requires the denominatorP (Xn+1 = xn+1|X
(k)
n ) to be estimated for the prediction.

The order comes in the form of deciding what the value ofk is. By assumingkth order of

the Markov property, one is incorporatingk historical values into the prediction.

Second step, another prediction where the historical values of areY andX are both

used to predict the current value ofX. For Transfer Entropy this requires the estimation

of P (Xn+1 = xn+1|Y
(l)
n , X

(k)
n ). The same issue of determining the value ofl in relation

to Y needs to be taken into account. G-causality makes use of the preconceived model to

do its prediction at this second step. The last step is to compare the former prediction to

the latter. If the second prediction is judged to be better than the first, one can say that

Y causesX. Transfer Entropy utilizes the expected log ratio between the two probability

distributions to compare the predictions henceTY →X = E
[

log P (Xn+1=xn+1|Y
(l)
n ,X

(k)
n )

P (Xn+1=xn+1|X
(k)
n )

]
. G-

causality mainly compares the variance of the error terms of both predictions in the model



Chapter 4. Transfer Entropy 59

to determine which one is better. In order to do this for G-causality test statistic are used

[52, 17, 11]. According to Schreiber’s definition [89, 57] for Transfer Entropy, only if

TX→Y = 0 and TY →X 6= 0 can we conclude thatY causesX. In later papers it has

been suggested that significant tests in the form of surrogates [101, 102, 78, 75] could be

sufficient.

Transfer Entropy and G-causality was proven to be equivalent on the Gaussian model

[11, 10]. This is due to the fact that Gaussian distributions can be calculated analytically

from the covariance matrixΣ. The definition of entropy given a Gaussian distribution is

H(X) =
1

2
ln(|Σ(X)|) −

1

2
ln(2πe)

where|Σ(X)| is determinant of the covariance matrix ofX. One can also obtain the residu-

als of a linear regression in terms of this covariance matrix therefore enabling one to link the

G-causality and Transfer Entropy analytically [57]. It appears that under the Gaussian as-

sumption there is nothing additional to account for the nonlinear extensions of G-causality

since the Gaussian AR process is necessarily linear [11].

4.2.2 Transfer Entropy versus G-causality

Other than being model agnostic and nonlinear, Transfer Entropy also easily extends to

multivariate applications. One example of this is the generalization of Mutual Information

MI(X, Y, Z) = H(X)+H(Y )+H(Z)−H(X, Y, Z) in subsection (2.4.2). More than one

variable can be incorporated asX, Y or Z since the only thing that matters is the probabil-

ity distribution. In fact the multivariate concept of Transfer Entropy together with entropies

and Mutual Information have been suggested as unifying frameworks for determining di-

rected networks [26, 86]. However, the estimation of the probability distribution remains

a big obstacle to successfully implementing this framework. Non-information theoretic

based extension of G-causality to multivariate concept is not generally straightforward as

explained in subsection (3.4.3) and the estimations of many variable brings about similar

estimation challenges.

Being model free, Transfer Entropy is usually preferred for the exploratory approach,

however not having an underlying model is not always advantageous, the high sensitivity
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and the uncertainty of how to interpret the outcome may be a problem [102]. The main

strength of G-causality is that it is well defined and pragmatic as a result of being applied

in a well understood framework. Although one does not expect this to be the case where

the nonlinearities of a complex systems is considered (EEG data sets have been said to

be not even approximately Gaussian [57]), it is well known that if the interactions are

indeed linear, linear methods such as G-casuality will usually outperform Transfer Entropy

[17, 102]. Moreover it was pointed out in [11] that even though for most empirical data it is

difficult to establish the extent to which Gaussian assumptions are tenable, it is nonetheless

widely employed. If this is indeed the case (such that Gaussian distributions apply) then

the two methods are interchangeable.

Furthermore, G-causality is simpler to deal with because the sample statistic is known

and therefore there exist many forms of significant test to choose from when comparing the

predictions (in the last step). For Transfer Entropy it has been said that a significant test

would be hard to devise due to the unknown sample statistic [11]. However as we pointed

out before, in current applications of Transfer Entropy, surrogates are used as a form of

significant testing [101, 102, 78, 75].

4.3 Challenges to Transfer Entropy

The main challenge to applying Transfer Entropy would have to be the estimation on real

data sets due to probability estimation. However, we put aside this issue for a while and

we will return to this issue in later chapters before the treatment on real data sets. The

challenges addressed in this section apply to both Transfer Entropy and G-causality. Essen-

tially, these are the challenges that are usually associated with prediction based ‘causality’

measures.

4.3.1 In addressing deterministic cases and full synchronization

At the very beginning, Schreiber [89] pointed out that Transfer Entropy was meant for

cases where neither of the systems nor their couplings may be assumed to be deterministic.

Consequently, ifY is completely determined byX, thenTY →X = 0. This will be the case
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for deterministic coupling since the probabilities ofY would be exactly the same asX.

Thus Transfer Entropy with itself would be

TX→X = E

[

log
P (Xn+1 = xn+1|X

(k)
n , X

(k)
n )

P (Xn+1 = xn+1|X
(k)
n )

]

= E

[

log
P (Xn+1 = xn+1|X

(k)
n )

P (Xn+1 = xn+1|X
(k)
n )

]

= log 1 = 0.

This constitutes the reason why Mutual Information and Transfer Entropy is invariant un-

der diffeomorphic (isomorphic on smooth manifolds) transformations [57]. On one hand,

it makes sense that if the relationship betweenX andY makes them practically indistin-

guishable (from the equation above we can see this is due to the probabilities) from each

other, there should be no information flow.

However one could argue that, instead of having no flow of information at all, that this

is the case where there is a complete flow of information from one process to another, or

in other words that it is fully synchronized. Indeed, not only is Transfer Entropy zero for

deterministic cases but it is also zero for complete synchronization [57, 102]. In a way, this

is a bit worrying since on one handTY →X = 0 implies thatY is completely independent

of X, but as we have just seenTY →X = 0 could also imply thatY is completely dependent

on X (deterministically coupled or fully synchronized). This issue has been pointed out

by [76] which claims that Transfer Entropy does not coincide with information flow and

suggests a new measure in the causal Bayesian network to overcome this.

This same issue is touched upon in [40] where it is said that conditional Mutual Infor-

mation will only work if the underlying processes has a varying source of entropy (stochas-

tic or chaotic) and thus one process is not function of the other. This is the kind of infor-

mation that is addressed by Transfer Entropy where the reduction in uncertainty is taken

as information transfer. Hence, according to Transfer Entropy there is no information flow

when the variables are indistinguishable and at complete synchronization. Moreover, one

could say that a causal direction is impossible to establish in this case (refer to discussion

in subsection (3.2.2)).
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4.3.2 Indirect ‘causality’

We have touched upon the issue of indirect ‘causality’ in subsection (3.2.3). There is a real

need to differentiate instances of direct and indirect dependencies. If there was only three

stochastic processesX, Y andZ in a system, then theoreticallyI(X, Y ) = I(X, Y |Z) > 0

implies thatX is directly dependent onY and vice versa. One could say that the link

betweenX andY is direct and does not depend on any other variable. However if we have

that I(X, Y ) 6= I(X, Y |Z), then one can say that the dependency ofX on Y (or Y on

X) is indirect and depends onZ. In other words, the interdependency betweenX andY

indirectly depends onZ.

In order to incorporate time and direction into this idea, [40] has made used of this idea

with values ofY = Xτ1 andZ = Xτ2 whereXτ1 andXτ2 are both time shifted versions

of time lagτ1 andτ2 respectively, so thatI(X, Xτ1) andI(X, Xτ1 |Xτ2) can be compared

on a Lorentz systems where the coupling can be controlled. The auto Mutual Information

I(X, Xτ1) could detect the dependencies over time but could not differentiate between

direct and indirect ones. Whereas the conditional Mutual Information (or the Transfer

Entropy value used on a single variable)I(X, Xτ1 |Xτ2) gives clear indications of which

time lags is directly ‘causing’ the others. In [40], the conclusion was that the conditional

Mutual Information is able to reveal direct and indirect causality.

The idea is that one can always condition out other variables (be it time shifted or not)

by incorporating the variables inZ (which can be multivariate) in the termI(X, Y |Z)

(which also applies to Transfer Entropy) and say that this represents the direct interdepen-

dency ofX and Y without the effects ofZ. However, Schreiber [89] has forewarned

that conditioning on too many variables is dangerous as the estimations will be much

more difficult. To overcome this problem several alternative solutions have been proposed

[86, 82, 31].

4.4 Incorporating time delays

The idea of indirect ‘causality’ is often related to the existence of time delay between

cause and effect. In subsection (3.2.3), the fact that causal lags will inevitably exist for
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‘causality’ to be manifested was established. The example of the lightning and thunder

was highlighted where lightning would appear to be causing thunder if the real cause of

electrical discharge was not taken into account. In a way one could say that lightning

indirectly causes thunder, on the other hand one could also say that lightning and thunder

are the same events manifested at different time lags. In other words, thunder can be

considered as a delayed effect of lightning. Thus, identifying time delay is a big step

towards identifying indirect ‘causality’.

4.4.1 The detection of ‘causal’ lags

The ‘causal’ lag is the time delay that exist between the ‘cause’ and effect. It could be

interpreted as the time taken to deliver the information from the causal variable to the

affected one. We suspect that these types of delays should be present in the brain where

neurons are constantly firing. Therefore the past and future (in terms of the lags) must be

at a rate that is meaningful and this is where EEG with its high temporal resolution should

be most helpful.

This was exactly the point made out by [102] which claims that in neuroscience, the

interaction may involve large time delays of unknown duration. Therefore [102] recom-

mends that a time shift test in taken addition to Transfer Entropy whenever multiple source

signal is likely to be present especially in EEG data. The time shift test proposed was

simply looking at various Transfer Entropy values for different time shifted version of a

certain variable (process). In particular, what [102] implemented was that if two variables

X andY has Transfer Entropy values that indicatesY causesX, let this be the hypothe-

sis. TY 1→X is calculated whereY 1 is the time shifted variableY such thatY 1
t = Yt+1. If

TY 1→X ≥ TY →X , then it is concluded that the relationship is due to instantaneous mixing

and the idea thatY causesX is discarded. Otherwise the hypothesis is accepted. The usage

of Transfer Entropy in combination with time shift test was recommended on EEG data.
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4.4.2 Simplest case and ‘causal’ lag detection

The simplest case of equation (4.2) is when we letl = 1 andk = 1 so that

TY →X = E

[

log
P (Xn+1 = xn+1|Y

(1)
n , X

(1)
n )

P (Xn+1 = xn+1|X
(1)
n )

]

= E

[

log
P (Xn+1 = xn+1|Yn = yn, Xn = xn)

P (Xn+1 = xn+1|Xn = xn)

]

= E

[

log
P (Xn = xn|Yn−1 = yn−1, Xn−1 = xn−1)

P (Xn = xn|Xn−1 = xn−1)

]

.

We seek to investigate this form especially since Schreiber himself warns against condi-

tioning on too many variables. Notice that the calculation will be just as simple if we

defined

T
(τ)
Y X =E

[

log
P (Xn = xn|Xn−1 = xn−1, Yn−τ = yn−τ )

P (Xn = xn|Xn−1 = xn−1)

]

=
∑

xn+1∈X

∑

xn∈X

∑

yn∈Y

P (Xn+1 = xn+1, Xn−1 = xn−1, Yn−τ = yn−τ )×

log
P (Xn+1 = xn+1|Xn−1 = xn−1, Yn−τ = yn−τ )

P (Xn+1 = xn+1|Xn−1 = xn−1)
(4.4)

whereX is the state space ofX andY is the state space ofY . We take the value0 log 0 = 0.

Writing this equation in terms of shifted variablesX−1 andY −τ we have that

T
(τ)
Y X =E

[

log
P (Xn = xn|Xn−1 = xn−1, Yn−τ = yn−τ )

P (Xn = xn|Xn−1 = xn−1)

]

= E

[

log
P (X|X−1, Y −τ )

P (X|X−1)

]

=
∑

x∈X

∑

x′∈X

∑

y∈Y

pXX−1Y −τ (x, x′, y) log
pX|X−1Y −τ (x|x′, y)

pX|X−1(x|x′)
. (4.5)

In relation to equation (2.27), we highlight that the formula of the Transfer Entropy in

equation (4.5) is related to conditional entropy and conditional Mutual Information in this
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way,

T
(τ)
Y X = E

[

log
P (X|X−1, Y −τ )

P (X|X−1)

]

= E

[

log
P (X, X−1, Y −τ )

P (X−1, Y −τ )P (X|X−1)

]

= E

[

log
P (X, Y −τ |X−1)

P (Y −τ |X−1)P (X|X−1)

]

= I(X, Y −τ |X−1)

= H(X|X−1) − H(X|Y −τ , X−1). (4.6)

This simple form allows us to vary the values ofτ in investigating whether there is a

certain causal lag required in order to manifest the dependency. This was the form sug-

gested in the time shift test of [102]. This was also the form suggested in [75] where it was

called Transfer Entropy. In [75] time delayed Mutual Information was compared to time

delayed Transfer Entropy and the conclusion was in favour of Transfer Entropy. A similar

idea of causal lag detection called horizons on G-causality is discussed in [31]. Several

other approaches to tackling the issue by utilizing permutation entropy are proposed in

[65, 82]. If we were to reformulate the time shift test previously discussed, the test will be

that if T (2)
Y X > T

(1)
Y X then the idea thatY causeX should be discarded. In this thesis, we do

not necessarily agree with this. We intend to show this situation can occur whenY causes

X but not detected at the exact time lag. In fact we shall show thatT
(τ)
Y X for our purposes

will be largest at exact causal lagτ .

Chapter Summary

Despite all the challenges facing Transfer Entropy, the usage of the measure has made it

one of the most prominent measures in capturing ‘causality’, often mentioned together or

as an extension of G-causality. Even when new measures are proposed [76, 65, 82], the

Transfer Entropy becomes the benchmark measure for comparison. This is especially true

in the field of neuroscience [17, 102, 5] and in particular when examining EEG data sets

[70, 69, 99]. In fact given unknown dynamics, Transfer Entropy was crowned as the first

choice among methods for quantifying causal structure of bivariate time series by [68].

Therefore, the Transfer Entropy seems ideal for our purposes. It is a variant of condi-

tional Mutual Information thus non-linear and general when it comes to independence. At
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the same time it incorporates the time element that enables ‘causality’ detection. We have

taken the simplest Transfer Entropy case and redefined it for causal lag detection. Now

we shall put this measure to the test. We have seen that most of the testing on conditional

Mutual Information and Transfer Entropy were done on dynamical systems. We aim to

look at these values more from a statistical mechanics point of view and we think there is

no better testing ground to start with than the famous Ising model.
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Chapter 5

The Ising model

The Ising model is a simple mathematical model used in statistical mechanics. Its sim-

plicity makes the two dimensional case exactly solvable [19, 27]. In the first part of the

chapter we will explain the concept and some history of the Ising model as well as how it

achieves criticality. Some theoretical values of the measures we wish to investigate on the

model are introduced. Afterwards, we go on simulating the model using the Metropolis

Monte Carlo algorithm. Consequently, we outline the simulation results. Firstly we verify

crossover values and a further discussion of what this values implies. Then, we proceed to

take a closer look at the Mutual Information, conditional Mutual Information, time delayed

Mutual Information and Transfer Entropy applied on the simulated data and what they im-

ply. Lastly, we discuss how Mutual Information and covariance can be related on the Ising

model and what this means in relation to dependence of sites on each other.

5.1 Concept of the Ising model

The quest of seeking to explain the macroscopic behaviour of a system on the basis of its

microscopic structure in statistical mechanics has its root in the analysis of simplified math-

ematical models [42]. The Ising model is the simplest of these models. More importantly,

phase transition is manifested on the model where a small change in temperature causes a

huge change in long range correlative behaviour [27, 28].
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5.1.1 About the Ising model

The Ising model was introduced as a simplified representation of intermolecular forces on

ferromagnetic metal. This is due to the fact that ferromagnetic metal can be regarded as

being composed of elementary magnetic moments called spins which are arranged on the

vertices (sites) of a crystal lattice. The phase transition on this lattice is said to be the

spontaneous emergence of magnetization in zero external magnetic field as temperature is

lowered below a certain critical temperature [27].

The Ising model got its name from the German physicist Ernst Ising who wrote his

doctoral thesis on this particular model in 1925 [28, 19] where he utilized the model in

trying to explain certain empirically observed facts about ferromagnetic materials. He was

a student of Wilhelm Lenz who had earlier roughly proposed the idea in 1920. At first,

even Ernst Ising himself gave up research in physics after thinking that he had proven that

his model had no physical usefulness [19]. It physically appeared that an oversimplified

model representation of intermolecular forces on which this model is based on would make

it unapplicable to any real system.

It was only20 years later that Ising found out that he was famous for other peoples work

on his abandoned model [28]. Although his work on the one dimensional Ising model did

not achieve phase transition, the two dimensional model does. In fact, an analytical solution

has been given by the nobel prize winning Onsager [27]. Currently, the model has been

applied to biology, sociology and economics (just to name a few) [27, 28]. Practically, any

case where you have two possible states of interacting components to take into account and

where cooperative behavior is studied, some form of Ising model can be applied. Indeed,

the importance of the Ising model cannot be overstated.

The model may be summarized as follows. Assuming that the physical system can be

represented by a regular lattice arrangement and that the sites (particles) are positioned at

points of some lattice embedded in Euclidean space. Each site may either be in two states,

representing the physical state of spin-up and spin-down. The orientation of each spin is

random but subject to spin-spin interaction which favours their alignment. Spin values are

chosen at random according to a certain probability measure, known as Boltzmann distribu-

tion or Gibbs measure, which is governed by interactions between neighbouring particles.
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The theory of Gibbs measure is a branch of classical statistical physics which also can be

viewed as part of probability theory. It was proposed as a natural mathematical description

of an equilibrium state of a physical system which consists of a very large number of inter-

acting components (such as spins on ferromagnets) [42]. In probabilistic terms, it is none

other than the distribution of a countably infinite family of random variables which admit

some prescribed conditional probabilities. This notion has received considerable interest

from both mathematical physicist and probabilists. The Gibbs measure has been proven to

be the unique measure that maximizes entropy and underlies the maximum entropy method.

5.1.2 The mathematical formulation

One can visualize the Ising model as a two dimensional square lattice with lengthL com-

posed ofN = L2 sites (vertices)si, i ∈ N = {1 ∙ ∙ ∙N}. These sites can only be in two

possible states, spin-up (si = 1) or spin-down (si = −1). The full description of a mi-

crostate or a configuration will be denoted byω = {s1 ∙ ∙ ∙ sN}. Let (si)ω be the number

which appears as theith component inω. This number represents the state of theith site

in configuration (microstate)ω. We shall take the liberty of usingsi instead of(si)ω when-

ever the configurationω is understood from the context. LetΛ be the set of all possible

configurations or microstates such thatω ∈ Λ.

The interactions between these sites are given by the interaction strength. In this thesis,

we restrict the interaction of the sites to only its nearest neighbour (in two dimensions this

will be sites to the north, south, east and west). Let the interaction strength betweeni and

j be denoted by

Jij =






J ≥ 0, if i andj are nearest neighbours andi, j ∈ N

0, otherwise.
(5.1)

The nearest neighbour restriction will shape the Ising model to be Markovian in a sense

that the probability of a given sitei ∈ N being in stateα is given by

P (si = α|sj, i 6= j) = P (si = α|sj , j is nearest neighbour ofi),
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where instead of being dependent on all other sites on the lattice it is only dependent on the

nearest neighbour. This property is sometimes referred to as the Markov random field [42].

The Hamiltonian (energy),H, for any configurationω ∈ Λ is given by [27, 28]

H(ω) =
∑

i∈N

∑

j∈N

Jij(si)ω(sj)ω (5.2)

whereJij is taken from equation (5.1) which incorporates nearest neighbour interactions.

The probability of configurationω ∈ Λ is given by the Boltzmann (Gibbs) distribution

P (ω) =
exp(−βH(ω))

∑
ω∈Λ exp(−βH(ω))

(5.3)

whereβ = 1
KBT

such thatKB is the Boltzmann constant andT is temperature.β is

very important since this is how the temperature effects the probability. The strength of

the Boltzmann distribution lies in the fact that for small values ofβ (high temperature) the

distribution tends to be uniform and for large values ofβ (low temperature) the probabilities

of lowest energy state is accentuated [28, 77]. Therefore, the effective interaction strength

increases or decreases depending on temperatureT (throughβ) that in turn effects the

probability of the sites being in certain configurations.

5.2 Simulating the Ising model

We shall first give a brief outline of the Metropolis Monte Carlo (MMC) before discussing

how we simulated the Ising model using this algorithm. Subsequently we discuss the esti-

mations of probabilities and transition probabilities using temporal averages.

5.2.1 Metropolis Monte Carlo (MMC) algorithm

The definition of Ising model contains no information on its dynamics. However, what one

does know is the fraction of the system in a particular configuration (microstate) which is

given by the Boltzmann distribution in equation (5.3). The algorithm proposed by Metropo-

lis in 1953 was designed to sample the Boltzmann distribution by artificially imposing
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dynamics on the Ising model [62, 27, 77]. This is done by controlling the transition proba-

bilities from one configurationω ∈ Λ to anotherω′ ∈ Λ such that

γB = P (ω → ω′) =






exp[−β(H(ω) −H(ω′))], if H(ω′) > H(ω)

1, if H(ω′) ≤ H(ω).
(5.4)

The HamiltonianH is taken as in equation (5.2) such that it represents the state of energy

at the particular configuration. The transition probabilityγB is favoring lower energy con-

figurations. The Metropolis algorithm can be summarized in these few steps [62, 27]. First

prepare the system in an arbitrary configurationω and calculateH(ω). Afterwards choose

a random sitej so that one can calculateH(ω′), whereω′ is the configuration that will be

obtained fromω by changing the state ofj such that(sj)ω = −(sj)ω′ and(si)ω = (si)ω′ for

any i ∈ N , i 6= j. The change on sitej is accepted with probabilityγB given by equation

(5.4). The process of choosing a new site to flip (upwards or downwards) and comparing

the resulting Hamiltonian is then repeated.

Monte Carlo simulations are Markov processes. Based on the Markov chain Monte

Carlo procedure, the simulation is primely interested is the invariant distribution of the

Markov chain (another name for Markov processes) and not the chain itself [77]. The

Metropolis algorithm is Markovian in a sense that the transition probability only depends

on the current configurationω to decide the next configuration. Therefore the product of

the Metropolis algorithm is a Markov chain. The most important point is that, Markov

chains have invariant distribution. The validity of the Metropolis algorithm depends on the

attainability of this invariant distribution (sometimes also known as stationary distribution

or the steady state). In the Metropolis algorithm, the intended invariant distribution [77] is

the Bolzmann distribution in equation (5.3) which is incorporated into the algorithm as the

ratio
P (ω)

P (ω′)
=

exp(−βH(ω))

exp(−βH(ω′))
= exp[−β(H(ω) −H(ω′))]

in equation (5.4). However the choice of transition probabilityγB in equation (5.4) is not

unique. There are other existing choices that may also satisfy the Boltzmann distribu-

tion [27].
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The implementation of the MMC algorithm in this thesis is outlined as follows. Recall

thatL is the length of the lattice so thatN = L2 is the number of sites on the lattice. A

site is chosen at random (in our case using MATLAB’s random number generator) to be

considered for flipping (change) with probabilityγB. The event of considering the change

and afterwards the actual change (if accepted) of the configuration, shall henceforth be

referred to as flipping consideration. A sample (or sweep) is taken after eachN flipping

considerations. The logic being that, since sites to be considered are chosen randomly one

at a time, we can assume that afterN flips, each site has been selected for consideration

once. These samples are the values that we shall refer to when talking about time steps of

the resulting Markov chain.

The interaction strength is set to beJ = 1 and the Boltzmann constant is fixed as

KB = 1 for all the simulations. For illustration purposes,L = 10 is usually utilized

unless stated otherwise. We let the system run up to2000 samples before sampling at every

N = L2 time steps. This is done for more than100 temperature values ofT ranging from

0 to 5.

5.2.2 Temporal average

On the Ising lattice, when one wants to talk about expectations, it must be under the Boltz-

mann distribution. Therefore for any siteX on the lattice, the expectation ofsX ∈ {−1, 1}

is given by

EP (ω)[sX ] =
∑

ω∈Λ

(sX)ωP (ω) = (1)
∑

ω1∈Λ

P (ω1) + (−1)
∑

ω2∈Λ

P (ω2), (5.5)

whereP (ω) is the probability of the existence of configuration (microstate)w given by the

Boltzmann distribution in equation (5.3). ω1 are the configurations wheresX = 1 andω2

are the configurations wheresX = −1. The average considered here is known in statistical

mechanics as the ensemble average [27]. Under certain conditions given by the ergodic

theorem, the ensemble average is equal to the temporal average [77, 27]. The temporal

average is where the probability of a variable is obtained by averaging over the frequencies

of different states over time.
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When one generates the values of the Ising model using MMC algorithm, a Markov

chain (process) is formed for every site on the lattice. Therefore rather than focusing the

state of a site at each configuration(sX)ω (where the configuration has to be taken into

account), one focuses on the state of a site at each time step (as obtained from the samples)

of the Markov chain(sX)n wheren is the time step of the Markov chain. LetT be the

length of the Markov chains. To get the temporal average from the Markov chains, one

simply counts the frequency of a certain state and then divide it with the length of the

Markov chain such that for anyα ∈ {−1, 1},

P (sX = α) =

∑T
n=1 δ{(sX)n = α}

|T |
= psX

(α) (5.6)

whereδ is the function defined as:

δ{.} =






1, if the statement in{ } is true

0, otherwise.

For joint distributions we count the joint frequencies, so that for anyα, β ∈ {−1, 1},

P (sX = α, sY = β) =

∑T
n=1 δ{(sX)n = α and(sY )n = β)}

|T |
= psXsY

(α, β). (5.7)

The Markov chains generated by the Metropolis Monte Carlo algorithm are known

to be able to achieve invariant distribution as well as ergodicity [77]. Consequently, the

expectation ofsX can now be written as

EP (ω)[sX ] =
∑

ω∈Λ

(sX)ωP (ω) =
∑

α=±1

(sX)psX
(α) (5.8)

and the joint expectation would be

EP (ω)[sXsY ] =
∑

ω∈Λ

(sX)ω(sY )ωP (ω) =
∑

α=±1

∑

β=±1

sXsY psXsY
(α, β). (5.9)
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In relation to equation (1.2), the covariance on the Ising model could be given as

Γ(X, Y ) = Γ(sX , sY ) = EP (ω)[sXsY ] − EP (ω)[sX ]EP (ω)[sY ]

=
∑

α=±1

∑

β=±1

sXsY psXsY
(α, β) −

∑

α=±1

(sX)psX
(α)

∑

β=±1

(sY )psY
(β)

=
∑

α=±1

∑

β=±1

sXsY [psXsY
(α, β) − psX

(α)psY
(β)] , (5.10)

whereX, Y ∈ N are two sites on the lattice and the temporal average is applied. All the

numerical probabilities obtained for Ising model in this thesis will have been obtained using

the temporal average method on MMC simulations where the resulting Markov chains will

be of lengthT = 100000 unless stated otherwise.

5.2.3 Estimating transition probabilities

To get transition probabilities, again we utilize the fact that under the Metropolis Monte

Carlo simulations each site is considered as a Markov chain. One way of doing this is to

simply count and get the fraction of the occurance of these transition. For example to get

the transition probability ofsX from stateβ to stateα at time lag1, we have

P ((sX)n = α|(sX)n−1 = β) =

∑T
n=2 δ{(sX)n = α given(sX)n−1 = β)}

|T − 1|
.

whereδ is again the function defined in equation (5.6). In other words, we use temporal

average to obtain the transition probabilities. Generally for any time lagτ one can calculate

the transition probability such that for anyα, β ∈ {−1, 1}

P ((sX)n = α|(sX)n−τ = β) =

∑T
n=1+τ δ{(sX)n = α given(sX)n−τ = β)}

|T − τ |
.

However if this is done, the marginal probability in equation (5.6) will also need to be

altered so that the probabilities will tally. The marginal probability for anyτ is

P (sX = α) =

∑T
n=1+τ δ{(sX)n = α}

|T − τ |
= psX

(α). (5.11)
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Consequently, when using this method one needs to recalculate the marginal probabilities

for each different value of time lagτ . In order to avoid the need to recalculate at every time

lag, one can utilize a different method.

Alternatively, considerXτ to be a different Markov chain whereXτ is the processX

that is shifted byτ time steps. In doing this, we do not change the length of the Markov

chain but instead we shift the Markov chain in a circular manner so that the marginal

probabilities remain the same for any time lagτ . In other words, the firstτ time steps ofX

becomes the lastτ time steps ofXτ such that(sXτ )T −τ+n = (sX)n for n = 1, ∙ ∙ ∙ , τ , and

(sXτ )n−τ = (sX)n for n = τ + 1, ∙ ∙ ∙ , T . We simply letY = Xτ in equation (5.7) so that

P (sX = α, sXτ = β) =

∑T
n=1 δ{(sX)n = α and(sXτ )n = β)}

|T |
= psXsXτ (α, β). (5.12)

In both these methods, it is important thatτ << T so that the probability estimation

obtained from the simulated Markov chain is as accurate as possible.

5.3 Measures on Ising model

Utilizing the time average method of approximation, we are able to approximate the mea-

sures that we have defined in previous chapters on the Ising model and some new ones due

to the nature of the Ising model. First we explore the measures or observables that may

be of interest due to their relationship with phase transition and critical values on the Ising

model. After that, we revisit covariance and various forms of Mutual Information including

conditional Mutual Information and Transfer Entropy.

5.3.1 Observables for verification of the critical point

In an infinite two dimensional lattice, the phase transition of the Ising model withJ = 1

andKB = 1 is known to occur at the critical temperatureTc = 2
log(1+

√
2)

≈ 2.269185 [27].

In a finite system, due to finite size effects, the critical values will not be quite as exact,

we will refer the temperature where the transition occurs in the simulation as the crossover

temperatureTc. MagnetisationM and susceptibilityχ are observables that are normally

used to identifyTc on the Ising model.
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In order to defineM andχ, let m(n) =
∑N

i=1(si)n be the sum of spins on a lattice of

sizeN at time stepsn = 1, ∙ ∙ ∙ , T . The magnetisationM is defined as

M =
1

N
E[m(n)] =

1

N

[
1

T

T∑

n=1

m(n)

]

=
1

NT

T∑

n=1

N∑

i=1

(si)n. (5.13)

We utilizedE[.] in terms of temporal average by averaging over all the time stepsn. Sub-

sequently, withKB = 1 the susceptibility per spin [27] can be written as

χ =
1

TN

(
E[m(n)2] − E[m(n)]2

)

=
1

TN



 1

T

T∑

n=1

[
N∑

i=1

(si)n

]2

−

[
1

T

T∑

n=1

N∑

i=1

(si)n

]2


 (5.14)

whereT is the temperature. Using MMC algorithm for temperaturesT = 0, ∙ ∙ ∙ , 5 (taking

χ = 0 at T = 0) and chain length (number of samples for each site)T = 100000 we get

M in Figure (5.1) andχ in Figure (5.2). TheM values in Figure (5.1) was initialized with

values1 (all spins-up) therefore the initial magnetisation is1. If the initialization was with

spins-down values (−1), then the initial magnetisation would have been−1.
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Figure 5.1: MagnetisationM using equation (5.13) stabilizes to0 atTc
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Figure 5.2: Susceptibilityχ of equation (5.14) peaks atTc

The Mutual Information between sitesX andY on the lattice, in relation with equation

(2.12), (5.6) as well as (5.7), can be written as

I(X, Y ) = I(sX , sY ) = E

[

log
P (sX , sY )

P (sX)P (sY )

]

=
∑

α=±1

∑

β=±1

psXsY
(α, β) log

psXsY
(α, β)

psX
(α)psY

(β)
. (5.15)

Consequently conditional Mutual Information involving another siteZ can be written as

I(X, Y |Z) = I(sX , sY |sZ) = E

[

log
P (sX , sY |sZ)

P (sX |sZ)P (sY |sZ)

]

=
∑

α=±1

∑

β=±1

∑

γ=±1

psXsY sZ
(α, β, γ) log

psXsY |sZ
(α, β|γ)

psX |sZ
(α|γ)psY |sZ

(β|γ)
. (5.16)

To see the effect of Mutual Information over different temperatures we choose three sites

A, B and G representing coordinates[1, 1] , [2, 2] and [3, 3] on the lattice. In a lattice

with L = 10 with N = 100 sites, we have thatA = 1, B = 12 andG = 23 so that

A, B, G ∈ N . Matsuda [73] concluded that the Mutual Information and covariance shows

singular behaviour near critical point and this is what we observe in Figure (5.3).
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Figure 5.3: Values of covarianceΓ(A, B) using equation (5.10), Mutual Information
I(A, B) using equation (5.15), time delayed Mutual InformationI(A, B1) us-
ing equation (5.17) and susceptibilityχ using equation (5.14) on the simulated
values of the Ising model across temperatureT

5.3.2 Measuring values across time lags

In Figure (5.3) we have plotted time delayed Mutual InformationI(A, B1) which is almost

indistinguishable from Mutual InformationI(A, B). Utilizing the probability estimation in

equation (5.6) and (5.12), the time delayed Mutual Information between any siteX andY

on the lattice can be defined as

I(X, Y τ ) = I(sX , sY τ ) = E

[

log
P (sX , sY τ )

P (sX)P (sY τ )

]

=
∑

α=±1

∑

β=±1

psXsY τ (α, β) log
psXsY τ (α, β)

psX
(α)psY τ (β)

(5.17)

whereY τ is the variableY shifted byτ time steps. Previously we have also defined auto

Mutual Information or the Mutual Information over time asI(X, Xτ ), this is a special case

of time delayed Mutual Information on itself. From our investigations on the simulated

data, neither time delayed nor auto Mutual Information values will be very different from

Mutual Information values on the model.
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The Transfer Entropy on the Ising model can be calculated using the equation (4.5)

T
(τ)
Y X = T (τ)

sY sX
= E

[

log
P (sX |sX−1 , sY −τ )

P (sX |sX−1)

]

=
∑

α=±1

∑

β=±1

∑

γ=±1

psXsX−1sY −τ (α, β, γ) log
psX |sX−1sY −τ (α|β, γ)

psX |sX−1
(α|β)

. (5.18)

In Figure (5.4) we plot the valuesT (1)
BA andT

(1)
AB alongside susceptibilityχ. Despite the
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Figure 5.4: Values ofT (1)
BA andT

(1)
AB both using equation (5.18) and susceptibilityχ using

equation (5.14), across temperatureT .

smaller values of Transfer Entropy it still does peak nearTc. One can see that there is no

clear difference betweenI(A, B) andI(A, B1) in Figure (5.3) nor betweenT (1)
BA andT

(1)
AB

in Figure (5.4), thus no direction of ‘causality’ can be established betweenA andB. This

is true for anyτ used in equations (5.17) and (5.18) between any two site on the lattice.

What we observed was the effect of the distance between the sites.

5.3.3 The influence of distance

In this subsection we shall use reduced temperatureT−Tc

Tc
for visualization. FromM in

Figure (5.1) andχ in Figure (5.2), the crossover value is estimated to beTc = 2.15. The
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effect of distance is observed in the values of Mutual Information and covariance as seen

in Figures (5.5) and (5.6).
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Figure 5.5: Mutual InformationI(A, B), I(A, G) andI(B, G) of equation (5.15) versus
reduced temperatureT−Tc

Tc
. I(A, G) < I(A, B) ≈ I(B, G) due to distance.
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Figure 5.6: CovarianceΓ(A, B), Γ(A, G) andΓ(B, G) of equation (5.18) versus reduced
temperatureT−Tc

Tc
. Γ(A, G) < Γ(A, B) ≈ Γ(B, G) due to distance.
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The fact thatA, B andG represents coordinates[1, 1], [2, 2] and [3, 3] means that the

distance fromA to B andB to G is equal but half the distance ofA to G. Due to strictly

nearest neighbour interactions as well as the translational and rotational invariance nature

of the Ising model, two sites on the lattice with the same distance between them will have

the same marginal and joint probability. This is evident from howI(A, B) ≈ I(B, G) in

Figure (5.5) andΓ(A, B) ≈ Γ(B, G) in Figure (5.6). The values ofI(A, G) andΓ(A, G)

are smaller in the respective figures due to the larger distances between the sites.
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Figure 5.7: Conditional Mutual InformationI(A, B|G), I(A, G|B) and I(B, G|A) of
equation (5.16) versus reduced temperatureT−Tc

Tc
. I(A, G) < I(A, B) ≈

I(B, G) due to distance.

B is situated betweenA andG on the lattice. Although[2, 2] is not the nearest neigh-

bour of either[1, 1] or [3, 3], interactions between to the two sites will logically pass through

[2, 2]. In a way, this makes the interaction betweenA andG dependent onB. When the

conditional Mutual Information values between the three sitesA, B andG are plotted in

Figure (5.7), among the three values,I(A, G|B) is the smallest. This is not only due to

the fact thatA andG is further away from each other, but also becauseB which is situated

between the other two sites is conditioned out inI(A, G|B). Therefore one can say that

the conditional Mutual Information uncovers indirect dependence in a sense that the inter-

action betweenA andG depends onB. We have discussed a possible relationship between
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conditional Mutual Information and indirect ‘causality’ in subsection (4.3.2).
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Figure 5.8: Transfer EntropyT (1)
AA, T

(1)
BA andT

(1)
GA of equation (5.18) versus reduced tem-

peratureT−Tc

Tc
. T

(1)
GA < T

(1)
BA due to distance.

The Transfer Entropy and the conditional Mutual Information is related byT
(τ)
Y X =

I(X, Y −τ |X−1) as in equation (4.6), therefore the distance and conditioning will also effect

the values of Transfer Entropy. In Figure (5.8), one can see thatT (1)
AA = I(A, A−1|A−1) =

0 andT
(1)
BA = I(A, B−1|A−1) > T

(1)
GA = I(A, G−1|A−1). Therefore it can be said that

distance is the only factor effecting Transfer Entropy values in this figure and from Figure

(5.4) there seems to be no particular causal direction either. We suspect that this is due to

the symmetric nature of the Ising model that distributes influences equally in all direction.

5.3.4 Measures onL = 25

Up to this point we have utilized lattice length ofL = 10. In this subsection we contrast

L = 10 to L = 25 with Markov chain lengths ofT = 100000. In Figure (5.9) we observe

that the value ofχ increases asL increases sinceχ → ∞ asL → ∞. The crossover

temperature ofL = 25 is Tc ≈ 2.2 which is closer to the realTc. In a lattice of length

L = 25 with N = 625 sites, sitesA, B andG representing coordinates[1, 1] , [2, 2] and

[3, 3] will have values ofA = 1, B = 27 andG = 53 such thatA, B, G ∈ N .
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Figure 5.9: Susceptibilityχ of equation (5.14) for lattices of lengthsL = 10, 25.
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Figure 5.10: CovarianceΓ(A, G) in equation (5.10) for lattices of lengthsL = 10, 25.

Figures (5.10), (5.11) and (5.12) depicts the behaviour of covariance, Mutual Infor-

mation and Transfer Entropy values across temperaturesT = 0 ∙ ∙ ∙ 5 between siteA at

coordinate[1, 1] and siteG at coordinate[3, 3] in all three different lattices. We suspect

that the explanation to what we observe in these graph is that forL = 25 where the lattice
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Figure 5.11: Mutual InformationI(A, G) using equation (5.15) on simulated data of lat-
tices with lengthsL = 10, 25.
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Figure 5.12:T (10)
GA using equation (5.18) on simulated lattices with lengthsL = 10, 25.

is much bigger, the influence of the two sites on each other is much weaker than in the

L = 10 lattice especially with periodic boundary boundary conditions, hence the sharper

and more precise detection ofTc in the L = 25 lattice. Nevertheless, the fact that the

measures attained maximum values nearTc is consistent to our observation onL = 10.
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5.4 Binary sequences

A binary sequence or a Bernoulli process is a process that only allows only two possible

states. The fact that Ising model is a binary sequence simplifies a lot, so much so that even

Ising himself wrongly came to the conclusion that his model was of no use. Its contribution

to the world statistical physics is undeniable, however when we look closer we find that in

binary sequences covarianceΓ and Mutual InformationI are in fact interchangeable in

terms of independence. A relationship between the two measures on Ising model will

be used to explain Figure (5.3). We will see that given a few assumptions, on a binary

sequence, the linear independence of the covariance will be enough to indicate general

independence.

5.4.1 Independence of binary sequence0 and1

We leave the Ising model for a while in the quest to explain things in the more general

setting. There are some special cases where uncorrelated-ness does imply general indepen-

dence. One of these cases is when the variables have only two possible values i.e the binary

sequence. The binary sequence is usually represented by0 and1. Let pX(x) andpY (y)

be the marginal probabilities andpXY (x, y) be the joint probability for variablesX andY

wherex, y ∈ {0, 1}. The covariance in equation (1.2) becomes

Γ = Γ(X, Y ) = pXY (1, 1) − pX(1)pY (1). (5.19)

If X and Y are uncorrelated (Γ = 0) then pXY (1, 1) = pX(1)pY (1) and using this in

relation to the property of joint probabilities
∑

y pXY (x, y) = pX(x) gives us

pX(1) = pXY (1, 1) + pXY (1, 0)

= pX(1)pY (1) + pXY (1, 0)

pX(1)[1 − pY (1)] = pXY (1, 0)

pX(1)pY (0) = pXY (1, 0). (5.20)
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Proceeding in a similar manner, it is possible to getpX(0)pY (1) = pXY (0, 1) as well

as pX(0)pY (0) = pXY (0, 0), so thatpXY (x, y) = pX(x)pY (y) for all x ∈ {0, 1} and

y ∈ {0, 1}, makingX andY independent of each other based on definition of general

independence. Therefore linear independence implies general independence whenx, y ∈

{0, 1}. Consequently,Γ(X, Y ) = 0 ⇒ I(X, Y ) = 0 in this case.

We have briefly discussed a similar example in subsection (2.3.2) but the independence

was not explicitly highlighted. In subsection (2.3.2), a formula that linksΓ to I have

been obtained by writing the probabilities in terms ofΓ = Γ(X, Y ). This was proposed

by [64], which imposes symmetric conditionpXY (0, 1) = pXY (1, 0) so that using the

joint probabilities we getpX(0) = pY (0), pX(1) = pY (1) and pX(1) − pXY (1, 1) =

pX(0) − pXY (0, 0). We highlight here that even without the symmetric condition, the

independence betweenX andY have already been establish.

Taking into accountpX(1) + pX(0) = 1 (the normalizing condition) and substituting

values in equation (5.19) yields

pXY (1, 1) = Γ + pX(1)2, (5.21a)

pXY (0, 0) = Γ + pX(0)2, (5.21b)

pXY (0, 1) = pXY (1, 0) = −Γ + pX(0)pX(1). (5.21c)

The probabilities can be used to obtain the Mutual Information formula [64] by substituting

the probabilities into equation (2.12) such that

I(X, Y ) =
∑

x=±1

∑

y=±1

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)

=Γ log

(
1 + Γ

pX(1)2

)(
1 + Γ

pX(0)2

)

(
1 − Γ

pX(0)pX(1)

)2 + pX(1)2log

(

1 +
Γ

pX(1)2

)

+ pX(0)2log

(

1 +
Γ

pX(0)2

)

+ 2pX(0)pX(1)log

(

1 −
Γ

pX(0)pX(1)

)

. (5.22)

When the terms Γ
pX(x)pY (y)

are small, one common method of approximation is to use the
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second order Taylor approximation in obtaining

log

(

1 +
Γ

pX(1)2

)

≈
Γ

pX(1)2

[

1 −
Γ

2pX(1)2

]

log g

(

1 +
Γ

pX(0)2

)

≈
Γ

pX(0)2

[

1 −
Γ

2pX(0)2

]

log

(

1 −
Γ

pX(0)pX(1)

)

≈ −
Γ

pX(0)pX(1)

[

1 +
Γ

2pX(0)pX(1)

]

. (5.23)

Taking only the second order terms ofΓ (the first order cancels out), we have

I ≈
Γ2

2

(
1

pX(1)2
+

1

pX(0)2
+

2

pX(0)pX(1)

)

=
Γ2

2

(
pX(1)2 + pX(0)2 + 2pX(0)pX(1)

[pX(0)pX(1)]2

)

=
Γ2

2

(
pX(1) + pX(0)

pX(0)pX(1)

)2

=
1

2

(
Γ

pX(0)pX(1)

)2

. (5.24)

What we can observe from this equation is thatI decays to zero at a faster rate than the

correspondingΓ and more importantly we can clearly see the fact thatI = 0 ⇔ Γ = 0 for

this particular approximation. It has to be said that this is not true as soon as one goes into

ternary sequences. Examples ofΓ = 0 ; I = 0 beyond binary have been discussed in

subsection (2.3.2) and [64].

5.4.2 Covariance and Mutual Information for general binary sequence

We show how the works of [64] extends to general binary sequence with statesα andβ.

Now, defineX̃ and Ỹ just like X andY except that̃x, ỹ ∈ {α, β} as opposed tox, y ∈

{0, 1}. Let stateα correspond to0 and stateβ correspond to1 so that same distributions

are maintained i.e.pX̃(α) = pX(0), pX̃Ỹ (α, β) = pXY (0, 1) on so on (also imposing the
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symmetry constraint). Using the fact thatα−α
β−α

= 0 and β−α
β−α

= 1 we have∀α, β, α 6= β,

Γ

(
X̃ − α

β − α
,
Ỹ − α

β − α

)

=E

(
X̃ − α

β − α

Ỹ − α

β − α

)

− E

(
X̃ − α

β − α

)

E

(
Ỹ − α

β − α

)

=
∑

x̃

∑

ỹ

(
x̃ − α

β − α

ỹ − α

β − α

)

pX̃Ỹ (x̃, ỹ)

−
∑

x̃

(
x̃ − α

β − α

)

pX̃(x̃)
∑

ỹ

(
ỹ − α

β − α

)

pỸ (ỹ)

=
∑

x

∑

y

(xy) pXY (x, y) −
∑

x

(x) pX(x)
∑

y

(y) pY (y)

=Γ(X, Y ) = pXY (1, 1) − pX(1)pY (1). (5.25)

Therefore, the relationship betweenΓ(X, Y ) andΓ(X̃, Ỹ ) is such that

Γ(X, Y ) = Γ

(
X̃ − α

β − α
,
Ỹ − α

β − α

)

= E

(
X̃ − α

β − α

Ỹ − α

β − α

)

− E

(
X̃ − α

β − α

)

E

(
Ỹ − α

β − α

)

=
E(X̃Ỹ − α[X̃ + Ỹ ] + α2) − (E(X̃) − α)(E(Ỹ ) − α)

(β − α)2

=
E(X̃Ỹ ) − E(X̃)E(Ỹ )

(β − α)2
=

Γ(X̃, Ỹ )

(β − α)2
. (5.26)

Since(β −α)2 is constant, thenΓ(X̃, Ỹ ) = (β −α)2 Γ(X, Y ) implies thatΓ(X̃, Ỹ ) is pro-

portional toΓ(X, Y ). WheneverΓ(X̃, Ỹ ) = 0 we have thatΓ(X, Y ) = Γ(X̃,Ỹ )
(β−α)2

= 0 since

andβ 6= α (otherwise the variables are just constants), therefore we have independence.

In short, for any binary sequence wherex̃, ỹ ∈ {α, β}, linear independence (uncorrelated-

ness) implies general independence since we have

Γ(X̃, Ỹ ) = 0 ⇒ Γ(X, Y ) = 0 ⇒ pXY (x, y) = pX(x)pY (y), x, y ∈ {0, 1} (5.27)

⇒ pX̃Ỹ (x̃, ỹ) = pX̃(x̃)pỸ (ỹ), x̃, ỹ ∈ {α, β}.
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Recall thatI(X̃, Ỹ ) = I(X, Y ) since the probabilities are identical and Mutual Information

only depends on probabilities [89, 57]. Letting Γ̃ = Γ̃(X, Y ) and substitutingΓ = Γ̃
(β−α)2

as well as the probabilities in equation (5.22) yields

I(X̃, Ỹ ) =I(X, Y )

=
Γ̃

(β − α)2
log

(

1 + Γ̃

[pX̃(β)(β−α)]
2

)(

1 + Γ̃

[pX̃(α)(β−α)]
2

)

(
1 − Γ̃

pX̃(α)pX̃(β)(β−α)2

)2

+ pX̃(β)2log

(

1 +
Γ̃

[pX̃(β)(β − α)]2

)

+ pX̃(α)2log

(

1 +
Γ̃

[pX̃(α)(β − α)]2

)

+ 2pX̃(α)pX̃(β) log

(

1 −
Γ̃

pX̃(α)pX̃(β)(β − α)2

)

. (5.28)

Clearly for any binary sequence with any value of statesΓ(X̃, Ỹ ) = 0 ⇒ I(X̃, Ỹ ) = 0 i.e

uncorrelated-ness is enough to imply general independence. Approximating as in equation

(5.24), we get that

Ĩ ≈
1

2

(
Γ

pX(0)pX(1)

)2

=
1

2

(
Γ̃

(β − α)2pX(0)pX(1)

)2

=
1

2(β − α)4

(
Γ̃

pX(0)pX(1)

)2

. (5.29)

The relationship betweeñI andΓ̃ depends on the difference between the possible binary

states(β − α). This makes sense since the values ofΓ̃ will be larger for larger values ofα

andβ.

5.4.3 Ising model as a binary sequence

We now return to the Ising model and its notation. The Ising model is a particular example

of the binary sequence whereα = −1 andβ = 1. However as previously defined, the vari-

ables on the Ising model aresX andsY . It is the state of sitesX andY that is considered as

the Markov chains. Two sitesX andY on the Ising lattice is said to be independent of each
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other when the probabilitiespsXsY
(α, β) = psX

(α)psY
(β), ∀α, β ∈ {−1, 1} which can be

obtained by referring to equation (5.27). As special case of the binary sequence, linear

independence implies general independence on the Ising model. Therefore,Γ(sX , sY ) = 0

⇒ I(sX , sY ) = 0. In conclusion, on the Ising lattice, covariance is sufficient to indicate

general independence.

Moreover, given the symmetry condition of the Ising Model which is justified by the

fact the Ising model is translational and rotational invariance, one can obtain the Mutual

Information in terms of covarianceΓ = Γ(sX , sY ) on the Ising model utilizing equation

(5.28), such that

I(sX , sY ) =
Γ

4
log

(

1 + Γ

4[psX
(1)]

2

)(

1 + Γ

4[psX
(−1)]

2

)

(
1 − Γ

4psX
(1)psX

(−1)

)2

+ psX
(1)2 log

(

1 +
Γ

4 [psX
(1)]2

)

+ psX
(−1)2 log

(

1 +
Γ

4[psX
(−1)]2

)

+ 2psX
(1)psX

(−1) log

(

1 −
Γ

4psX
(1)psX

(−1)

)

. (5.30)

Clearly I = 0 whenΓ = 0. One can also apply the approximation in equation (5.29) to

obtain

I = I(sX , sY ) ≈
1

2(β − α)4

(
Γ(sX , sY )

psX
(−1)psX

(1)

)2

=
1

2(2)4

(
Γ(sX , sY )

psX
(−1)psX

(1)

)2

=
1

32

(
Γ(sX , sY )

psX
(−1)psX

(1)

)2

. (5.31)

ThusI ≈ Γ2 as seen in Figure (5.13). The fact the Ising model is translational and rotational

invariance enables sites to be grouped by distances such that the probability of two sites

with the same distance from each other is taken to be the same as other with the same

distance [73] as we have seen in subsection (5.3.3). Plotting equations (5.10) and (5.15)

for all X, Y ∈ N (grouped by distances) against each other for temperaturesT = 0, ∙ ∙ ∙ , 5,

we get Figure (5.13) which verifies the previous equation as well as equation (5.29) by

showing thatI ≈ Γ2.



Chapter 5. The Ising model 91

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Covariance

M
ut

ua
l I

nf
or

m
at

io
n

Figure 5.13: Mutual InformationI versus covarianceΓ values displaying theI ≈ Γ2 rela-
tionship

Chapter Summary

The Ising model is a system that displays phase transition (denoted by crossover tempera-

ture in the simulations). The effect of distance is evident for all the measures tested on the

model and the conditional Mutual Information seem to able to detect indirect dependence

of the sites due to nearest neighbour interaction, however the Mutual Information and time

delayed Mutual Information as well as the Transfer Entropy does not yield a direction or

any indication of ‘causality’. We suspect that this is because Ising model is intrinsically

symmetrical and thus the interactions are more or less equal in all directions. This is the

fact which was used to obtain the formula that relates covariance and Mutual Information.

Therefore, in the next chapter we discuss how to break the symmetry and how we ‘amend’

the Ising model to incorporate our idea.
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Chapter 6

The amended Ising model

The amendment that shall be made on the well established Ising model in this chapter is

meant to incorporate ‘causality’ on the model. We will begin by discussing different at-

tempts to break the symmetry and how the amendment came about. Next we take a closer

look at how we altered the Metropolis Monte Carlo (MMC) algorithm so that some transi-

tion probabilities are altered. We then simulated the amended Ising model and evaluated the

results obtained by contrasting it with the results from the previous chapter. The amended

model enables us to demonstrate that Transfer Entropy has the capability to detect the di-

rection of ‘causality’ and furthermore identify the actual causal lag.

6.1 Replicating ‘causality’

In order to replicate ‘causality’ on the model, we need elements of time and dependency.

Moreover since ‘causality’ is asymmetrical by nature, something needs to be done about the

symmetrical nature of the Ising model. We tried a few alterations to break the symmetry,

in order to see whether this will effect the values of the measures applied on the model and

the relationship between them. We would like to tip the balance of some sites and create

some sort of artificial ‘causality’ on the model so that we can verify the measures that claim

to be able to detect ‘causality’.
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6.1.1 Attempts and ideas

In our quest to observe the effects of ‘causality’, first we tried fixing the value of a siteX

on the lattice i.epsX
(1) = 1 andpsX

(−1) = 0 to see the ripple effect it has onto the other

sites. Unfortunately the values of covariance, Mutual Information and Transfer Entropy of

any other site with the siteX would be0, since by fixing the value,sX becomes a constant

andpsXsY
(α, β) = psXsY

(1, β) = psX
(β), ∀α, β ∈ {−1, 1} for any siteY 6= X on the

lattice. ThuspsXsY
(α, β) = psX

(α)psY
(β), ∀α, β ∈ {−1, 1} andX is independent of any

other siteY in the lattice. It becomes obvious when the covariance is written this way:

Γ(sX , sY ) = E(sXsY ) − E(sX)E(sY ) = sXE(sY ) − sXE(sY ) = 0. (6.1)

Therefore, we proceed to other alterations.

Secondly, we tried to create a dependence of sitesA andB on the siteG in the lattice

by equating the spins of the sites. We did this by interfering in the MMC algorithm so

that when the siteG is chosen for flipping consideration,sA = sB = sG is imposed

with probability1 − pG. And with probability1 − pG the normal MMC algorithm flipping

consideration applies (just like if all the other sites was chosen). However as we later found

out, if sA = sB = sG is imposed whenG is selected then one would have problems when

it comes to getting the probabilities, due to the fact that we do not know the order in which

A, B andG is selected for flipping considerations. The estimated values ofP ((sA)n−1 6=

(sA)n) andP ((sB)n−1 6= (sB)n) will be different for each order.

To remedy this, we decided to change the mechanism so that the probabilities can be

understood better. Instead of interfering when siteG is chosen for flipping consideration,

we decided to interfere whenA andB is selected. The normal MMC process is maintained

except whenA andB is chosen for flipping consideration, when either of this happens we

look at the value ofsG at the last sampled time (regardless of whethersG has changed or

not from the last sampling value) and ifsG = 1 we let the site be considered as usual but

if sG = −1 we do not allow any changes to the current state of the selected site. Notice

that the probabilities ofsG changing is just like any other site (excludingA andB) on the

lattice and is not interfered with. This is the algorithm that will shape the amended Ising

model.
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Essentially what this amendment does is make the changes ofsA andsB dependent on

sG. In a way this givesG some control over the state ofA andB, however it must be pointed

out that this is not complete control due to the fact that when given permission to change

by G, A andB can still chose not to change (since the change is done with probabilityγB).

The condition (or the amendment) works in such a way that(sG)n−1 limits the ability of

(sA)n−1 and(sB)n−1 to change so that the transition probabilitiesP ((sA)n−1 6= (sA)n) and

P ((sB)n−1 6= (sB)n) will be altered. It must be pointed out the algorithm does not dictate

what the states ofA andB are supposed to be or whether it should be similar toG. Note

that in our definition of the amended Ising model we have determined that the condition

for letting sA andsB be considered for flipping consideration (each time it is randomly

selected) is that(sG)n−1 = 1. One could chose the condition to be(sG)n−1 = −1 and the

outcome would remain unchanged.

6.1.2 The Generating Mechanism

The two dimensional amended Ising model is generated using the standard MMC algorithm

[62, 77, 27] as outlined in subsection (5.2.1) albeit interference whenever siteA or B is

chosen for flipping consideration. More formally, we will generate the amended Ising

model using the algorithm outlined as follows. At each step in the algorithm a site chosen

at random will be considered for flipping with a certain probabilityγB in equation (5.4).

This apply for all sites except whenA or B is selected. When this happens we look at the

value ofsG at the last sampled time and ifsG = 1 we let the site be considered for flipping

with probabilityγB as usual, however ifsG = −1, no change is allowed. Thus only one

state ofG (sG = 1 in this case) allows sitesA andB to be considered for flipping and

therefore actually change. Hence, one can say that in this way any changes ofA andB

depends onG.

Let X be any site on the lattice not affected by our imposed condition. Then the transi-

tion probabilities (from one sample to the next) ofsX is approximately

P ((sX)n = α|(sX)n−1 = β) =






1 − γB, if α = β for anyα, β ∈ {−1, 1}

γB, if α 6= β for anyα, β ∈ {−1, 1}
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whereγB is the probability in equation (5.4). With the amendment, the values of(sA)n and

(sB)n depends on(sG)n−1. For anyα, β ∈ {−1, 1} the transition probability ofsA can be

written as

P ((sA)n = α|(sA)n−1 = β) =






1 − γBP ((sG)n−1 = 1) = 1 − γBpsG
(1), if α = β

γBP ((sG)n−1 = 1) = γBpsG
(1), if α 6= β,

andP ((sB)n = α|(sB)n−1 = β) = P ((sA)n = α|(sA)n−1 = β). We denotepsG
(1) =

P (sG = 1) = P ((sG)n−1 = 1) since the marginal probabilities are the same for anyn as

we are taking the time average as discussed in subsection (5.2.2). Note thatsG is not altered

in any way and should be treated just like any other unamended site on the lattice. Due to

the nearest neighbour nature of the Ising model, the interactions between neighbours are

accounted for through the HamiltonianH in γB, therefore the neighbours ofA andB might

also have their transition probabilities altered.

If a certain siteY does not affect another siteX,

P ((sX)n = α|(sX)n−1 = β, (sY )n−1 = γ) = P ((sX)n = α|(sX)n−1 = β)

for anyα, β, γ ∈ {−1, 1}. However, due to our amendment, this not true for probabilities

P ((sA)n = α|(sA)n−1 = β, (sG)n−1 = γ) andP ((sB)n = α|(sB)n−1 = β, (sG)n−1 = γ).

DefineQ
(τ)
sgn(γ) such that

Q
(τ)
sgn(γ) = P (condition fulfilled|(sG)n−τ = γ) = P ((sG)n−1 = 1|(sG)n−τ = γ) (6.2)

where

sgn(γ) =






+ if γ = 1

− if γ = −1.

With this, for anyα, β, γ ∈ {−1, 1} we get that

P ((sA)n = α|(sA)n−1 = β, (sG)n−1 = γ) =






1 − γBQ
(1)
sgn(γ), if α = β

γBQ
(1)
sgn(γ), if α 6= β.
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Therefore the corresponding ratios become

P ((sA)n = α|(sA)n−1 = β, (sG)n−1 = γ)

P ((sA)n = α|(sA)n−1 = β)
=






1−γBQ
(1)
sgn(γ)

1−γBpsG
(1)

, if α = β

γBQ
(1)
sgn(γ)

γBpsG
(1)

=
Q

(1)
sgn(γ)

psG
(1)

, if α 6= β,

and the values differ forγ = 1 andγ = −1. The same applies for siteB. This ratio is

exactly what the Transfer EntropyT (1)
GA andT

(1)
GB as in equation (5.18) takes into account

and sums up. To illustrate how this works, we highlight the fact that if(sG)n−1 = 1 i.e

Q
(1)
+ = P ((sG)n−1 = 1|(sG)n−1 = 1) = 1, we obtain

P ((sA)n = α|(sA)n−1 = β, (sG)n−1 = 1)

P ((sA)n = α|(sA)n−1 = β)
=






1−γBQ
(1)
+

1−γBpsG
(1)

= 1−γB

1−γBpsG
(1)

, if α = β

Q
(1)
+

psG
(1)

= 1
psG

(1)
, if α 6= β,

and when(sG)n−1 = −1, we getQ(1)
− = P ((sG)n−1 = 1|(sG)n−1 = −1) = 0 so that

P ((sA)n = α|(sA)n−1 = β, (sG)n−1 = −1)

P ((sA)n = α|(sA)n−1 = β)
=






1−γBQ
(1)
−

1−γBpsG
(1)

= 1
1−γBpsG

(1)
, if α = β

Q
(1)
−

psG
(1)

= 0, if α 6= β.

6.1.3 Incorporating causal lags

We can generalize the ‘dependency’ to be at a chosen causal lagtG by imposing thatA and

B can only change states at timen (i.e having different states than at timen−1) if the state

of G is equal to1 at time stepn − tG. Now the condition is set to be(sG)n−tG = 1 instead

of (sG)n−1 = 1. For sitesA andB the transition probabilities of their states will be

P ((sA)n = α|(sA)n−tG = β) =






1 − γBP ((sG)n−tG = 1) = 1 − γBpsG
(1), if α = β

γBP ((sG)n−tG = 1) = γBpsG
(1), if α 6= β,

wheretG = 1 is a special case explained in the previous subsection. Once again, we denote

psG
(1) = P (sG = 1) = P ((sG)n−tG = 1) since the marginal probabilities are the same for

anyn − tG due to the utilization of time average approximation as discussed in subsection
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(5.2.2). With the condition(sG)n−tG = 1 the value ofQ can be written as

Q
(τ)
sgn(γ) = P (condition fulfilled|(sG)n−τ = γ) = P ((sG)n−tG = 1|(sG)n−τ = γ).

Therefore the ratios in Transfer EntropyT
(τ)
GA as in equation (5.18) will be

P ((sA)n = α|(sA)n−1 = β, (sG)n−τ = γ)

P ((sA)n = α|(sA)n−1 = β)
=






1−γBQ
(τ)
sgn(γ)

1−γBpsG
(1)

, if α = β

γBQ
(τ)
sgn(γ)

γBpsG
(1)

=
Q

(τ)
sgn(γ)

psG
(1)

, if α 6= β.

for any α, β, γ ∈ {−1, 1}. The value ofQ(τ)
sgn(γ) changes for differentτ and this is the

heart of the Transfer Entropy value. The changes ofQ
(τ)
sgn(γ) enables us to use the Transfer

Entropy to detect the exact causal lagtG by comparing different values of Transfer Entropy

with differentτ values.T (τ)
GA should be the largest whenτ = tG asQ

(tG)
sgn(γ) is either1 or 0.

Again, for all the simulations the interaction strength is set to beJ = 1 and the Boltz-

mann constant is fixed asKB = 1 for all the simulations. As in the Ising model, we let

the system run up to2000 samples before sampling at everyN = L2 time steps and this

is done for more than100 temperature valuesT ranging from0 to 5. For illustration pur-

poses,L = 10 is usually utilized unless stated otherwise. The simulations displayed in

this chapter will be displaying values of the amended Ising model with periodic boundary

conditions andT = 100000 samples for each site.

6.2 Measures on the amended Ising model

The formulas that we have defined in subsection (5.3) apply here as well. We would like

to point out that it is the probabilities that change not the formulas. Recall thatA, B andG

are sites on the lattice at coordinates[1, 1], [2, 2] and[3, 3] respectively. The amendment on

the model are intended to make changes ofsA andsB dependent onsG.

6.2.1 Observables for verification of the critical point

The amended Ising model also generates a crossover temperatureTc where most measures

peak due to the fully connected lattice which can be seen from values of magnetisationM in
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Figure 6.1: Values of magnetisationM using equation (5.13) on amended Ising model with
tG = 1 approaches0 atTc.
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Figure 6.2: Values of susceptibilityχ using equation (5.14) on amended Ising model with
tG = 1 peaks atTc.

Figure (6.1), susceptibilityχ in Figure (6.2) and covariance as well as Mutual Information

in Figure (6.3). We say most measures because, in Figure (6.4) we see that this does not

apply to Transfer Entropy for one of the directions. The Transfer Entropy ofG to A at time
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Figure 6.3: Values of covarianceΓ(A, G) using equation (5.10), Mutual Information
I(A, G) using equation (5.15), time delayed Mutual InformationI(A, G−1)
using equation (5.17) and susceptibilityχ using equation (5.14) across temper-
atureT on amended Ising model withtG = 1.
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Figure 6.4: Values of susceptibilityχ using equation (5.14) as well as Transfer Entropy
T

(1)
GA and T

(1)
AG both using equation (5.18) across temperatureT on amended

Ising model withtG = 1. T
(1)
GA does not decrease to0 afterTc which indicates

thatG causesA.
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1, T
(1)
GA does not decrease to0 for larger temperatures afterTc. This difference coincides

with the condition that we have imposed on the model. This only happens when Transfer

Entropy is applied on the correct direction and exact causal lagtG imposed on the model.

One can see in Figure (6.3) that once again (as was the case on the unamended Ising model)

there is almost no difference betweenI(A, G) andI(A, G−1), even though the causal lag

was imposed attG = 1. From Figures (6.1) and (6.2) we will useTc = 2.1 in obtaining

the value of reduced temperatureT−Tc

Tc
for figures in this chapter resulting fromL = 10

simulation of the amended Ising model withtG = 1.

6.2.2 The influence of distance

In subsection (5.3.3), we have seen that on the unamended Ising model, distance is the main

factor that influences the strength of the different measures between sites. We observe the
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Figure 6.5: CovarianceΓ(A, B), Γ(A, G) andΓ(B, G) using equation (5.10) in amended
Ising model withtG = 1. Γ(A, G) < Γ(A, B) ≈ Γ(B, G) due to distance.

same behaviour in Figures (6.5), (6.6) and (6.7) where the covariance, Mutual Information

and the time delayed Mutual Information between the three sitesA, B andG are plotted.

Recall that for the amended model, we makeA andB dependent onG, however this

does not change the fact thatB is situated betweenA andG. It seems that these measure
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Figure 6.6: Mutual InformationI(A, B), I(A, G) and I(B, G) using equation (5.15) in
amended Ising model withtG = 1. I(A, G) < I(A, B) ≈ I(B, G) due to
distance.
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Figure 6.7: Time delayed Mutual InformationI(A, B−1), I(A, G−1) andI(B, G−1) using
equation (5.17) versus reduced temperatureT−Tc

Tc
in amended Ising model with

tG = 1. I(A, G−1) < I(A, B−1) ≈ I(B, G−1) due to distance.
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are oblivious to the imposed mechanism and their values reflect those on the unamended

Ising model. From comparing Figure (6.6) and Figure (6.7) one can see that there are

minimal differences between the Mutual Information and time delayed Mutual Information

simulation outcomes. This is because time delayed Mutual Information only takes into

account the static probabilities at different time steps (sampled time from simulation) and

basically compares the state of the sites. Recall that what(sG)n−1 does is limit the ability

of (sA)n−1 and(sB)n−1 to change but does not dictate that the states between the three sites

will be identical therefore the average and join average values ofsA andsB may very well

remain unchanged although the transition probabilities were altered. Thus it seems that

even time delayed Mutual Information cannot detect the imposed mechanism.
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Figure 6.8: I(A, B|G), I(A, G|B) andI(B, G|A) equation (5.16) versusT−Tc

Tc
for tG = 1

Figure (6.8) is in agreement with Figure (5.7) of the unamended Ising model where

both shows quite distinctly thatI(A, G|B) gives the lowest conditional Mutual Information

value when the values ofI(A, B|G), I(A, G|B) andI(B, G|A) are compared. The fact that

we have imposed the condition so thatA andB depend onG seems to make no difference.

Again this is due to the fact thatB is situated betweenA andG on the lattice and this is what

both time delayed and conditional Mutual Information detect rather than the implanted

dependency. If one says that conditional Mutual Information in Figure (6.8) indicate that
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B causes the relationship betweenA andG, this is a contradiction since we clearly have set

the model so thatG causesA as well asB. Therefore we conclude that conditional Mutual

Information without time delays where transition probabilities are not taken into account

will not be useful in detecting our definition of ‘causality’ and the imposed mechanism. We

move on to time delayed version of conditional Mutual Information which is better known

as Transfer Entropy.

6.2.3 Measures onL = 25

From most of the other figures in this chapter, one can clearly see that the peaks atTc is

not as clear cut as it was the unamended Ising model. There seems to be an initial lower

peak before the actual peak atTc in theL = 10 lattice with sample size ofT = 100000 for

any tG that is used. We claim that this is just a fluctuation due to the small length of the

lattice and the general behaviour on the lattice is not affected by this. We shall illustrate

by displaying values on lattice with lengthL = 25 alongside theL = 10 analogous to

subsection (5.3.4).
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Figure 6.9: Values of susceptibilityχ in equation (5.14) across temperatureT on amended
Ising model withtG = 10 for L = 10, 25.
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Figure 6.10: Values of covarianceΓ(A, G) using equation (5.10) across temperatureT on
amended Ising model withtG = 10 for L = 10, 25.
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Figure 6.11: Values of Mutual InformationI(A, G) using equation (5.15) on amended
Ising model withtG = 10 for varying values ofL.
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Figure 6.12: Values ofT (10)
AG using equation (5.18) across temperatureT on amended Ising

model withtG = 10 for L = 10, 25.
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Figure 6.13: Values ofT (10)
AG using equation (5.18) across temperatureT on amended Ising

model withtG = 10 for L = 10, 25. Both indicates thatG causesA.
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Figures (6.9), (6.10), (6.11), (6.12) and (6.13) display the values of susceptibilityχ,

covarianceΓ(A, G), Mutual InformationI(A, G) and Transfer EntropyT (10)
AG as well as

T
(10)
GA on the amended Ising model withtG = 10 for lattice lengths ofL = 10, 25 so that

N = 100, 625. The peaks clearly show thatTc does indeed exist in our model. In Figure

(5.9) we observe that the value ofχ increases asL increases sinceχ → ∞ asL → ∞.

The crossover temperature ofL = 25 is Tc ≈ 2.25 which is closer to the realTc. As

in subsection (5.3.4), the figures indicate sharper and more precise detection ofTc in the

L = 25 lattice. We reiterate our suspicion that this is due to much bigger lattice ofL = 25

where the influence of the two sites on each other is weaker than in theL = 10 lattice. The

fact that the measures attained maximum values nearTc is consistent to our observation

on L = 10. Moreover, Figure (6.13) that displays the behaviour of Transfer Entropy in

indicating direction ofG causesA does not seem to be affected by the lattice sizes.

6.3 Transfer Entropy results

Figure (6.4) showed that Transfer Entropy indicating causal direction ofG → A at the

implanted causal lagtG = 1, as the values ofT (1)
AG go down to zero afterTc. This is also the
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Figure 6.14:T (1)
AA, T (1)

BA andT
(1)
GA using equation (5.18) versus reduced temperatureT−Tc

Tc
on

the amended Ising model withtG = 1. ClearlyG → A at τ = 1.
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case whenT (1)
BG is compared toT (1)

GB. This is something we do not see for the unamended

Ising model where all values of Transfer Entropy peaks atTc and then goes down to0 for

higher temperatures. In Figure (6.14), we see that Transfer Entropy of siteA is illustrated.

Contrast this to Figure (5.8) where the exact same values were plotted on the unamended

Ising model. Firstly we see thatT
(1)
AA is zero as expected, but more importantly we see that

T
(1)
GA is very different fromT

(1)
BA and this clearly indicates thatG causesA at τ = 1 andB

does not. Values likeT (1)
AG in Figure (6.4) andT

(1)
BA in Figure (6.14) peak atTc and then they

reduce to0 at higher temperature. We suspect that this is due to the fact that atTc the whole

lattice is strongly correlated thus there is no clear direction in which ‘causality’ may occur.

From a different point of view, one could say that any site may equally likely influence or

‘cause’ any other sites hence we have that the Transfer EntropyT
(τ)
XY peaks atTc whenever

X 6= G andX 6= Y .

6.3.1 Transfer Entropy as a causal lag indicator

In Figure (6.15), values ofτ = 1, 2, 3 of T
(τ)
GA are plotted. The first plot ofT (1)

GA is exactly

the same asT (1)
GA in Figures (6.4) and (6.14). Figure (6.15) shows that for values other than
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Figure 6.15:T (1)
GA, T

(2)
GA andT

(3)
GA using equation (5.18) versusT for amended Ising model

with tG = 1. T
(1)
GA indicatesG → A at τ = 1.
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Figure 6.16:T (1)
GA, T

(2)
GA andT

(3)
GA using equation (5.18) versusT for amended Ising model

with tG = 2. T
(2)
GA correctly indicatesG → A at τ = 2.

tG = 1, the Transfer EntropyT (τ)
GA eventually goes to0 afterTc. Therefore, in Figure (6.15)

the Transfer Entropy correctly indicates thattG = 1 in the model. However, the value of

T
(2)
GA > T

(3)
GA since the transition probabilityP ((sA)n|(sA)n−2) in T

(2)
GA is effected more than

transition probabilityP ((sA)n|(sA)n−3) in T
(3)
GA by the changes imposed bytG = 1.

This is also manifested in Figure (6.16) where the causal lag is set to betG = 2 in the

amended model andT (τ)
GA is calculated forτ = 1, 2, 3. We see that it clearly shows that

T
(2)
GA has the highest value so that the detected causal lag is correctlytG = 2. Moreover the

values ofT (1)
GA andT

(3)
GA are almost identical, due to the fact thatτ = 1 andτ = 3 are the

same distance away fromtG = 2 so that the transition probabilityP ((sA)n|(sA)n−1) and

transition probabilityP ((sA)n|(sA)n−3) are equally affected. This effect of distance from

the predetermined causal lagtG can be clearly seen in Figure (6.17) where we useT (τ)
GA on

the amended Ising model withtG = 10. We have plotted Transfer Entropy values forτ = 6

to τ = 10, clearly illustrating thatT (10)
GA gives the highest value thus indicating thattG = 10.

The rest of the Transfer Entropy values reduces to0 but at different rates depending on the

distance ofτ from tG. The further away fromtG, the faster it decreases to0. We will discuss

more about the relationship of distance ofτ from tG in relation with transition probabilities
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Figure 6.17: T (6)
GA, T

(7)
GA, T

(8)
GA, T

(9)
GA andT

(10)
GA using equation (5.18) versusT for amended

Ising model withtG = 10. T
(10)
GA indicatesG → A at τ = 10.

and its effect on the value ofQ(τ)
sgn(γ) in subsection (7.2.1). Nevertheless, the clear difference

betweenT (τ)
GA, τ 6= tG andT

(tG)
GA that differentiatestG from the otherτ essentially identifies

the causal lag.

6.3.2 Discussions on the nature of Transfer Entropy

We have seen that covariance, Mutual Information, conditional Mutual Information and

even time delayed Mutual Information have failed to detect the amendment we have made

on the Ising model. This is mostly due to the fact that the amendment on the model effects

the transition probabilities and not the static probabilities of the states of the sites. The

transition probability quantifies the possible changes that can occur in a system and change

is what happens in ‘causality’.

The static probabilities being the Boltzmann distribution influenced only by nearest

neighbour interactions are manifested in these other measures. Used individually on each

site, the measures indicate the distance of the sites from each other which is logical on a

lattice where nearest neighbour interaction is the main interaction. In addition to detecting
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the implanted changes, the Transfer Entropy also takes into account the distances in terms

of the amplitude of the measure. We have seen an example of this in Figure (5.8) on the

unamended Ising model for Transfer Entropy values that peak atTc.
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Figure 6.18: Transfer EntropyT (1)
GA andT

(1)
GB using equation (5.18) for the unamended Ising

model withtG = 1. GenerallyT (1)
GB > T

(1)
GA due to distance on the lattice.

Another example on Transfer Entropy values that actually detect the causal lag is given

in Figure (6.18) whereT
(1)
GB is mostly larger thanT (1)

GA sinceG is closerB than toA, al-

though both values do not reduce to zero. We suspect that the reason these values increase

afterTc is simply because of the nature of Boltzmann distribution where probability of each

site getting selected for flipping consideration is approaching uniform for higher temper-

atures, therefore allowing our mechanism to be implemented much more frequently than

at lower values. Figure (6.19) illustrates that the values seem to be stabilizing to a certain

fixed value. In the next chapter, the simple model approximates the values of the amended

Ising model at these higher temperatures.

It is worth mentioning again that the restriction and conditioning that is done on the

model is to create a ‘causal’ relationship. We have seen that the interpretation of Transfer

Entropy relates to detecting the change through transition probabilities and also in terms

of influences apparent in predictions. However what we have done here is to define the
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Figure 6.19: Transfer EntropyT (1)
GA for values up to temperatureT = 15 using equation

(5.18) on the amended Ising model withtG = 1.

influence more as a restriction of one variable on another, in a way that a value of a variable

will affect the possible changes of the other variable. It is this idea that we will continue to

expand on the toy model in the coming chapters.

Chapter Summary

We have seen that the Transfer Entropy successfully indicated the direction of our artifi-

cially implanted ‘causality’ as well as the causal lag at which it was implanted. The values

of conditional Mutual Information and time delayed Mutual Information gives more or less

the same values as in the unamended Ising model and completely misses the amended part.

From the figures one can see that like the other measures Transfer Entropy values peak at

Tc and then reduces to0 for most sites and direction where no ‘causality’ is detected. How-

ever when a ‘causal’ relationship is identified at the exact causal lag, the values of Transfer

Entropy for that direction will keep on increasing even afterTc until the probability sta-

bilizes at higher temperatures. We conclude that the Transfer Entropy is certainly worth

focusing our attention on and thus proceed to investigate this measure for processes with

higher number of states.



112

Chapter 7

A toy model

In an attempt to understand Transfer Entropy better, we apply it to a toy model where we

can control the ‘causal’ connections. To incorporate a higher number of states, we decided

to go back to basics and simply generate three random variables (in the form of stochastic

processes) over a certain length of time. However, similar to the amended Ising model we

restrict the changes for two of the variables and impose a condition to make to it dependent

on another variable. We do this for three different cases of the general model. The challenge

is to use Transfer Entropy to detect these ‘causal’ relationships and the exact causal lags.

7.1 A simple model

Assume we have a model of stochastic processesX, Y andZ that can assume values in

the set of statesA = {−1, 1} at every time stepn = 1, ∙ ∙ ∙ , S whereS is the length

of stochastic process. DefineXn, Yn and Zn to be the values of processX, Y and Z

at time stepn respectively. LetμX , μY andμZ be the independent (not influenced by

other processes) probabilities that the variablesX, Y andZ changes at every time step

respectively. We supplement the dynamics by the special restriction onX andY such that

they are only allowed to do the stochastic swap with probabilityμX andμY if the state

of Zn−tZ fulfills a certain condition. For this simple model, we choose the condition to

be Zn−tZ = 1. Without loss of generality, from here on we usetz = 1 unless specified

otherwise. To illustrate the mechanism, see Figure (7.1), where one can clearly see that
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Figure 7.1: Simple model withS = 11 andtZ = 1

whenZn = −1 (at time stepsn = 1, 7, 9, 10, 11), Xn+1 = Xn andYn+1 = Yn since it is

not allowed to change state. Figure (7.2) is just the same graph with more of time steps

displayed for a clearer depiction.

In Figure (7.2) the processes were initialized randomly and independently, and this

is not unlike the situation in the Ising model at higher temperatures due to the nature of

Boltzmann distribution that tends to flatten out distributions for higher temperature. In

higher temperature of the Ising model the distribution approaches uniformity, thus in a way

the simple model is modelling the amended Ising model at higher temperatures. On the

amended Ising model we had thatμX = μY = μZ = γB given by transition probability

in equation (5.4). Therefore we expect to see that Transfer Entropy will clearly distinguish

the direction as we have seen on the amended Ising model.
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Figure 7.2: Simple model withS = 200 andtZ = 1

7.1.1 Probabilities on the simple model

If the processes are initialized randomly and independently so that all initial probabilities

are uniform i.e.P (X1 = −1) = P (X1 = 1) = ∙ ∙ ∙ = P (Z1 = 1) = 1
2
, then forα ∈ A,

P (X2 = α) = P (X1 = α)P (X2 = X1) + P (X1 = −α)P (X2 6= X1)

=
1

2
(1 − P (X2 6= X1)) +

1

2
P (X2 6= X1) =

1

2
.

One can apply this recursively so thatP (Xn = −1) = P (Xn = 1) = 1
2

for anyn. The

same applies forY andZ. Therefore if the processes are initialized uniformly, the static

probabilities do not depend on the transition probabilities and will always be1
2
. Joint prob-

abilities are the product of marginal probabilities. All joint probabilities of two processes

becomes1
4
. Joint probabilities of three processes becomes1

8
and so on. An example for

n = 1 would be,P (X1 = α, Z1 = β) = P (X1 = α)P (Z1 = β) = 1
4

for anyα, β ∈ A.
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Consequently forn = 2, we have that for anyα, β ∈ A = {−1, 1},

P (X2 = α, Z2 = β) = P (X1 = α, Z1 = β)P (X2 = X1)P (Z2 = Z1)

+ P (X1 = α, Z1 = −β)P (X2 = X1)P (Z2 6= Z1)

+ P (X1 = −α, Z1 = β)P (X2 6= X1)P (Z2 = Z1)

+ P (X1 = −α, Z1 = −β)P (X2 6= X1)P (Z2 6= Z1)

=
1

4
(1 − P (X2 6= X1))[P (Z2 = Z1) + P (Z2 6= Z1)]

+
1

4
P (X2 6= X1)[P (Z2 = Z1) + P (Z2 6= Z1)] =

1

4
.

The same applies recursively for the other joint probabilities so that it applies to alln.

Therefore, if one were to calculate the covariance or Mutual Information values between

these processes they will all be the same. In fact both of the measures would be0. Since

E(XY ) = E(X)E(Y ) due to independent probabilities, the covariance is,

Γ(X, Y ) = E(XY ) − E(X)E(Y ) = 0.

The Mutual Information will be

I(X, Y ) = E

[

log
P (X, Y )

P (Y )P (X)

]

= E

[

log
1
4

1
2

1
2

]

= 0.

Evidently, in this case, covariance and Mutual Information are unable to provide any infor-

mation regarding the relationship between the processes.

In relation to probabilities of the amended Ising model outlined in subsection (6.1.3),

the transition probabilities of processes can be written as

P (Xn = α|Xn−1 = β) =






1 − μXP (Zn−1 = 1) = 1 − 1
2
μX , if α = β

μXP (Zn−1 = 1) = 1
2
μX , if α 6= β

P (Yn = α|Yn−1 = β) =






1 − μY P (Zn−1 = 1) = 1 − 1
2
μY , if α = β

μY P (Zn−1 = 1) = 1
2
μY , if α 6= β
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and

P (Zn = α|Zn−1 = β) =






1 − μZ , if α = β

μZ , if α 6= β

whereP (Zn−1 = 1) = 1
2

as per discussion above. If a certain process does not affect the

other process at timen − 1, for exampleYn−1 does not influenceXn, then we have that

P (Xn = α|Xn−1 = β, Yn−1 = γ) = P (Xn = α|Xn−1 = β)

for anyα, β, γ ∈ A. This is true for all the other possibilities except when we condition on

Z, i.eP (Xn = α|Xn−1 = β, Zn−1 = γ) andP (Yn = α|Yn−1 = β, Zn−1 = γ). Recall that

this is because we have imposed thatXn−1 andYn−1 can only change ifZn−1 = 1.

Let Q
(τ)
sgn(γ) = P ( condition fulfilled|Zn−τ = γ) = P (Zn−1 = 1|Zn−1 = γ) as in

equation (6.2). Given thatZn−1 = −1, we getQ(1)
− = P (Zn−1 = 1|Zn−1 = −1) = 0 so

that

P (Xn = α|Xn−1 = β, Zn−1 = −1) =






1 − μXQ
(1)
− = 1, if α = β

μXQ
(1)
− = 0, if α 6= β

and

P (Yn = α|Yn−1 = β, Zn−1 = −1) =






1 − μY Q
(1)
− = 1, if α = β

μY Q
(1)
− = 0, if α 6= β.

Otherwise ifZn−1 = 1 we getQ(1)
+ = P (Zn−1 = 1|Zn−1 = 1) = 1 so that

P (Xn = α|Xn−1 = β, Zn−1 = 1) =






1 − μXQ
(1)
+ = 1 − μX , if α = β

μXQ
(1)
+ = μX , if α 6= β

and

P (Yn = α|Yn−1 = β, Zn−1 = 1) =






1 − μY Q
(1)
+ = 1 − μY , if α = β

μY Q
(1)
+ = μY , if α 6= β.

Therefore if we divide these probabilities with the corresponding transition probabilities,
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we get that,

P (Xn = α|Xn−1 = β, Zn−1 = −1)

P (Xn = α|Xn−1 = β)
=






1
1− 1

2
μX

= 2
2−μX

, if α = β

0, if α 6= β,

P (Yn = α|Yn−1 = β, Zn−1 = −1)

P (Yn = α|Yn−1 = β)
=






1
1− 1

2
μY

= 2
2−μY

, if α = β

0, if α 6= β,

P (Xn = α|Xn−1 = β, Zn−1 = 1)

P (Xn = α|Xn−1 = β)
=






1−μX

1− 1
2
μX

= 2(1−μX)
2−μX

, if α = β

μX
1
2
μX

= 2, if α 6= β,

and

P (Yn = α|Yn−1 = β, Zn−1 = 1)

P (Yn = α|Yn−1 = β)
=






1−μY

1− 1
2
μY

= 2(1−μY )
2−μY

, if α = β

μY
1
2
μY

= 2, if α 6= β.

The Transfer Entropy is defined to quantify this ratio.

7.1.2 Transfer Entropy on the simple model

Recall from equation (4.5) that T (tZ)
ZX = E

[
log

P (Xn=α|Xn−1=β,Zn−tZ
=γ)

P (Xn=α|Xn−1=β)

]
. Therefore the

Transfer EntropyT (1)
ZX is calculated as,

T
(1)
ZX = E

[

log
P (Xn = α|Xn−1 = β, Zn−1 = γ)

P (Xn = α|Xn−1 = β)

]

=
∑

α∈A

∑

β∈A

∑

γ∈A

P (Xn = α, Xn−1 = β, Zn−1 = γ) log
P (Xn = α|Xn−1 = β, Zn−1 = γ)

P (Xn = α|Xn−1 = β)

= 2

[
1

4
(1) log

2

2 − μX

+ 0 +
1

4
(1 − μX) log

2(1 − μX)

2 − μX

+
1

4
(μX) log 2

]

= log 2 +
1

2
[(1 − μX) log (1 − μX) − (2 − μX) log (2 − μX)] (7.1)

where

P (Xn = α, Zn−1 = γ, Xn−1 = β) =
1

4
P (Xn = α|Zn−1 = γ, Xn−1 = β).
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In the same way, we get that

T
(1)
ZY = log 2 +

1

2
[(1 − μY ) log (1 − μY ) − (2 − μY ) log (2 − μY )] .

From Figure (7.3) where equation (7.1) is analytically plotted, we can say thatT
(1)
ZX 6= 0
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Figure 7.3: Analytical values ofT (1)
ZX versusμX in equation (7.1) of the simple model with

tZ = 1. T
(1)
ZX in equation (7.1) is a monotonically increasing function ofμX .

except whenμX = 0 in which case,X becomes a constant. If we assign a value for example

μX = 1
2
, we get thatT (1)

ZX = T
(1)
ZY = 3

2
log 2 − 3

4
log 3 ≈ 0.2158 whereasT (1)

XZ = T
(1)
Y Z = 0

which clearly indicates a causal direction fromZ → X andZ → Y . Analytically, the

values ofT (1)
XY = T

(1)
Y X = 0 since the ratios will be1. This correctly indicates thatX andY

does not have a causal relationship attZ = 1.

7.2 The general model

Previously in the simple model, we only had two states in the model sinceA = {−1, 1},

but in the real world, we do not always have this luxury. Letns ≥ 2 be the number of states

we have in the model, and defineA = {1, ..., ns} as the set of possible states. Note that
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the simplest casens = 2 is equivalent to the previous simple model. As before, letμX , μY

andμZ , be the independent probabilities for the stochastic swaps of the variablesX, Y and

Z at every time step respectively. Again we impose a special restriction onX andY such

that they are only allowed to do the stochastic swap with probabilityμX andμY if the state

of Zn−tZ fulfills a certain condition. This restriction means thatX andY can only change

states ifZ is in the conditioned state at time stepn− tZ thus creating a ‘dependence’ onZ.

The processes are initialized randomly and independently so that the probabilities are

uniform i.e. P (X1 = 1) = ∙ ∙ ∙ = P (Z1 = ns) = 1
ns

. We set the model to be such that

if a process chooses to change it must choose one of the other states equally, thus we have

thatP (X2 = α|X1 = β, α 6= β) = 1
ns−1

P (X2 6= X1), since 1
ns−1

is the probability thatX

choosesα given that it must change. Therefore forα, β ∈ A,

P (X2 = α) = P (X1 = α)P (X2 = X1) + P (X1 6= α)P (X2 = α|X1 = β, α 6= β)

=
1

ns

(1 − P (X2 6= X1)) +
ns − 1

ns

1

ns − 1
P (X2 6= X1)

=
1

ns

(1 − P (X2 6= X1) + P (X2 6= X1)) =
1

ns

.

Applying this recursively givesP (Xn = 1) = ... = P (Xn = ns) = 1
ns

for anyn. The

same goes forY andZ. It also follows that since the processes are initialized randomly

and independently, forn = 1 all the joint probabilities are the product of the marginal

probabilities thus the value of the joint probability of two processes becomes1
n2

s
. The joint

probability of three processes become1
n3

s
. This generalizes to any number of processes,

so that the joint probability becomes simply a product of the marginal ones. For example

P (X1 = α, Z1 = β) = P (X1 = α)P (Z1 = β) = 1
n2

s
for anyα, β ∈ A. We make use of

the equation

P (X1 = α, Z1 6= β) =
∑

γ 6=β

P (X1 = α, Z1 = γ) =
∑

γ 6=β

1

n2
s

=
ns − 1

n2
s
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to get

P (X2 =α, Z2 = β) = P (X1 = α, Z1 = β)P (X2 = X1)P (Z2 = Z1)

+ P (X1 = α, Z1 6= β)P (X2 = X1)
1

ns − 1
P (Z2 6= Z1)

+ P (X1 6= α, Z1 = β)
1

ns − 1
P (X2 6= X1)P (Z2 = Z1)

+ P (X1 6= α, Z1 6= β)
1

ns − 1
P (X2 6= X1)

1

ns − 1
P (Z2 6= Z1) =

1

n2
s

for α, β ∈ A. Recursively we get that it applies to alln, and for joint probabilities of

other variables as well, therefore joint probabilities are all1
n2

s
regardless of the values of the

transition probabilities. Also, if we were to calculate the covariance, Mutual Information

or even conditional Mutual Information values between these processes they will all be0.

To get nonzero values one has to look at the transition probabilities,

P (Xn = α|Xn−1 = β) =






1 − μXΩ if α = β

1
ns−1

μXΩ if α 6= β

P (Yn = α|Yn−1 = β) =






1 − μY Ω if α = β

1
ns−1

μY Ω if α 6= β.

and

P (Zn = α|Zn−1 = β) =






1 − μZ if α = β

1
ns−1

μZ if α 6= β

whereΩ = P ( condition fulfilled) such that

P (Xn 6= Xn−1) =
∑

β 6=α

P (Xn = α|Xn−1 = β) = μXΩ

and similarlyP (Yn 6= Yn−1) = μY Ω. We can change to what extend the ‘dependence’ on

Z is by alteringΩ. To understand how the values ofμZ affects the value ofT (τ)
ZX through

Q
(τ)
sgn(γ), we will need to look at the relationship betweenΩ andQ.
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7.2.1 The relationship betweenΩ andQ

Recall that for the simple model and the amended Ising model where there are only

two possible states, we have definedQ
(τ)
sgn(γ) = P ( condition fulfilled|Zn−1 = γ) =

P (Zn−tZ = 1|Zn−τ = γ) in equation (6.2) where

sgn(γ) =






+ if γ = 1

− if γ = −1.
(7.2)

Now in the general model whereγ ∈ A = {1, . . . , ns} are all positive integers, the pos-

sible states are different. The value ofQ
(τ)
sgn(γ) will depend onγ, and in our model here,

particularly whether or notZn−tz = γ satisfies the condition. One can divide the possible

statesγ of all the processes into two groups such that

GU = {γ ∈ A, Zn−tZ = γ fulfills the condition} and

GD = {γ ∈ A, Zn−tZ = γ does not fulfill the condition}.

Note that|GU | = nsΩ and|GD| = ns(1 − Ω) sinceΩ = P ( condition fulfilled) such that

Ω can be interpreted as the proportion of states ofZ that fulfill the condition.Q represents

the probability that the condition is fulfilled given current knowledge at timeτ such that

Q
(τ)
sgn(γ) = P ( condition fulfilled| knowledge at timeτ). Due to equiprobability of spins

and uniform initial distribution, for anyτ there are only two possible values ofQ
(τ)
sgn(γ), one

for γ ∈ GU and one forγ ∈ GD. Therefore we need to redefinesgn(γ) such that

sgn(γ) =






+ if γ ∈ GU

− if γ ∈ GD

(7.3)

to get

Q
(τ)
sgn(γ) =






Q
(τ)
+ if γ ∈ GU

Q
(τ)
− if γ ∈ GD.

(7.4)
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For the general model, we shall defineQ
(τ)
sgn(γ) = P ( condition fulfilled|Zn−τ = γ) with

thesgn(γ) as in equation (7.3).

The relationship betweenQ(τ)
sgn(γ) andΩ can be defined using the formula for total prob-

ability P (B) =
∑

γ P (B|Z = γ)P (Z = γ). Let B = { condition fulfilled} and using the

fact thatP (Zn−τ = γ) = 1
ns

, we get that

Ω = P (B) =
∑

γ

P (B|Zn−τ = γ)P (Zn−τ = γ) =
1

ns

∑

γ

Q
(τ)
sgn(γ). (7.5)

Due to the sole dependence ofZ onμZ , μZ = ns−1
ns

will make the transition probability of

Z uniform such thatP (Zn = α|Zn−1 = β) = 1
ns

for anyn since we have that

P (Zn = α|Zn−1 = β) =






1 − μZ = 1 − ns−1
ns

= 1
ns

if α = β

1
ns−1

μZ = 1
ns−1

ns−1
ns

= 1
ns

if α 6= β

for any α, β ∈ A = {1, ∙ ∙ ∙ , ns}. Consequently,μZ = ns−1
ns

also makes all values of

Q
(τ)
sgn(γ) uniform so that equation (7.5) becomes

Ω =
1

ns

∑

γ

Q
(τ)
sgn(γ) =

1

ns

nsQ
(τ)
sgn(γ) = Q

(τ)
sgn(γ). (7.6)

Therefore on the model when theμZ = ns−1
ns

, we have thatΩ = Q
(τ)
sgn(γ) for anyτ = tZ .

For anyμZ , the relationship betweenQ(τ)
+ andQ

(τ)
− can be derived from equation (7.5)

where

nsΩ =
∑

γ

Q
(τ)
sgn(γ) =

∑

γ∈GU

Q
(τ)
sgn(γ) +

∑

γ∈GD

Q
(τ)
sgn(γ) = |GU |Q

(τ)
+ + |GD|Q

(τ)
− (7.7)

nsΩ = nsΩ Q
(τ)
+ + ns(1 − Ω)Q

(τ)
−

Ω(1 − Q
(τ)
+ ) = (1 − Ω)Q

(τ)
−

Note that whenns = 2 (henceΩ = 1
2
) this simplifies toQ(τ)

+ + Q
(τ)
− = 1.
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7.2.2 Transfer Entropy on the model

UsingQ
(τ)
sgn(γ) as in equation (7.4) we have that

P (Xn = α|Xn−1 = β, Zn−τ = γ)

P (Xn = α|Xn−τ = β)
=






1−μXQ
(τ)
sgn(γ)

1−μXΩ
if α = β

1
ns−1

μXQ
(τ)
sgn(γ)

1
ns−1

μXΩ
=

Q
(τ)
sgn(γ)

Ω
if α 6= β,

which gives us

T
(τ)
ZX =

∑

α

∑

β

∑

γ

P (Xn = α, Xn−1 = β, Zn−τ = γ)log
P (Xn = α|Xn−1 = β, Zn−τ = γ)

P (Xn = α|Xn−1 = β)

=|{Xn = Xn−1}|
∑

γ

[
1 − μXQ

(τ)
sgn(γ)

n2
s

log
1 − μXQ

(τ)
sgn(γ)

1 − μXΩ

]

+ |{Xn 6= Xn−1}|
∑

γ

[
1

ns−1
μXQ

(τ)
sgn(γ)

n2
s

log
Q

(τ)
sgn(γ)

Ω

]

=ns

∑

γ

[
1 − μXQ

(τ)
sgn(γ)

n2
s

log
1 − μXQ

(τ)
sgn(γ)

1 − μXΩ

]

+ ns(ns − 1)
∑

γ

[
1

ns−1
μXQ

(τ)
sgn(γ)

n2
s

log
Q

(τ)
sgn(γ)

Ω

]

=
1

ns

∑

γ∈GU

[

(1 − μXQ
(τ)
sgn(γ)) log

1 − μXQ
(τ)
sgn(γ)

1 − μXΩ
+ μXQ

(τ)
sgn(γ) log

Q
(τ)
sgn(γ)

Ω

]

+
1

ns

∑

γ∈GD

[

(1 − μXQ
(τ)
sgn(γ)) log

1 − μXQ
(τ)
sgn(γ)

1 − μXΩ
+ μXQ

(τ)
sgn(γ) log

Q
(τ)
sgn(γ)

Ω

]

=
1

ns

(nsΩ)

[

(1 − μXQ
(τ)
+ ) log

1 − μXQ
(τ)
+

1 − μXΩ
+ μXQ

(τ)
+ log

Q
(τ)
+

Ω

]

+
1

ns

ns(1 − Ω)

[

(1 − μXQ
(τ)
− ) log

1 − μXQ
(τ)
−

1 − μXΩ
+ μXQ

(τ)
− log

Q
(τ)
−

Ω

]

= Ω

[

(1 − μXQ
(τ)
+ ) log

1 − μXQ
(τ)
+

1 − μXΩ
+ μXQ

(τ)
+ log

Q
(τ)
+

Ω

]

+ (1 − Ω)

[

(1 − μXQ
(τ)
− ) log

1 − μXQ
(τ)
−

1 − μXΩ
+ μXQ

(τ)
− log

Q
(τ)
−

Ω

]

(7.8)
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where we used the Bayes theorem i.e

P (Xn = α, Zn−1 = γ, Xn−1 = β) =
1

n2
s

P (Xn = α|Zn−1 = γ, Xn−1 = β).

Due to independence, ifY were to be conditioned onX we would have that

P (Yn = α|Yn−1 = β, Xn−τ = γ)

P (Yn = α|Yn−1 = β)
=

P (Yn = α|Yn−1 = β)

P (Yn = α|Yn−1 = β)
= 1.

Therefore for values other than whenX andY conditioned onZ, this ratio will yield 1.

This rendersT (τ)
XZ = T

(τ)
Y Z = T

(τ)
Y X = T

(τ)
XY = 0. And if we get thatT (τ)

ZX = T
(τ)
ZX 6= 0, we can

say that Transfer Entropy indicates ‘causality’ fromZ to X andZ to Y , which is exactly

what we want. In a similar manner forα, β, γ ∈ A we have that

P (Yn = α|Yn−1 = β, Zn−τ = γ)

P (Yn = α|Yn−1 = β)
=






1−μY Q
(τ)
sgn(γ)

1−μY Ω
if α = β

1
ns−1

μY Q
(τ)
sgn(γ)

1
ns−1

μY Ω
=

Q
(τ)
sgn(γ)

Ω
if α 6= β

such thatT (τ)
ZY in exactly like equation (7.8) except thatμX is replaced withμY .

Whenτ = tZ we have thatQ(tZ)
sgn(γ) is either0 or 1 since the condition was placed at

n − tZ . More specifically we will have thatQ(tZ)
+ = 1 and thatQ(tZ)

− = 0. Putting these

two values in equation (7.8) we obtain

T
(tZ)
ZX = Ω

[

(1 − μXQ
(tZ)
+ ) log

1 − μXQ
(tZ)
+

1 − μXΩ
+ μXQ

(tZ)
+ log

Q
(tZ)
+

Ω

]

+ (1 − Ω)

[

(1 − μXQ
(tZ)
− ) log

1 − μXQ
(tZ)
−

1 − μXΩ
+ μXQ

(tZ)
− log

Q
(tZ)
−

Ω

]

= Ω(1 − μX) log
1 − μX

1 − μXΩ
+ ΩμX log

1

Ω
+ (1 − Ω) log

1

1 − μXΩ
. (7.9)

WhenΩ = 0.5 andtZ = 1 in equation (7.9), we have that the formula is exactly like the

equation (7.1) for the simple model. This is shown in Figure (7.4) where it is the red dotted

line (more on this special case later) is exactly Figure (7.3). T
(tZ)
ZX values forΩ = 0.25 and

Ω = 0.75 in Figure (7.4) converges since equation (7.9) becomes equal for any pair ofΩ

and1 − Ω at μX = 1. In other words equation (7.9) is symmetrical overΩ whenμX = 1.
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Also notice that forΩ = 1 we have thatT (tZ)
ZX = 0 since this means that the condition is

fulfilled all the time which is equal toZ being not restrictive at all.
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Figure 7.4: Analytical value ofT (tZ)
ZX versusμX in equation (7.9) of the general model for

different values ofΩ = P ( condition fulfilled). For fixedΩ, T
(tZ)
ZX in equation

(7.9) is a monotonically increasing function ofμX .

7.2.3 Transfer Entropy for causal lag detection

If there exists a specific causal lag in the model where eitherX, Y or Z causes each other,

then the Transfer Entropy should be able to detect the direction and the exact causal lag

using equation (7.8). In this model where we have imposed thatZ ‘causes’X andY at

causal lagtZ , we shall show thatT (τ)
ZX ≤ T

(tZ)
ZX (and similarlyT (τ)

ZY ≤ T
(tZ)
ZY ). Consequently

the largest value that we get forT
(τ)
ZX (andT

(τ)
ZY ) indicates the actual causal lag. For the most

part of the thesis, we will mostly focus onT (τ)
ZX , fully realizing the fact theT (τ)

ZY has exactly

the same probability asT (τ)
ZX and therefore what applies to the relationship betweenX and

Z applies equally to the relationship betweenY andZ.

We have seen thatμZ = ns−1
ns

(resulting in uniform transition probability) leads to

Q
(τ)
sgn(γ) = Ω in equation (7.6), which in turn rendersT (τ)

ZX = 0 wheneverτ 6= tZ . One
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can clearly see this by substitutingQ(τ)
sgn(γ) = Ω in equation (7.8). This is due to the fact

thatQ(τ)
sgn(γ) = P ( condition fulfilled|Zn−τ = γ) and the condition is manifested only at

Zn−tZ so that whenτ = tZ , Q
(tZ)
sgn(γ) is either1 or 0 hence resulting in equation (7.9).

We can clearly use the fact thatT
(τ)
ZX 6= 0 only at τ = tZ to detect time lags since this

obviously impliesT (τ)
ZX ≤ T

(tZ)
ZX . To illustrate, letns = 2 so thatA = {1, 2}. Note that the

probabilities are equivalent to the simple model. Let the condition beZn−tZ = 1 so that

Ω = P (Zn−tZ = 1) = 1
2

andQ
(τ)
sgn(γ) = P (Zn−tZ = 1|Zn−τ = γ). Thus (7.8) becomes

T
(τ)
ZX =

1

2

[

(1 − μXQ
(τ)
+ ) log

2(1 − μXQ
(τ)
+ )

2 − μX

+ μXQ
(τ)
+ log 2Q

(τ)
+

]

(7.10)

+
1

2

[

(1 − μXQ
(τ)
− ) log

2(1 − μXQ
(τ)
− )

2 − μX

+ μXQ
(τ)
− log 2Q

(τ)
−

]

.

WhenμZ = ns−1
ns

= 1
2
, transition probability is uniformly distributed thus we get Figure
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Figure 7.5: AnalyticalT (τ)
ZX versusτ in equation (7.10) with fixed values ofμZ = 1

2
, tZ = 5

andns = 2 (so thatΩ = 1
2
). μX effects the values ofT (τ)

ZX at τ = tZ .
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(7.5) which is equation (7.10) plotted for τ = 1, ∙ ∙ ∙ , 9 with four different μX values.

tZ = 5 was chosen for illustration purposes. The values ofT
(τ)
ZX in this figure are only

dependentμX and time lag detection is straight forward. We get thatT
(tZ)
ZX increases asμX

increases in Figure (7.5). SettingμZ = ns−1
ns

causes allQ(τ)
sgn(γ) = Ω so that allT (τ)

ZX = 0 for

anyτ 6= tZ . This can be verified by a brief inspection of equation (7.8).

However for varyingμZ values we get quite a different picture. Only whenμZ 6= ns−1
ns

,

do we get cases whereT (τ)
ZX 6= 0 whenτ 6= tZ . Figure (7.6) is equation (7.10) plotted for

τ = 1, ∙ ∙ ∙ , 9 with four differentμZ values whenμX = 1
2

is fixed. FixingμX = ns−1
ns

= 1
2

makes the transition probability ofX uniform (except for the bit influenced byZ). The

red dotted line (when bothμX = 1
2

andμZ = 1
2
) in Figure (7.5) and Figure (7.6) are

equivalent. AgaintZ = 5 was chosen for illustration purposes. The fact thatT
(tZ)
ZX values

only depend onμX is manifested in Figure (7.6) whereμX is fixed and we can see that the

peaks converge at a single value. We can also clearly see in Figure (7.6) that whenμZ = 1
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Figure 7.6: AnalyticalT (τ)
ZX versusτ in equation (7.10) with fixed values ofμX = 1

2
, tZ = 5

andns = 2 (so thatΩ = 1
2
). μZ only effects the values ofT (τ)

ZX at τ 6= tZ .
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for any τ , T
(τ)
ZX = T

(tZ)
ZX . This situation is unique forns = 2 (the simple model) since

μZ = 1 leads toZ being deterministic (changes at every time step). This only happens

when there are only two possible states due to the fact that if it needs to change, it only has

one other spin to go to (forns > 2, more states are available to choose from thus retaining

the stochastic element). Therefore given any single value ofZ at any time step, one will be

able to determine the value ofZn−tZ . For example ifZ1 = 1, one would know thatZ2 = 2,

Z3 = 1 and so on. Consequently forμZ = 1, for α, β, γ ∈ A = {−1, 1} we have that

T
(τ)
ZX = E

[

log
P (Xn = α|Xn−1 = β, Zn−τ = γ)

P (Xn = α|Xn−1 = β)

]

= E

[

log
P (Xn = α|Xn−1 = β, Zn−tZ = γ)

P (Xn = α|Xn−1 = β)

]

= T
(tZ)
ZX .

Which leads us to conclude that if the variable we are conditioning on (in this caseZ)

is deterministic, the Transfer Entropy value is independent of the time lags in the simple

model. This is an interesting case in point, sinceμZ = 1 makesZ deterministic and

havingμX = 1
2

keepsX stochastic while still depending onZ, thus this is a case where a

stochastic process is dependent on a deterministic process. Transfer Entropy gives a clear

direction fromZ → X sinceT
(τ)
XZ = 0 andT

(τ)
ZX 6= 0 for anyτ . Therefore, although causal

lag detection cannot be established, in this case Transfer Entropy does indeed succeed in

giving a direction despite one of the processes being deterministic. The original definition

in [89] excluded cases when one or both process is deterministic as previously discussed in

subsection (4.3.1).

Essentially Figure (7.6) depicts how the distance fromtZ influences the value ofT (τ)
ZX .

Therefore letν = |τ − tZ | be the distance ofτ from tZ . Whenν = 0 (for exampleτ = 5

in Figure (7.6)) sinceQ
(τ)
+ = P (Zn−tZ = 1|Zn−τ = 1) = 1 andQ

(τ)
− = 0, equation (7.10)

will simply become

T
(tZ)
ZX =

1

2

[

(1 − μX) log
2(1 − μX)

2 − μX

+ μX log 2 + log
2

2 − μX

]

=log 2 +
1

2
[(1 − μX) log (1 − μX) − (2 − μX) log (2 − μX)] ,

which coincides with equation (7.1) of the simple model. This equation is independent of
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μZ . However if ν = 1, for exampleτ = 4, 6 in Figure (7.6), the values ofQ are now

different sinceτ is one time step away fromtZ so that

Q
(τ)
+ = P (Zn−tZ = 1|Zn−τ = 1) = 1 − μZ andQ

(τ)
− = 1 − Q

(τ)
+ = μZ .

Therefore now equation (7.10) is dependent onμZ since

T
(τ)
ZX =

1

2

[

(1 − μXQ
(τ)
+ ) log

2(1 − μXQ
(τ)
+ )

2 − μX

+ μXQ
(τ)
+ log 2Q

(τ)
+

]

+
1

2

[

(1 − μXQ
(τ)
− ) log

2(1 − μXQ
(τ)
− )

2 − μX

+ μXQ
(τ)
− log 2Q

(τ)
−

]

=
1

2

[

(1 − μX(1 − μZ)) log
2(1 − μX(1 − μZ))

2 − μX

+ μX(1 − μZ) log 2(1 − μZ)

]

+
1

2

[

(1 − μXμZ) log
2(1 − μXμZ)

2 − μX

+ μXμZ log 2μZ

]

.

Whenν = |τ − tZ | = 2, for exampleτ = 3, 7 in Figure (7.6), we have that

Q
(τ)
+ = (1 − μZ)2 + μ2

Z andQ
(τ)
− = 2μZ(1 − μZ).

And if we put these values in equation (7.10), the equation also becomes dependent onμZ .

In the same way, whenν = 3, for exampleτ = 2, 8 in Figure (7.6), then

Q
(τ)
+ = (1 − μZ)3 + 3μ2

Z(1 − μZ) andQ
(τ)
− = μ3

Z + 3μZ(1 − μZ)2.

Forns = 2, we can generalize this for anyν, where

Q
(τ)
+ =

ν∑

k=0,k even

(
ν

k

)

(1 − μZ)ν−kμk
Z and

Q
(τ)
− =

ν∑

k=1,k odd

(
ν

k

)

(1 − μZ)ν−kμk
Z ,

so thatQ(τ)
+ + Q

(τ)
− =

∑ν
k=0

(
ν
k

)
(1 − μZ)ν−kμk

Z = (1 − μZ + μZ)ν = 1 using the binomial

theorem. Basically forns = 2 (thus also for simple model),Q(τ)
+ are the even terms and
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Q
(τ)
− are the odd terms of the binomial theorem which depends onν = |τ − tZ |. This

explains the varying values ofT
(τ)
GA on the amended Ising model that is illustrated in Figures

(6.16), (6.17) and (6.15).

Therefore as soon asτ 6= tZ , we have thatT (τ)
ZX becomes dependent onμZ . This is true

for anyns ≥ 2 whenμZ 6= ns−1
ns

. The value ofT (τ)
ZX does indeed increases asμX increases

in the general model. The dependency onμZ values, comes into the Transfer Entropy

values through different values ofQ. Generally forμZ 6= ns−1
ns

, we get thatT (τ)
ZX → T

(tZ)
ZX

asτ → tZ similar to the situation in Figure (7.6).

7.3 Cases of the general model

We have seen that the static probabilities stays uniform if we initialize with uniform and

independent probabilities. If we want the transition probability ofZ to stay uniform we

needμZ = ns−1
ns

and if we want the transition probability ofX andY to be uniform (with

the exception ofΩ influence) then letμX = μY = ns−1
ns

. However for the rest of this chapter
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Figure 7.7: AnalyticalT (tZ)
ZX versusΩ of equation (7.9) for differentμX values. The maxi-

mum valueT (tZ)
ZX = log(2) ≈ 0.6931 is obtained whenμX = 1 andΩ = 1

2
.
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we will focus on Transfer Entropy values attZ , T
(tZ)
ZX , which is independent ofμZ . Figure

(7.7) is equation (7.9) plotted over variousΩ values. In Figure (7.7) whenμX = 1, T
(tZ)
ZX

values are symmetrical overΩ as opposed to the other displayed values ofμX where it is

slightly skewed. WhenμX = 1, the first term of equation (7.9) becomes0, leaving us with

a function that is symmetric overΩ. One can see that Transfer Entropy value is highest

whenΩ = 0.5, the maximum value beinglog(2) ≈ 0.6931. WhenμX = ns−1
ns

(in this case

ns values ranging from2 to 100 is plotted) the Transfer Entropy values approaches that of

μX = 1 as more and more values of differentns is plotted. This is becauseμx = ns−1
ns

→ 1

asns → ∞. It is worth pointing out that atΩ = 0 andΩ = 1, T
(tZ)
ZX = 0. The former is

due to the fact thatX is not allowed to change at all hence becoming a constant. The latter

is because whenΩ = 1, the transition probabilities ofX becomes dependent onμX only

with no extra restriction fromZ andX becomes completely independent ofZ. Thus in

both cases Transfer Entropy correctly indicates independence betweenX andZ. We will

further investigate the general model in terms of varying the value ofΩ

SubstitutingμX = ns−1
ns

into equation (7.9) makesT (tZ)
ZX dependent onns andΩ such

that

T
(tZ)
ZX =(1 − μX)Ω log

1 − μX

1 − μXΩ
+ μXΩ log

1

Ω
+ (1 − Ω) log

1

1 − μXΩ
(7.11)

=
Ω

ns

log
1
ns

1 − (ns−1
ns

)Ω
+

ns − 1

ns

Ω log
1

Ω
+ (1 − Ω) log

1

1 − (ns−1
ns

)Ω

=
Ω

ns

log
1

ns − (ns − 1)Ω
+

ns − 1

ns

Ω log
1

Ω
+ (1 − Ω) log

ns

ns − (ns − 1)Ω
.

We shall see thatΩ can be a function ofns thusT
(tZ)
ZX can be made completely dependent

on the number of statesns.

7.3.1 Case 1:Ω = P (Zn−tZ = 1)

SettingΩ = P (Zn−tZ = 1) = 1
ns

means imposing the same condition as previously used,

namely thatXn andYn can only change ifZn = 1. However, asns increases,Zn−tZ = 1

becomes more and more restrictive (the states ofX andY becomes less and less able to

change) sinceΩ = P (Zn−tZ = 1) = 1
ns

gets smaller and smaller. SubstitutingΩ = 1
ns

in
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equation (7.9) renders

T
(tZ)
ZX =(1 − μX)Ω log

1 − μX

1 − μXΩ
+ μXΩ log

1

Ω
+ (1 − Ω) log

1

1 − μXΩ

=
1 − μX

ns

log
ns(1 − μX)

ns − μX

+
μX

ns

log ns +
ns − 1

ns

log
ns

ns − μX

=log ns +
1

ns

[(1 − μX) log (1 − μX) − (ns − μX) log (ns − μX)] . (7.12)

This equation is illustrated in Figure (7.8) for various values ofμX . Furthermore if we
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Figure 7.8: AnalyticalT (tZ)
ZX versusns in equation (7.12) for Case1.

substituteμX = ns−1
ns

in equation (7.12) then we get

T
(tZ)
ZX = log ns +

1

ns

[
1

ns

log
1

ns

−
ns(ns − 1) + 1

ns

log
ns(ns − 1) + 1

ns

]

(7.13)

in line with equation (7.11) and the equation is completely dependent onns. Figure (7.8)

shows thatT (tZ)
ZX → 0 asns → ∞ sinceΩ = 1

ns
→ 0 asns → ∞. When this happens the

condition onZ becomes so strict thatX andY can barely change thus practically becoming

constants.
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7.3.2 Case 2:Ω = P (Zn−tZ 6= 1)

This case is the opposite of Case1, sinceΩ = P (Zn−tZ 6= 1) and consequentlyXn and

Yn can freely change as long asZn 6= 1 i.e the change is only restricted ifZn = 1. This

condition gets less strict (the processes becomes less and less dependent onZ) asns get

bigger sinceΩ = ns−1
ns

gets closer and closer to 1. The difference lay in the transition
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Figure 7.9: AnalyticalT (tZ)
ZX versusns in equation (7.14) for Case2.

probabilities ofX andY , sinceΩ = P (Zn−tZ 6= 1) = ns−1
ns

and not 1
ns

(as in Case1), so

that equation (7.9) is

T
(tZ)
ZX =(1 − μX)Ω log

1 − μX

1 − μXΩ
+ μXΩ log

1

Ω
+ (1 − Ω) log

1

1 − μXΩ

=(1 − μX)
ns − 1

ns

log
ns(1 − μX)

ns − μX(ns − 1)
+

μX(ns − 1)

ns

log
ns

ns − 1

+
1

ns

log
ns

ns − μX(ns − 1)

=log ns +
(ns − 1)

ns

(1 − μX) log (1 − μX) −
μX

ns

(ns − 1) log (ns − 1)

−
(ns(1 − μX) + μX)

ns

log (ns(1 − μX) + μX). (7.14)
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Figure (7.9) where equation (7.14) is plotted for variousμX shows that sinceΩ = ns−1
ns

we

have thatΩ → 1 asns → ∞. Ω = 1 implies that the condition is fulfilled all the time

therefore there is no dependence onZ anymore. Thus in this modelX, Y andZ becomes

more and independent asns → ∞ and thereforeT (tZ)
ZX → 0 asns → ∞ as in Case1.

SubstitutingμX = ns−1
ns

in equation (7.14) we get that

T
(tZ)
ZX =log ns +

(ns − 1)

ns

1

ns

log
1

ns

−
(ns − 1)

n2
s

(ns − 1) log (ns − 1) (7.15)

−
(ns

1
ns

+ (ns−1)
ns

)

ns

log

(

ns
1

ns

+
(ns − 1)

ns

)

=log ns +
(ns − 1)

n2
s

log
1

ns

−
(ns − 1)2

n2
s

log (ns − 1) −
2ns − 1

n2
s

log

(
2ns − 1

n2
s

)

.

7.3.3 Case 3:Ω = 1
2

Figure (7.10) is equation (7.8) plotted forΩ = 1
2

over differentns for variousμX values.

This can be achieved in simulations by setting the condition so that it is fulfilled by half of

the possible state space all the time so thatΩ =
ns
2

ns
= 1

2
. One can clearly see in Figure

(7.10) thatT (tZ)
ZX becomesns independent and only depends onμX . This can be understood

by substitutingΩ = 1
2

in equation (7.9) so that

T
(tZ)
ZX =(1 − μX)Ω log

1 − μX

1 − μXΩ
+ μXΩ log

1

Ω
+ (1 − Ω) log

1

1 − μXΩ

=
1 − μX

2
log

2(1 − μX)

2 − μX

+
μX

2
log 2 +

1

2
log

2

2 − μX

=log 2 +
1

2
[(1 − μX) log (1 − μX) − (2 − μX) log (2 − μX) ]. (7.16)

As we have seen before, when we letΩ = 1
2

we get a the simple model equation (7.1).

However, we do get a dependence onns (in line with equation (7.11)) if μX = ns−1
ns

is

substituted in equation (7.16) so that

T
(tZ)
ZX = log 2 +

1

2

[
1

ns

log
1

ns

−
ns + 1

ns

log
ns + 1

ns

]

= log 2 +
1

2
log ns −

ns + 1

2ns

log (ns + 1). (7.17)
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Figure 7.10: AnalyticalT (tZ)
ZX versusns in equation (7.8) for Case3. Transfer Entropy

values are independent ofns and completely dependent onμX akin to the
simple model.

In equation (7.17) one can see that even if initially there is some independence onns, the

T
(tZ)
ZX value in converges quite rapidly tolog (2) asns → ∞, which is the value ofT (tZ)

ZX

with μX = 1 of equation (7.8) as seen in Figure (7.10).

7.3.4 Discussion

For any restriction that we place onZn−tZ , it is Ω = P ( condition fulfilled), the probability

of the fulfilling the condition that matters. The different cases highlight the fact that there

can be different types of restrictions (conditions) that will affect the values of Transfer

Entropy in different ways. In Case1 whereΩ = P (Zn−1 = 1) and Case2 whereΩ =

P (Zn−1 6= 1), for ns = 2 they both become the simple model and thus a type of Case

3. This is due to the fact thatns = 2 leads toΩ = 1
2

sinceP (Zn−1 = 1) = P (Zn−1 6=

1) = 1
2
. Basically forns = 2, all the cases are indistinguishable. Figure (7.11) plots
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equations (7.13), (7.15) and (7.17) whereμX = ns−1
ns

is substituted intoT (tZ)
ZX making the

transition probability ofX uniform save for the influence ofΩ for Case1, Case2 and Case

3 respectively. The figure showcases the asymptotical behaviour of each case.
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Figure 7.11: AnalyticalT (tZ)
ZX versusns with μX = ns−1

ns
in equations (7.13), (7.15) and

(7.17) for Cases1 − 3 respectively. Case1 and2 approaches0. Case3 ap-
proacheslog(2).

What we have illustrated are two extreme cases in the form of Case1 and Case2 and a

middle ground in the form of Case3 . For Case1 , Ω = 1
ns

and thusΩ → 0 asns → ∞. For

Case2 , Ω = ns−1
ns

and thusΩ → 1 asns → ∞. This makes sense becauseΩ = 0 simply

implies thatX andY are not allowed to change thus becoming constants andΩ = 1 implies

that the condition is always fulfilled makingX andY just likeZ, randomly assigned values

depending only onμX andμY respectively with no restrictions or driving factor. For Case

3 however,T (tZ)
ZX stabilizes to constantlog (2) ≈ 0.6931 asns → ∞. This asymptotic

behaviour can be attributed toμX = ns−1
ns

→ 1 asns → ∞. Therefore, theoretically the

Transfer Entropy does indeed captures the relationship between these stochastic processes.
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Chapter Summary

From the analytical values of this model we see that Transfer Entropy successfully detects

the ‘dependency’ of different restrictions that was implanted in the model. While covari-

ance, Mutual Information and conditional Mutual Information fails to detect anything and

gives0, the Transfer Entropy clearly gives us nonzero values that can be taken as an indi-

cation of ‘causality’.Ω stands for the percentage of states ofZ that allows changes inX

andY and serves as an indication of the level of restriction imposed byZ on X andY .

The experiments with different values ofμX andΩ, highlights how the different magni-

tudes ofT (τ)
ZX reflects values ofμX , the intrinsic probability thatX will change regardless

of outsides influence, as well as the values ofΩ, representing the outside influence onX.

Furthermore the variableQ(τ)
sgn(γ) which represents the probability of the condition be-

ing fulfilled given the current information available timeτ , enables us to understand how

μZ influencesT (τ)
ZX so thatT (τ)

ZX 6= 0 even whenτ 6= tZ . This shows the importance of

testing for different causal lags, as only the largest valueT
(τ)
ZX is the real lag. Therefore,

the intrinsic probabilities of both causal and effected processes are also very important in

determining the values of Transfer Entropy between them and should be taken into account

whenever one is trying to make sense of the different magnitudes of Transfer Entropy.

More importantly, we have proved that using the theoretical value of Transfer Entropy it

is possible to pinpoint the exact time lag in which this ‘causal’ connection occurs in this

analytically solvable model. We now proceed to simulations.
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Chapter 8

Finite sampling effects and estimations

We have shown that theoretically, Transfer Entropy has the potential to detect the causal

lag involved in the imposed causal relationship on the model. The next step is to simulate

the model to develop some experience for how sample sizes (i.e. limited data sets) will

influence the behaviour of the Transfer Entropy as we increase the number of statesns. We

simulate the model in MATLAB by generating stochastic processesX, Y andZ with sam-

ple sizeS. We also simulated a null model to further illustrate these finite sampling effects

as well as some proposed corrections along the lines of significant testing. Furthermore

we discuss some popular methods of entropy estimation in relation to applying Transfer

Entropy on real data sets and how we decided to use the most common classical histogram

method.

8.1 Simulation of the toy model

As we increase the number of statesns, we will need to increase the simulated data

required to get accurate probabilities and the effect will be evident in the simulation.

We will see the effects of different sample sizes (length of each stochastic process) in

probability estimation. Recall that the Transfer Entropy definition in equation (4.5) is

T
(τ)
Y X = E

[
log P (X|X−1,Y −τ )

P (X|X−1)

]
. The Transfer Entropy values displayed in this section are

the product of applying equation (4.5) on the simulated data of the toy model.
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8.1.1 Simulation ofns = 2

We simulatens = 2 with tZ = 5. The usage of sample sizeS = 10000 for ns = 2 appears

to give sufficient statistics since Figures (8.1) and (8.2) look identical to their analytical

counterparts Figures (7.5) and (7.6).
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Figure 8.1: T
(τ)
ZX values obtained using equation (4.5) on simulated toy model with fixed

values ofμZ = 1
2
, tZ = 5 andns = 2. Simulated version of Figure (7.5).
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Figure 8.2: T
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ZX values obtained using equation (4.5) on simulated toy model with fixed

values ofμX = 1
2
, tZ = 5 andns = 2. Simulated version of Figure (7.6).
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To illustrate the effect of sample size, Figures (8.3) and (8.4) depicts Transfer Entropy

betweenX andZ in both directions whenμX = μZ = 1
2

for sample sizesS = 10000

andS = 100 respectively. We know from equation (7.10), thatT (5)
ZX ≈ 3

2
log 2 − 3

4
log 3 ≈

0.2158 and by definition all the other Transfer Entropy values in both direction are supposed

to be0.
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Figure 8.3: T
(τ)
ZX andT

(τ)
XZ values obtained using equation (4.5) on simulated toy model

with ns = 2, tZ = 5, μX = μZ = 1
2

and sample sizeS = 10000.
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Figure 8.4: T
(τ)
ZX andT

(τ)
XZ values obtained using equation (4.5) on simulated toy model

with ns = 2, tZ = 5, μX = μZ = 1
2

and sample sizeS = 100.
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The values ofT (5)
ZX stands out in both Figures (8.3) and (8.4), thus correctly indicating

the implanted causal lag attZ = 5. However in Figure (8.4), one can see that the value

T
(5)
ZX is now much further from the theoretical value of0.2158 andT

(τ)
ZX for τ 6= 5 values

are not as close to0 as Figure (8.4). We attribute this to the lack of statistics or in other

words insufficient data points to get the actual probabilities.

8.1.2 Simulation of Case3

In this subsection we measure the Transfer Entropy values of simulated Case3 and compare

them to the theoretical values in subsection (7.3.3). In simulation of Case3, the value

of Ω = 1
2

can be replicated by makingΩ ≈
ns
2

ns
such that the condition is fulfilled by

approximately half of the states all the time. We set the sample size,S = 10000 andtz = 5

for illustration purposes. In Figures (8.5) and (8.6), Transfer Entropy applied on simulated
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Figure 8.5: T
(τ)
ZX obtained using equation (4.5) on simulated toy model of Case3 with

μX = ns−1
ns

andμZ = ns−1

ns
for ns = 5, 10, 15, 20. The only nonzero analytical

values (correct the4 decimal places) of peaks atT
(5)
ZX given by equation (7.17)

are0.4228, 0.5256, 0.5685 and0.5926 respectively.

data of Case3 is plotted. The theoretical values ofT
(5)
ZX in Figure (8.5) can be obtained

by substituting the appropriatens value into equation (7.17). One can clearly see that the



8.1 Simulation of the toy model 142

largerns gets the more inaccurate it becomes. Some of the peak values are clearly different

from its theoretical value since they are larger thanlog(2) ≈ 0.6931 whereas the values of

equation (7.17) would be approachinglog(2) from below forns → ∞ as seen in Figure

(7.11). Whenτ 6= tZ , the values ofT (τ)
ZX for μZ = ns−1

ns
are theoretically0.
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Figure 8.6: T
(τ)
ZX obtained using equation (4.5) on simulated toy model of Case3 with

μX = ns−1
ns

andμZ = 1
2

for ns = 5, 10, 15, 20. The analytical values (correct

the4 decimal places) of peaks atT
(5)
ZX given by equation (7.16) are also0.4228,

0.5256, 0.5685 and0.5926 respectively.

In Figure (8.6), we haveμZ = 1
2

instead ofμZ = ns−1
ns

in Figure (8.5). This is the

only difference between the two figures. Recall from discussions in subsection (7.2.3) that

the values ofT (tZ)
ZX are not influenced byμZ , therefore attZ = 5 the theoretical values

of T
(tZ)
ZX of Figures (8.6) and (8.5) are exactly the same. This can be verified for eachns

by substitutingμX = ns−1
ns

into equation (7.16). However, the figures differ for values of

T
(τ)
ZX , τ 6= tZ . Also discussed in subsection (7.2.3), is the fact that whenμZ 6= ns−1

ns
as in

Figure (8.6), there exist nonzero values forT
(τ)
ZX , τ 6= tZ which is influenced byμZ through

values ofQ. The influence ofQ can be understood by examining equation (7.8) that is the

general equation for Transfer Entropy on the toy model in which both equations (7.17) and

(7.16) are derived from.
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8.1.3 Different cases of the general model

We proceed to investigate how much the sample size affects the different cases on the

general model. In this subsection we plot values of Transfer EntropyT
(tZ)
ZX with μZ = ns−1

ns
.

Without loss of generality we utilizetZ = 1 for all the simulations. Obviously the larger

S is, the closer the approximation from simulated data sets are to the analytical values.

In Figure (8.7), we plot the analytical value of equation (7.13) for eachns alongside the

simulations with varying lengths (sample sizes) of simulated data sets for Case1 where

the condition gets stricter asns gets bigger sinceΩ = 1
ns

→ 0. One can see that the

approximation does not stray too far from the analytical value as opposed to other two

cases. Case2 is the opposite of Case1 where the condition gets less and less strict which
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Figure 8.7: Transfer EntropyT (tZ)
ZX versus number of statens for Case1. Analytical values

obtained from equation (7.13) and simulated values acquired using equation
(4.5) on simulated data of varying sample sizeS.

is probably why some of the values seen in Figure (8.8) that are supposed to converge to

0 analytically, diverge instead. Figure (8.9) represents Case3 whereΩ = 1
2
. One can see

that some of the approximated values also diverge and does not converge tolog(2) as it is

supposed to.
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Figure 8.8: Transfer EntropyT (tZ)
ZX versus number of statens for Case2. Analytical values

obtained from equation (7.15) and simulated values acquired using equation
(4.5) on simulated data of varying sample sizeS.
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Figure 8.9: Transfer EntropyT (tZ)
ZX versus number of statens for Case3. Analytical values

obtained from equation (7.17) and simulated values acquired using equation
(4.5) on simulated data of varying sample sizeS.
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8.2 The null model

To differentiate what is happening because of lack of statistics and what is really happening

in the model, we look at a null model where no conditions are imposed. This null model

can be described as the general model withΩ = 1 whereZ does not effectX or Y . Let the

model be contained of stochastic processesX, Y andZ that can assume values in the set of

statesA = {1, ∙ ∙ ∙ , ns} at every time stepn = 1, ..., S. Let μX , μY andμZ be the internal

(not influence by other processes) probabilities that the variablesX, Y andZ changes at

every time step respectively, so that the transition probabilities become

P (Xn = α|Xn−1 = β) =






1 − μX if α = β

1
ns−1

μX if α 6= β

P (Yn = α|Yn−1 = β) =






1 − μY if α = β

1
ns−1

μY if α 6= β.

and

P (Zn = α|Zn−1 = β) =






1 − μZ if α = β

1
ns−1

μZ if α 6= β.

8.2.1 Transfer Entropy on the null model

Due to independence, one would expect the transition probabilities between the processes

to be independent of each other. For example, the transition probability betweenX andZ

becomes

P (Xn = α|Xn−1 = β, Zn−τ = γ) = P (Xn = α|Xn−1 = β)

for anyα, β, γ ∈ A and time stepτ . Consequently, the ratioP (Xn=α|Xn−1=β,Zn−τ=γ)
P (Xn=α|Xn−1=β)

will

always be1 therefore the Transfer Entropy values should all be0. Figures (8.10) and (8.11)

display that the Transfer Entropy diverge from0 for largerns especially for smaller sample

sizes. The aim of doing this is to get some feel of what values ofns are appropriate for the

different sample sizes (data set lengths) that we have. We clearly see that approximations

on insufficient sample size leads to spurious values.
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Figure 8.10: Transfer EntropyT (tZ)
ZX versus number of statens for null model. Analytical

values are0 and simulated values acquired using equation (4.5) on simulated
data of varying sample sizeS.
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Figure 8.11: Figure (8.10) with log values on y axis
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8.2.2 Mutual Information and covariance on the null model

We see that this problem is not only exclusive to Transfer Entropy. It applies to any case

where probability needs to be estimated. We illustrate the situation for Mutual Information

in Figures (8.12) and (8.13) . The covariance values are displayed in Figure (8.14).
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Figure 8.12: Mutual InformationI(X, Z) versus number of statesns for null model. Ana-
lytical values are0. Simulated values acquired using equation (2.12) on sim-
ulated data of varying sample sizeS.

8.3 Correcting for finite sampling effects

The observed existence of spurious detection or overestimation [74] is not uncommon and

has been reported in relation to causality measures in [100, 51, 101, 79, 71]. These spurious

values are caused by bias in relation to individual dynamics, state space reconstruction,

coupling measure on so on so forth. The bias of an estimator is the difference between

estimators expectation value and it’s theoretical value. Bias in estimation causes non-zero

spurious values when there is no causal effect and this problem is not only unique for

Transfer Entropy [79]. This is a problem in which positive bias may be misinterpreted
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Figure 8.13: Figure (8.12) with log values on y axis
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Figure 8.14: CovarianceΓ(X, Z) versus number of statesns for null model. Analytical
values are0 and simulated values acquired using equation (1.2) on simulated
data of varying sample sizeS.
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as weak coupling when there is actually no causal effect. Therefore there needs to be

way to indicate significance and reduce bias so that the causal measure gives zero values

when there is no causal relationship. In [100, 51] correction terms to cancel out the bias

related errors are suggested. Another alternative to cope with the finite sampling effects

is significant testing. Surrogates have been suggested as a form of significant testing for

Transfer Entropy [101, 102, 78, 75].

8.3.1 Surrogates for significant testing

When compared to G-causality, it is often pointed out that significant testing is not present

for Transfer Entropy. Schreiber outlined that directionality can only be concluded if the

value of Transfer Entropy is0 in one direction and nonzero in another. However due to

bias, the value0 is not normally obtained for Transfer Entropy in real data sets. [79] points

out the importance of having significant test for causality measures in terms avoiding false

directionality conclusions.

[78] claims that the only practical significant testing for Transfer Entropy is probably in

the form of surrogates. Surrogates data sets are synthetically generated data which ideally

preserve all properties of the underlying system except the one being tested [101]. There are

many different types of surrogates to serve different purposes. Fourier surrogates are used

to randomize frequencies [90, 101]. Randomizing temporal values have been done using

permutation surrogates [78], time shift test [102] and twin surrogates [101]. Surrogates

have also been used in testing whether or not data sets are nonlinear [75]. Surrogates in

the form of reshuffled time series are utilized in [72, 18]. The idea is to break the coupling

(causal link) but maintain dynamics in hope that one can differentiate cause and effect from

the any other dynamics.

Significant testing with surrogate is usually done as a standard one sided hypothesis test

where the null hypothesis is that the two systems (time series) are independent. Attempts

are made to reject the null hypothesis with a certain confidence level. A more inclusive test

taking into account different directions and non-directionality is proposed in [79]. Rather

than testing for surrogates separately it has also been suggested that significant testing can

be done in a form of modified information theoretic functionals [85].
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8.3.2 Effective and Corrected Transfer Entropy

From Figures (8.5) and (8.6), it seems like the values are simply shifted upwards and if

one could simply subtract values related to the shift then perhaps the true values would be

obtained. This is the idea behind the effective and corrected Transfer Entropy. Effective

Transfer Entropy [71] between two time series is the modification of Transfer Entropy

defined as the difference of Transfer Entropy computed on the original time series and

Transfer Entropy computed between a surrogate time series where the driving process is

randomly shuffled. Therefore in relation to our definition of Transfer Entropy in equation

(4.5) the effective Transfer Entropy can be defined as

ET
(τ)
Y X = T

(τ)
Y X − T

(τ)
YS ,X (8.1)

whereYS is the randomly shuffled surrogate of time seriesY . Figures (8.15) and (8.16)

displays the values on effective Transfer Entropy on Case3 of the general model and null

model in direct contrast to Figures (8.9) and (8.10).

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n
s

E
T

zx
(t

Z
)

 

 

analytics
simulation S=1000
simulation S=10000
simulation S=100000

Figure 8.15: Effective Transfer EntropyET
(tZ)
ZX versus number of statesns for Case3.

Analytical values are obtained with equation (7.17) and simulated values ac-
quired using equation (8.1) on simulated data of varying sample sizeS.
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Figure 8.16: Effective Transfer EntropyET
(tZ)
ZX versus number of statesns for null model.

Analytical values are0 and simulated values acquired using equation (8.1) on
simulated data of varying sample sizeS.

The corrected Transfer Entropy suggested in [82] generalizes the effective Transfer

Entropy by taking the average values ofM permutation surrogates instead of just one real-

isation such that

ET
(τ)
Y X = T

(τ)
Y X −

M∑

i=1

T
(τ)
YSi

,X (8.2)

whereYSi
is theith randomly shuffled surrogate of time seriesY . The reasoning behind

this is that surrogate have bias of their own [101] and by taking the average of different

realisations the bias and variance is reduced producing a much stable and smooth estimate

of Transfer Entropy on the shuffled surrogate. From Figure (8.16), using sufficient surro-

gate estimate, it may be possible to identify0 values of Transfer Entropy on the toy model

where overestimation is only due to insufficient data to get good probabilities. However,

in real data sets there are many other factors to be taken into account in terms of obtaining

good probability.
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8.4 Estimation of Entropy

The estimation of the information theoretic values on real data sets is where the true chal-

lenge lies. The finite sampling effect is just one of many problems faced in estimating

probability of real data sets. In the toy model and the Ising model we knew exactly what

the numbers of statesns and what the discrete values of the states were. In EEG data sets,

most of the values are approximately continuous and to account for each state separately

would generally not be feasible. State space will need to be reconstructed with certain es-

timates. There exist a whole range of literature with regards to entropy estimates, a good

summary of entropy estimation in relation to causality detection is given in [52].

Entropy is simply the expectation of log values of probabilities. Therefore entropy de-

pends completely on probability estimation and so does the other entropy based measures

such as Mutual Information and Transfer Entropy. Analytical values of Mutual Informa-

tion and Transfer Entropy can be defined for discrete values as we have done in previous

chapters and also for continuous values [57, 32, 33]. Parametric estimations works di-

rectly with continuous values when there are reasons to believe that assumption of a certain

distribution may be true. The most common assumption is the Gaussian assumption [7].

The Edgeworth expansion is an example of a parametric estimator which approximates

entropy through asymptotic expansions [95, 96]. Unfortunately on EEG data sets there is

no reason to expect any type of underlying distribution and therefore we proceed with the

nonparametric estimators. Non parametric estimators that will be mentioned here includes

histogram, nearest neighbour estimates, rankings and kernel estimation methods.

8.4.1 Classical histogram (equidistant binning)

Probabilities of discrete values are relatively easy to obtain. Therefore coarse graining

techniques converting continuous (or approximately continuous) data into discrete states

are often utilized [57], so that the data can be treated as discrete values. This is done

with the assumption that the coarse grained values converges to continuous values as the

coarse graining gets more and more refined. For classical histogram, convergence of Mu-

tual Information and Transfer Entropy estimates to continuous values have been theoreti-

cally proven [57] . The action of course graining is the partitioning of the continuous data
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in order to use discrete probability estimation tools. This is also known as the state space

reconstruction [79].

In the toy model,ns was the number of states that we had on the model. In real data

sets with continuous values, one can never have enough states to accommodate all the pos-

sible values hence coarse graining is applied. Our approach to coarse graining would be

to set the values ofns that is required and then divide the interval between the maximum

and minimum amplitude intons equal sized bins where the values will be grouped accord-

ingly. The probabilities will then be obtained by counting the visitation frequencies. This

approach is known as the classical histogram or equidistant binning approach. It is said

to be the simplest [101] and most widely used form of course graining [21]. For an in-

teresting example see [74], where classical histogram is utilized for estimation of Mutual

Information on EEG data sets.

For example if there are two processesX andY , the probabilities will be obtained by

counting the numbers of values in various bins that were obtained by partitioning the range

of X andY into finite size bins. Leti, j ∈ {1, ∙ ∙ ∙ns} such thatCX(i) be the number of

values falling into theith bin of X, CY (j) is the number of values falling into thejth bin

of Y andCXY (i, j) is the number of values in their intersection. Then the probabilities are

approximatelypX(i) ≈ CX(i)
C

, pY (j) ≈ CY (j)
C

andpXY (i, j) ≈ CXY (i,j)

C̀
whereC is total

number of values and̀C is the total number of pairs. The Mutual Information estimation is

then obtained by

I(X, Y ) ≈ Ibinned(X, Y ) =
∑

i

∑

j

pXY (i, j) log
pXY (i, j)

pX(i)pY (j)
. (8.3)

Similarly, the Transfer Entropy estimation can also be obtained.

Having uniformly sized bins is the simplest implementation of this approach [21, 105],

there are alternative ways of partitioning into unequal sized bins. This is known as adaptive

binning, one example on Mutual Information have been proposed by [39], where boxes

are subdivided only locally in places where the structure is statistically significant in order

to avoid too few sample points in a certain bin. Other algorithm for adaptive binning

are explored in [88, 30, 23, 101]. As ns grows bigger and bigger, the actual bin size gets

smaller and the values for the estimated measures should converge to the continuous values.
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It has been theoretically proven in [57] that uniform partition converges for both Mutual

Information and Transfer Entropy. However for adaptive partitioning convergence is only

proven for Mutual Information but not for Transfer Entropy. This is one of the reasons we

shall choose to use uniform partitions.

8.4.2 Rankings and symbolic analysis

Symbolic analysis is a special way of partitioning the state space. Firstly, coarse graining

is done as usual. The difference is that these symbols are given ranks enabling the coarse

grained data to be arranged in ascending or descending order. Each value is replaced by

it’s rank in the sorted sequence. The ranking converts any type of arbitrary probability

distribution into uniform distribution [52].

A variable called permutation entropy [9, 48, 82] can be defined to measure the infor-

mation on the order relations of the symbols. This variable is defined just like the Shannon

entropy in equation (2.3a) except that it is the probability of the orderings between val-

ues that are taken into account instead of the probability of the values themselves. When

permutation entropy is used instead of Shannon entropy in the definition of Mutual Infor-

mation, conditional Mutual Information and Transfer Entropy, then the measures becomes

Mutual Sorting Information, conditional Mutual Sorting Information [82] and symbolic

Transfer Entropy [94] respectively.

In some special cases where duality between values and orderings can be established

[48, 49] the symbolic Transfer Entropy is shown to be equal to Transfer Entropy. Indeed,

the issues in Transfer Entropy estimations such as coarse graining, embedding vectors (the

values to be conditioned on) and time delays persist for symbolic Transfer Entropy. Thus

generally, whatever one does with Transfer Entropy can be done with symbolic Transfer

Entropy. In certain circumstances where ordinal time series are available it is logical to

apply symbolic Transfer Entropy. The resulting uniform distribution makes it easier to

deal with as well. Several other variations of symbolic Transfer Entropy is proposed in

[65, 82, 79, 72].
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8.4.3 Other nonparametric estimations

Kernel density estimation (KDE) estimates the probability density using a kernelK which

must be a normalized probability density function. IfS is the number of samples of vari-

ablesX, the approximate density function [81] is pX(x) ≈ 1
S

∑N
i=1 K(x − xi, h) wherexi

is theith sample ofX andh is the bandwidth (kernel width parameter). For example when

the kernel is Gaussian

pX(x) ≈
1

S

N∑

i=1

K(x − xi, h) =
1

S(2πh)d/2

N∑

i=1

exp

(

−
‖x − xi‖

2h2

)

(8.4)

with d being the dimension andh in the Gaussian case is simply the variance. Similarly, the

estimations are done forY and the joint probabilities before putting them into the Mutual

Information formula. The correlation integrals [100] used in Schreiber’s original paper [89]

to estimate Transfer Entropy is also a type of kernel estimator.

Thek Nearest Neighbour (kNN) estimation is an example of a metric method of esti-

mation. The algorithm proposed in [60] uses distance defined by‖z‖z = max{‖x‖, ‖y‖}

for a pointz = (x,y), where‖.‖ denotes Euclidean norm. DefineNk(i) to be the set of

nearest neighbour samples ofzi = (xi, yi) with respect to the norm‖.‖z. Let

εx(i) = max{‖xi − xĩ‖ |(xĩ, yĩ) ∈ Nk(i)}, (8.5)

εy(i) = max{‖yi − yĩ‖ |(xĩ, yĩ) ∈ Nk(i)} (8.6)

so that we can calculate the number of elements within a distance forx andy

nx(i) = |{zĩ | ‖xi − xĩ‖ ≤ εx(i)}| , (8.7)

ny(i) = |{zĩ | ‖yi − yĩ‖ ≤ εy(i)}| (8.8)
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and an estimator for Mutual Information formula in equation (2.12) is given by,

I(1)(X, Y ) ≈ψ(k) + ψ(n) −
1

k
−

1

n

n∑

i=1

[ψ(nx(i)) + ψ(ny(i))], (8.9)

I(2)(X, Y ) ≈ψ(k) + ψ(n) −
1

n

n∑

i=1

[ψ(nx(i) + 1) + ψ(ny(i) + 1)] (8.10)

whereψ is the digamma function such thatψ(x) = Γ(x)−1dΓ(x)/dx, ψ(x + 1) = ψ(x) +

1/x andψ(1) = −C whereC = 0.57772156 is the Euler-Mascheroni constant. This algo-

rithm has been generalized for conditional Mutual Information in [40]. Some advantages

of the kNN estimator is that it has small bias for smallk values and the fact that it is de-

signed so that individual error of entropy estimations cancels out. It has also been reported

that kNN performs better than the KDE given thatk is appropriately chosen [95, 8, 40].

However, as far as our knowledge goes, there is no systematic strategy to choosek.

There are many other alternatives trying to address the various deficiencies in these

estimation methods. An estimator that utilizes density ratio estimation with maximum

likelihood method is presented in [95, 96]. Plug in estimates where consistent density

estimations are substituted for actual densities are discussed in [18, 52]. No matter what

the method there is always a parameter that needs to be decided upon, for examplens for

histograms,k for kNN andh for KDE. The choice of these parameters depends on the size

of data samples and also what level of variance and bias that one aims to achieve.

When choosing the value of a parameter one needs to strike a balance between bias

and variance. Recall that the bias of an estimator is the difference between estimators

expectation value and it’s theoretical value. Obviously the smaller the bias the better. On

the other hand the variance which is the range of the expectation value is also needed.

An estimator has to be flexible to fit the data well, hence the need for a certain variability.

Balancing the bias and the variance is a delicate process in any estimation. Here, we depend

on our knowledge from experiments on the models to help us through applications on real

data sets.
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8.4.4 Transfer Entropy estimators

No single estimator can claim to be the best as each has it own parameters and com-

plications to take into account [52]. Therefore we have decided to utilize the simplest

and most common estimator, the classical histogram. In estimating Transfer Entropy, we

also need to consider the fact that Mutual Information and Transfer Entropy has been uti-

lized in many different ways usually involving summing up values of different time lags

[105, 78, 47], normalizing the values [52] and subtracting or dividing values of opposite

direction to attain a directionality index [93]. Not to mention the ones with corrections as

discussed in subsection (8.3.2). In Schreiber’s original definition in equation (4.2) where

TY →X = E
[

log P (Xn+1=xn+1|Y
(l)
n ,X

(k)
n )

P (Xn+1=xn+1|X
(k)
n )

]
. Clearly, in order to applyTY →X to processesX

andY in this manner, one needs to determine the order of both the Markov processes such

that l andk are obtained. TheseY (l)
n andX

(k)
n values are also known as the embedding

dimension. Schreiber warned that having large embedding dimensions may lead to ma-

jor inaccuracies. Therefore as in the toy model we shall apply the simplest form Transfer

Entropy estimate as in equation (4.5) where conditioning is minimized and the objective

is to detect the causal lag. The act of utilizing various different time lags in embedding

dimension is sometimes referred to as horizons [31, 52].

Chapter Summary

We have seen from simulations of the toy model for higher number ofns that insufficient

sample size leads to spurious values. On the other hand ifns is too small, we may loose

some of the information. Not only is this true for Transfer Entropy but for Mutual Infor-

mation and covariance as well. One of the aims of the toy model was to shed some light

on how large the bin size should be in relation to sample size to avoid finite sampling ef-

fects. In order to determine the appropriate values ofns for a given sample sizeS (data set

lengths) we shall refer to Figures (8.10) and (8.11). Another option is to use corrections in

the form of surrogates or effective Transfer Entropy. On real data sets there is much more

to be taken into account in addition to sample sizes. There exist many forms of possible

estimation methods with their own pros and cons. Despite the difficulties in estimations,
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there is overwhelming interest in information theoretic causal related measures and while

we are fully aware of the various estimation methods available, for the rest of the thesis

we shall utilize the most straightforward classical histogram method as well as the simple

form of Transfer Entropy in equation (4.5).
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Chapter 9

Application to EEG Data Sets

We have electroencephalography (EEG) data sets from recordings on10 healthy subjects

that were asked to do nothing but close and open their eyes for a certain period of time. For

every subject we get two sets of EEG data, one with their eyes closed (EC data) and another

with their eyes opened (EO data). Eight electrodes at 250Hz (4 milliseconds sampling rate)

were placed on the scalp of each individual which is numbered as in Table (9.1). The

approximate brain function of different electrodes in relation to Table (9.1) are highlighted

in Table (9.2).

The EC and EO data were recorded for approximately120 seconds in4 millisecond

time interval thus giving us sample size of approximatelyS = 30000 data points. Therefore

for each individual we shall have8 time series representing8 areas of the brain for both

EC and EO, each of length approximately30000. The data, recording machinery and pre-

CORTEX ELECTRODE SIDE OF THEBRAIN

Frontal
1 Frontal Right(RF)
2 Frontal Left(LF)

Central
3 Parietal Right(RC)
4 Parietal Left(LC)

Temporal
5 Temporal Right (RT)
6 Temporal Left (LT)

Parietal
7 Parietal Right(RP)
8 Parietal Left(LP)

Table 9.1: Numbering and labelling of the electrodes
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CORTEX APPROXIMATEFUNCTIONS
Frontal attention, planning, working memory andinhibition
Central controlling movements

Temporal sounds, languages and multi sensory integration
Parietal visual, spatial positioning and short termmemory

Table 9.2: Cortices and its approximate brain functions

processing of the data was provided by the team led by Björn Cr̈uts at Biometrisch Centrum

(BMC) [1]. Björn’s team have kindly shared their data sets and also gave very valuable

advice regarding the interpretation of the data and the outcome of the analysis.

9.1 Visualizing the data

First and foremost we need to visualize the actual data to understand the nature of it. In

Figures (9.1) and (9.2) the first 1000 data points of subject 1 where electrodes 1 and 2

(frontal cortices) and electrodes 7 and 8 (parietal cortices) are visualized for EC and EO

cases respectively. One can see that the data is sinusoidal in nature and that the amplitude

of the EC data is mainly larger than EO especially for the parietal cortices that is supposed

to be processing the visuals. This coincides with our implementation of ‘causality’ on the

models, where the causal link is imposed by imposing restrictions on certain variables such

that it cannot change according to its internal dynamics as much. Therefore if the values of

EC seems to be changing more rapidly and more regularly this could probably mean that it

is less restricted than that of the EO where information needs to be exchanged and causal

links are present.

According to Bj̈orn’s team, the difference in amplitude is due to a well known fact in the

neuroscience community that the Alpha band will dominate the parietal cortices whenever

the eyes are closed. There are various opinions [84, 13] on what is the actual frequency

of the Alpha band is, however here we choose to stick with the advised range of 8 to

12Hz. The Alpha band is mainly a sine like wave that can sometimes be easily detected

by looking at the EEG data itself as evident in Figures (9.1) and (9.2). The Alpha band is

not the only frequency band common in EEG data sets. The other bands that we will use

to show differences in Transfer Entropy values are the Beta band (12 to 20Hz) and the fast
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Figure 9.1: EC data of subject1 from τ = 0 ∙ ∙ ∙ 1000 for FR, FL, PR and PL
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Figure 9.2: EO data of subject1 from τ = 0 ∙ ∙ ∙ 1000 for FR, FL, PR and PL

Beta band (20 to 32Hz).

In order to investigate the effects of these frequency bands, filters will have to be uti-

lized. There are many different types of filters with their own strengths and weaknesses.

Here we chose to use the Fast Fourier Transform (FFT) and the inverse Fast Fourier Trans-
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form (iFFT) for all the frequency filtering mainly because we consider it to be the simplest

form of filtering and it is readily available in MATLAB.

9.1.1 Transfer Entropy on sine waves

The sine-like pattern that appears in the EEG data for these electrodes will effect the Trans-

fer Entropy estimations. One can see this by using Transfer Entropy between two sine

functions. Replicating the data with a 250Hz sampling rate andS = 30000, let A be a sine

function with frequency 10Hz andB be a sine function with frequency 4Hz. The first 100

time steps (4 milliseconds each) ofA andB are visualized in Figure (9.3).

0 20 40 60 80 100
-1

-0.5

0

0.5

1

A

0 20 40 60 80 100
-1

-0.5

0

0.5

1

B

Figure 9.3: The first 100 data points of two sine waves with different frequencies

The Transfer Entropy values betweenA andB displayed in Figure (9.4) shows that

the resulting Transfer Entropy estimations for both directions has 16 peaks as a result of

adding the four peaks ofA to the two peaks ofB and multiplying the sum by two (account

for both peaks and troughs since Transfer Entropy is positive definite). This is due to the

fact the estimations of Transfer Entropy in (4.5) is supposed to detect patterns over certain

time lags and the cyclical sine waves contributes to this (since we use the time average).

We then look at the estimations ofT
(τ)
AA in Figure (9.5) which is supposed to be0 by

definition. It has roughly 8 repeated cycle of patterns due to the 4 peaks and 4 troughs

in A. By using larger and largerns we expect the values to get values closer and closer
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Figure 9.4: T (τ)
AB andT

(τ)
BA usingns = 10 to approximate data forτ = 0 ∙ ∙ ∙ 100

to analytical value0. At first glance this appears to be the case but this is not the case

since estimations forns = 25 are larger than values forns = 20 when we expect it to

be smaller. The estimated values when usingns = 30 are smaller again. This confusing

indication in terms of values ofns to be used is most probably because of the finite sampling

effect discussed on the toy model. One particular thing these values have in common is

the minimum value of0 at four points in the figure. Thus using corrections of shuffled

surrogates will give negative values and could potentially be even more confusing.

We look once again at the estimations ofT
(τ)
BA, now with variousns values in Figure

(9.6) where do not expect the values to converge to0. One can see that the estimations for

ns = 20, 30 leads to spurious values since the maximum value of Transfer Entropy is only

log(2) = 0.6931 as discussed in the toy model and indicated in Figures (8.10) and (8.9).

However, the largerns estimations does indicate that the values are converging towards a

single value which is what we should expect.

So here is the conundrum, on one hand using largerns values lead to spurious estima-

tions but smaller values have much higher variance. Moreover there is the question of how

small a variance of the estimations on sinusoidal waves should be sufficient in order to be

able to differentiate it from peaks due to causal lag. One important feature about all the

estimations (even for smallerns values) is that the repeated patterns can be visible by using
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AA using different number of statesns to approximate data
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Figure 9.6: T (τ)
BA using different number of statesns to approximate data

τ = 100 for large enough frequencies. Another feature of the Transfer Entropy of regular

(unchanging height and phase likeA andB) sinusoidal waves is that the amplitudes are

more or less unchanged and changes could be indicated by damping effect.
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9.1.2 Stationarity and ergodicity

As discussed in subsection (5.2.2), under certain conditions given by the ergodic theorem,

the ensemble average is equal to the temporal average [77, 27]. On data sets, the ensemble

average is obtained by averaging over different realisations of the data sets. The tempo-

ral average is where the probability of a variable is obtained by averaging the frequencies

of different states over time. However, a prerequisite for the ergodic assumption is sta-

tionarity, and on EEG data sets stationarity is not always guaranteed. Statistical tests of

stationarity has revealed a variety of estimates on the amount of time during which EEG

remains stationary varying from several seconds to several minutes [14].

If one has enough realisations of a certain data set, ergodicity does not have to be

assumed and the probabilities can obtained using the realisations (ensembles). However

we only have data from10 different subject. When different realisations are not available,

what is usually done is that local stationarity is assumed for a certain range of time lags and

then averages over moving windows will give meaningful result despite statistical errors

[57]. Choosing the size of the moving window is also delicate process, since on one hand

we have seen that insufficient statistics leading to spurious values and on the other hand we

need the data to be local enough to capture the dynamics. Therefore if we were to use time

windows some form of correction will need to be utilized. We have tried using moving

windows of lengths1000 to 5000 (with corrections) with results mimicking those obtained

by using the whole length of data which is approximately2 minutes. Due to these reasons

we have decided to simply use to whole length of the data.

Taking lessons from the toy model, we proceed with the appropriate number of bins for

the available sample size. If we were to use a simple classical histogram Transfer Entropy

estimate on the whole length of data sets, from Figures (8.10) and (8.9), to avoid confusing

finite sampling effects, it looks likens = 10 would be the safest value to choose. Moreover

from the previous discussions of Transfer Entropy on sinusoidal waves, in certain cases one

can distinguish which effects comes from the sinusoidal nature. Furthermore all Transfer

Entropy results given in this chapter is averaged over the10 subjects.
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9.2 Transfer Entropy between hemispheres of the brain

Naturally we will first look at the parietal cortices (electrodes 7 and 8), the ones that are

supposed to be processing the visuals. Afterwards we move on to the frontal ones (elec-

trodes 1 and 2) which exhibits interesting differences between the EC and EO data.

9.2.1 Transfer Entropy of parietal cortices

We display values obtained by utilizing the Transfer Entropy formula in equation (4.5) for

different frequency ranges in Figures (9.7) and (9.8). Firstly we do this on the raw data (in-

corporating all frequencies) for the graph labelled ALL. The graph labelled ALPHA is the

Transfer Entropy on the data obtained by filtering out the other frequencies save the Alpha

band between 8Hz and 12Hz. Similarly, the graph labelled BETA is Transfer Entropy when

other frequencies are filtered out except the Beta band (between 12Hz and 20Hz) and the

FASTBETA graph is Transfer Entropy when only the fast Beta band (between 20Hz and

32Hz) is preserved.
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Figure 9.7: T (τ)
78 (PR→ PL) for τ = 0 ∙ ∙ ∙ 100 for different frequency ranges
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Figure 9.8: T (τ)
87 (PL→ PR) forτ = 0 ∙ ∙ ∙ 100 for different frequency ranges

What one can clearly see in Figure (9.7) and Figure (9.8) is that calculating Transfer

Entropy within different frequencies render different results and that generally the Transfer

Entropy values of EC is bigger than EO especially for the Alpha band where the relative

difference is clear and the values are not converging even atτ = 100. We suspect the

main reason is because the frequencies are more regular in EC data. Another observation

of Figure (9.7) and Figure (9.8) is that Transfer Entropy values in the ALL graph are not

only very much influenced by the alpha band frequencies, but also by the electrical mains

that will influence the data at 50Hz frequency therefore this needs to be filtered out. One

common thing about all the graphs is that the sinusoidal values are damping out, possibly

indicating that influences (amplitudes) of certain frequencies only last for a certain amount

of time lag, approximatelyτ = 50 i.e. around 0.2 seconds lag.

The question is now whether the ALL graph in Figure (9.7) and Figure (9.8) is simply

a superposition of all the frequencies values or can some emergent causal behaviour be

observed. To better see the underlying differences we shall venture to filter out some the

frequencies. We apply upper bound of 32 Hz and lower bound of 1 Hz as well as filtering
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Figure 9.9: T (τ)
78 andT

(τ)
87 for τ = 0 ∙ ∙ ∙ 100 without the Alpha band

the Alpha band out to get Figure (9.9). Both directions of Transfer Entropy are displayed

together in the figure and the values are almost identical for both direction where the am-

plitude seems to be dampening out. From this figure we may think that nothing much else

happens in frequencies other than the Alpha band and perhaps causality between the two

nodes of the parietal lobes really does depend only on the Alpha band. Before coming to

any conclusion, we continue to look at some other electrodes.

9.2.2 Transfer Entropy of the frontal cortices

Now we focus on electrodes 1 and 2 that roughly represents the frontal cortex. Recall that

the frontal cortices are supposed to be controlling attention, planning, working memory

and inhibition. We begin by displaying Figure (9.10) and Figure (9.11) which is the coun-

terparts of Figure (9.7) and Figure (9.8) on frontal cortices. However, a striking difference

is that the ALL and ALPHA graphs in both Figures (9.10) and (9.11) looks more like a dif-

ferent approximation (using different amplitudes) for the same underlying values, whereas

the Transfer Entropy values in the ALL and ALPHA graphs of EC and EO data in Figures

(9.7) and (9.8) looks like they are distinctly approaching a different value. This is more
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Figure 9.10:T (τ)
21 (FL → FR) for τ = 0 ∙ ∙ ∙ 100 for different frequency ranges
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Figure 9.11:T (τ)
12 (FR→ FL) for τ = 0 ∙ ∙ ∙ 100 for different frequency ranges
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obvious for the ALPHA graph in Figure (9.10) than for the one in Figure (9.11) and this

could imply more FR→ FL causation in the Alpha band for EC than EO. There does not

look like there is much difference in terms of the other bands.
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Figure 9.12:T (τ)
12 andT
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21 for τ = 0 ∙ ∙ ∙ 100 without Alpha band

In Figure (9.12), we display the values of Transfer Entropy for both directions on data

filtered for and upper bound of 32Hz and a lower bound of 1Hz as well as the Alpha band

between 8Hz and 12Hz. One can clearly see that the EO and EC is different even though the

Alpha band is not there. In the EC data the initial Transfer Entropy entropy peaks seems

to be alternating in their values but not so much in the EO data. There could be a few

explanations as to the reason of this. One explanation is that the alternating values in EC

is normal pattern of information exchange (or non exchange) between the two hemispheres

which is disrupted in EO due to the need to process the information obtained. Another

possible explanation for the alternating values is that in EC the two hemisphere are simply

out of phase, in this case by approximationτ = 2 (8 milliseconds). This could be due to

different interaction rate with other electrodes. However if we look at Figures (9.10) and

(9.11) we shall see that both EC and EO are out of phase. Therefore the difference between

EO and EC in Figure (9.12) must be due to actual difference in the dynamics. We now

proceed to look at interactions between parietal and frontal cortices.
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9.2.3 The interaction between frontal and parietal cortices

We now focus on the interaction between the frontal and parietal cortices where we shall

look at the right part of the brain (electrodes 1 and 7) and the left part (electrodes 2 and 8)

separately. Figures (9.13) and (9.14) looks at Transfer Entropy values where the parietal

cortices causes frontal ones. Once again the graph labelled ALL refers to the Transfer
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Figure 9.13:T (τ)
71 (PR→ FR) for τ = 0 ∙ ∙ ∙ 100 for different frequency ranges

Entropy applied to the whole range of frequencies and the graph labelled ALPHA is the

Transfer Entropy on the data obtained by filtering out the other frequencies save the alpha

ones between 8Hz and 12Hz. Similarly the graphs labelled BETA and FASTBETA were

obtained by focusing on their respective frequencies. Figures (9.13) and (9.14) are different

from the graphs of previous section because the former is exclusively on the right hand side

of the brain and the latter is on the left side and not the interaction between the two sides.

The first thing to notice is that the amplitudes of the values are all graphs in both figures are

generally smaller than amplitudes in Figures (9.7), (9.8), (9.10) and (9.11). As we can see

there are some differences between the two interactions however the similarities are more

prominent especially in seeing that the Alpha band values are definitely larger for EC data
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Figure 9.14:T (τ)
82 (PL→ FL) for τ = 0 ∙ ∙ ∙ 100 for different frequency ranges

and the sinusoidal effects lasting relatively much longer than the EO values.

The interaction between the parietal and frontal cortices when Alpha bands are filtered

out is displayed in Figures (9.15) and (9.16). At first glance it show clear difference be-

tween EC and EO even with the absence of Alpha band. We have similar behaviour in

alternating peaks in EC like in Figure (9.12) and the interpretation could be of similar na-

ture as well. In the EO there is one clear peak and trough before a kind of lump in both

Figures (9.15) and (9.16). This is one clear peak happens atτ = 3, 4, 5 in the EO data of

both figures before the lump betweenτ = 10 andτ = 30 (a time lag of 80 milliseconds)

where values in both direction are more or less equal. Although directionality cannot be

inferred since values in both direction is equally high, it is very possible that information is

exchanged in both directions. One can speculate that since this lump comes after the initial

peak and trough, it is the rapid exchange of information in deciphering visual data from the

parietal cortices which disrupts the patterns of EC in relation to the idea that ‘causality’ is

a form of restriction on changes of the affected variables.
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9.3 Discussion

From Figures (9.7), (9.8), (9.10), (9.11), (9.13) and (9.14) one can see that Transfer Entropy

on the data set are different when estimated within different frequencies. The obvious

difference between EC and EO data lies in the Alpha band and this begs the question

wether causality in this case depends solely on the Alpha band frequencies. It seems that

this might be the case for the interactions between the parietal cortices. However, from

Figures (9.12), (9.15) and (9.16) we say that the answer is no. Even without the Alpha

band the difference between EC and EO data is clear. The difference is actually the clearest

in the frontal cortices.

9.3.1 Frontal cortices

All three Figures (9.12), (9.15) and (9.16) is related to the frontal cortices. However, the

most striking difference between EO and EC can be seen when the Transfer Entropy is used

on itself.
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Figure 9.17:T (τ)
11 for τ = 0 ∙ ∙ ∙ 100 without Alpha band
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12 for τ = 0 ∙ ∙ ∙ 100 without Alpha band

Figures (9.17) and (9.18) are the Transfer Entropy values on the data filtered for upper

and lower bound as well as the Alpha band. To say that the peaks in the figures are simply

a reflection of Transfer Entropy in the Beta and fast Beta bands is quite difficult in this case

since we see that in Figures (9.19) and (9.20) that the Beta and fast Beta band in the EC

and EO are not very different in their behaviour. In fact even the Alpha band in the figures

looks like its approximating the same value. It seems like something different has emerged

in the cumulative frequencies that cannot be detected by examining the bands separately.

9.3.2 Causal lag detection

In the EO graph of Figures (9.17) and (9.18) the Transfer Entropy values peak at approx-

imately τ = 10 (40 milliseconds). There is also the second highest peak which actually

comes first atτ = 3 (15 milliseconds). One can interpret Transfer Entropy value when used

on itself in accordance with equation (4.5) as a kind of feedback loop where the changes in

current values depend on the values atτ previous time steps. Thus in a way, we can say that

for EO data of both electrodes 1 and 2, the feedback loop (causal lag on itself) is approxi-
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mately 15 and 40 milliseconds. Why the second peak is higher than the first might have to

do with the processing time of the information obtained from the parietal cortex. The good

thing about these data sets is that the only difference between EO and EC is supposed to

be in the visual and nothing else. Therefore based on that assumption, the changes in the

frontal cortices should also be due to the extra information processing and communication

due to visuals.τ = 10 (40 milliseconds) could possibly just be the time the frontal cortices

need to process a certain amount of visual before reacting (or causing itself to react).

We would like to think that this is also the case in for EO values Figures (9.15) and

(9.16) with regards to the peaks atτ = 3, 4, 5. It could possibly be the causal lags at which

neuron of different parts of the brain communicate since12 and 15 milliseconds could

quite plausibly [12, 22, 67] be the cumulative neuron firing rates. However in this case the

suspicion that this is simply the influence of other frequency bands is more probable since

the the Transfer Entropy estimation of fast Beta band usually has peaks aroundτ = 4, 5.

Chapter summary

We have seen that the Transfer Entropy values are different when different frequencies are

filtered out. Although a lot EEG data analysis research focuses on the frequency domain,

the outcome of our analysis points out that focusing on a single frequency band may not

capture the bigger picture. The Alpha band seems to be very important in the parietal

cortices and its interactions with the frontal cortices, however it does not seem to be very

important in the frontal cortices which seem to be doing the processing. We conclude that

Transfer Entropy on the combined frequencies gives more than Transfer Entropy on indi-

vidual frequency bands. Furthermore we have identified a possible causal lag (feedback

time) of the frontal cortices of 12 milliseconds and a possible processing time of 40 mil-

liseconds as well as possible causal lag between frontal and parietal of 12 to 15 milliseconds

with a possible processing time of 80 milliseconds.
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Chapter 10

Conclusion and Future Research

In Chapter 1 to 3 we discussed issues of nonlinearity as well as ‘causality’ as we envisioned

it to be in the brain and this led to the examining of Transfer Entropy in Chapter 4. We

tested this measure on the Ising model in Chapter 5 as well as 6 and on the a toy model

with analytical values in Chapter 7 and estimations in Chapter 8. In Chapter 9 we applied

Transfer Entropy on EEG data sets with interesting results. There is much more to be done

in furthering our understanding of Transfer Entropy and ‘causality’ in general.

Throughout the thesis we have set to define causality. Firstly as a sort of independence

across time lags and then in relation to G-causality and Transfer Entropy as something

that will affect prediction. By focusing on Transfer Entropy and transition probabilities we

see that causality in this sense has a lot to do with changes in the affected variable that

is caused by certain values of the causal variable. When it comes to translating this to be

replicated on a model, we made certain values of the causal variable restrict the changes

in the affected variable. It is crucial that both these variables maintain some stochastic

element as a deterministic relationship cannot be considered causal. When looking at the

data set which should differ only by one action of processing visual, we found out that when

there is no visual input (eyes closed) the amplitude of the EEG waves are bigger and more

regular. Therefore this coincides with our idea of causality being imposed by restrictions

and where no information is received (therefore no causal link required), the behaviour of

the data is unrestricted.
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10.1 EEG data analysis

There are a few main issues that was of concern when analysing the data, firstly was of

course estimation and how the sinusoidal nature of the data was affecting the estimation.

The Transfer Entropy on sinusoidal values are interesting in itself since sine waves are

actually deterministic and we have seen that deterministic values either gives0 or constantly

gives the maximum values as seen in Figure (7.6) on the toy model.

The difficulty of Transfer Entropy estimation on the sine function is in relation to de-

termining the number of statesns where variance of Transfer Entropy is small enough and

making sure to exclude spurious effects (corrections may results in negative values). We

saw from Figure (9.5) that this can be very tricky and to make any judgement based on

Transfer Entropy amplitude in determining directionality at this stage could be misleading.

This is due to the fact that the values of Transfer Entropy that should peak for the causal

lag as in the models interfere with the sinusoidal nature of the data that effects the estima-

tion of data done using time average. How small should an acceptable variance of Transfer

Entropy be in order for the sinusoidal effect to be accurately differentiated from and causal

lag remains the main question.

In fact, there is the question of whether there actually exist differentiable peaks at all. It

is entirely possible that these part of the brain are in communication all the time and that it

will be hard to detect any outstanding lag in Transfer Entropy values unless something very

different happens (epileptic seizures for example). This is where complete understanding

of the magnitudes of Transfer Entropy and the relative differences in values would come in

very handy. Therefore a thorough investigation on the toy model in terms of understanding

the values of Transfer Entropy and more detail testing on the data set is needed.

10.1.1 What is causality of EEG data sets?

More importantly, there is the question of what kind of causality exist in EEG data sets. Al-

though we have assumed that the waves behaves in tandem with our definition of causality

in relation to restrictions, there are also other possibilities. Is it possible that causality can

exist in terms of communicating the lack of input through regular waves? Could causality

occur both ways simultaneously?
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We found out that there are certain frequencies that dominates for certain areas of the

brain for certain task. The prime example here is the situation where the Alpha band is

known to dominate the waves when eyes of the subject is closed and this is known to be

clearest in the parietal cortices. We have seen that this influences most of the electrodes

in the EC data. The question is, would this be considered a sort of causal influence of the

parietal cortices (where Alpha band is strongest) to the other electrodes, after all it could

still be signalling the other parts of the brain that the eyes are closed and are still closed

over a period of time. Moreover some researchers that believe phase synchronization of

two electrodes is sufficient to infer interaction [13].

If this is true then Figures (9.12), (9.15) and (9.16) would imply non interaction in most

of the EC data since the phase is shifted byτ = 2 (8 milliseconds) when both directions

are compared. Or perhaps it could mean that information takes 8 milliseconds to go back

and forth hence the shift. Moreover, in the EO data of Figures (9.12), (9.15) and (9.16),

one can see that the initial peak and the lump that comes afterwards are consistent features

for EO data of these three figures. This could imply communication in both direction is

actively happening simultaneously. So now the question is, can causality occur in both

directions at the same time? According to Schreiber’s definition of Transfer Entropy in

[89], directionality can only be concluded if one direction is determined to have0 values

and the nonzero in the other. Therefore according to him, in Transfer Entropy directionality

can only occur is one direction. Again if one had a better understanding of the different

magnitudes of Transfer Entropy perhaps different levels of causality could be determined.

Hopefully with performing more experiments on different types of EEG data sets some of

our suspicions could be verified or negated.

Moreover we have concluded that more than a single frequency band is needed in de-

ciphering the causality for EEG data sets. It is our opinion that if estimated properly the

Transfer Entropy on the accumulation of the various frequencies in the unfiltered data could

be something very different than looking at the Transfer Entropy values of the frequency

bands separately. It would be very interesting to see if the same results will be achieved

if data sets with more complicated task should be tested. If the same conclusion can be

achieved, this could imply that causality is an emergent property.



Chapter 10. Conclusion and Future Research 181

10.2 The models and its potential

The many factor influencing the magnitude of Transfer Entropy can include the individual

dynamics of the causal and affected variable as well as the strength of the causal link (in

the model indicated by how much restriction is imposed). For example in Figure (7.3)

representing equation (7.1) we see that even theT (τ)
ZX on the simple model depends onμX .

Which means that the Transfer Entropy depends on the intrinsic probabilities (which is

caused by individual dynamics) on the affected variable. In real data sets, this is something

that we cannot measure unless we can find a way to distinguish individual dynamics from

external influences. However from analysis on the data set we have seen thatT
(τ)
XX is able to

provide some interesting results. Therefore it would be very interesting to investigate more

about the value ofT (τ)
XX and how it changes in relation toT (τ)

XZ andT
(τ)
ZX as well asμX .

In the current toy model, we fixed the level of restriction that a certain stochastic process

Z has overX andY by controllingΩ which represents the percentage ofZ values that

allow changes inX andY values. Therefore,1 − Ω represents the percentage ofZ values

that restricts the changes inX andY values. It is this restriction that creates the causal

effect in the model. If we could somehow identify if there exist this form of restriction in

the real data set thenΩ could be used to gage the level of restriction and thus potentially

the level of causality on real data sets. This could be very useful in addressing the problem

related to the existence of causality in both directions and possible differentiation of weak

and strong causal couplings.

Another finding on the toy model that can be proven analytically and alludes to the

need of a formalism to quantify different levels of causality (or restriction) at least in terms

of the amplitudes of Transfer Entropy, is the fact that there existT
(τ)
ZX such thatT (τ)

ZX 6= 0

even whenτ 6= tZ . In the toy model this happens whenμX = ns−1
ns

and the influence

comes through the variableQ(τ)
sgn(γ) which represents the probability of the condition being

fulfilled given the current information available timeτ . SinceT
(τ)
ZX 6= 0 andT

(τ)
XZ = 0,

based on Schreiber’s [89, 57] way of determining direction, one will have to conclude that

there exist a direction for all these values ofτ and not only at the causal lagtZ . But the

magnitude of Transfer Entropy correctly indicates that the direction (hence the causal link)

is the strongest attZ and the other are just the side effects. This highlights the importance of
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actually detecting causal lags in order to be able to distinguish side effects. We believe that

further investigations in relation to the magnitudes of Transfer Entropy will be beneficial

to the general formalism of quantifying causality.

The same can be said about the amended Ising model which provide a more realistic

interactions in terms of the imposed ‘causality’ versus nearest neighbour interactions. We

could try putting sitesA, B andG further apart in a larger lattice or add much more inter-

actions and link just to see the effect atTc. Looking at the temperatures very close toTc

and working out an exponent for Transfer Entropy would also be an interesting direction to

pursue.

10.2.1 Linking the model and data sets

On the models we have shown that the amplitude of Transfer Entropy can be affected by

many factors which are very complicated to identify in the real data sets. One of the reason

is that in the toy model we have set the distributions to be uniform so that values are simpler

to estimate and the causal lag detection is more straightforward. The symbolic analysis

and ranking discussed in subsection (8.4.2) is reported to convert any type of arbitrary

probability distribution into uniform distribution [52]. If this is true then this symbolic

Transfer Entropy could make our toy model even more relevant for real data applications.

More importantly it might be able to provide us with some insight toΩ values defined on

the toy model since we know thatμX = ns−1
ns

leads to uniform distribution for any variable

X. Moreover, recently there have been a lot of interest in using the symbolic Transfer

Entropy due to supposedly better estimations [65, 82, 79, 72] especially in the case of

multi-fractal phenomena [71]. Therefore the symbolic Transfer Entropy certainly will be

worth exploring in relation to the toy model.

Even if these values cannot be explicitly identified on the data sets, the toy model is

no less valuable. What we have currently done is place the causality in one clear direction

at one clear causal lag. However, in the brain it would be more logical to put more causal

direction between many different stochastic processes and see how the direction and the

influence clashes. The modelling possibility is endless, we could include different causal

connections at different level of influences as determined byΩ and we could test the effects
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of the stochastic processes being sinusoidal with dampening effects in order to gage the

actual appropriate size ofns needed in order to clearly establish causal lags. We think that

the model itself can be a powerful tool in terms of aiding our understanding of causality not

just in terms of Transfer Entropy but also in terms of general causality replication where

any causal connections needs to be replicated in models.

10.3 Information theoretic measures

We have identified a measure that can capture features of the brain being nonlinear and

‘causal’ namely Transfer Entropy. There is much to be done, applying the measure with the

knowledge obtained from the models remains one of the most important lesson of the thesis

as different application may lead to different interpretation. Nevertheless the theoretical

side remains as interesting as ever, with a lot more variations of Transfer Entropy definitions

to test out and even more generalizations of Mutual Information are being proposed to unify

frameworks of our understanding.

10.3.1 Variations of Transfer Entropy

There is so much more to be achieved by using these information theoretic measures in any

type of data especially in neuroscience as demonstrated by the ample interest shown in the

literature. Here, we propose some possible future directions that might be promising and

interesting to pursue.

In this thesis one of our aim was to show thatT
(τ)
Y X will be largest at exact causal lagτ

given that the change inX occurs directly at the next time step. We utilized the previous

formula of Transfer Entropy asT (τ)
Y X = I(X, Y −τ |X−1) in equation (4.6), fully aware that

this is not the only possibility of utilization. One interesting example would be, also varying

the time steps forX such that

T
(τ1,τ2)
Y →X = H(X|X−τ1) − H(X|Y −τ2 , X−τ1) = I(X, Y −τ2 |X−τ1). (10.1)
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Another variation could be conditioning on two different variables

T
(τ1,τ2)
Y,Z→X = E

[

log
P (Xn = xn|Xn−1 = xn−1, Zn−τ1 = zn−τ1 , Yn−τ2 = yn−τ2)

P (Xn = xn|Xn−1 = xn−1)

]

(10.2)

= H(X|X−1) − H(X|X−1, Y −τ2 , Z−τ1).

All this will have to be done is a systematic way so that differences and similarities in

conjunction with equation (4.5) be fully understood.

10.3.2 Generalized Mutual Information

As we have mentioned before there are various generalizations of Mutual Information that

are proposed within different envisioned unifying frameworks. These generalizations could

also be tested on the Ising model and the toy model. There any many forms of attempted

generalizations of Mutual Information. We discuss one example here.

Recall thatI(X, Y |Z) = E
[
log P (X,Y |Z)

P (Y |Z)P (X|Z)

]
for random variablesX, Y andZ. It

would be very interesting to compare this quantity to the actual Mutual Information and

one way to do this is to define the Mutual Information of three variables. The Mutual

Information ofX, Y andZ can be defined [29] as

I(X, Y, Z) = I(X, Y ) − I(X, Y |Z)

= E

[

log
P (X, Y )

P (X)P (Y )

]

− E

[

log
P (X, Y |Z)

P (Y |Z)P (X|Z)

]

= E

[

log
P (X, Y )

P (X, Y |Z)

]

− E

[

log
P (X)

P (X|Z)

]

− E

[

log
P (Y )

P (Y |Z)

]

= E

[

log
P (X|Z)

P (X)

]

+ E

[

log
P (Y |Z)

P (Y )

]

− E

[

log
P (X, Y |Z)

P (X, Y )

]

. (10.3)

The equation captures how the probabilities are different when it is conditioned onZ. Note

that this quantity is symmetric with respect toX, Y andZ since we have that

I(X, Y, Z) = I(X, Y ) − I(X, Y |Z) = I(Y, Z) − I(Y, Z|X) = I(X, Z) − I(X, Z|Y ).

Figure (10.1) clearly depicts this in a set-theoretic setting. Another example of generalized
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Figure 10.1: I(X, Y, Z), H(X), H(Y ) andH(Z)

Mutual Information has been introduced in subsection (2.4.2) in relation to clustering and

another version known as Multi-Information is introduced by Ay in [35].

Conclusion

In Chapter 1, we outlined our view that even the most simplistic model of the brain should

be nonlinear and should very logically be causal. Proceeding with the first assumption,

we need a measure that captures nonlinearity hence Mutual Information whose variants

include conditional Mutual Information and its time varied counterpart Transfer Entropy,

was taken into account in Chapter 2. The second assumption of causality needs more ex-

pounding which led us to define causality very carefully in Chapter 3 as a dependency at

a certain causal lag as proposed by Wiener and Granger ala G-causality. As opposed to

G-causality which is linear by default, Transfer Entropy which can be interpreted as a non-

linear extension to G-causality seemed poised to capture both nonlinearity and causality.

Therefore in Chapter 4, we looked very carefully at this propounded Transfer Entropy

and it’s pitfalls. We decided to avoid some of the pitfalls by taking the simplest case and

utilizing it for causal lag detection, bearing in mind that there are many other possible way

of utilizing Transfer Entropy. This simple definition of Transfer Entropy was utilized for

causal lag detection on the Ising model in Chapter 5 and to our knowledge we are the first to

apply it in this manner. What we saw was that the Transfer Entropy and conditional Mutual

Information gave identical indications and thus concluded that some element of time in

the sense of induced causal lag needed to be introduced to the model. The amended Ising
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model was produced in Chapter 6 by restricting two of the sites on the lattice. The two sites

were made dependent on a third sites in order to create a ‘causal’ relationship. Transfer

Entropy had no difficulty in detecting this form of ‘causality’ and our suspicions were

verified. The Ising model being binary in nature means that we loose a lot of nonlinearity

andI = 0 ⇐⇒ Γ = 0. Thus, we need to be able to increase the number of states in order

to further investigate the effects of nonlinearity.

The toy model in Chapter 7 allows us to do just this. Taking inspiration from our results

on the Ising model, we set to model only three stochastic variables where two of them

depend in a ‘causal’ way on one of the variable as in the amended Ising model. The toy

model with two states (ns = 2) or the simple model can be interpreted as the amended Ising

model at higher temperatures where probabilities are uniform. IfZ is the causal variable

andX andY are the affected variable thenΩ stands for the percentage of states ofZ that

allows changes inX andY and serves as an indication of the level of restriction imposed

on the model at a chosen causal lagtZ . It is this restriction that makes the relationship

causal from a Transfer Entropy point of view.

In addition to that,Q(τ)
sgn(γ) which represents the probability that the there are no restric-

tions onX andY given the current knowledge available aboutZ at time lagτ , enables us

to understand how theμZ influencesT (τ)
ZX whenτ 6= tZ . We showed that through values

of Q
(τ)
sgn(γ), T

(τ)
ZX 6= 0 for values ofτ close totZ . On the other hand, we also found out

that attZ , μZ does not influence the value ofT
(tZ)
ZX at all. More importantly, we were able

to show that given that the causal lagtZ , T
(tZ)
ZX ≥ T

(τ)
ZX , ∀τ and therefore Transfer Entropy

can be used for causal lag detection. This toy model can be modelled exactly and thus the

simulation can be compared to its theoretical value. The simulations in Chapter 8 verified

our theoretical formulation in Chapter 7, however it brings to light a problem in the form of

finite size effects. Asns gets bigger, more and more data is needed in order to obtain accu-

rate probabilities and when the sample sizes becomes insufficient we get spurious values.

One way to rectify this is by using surrogates.

On real data sets, there is no way to tell if exact probabilities are obtained. There

exist many forms of possible estimation methods with their own pros and cons. We discuss

some of the methods used for estimation of entropy in Chapter 8 and how the most common

one is the classical histogram method. For data sets with continuous values, one does not
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know what values ofns to utilize on the data and this is where the null model is needed

to provide information about the relationship betweenns and sample size. We decided to

simply utilizens = 10 to avoid spurious values in applying the classical histogram method

on the two data sets of EEG recordings from 10 subjects, one with eyes closed (EC) and

the other with eyes opened (EO) in Chapter 9. While acknowledging that there is a lot of

issues to be resolved in terms of estimation and what can be considered causality on EEG

data sets, we point out that we have done a simple analysis that highlights the difference

between the Transfer Entropy values of EO and EC on different frequency bands.

We observed that Transfer Entropy values are different for different frequency ranges

and there are some frequencies bands that show more effect than the others and one obvious

example is the Alpha band. Therefore we wondered if causality could simply be determined

by a single band. However when examining the other frequencies we found out that even

when the Alpha band is filtered out, the Transfer Entropy on the rest of the frequencies

still indicates the differences between EO and EC. Thus we concluded that in this case

causality is not something that can be determined by a single frequency band. In addition

to that we have identified a possible causal lag (or feedback time) of the frontal cortices and

its interaction with parietal cortices on the EO data which is in the order of 10 milliseconds.

We conclude that causality as determined by Transfer Entropy on EEG data sets is

something very promising yet much more work should be done before anything strongly

conclusive can be claimed. It would particularly interesting if causality can be viewed

as an emergent property of different frequency bands and this is something that would

probably be much clearer in EEG data sets with much more complicated task. The toy

model developed in this thesis should be very helpful in furthering our investigations in

doing a systematic analysis on the effects of Transfer Entropy in relation to ‘causality’.
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Nomenclature

χ Susceptibility

Γ Covariance

Ω P ( condition fulfilled )

ρ Correlation

D Kullback Leibner

E Expectation

H Entropy

I Mutual Information

L Length of lattice

M Magnetisation

N Number of sites on the lattice

ns Number of states

P Probability

Q
(τ)
sgn(γ) P ( condition fulfilled given thatZn−τ = γ)

S Sample size

sX State of siteX
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T Temperature

Tc Crossover Temperature

T
(τ)
Y X Transfer Entropy ofY to X at timeτ
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