
Studies of Metamaterial Structures 

by 

Angela Demetr iadou 

Thesis submit ted for the degree of 

Doctor of Philosophy of the University of London 

and the 

Diploma of Imperial College London 

Condensed Mat ter Theory Group 

The Blackett Laboratory 

Imperial College of Science, Technology and Medicine 

London 

January 2010 



Abstract 

Metamaterials have had a tremendous development in the past few years, since they 

can artificially show several novel electromagnetic properties (i.e. negative refraction, 

perfect lensing, cloaking). In this thesis, various metamaterial designs are studied, 

where several problems involving the behaviour of the structures are addressed, in-

vestigated and solutions are proposed. The first chapter serves as an introduction to 

metamaterials, by displaying a review of some of the important and pioneer ideas in 

the hterature for this research field. The rest of the thesis is divided in three main 

parts, for three different metamaterial structures that are discussed. 

In part I, wire-metamaterials are investigated, which simulate the electromagnetic 

behaviour of a low-density electron plasma. Spatial dispersion is a significant disadvan-

tage of wire metamaterials. In this chapter, we investigate the effect of spatial disper-

sion between connected and non-connected wire-mesh metamaterials. Consequently, 

we propose two different ways to minimize spatial dispersion in wire metamaterials, 

by re-designing the unit cell and increasing either the capacitance or the inductance 

of the metamaterial system. 

In the next part of this thesis, Swiss Roll metamaterials are investigated. Initially, 

the non-chiral Swiss Roll structure is studied numerically and compared with analytical 

work that is already discussed in the literature, where an excellent agreement was 

found. Then, the more complicated design of chiral Swiss Rolls is investigated initially 

analytically and then compared with numerical results, where a notable agreement was 

found as well. Furthermore, the chirality found for Swiss Rolls is significantly higher 

compared with other chiral metamaterials discussed in the literature, which allows for 

the wave polarization to rotate more than 90° in less than a wavelength. 

Finally, in part III, high-dielectric spherically-shaped particles are investigated that 

behave as low-loss magnetic resonators though the excitation of their first magnetic 



Mie mode. A double negative metamaterial is also proposed, by embedding the high-

dielectric crystals in a wire-mesh metamaterial. In this way, the losses induced from 

conductor-based magnetic metamaterials (i.e. split-ring resonator) are minimized. 
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Chapter 1 

Introduction to Metamaterials 

The electromagnetic properties of a homogeneous material in nature are determined by 

its molecular composition. The macroscopic electric and magnetic fields of a wave prop-

agating in a material are recognized to be the averages of their microscopic fields [6]. 

Therefore, the electromagnetic behaviour of materials in nature is described by the 

electric permittivity (e) and magnetic permeability (^) parameters. 

Recently, this idea was extended to a new class of artificial materials, 'metama-

terial', whose sub-units are of a larger scale than molecular (i.e. figure 1.1). For 

frequencies where the wavelength is much larger than lattice constant of the artificial 

medium, the wave is too myopic to resolve the geometry of sub-units and therefore 

the field averages are related to the macroscopic fields [6]. Consequently, the macro-

scopic fields are related to each other by the macroscopic e and indicating that 

metamaterials can be replaced by a homogeneous medium of identical electromagnetic 

parameters. The electromagnetic parameters of metamaterials usually include descrip-

tion of anisotropic media, where e and ^ are tensor and dispersive quantities (i.e. the 

parameters are frequency dependent). 

The macroscopic behaviour of metamaterials is governed by the geometry of sub-

units, which are usually composed from conducting materials. By specifically designing 

the sub-unit geometry, the macroscopic fields can be governed and therefore artificial 

media with novel electromagnetic properties can be manufactured, giving access to a 

new range of phenomena, such as negative refraction, perfect lensing and electromag-
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M 

Figure 1.1: Material in nature are composed form molecules (left figure). Metamate-

rials are artificial media with specifically designed sub-units of several orders of mag-

nitude higher than molecules [1] 

netic cloaking. 

1.1 Negat ive Refraction 

Veselago in 1968 [7] realized that when a medium has both Re{e) and Re{fi) simul-

taneously negative, the real part of the refractive index is negative. The statement 

above can be explained by considering causality in real systems, which requires that 

both £ and /i to be dispersive with frequency and therefore E(w) and //(w). Taking 

into account that real material are always slightly lossy, then we should consider a 

small positive imaginary part for G(w) and ^(w). Let us consider the refractive index 

formula: n = which arises from Maxwell's equations. When the real parts of both 

£{uj) and /i(w) are positive, the positive square root is chosen. For frequencies where 

Re{£) —> 0, yE has a branch point. A solution can be found considering that causal-

ity force us to take a trajectory above the branch point, giving a positive imaginary 

solution for ^/^(w) when i?e(e) < 0 [1, 2]. Similarly for Re{fx) —> 0, takes a 

positive imaginary solution. Therefore, 

+ y/£{Lo)fj,{uj) for Re{e) > 0 and/or Re(/i) > 0 
n = (1.1) 

— y^£{Lo)fx{uj) for i?e(e) < 0 and Re{ij) < 0 

Note that the imaginary and real parts of the tensors are related with each other with 

the Kramers-Kronig relations [8]. Therefore, it is clear that media with both e(w) and 
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coeigy flow and 
group velocity 
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£ = -1 
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Figure 1.2; (a) A wave propagating in a negatively refractive medium, has the wave 

velocity and group velocity (i.e. energy) flow propagating in anti-parallel directions 

(b) A wave incident from a positive to a negative medium, is transmitted in to the 

negative medium with a negative angle (i.e. at the same side to the normal on the 

interface) [1] 

//(w) negative for the same frequency range, which are also dispersive and dissipative, 

show a negative refraction efi'ect. 

As Veselago pointed out in 1968 [7], negative refractive media bend the waves the 

wrong way and obey the left-handed rule. Despite Veselago pointed out the remarkable 

properties of negative materials, their absence in nature led to omit the subject until 

a decade ago, when Pendry proposed possible artificial structures for magnetic and 

consequently negative metamaterials [3, 9]. A negative metamaterial can be simply 

constructed by combining an electrical and a magnetic resonator with both e(a;) and 

//(w) negative for an overlapping frequency range, called doubly negative metamaterials 

(DNG). The realization of artificially negative structures was predicted theoretically 

and confirmed experimentally soon afterwards [3, 10]. For microwave frequencies, the 

most common example is the combination of a wire mesh metamaterial [11, 12, 13] 

and split-ring resonators [9]. The wire-mesh behaves as a low-density electric plasma 

with the plasma frequency in the GHz range (explained in greater detail in part I). 

Split-ring resonators have a magnetic behaviour since they macroscopically look like 

'magnetic monopoles' oscillating along them (more detailed discussion in part II). This 

is a big advantage for magnetic metamaterials, since the magnetic behaviour of most 

materials in nature tails off at higher frequencies (usually limited to low microwave 

frequencies). The frequency limit of metamaterials, where the homogenization model 
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Figure 1.3; Classification of media depends on the sign of Re{e) and Ae(//) [2] 

holds, is dependent on the manufacturing process limitations and the behaviour of the 

conducting elements the sub-units are composed of, at high frequencies. 

Waves propagating in a negatively refracting medium show unconventional be-

haviour. Consider Maxwell's equations, 

V X E = iujifiQH k X E = LOjinoH (1.2) 

V X H = —iueeo'E ^ k x H = —weeoE 

where E and H are the electric and magnetic fields of the form exp{ikr — iojt) (where 

r = xit + yy + zz). It is easy to see that when both Re{^) and Re{e) are negative, then 

the three vectors k, E and H obey a left-handed rule. Also note that in this case, the 

wavevector k and the Poynting vector (S = E x H) are anti-parallel (figure 1.2(a)). 

This basically means that the wave (i.e. wave velocity) and the energy of the wave 

travel in opposite directions [1]. Furthermore, negative refracting media show several 

interesting properties, which were predicted by Veselago in 1968 [7], such as a reversed 

Doppler shift and an obtuse angle for Cerenkov radiation. Finally, according to Snell's 

law, a medium with negative refractive index should refract light in the same side to 

the normal on the interface as the incident ray, as shown in figure 1.2(b). 

Materials can be classified according to the sign of their electromagnetic parame-

ters, since waves behave differently for materials in diff'erent sections of figure 1.3. For 

ordinary optical materials, both Re{e) and Re{^) are positive where the right-handed 

rule is obeyed and waves are allowed to propagate in the medium. When both i?e(e) 

and i?e(/u) are negative, then the material has a negative refracting index and conse-

quently a reversed Doppler shift, S and k are anti-parallel and waves propagating in 

a negative medium obey the left-handed rule. Only artificial media can support these 
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Figure 1.4: (a) Propagating waves focus inside and outside of the negative slab [3] (b) 

Evanescent waves are amphfied inside the negative slab [1] 

properties (i.e. metamaterials). Finally, when either Re{e) or Re{fi) are negative, then 

no wave can propagate in the medium since k is imaginary. However, evanescent waves 

exist that are confined at the interface between the two media and decay rapidly. 

1.2 Perfect Lensing 

In conventional lenses, the image resolution is limited by the wavelength of the incident 

light, since only the propagating waves can be focused. However, a flat slab of a 

material with e = — 1 and // = — 1 (i.e. n — —1 and Z = 1 = ZQ, where ZQ is the 

vacuum impedance) focuses both propagating and evanescent waves (i.e. near field). 

Evanescent waves are confined at the interface between negative and positive media, 

and decay rapidly. However, inside the negatively refracting slab, the near field is 

enhanced due to surface modes that exist at the interface, and both the near and far 

fields are focused as shown in figure 1.4. These lenses are called super-lenses. The 

resolution of super-lenses is limited only irom our manufacturing capabilities [3, 14, 2]. 

Flat super-lenses give an image of the same order as the object. In order to magnify 

the near-field image created at the focal point, a cylindrical negative lens has to be 

used as discussed in [14, 15, 16]. 

A negative slab can also be considered as optical anti-matter, in the sense that 

it cancels out the propagation of a wave though an equally sized positive slab. The 

scattering, phase and evanescent wave amplitude changes of a wave propagating in 

a positive medium, are cancelled out by the propagation of the wave in the negative 
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m m4 m 

Figure 1.5: The changes on a wave (scattering, phase and amplitude of evanescent 

waves) imposed by vacuum (white area), are cancelled by the negative slab with n = — 1 

(grey colour) [1]. 

- y 

z: 

Figure 1.6: (left)The free space field line (red line) in a Cartesian coordinate grid. 

(right)Distorted field line (red line) in distorted coordinates. The red lines represents 

either D, or B fields, or Poynting vector and is equivalent to the path of a ray of 

light [4]. 

space as shown in figure 1.5 [2, 14]. 

1.3 Optical Transformations-Electromagnetic Cloaking 

Few years ago, Pendry et.al. [4] proposed a theoretical way to control electromagnetic 

waves around an object (i.e. cloaking an object), based on coordinate transforma-

tions of Maxwell's equations. He basically suggested to open a hole in the Cartesian 

coordinate space, in which any object could be concealed. 

For a space where there is no medium (i.e. figure 1.6-left), we can write the empty-

space Maxwell equations for Cartesian coordinates. Then, a transformation can be 

performed on Maxwell equations creating a different coordinate system, where the 
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Figure 1.7: The ray trajectories in a spherical cloak (left) two-dimensional cross-section 

of the system and (right) a three-dimensional representation of the same system. Rays 

emerge on the other side of the cloak undisturbed [4]. 

electromagnetic fields follow a different grid (i.e. figure 1.6-right) [4], The distorted 

coordinate system can be specifically designed, such that in the Cartesian system a 

hole in space is induced and therefore a cloak is realized (i.e. figure 1.7) [4]. A cloak 

smoothly guides the incident rays around the object and the rays emerge on the other 

side as if they have passed through an empty volume of space (figure 1.7). Hence, an 

observer cannot see any distortion of the wave and therefore cannot see the object. 

Note that neither the propagating or evanescent waves see the concealed object for an 

ideal cloak. 

Anisotropic electromagnetic parameters and Re{n) < 1 are required to observe 

this phenomenon, which is easily achieved with metamaterials. However, reaching 

extremely high or small values of c or // can be challenging. Pendry et.al. [4] also 

pointed out possible limitations, such as the singularity for the ray that is incident at 

the centre of the spherical cloak and the fact that such a cloak is operational for a single 

frequency. Shortly after Pendry's realization of a cloaking device, Schurig et.al [17] 

tested this idea experimentally in microwave frequencies and managed to 'decrease 

scattering from the hidden object while at the same time reducing its shadow, so 

that the cloak and object combined began to resemble empty space'. Also, based on 

the same idea an acoustic cloak was suggested, where instead of the electromagnetic 

parameters, the mass density and bulk modulus are determined in order to achieve the 

minimization of acoustic scattering of an object in a shell [18]. Finally, metamaterials 
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and transformation media can be used to guide electromagnetic waves through any 

desired route, which is an active and blooming research topic. 



Part I 

Wire Metamaterials 
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Chapter 2 

Introduction 

Generally, electron plasmas obey Drude's model, with the permittivity given by: 

£ — 1 — — (2.1) 
UJ{lu + I j ) 

where LO is the frequency of the wave, Wp the plasma frequency of the electron gas and 

7 accounts for losses (i.e. for electron plasmas in metals, resistive losses). The plasma 

frequency (wp) can be written in terms of the electron density (rig), mass (mg) and 

charge (e): 

wg = == (cokp): (2.2) 

where kp is the plasma wavevector associated with cOp. Typically, the plasma frequency 

in metals is in the visible or ultraviolet (UV) region. 

Artificial plasmas can be manufactured by thin conducting wires, which is a typ-

ical example of a negative permittivity metamaterial. This structure was initially 

proposed in the 1950's by Brown [19] and Rotman [20], but observed with a new light 

by Pendry et.al. [11, 12]. In order to tune cOp in microwave frequencies, the electron 

density rig needs to be reduced or/and the electron mass rUe to be increased. Wire 

metamaterials can achieve both, since electrons are constrained to move only inside the 

wires (i.e. reduce electron density) and the large self-inductance of thin wires enhances 

the effective electron mass. 

In this part of the thesis, wire metamaterials are discussed and is organized as: In 

chapter 3, the simpler case of thin-parallel wires is discussed, which has already been 
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thoroughly investigated in the Hterature [5, 21, 22, 23, 24, 25], by presenting numerical 

and analytical results for the band structure and S-parameters. In chapter 4, wire-mesh 

metamaterials that have wires along the three orthogonal axes (connected and non-

connected) are investigated, by calculating analytically and numerically the dispersion 

diagrams. 

In chapter 5, the problem of spatial dispersion in wire metamaterials that spoils 

the simple plasma model is explained, by discussing its origination and impact on 

the behaviour of wire metamaterials. The permittivity tensors are derived, which are 

dependent on the spatial wave vector. Also, the S-parameters for semi-infinite and finite 

slabs of parallel and wire-mesh metamaterials are obtained analytically and plotted 

with numerical results, where the problem of spatial dispersion is apparent. Finally, 

chapter 6 proposes two ways to minimize spatial dispersion in wire metamaterials, and 

new possible designs are examined numerically, showing significant minimization of 

spatial dispersion. 



Chapter 3 

Thin Parallel Wires 

Consider a structure composed of thin-parallel perfectly conducting (PEC) wires of 

radius ro arranged in a square lattice of a and aligned with the z-axes, as shown 

in figure 3.1. The polarization induced on the wires by applied Ex (or Ey) fields is 

negligibly small, which results to an insignificant conducting feature in the x-y plane. 

Therefore, the wave behaves as if it was propagating in vacuum or the dielectric hosting 

material. For applied ^^^-fields (i.e. parallel to wires), the electrons in the wires are 

flowing up and down the conducting rods, simulating the electromagnetic behaviour 

of an electron plasma. 

The electrons are constrained to move only inside the wires. Therefore, the effective 

electron density (ng//) of the artificial plasma is reduced, since only a small part of 

the space is filled with conducting material [12] and depends on the volume fraction 

" 4 i 

Figure 3.1: Thin Parallel wires (for square lattice a=b=a) [5] 
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occupied by the wires: 

"-e// = (3-1) 

where n is the density of electrons in the wires [11, 12], A restoring force acting on 

the electrons has to work both against the rest mass of electrons and the high self-

inductance of thin PEC wires. Therefore, considering self-inductance 'as a contribution 

to the electron mass' [11, 12], the effective electron mass (m-e//) is enhanced given 

by(derivation in Appendix A): 

'^e / / = I I + (3.2) 

where F{x) accounts for contributions from neighbouring wires and for a square lattice 

F{x = 1) = 0.5275, (where x —a/6, and a, b are defined in figure 3.1) [5]. Substituting 

ngff and rueff in (2.2), the plasma frequency for thin parallel-wire structures arranged 

in a square lattice is given by: 

This metamaterial can be thought of as an anisotropic low-density artificial plasma 

with plasma frequency in the GHz range, significantly lower than naturally occurring 

electron plasmas that usually have ujp in the UV or visible region. 

3.1 Band Structure 

The dispersion equations of the parallel-wire metamaterial shown in figure 3.1 are 

derived analytically (in Appendix B), by considering the averaged electric field over 

a unit cell (E^) and the fluctuation of the electric field across the unit cell AE^ (i.e. 

from the edge of the unit cell until the surface of the wire). The difference Ez — AEz 

gives the electric field in the wire, which is zero since the wires are made of a PEC 

material. By solving this equation, it was found that the parallel-wire metamaterial 

supports three different types of modes [5, 22, 23], which are classified according to 

their field configuration. 

For the case where both the wavevector and the electric field are in the xy-plane 

and perpendicular to each other (and perpendicular to wires), the transverse electric 
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Figure 3.2: The band structure for the thin-parallel-wire medium with the wires along 

the z-axis. The simulations measurements (dots), the theoretical prediction (as dis-

cussed in section 3.1) for the TE mode (dotted blue line), the longitudinal (TM) mode 

(dashed green hne) and the TEM mode (full red hne) are plotted for r/a = 0.01: 

(Wire's radius)/(lattice constant). Note that the left part of the figure is a plot for the 

wavevector across the wires (i.e. along the x-axes) and the right part for the wave vector 

along the wires (i.e. along the z-axis). 
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(TE) mode is excited and is given by: 

w = cq/cq = c o \ l ^ (3.4) 
y ^host 

where £host is the dielectric constant of the hosting material the wires are impended 

in (in this report vacuum is considered and Shost = 1).Therefore, for gj;j^-propagation 

(i.e. = 0), the T E mode behaves, as if it was travelling just in the hosting medium, 

since there is no interaction with the extremely thin wires. 

When the wavevector is parallel to the electric field (i.e. q || E) and Ez ^ 0, 

currents are induced on the wire, and the longitudinal or transverse magnetic (TM) 

mode is excited and given by; 

u) = + kl (3.5) 

where q is the wavevector in the wire medium, and kp is the wavevector corresponding 

to Up. At cj < LUp, the wave cannot propagate in the metamaterial, and becomes 

evanescent. Note that the dispersion is independent of the direction of q. 

Finally, for g^-propagation the transmission-line mode or transverse electric and 

magnetic (TEM) mode is excited and given by: 

u = coqz (3.6) 

Although the electric field parallel to the wires is zero {Ez = 0), the current in the wires 

is nonzero. This mode corresponds to the case where (/cq — in (B.14) is zero. The 

wavevector in the x-y plane can take arbitrary values and is in plane with the electric 

field. This mode has plane wave solutions for Maxwell equations for all frequencies [5]. 

These modes travel with the speed of light along the direction of the wires, with no 

restrictions for the components of the wavevector in the x-y plane. Belov et.al. [24, 25] 

propose sub-wavelength information transferring from one xy-surface to another with 

the speed of light, a process named 'canalization'. 

Summarizing, for g;j-propagation the TM and TEM modes are expected to be 

excited and for g^^-propagation the T E and TM modes. In figure 3.2, dispersion equa-

tions (3.4), (3.5) and (3.6) are plotted with lines for q^- (left) and g^-propagation 

(right) for a structure of (ro/a) = 0.01. Numerical results were calculated using CST 
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Microwave Studio for both propagation directions and are also plotted in figure 3.2 with 

black dots for comparison with the analytic work. The TM-mode disperses for u > Up, 

TE and TEM modes are degenerate with the light line as expected. However, note 

that for a hosting medium with Shost 7̂  1, the TE mode is no longer degenerate with 

the light hne, while the TEM mode continues to travel with the speed of light [24, 25]. 

The analytical prediction for the electromagnetic behaviour of the parallel-wire meta-

material agrees perfectly with numerical results. The slight disagreement at ~ 30GHz 

is due to the band-gap at the Brillouin zone that the analytical work cannot predict, 

since at these frequencies the homogenization model breaks. 



Chapter 4 

3D Wire-Mesh Metamaterials 

The parallel-wire metamaterial is an anisotropic structure. An isotropic artificial 

plasma can be realized by considering a metamaterial with wires along the three or-

thogonal axes, either connected or non-connected, (figures 4.1 and 4.6 respectively). 

Since only the wires parallel to the electric field are active and contribute to the plasma 

behaviour of these structures, these metamaterials are expected to simulate the prop-

erties of an isotropic low-density electron plasma with plasma frequency given by (3.3). 

In this chapter, both configurations of wire-mesh (connected and non-connected) 

are discussed, by deriving the dispersion equations analytically and comparing the 

results with numerical calculations. 

4.1 Band Structure 

In an ideal naturally occurring electron plasma, radiation disperses with two degenerate 

transverse modes: 

w = CQ Ĵq^ -t- (4.1) 

and a dispersion-less longitudinal mode as 

u) = cokp (4.2) 

which are plotted in figure 4.2 with dotted and dashed lines respectively. Hence, an 

ideal artificial plasma should follow the same dispersion behaviour. 

38 
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Figure 4.1: (a)3D-connected wire-mesh metamaterial, ro is the radius of the wires and 

a is the lattice constant (b) The wires are aligned with the three orthogonal axes. The 

translation from orthogonal to spherical coordinates is determined by angles 6 and (f>. 

CO - C q J / 3 \ 

CO = CqK 

Figure 4.2: Comparison between the wire mesh band structure and the real electron 

plasma's band structure. 
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Using the same method as for the previous structure, the dispersion equations for 

wire-mesh metamaterials are derived in Appendix C, but taking into account the 3D 

symmetry of the structures. Assuming an electric field oscillating along the x-axes and 

no neighbouring wire effects, the averaged electric field over a unit cell Ex is given by: 

jo • 
Ex 

60w 
exp{iqxX + iqyy + iq^z — iut) (4.3) 

where a is the lattice constant, and the variation of electric field across the unit cell 

AEx (i.e. the difference from the surface of the wire to the edge of the unit cell) is 

given by: 

tt y 60 \ro\/7ry 
cqx kf^jox — iiot) (4.4) 

4a;o 

where jox is the current induced on the x-wire, q is the wavevector inside the metama-

terial and C a term associated with the charge accumulation on the wires (i.e. spatial 

dispersion). For simplicity a cylindrical unit cell is considered with radius i?c — 

for the derivation of AEx- Spatial dispersion arises from the periodic charge accumu-

lation induced by longitudinal waves on the wires. Therefore, C takes different values 

for the connected and non-connected wire-mesh, since charge accumulated at a node, 

which brings to an electrical contact the three wires, is distributed evenly over the 

three wires, in contrary to the non-connected structure (discussed in more detail in 

chapter 5). Therefore, for the connected wire-mesh: 

(4.5) 

and for the non-connected wire-mesh metamaterial: 

(7 = q jo (4.6) 

The difference (E^ - AEx) gives the electric field in the wires, which is zero for PEC 

wires. Therefore, by considering {Ex — AEx) — 0, we derive: 

[kphx - • jo] k^jox _ . /X 

The dispersion equations can be obtained by solving (4.7). 



CHAPTER 4. 3D WIRE-MESH METAMATERIALS 41 

4 .1 .1 C o n n e c t e d W i r e M e s h 

The nodes of the connected wire-mesh structure in figure 4.1, bring to an electrical 

contact the three orthogonal wires. Therefore, the charge accumulated at the nodes can 

be distributed evenly over the three wires and C is given by (4.5). For the transverse 

modes, q - j o = 0 condition applies, and substituting (4.5) into (4.7), the dispersion 

equation for the transverse modes is obtained: 

ko = q^ + kp ^ (4.8) 

where qr is the transverse wavevector. For the longitudinal mode, q x jo = 0 condition 

applies and the dispersion equation is given by; 

^0 — + kp ^ UJ — Coy ^ + fcp (4.9) 

where % is the longitudinal wavevector. Note, that the longitudinal and transverse 

modes must coincide at the plasma frequency as g —» 0 and that the wire-mesh medium 

supports only two different types of modes, in contrast to the parallel-wire medium 

that supports three different kind of modes. Note that in contrary to ideal plasmas that 

have a dispersion-less longitudinal mode, for the connected wire-mesh metamaterial 

disperses as in (4.9). 

If there was no charge accumulation on the wires and C = 0, then the dispersion 

equation of the longitudinal mode would be: 

k^ = kp ^ u! = cokp = LOp (4.10) 

which is a flat mode at the plasma frequency, identical to the behaviour of an ideal 

plasma. In figure 4.2, the band structure of an ideal plasma is plotted together with 

dispersion equations of (4.8) and (4.9). Note that although the transverse modes 

of the wire-mesh metamaterial and an ideal plasma follow identical dispersion, the 

longitudinal mode does not. It disperses with frequency due to charge accumulation 

on the wires. Electrons are constrained to flow inside the wires. Therefore, when a 

longitudinal wave is incident on the wire, charge is periodically accumulated on the 

wires, create a local electric fields opposing to the current flow associated with the 

plasma behaviour of the metamaterial. Hence, for larger wavevectors, more energy 
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Figure 4.3: The band structure of the wire mesh for propagation along one of the wires. 

The simulation measurements (dots), the theory predictions for the transverse mode 

(full red hne), the longitudinal mode (dashed green line) and the light line (dotted 

line) are shown for r/a = 0.01: (wire's radius)/(lattice constant) 
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Figure 4.4: The band structure of a 3D connected wire-mesh metamaterial, with di-

mensions r ; a = 0.01 ; 1 where r is the radius of the wires and a the lattice constant, 

for propagations r(0, 0,0), X(0, 0, Tr/a), M(0,7r/a, -Tr/o) and R{7r/a,Tv/a,7r/a). Nu-

merical results are shown with solid coloured lines and analytical results with dashed 

black lines. 

needs to be spend to drive the electrons in the wire, causing the longitudinal mode to 

disperse with frequency (more details in Chapter 5). 

Using CST Microwave Studio, the band structure of the connected wire-mesh was 

derived numerically and is plotted with dispersion equations (4.8) and (4.9) in fig-

ure 4.3 for propagation along one of the wires (i.e. g'^^-propagation). Note that for 

g^-propagation, there are two degenerate transverse modes and a slower longitudinal 

mode. The agreement between numerical and analytical results is significant (~ 99%) 

Figure 4.5: The arrangement of charge for the two degenerate quadrupole modes (a) 

transverse and (b) longitudinal configurations. 
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(a) 

Figure 4.6: (a)3D non-connected wire-mesh metamaterial, where tq is the radius of the 

wires and a the lattice constant, (b) The wires are aligned with the three orthogonal 

axes, but not in an electrical contact. The translation from orthogonal to spherical 

coordinates is determined by angles 6 and 

with a small difference at the Brillouin zone, where numerical calculations show a 

stop-band that the analytical model cannot predict, since it assumes a homogeneous 

medium. In figure 4.4, the band structure for the connected wire-mesh is shown 

for various propagation directions, obtained numerically (sohd lines) and analytically 

from (4.8) and (4.9) (dashed black lines). 

Furthermore, in figure 4.4, two degenerate flat modes can be seen at 2>bGHz, 

which are identified as two quadrupole modes arising from the orthogonal nature of 

the structure and the electronic charge confinement. Note that only two independent 

quadrupole modes exist, whose electronic distribution is shown in figure 4.5. The loss 

of their degeneracy for large wavevector values, arises from the fact that one of them 

is polarized along the wavevector and the other one is not. A difference that becomes 

more apparent for larger wavevectors (i.e. smaUer wavelengths), where the wave is 

able to resolve the polarization difference. 

4 .1 .2 N o n - C o n n e c t e d W i r e M e s h 

The dispersion equations for the non-connected wire-mesh metamaterial shown in fig-

ure 4.6(a) are derived using the same method as for the connected wire-mesh, but 

taking into account that the three orthogonal wires are not at an electrical contact. 

Hence, the charge accumulated on the wires cannot be distributed over the three wires. 
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Therefore, for non-connected wires, where C = q • jo, (4.7) can be solved for the trans-

verse mode, where q • jo = 0. Therefore, the dispersion equation is given by: 

= q^ + k p ^ LJ = 4- (4.11) 

where qr is the transverse wavevector. For the longitudinal mode q x jo = 0 and the 

dispersion equation is given by: 

^0 ~ ^ ^ ~ '-o + kp (4.12) 

where qi is the longitudinal wavevector. Note that the longitudinal and transverse 

modes are degenerate. The longitudinal mode disperses over a broader frequency 

range for the non-connected compared with the connected wire-mesh, demanding ap-

proximately three times more energy for the current to overcome the local electric 

fields induced by charge accumulation. This indicates that spatial dispersion for non-

connected wire-mesh is much more significant than for the connected wire-mesh, since 

the charge accumulated on the wires due to spatial dispersion cannot be distributed 

over the three wires. 

Using CST Microwave Studio, the band structure was derived numerically (dots) 

and is plotted with the analytical predictions (sohd Hne) of (4.11) and (4.12) in fig-

ure 4.7. The agreement between the results is extremely high, with insignificant differ-

ence at the Brillouin zone, where a stop-band appears for the transverse mode and the 

analytical model fails to predict. Comparing figures 4.3 with 4.7 and equations (4.9) 

with (4.12), it can be concluded that spatial dispersion for the connected wire-mesh is 

reduced by (1/3), which is in agreement with [26]. In this report, our aim is to design 

and investigate wire metamaterials that manage to eliminate spatial dispersion and 

exhibit a dispersion-less longitudinal mode. Therefore, the new proposed designs are 

all based on the connected wire-mesh structure, since this design already manages to 

confine the longitudinal dispersion by (1/3). 



CHAPTER 4. 3D WIRE-MESH METAMATERIALS 46 

N 
I 
o 

c 
0) 
3 
ct 
CD 

numerical Ic 

lm=co(q^+k^)^/^ 
numerical transverse mode 

ngitudinal mode 

-600 -450 -300 -150 0 150 300 4 5 0 6 0 0 

wavevector (rad/m) 

Figure 4.7; The band structure of the non-connected wire mesh metamaterial for 

propagation along one of the wires of dimensions TQ : a — 0.01 : 1, where tq is the 

radius of the wires and a the lattice constant. The simulations measurements for the 

longitudinal (blue dots) and transverse modes (green dots) are plotted with analytical 

predictions (red solid line). 



Chapter 5 

Spatial Dispersion 

The causality of metamaterials that imposes the frequency dispersion of media, usually 

results to local electromagnetic parameters as well. The non-local behaviour (i.e. 

spatial dispersion), is usually considered negligibly small for larger wavelengths (i.e. 

A 3> o - smaller wavevectors). It takes a meaningful sense for smaller wavelengths 

where A —» a, and results to frequency dispersive electromagnetic parameters that 

are also dependent on the spatial derivatives of the fields (i.e. q). However, it is 

well known that spatial dispersion exists in wire metamaterials, even in the short 

wavevector limit [5], which spoils the simple local model. According to the local 

model, the permittivity tensor for wire metamaterials obeys the Drude model: 

where ujp is the plasma frequency and 7 accounts for conductivity losses of wires. 

Unfortunately, this is not the case, since spatial dispersion that induces a spatial 

wavevector dependence for the permittivity tensor, is significant for both the long and 

short wavelength Hmit. 

A longitudinal wave propagating along one of the wires (i.e. q || E) induces pe-

riodic charge accumulation on the wire parallel to q. Due to low capacitance of thin 

wires, the accumulated charge gives rise to strong local electric fields that disturb the 

current flow in the wire, which is associated with the plasma-like behaviour of the 

metamaterial. Therefore, the permittivity tensor is dependent on q, in order to take 

into account the effect of spatial dispersion. However, transverse waves (i.e. q J_ E) 

47 
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have no spatial wavevector dependence on the permittivity tensor, since there is no 

charge accumulation for qa 1 and therefore no spatial dispersion effect. Hence, 

the transverse permittivity tensor obeys the local-model of (5.1). As a result, two 

different permittivity tensors are needed to describe wire metamaterials, depending on 

wave polarization. 

In this chapter, spatial dispersion is discussed for the thin-parallel-wire metamate-

rials (i.e. figure 3.1), the SD-connected wire-mesh (i.e. figure 4.1) and briefly for the 

3D-non-connected wire-mesh metamaterials (i.e. figure 4.6). The permittivity tensors 

are derived analytically for all three structures, where a dependence on the spatial 

wavevector is found for longitudinal waves. Furthermore, analytical reflection coeffi-

cients for semi-infinite and finite slabs are derived and plotted with numerical results, 

where the effect of spatial dispersion on scattering parameters is evidently spoiling the 

simple picture of a local-model. 

5,1 Thin parallel wires 

Consider the parallel-wire metamaterial shown in figure 5.1. Assume that the parallel 

wires of radius ro are made from a perfect electric conducting (PEC) material, placed in 

vacuum arranged in a square lattice of a and aligned with z-axes. When the structure is 

subjected to an electromagnetic field, an electric field is induced, driven by the current 

flow in the wire. The electric fleld averaged over the unit cell (i.e. derived in (B.9)) is 

given by: 

== - - ( 5 . 2 ) %(&o - g j 
w6o(a:o - 9̂  

where = Iexp{iqxX + iqyy + iqzZ-iiot)/aF' is the current flowing in the wire averaged 

over the unit cell. Approximate the cubical unit cell with a cylinder of radius R = a/^/TT 

and the variation of the electric field from the surface of the wire to the edge of the 

cylindrical unit cell (i.e. derived in (B.13)) is given by : 

If a new current source Jz is added, the mean electric fleld is given by: 
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while AEz(ro) remains unaffected. The electric field inside the wires {Ez — AEz{ro)), 

has to be zero since PEC wires are considered. Therefore: 

Ez - AEz{ro) — Jz = 0 

- 9: Jz jz _ ^ 

(^0 - 9^) 
= 0 (5.5) 

£0 ko 

The additional source affects only the longitudinal mode, which is given by setting the 

square brackets in the above equation to zero. Therefore, when the longitudinal mode 

is excited q = g^z), the relation between the two sources is given by: 

Jz — jz + jz 

Using the continuity equation + V J = 0 

(5.6) 

^ -r V w — u —iujp + iqj = 0) and from Maxwell's 

equations: V D = esgVE + V P = pext => eoVE = pext + Ppol (where ppoi = —VP is 

the charge density due to polarization P and p^^t is the charge density associated with 

Jz), then: 

^zziy^i Qz) 

'.ezz(w,g2) 

(/g 4" jz 

(5.7) 

The non-local behaviour of the parallel-wire structure results in a permittivity tensor 

dependent on the spatial component of the wavevector q^, which is in agreement with 

the derivations in [5, 23]. Note that for s{uj,qz) = 0, the dispersion equation of the 

longitudinal mode is obtained. The permittivity tensor along the x- and y-axes is 

^xx = £yy — Eo, siuce the wires are extremely thin. Hence: 

W(u) = Go(xx 4- y y ) -t- 6zz(cu, gz)zz (5.8) 

For the special case that qz = 0 (i.e. TE mode excitation), (5.7) becomes identical 

to the the local model of (5.1) as expected, since spatial dispersion is negligible for 

transverse modes. For TEM mode excitation (i.e. w = % ) , (5.7) becomes infinite 

and according to Belov et.al. [5], this singularity can be avoided by using: E = 6 D 

to solve Maxwell's equations. Therefore, the solution to Maxwell equations describe a 

plane wave travelling with the speed of light at g^-direction. The wavevector and the 

electric field in the xy-plane take arbitrary values, giving rise to 'canahzation' [5]. 
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x / -

Figure 5.1: Semi-infinite slab of a parallel-wire structure 

5 .1 .1 S c a t t e r i n g P a r a m e t e r s 

The effect of spatial dispersion on the behaviour of the wire metamaterial is evident 

from S-parameter calculations. Initially, the simple local model is used to obtain 

analytically the reflection coefficient for a semi-infinite slab (as shown in figure 5.1), 

and is compared with calculations for the non-local model. The difference between the 

two results is significant, and is clear that the local model neglects to consider one of the 

propagating modes. Consequently, the non-local model is used to analytically derive 

the reflection coefficient for a finite-slab, and the results are in excellent agreement 

with numerical calculations. 

Initially, consider a semi-infinite slab of the parallel-wire metamaterial and a surface 

at z = 0 as shown in figure 5.1. By matching the electric and magnetic fields at z = 0, 

the reflection coefficient is derived analytically (in Appendix D) and is given by: 

_ Qzk^ + qlqz - kph^ - q^z 
(5.9) 

where q2z = y ^ o - The non-locality of the medium is apparent, due to its 

dependence on the spatial wavevector component. The local reflection coefficient is 

given by: 

Rlocal — 
qz — q2z (5.10) 
qz + Q2Z 

which falsely assumes that only one mode is propagating through the medium. The 

local model leads to a paradox, where the current associated with just one mode 

excitation is not zero at surface z = 0. This is invalid, since the capacitance of thin 
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Figure 5.2: The analytic predictions for the reflection coefBcient | i? | of a wave incident 

on a semi-infinite slab of a parallel-wire metamaterial are plotted for the local (green 

dashed line) and the non-local model (red solid line) (a)normal incidence - 0 = 0° 

(b)g = 10° (c)g = 45° (d)g = 80° 



CHAPTER 5. SPATIAL DISPERSION 52 

Figure 5.3: A finite slab of a parallel-wire medium of length d. 

wires at a surface should be zero. However, non-locality accounts for the current 

associated with the second mode, which is opposite and equal to the current of the 

first mode, and therefore the paradox is overcame (more discussion in Appendix D). 

Rnon-iocal and Riocal are plotted in figure 5.2 for various angles of incidence, where 

Riocai predicts a stop-band for lo < ujp, since it falsely neglects TEM mode excitation. 

For a finite slab of the parallel-wire medium, as shown in figure 5.3, the non-local 

reflection coefficient is calculated by matching the electric and magnetic fields at both 

2 = 0 and z — d surfaces and is given by: 

Rnon—local — 

where 

A = 

B = 

1 + 2 b - a2 + #2 
(5.11) 

-f-
sin{kod) sin{q2zd) 

a:oa;^cog(a;od) 
(5.12) 

sin{kQd) sin{q2zd) 

and q2z = — k'̂  — /cq is the wavevector of the incident wave and d is the length 

of the finite slab of the medium as shown in figure 5.3. 

In figure 5.4, (5.11) is plotted for various angles of incidence (red sohd line), together 

with numerical results (green dashed fine) calculated with CST Microwave Studio 

A five-unit-cell slab (as shown in figure 5.3) was simulated for PEC wires of radius 

ro = 0.05mm, placed in vacuum and with lattice constant a = 5mm, giving an analytic 

prediction for the plasma frequency from (3.3) of l3.2GHz. 

^CST GmbH, Darmstadt , Germany 
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Figure 5.4: The reflection coefficient | R \ plotted with frequency, for a finite slab of 

a parallel-wire structure with (rg : a) = 0.01 : 1 for (a) normal incidence -9 = 0° 

(b)g = 10° (c)g = 45° (d)g - 80°. 
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For normal incidence (i.e. g^-propagation), the wave is totally transmitted through 

the medimn (i.e. \R\ = 0) due to TEM mode excitation, since the electric field is always 

perpendicular to and the wires. For 10° angle of incidence and u < ujp just the TEM 

mode propagates through the medium, due to the stop-band of the longitudinal mode 

for w < Wp, and the wave is therefore totally transmitted through the metamaterial as 

well. For w > Wp, the strong internal reflection of the longitudinal mode induces sharp 

interference fringes, which are not equally spaced, since the longitudinal mode is not 

linearly dispersive with the frequency as predicted by (3.5). For 45° angle of incidence, 

interference fringes are observed for w < u p due to multiple reflections of TEM mode 

at the internal surfaces (i.e. Fabry-Perot interferometer). For u > Wp, a mixture 

of fringes is observed, due to Fabry-Perot interferences induced by TEM mode and 

sharp interference fringes induced by longitudinal mode. For 80° angle of incidence, 

a uniform interference pattern is observed, due to strong multiple scattering of TEM 

mode. The interference fringes are sharper compared with smaller angles of incidence, 

a characteristic of the Fabry-Perot interferometer, and are equally spaced indicating 

that TEM mode is linearly dispersive with the frequency, as predicted by (3.6). The 

longitudinal mode does not contribute to the interference pattern, although is excited, 

due to its decaying character in the whole range of frequencies at this angle of incidence. 

For ^^.-propagation (or 90° angle of incidence) and Ez / 0, only the transverse 

mode is excited, since qx is always perpendicular to the electric field and qz = 0. 

Therefore, the local model for the effective permittivity tensor holds and an analytical 

prediction for the transmission and reflection of the wave through a finite slab can be 

derived using the work in [3]: 

Ts = 
1 — r'2exp(i2g^(i) 

where = i^Jq'y — e(w)A;Q is the z-component of the wavevector inside the metama-

terial slab, e(w) = 1 — wp/w and d is the length of the slab. For a medium with ^ = 1, 

the transmission and reflection at the first interface {t and r) of the slab and at the 
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Figure 5.5: The reflection coefficient | /? | for parallel-wire metamaterials of radius 

ro •• a = 0.01 : 1 and g^^-propagation (i.e. perpendicular to the wires). Analytical 

predictions (red solid line) for S-polarized waves given by (5.13) plotted with numerical 

calculations (green dashed hne) for a five-unit-cell slab. 

second interface (t' and r ') are given by: 

t = 

r = 

t' = 

r = 

1x + Q'X 

Qx - q'x 

Qx + q'x 

Qx + Q'X 

Q'X ~ 1X 

Qx + Q'X 
(5.14) 

where Qx is the x-component of the wavevector in vacuum. In this case, the S-

parameters show interference fringes due to multiple scattering of the transverse mode 

at the internal interfaces of the finite slab. In figure 5.5, the reflection coefficient 

of (5.13) (red solid line) is plotted with the numerical results (green dashed line) for a 

five-unit-cell slab (i.e. d = 5a) consisted of parallel, PEC wires of radius rp = 0.05mm 

and lattice constant a = brnrn, placed in a square lattice and embedded in vacuum. 

There is a stop-band for w < Wp, where the local model predicts e < 0. Also, the 

agreement with numerical results is significant, confirming that the local model holds 

for transverse mode excitation and is in agreement with [27]. The difference of the 
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analytic prediction and numerical results at higher frequencies (i.e. ~ 30GHz) is due 

to the band-gap of the transverse mode at Brillouin zone that the analytic work cannot 

predict. 
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5.2 Wire-Mesh Metamaterials 

Similarly to parallel-wire metamaterials, the plasma behaviour of a wire-mesh is strongly 

dominated by spatial dispersion. Consider a wire-mesh made of PEC wires with radius 

ro, placed in a lattice of a filled with vacuum. The mean electric field induced by an 

incident wave, averaged over the unit cell (is derived in (C.8)) and given by: 

Err. = lUJjlQjQx 
Jo • q 
eow 

1 
• eyi];){iqxX + iqyU + iqzZ — iujt) (5.15) 

where jo is the current flowing in each unit cell and jox the current flowing along the 

wire aligned with the x-axes. Assuming a cylindrical unit cell of radius R — 

the difference of the electric field from the surface of the wire to the edge of the unit 

cell (derived in (C.13)) is given by: 

where kz — 2 _ 27r/â  

/co kn 
exp(%gz;3: + (5.16) 

ro\/? 
is the plasma wavevector and C is given from (4.5) and (4.6) 

for the connected and non-connected wire mesh metamaterials respectively. Adding a 

new source Jo, (5.15) becomes: 

Er. + Jox) ~ 'i-Qx 
(jo + Jo) • q 

6ow 

1 
(g2 - a;g)o: 

• exp{iqxX + iqyy + iqzZ — icot) 

(5.17) 

The difference {E^ — AE^) gives the electric field inside the wires, which is zero since 

the wires are made of a PEC material, and therefore: 

Ex — aeo. = 
(joz + Jox) — iqx^^°~^^°'' 

EQW 
- a:g)a2 \ a:o 

fepjoxa 

ko J 
= 0 

(5.18) 

5 .2 .1 C o n n e c t e d W i r e - M e s h 

For connected wire-mesh metamaterials, as shown in figure 4.1, C = q - jo/3. Sub-

stituting this into (5.18) and considering ga;-propagation for simplicity, then for the 

longitudinal mode for which q — Jo = Jo^q and jo — jWq, (5.18) becomes: 

(^0 ~ QI)(JOX + jox) {ql - 3fco)j /oi 
( f - /gg) 

= 0 (5.19) 
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When the square brackets are equal to zero, the relationship between the Jqx and jox 

sources is: 

( 5 . 0 ) 

Again, using the continuity equation ( | ^ + VJ — 0) and Maxwell's equations (i.e. 

V E — psxt + PpoU where ppoi = —VP and pext is associated with Jq), the longitudinal 

permittivity tensor is given by: 

° - 5 ^ 2 3 ^ ) (5.21) 

Note that for the zeros of (5.21), the dispersion equation for the longitudinal mode 

arises. A longitudinal wave induces periodic charge accumulation on the wires parallel 

to q, and due to the low capacitance of thin wires, strong local electric fields arise, dis-

turbing the current flow associated with the plasma-like behaviour of the metamaterial. 

The strong local electric fields lead to a wavevector dependence for the longitudinal 

permittivity tensor. 

The transverse mode is effectively described by the local-model (similarly to parallel-

wire metamaterial), since charge accumulation and spatial dispersion are negligibly 

small. Therefore, the transverse permittivity tensor can be written as: 

e t = £ o ( 5 . 2 2 ) 

Summarizing, for the special case of a wave incident to the wire mesh structure along 

one of the wires (i.e. along the x-axes), the permittivity tensor is given by: 

# ( w ) = E i i x x + E y y Y Y + E z z Z Z ( 5 . 2 3 ) 

where 

^ y y = £ ^ 2 = 1 — ^ ( 5 . 2 5 ) 
Kg 

This equation suggests that for an incident wave on the wire mesh structure, both the 

longitudinal and the transverse modes are excited, but have different electromagnetic 

response, due to different permittivity tensors. A way to deal with this problem is to 
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block the longitudinal mode from propagating in the metamaterial (i.e. flat mode), in 

order to have a structure that is effectively described only by the local model of ex 

and has a band structure identical to an ideal plasma behaviour. 

5.2.1.1 Scattering Parameters 

Similarly to parallel-wire metamaterials, the effect of spatial dispersion on the struc-

ture's behaviour is apparent from S-parameter calculations. Initially, the local model 

is used to obtain analytically the reflection coefficient for a semi-infinite slab, and is 

compared with calculations for the non-local model. The difference between the two 

results is evident, and is clear that the local model fails for larger angles of incidence, 

where the spatial component of the wavevector becomes more dominant. For a finite 

slab of the wire metamaterial, the S-polarized and P-polarized waves have difi^erent 

behaviour, since just the latter has a spatial wavevector component that excites the 

longitudinal mode. Therefore, by observing the difference of the reflection coefficient 

for the two polarizations the effect of spatial dispersion on the behaviour of the struc-

ture is evident, which basically shows the excitation and dispersion of the longitudinal 

mode. 

Consider a P-polarized wave with wavelength A 3> a, incident to a semi-inflnite 

slab of a SD-connected wire-mesh medium. The reflection coefficient can be calculated 

by matching the magnetic and electric fields at the surface of incidence (derived in 

Appendix E) and is given by: 

_ Izqizikp - kl) - [qTzqLzkl + ggfcp] 

where = 3(/uQ - k^) — {q\^ 4- q\y) is the z-axis component of the longitudinal 

wavevector and q^^ = — kp — {q^^ + ) is the z-axis component of the transverse 

wavevector. The dependence of (5.26) on qiz takes into account the excitation of the 

longitudinal mode and the effect of spatial dispersion associated with it. However, if 

the longitudinal mode was dispersion-less (i.e. flat mode), then » oo and (5.26) 

reduces to: 

Rlocal = lim Rnon-loc = (5-27) 
gz.z-'oo -t-
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Figure 5.6: The analytic predictions for the reflection coefficient | i? | of a wave incident 

on a semi-infinite slab of a 3D-connected wire-mesh metamaterial are plotted for the 

local (green dashed line) and the non-local model (red solid line) (a)normal incidence 

- g = 0° (b)g = 10° (c)g - 45° (d)0 - 80°. 
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where the local model is sufficient to describe the behaviour of the structure and 

I therefore &(w) = eL(w) = eT(w) ~ 1 — Rnon-iocai and Riocai are plotted together 
0̂ 

in figure 5.6 with red solid and green dashed lines respectively. For small angles of 

incidence, the difference is small, since the component of the wavevector parallel to 

the electric field is small. However, for bigger angles the discrepancies become larger. 

The reflection coefficient for S-polarized (green dashed Unes) and P-polarized (red-

solid lines) waves were calculated using CST Microwave Studio and are shown in 

figure 5.7 for various angles of incidence on a finite slab of five unit-cells (i.e. d — 5a). 

It is assumed that the wires are made from PEC material in vacuum. Due to the cut-off 

frequency at u)p, it is expected that \R\ = 1 for w < Wp. P-polarized waves excite both 

the longitudinal and transverse mode, since a component of the electric field and the 

wavevector are parallel, both with each other and one of the wires, taking into account 

non-locality of the metamaterial. S-polarized waves cannot excite the longitudinal 

mode in a wire-mesh structure, since the electric field is always perpendicular to the 

wavevector. Therefore, (5.13) expresses the reflection coefficient from a finite slab of a 

medium obeying the local model and is plotted in figure 5.7 with blue dotted line for 

comparison with the numerically derived S-polarized reflection coefficient. 

For normal incidence, the longitudinal mode is not excited for neither S- or P-

polarized waves, since there is no component of the electric field parallel to the wavevec-

tor for either polarizations. Therefore, |i?| is identical for both polarizations, as shown 

in figure 5.7(a) and also identical to figure 5.5, since the active wires are those only 

parallel to the electric field. Consequently, the electromagnetic behaviour of the struc-

ture for normal incidence is effectively described by the local model, and an analytic 

prediction is given from (5.13) and plotted in figure 5.7(a) (blue dotted line). However, 

for non-normal incidence, both the transverse and longitudinal modes are exited for 

P-polarized waves. For small angles of incidence, the excitation of the longitudinal 

mode appears as sharp resonances at ^ lAGHz. For larger angles of incidence, the 

excitation and dispersion of the longitudinal mode destroys the simple picture of the 

local-model interference pattern. Therefore, spatial dispersion is a problem that pre-

vents the effective local homogenization of wire metamaterials with one simple local 

model. 
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Figure 5.7: The modulus of the reflection coefficient for the connected wire-mesh 

metamaterial of ro : a = 0.01 : 1. Numerically calculated reflection coefficients for S-
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5 .2 .2 N o n - C o n n e c t e d W i r e - M e s h 

For non-connected wire-mesh metamaterials shown in figure 4.6, C = q • jo. Following 

the same derivation procedure as for the connected wire-mesh metamaterial, substitute 

C to (5.18) and consider q^-propagation for simplicity. Therefore, the relationship 

between the Jqx and jox sources is: 

Jo. = - i o . (5.28) 

Using the continuity and Maxwell's equations, the longitudinal permittivity tensor is 

given by; 

-A) 
Note that for the zeros of (5.29), the dispersion equation for the longitudinal mode 

arises. 

Similarly to the connected wire-mesh metamaterial, the transverse mode is effec-

tively described by the local-model, and therefore: 

St = Eo (5.30) 

Equation (5.23) suggests that the effect of spatial dispersion for the non-connected 

wire mesh is enhanced by a factor of (1/3). Since spatial dispersion arises due to the 

periodic charge accumulation on the wires, the difference can be recognized at the 

fact that the wires in the connected wire-mesh are at an electrical contact at nodes. 

Therefore, the charge is evenly distributed over the three wires at nodes, minimizing 

spatial dispersion. 

For a finite slab of five-unit-cells of the non-connected wire-mesh, the reflection 

coefficients for S- and P-polarized waves were calculated numerically using CST Mi-

crowave Studio and plotted in figure 5.8. Also, an analytical prediction for S-polarized 

waves, calculated using (5.13), is plotted with the dotted hne for comparison with 

numerical results. The excitation of the longitudinal mode, that is strongly reflected 

inside the finite slab, creates the sharp resonances seen for the P-polarized wave, even 

for small angles of incidence. The non-locality of the structure spoils the simple inter-

ference pattern of the reflection coefficient for higher angles of incidence. It is clear that 
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the effect of spatial dispersion is dramatically more significant for the non-connected 

than the connected wire-mesh. However, neither wire metamaterials are described by 

a simple local dielectric tensor. In this report (next chapter), new wire-metamaterials 

are proposed that manage to minimize spatial dispersion and therefore allow for the 

homogenization of the medium with a simple local model. 



Chapter 6 

N e w Wire Metamaterials 

Spatial dispersion in wire-mesh metamaterials arises from charge accumulation on the 

wires for longitudinal waves. Charge accumulation creates strong local electric fields 

due to the low capacitance of thin wires. These fields disturb the current flow associated 

with the plasma behaviour of the structure, and introduce a spatial component of 

the wavevector to the longitudinal permittivity tensor. Two ways are proposed in 

this thesis that manage to tame spatial dispersion in wire metamaterials, by slightly 

changing the sub-unit's geometry. 

In order to minimize charge accumulation, we initially increase the capacitance 

of the system, achieved by attaching conducting structures on the wires (i.e. plates, 

spheres, cubes, cylinders). Now, the electrons are parked on the attached structures 

and not on the wires, leaving the current flow in the wires unaffected and minimizing 

the effect of spatial dispersion. An alternative way is to increase the inductance of 

the system, by coating the wires with a high-permeability material. The magnetic 

coat enhances the magnetic and consequently the electric field of the wave, which are 

associated with the plasma behaviour of the structure, but leaves the local electrostatic 

part (i.e. accumulated charge) unaffected. Therefore, the relative importance of charge 

accumulation on the wires, compared with the plasma behaviour is reduced (or the 

plasma behaviour of the structure enhanced). 

However, by changing the geometry of the sub-unit, the permittivity tensors and 

dispersion equations discussed above are not valid for the new wire structures. There-

66 
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fore, a modelling method for spatial dispersion is proposed, which measures the depen-

dence of the permittivity tensors (e) on the spatial wavevector q. This method gives 

a measure of the effect of spatial dispersion in the system and holds for all designs 

discussed in this report. 

This chapter is organized as follows: in the first section the modelling method is 

described , where as examples the connected and non-connected wire-mesh metamate-

rials are used. Consequently, two designs are proposed that have increased capacitance 

compared with connected wire-mesh and numerical results show significant reduction 

of spatial dispersion. Finally, a design with increased inductance is proposed and 

investigated numerically. 

6.1 Model l ing Spatial Dispersion for a wire structure: 

Shapiro et. al. [28] model spatial dispersion in connected wire mesh metamaterials, by 

measuring the dependence of permittivity tensors on the spatial wavevector. We ex-

pand this method in order to take into account the polarization of attached conducting 

structure on the wires by a constant j3. The permittivity tensor is then rewritten for 

g^-propagation (i.e. for propagation along one of the wires) as: 

-i- 6yyyy + (6.1) 

where 

£xx=£yy = / 5 ( 1 - ^ 1 + " 2 ^ 

(G2) 

where cti, cng are frequency dependent spatial dispersion coefficients for the longitudi-

nal and transverse waves respectively. They can be considered as a measure of spatial 

dependence of the permittivity tensor for the wire-mesh and also depend on the di-

mensions of the lattice and wires. They can be determined by fitting the numerically 

calculated band structures (for g —> 0) to [28]: 

= Wp -h Aq'̂ c^ (6.3) 
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Figure 6.1: The spatial dispersion coefficients a i (square points), 0.2 (circle points) 

for the connected (empty red) and the non-connected (full green) wire-mesh structure, 

plotted with respect of (ro/a) ratio. Also, (1 — (3) is plotted with triangle shaped 

points, which is zero for these structures. Where ro is the radius of the wires and a 

the lattice constant. 

where A depends on the propagation direction. For the longitudinal mode: A — —ai/P 

and for transverse modes: A — (1 — a2)//3 . Finally, /3 can be determined by calculating 

the band structure for just the added structures, where the dispersion equation has 

the form: = {kc)'^/(3. Note that /3 = 1 for the simple wire-mesh metamaterial. It is 

clear from equations (6.2), that the permittivity tensor corresponding to a transverse 

wave (i.e. Sxx = ^yy) is different from the permittivity tensor corresponding to a 

longitudinal wave {Szz), when a i and 02 are different. 

As a first example, consider the connected wire-mesh structure shown in figure 4.1 

and ( r /a) = 0.01, whose band structure is shown in figure 4.3. The spatial dispersion 

coeSicients take values: a i — —0.307, ag = 0.035 and /3 = 1. This means that the 

spatial dispersion for the transverse mode is negligible for r <C a and therefore the 

local model holds where Sxx = = 1 - as expected. On the other hand, the 
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spatial dependence of the longitudinal permittivity tensor is dominated by a i , which 

is significant for this structure, even for r a. Similarly for non-connected wire-mesh 

shown in figure 4.6 and for (r/a) = 0.01 whose band structure is shown in figure 4.7, 

the spatial dispersion coefficients take values: ai —1, ag = 0.035 and (5 — 1. As 

expected the transverse permittivity tensor has negligible dependence on q and ai 

dominates the longitudinal permittivity tensor. 

The spatial dispersion coefficients for both structures and for various ( r /a) ratios 

are plotted in figure 6.1. It is clear that there is no significant dependence on the radius 

of the wire, as long as r a is valid. As expected from the analytical derivation in 

chapter 4, spatial dispersion is reduced to (1/3) when the wires are connected, since 

the charge is distributed over the three orthogonal wires at nodes. Therefore, the new 

designs of wire metamaterials proposed in this section, use as a base the connected 

wire-mesh metamaterial. 

6.2 Increasing the Capacitance 

A way to minimize spatial dispersion in wire metamaterials is to increase the capac-

itance of the system by attaching conducting structures (i.e. cubes, plates, spheres, 

cylinders) on the wires. Hence, for a longitudinal wave, the charge is distributed on the 

surface of the attached structures instead of accumulating periodically on the wires. 

Therefore, the current flow in the wires, associated with the plasma-like behaviour 

of the metamaterial, remains unaffected. Various designs were examined using finite 

integrations algorithms for Maxwell's equations with CST Microwave Studio to calcu-

late the dispersion diagrams and S-parameters for the new designs. Although all new 

structures showed significant reduction of spatial dispersion, in this thesis, two repre-

sentative designs are discussed; cubes attached at the joints of a connected wire-mesh 

metamaterial and thin square plates at the mid-points between nodes of the wires. 

6 .2 .1 C u b i c a l Inc lus ions 

Cubes made of PEC material are introduced at the nodes of a connected wire-mesh 

metamaterial as shown in figure 6.2(a) and the band structure was numerically calcu-
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Figure 6.2: (a)The wire mesh with cubes attached at the joints (b) The band structure 

plotted for g^^-propagation for the structure shown left (red solid lines) (for r •. x : a— 

0.01 : 0.5 : 1 (wire's radius):(cube's side):(lattice constant)) and the connected wire-

mesh metamaterial (green dotted lines) 

lated using CST Microwave Studio and plotted in figure 6.2(b)(red sohd lines) with 

the dispersion diagram of just the wire mesh (green dashed lines) for comparison. The 

addition of PEC cubes with side x, has a tremendous impact on the dispersion of the 

longitudinal mode, which is almost dispersion-less for propagation along one of the 

wires. In figure 6.3, the dispersion diagram for various propagation vectors is shown, 

where again the dispersion of the longitudinal mode is limited to ~ QGHz frequency 

range compared with ~ llGHz for the connected wire-mesh metamaterial. However, 

by introducing cubes on the structure, the wires are shortened causing the effective 

electron mass of (3.2) to take smaller values. Therefore, Up of the new structure takes 

slightly higher values of ~ 2GHz since as shown in figure 6.2(b). 

As discussed in section 6.1, spatial dispersion in a wire-mesh metamaterial can be 

modelled with coefficients a i and 0:2, showing the effect of spatial dispersion for the 

longitudinal and transverse modes respectively. Furthermore, the cubes are getting 

polarized when subjected to an electromagnetic wave, which gives /3 > 1. The depen-

dence of polarization and spatial dispersion coefficients on the cube's dimensions, is 

plotted in figure 6.4. The transverse a2 coefficient takes negligible values, similarly 

to connected wire-mesh metamaterials, indicating that the cubical inclusions do not 

affect the transverse mode significantly. The longitudinal a i coefficient is also dramat-



CHAPTER 6. NEW WIRE METAMATERIALS 71 

1 mgitudmal mode 

transverse mode 

uadnqx)lemode 

light line 

Figure 6.3: The band structure of structure shown in figure 6.2, with dimensions 

r : X : a = 0.01 : 0.5 : 1 where r is the radius of the wires, x the side of the attached 

cube and a the lattice constant, where r (0 , 0, 0), X(0, 0,7r/a), M(0,7r/a, vr/a) and 

i ? ( 7 r / a , 7 r / a , n/a). 

ically reduced to negligibly small values for all cubical sizes, indicating that the spatial 

dependence of the longitudinal e is insignificantly small. On the other hand, although 

(3 coefficient is increased significantly, has no spatial effect and does not restrict the 

use of a local model, since the general Drude model can be used: 

(6.4) 
uj{LO + i7) 

where VL and ex are constants and 7 represents the losses in the system. This equa-

tion is in agreement with the model used in (6.2), since as shown in figure 6.4, both 

spatial dispersion coefficients take negligible values for the new structure. For cubes 

of dimensions [x/a) = 0.5 attached on wires of r = 0.05mm (with the band structure 

shown in figures 6.2 and 6.3), the coefficients take values: a \ — —0.049, ag = —0.045 

and (5 — 1.24. 

The S-parameters of a finite (five-unit cell) slab of the new structure were calculated 

numerically using GST Microwave Studio, in order to determine the effect of spatial 

dispersion on the electromagnetic behaviour of the new wire metamaterial. Periodic 

boundary conditions are applied for the x- and y- directions and five unit cells along 

z-axes. The refiection coefficients of S- and P-polarized waves are plotted in figure 6.5, 
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Figure 6.5; The modulus of the reflection coefficient for the structure in figure 6.2 and 

dimensions r : % : a = 0.01 ; 0.5 ; 1 where r is the radius of the wires, x the side 

of the attached cube and a the lattice constant. The S-polarized (dashed lines) and 

P-polarized (sohd hnes) are plotted for 0 = 0° (left graphs) and theta = 45° (right 

graphs) angles of incidence. The top graphs are for a loss-free system (i.e. perfect 

electric conducting (PEC) wires in vacuum with e = 1 and jJ. — 1) and bottom graphs 

for PEC wires in a slightly lossy hosting medium with conductivity a = 0.11l5m~^ 

(i.e. Im{e) = a/{eQLo)). 
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with the analytical prediction of (5.13) for a homogeneous slab with permittivity tensor 

obeying the general Drude model of (6.4). For normal incidence in figure 6.5, both 

S- and P-polarized reflection coefficients are degenerate, since the E-field is always 

perpendicular to the wires and only the transverse mode is excited. The agreement 

between numerical and analytical calculations is significant, except at frequencies close 

to Brillouin zone, where there is a band gap and the analytical theory does not predict. 

For non-normal incidence on a loss-less system (top graphs), the excitation of the 

longitudinal mode can be seen at ~ (17— 18)GHz as sharp resonances for a P-polarized 

wave. These resonances are attenuated, when the hosting medium of the wires becomes 

slightly lossy(bottom graphs) with; 

^host = £0 ( 1 + ^ ) (6.5) 

where a = O.l^m"^ is the conductivity (i.e. at tu = ITGHz —> Im{e) = 0.106) and cj 

the frequency in s~^. Considering that all materials in nature are always slightly lossy, 

then the longitudinal mode cannot propagate in the new wire metamaterial. Even if it 

propagates slightly in the medium, it is extremely slow and is attenuated from the loss 

of the hosting medium. Therefore, the effect of spatial dispersion is excluded from the 

new wire metamaterial and can be effectively described by one homogenized medium 

obeying the simple local model. 

6 .2 .2 T h i n - S q u a r e - P l a t e Inc lus ions 

Consider thin square PEC plates attached at the mid-points between the nodes of a 

connected wire-mesh metamaterials, as shown in figure 6.6(a). The additional surface 

area of the new wire metamaterial is about six times larger than the design described 

above. Therefore, a more dramatic effect on spatial dispersion is expected for the 

thin-plate wire-mesh metamaterial, since the capacitance of the system is remarkably 

increased. Furthermore, the new wire metamaterial has almost no effect on the value 

of the plasma frequency, since the wires are negligibly shortened. In figure 6.6(b), the 

dispersion diagram for propagation along one of the wires is shown plotted together 

with the band structure of connected wire-mesh for comparison. The longitudinal 

mode for the new structure is dispersion-less, indicating that it cannot propagate in the 
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Figure 6.6: (a)The wire mesh metamaterial with thin square plates attached at the 

mid-points between the joints of the wires (b) The band structure plotted for kx-

propagation for the structure shown no the left (red solid hnes) (for r : x : a — 0.01 : 

0.36 : 1 (wire's radius):(plate's side):(lattice constant)) and the connected wire-mesh 

metamaterial (green dotted hnes) 

medium. The dispersion diagram for all propagation directions in shown in figure 6.8, 

where the dispersion of the longitudinal mode has been confined to ~ 6GHz. 

In figure 6.7, the polarization and spatial dispersion coefficients are plotted with 

respect to plate dimensions. As expected, a i takes smaller values for larger plates, 

where the surface area is larger. For large enough plates it takes positive values, due 

to additional effects (i.e. the plates interact with each other). Nevertheless, a i is 

reduced to negligibly small values for all plate dimensions, while a2 is maintained 

at low values. For square plates with dimensions (x/a) = 0.36, spatial dispersion 

coefficients take values ai 0, a2 = 0.04 and (3 = 1.04. Note that the thickness of 

the plates does not affect a i and ag values, but changes slightly the plasma frequency 

and /8. 

Furthermore, at ~ 17GHz, two flat degenerate modes can be observed in figure 6.8. 

These are identified as the two quadrupole modes that arise due to the orthogonal na-

ture of the wire structure, with charge arrangement as shown in figure 4.5. They 

appear at much lower frequencies than for the simple wire-mesh, since charge is stored 

both on the plates and also distributed at nodes. However, both are flat (i.e. group 

velocity is zero), meaning that when excited they do not propagate in the metamate-
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Figure 6.7; Spatial dispersion coefficients (ai and 02) are plotted against the dimen-

sions of the square plates, where x is the side of square plates and a the lattice constant. 

rial. Therefore, since neither the longitudinal or quadrupole modes propagate in the 

medium, then only the transverse mode propagates, suggesting that the local model 

of (6.4) is valid for describing this wire metamaterial. 

The S-parameters were calculated numerically for a five-unit-cell slab in order to 

observe the reduction of the effect of spatial dispersion on the new wire design and 

are plotted in figure 6.9. For normal incidence (left figures), both S- and P-polarized 

waves excite just the transverse modes since the electric field is always perpendicular 

to the wires, which leads to a degeneracy for the reflection coefficients of the two wave-

polarizations. For non-normal incidences, both the longitudinal and transverse modes 

are excited for P-polarized waves. The longitudinal mode excitation appears as sharp 

resonances at ~ lAGHz for a loss-less system, which are attenuated for a slightly lossy 

hosting medium (i.e. a — 0.lSm~^ in (6.5)). Furthermore, at ~ (18 — 20)GHz sharp 

resonances appear as well, due to the excitation of the quadrupole modes. These 

resonances are also attenuated for a slightly lossy hosting medium and similarly to 

longitudinal mode, do not contribute to the interference pattern. Finally, in figure 6.9, 
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Figure 6.8; The dispersion diagram of the structure shown in figure 6.6 for r : a: : a = 

0.01 : 0.36 : 1 where r is the radius of the wires, x the side of the square plate, a the 

lattice constant and r (0 , 0,0), X(0,0,7r/a), M(0,7r/a, tt/g) and R(7r/a, 7r/a, 7r/a). 

the analytical prediction of (5.13) is plotted for a slab of a homogeneous medium with 

permittivity tensor obeying the model of (6.4), which shows significant agreement for 

all angles of incidence.The disagreement between analytical and numerical results seen 

at ~ 30GHz is due to the band-gap at the Brillouin zone that the analytical model 

cannot predict. 

6.3 Increasing the Inductance 

An alternative way to minimize the effect of spatial dispersion in wire metamateri-

als, is to increase the inductance of the system by coating the wires with a magnetic 

material, as shown in figure 6.10(a). The coating material enhances the magnetic 

and consequently the electric field of the wave, which are associated with the plasma 

behaviour of the structure. However, it leaves the electrostatic (i.e. charge accumula-

tion responsible for spatial dispersion) unaffected. Hence, the relative importance of 

charge accumulation on the wires is reduced, with respect to the plasma behaviour of 

the structure. 

Figure 6.10(b) shows the band structure for propagation along one of the wires 

(red solid lines), plotted together with the dispersion diagram of the connected wire-
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Figure 6.9: The modulus of the reflection coefficient for the structure in figure 6.6. The 

S-polarized (dashed line) and P-polarized (solid line) are plotted for various angles of 

incidence. Top graphs show the reflection coefficient for PEC wires in vacuum (i.e. 

6 = 1 and fJ. — 1) and bottom graphs PEC wires in a slightly lossy hosting medium 

with Ehost = Eo where a = 0.1115m~^ is the conductivity. 
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Figure 6.10: (a)Tlie wire mesh structure, coated with a magnetic material. R is the 

outer radius of the coating magnetic material of magnetic permeability jj, and r the 

radius of PEC wires, (b) The band structure plotted for /c^-propagation for the structure 

shown no the left (red solid lines) (for r : R : a = 0.01 : 0.04 : 1 (wire's radius):(outer 

radius of coating magnetic material):(lattice constant)) and the connected wire-mesh 

metamaterial (green dotted lines) 

mesh metamaterial (green gashed lines). The dispersion of the longitudinal mode is 

reduced, as well as the value of the plasma frequency, which can be explained by taking 

into account that the self-inductance effects that drive (3.2), are enhanced due to the 

increased inductance of the wire system (i.e. nigyy magn—coat > m wire—mesh\ 
j Spatial 

dispersion coefficients a i and ag plotted in figure 6.11 show significant reduction for 

structures with a magnetic coating of = 5. They take negligibly small values for the 

new wire structure and note that (3 = 1, since the magnetic coating material is not 

polarized by an incident wave. The band structure for various propagation directions 

is plotted in figure 6.12, where the frequency range of the longitudinal mode dispersion 

is reduced compare to the simple connected wire-mesh metamaterial. 

The S-parameters were numerically calculated using CST Microwave Studio, for a 

five-unit-cell slab, in order to determine the effect of spatial dispersion on the electro-

magnetic behaviour of the new design and are plotted in figure 6.13. For normal inci-

dence, the refiection coefficient for both the S- and P-polarized waves is identical, since 

just the transverse mode is excited. For non-normal incidence, the excitation of the 

longitudinal mode induces sharp resonances at the interference pattern of P-polarized 
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waves for the loss-less hosting medium (top figures) at ^ (10 — 12)GHz. However, the 

sharp resonances are attenuated in a slightly lossy hosting medium (bottom figures) 

of o" = 0.08Sm~^ in (6.5). Furthermore, the quadrupole modes are excited for the 

loss-less hosting medium and appear as sharp resonances as well at ~ 20GHz, which 

are also absorbed in a slightly lossy hosting medium. Therefore, for any real system 

where loss is always present, just the transverse mode propagates in the wire metama-

terial. Finally, the analytical prediction for the reflection coefficient from (5.13) is also 

plotted in figure 6.13, assuming a homogeneous medium with a permittivity tensor 

obeying the general Drude mode of (6.4). The significant agreement indicates that the 

local model is valid for the new wire structure, and that the effect of spatial dispersion 

on the new wire structure is negligibly small. 
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Chapter 7 

Conclusions 

A wire-mesh metamaterial simulates the properties of a low-density electron plasma, 

with the plasma frequency in the GHz range. However, the properties of the arti-

ficial plasma are strongly modified by spatial dispersion, which arises from periodic 

charge accumulation in the wires for longitudinal waves. The longitudinal mode dis-

perses with the frequency and propagates in the metamaterial, preventing the effective 

homogenization of the wire-mesh with one local permittivity tensor. 

Spatial dispersion can be minimized by attaching conducting structures on the 

wires and therefore increasing the capacitance or by coating the wires with a magnetic 

material, which increases the inductance of the wire metamaterial. Various structures 

are proposed and examined numerically that manage to eliminate spatial dispersion 

and create a dispersion-free longitudinal mode. Hence, the longitudinal mode (and 

quadrupole modes that are also dispersion-free) are either not excited by externally 

incident radiation, or propagate extremely slowly in the medium and therefore are 

rapidly attenuated by the lossy hosting medium. Therefore, the transverse mode is 

the only mode propagating in the medium, which is well described by the local model, 

and the new wire-structures can be homogenized by the simple local model. 
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Chapter 8 

Introduction 

The magnetic response of conventional materials disappears at high frequencies, even 

at few GHz. However, magnetic media can be artificially constructed with sub-unit 

dimensions much smaller than the wavelength of the incident wave and usually exhibit 

a resonant magnetic behaviour for frequencies from few MHz to THz, IR and even 

the visible region [29, 30, 31]. In 1999, Pendry et.al. [9] proposed several artificially 

magnetic structures, composed entirely from conducting materials. Their design is 

based on an array of wire loops, and therefore, a magnetic field {HQ) induced currents 

and an electromotive force (emf) that opposes the applied magnetic field. Hence, an 

effective magnetic response is produced [9]. 

The majority of the metamaterial community has focused on magnetic materials 

that operate at higher frequencies (such as split-ring resonators, U-shaped or cut-

wires) and allow for the combination with wire-mesh to create a negative refracting 

medium. However, Swiss Rolls are magnetic metamaterials with different, but equally 

interesting apphcations, mainly in the MHZ frequency region. An important advantage 

of Swiss Rolls is that their resonant frequency can be tuned over a broad frequency 

range (from MHz to GHz). The most well-known application of Swiss Rolls is for 

magnetic resonance imaging (MRI) [32, 33, 34] that operates at MHz frequency, where 

most magnetic metamaterials require at least 100 times larger lattice constant, which 

is not practically applicable. Furthermore, chiral Swiss Rolls, in addition to MRI 

applications, are ideal for polarization rotation/selection antenna applications. 

85 



i n t r o d l k z m o n 86 

Initially, we investigate the non-chiral Swiss Roll metamaterial. Comparison of the 

already known analytic work [9] with numerical calculations for the band-structure, 

scattering parameters and effective electromagnetic tensors is presented, where a con-

siderable agreement was found [35]. The lack of numerical work for Swiss Rolls in the 

literature, is due to the complex design of the structure, which demands an extremely 

fine modelling mesh and consequently huge computational power and time. 

Then, the more complicated design of the chiral Swiss Roll metamaterial is inves-

tigated [36, 37]. The chirality of the structure combined with the magnetic resonant 

behaviour, result to a negative band for one-wave polarization, even for GHz fre-

quencies. In this chapter, the electromagnetic parameters and band structure of a 

chiral Swiss Roll metamaterial are derived analytically and compared with numerical 

calculations. Then, the scattering parameters are calculated numerically, where the 

effect of chirality is apparent, since the transmission coefficient for right-handed and 

left-handed circularly polarized waves are different. Finally, the electromagnetic and 

chirality terms are retrieved from numerical scattering parameters, where a significant 

agreement was found with analytical work as well. 



Chapter 9 

Non-chiral Swiss-Roll 

metamaterials 

A Swiss Roll metamaterial is made from a thin insulated conducting sheet, wrapped 

around a cylindrical mandrel in a spiral shape, as shown in figure 9.1(a). When an 

oscillating magnetic field HQ is applied along the rolls (along the z-axes), currents are 

induced on the conducting spiral circumference and therefore an emf arises that op-

poses the applied magnetic field HQ. Hence, it macroscopically appears that 'magnetic' 

monopoles are flowing up and down the roll, which can be considered as a magnetic 

equivalent of conducting wires. Due to structure's self-capacitance and self-inductance, 

the induced currents are subjected to an LC resonant circuit giving rise to a resonant 

effective magnetic permeability obeying the Lorentz model and is plotted in fig-

ure 9.1. 

For a metamaterial consisted from Swiss Rolls arranged in a square lattice of con-

stant o, the fields obey: 

D = eeffeoE -

B = /ieflfAioH 4- m'^v'eoAioE (9.1) 

where Ceff and /igfF are the effective electric permittivity and magnetic permeability 

respectively, K the magnetoelectric coupling term that takes into account the bian-

isotropic nature of the structure. 
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Figure 9.1: (a)A Swiss Roll, where R is the outer radius, d the gap between the 

conducting sheets. (b)For magnetic fields along the Swiss Roll, the metamaterial has 

an effective resonant magnetic permeability (/x^). Note that < 0 for wo < w < cOmp-

Assuming that the conducting sheet is infinitely thin and that the radius R of the 

roll is much larger than the gap d (i.e. R^ d), the axial magnetic field along the roll 

is given by [9]: 

Hz = HQ + j - Fj (9.2) 

where F = TTR'^/O? is the filling factor, a is the lattice constant, and j the induced 

current per unit length of the conducting sheet. The last term of this equation arises 

due to depolarizing fields, which are assumed to be uniform for infinite rolls. The emf 

can be calculated using Lenz's law; 

emf = iu){N - l)7ri?^;Uo (^Ho + j - (9.3) 

where N is the number of spiral turns of the conducting sheet. The emf needs to be 

balanced by the Ohmic drop in potential. Hence: 

MN - l),rflVo ( + J - = 2wRpj - ^ (9.4) 

where p is the resistance of the conducting sheet per unit area and the term {2-KRpj) 

accounts for the resistivity losses of conductive elements. The last term accounts for 

the Ohmic potential due to the capacitive elements of the structure and the capacitance 

per turn is given by: 

C — 
- 1) 

(9.5) 
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where Ed is the dielectric constant of the material in the gap, which we assume to be 

vacuum (i.e. = !)• 

Solving (9.4), the current ( j) induced on the roll can be obtained and therefore the 

z-component of the effective magnetic permeability is given by: 

eff ^ ^ Mo^o ^ ^ (Q 

and obeys Lorentz model, where to is the frequency of the wave, F = 2P/[/J,QR(N — 1)] 

accounts for the resistivity losses from the conducting material. The resonant frequency 

uiQ is given by: 

2 ^ 2 ^ 3 e d ( i v ^ 

The magnetic permeabihty of (9.6) is plotted in figure 9.1(b) and goes to infinity at 

WQ-frequency (for loss-less media) and to zero at the 'magnetic' plasma frequency {comp) 

given by: 

Consider an E^-field oscillating along the Swiss Rolls. For the long wavelength 

limit (i.e. A a), the field would see thick conducting wires and therefore, the electric 

permittivity along the Swiss Rolls obeys Drude's model: 

s ' / j = 1 - ^ m 

where Wp is the plasma frequency, which takes extremely high values, since for thick 

conducting wires, Wp increases [21, 5]. Therefore, LOp wo and Wp Ump, and 

Ez is negative for frequencies where Swiss Rolls are magnetically active [11, 12, 13]. 

This indicates that for fc^j-propagation and frequencies around loq and oJmp-, the band 

structure is not doubly degenerate, since {EZ,HY) mode is forbidden and therefore 

only the (Ey,Hz) mode propagates. 

Now, considering lateral electric or magnetic fields (i.e. in the x-y plane) and 

neglecting the resistivity losses of the conducting sheet, then the lateral components of 

Eef f and jUgyf are approximately constants [9]. The magnetic lines can not penetrate 

the rods, and are constrained in the free space around the Swiss Rolls, giving a spatially 
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non -uniform magnetic field and lateral takes values [38, 39, 6]: 

(9.10) 

Similarly, for the x- and y- components of the electric permittivity: 

^eff ^ eff ^ fg 11) 
yy ~ \ / 

Finally, due to the bianisotropic nature of the structure, a resonant magnetoelectric 

coupling term (K) has to be considered, which takes the form; 

ft = 
6ULOQ 

(9.12) 

where 5 is a constant. and Ey applied fields induce electric dipoles on the rolls, 

causing currents to flow on the outer {jout) and internal (jin) layers of the roll. Con-

sequently, an additional magnetization arises due to Exy fields, accounted by K. For 

Swiss Rolls with small d and therefore large (R/d), the magnetoelectric coupling term 

tends to zero (k 0) since jin jout- Therefore, 5 takes extremely small values, in 

contrary to split-ring resonators that have a much stronger magnetoelectric coupling. 

9.1 B a n d S t r u c t u r e 

The dispersion equation for a medium consisted from Swiss Rolls in a square lattice and 

aligned with the z-axes can be found considering Maxwell's equations for a monochro-

matic wave with frequency w and wavevector k. For simplicity, assume that ky = 0, 

and since the medium is magnetically active and electrically inactive along the z-axes, 

the dispersion equation derived in Appendix F [40] is; 

(J = 4- (9.13) 
y ^yl-^z 

which is plotted in figure 9.2 (red line) for /ca;-(left) and /c^-propagation (right). For kx-

propagation and for frequencies WQ < U; < Wmp, the medium is opaque since < 0 

and Eyŷ  > 0 introducing a stop band in the dispersion diagram. Also, the band struc-

ture is not doubly degenerate for fc^-propagation as expected, since the (Ez, Hy) mode 

is forbidden for to < uip. In figure 9.2 (right), the band structure for fcz-propagation is 
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Figure 9.2: The analytical prediction (red solid line) for the band structure at A: ^ 0, 

plotted with numerical results (dots) for a Swiss Roll metamaterial with dimensions 

N = 2, d = 0.1mm, x = 0.05mm, R = 2mm and a = 5mm. Note that the left 

part of both plots is the band structure for /cx-propagation and the right part for k^-

propagation. Note that there is a stop band for ujq < u < Ump and /c^^-propagation, 

where < 0. The light hne is plotted with a green dashed line. 
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plotted, where the electric and magnetic fields are in the x-y plane. Therefore, there 

are two doubly degenerate transverse modes (since Sxx = £yy and iJ,xx = IJ-yy)̂  that 

are also degenerate with the light hne since ^ExxfJ-yy = y/£yyjj^ = 1, as predicted 

in (9.10) and (9.11). 

The Swiss Roll is a rather complex design to be modelled numerically, since it is 

constructed from a thin conducting sheet arranged in a spiral shape with a relatively 

big radius and small d (i.e. d) [40, 41]. The fine details of the structure demand 

a huge computational power and time for adequate numerical accuracy. A way to go 

around this problem is to calculate the band structure for a Swiss Roll with less fine 

detail (i.e. thicker conducting sheet-a: and a smaller ratio of (R/d)). Initially, the 

band structure of a Swiss Roll with dimensions x = 0.05mm, d = 0.1mm, R = 2mm, 

a = 5mm and N = 2, was numerically calculated using CST Microwave Studio and is 

plotted in figure 9.2(black dots) with the analytical prediction (red sohd lines) of (9.13). 

The analytical and numerical results show a significant agreement (i.e. ~ 90%) for both 

kx- and fc^-propagations, even though some of the assumptions taken analytically are 

not valid for numerical calculations. 

Figure 9.3 shows the band structure at higher frequencies, where the numerical 

calculations find equally-spaced flat modes. By carefully studying the H-fields plot-

ted in figure 9.5(c) and (d), these modes are identified as trapped modes inside the 

spiral gap, which acts as a spiral waveguide. The waveguide modes are observed at 

frequencies: 

— + " ^ (9.14) 

where n is a positive integer, kmp is the wavevector associated with the'magnetic 

plasma' frequency in (9.8) and S is the length of the spiral waveguide given by: 

where p is the radius of the spiral waveguide and 6 the angle created between tq and 

p radial vectors. As the number of turns N increase for a Swiss Roll, the length of the 

spiral waveguide increases as well, leading to more dense waveguide modes. Numerical 

results agree with (9.14) ^ 95 — 96%, although the open boundary conditions are 

neglected in (9.14). Also, our results are consistent with the work in [42]. 
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Figure 9.3: The analytical prediction for the band structure (red sohd line), plotted 

with numerical results (dots) for a Swiss Roll metamaterial with dimensions N — 2, 
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at high frequencies, the excitation of the first waveguide mode can be seen. The light 

line is plotted with a green dashed line. 
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Figure 9.4: (a) Blocks arranged in a periodicity of a and d is the gap between them. 

(b)The size of the band-gap created due to the coupling of the waveguide and transverse 

modes is plotted, against the transmission of a wave through the block-medium (i.e. 

T = ^ j^ ) . (c) the magnetic field amplitude for the first waveguide mode and (d) the 

second waveguide mode. 
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However, as seen in figure 9.3 for fca;-propagation, tlie waveguide mode couples 

strongly with the transverse mode creating a band gap and the stronger the coupling 

between the two modes, obviously the bigger the band gap (Aw). A simple way to 

investigate this, is to model the spiral waveguide, as an array of blocks with gap 

between them of d and periodicity a as shown in figure 9.4(a), and calculate the 

transmission of a wave through this medium. The impedance of such a medium is 

given by Z — {d/a)Zo, where ZQ is the impedance of the hosting medium (i.e. vacuum). 

The transmission of the wave trapped in the waveguide is calculated by matching the 

impedance at the two media and: 

^ ^ (9 16) 
The bandwidth of the band-gap Aw was measured numerically for several values of 

d, and is plotted in figure 9.4(b) against transmission (T — ^ ^ ) , and as expected 

they have a linear relationship. Therefore, for more fine dimensions of Swiss Roll (i.e. 

smaller d) and where wo is in MHz frequencies, the coupling between the waveguide 

and transverse modes is expected to be weak with a negligibly small band gap. 

9,2 Effective Elec t romagnet ic Behaviour 

9.2 .1 Sca t ter ing P a r a m e t e r s 

As discussed previously, the scattering parameters give an indirect insight to the elec-

tromagnetic behaviour of the structure. In this section an analytic prediction is derived 

and compared to numerical results. 

Assuming that a metamaterial is consisted of Swiss Rolls in a square lattice and 

aligned with the z-axes, then the scattering parameters of a wave incident on a finite 

slab can be derived analytically using the method described in [3]. Note that the same 

method was used for calculating the S-parameters of a wave incident on a finite slab of 

wire metamaterials, where it was assumed that ^ = 1, which does not hold for Swiss 
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Roll metamaterials. Therefore, (5.13) takes the form; 

tt'exp{iq^d) 
Ts = 

1 — r''^exp{i2q^d) 

where q'̂  = q'1 — Syy^zzkl is the x-component of the wavevector inside the meta-

material slab of length d, Syy is given from (9.11) and fizz from (9.6). The transmission 

and reflection at the first interface (t and r) and second interface {t' and r') are given 

by: 

, '^l-^zzQx t = — 
fJ-zzQx 4" 9 a; 

^ t^zzQx 9 x 
l-l'ZzQx ~l~ Q'X 

/ '^/-I'zzQ X t 
fJ'zzQx ~t" q' X 

/ = (9J.8) 

fJ-zzQx + 9 i 

where q^ is the x-component of the wavevector in vacuum. 

For normal incidence q'z = 0, the reflection coefficient of (9.17) is plotted in fig-

ure 9.5(a) and(b) (red solid line) with numerical calculations (blue dotted lines) on a 

5-unit-cell slab with periodic boundary conditions along the y- and z-directions. The 

analytical and numerical results have an outstanding agreement of ~ 92% for fre-

quencies up to 9GHz, with a small difference on the value of UJQ, which is due to the 

approximations taken analytically and are not valid for the structure simulated (due to 

modelling difficulties). At frequencies higher than 9GHz the agreement breaks since 

the wavelength becomes comparable to lattice constant and the homogenization model 

breaks. At these high frequencies, internal scattering within the unit cell takes place 

and the homogenization theory is not valid. Also, the excitation of the first waveguide 

mode can be seen in figure 9.5(a), and its value is in agreement with (9.14) at ~ 98%. 

9.2 .2 Retr ieva l M e t h o d for B ian i so trop ic M e d i a 

Although the scattering parameters show important information about the behaviour 

of a structure, it is usually preferable to obtain the effective electromagnetic parame-
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Figure 9.5: The analytic prediction (red solid line) and the numerical result (blue 

dotted hne) for the reflection coefficient {\R\) is plotted for normal incidence on a 

five-unit cell slab of a Swiss Roll metamaterial with dimensions N = 2, d = 0.1mm, 

X = 0.05mm, R = 2mm, a = 5m,m and band structure shown in figure 9.2. (a)for a 

wide frequency range, where the excitation of the first waveguide mode can be seen 

and (b) for w —» Wg (c)The analytical prediction of Re{nzz) shown in (9.6) (red solid 

hne) plotted with Re{^zz) retrieved from numerical results (blue dotted line). 
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ters, since they are directly linking D and B with E and H. The effective parameters 

can be retrieved from the numerically calculated S-parameters, using methods that 

are well documented in literature [43, 44] for isotropic media, as well as for anisotropic 

media in [45] (such as wires combined with split-ring resonators). However, Chen 

et.al. [46] discuss e and n retrieval, specifically for bianisotropic media, like Swiss-Roll 

metamaterials. 

The iSii and 5'21-parameters can be written as [43, 44, 45, 46]: 

roi[l — exp{i2nkoma)] 

1 - \roif exp{i2nkoma) 

( 1 — | r o i p ) e x p ( m f c o m a ) 

1 — | r o i | ^ e x p ( i 2 n / c o m a ) 

where roi = (z —l)/(z + l), zo = 1 is the vacuum impedance, z the medium impedance, 

n the refractive index, ko the wavevector of the incident wave, m the number of unit 

cells in the slab, ma the width of the slab. Note that (9.19) and (9.20) are identical 

to (9.17), just written in a different format. Solving (9.19) and (9.20), the impedance 

and refractive index are obtained [46]: 

611 == 'u l i ; (g ig ) 

where 

A — 2S'ii — — 1 -|- S'21 

C = S\i -I- S21 — 1 

and (.)', (.)" denote the real and imaginary parts of the operators respectively and: 

Note that in order to avoid violating causality we choose the branches of the above 

equation, where Re{z) > 0 and Im{n) > 0. Hence, the electric permittivity along the 

y-axis is given by: 

(9.24) 
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Figure 9.6: The retrieved effective electromagnetic parameters {z, n, s, fi) from numer-

ical S-parameter results of a Swiss Roll metamaterial with dimensions x — 0.05mm, 

d — 0.1mm, R = 2mm, a = 5mm and N — 2. The electromagnetic parameters are 

plotted for w —> wo and the real parts are plotted with the red solid line and the 

imaginary part with the blue dotted line, (a)impedance {Z), (b)refractive index (n), 

(c)electric permittivity (e^) across the Swiss Roll and (d)the magnetic permeability 

{fXz) along the roll. 

the magnetic permeability along the z-axis; 

/-^zz ^ z(^H -\- zav) 

and the magnetoelectric couphng by: 

K = 
1 / mzz 
2i \ z 

(9.25) 

(9.26) 

9 .2 .3 R e t r i e v e d Ef fec t ive E l e c t r o m a g n e t i c P a r a m e t e r s 

Applying the above method to the numerically calculated S-parameters shown in fig-

ure 9.5(b), the magnetic permeability is retrieved and plotted (blue dotted line) to-

gether with the analytical prediction (red soUd line) of (9.6) in figure 9.5(c). They both 
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have the same shape with an exceptional agreement (higher than 92%). This denotes 

that the modelling of a Swiss Roll metamaterial as a medium with effective parameters 

given by (9.6) and (9.11) is a sufficiently accurate model. Furthermore, the real and 

imaginary parts of the retrieved , refractive index (n) and impedance (z) 

are shown in figure 9.6. Note that since the metamaterial discussed here is a passive 

medium, the requirements Re{z) > 0 and Im{n) > 0 are applied during the retrieval 

procedure, in order to avoid violating causality. It can be seen that both the impedance 

and refractive index real parts are always positive for the frequencies where the meta-

material is passive, and equal to zero for stop-band frequencies, as expected. Also, 

their imaginary parts have a sharp peak at the resonance frequency. 

Furthermore, the dependence of Re{^z) on the size of the gap between the con-

ducting sheets {d) is investigated and is plotted in figure 9.7(a), where the expected 

behaviour from (9.6) is obtained. However, it is clear from figure 9.7(a) that the 

agreement between numerical and analytical results depends on the validity of the 

assumption taken theoretically that R^ d. The disagreement is only on the value of 

Wo and reduces for higher values of {R/d). Also, the dependence of f/zz^ on dielectric 

constant of the material inside the gap is plotted in figure 9.7(b), where the be-

haviour is as expected from (9.6). The disagreement between analytical and numerical 

results is due to the value of d (i.e. d = 0.1mm), where the contribution of various 

Ed on the accuracy is almost neghgible. Finally, in figure 9.7(c), the retrieved Re{^z) 

is plotted for various thicknesses of the conducting sheet and for d = 0.1mm, Ed — 1-

As the conducting sheet becomes thinner, the value of wq converges. However, the 

inaccuracy that a thicker conducting sheet induces to numerical results is minor (i.e. 

~ 3 — 5%), with respect to the extreme reduction on the demand of computational 

power and time. 

9.3 Swiss Roll Metamate r i a l s a t M H z frequencies 

Swiss Roll metamaterials are most commonly used at MHz frequencies [40, 34, 33, 41], 

where they deploy an infinitely thin conducting sheet and i? 3> d. Despite the tremen-

dous modelling and computational problems of such a complicated structure, the S-



CHAPTER 9. NON-CHIRAL SWISS-ROLL METAMATERIALS 101 

d=0.02 d=0.2mm 

(a) 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 

frequency (GHz) 

(b) 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.1 

frequency (GHz) 

analytical 
x=0.005 

x=0.01 
x=0.05 / / 

0.2 0.4 0.6 

(c) 

0.8 1 1.2 1.4 1 

f requency (GHz) 

6 1.: 

Figure 9.7: For Swiss Rolls with radius R = 2mm, lattice constant a = 5mm and 

TV = 2 (a) analytical (solid lines) and retrieved (dashed lines) Re{iizz) is plotted 

against frequency for various values of d (red: d = 0.025mm, green: d = 0.05mm, 

blue: d = 0.1mm and pink: d = 0.2mm) filled with vacuum (i.e. Gj — 1) and for 

X = 0.05mm (b)Analytical (solid lines) and retrieved (dashed lines) of Re{iiz) against 

frequency for various values of £d (red: Gj = 4, green: Gj == 2 and blue: = 1) for 

d = 0.1mm and x = 0.05mm. (c) Analytical (solid lines) and retrieved (dashed lines) 

of Re{nz) against frequency for various values of the conducting sheet's thickness x 

{d = O.lm.m, and Gj — 1). 
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Figure 9.8: The analytic prediction (red sohd line) and the numerical result (blue 

dotted line) for the reflection coefficient {\R\) is plotted for normal incidence on a 

five-unit cell slab of a Swiss Roll metamaterial with dimensions N = 5, x = bjim, 

d = 25/im, R — 2500/um and a = lOOOfim. (a)for a wide frequency range, where the 

excitation of the first two waveguide modes can be seen and (b) for UJ ^ UIQ (c)The 

analytical prediction of shown in (9.6) (red solid Une) plotted with retrieved 

from numerical results (blue dotted line). 
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parameters were numerically calculated for a Swiss Roll metamaterial with dimensions 

N = 5, X = 5jim, d = 25/um, R = 2500/im and a = TOOO^m using CST Microwave 

Studio. For normal incidence on a three-unit-cell slab, the analytical (red solid line) 

and numerical (blue dotted line) results for |i?| are plotted in figure 9.8(a) and (b). 

The analytical prediction was calculated with (9.17). The agreement between analyti-

cal and simulation results is ~ 95% for frequencies around COQ. The S-parameters were 

also calculated numerically for a broader frequency range, where the excitation of the 

first and second waveguide modes can be seen as sharp resonances in figure 9.8(a). The 

waveguide frequencies are also well predicted by (9.14), with an agreement of ~ 99%. 

The retrieved is plotted with the analytical prediction of (9.6), in figure 9.8(c). 

Both have the same behaviour, with a slight shift on the value of COQ and the electromag-

netic parameters ^ n, z and retrieved from numerical S-parameter results are 

plotted in figure 9.9. The real parts of the impedance and refractive index are always 

positive, or zero for frequencies where fi^z takes negative values. The main difference 

from the GHz-structure is that Syy has a weaker resonance, which approaches even 

more the approximation taken initially in (9.11). 

Finally, using the retrieved and shown in figure 9.9 and the analytical 

dispersion equations of (9.13), an estimate for the band structure for a Swiss Roll 

metamaterial with dimensions N = 5, x = 5/um, d = 25/im, R = 2500^m, a = 7000/im 

was derived and plotted in figure 9.10, since it was not possible to model the structure 

and derive the band structure directly from numerical calculations. In figure 9.10(a), 

the band structure is plotted for /ĉ ; —> 0 and in figure 9.10(b), for higher frequencies, 

where the first waveguide mode can be seen. Also note that since d is much smaller, 

the waveguide mode coupling with the transverse mode is considerably weaker, as 

expected from (9.16). 

The agreement between analytical and numerical results for a frequency range from 

few MHz to tens of GHz is remarkable. An important advantage of Swiss Rolls over 

other artificially magnetic media (such as Spht-Ring-Resonators), is the fact that their 

resonance frequency can be tune over a very broad frequency range by simply changing 

d (figure 9.7(a)), gj(figure 9.7(c)), R or a. Furthermore, they are magnetically active 

for low frequencies without demanding large unit cells, since cjq can be tuned by simply 
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Figure 9.9: The retrieved effective electromagnetic parameters (z, n, e, /x) from nu-

merical S-parameter results of a Swiss Roll metamaterial with dimensions N = 5, 

X = 5n'm, d = 25//m, R = 2500/im and a = TOOOiim. The electromagnetic parameters 

are plotted at a; —> wq and the real parts with the red solid line and the imaginary 

part with the blue dotted line: (a)impedance (Z), (b) refractive index (n), (c)electric 

permittivity across the rolls (Sy) and (d) magnetic permeability along the rolls (jiz) 
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increasing the number of turns N, a property that makes them handy and easier to 

be used for devices operating in the MHz range, such as Magnetic Resonance Imaging 

(MRI) and for antenna apphcations. 

The agreement between theory and numerical results is outstanding and allows us 

to move to the even more complicated structure of chiral Swiss Rolls, firstly introduced 

in [36]. As discussed in [36, 37], the magnetic resonant behaviour of chiral Swiss Rolls 

arises in the same way as for the non-chiral structure. However, due to chirality and 

magnetic resonant behaviour, a negative band for one wave polarization is obtained. 



CHAPTER 9. NON-CHIRAL SWISS-ROLL METAMATERIALS 106 

N 
X 

c 
CD 
3 
ct 
CD 

(a) 

N 
X 

c 
CD 
3 
cr 
CD 

(b) 

500 

450 

400 

350 

300 

250 

200 

150 

100 

50 

0 

1 1 ' \ v 1 

\ \ 
\\ 

\ 

\ 

1 !• / 1 1 1 

•y 

yy 

\ 

\ \ 

\\ 

V 

1 1 1 1 1 ' 

1 
/ 

/ / 

/ light line 
r 1 1 1 1 

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 

wavevector (rad/m) 

iignt line 
-100 -50 -25 0 25 50 

wavevector (rad/m) 

100 

Figure 9.10: The band structure for A;^-propagation in a Swiss Roll metamaterial with 

dimensions N — 5, x = 5fim, d = 25fim., R = 2500firn. and a — 7000/xm. (a) The band 

structure for w —» wg and (b) for a wide frequency range, where the first waveguide 

mode cam be seen. 



Chapter 10 

2D-Chiral Swiss-Roll 

metamaterials 

As discussed in section 1.1, negative refraction is one of the most well-known and no-

table properties that metamaterials are able to achieve. Veselago in 1968 [7] pointed 

out that a material with both Re{e(io)) and i?e(/i(a;)) simultaneously negative, ex-

hibits a negative refractive index. This can be analytically proved by considering 

causality and dispersion in real media, as well as the fact that from Maxwell's equa-

tions, n = ^£{ijj)ii{uj). Therefore, a straightforward design for a negatively refracting 

metamaterial is to combine an electric and a magnetic resonant structure, with their 

resonance frequency tuned such that Re{e) and Re{ii) to be negative for the same 

frequency range. 

Shelby et.al. [10] constructed and experimentally tested the first negatively-refracting 

metamaterial. It was composed of an artificial plasma (i.e. wire-mesh metamate-

rial [11, 12, 13]), and a magnetic resonator (i.e. split-ring resonators [9]), which provide 

the negative permittivity and negative permeability respectively. These metamaterials 

are usually called Doubly Negative Metamaterials (DNG), since two different resonant 

structures are combined to provide a negative refracting index over a frequency range, 

and a typical band structure of a DNG metamaterial is plotted in figure 10.1. Note 

that the dispersion diagram is not continuous at the transition from the negative to 

positive band [36]. Finally, the applications of DNG metamaterials are considerably 

107 
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Figure 10.1: The band structure of a typical doubly negative metamaterial, consisted 

from a wire mesh and Split Ring resonators, where Wi is the resonant frequency of the 

split ring resonators, uj2 is the magnetic plasma frequency of the split ring resonators 

and W3 is the plasma frequency of the wire mesh. 

limited due to resonance losses and manufacturing limitations of artificially magnetic 

structures at high frequencies. 

Several alternative metamaterial structures are discussed in the literature that sup-

port negative refraction and manage to overcome some of DNG-metamaterial's limi-

tations, such as chiral media. Chiral metamaterials exhibit a backward wave without 

requiring both e and f-i to be negative [36, 47, 48, 49, 50]. Generally, a structure is 

said to be chiral if it is not identical to its mirror image and a chiral medium macro-

scopically rotates the wave's polarization. Hence, the electromagnetic fields in a chiral 

medium can be written as [36]: 

D 

B 

E 

H 
(10.1) 

XHE XHH 

where D is the electric displacement vector, E the electric field intensity, B is the 

magnetic induction field and H the magnetic field intensity. The parameters XEE and 

XHH are the electric permittivity and magnetic permeabiUty of the medium, respec-

tively, and XEH and XHE are the chirality terms, whose values determine the rotation 
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Figure 10.2: The band structure of a homogeneous isotropic medium (a) without 

chiral inclusions (b) with chiral inclusions. The band structure of a magnetically (or 

electrically) resonant structure (c) without chiral inclusions (d) with chiral inclusions 

of the wave's polarization. 

A homogeneous medium with constant e and ^ has a doubly degenerate transverse 

mode as shown in figures 10.2(a). Note that where w'-', i shows the wave's polariza-

tion and j the group velocity of the wave. If chiral inclusions are introduced in this 

medium, then the two degenerate modes split, producing the band structure shown 

in figure 10.2(b). Similarly, a dipole medium (electric or magnetic) has two degen-

erate modes, with a stop-band for frequencies where e or /x is negative as shown in 

figure 10.2(c). If chiral inclusions are introduced, the degenerate modes split and give 

rise to a negative band for one of the wave polarizations, as shown in figure 10.2(d) [36]. 

Hence, chiral metamaterials are able to achieve negative refraction with a continuous 

transition between negative and positive bands and requiring just one resonant struc-

ture in contrary to DNG. Here, it is worth mentioning that chiral inclusions of aligned 

handedness ensure macroscopic rotatory power. If half of them have opposite handed-
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Figure 10.3; A chiral Swiss Roll is constructed by winding an insulated conducting 

sheet around a cylindrical mandrel, creating an overlapping helix. The cross section 

of a chiral Swiss Roll is shown as well, where R is the radius and d the gap between 

the conducting sheet. 

ness, the rotatory power disappears [51] creating a racemic medium. Examples of chiral 

metamaterials are hehcally-shaped conducting wires [50, 52], chiral Swiss Rolls [36, 37], 

twisted crosses [53] and twisted-crossed "S" symbols [47, 49, 54]. In this chapter, chiral 

Swiss Roll metamaterials are discussed (figure 10.3) and is shown that they exhibit an 

enormous chirality compared with other chiral structures reported previously in the 

literature. 

10.1 Effective Electromagnetic Parameters 

A chiral Swiss Roll can be constructed by winding an insulated conducting sheet around 

a cylindrical mandrel, creating an overlapping helix as shown in figure 10.3. Each layer 

of the conducting sheet is separated by distance d, filled with a dielectric material of Ed 

(or vacuum = 1). The external radius of the rod is R and N is the number of turns 

measured at a cross-section. The unwrapped conducting sheet has the shape shown 

in figure 10.4 with width given by w = 2'JTRN sin 9 and length I — N2TrRt&ii.6. When 

wrapped around a mandrel creates a chiral Swiss Roll with periodicity p = 2nRtan9. 

The structure has a magnetic resonance, arising in the same way as for non-chiral 

Swiss Rolls. When a magnetic field (i^o) is apphed along the roll, currents are induced 

on the conducting elements of the structure. Hence, an emf opposing HQ arises and it 
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Figure 10.4: The (unfolded) conducting sheet used to create a right handed chiral Swiss 

Roll. When wrapped around a cylindrical mandrel, a helical conducting structure is 

created. The enlarged part is the unfolded section of the foil that when wrapped gives 

the unit cell of a chiral Swiss Roll. 

macroscopically appears that 'magnetic' monopoles are flowing up and down the roll. 

However, the helical shape of the structure gives rise to chirality and therefore it is 

also expected the structure to macroscopically rotate the wave's polarization [36]. 

In order to derive the electromagnetic and chirality parameters of a chiral Swiss 

Roll (more details in Appendix G), initially consider uniform fields HQ and EQ applied 

along a right-handed chiral Swiss Roll shown in figure 10.3 (i.e along the z-axes). 

The ifo-field induces a current flowing in the x-y plane. The £'o-field creates charge 

accumulation at the edges of the foil, since it is not continuous along the z-axis, giving 

rise to an electric field perpendicular to the edges of the conducting sheet as shown in 

figure 10.5(a) (resolved to x- and z- components). The edges of the conducting foil are 

exposed either outside or inside the roll and since the exposed part of the conducting 

sheet is charged as shown in figure 10.5 (i.e. dotted lines within the grey area show 

the exposed part of the conducting sheet), the outer and inner surfaces of the roll 

are oppositely charged. Finally, note that infinite rolls are considered (i.e. periodic 

boundary conditions along the z-axes). 
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Figure 10.5: The periodic element of a chiral Swiss Roll unwrapped. The dotted lines 

on the unfolded sheet show the exposed part of the conducting foil to either the inside 

or outside of the chiral Swiss Roll, (a) The electric field due to charge accumulation at 

the edges of the conducting sheet, resolved in x- and z- components, (b) The current 

Jo is perpendicular to the edges of the foil (i.e. along the foil width) and is dependent 

on the charge accumulation at the edges. 

Assuming that there are no local field effects, the cylinder has rotational symmetry 

and the current varies only across the width of the conducting sheet. Also, since the 

foil within the dotted lines is not exposed to either the outside or inside of the roll, JQ 

is constant in magnitude and direction, and can be written as: 

Jo = JQX sin 9 + Joz cos 6 ( 1 0 . 2 ) 

where Jq is the current perpendicular to the edges of the unfolded conducting sheet as 

shown in figure 10.5(b). Furthermore, assuming that the gap between the conducting 

sheet is small (i.e. i? d) and that N (number of turns) is large, a large overlap 

of the conducting sheet is ensured, which gives rise to high capacitance. The charges 

accumulated at the edges of the foil, charge the capacitor (i.e. overlapping conducting 

sheet). Therefore, the current across the width of the foil (more details in Appendix G) 

is given by: 

JoxsinO + JqzCosO = 
£dLEQ2TxRsin6 

(tv -

The magnetic field along the z-axis (i.e. Hz) is given by: 

(10.3) 
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Figure 10.6: For Swiss Rolls of A'" = 2, i? = 1mm, I — 5mm, x = 0.05mm, d — 0.35mm, 

0 = 21,7° and a — 5mm (a)The magnetic permeability (XHH) and (b)the electric 

permittivity tensor {XEE) are plotted. 
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Hz — Ho + joa:(l - F) (10.4) 

where F = 'KR?JC? is the filling factor, a the lattice constant, HQ is the applied 

magnetic field and Joz is the induced current from HQ. Due to Jqx current, an emf (£) 

arises tha t needs to be balanced with the drop of the potential (F) (i.e. due to the 

capacitance of the structure) and conducting losses {2TrR{N — l)pJox), where p is the 

resistance of the conducting sheet per unit length. Therefore, 

S = iLL){N — 1)txR^ iiqHZ = V + 2TTR{N — l)pJox (10.5) 

Finally, the inner and outer exposed foil give rise to the capacitive element of the 

structure and has a potential difference of V, which is given by: 

V = {N — l)2-n-Rtan9{Eo + Ep) (10.6) 

where Ep is the depolarizing field arising from the charges accumulated at the edges of 

the foil and are driven by JQZ per unit length of the circumference of the roll. Therefore: 

/ 27ra 
Ep = — P ) Joz 

and hence the potential difference V is given by: 

/ 27ra 
V = {N — l)27TRtan6 Eo + P Joz 

(lo/n 

(10.8) 
\iuj£d£oa^ 

Solving the above four equations ( (10.3), (10.4), (10.5) and (10.8)), the inverse 

electromagnetic and chirality parameters can be obtained (derivation in Appendix G): 

1 up' — Wq + iVui 

,-11 = G 

f ) \ ^ w 2 - w ^ p + 2 r w / ( l - f ) 

+ iwr/(l - f") 
k j g g - ^ (̂ 2 _ ^2 + _ j?) 

] HE 
iR 

[x /m - -

2L tan ( 

iR 

+ ^ r w / ( i - f ) 
- - n 

\HE 

WW, mp 
= k ' ] EH 2 i : t a n g \ ^ w 2 - w ^ p + 2 r w / ( l - f ) ^ 

where are the elements of the inverse matrix tensor in (10.1), given by: 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

\EE [X ^]EH 

\X ^]HE ^^HH 

(10.13) 
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Figure 10.7: The unit cell of a chiral Swiss Roll for various values of 0. A chiral Swiss 

Roll with (a)a large 9, {h)6 = TT/2, creating a non-chiral Swiss Roll, where (10.18) 

converges to (9.7), (c) a small ^ (d) 0 > 0 where a non-chiral Swiss Roll is created, 

but note tha t N oo. Also the periodicity of the unit cells changes with tan0 . 

Therefore, the non-inverse electric permittivity (XEE), magnetic permeability (XHH) 

and chirality parameters {XEH and XHE) are obtained from the matrix identity: 

K ]EE ] EH 

]HE ] HH 

XEE XEH 

XHE XHH 

_1_ 

det 
~ W~^]HE 

- H~']EH 

(10.14) 

where det = [x~'^]EE Note that F = TTR'^/O? in (10.9) is 

the filling factor and that Additionally, u is the frequency, R, 

9 and d are the dimensions of the chiral Swiss Roll as defined in figures 10.3 and 10.4, 

a is the lattice constant and G is given by: 

a^d 
G = 

8Tr^R^{N — 1)L tan^ 9 + a?d 

Furthermore 

and 

L = \ — to 
ledepa^p 

2nR 

r = 2p 

HQR 

(10.15) 

(10.16) 

(10.17) 

accounts for resistivity losses of the conducting sheet and p is the resistance of the roll 
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per unit length. The resonance frequencies COQ, is given by: 

_ / 47r-ldtan^6' nn-iQ\ 
(^0 £^(8(a/'— l)l7r3i?3 tan^ 0 + a^d) 

The magnetic (w^p) and electric (ujp) plasma frequencies take the same values and are 

given by: 

p — (10.19) 

Note that the periodicity of the chiral Swiss Roll changes with 0, (periodicity: p = 

2TTR tan 9), while N27TR (i.e. the red line) is kept constant. For 9 — IR/2, the periodicity 

becomes infinite as expected, since an infinitely long conducting sheet is considered. 

On the other hand, for 9 ^ 0 , periodicity goes to zero as shown in figure 10.7(d), where 

an infinitesimally thin Swiss Roll is created (i.e. length: I = 27ri?A^tan0 also goes to 

zero). Also, by considering that for a conducting sheet rolled along the x-axes, LOQ is 

dependent by the length of the red line in figure 10.7(a) (i.e. the length of the spiral 

cross-section of the roll), which is N2-KR for any chiral Swiss Roll. For 9 = TX/2, and 

keeping constant N27TR, a non-chiral Swiss Roll is created, where (10.18) converges 

to (9.7). As 9 takes smaller values (as shown in figure 10.7(c)) and for N2nR kept 

constant, the conducting sheet overlaps less which means that the Swiss Roll has a 

smaller capacitance. Therefore LOQ takes smaller values, which is taken into account 

in (10.18) by the tan^ 9 terms. However, for the limit where 0 ^ 0, an infinitesimally 

thin non-chiral Swiss Roll is created, whose magnetic response is determined by the 

green line in figure 10.7(d), which is infinite (i.e. N —> oo), hence OOQ cannot be defined. 

Therefore, (10.18) converges to (9.7) for 9 = 7r/2, and not for 9 = 0. 

The (non-inverse) electromagnetic parameters are plotted in figures 10.6 and 10.8 

for a PEC chiral Swiss Roll in vacuum with dimensions N = 2, R = 1mm, I = 5mm, 

d = 0.35mm, 9 = 21,7°, a = 5mm and vacuum in the gap {ea = 1). Note that 

both Re{xEE) and Re{xHH) are zero at the same frequency, since = Wp and 

both Rc^xee) and Re (XHH) are negative for frequencies LOQ < u) < Ump- Also, XHH 

in (10.9) obeys the Lorentz model, similarly to /J.̂  in (9.6) as expected, since the 

magnetic behaviour of both structures arise from the same mechanism. 
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Figure 10.8: For Swiss Rolls of N = 2, R = 1mm, I = 5mm, x = 0.05mm, d = 0.35mm, 

9 = 21,7° and a = 5mm. (a)The imaginary parts of the chirality terms {KEH and 

i^he)-, which are equal and opposite {i.e.KEH = —i^he)- (b) The optical rotation per 

wavelength is plotted in degrees 
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Furthermore, the imaginary parts of the chirahty terms, plotted in figure 10.8(a), 

take infinite values for w —> wo and w — 0 . Also, they pass through zero for to = LOmp. 

The infinite values tha t Im{KEH) takes at w 0 can be justified by noting that the 

structure discussed here is an infinite roll and hence an infinite current fiows along 

the z-axes is considered analytically (not physically possible). However, if a finite 

resistance is considered for the conducting elements of the structure and a finite roll, 

the divergence of Im{KEH) disappears, since only finite currents can flow in the coils 

at w —» 0. This was proved experimentally in [55]. 

Finally, the optical activity per one wavelength ((/>) is given by 

4>{rad) = 
IK, EH 

(10.20) 
^/XEEXHH 

The real part of (p is the optical rotation of a chiral medium, which measures the 

polarization rotation of a wave travelling in a chiral medium. It can also be considered 

as a measure of the medium's chirahty strength. The imaginary part of cj) shows 

the circular dichroism of the medium, which shows the attenuation of left- or right-

circularly polarized waves. Circular dichroism arises from the complex nature of the 

refracting indices that affect the circular ellipticity of the wave. Both the real and 

imaginary parts of the optical activity are plotted in figure 10.8(b). 

10.2 Band Structure 

A 2D chiral metamaterial can be constructed by alternating the axes-alignment of 

neighbouring layers of chiral Swiss Rolls, as shown in figure 10.9(a). If the Swiss 

Rolls are aligned with the y- and z-axes, then for propagation along the x-axes (i.e. 

ky = kz = 0), the fields are given by (10.1). Also, now (10.9), (10.10), (10.12), are 

valid for electric and magnetic fields along both the y- ans z-axes. 

In order to obtain the dispersion equations of a 2D-chiral metamaterials, consider 

equation (10.1), Maxwell's equations, helical polarization for the electric and magnetic 

fields and the 2D-isotropy of the medium (details in Appendix H), which lead to: 

0 —ik-̂  E+ 
= cj+ 

ik^ 0 iH+ 

E-, 

iH+ 
(10 .21) 
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The eigenvalues of (10.21) give the dispersion equations of the medium and are given 

by: 

= co/c+i /co ± \ j [x~^]ee (10.22) 

uj ^ — CQk-± i [K /CQ ± \ l [x ^]EE[X ^]HH^ (10.23) 

for the right-handed and left-handed circular wave-polarizations respectively and where 

and are the inverse magnetic, electric and chirality pa-

rameters respectively given by (10.9), (10.10) and (10.12). 

The analytical prediction of the real and imaginary band structure for a 2D chiral 

Swiss Roll medium is plotted in figures 10.9(b) and (c) respectively with lines. As 

it was expected, the degeneracy of the modes no longer holds, since the chirality of 

the medium splits the two transverse modes. Hence, a negative band for one-wave 

polarization has emerged for frequencies wq < w < cOmp- Furthermore, for frequencies 

w < Wo, there is a stop band as expected, since Re{xEE) is negative and Re{xHH) 

positive. Finally, the wavevector (i.e. Ak) at which the band structure takes a mini-

mum value is dependent on the resonant frequency (wg) and the imaginary part of the 

inverse chirality at the resonant frequency (wq)) and is given by: 

Using CST Microwave Studio, the band structure of a 2D chiral Swiss Roll medium 

with dimensions N = 2, R = 1mm, I = 5mm, x = 0.05mm, d = 0.35mm, 9 = 21,7° 

and a = 5mm was calculated and is plotted in figure 10.9(b)(dots), together with 

the analytical prediction (lines) of (10.22) and (10.23). The two band structures have 

a similar shape, with a negative band corresponding to one-wave polarization. The 

agreement between analytical and numerical calculations for the resonant frequencies 

is approximately ~ 80% and for Ak is ^ 84%. However, note that for numerical 

results Re{uj |_) and i2e(w+_) modes are slowly propagating and reach the Brillouin 

zone at relatively low frequencies, afi'ecting the shape of the modes. This is due to the 

dimensions chosen for the chiral Swiss Roll, where the assumptions taken analytically, 

such as large N, R ^ d and an infinitely thin conducting sheet, are not valid for the 

simulated structure. Unfortunately, the complexity of the structure's design prevents 
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Figure 10.9: (a)Chiral Swiss Rolls are placed along the y- and z- axes, creating a 2D 

chiral Swiss Roll metamaterial. (b) The analytic prediction for the band structure of 

a 2D chiral Swiss Roll metamaterial is shown with full lines and the numerical results 

with dots for dimensions N = 2, R = 1mm, I = 5mm, x — 0.05mm, d = 0.35mm, 

9 = 21,7° and a — 5mm (c)The analytic prediction for the imaginary wavevector. 
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the numerical calculation of the band structure for more ideal dimensions of chiral 

Swiss Rolls. Nevertheless, the agreement between analytical and numerical results is 

significant. 

The refractive index of the medium takes different values depending on the wave's 

polarization, as can be derived from (10.22) and (10.23), and is given by: 

n± = = (10.25) 

yXEE^HH ^ 

which is plotted in figure 10.11 for a loss-less 2D chiral Swiss Roll metamaterial of 

N = 2, R = 1mm, I = 5mm, x = 0.05mm, d = 0.35mm, 9 = 21,7° and a = 5mm. A 

left handed circularly polarized wave (LCP) is refracted obeying n_ and a right handed 

circularly polarized wave (RCP) n+. Note that for RCP, Re(n+) is always positive 

while for LCP Re{n- ) is negative for loq < lo < Wmp, passes through zero at comp and 

takes positive values for higher frequencies as expected from the shape of the band 

structure plotted in figure 10.9. Furthermore, the real parts of both refractive indices 

go to infinity at lower frequencies, where IKEH is dominant. Finally, the imaginary 

parts of both refractive indices are negative for stop-band frequencies (i.e. U < LOQ, 

which does not violate causality since the medium is not passive at this range. 

The refractive index for the same medium but in the absence of chirality (i.e. 

consider a racemic mixture of Swiss Rolls) is given by: 

n = ^ (10.26) 

and is plotted in figure 10.10(b). Such a medium can be constructed with chiral 

Swiss Rolls by aligned neighbouring rolls with opposite handedness. Note that for 

LOQ < LO < OJMP, where both Re{x^\;) and Re{x^U) are negative, Re{n) is negative as 

well. Also, at frequencies where there is a stop-band Re{n) is zero and Im{n) —> oo. 

In figure 10.10(a), the impedance is plotted as well, which is given by 

(10.27) 

Note that Re{n) and Re{Z) are zero for frequencies where there is a stop-band (i.e. 

W < Wo) and Im(n) and Im{Z) are zero for LJ > CUQ. 
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Figure 10.10: (a) The impedance (Z) and (b) refractive index (n)for a 2D-chiral Swiss 

Roll metamaterial of = 2, i? = 1mm, I = 5mm, x = 0.05mm, d = 0.35mm, 

6 = 21, 7° and a = 5mm calculated analytically using equations (10.27) and (10.26) 

respectively. 
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Figure 10.11: The refractive indices for (a) RCP (n+) and (b) LCP (n_) incident waves 

on a 2D-chiral Swiss Roll metamaterial of N — 2, R — 1mm, I = brnm, x = 0.05m,m,, 

d = 0.35mm, 9 = 21,7° and a = 5mm, calculated analytically using equation (10.25). 
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Figure 10.12: The band structure (a)real part (b)imaginary part of 2D Swiss-Roll 

metamaterial for various values of a and with dimensions N = 2, R = 1mm, I = 5mm, 

X = 0.05mm, d — 0.35mm, 9 — 21,7° and a = 5mm. Red solid lineio" = 0-vacuum, 

green dashed line: a — 0.01 and blue dotted line: a — 0.02. 

Losses in Swiss Roll metamaterials are dominated from the loss of the dielectric 

material inside the gap. In order to take them into account, consider a complex 

dielectric material with; 

£d = £ + is = £ + i-
a 

(10.28) 

where a is the conductivity of the dielectric. In figure 10.12, the dispersion equations 

of (10.22) and (10.23) are plotted for various values of a. For large enough a the 

modes do not meet at AA;. Furthermore, numerical calculations for the band structure 

of a medium embedded in vacuum(red solid lines) and a dielectric of a = 0.0167 (blue 

dotted line) are plotted in figure 10.13, where the bands slightly shift towards lower 

frequencies for a slightly lossy hosting medium. The resistivity losses of metals at 

GHz and MHz frequencies that Swiss Rolls most commonly operate, are negligibly 

small (i.e. for Copper resistivity ~ 1.7 * 10"®). In figure 10.14, the band structure for 

various metals with different resistivity are plotted. It is clear that resistivity losses 

are insignificant at this frequency range, since they negligibly affect the behaviour of 

the structure. 
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Figure 10.13: The band structure of Swiss Rolls with dimensions N = 2, R = 1mm, 

I = 5mm, X = 0.05mm, d — 0.35mm, 9 = 21, 7° and a = 5mm, calculated numerically. 

Red solid line for vacuum (i.e. cr = 0) between the conducting sheets and blue dotted 

line of <T = 0.0167. 
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Figure 10.14: The analytical band structure (a)real part (b)imaginary part of a 2D 

Swiss-Roll metamaterial with dimensions N = 2, R = 1mm, I = 5mm, x = 0.05mm, 

d = 0.35mm, 6 = 21,7° and a = 5mm. Red solid line:Copper-Cu with resistivity= 

(1.67 * 10^®)rim, green dashed lines: Aluminium with resistivity= (2.74 * 10~®)fim 

and blue dotted hne: Iron-Fe= (9.8 * 10~^)07n which is close to the conductivity of 

Germanium. 
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Figure 10.15: (a)The reflection and (b) transmission coefficient for right and left 

handed circular waves incident on a 3-unit-cell slab of chiral Swiss Rolls with di-

mensions N — 2, R = 1mm, I = 5m,m,, x = 0.05mm,, d = 0.35m,m,, 6 = 21,7° and 

a = 5mm. 

10.3 Effective Electromagnetic Behaviour 

10.3 .1 Sca t ter ing P a r a m e t e r s 

Similarly to the previous part and chapter, the S-parameters of a wave incident on 

a finite slab of a chiral Swiss Roll metamaterial were calculated numerically in order 

to get an indirect insight to the electromagnetic properties of the artificial medium. 

Consider a circular wave normally incident (i.e. k^-propagation) on a 2D-chiral Swiss 

Roll metamaterial. A different transmission coefficient is expected, depending on the 

wave-polarization (i.e. either left- or right-handed circularly polarized wave), since 

the refractive index is different for different wave-polarizations, as shown by (10.25). 

However, the reflection coefficient for both wave-polarizations is identical, since both 

waves see just the first roll and do not propagate in the medium, whose chirality 

induces different behaviour for RCP and LCP. 

The eigensolutions of electromagnetic fields in a chiral media are two circularly 

polarized waves given by (10.22) and (10.23), characterized as the right-handed circu-

larly polarized wave (RCP, -I--I-) and the left-handed circularly polarized wave (LCP, 

). Therefore, four transmission coefficients T_|__(_, r+_ , r__|_ and T— are needed 



CHAPTER 10. 2D-CHIRAL SWISS-ROLL METAMATERIALS 127 

to fully characterized the response of a chiral medium. Note that the cross-coupling 

transmission coefficients indicate RCP input and LCP output and vice-versa, given 

by T+_ = {Et/E^^) and T__|_ = {E\./E'[_) [8, 53]. However, in this case, due to the 

2D-isotropy of the medium and KEH = — T _ + = T+_. 

CST Microwave Studio was used to numerically calculate the S-parameters for 

RCP and LCP normally incident waves on a 3-unit-cell slab consisted from chiral 

Swiss Rolls aligned alternatively along y- and z-axes and with dimensions N = 2, 

R = 1mm, I = 5mm, x = 0.05mm, d = 0.35mm, 0 = 21,7° and a = 5mm, (the 

band structure is shown in figure 10.9). Note that periodic boundary conditions were 

applied along the y- and z-axes and that the circular waves are propagating along the 

x-axes. The transmission and reflection coefficients calculated using CST Microwave 

studio are plotted in figure 10.15. For frequencies were the negative band is observed 

in figure 10.9, the transmission coefficient for the LCP wave is higher than for RCP at 

Wo < w < iVjnp, as expected. Furthermore, the reflection coefficient for both polariza-

tions is identical as shown in figure 10.15(a). Finally, note that T_+ — T+_ take small 

values. 

10.3 .2 Retr ieva l M e t h o d for Chiral M e d i a 

As mentioned previously, scattering parameters show significant information about 

the behaviour of a wave propagating in a specific medium. However, in order to get 

a direct insight to the electromagnetic behaviour of the structure, the electromagnetic 

terms need to be retrieved from S-parameters, since they directly connect D and B to 

E and H through (10.1). 

The retrieval method for chiral media was recently developed by Plum et.al. [54, 

53], which takes into account the different refractive indices for RCP and LCP wave 

polarizations. The method assumes that cross-couphng transmission parameters T_+ 

and T+_, are negligibly small. Therefore, for a normally incident circularly polarized 

wave on a chiral medium, the impedance is given by: 

where R = R = R^^ is the reflection coefficient plotted in figure 10.15(a), T— and 
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T++ are the transmissions of left- and right-handed circular waves respectively. The 

two refractive indices are given by: 

1 , / I -

where roi = (Z — 1)/(Z + 1), m is the number of unit cells, a the lattice constant and 

fco is the wavevector in vacuum. 

Now, we know from (10.22) and (10.23) that the refractive indices of the chiral 

Swiss Roll metamaterial are given by 

n± — = (10.31) 

y XeeXHH ^ '^eh/^O 

where is the inverse chirality term and the impedance is given by: 

Z= = (10.32) 

Therefore, the refractive index n of the medium without the presence of chirality is 

given by: 

^ ^ (1° 33) 

and from (10.32) the inverse of the electric permittivity is given by: 

the inverse of magnetic permeability by: 

(10 35) 

and finally the inverse of the chirality term 

1 m (10.36) 

The non-inverse electromagnetic parameters are obtained using (10.13) and (10.14). 

10.3 .3 Ef fec t ive E l e c t r o m a g n e t i c P a r a m e t e r s 

For the medium whose band structure is shown in figure 10.9, the electromagnetic 

terms were retrieved from the scattering parameters, plotted in figure 10.15. However, 
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Figure 10.16: (a) Retrieved impedance (Z) and (b) refractive index (n) from S-

parameters calculations on a 3-unit-cell slab of a 2D-chiral Swiss Roll metamaterial of 

N = 2, R = 1mm, I = 5mm, x = 0.05mm, d = 0.35mm, 9 = 21, 7° and a = 5mm. 
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Figure 10.17: Retrieved refractive indices for (a) RCP (n_i_) and (b) LCP (n_) incident 

waves on a 3-unit-cell slab of a 2D-chiral Swiss Roll metamaterial of A'' = 2, i?, = 1mm, 

I = 5mm, X — 0.05mm, d — 0.35mm, 9 = 21, 7° and a = 5mm. 
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Figure 10.18: Retrieved (a)electric permittivity (XEE) and (b) magnetic permeability 

(XHH) from S-parameter calculations on a a 3-unit-cell slab of a 2D-chiral Swiss Roll 

metamaterial of TV = 2, i? = 1mm, I = 5mm, x = 0.05mm, d = 0.35mm, 6 — 21,7° 

and a = 5mm. 
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Figure 10.19: Retrieved (a) the chirality term (KEH) (b) optical rotation {4>) from 

S-parameter calculations on a a 3-unit-cell slab of a 2D-chiral Swiss Roll metamaterial 

of N = 2, R = 1mm, I = 5mm, x — 0.05mm, d — 0.35mm, 9 = 21, 7° and a = 5mm. 
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as shown in figure 10.15, although the cross-coupling transverse coefficient T+_ and 

T_+ are small, they are not negligible. In order to avoid this problem, we apply the 

retrieval method for frequencies up to ~ 7GHz, where T+_ = T+_ 0. Also, for this 

structure the and bands reach the Brillouin zone without dispersing much. 

This has some effect on the retrieved terms. Nevertheless, an insight to the validity of 

the analytical work can still be obtained. 

The retrieved Z is plotted in figure 10.16(a) and is in agreement with (10.27) and 

figure 10.10(a). For frequencies where there is a stop-band Re{Z) —> 0 and Im{Z) ^ 0. 

For frequencies where the medium is transparent, Re{Z) ^ 0 and positive, while 

Im{Z) —> 0. Also, the refractive index of the medium in the absence of chirality 

was retrieved and is plotted in figure 10.16(b), and is also in agreement with the 

analytical prediction in (10.26) and figure 10.10(b). Note that the Im{n) is negative 

for frequencies where there is a stop-band and that Re{n) is negative for OJQ < LO < UMP 

where both RC^XHH) and RC^XEE) are simultaneously negative. It passes through zero 

at LOmp and is positive for LO > w^p-

The refractive indices for RCP and LCP waves are plotted in figure 10.17. For 

RCP, the real part of refractive index is always positive. For LCP, i?e(re_) is negative 

for Lu < comp frequencies, passes through zero at ojmp and is positive for larger frequen-

cies. Also, both i2e(n+) and Re{n-) go to infinity for low frequencies as predicted 

by (10.25) and figures 10.11(a) and (b), since are dominated by IKEH- Note that the 

retrieved impedance and refractive indices are in excellent agreement with analytical 

calculations, with a small difference at the values of the resonant frequencies. 

In figure 10.18, the retrieved electric permittivity and magnetic permeability are 

plotted. Both parameters follow qualitatively the same shape as predicted by (10.10) 

and (10.9) and plotted in figure 10.6. However, the distortion seen for retrieved XEE 

at ~ 5.7GHz is due to the narrow dispersion of LO mode that reaches the Brillouin 

zone at those frequencies. Similarly, the retrieved KEH is plotted in figure 10.19(a) 

and has the predicted behaviour, where the imaginary part has a strong resonance at 

WQ and at low frequencies goes to infinity, as it was analytically predicted in (10.12) 

and figure 10.8(a). Finally, the retrieved rotation of the wave's polarization, calculated 

using the retrieved values for XEE and XHHi is plotted in figure 10.19(b), which 
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Figure 10.20; (a)The reflection and (b) transmission coefficient for right and left 

handed circular waves incident on a 3-unit-cell slab of chiral Swiss Rolls with di-

mensions N = 3, R ^ 2.5mm, I = 6mm, x = 0.05mm, d = 0.21mm, 6 = 7° and 

a = 12m,m,. 

is in agreement with (10.20) and figure 10.8(b). 

10.4 Chiral Swiss Roll Metamaterials at MHz frequencies 

Similarly to non-chiral Swiss Rolls, chiral Swiss Rolls are most commonly used at MHz 

frequency range. However, the design complexity of Swiss Rolls at MHz frequency 

that demands R ^ d, forbids adequate computational modelling for the calculation 

of the band structure. Hence, a structure with smaller N and R, bigger d and 0 was 

simulated (as discussed above), which demands significantly less computational time 

and capabilities. However, although there is a good agreement for a structure with 

resonant frequencies in the GHz range (where some assumptions taken analytically 

are not valid numerically), the RCP band reached the Brillouin zone at a frequency 

just above Ump- This has an effect on S-parameters, and affects slightly the results 

for retrieved electromagnetic parameters. Therefore, if the resonant frequencies are 

moved to lower values, the RCP band is allowed to disperse for a broader range. 

Fortunately, the numerical calculation of S-parameters with CST Microwave Studio 

allows the use of simpler modelling of the structure (i.e. a tetrahedral meshing). 

Therefore, the S-parameters of a LPC and RCP waves incident on a 3-unit-cell slab 

of a 2D-chiral Swiss Roll metamaterial were calculated numerically and are plotted in 
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Figure 10.21: (a) Retrieved impedance (Z) and (b) refractive index (n) from S-

parameters calculations on a 3-unit-cell slab of a 2D-chiral Swiss Roll metamaterial of 

N = 3, R = 2.5mm, I = 6mm, x = 0.05mm, d — 0.21mm, 9 = 7° and o = 12mm. 

figure 10.20 for rolls with dimensions N — 3, R = 2.5mm, / = Qmm, x = 0.05mm, 

d = 0.21mm, 6 = 7° and a = 12mm. For this structure the ratio (R/d) is significantly 

lower, which brings the resonant frequencies to lower values. Furthermore, the cross-

coupling transmission coefficients take even smaller values than figure 10.15, which is 

an assumption taken for the retrieval method. 

Using the retrieval method described in Section 10.3.2, the electromagnetic param-

eters were obtained from the numerically calculated S-parameters. The impedance Z 

and refractive index n are shown in figure 10.21, where an agreement with the analyti-

cal prediction is observed. Similarly for n+ and n_ refractive indices, which are plotted 

in figure 10.22. The differences between analytical and numerical results are observed 

on the values of the resonant frequencies, with an accuracy of ~ 88%. In figure 10.23, 

the retrieved XEE and XHH are plotted as well, which also show significant agreement 

with the analytical predictions of (10.10) and (10.9). Note that the distortion seen 

in figure 10.18(a), disappears at lower frequencies as expected. Furthermore, the chi-

rality term and the wave's polarization through an infinite structure are plotted in 

figure 10.24, which are also in agreement with analytical predictions. 

Finally, using the retrieved parameters plotted in figures 10.23 and 10.24 and the 

analytically derived dispersion equations in (10.22) and (10.23), the band structure was 

calculated for a 2D-chiral Swiss Roll metamaterial composed from rolls with dimensions 
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Figure 10.22: Retrieved refractive indices for (a) RCP (n+) and (b) LCP (n_) incident 

waves on a 3-unit-cell slab of a 2D-cliiral Swiss Roll metamaterial of N = 3, R = 

2.5mm, I = 6m.m,, x = 0.05m,m,, d = 0.21mm, 9 — 7° and a = 12mm. 

Im(XEE) 

(a) 

j 

•re(xhh) 
1i"(xhh) 

r : 
400 600 800 1000 1200 1400 

frequency (MHz) ( b ) 

200 400 600 800 1000 1200 

frequency (MHz) 

1400 

Figure 10.23: Retrieved (a)electric permittivity (XEE) and (b) magnetic permeability 

(XHH) from S-parameters calculations on a a 3-unit-cell slab of a 2D-cliiral Swiss Roll 

metamaterial of N = 3, ^ = 2.5mm, I — 6mm, x = 0.05mm, d = 0.21mm, 6 = 7° and 

a = 12mm,. 
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Figure 10.24: Retrieved (a) the chirahty term (KEH) (b) optical rotation (0) from S-

parameters calculations on a a 3-unit-cell slab of a 2D-chiral Swiss Roll metamaterial 

of N — 3, R = 2.5mm, I = Qmm, x = 0.05mm, d = 0.21mm, 9 = 7° and a = 12mm. 

N = 3, R = 2.5mm, I = 6mm, x = 0.05mm, d = 0.21mm, 6 = 7° and a = 12mm. 

The analytically and numerically predicted band structure are in agreement. 

Chiral Swiss Rolls exhibit extreme chirality compared with other chiral structures 

discussed in the literature [50, 52], by a factor of at least two orders of magnitude 

This efficiency is due to the cross-section of the rolls, which is typically (l/100)th 

to (l/1000)th of the wavelength. Other structures proposed for chiral metamaterials 

such as the helical wire structure requires a much larger cross section to achieve any 

significant activity. This is also the main reason that for chiral Swiss Rolls a backward 

wave can be observed even for GHz frequencies, whereas for loop wires or helical wires, 

it appears for a less broad frequency range or is lost in the stop band due to sharp 

resonances [50]. 

Furthermore, this structure, in addition to Magnetic Resonance Imaging (MRI) ap-

plications that are well known [34], is ideal for polarization rotation/selection antenna 

applications. The extreme chirality of Swiss Rolls ensures a tremendous enhancement 

of the efficiency for these types of antennas, where a wave's polarization can be rotated 

by 90° in less than a wavelength, or a linear wave can be transformed to a circularly 

polarized wave in less than a wavelength [52]. 
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1 ĈO ^ 

-

1 r / , 1 1 1 V.—J 1 

-100 -80 -60 -40 -20 0 20 40 60 80 100 

wavevector (rad/m) 

Figure 10.25: The band structure for fc^j-propagation in a 2D-chiral Swiss Roll meta-

material with dimensions N = 3, R = 2.5mm, I — 6mm, x = 0.05mm, d = 0.21mm, 

9 — 7° and a = 12m,m,, obtained using the retrieved electromagnetic and chirality 

parameters and the dispersion equations (a)real part (b) imaginary part. 



Chapter 11 

Conclusions 

A significant advantage of Swiss Roll metamaterials (both chiral and non), is the fact 

that their resonant frequencies are easily tuned over a wide range of frequencies (from 

few MHz to tens of GHz), by simply changing the number of turns (N), or the packing 

(a), the radius (i?) or the dielectric constant of the material in the gap (e^). Also, 

they do not require a huge lattice constant in order to have a magnetic behaviour in 

MHz frequency range unlike Split-Ring-Resonators. 

An extensive numerical investigation was initially performed for non-chiral Swiss 

Rolls, by calculating the band structure and S-parameters, from which the electro-

magnetic parameters were retrieved. Also, the results showed a remarkable agreement 

with analytical predictions. Some additional resonances observed are identified as 

trapped modes within the spiral gap of the conducting sheet. Therefore, it can be 

concluded that the analytical homogenization model is exceptionally valid for Swiss 

Rolls operating at MHz and GHz frequencies. 

Consequently, an analytical investigation of the chiral version of Swiss Rolls was 

performed, be deriving the electromagnetic parameters of the structure. It was found 

that chiral Swiss Rolls exhibit at least two orders of magnitude higher chirality com-

pared with other structures discussed in the literature. Therefore, they ensure a 

broader backward wave, which is observed even at GHz frequencies, unlike other chi-

ral structures (such as hehcal wires) [50]. The analytical predictions for the band 

structure are followed from numerical calculations, which also show a negative band 
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for one of the wave's polarization. Finally, the electromagnetic and chirality terms 

were retrieved from numerical S-parameters and showed significant agreement with 

the analytical predictions, for both MHz and GHz frequencies 



Part III 

Negative Metamaterial composed 

of High-Dielectric structures 
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Chapter 12 

Introduction 

As mentioned in previous parts of this thesis, Pendry et.al. [9] proposed various ways to 

manufacture artificially magnetic media, made entirely from conductors, such as Swiss-

Rolls and Split-Ring resonators [9, 36, 41, 35, 37]. These media are magnetically active 

for frequencies where conventional materials rarely show any magnetization. However, 

a significant drawback of these structures is that their operation and applications are 

limited by the lossy behaviour of metals at higher frequencies and eventually loose 

their conducting properties at high THz and optical ranges. Furthermore, due to their 

designs, it is challenging to manufacture 3D isotropic media, with small enough lattice 

constants. 

An alternative way to create artificially magnetic-resonant metamaterials is through 

the excitation of the first magnetic Mie mode of high-dielectric structures, which was 

proposed initially by O'Brien et.al. [56]. Mie resonances (or single-scatterer resonances) 

along with Bragg scattering, are usually the main contributing mechanisms for the cre-

ation of stop-bands in photonic crystals. For photonic crystals, the dielectric inclusions 

have small value for the dielectric constant g and therefore Mie resonances appear at 

frequencies where the wavelength is comparable to the lattice constant (a). Conse-

quently, the concepts of a homogeneous medium and effective parameters are not valid 

for photonic crystals. However, by tremendously increasing the value of e for the di-

electric structures, the Mie resonances are shifted to lower frequencies. Therefore, the 

resonance wavelength is now larger than the lattice constant and the effective medium 
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approach is vahd [56]. On the other hand, the wavelength A inside the high-dielectric 

particle is of the order of the particle's dimensions and therefore Mie theory is also 

valid. 

In the literature, various magnetic or DNG metamaterials are discussed, whose be-

haviour is based on the excitation of Mie modes (electric or magnetic). Vendik et.al. [57, 

58] and Jylha et.al. [59], proposed a DNG metamaterial composed of two sets of di-

electric spheres of different radii and dielectric constants. The radius and e of each 

sphere-set determine the frequencies of the magnetic and electric resonances and can 

be adjusted such as the electric Mie resonance of one sphere-set to overlap with the a 

magnetic Mie mode of the other sphere-set. Furthermore, Wheeler et.al [60] proposed 

that coated spherical particles excite both magnetic (core-sphere) and electric (coat) 

Mie resonances, resulting to a DNG metamaterial, if both dielectric permittivities and 

radii are adjusted to the right values. However, an important disadvantage of these 

structures is that one of the two resonances (electric or magnetic) is always significantly 

more narrow banded than the other, which restricts the negative band to an extremely 

small frequency bandwidth. Also, since the frequency value of the resonance is strongly 

dependent on the radius of the sphere, a small variation at the radii of spheres detunes 

the two resonances, destroying the negative band of the metamaterial. 

In this part of the thesis, the single-scatterer (Mie) theory is initially discussed for 

sphere and coated-sphere dielectric particles. Then, periodic media composed of high-

dielectric spheres or spherical-shells are investigated, which have an effective magnetic 

behaviour through the excitation of the first magnetic Mie resonance. It is shown that 

the effective magnetic permeability obeys the Lorentz model. Also, it is shown that 

a coated sphere and consequently empty spherical shells of various thicknesses, not 

only have an effective magnetic resonant behaviour through the excitation of the first 

magnetic Mie mode, but also broaden the frequency range where effective i?e(/i) is 

negative by ~ 75% and shift the resonant frequency to higher values by ~ 33%. Then, 

both high-dielectric sphere and spherical-shell-crystals are embedded in a wire-mesh, 

creating a broad-frequency negative metamaterial, which also manages to considerably 

tame loss for high-GHz (even low THz) negative metamaterials, compared with all 

conductor-based DNG metamaterials. 



Chapter 13 

Single Scatterer-Mie theory 

The excitation of Mie resonances by a single-sphere-scatterer embedded in vacuum 

is initially investigated. Consider time-harmonic {exjp {iut)) electromagnetic waves 

incident on a single sphere of dielectric constant e and radius R. Since the problem 

discussed in this report is scattering by a particle with a spherical shape, the scalar 

wave equation in spherical polar coordinates (r, 9 and 4> defined in figure 13.1(c)) is 

considered (Appendix I) [61, 62]: 

1 d 

dr 

d i j j 

to t t k ^ + dr 
1 d 

sin9 do 86 
dtp 

+ 
sin 9 

4- k'̂ ip = 0 

where '0 is the scalar wavefunction. The solutions of (13.1) are: 

laemn = c0sm,(^f^(c0sg)zn(ar) 

v'omn = siiim(^f^(cos0)zn(a:r) 

(13.1) 

(13.2) 

(a) (c) 

Figure 13.1: (a) A sphere of dielectric constant e, radius R and arranged in a cubic 

crystal with lattice constant a. (b) A cut-plane of the unit cell at y = 0. (c) The 

definition of the polar coordinates r, 6 and (p, with respect to orthogonal coordinates. 
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where is the Legendre function, the subscripts e and o denote even and odd de-

pendence on (j) respectively and is one of the spherical Bessel functions; jn, Uni hn^ 

and hn • Also, any function that satisfies the scalar wave equation can be written as 

an infinite series of (13.2). 

In order to solve the scattering problem of a plane wave from a spherical dielectric 

particle, we need to expand the electric and magnetic fields (incident, scattered and 

internal) in vector spherical harmonics (i.e. M and N-Appendix I) that satisfy the 

vector wave equation and are also produced from (13.2): 

•^(e,o)mn V X (r'0(e,o)mn) (13.3) 

n , ^ (13.4) 

Assuming that the incident plane wave has the electric field polarized along the x-axes, 

then: 

Ejnc = EQ exp {ikr cos 0)ex (13.5) 

and is written in spherical polar coordinates by substituting ex with: 

ex — sin 9 cos 4>er + cos 6 sin (f)eg — sin (13.6) 

and expanded (Appendix J) in vector spherical harmonics as: 
oo 

= (13 7) 
n=l 

where EN = 'i"£'o(2n-|-l)/(n(n-t-l)), n and m are the principal and azimuthal quantum 

numbers (here m = 1, since scattering coefficients vanish for m ^ 1) [61]. Now, using 

Maxwell equations and noting that the dielectric material the sphere is made of has 

magnetic permeability /i = 1, the magnetic field expanded in spherical harmonics is 

given by; 
7 
fco / (1) i 

^ n = l 
g ( m ^ + (13.8) 

Since the expansion of the fields inside the dielectric sphere are dictated by the expan-

sion of the incident fields, the internal fields are given by [61, 62]; 
oo 

e w = (13.9) 
n = l 

oo 

hin t — — ^ EN 
^ n = l 



CHAPTER 13. SINGLE SCATTERER-MIE THEORY 144 

where c„ and are internal coefficients (i.e. coefficients dominating the fields inside 

the sphere) and hint the wavevector of the wave inside the sphere. Similarly, the 

scattered fields are given by: 

oo 
^scat = ^ En (13.10) 

n=l 

n=l where an and are scattering coefficients (i.e. coefficients dominating the fields 

scattered from the sphere), and the superscript (3) on the spherical harmonic vectors 

denotes that the Hankel function (/in^) is used for •0 The scattering coefficients are 

given by: 

^ ^ N'^jn ( N p ) [pin {p)]' - j n ( p ) [iVpjn (Np)]' 

^ j n { N p ) [ p j n { p ) ] ' - j n i p ) [ N p j n { N p ) ] ' ( 1 3 1 2 ) 

and the internal coefficients are given by: 

CN. — (13.13) 

^ ^ Njn{p)[phl^\p)]' - Nh'h\p)[pjn{p)Y ^^3 ^4^ 

where N is the refracting index of the material the sphere is made from and is given by 

N = i/e, p is the size parameters given by p = kR, k is the wavevector, R the radius 

of the sphere and finally [.]' denotes the derivative of the function in square brackets 

with respect to p. Note that the denominators of an and dn are equal, as those of 6„ 

and Cn-

When the frequency of an incident field is close to a magnetic Mie mode value, 

then bn and c„ dominate (13.10) and (13.11) and when close to an electric natural 

mode, an and bn dominate. Therefore, natural modes appear at frequencies where 

scattering coefficients go to infinity (i.e. the denominators approach zero). The first 

magnetic Mie mode (i.e. n = 1) for a sphere of radius R, dielectric constant £ (i.e. 

refractive index N = ^/e) placed in vacuum, is therefore expected at frequencies where 
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medium 2 

medium 

Figure 13.2: (a) A sphere of dielectric constant ei, radius Ri, coated with a spherical-

shell of £2 and radius i?2- A cross-section passing through the origin of the sphere is 

shown here and the coated sphere is arranged in a cubic lattice of constant a. (b) A 

cut-plane of the unit cell at y = 0 and for a structure with ei = 1. 

the denominator of bn is zero, therefore: 

[phiHp)]' _ [Npji{Np)Y 

and the first electric Mie mode when: 

[phiHp)]' ^ [NpjijNp)]' 

(13.15) 

(13.16) 

where p = kR, k is the wavevector corresponding to the resonant frequency, ji{p) is a 

spherical Bessel function and h^ \p ) spherical Hankel function. 

13.1 Spherical-Shell Sca t te re r 

Similarly to a dielectric-sphere-scatterer, a coated-sphere (as shown in figure 13.2(a)) 

scatters electromagnetic waves obeying Mie theory [61, 62]. The scattering particle 

is composed of a core sphere (medium 1 in figure 13.2(a)) of radius Ri made from 

a material of ei (i.e. assuming that pi = 1, the refractive index is given by: Ni = 

^/ii) and a spherical-shell (medium 2 in figure 13.2(a)) of radius R2 with a dielectric 

constant of Eg (i.e. N2 — a/^)- The incident electric and magnetic fields are given 

by (13.7) and (13.8), the fields inside the core-sphere by (13.10) and the scattered fields 

by (13.11). The expansions of the fields inside the spherical-shell (i.e. Ri < r < R2 
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and Ri ^ 0) are given by [61, 62]: 

oo 
E £ " = - i S n N W ) (1317) 

n=l 

//i 
n=l 

and the fields scattered by the spherical-coat are given by: 

H g f = - ^ E e „ ( s „ m W + ; / „ < > „ ) (13.18) 

(13,19) 
n=l 

OO 

= - ; ^ E E n ( » „ M g i . + , t , „ N g ' „ ) (13.20) 

n = l 

where gn, fn, Wn and Vn are also internal and scattering coefficients for the spherical-

shell and the superscript (2) on the spherical harmonics denotes their generation by 

Unikr) functions. 

By taking into account the boundary conditions at r = Ri and r = i?2, the scat-

tering coefficients (a^ and bn) for a coated-dielectric-sphere are derived and using the 

Riccati-Bessel functions (i.e. ipn{z) = z j n { z ) , ^n{z) = z h l ^ \ z ) and Xn{z) = —zyn{z)) 

are given by [61]: 

^ ^ v'n(p2) [I>'N{NLP2) - ^nxn(-^2/32)] - a^2^n(p2) [v'n(^2p2) - ANXN{N2P2)\ 

- ^mxn(^2p2)] - [v'n(-^2p2) " 

^ ^ N2'4^N{PL) WN{N2P2) - - snxu^2p2)] - '>PN{PL) [^n(a^2p2) - BNXN{N2P2)] 

^2^7%(;02) [v'u^2p2) - bnx^(ar2p2)] - ^n(p2) ['^n(^2p2) " bnxn(a^j02)] 

(13.21) 

where pi = kRi, p2 = kR2, k is the wavevector and: 

. ^ N2I'N{N2PL)'4''NI^LPL) - NI1P'^{N2PL)LPNINLPL) 

^2xn(^2m)v 'n(-^ lp l ) - -^lxn(ar2m)l/'m(^l/)l) 

g ^ N2LPN{N2PL)LP'N{NIPI) - NI1PNIN2PLWRII^LPI) gg l 

-^2xu-^2m)v'n(-^lpl) - -/\^lxn(^2m)v'n(-^lpl) 

Note that when NI = N2 = N then An, Bn vanish and (13.21) reduce to (13.12) and 

when N2 = 1, (13.21) reduce to (13.12) for R = Ri as expected. 

Similarly to the single-sphere scatterer, when and bn are infinite, the natural 

electric and magnetic resonances arise respectively. Also, note that the structure dis-

cussed in this paper is an empty spherical-shell of Eg = E and the core-sphere has 
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ei = 1 and Ni = 1. Consequently, by setting the denominator of bn to zero, requiring 

n = 1 and N2 = N = a/F, = 1, the first magnetic Mie mode occurs when: 

[N'P2JI{NP2)]' + BI[NP2YIINP2)]' _ [P2H[^\P2)]' 

(a/" p2) (m) 

and Bi is reduced to: 

(13.24) 

„ _ NPIJI{NPI)[PIJI{PI)]' - NPIJI{PI)[NPIJI{NPI)]' / X 

^ N'^Piyi{Npi)[piji{pi)]' + Npiyi{Npi)[piji{pi)]' 



Chapter 14 

Effective magnetization of 

high-dielectric crystals 

When the frequency of the incident wave is close to a natural magnetic mode of a 

single sphere-scatterer, then the electric field inside a high-dielectric sphere is enhanced. 

Hence, the displacement current is amplified, resulting to an enhanced magnetic field 

as shown in figure 14.2(a) and (b) for the electric and magnetic fields respectively [61]. 

Therefore, when the spheres are placed in a periodic crystal of lattice constant a, a 

macroscopic bulk magnetization is obtained. 

The high value of e ensures that the incident wave sees a homogeneous medium [56], 

since the resonance wavelength is much larger than the lattice constant a of the crystal. 

However, the wave inside the sphere has a smaller wavelength than the incident wave 

(due to large e), a fact that gives rise to the natural Mie modes (i.e. Xint 2i?). 

Similarly, spherical-shells have an effective magnetic behaviour, since the displacement 

currents and the enhanced fields are not significantly affected by the vacuum core-

sphere as it can be seen in figure 14.2 (discussed later). 

For a sphere of radius R = 0.45mm and e = 100 -{- zcr/(wEo), where a = 3.34(S'/m) 

is the conductivity of the dielectric determining loss, the first magnetic Mie mode 

is expected at 29.6 GHz, according to (13.15). The dispersion diagram of a crystal 

composed of these spheres in a square lattice of a = 1mm was calculated using CST Mi-
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Figure 14.1: (a) Band structure for a high-dielectric crystal made of spheres of R = 

0.45mm, a = 1mm, e = 100 -{- o-z/(a;eo) and a = 3.34(5/m). (b) Band structure for 

a high-dielectric crystal made from spherical-shells of Ri = 0.35mm, R2 = 0.45mm 

(as shown in figure 13.2(b), a = 1mm, e = 100 -|- ai/{uj£Q) and a = 3.34(5/m). The 

doubly degenerate transverse modes are interrupted by a stop-band, introduced by the 

first Mie resonance mode. 

crowave Studio^ and is plotted in figure 14.1(a). For a spherical-shell of i2i = 0.35mm, 

i?2 = 0.45mm, £ = 100 -h icr/(wEo), cr = 3.34(5/m) (and a vacuum core-sphere), the 

first magnetic resonance for a single scatterer arises at ~ A2.5GHz according to (13.24) 

and (13.25). Using CST Microwave Studio, the dispersion diagram of a crystal com-

posed of such spherical shells arranged in a square lattice of a = 1mm was calculated 

as well and is plotted in figure 14.1(b). Note, that although Mie theory does not 

account for neighbouring particle contributions, the analytical predictions for both 

resonant frequencies are in good agreement with numerical results for both the sphere 

and spherical-shell-crystals. 

The two doubly degenerate modes in figures 14.1(a) and (b), follow a linear dis-

persion, interrupted by a stop-band due to the excitation of the first magnetic Mie 

resonance. The isotropy of the structure suggests that the transverse modes (i.e. 

polarizations {Ey,Hz) and {Ez,Hy) for fca;-propagation) are degenerate. Note that 

the ratio of the wavelength at resonance over lattice constant for the sphere-crystal 

is (Xres/a) — 10 and for the spherical-shell-crystal (A^gg/a) = 7.5, which are values 

^CST GmbH, Darmstadt , Germany 
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Figure 14.2: Numerically calculated field configurations for the first magnetic Mie 

resonance of a spherical-shell structures of radius i?2 — 0.45mm, dielectric constant 

£2 = 100 + ai/{ijjeo), a = 3.34(S'/m) and arranged in a cubic lattice of constant 

a = 1mm (ei = 1). (a)-(b) i?i = 0, (c)-(d) Ri = 0.05mm, (e)-(f) Ri — 0.15mm, (g)-

(h) Ri = 0.25mm and (i)-(j) Ri = 0.35mm. The fields are shown for /c^j-propagation, 

on the z = 0-plane. Left figures is a plot of [-field {\Eyz\ = + E^) and figures 

on the right a plot of the magnetic field along the x-axes (| |). 
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(a) 
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frequency (GHz) (b) 
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Figure 14.3: S-parameters for a 4-unit-cell slab of a crystal made from (a) dielectric 

spheres of i? = 0.45mm, A = 1mm, e = 100 4- AI/{UJEO) and A = 3.34(5/m) and 

(b) dielectric spherical-shell of RI = 0.35mm, R2 = 0.45mm, A = 1mm, £2 = 100 -t-

AI/{UJEO), A = 3.34(S'/m) and ei = 1. Solid red lines show the transmission coefHcients 

and dotted green lines the reflection coefficients. 

well within the homogenization model. Also, the linear dispersion of the two trans-

verse modes also indicates that the resonances occur at frequencies where the effective 

medium approach is still valid. 

The effect of the spherical-shell's thickness on the effective magnetic permeabil-

ity and the resonant frequency is also investigated. The band structures for various 

values of Ai, while R2 — 0.45mm was kept constant, are plotted in figure 14.7(a). 

As Ri becomes smaller, the band structure converges to the dispersion diagram of a 

sphere-crystal as expected. However, as Ri increases, the resonant frequency and the 

bandwidth of the stop-band increase. In figure 14.7(b) the retrieved^ effective mag-

netic permeabilities are plotted for the various spherical-shell-crystals, where it can 

be seen that the magnetic behaviour of the structures obey the Lorentz model for all 

Ri values, but obviously with different resonant frequencies. Furthermore, the electric 

and magnetic fields for the resonant frequencies of spherical-shell crystals of various 

Ri are plotted in figure 14.2, where for all values of Ri the Mie mode can be identified 

as the first magnetic Mie resonance. 

^The retrieval method is described in the following section 
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Figure 14.4: For a crystal made from dielectric spheres of R — 0.45mm, a — 1mm, 

e = 100 + ai/{iU£o) and a — 3.34(5/m), the effective parameters were retrieved from 

numerically calculated S-parameters. The real part of the parameters is shown with 

a solid red line and the imaginary part with dotted green line for (a)the impedance 

(b) effective refractive index (c) effective electric permittivity (d) effective magnetic 

permeability 
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Figure 14.5: For a crystal made from dielectric spherical-shell of Ri = 0.35mm, R2 = 

0.45mm, a — 1mm, £2 — 100 + cri/(wEo), cr = 3.34(5/m) and ei = 1, the effective 

parameters were retrieved from numerically calculated S-parameters. The real part of 

the parameters is shown with a solid red line and the imaginary part with dotted green 

line for (a)the impedance (b) effective refractive index (c) effective electric permittivity 

(d) effective magnetic permeability 
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14.1 Effective Elec t romagnet ic P a r a m e t e r s 

The S-parameters were calculated numerically using CST Microwave Studio for a slab 

of 4-unit-cells of the sphere and spherical-shell crystals, and are plotted in figure 14.3(a) 

and (b) respectively. Note that the transmission coefficient for the spherical-shell 

crystal is larger than for the sphere-crystal, since a bigger volume fraction of the unit-

cell in the former is occupied by vacuum (i.e. less losses). 

The effective electromagnetic parameters are retrieved (assuming waves of the form 

exp {—icot)) using the method described by [43, 45], where the impedance (Z) is given 

' " / M a 

— 1 f 1 

and the refractive index^ (n) by: 

- 'Z" (-) 

and where I is an integer, the reflection coefficient, 5*12 = exp{ikd)Ti2 and T12 is 

the transmission coefficient. Note that we ensured that causality is not violated by 

requiring that Re{Z) > 0 and Im{n) > 0. The electromagnetic parameters are then 

given by: 

^e// = 2 

l^eff = nZ (14.4) 

The effective parameters retrieved are plotted in figure 14.4 for the sphere-crystal and 

in figure 14.5 for the spherical-shell-crystal. Retrieved Re{Z) and Re{n) take negligibly 

small values for stop-band frequencies as expected. It can also be seen that the effective 

magnetic permeability for both structures becomes negative for the frequencies where 

there is a stop-band for the dispersion diagram. Also, note that for high frequencies 

^ > (1 — F) and for low frequencies ^ > 1, as expected. 

^Note tha t n is the effective refractive index of a crystal made from spheres in a periodic lattice and 

N is the refractive index of the dielectric material with constant e tha t the spheres are made from. 
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Figure 14.6: The retrieved (a) real and (b) imaginary parts of the effective mag-

netic permeability (solid red line) is plotted with equation (14.6) (dotted green line), 

which predicts the magnetic behaviour of a single spherical scatterer, Lorentz model 

(blue dashed line) of (14.8) that accounts for spatial dispersion is also plotted, (c) 

The retrieved effective electric permittivity (red solid line:real part and green dashed 

line:imaginary part) is plotted together with (14.9) (blue dotted line:real part and pink 

dashed line:imaginary part). 
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14.1.1 Fi t t ing the retrieved parameters wi th analytical models 

In order to investigate whether the retrieval method is valid for the sphere-crystal, an 

analytical prediction for the effective magnetic permeability was derived using micro-

scopic field averaging (similarly to [56]) to obtain the effective permeabihty: 

where for simplicity consider averages at a plane intersection at the centre of the sphere 

(i.e. z = 0 -plane where figure 14.2(b) is plotted for) and therefore a cylindrical unit 

cell is considered (i.e. = TTR"^). The average of B-field has to be taken over the 

whole area of the cross-section and H-field is averaged at the line between the spheres 

at the same plane (i.e. r = a/2). The magnetic fields of (13.8), (13.10) and (13.11) 

derived from Mie theory are used, and considering contribution only from the first 

magnetic Mie mode (i.e. n = 1), the effective magnetic permeability is obtained (more 

details for the derivation in [56]): 

2tt di J^rji{Nkr)dr + r[ji{kr) - aih^^\kr)]dr 
meff = -if rn 

^ ji{ka/2) — aih[ \ka/2) 

where N is the refractive index of spheres {N = ^/e). For a sphere of e = IQQ+ai/(wEo), 

a = 3.34(5/771) and R — 0.45mm, (14.6) is plotted in figure 14.6, with the retrieved 

magnetic permeability. Both the real and imaginary parts of retrieved Heff and (14.6) 

have a similar shape with a small difference on the resonance frequency, which can 

easily be justified by noting that equation (14.6) accounts for a single-sphere scatterer 

and neglects contributions from neighbouring particles [63]. 

The effective magnetic permeability for a single sphere is a Lorentz-like resonance 

(also proved in [56]), given by: 

FU]'^ 
mr = 1 2 2%^ 

U!^ — LOQ + IJU) 

where F = 47ri?^/a^, 7 accounts for the loss in the dielectrics. The finite size of 

the unit-cell, which although smaller than A at resonance, is not negligible, results 

to spatial dispersion, and artifacts on the effective electromagnetic parameters, as 

described in [64, 65]. Considering that high-dielectric sphere-crystals are Lorentz-like 
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resonators, the analytical method described by Smith et.al. [65] is used to derive the 

effective parameters by taking into account the spatial dispersion of the medium caused 

by the finite size of the unit cell and are given by: 

i)s(/3o/2) 

where Hr is the Lorentz-like resonance of (14.7). However, all magnetically resonant 

metamaterials show a weak resonance for the effective permittivity (and vice-versa), 

which is due to spatial dispersion and the phase advancement within a finite-sized unit-

cell. From [64, 65], the effective permittivity of a magnetically resonant metamaterial 

is given by: 

where e = 2/(l — F) = constant [6] and F = (4/3)7ri?^/a^ is the filling factor of the 

sphere. The phase advance {(3a) across a unit cell is given by: 

_i f ,—ka 
/3a = 2 sin j (14.10) 

and where k is the wavevector. Applying these analytical formulae for the dielectric 

crystals discussed in this paper (i.e. UIQ = 29.6GHz from (13.15), a = 1mm and 

R = 0.45mm), the results obtained are plotted in figure 14.6 together with the retrieved 

parameters for comparison. The agreement between (14.8) and retrieved permeability 

is notable, as well as the agreement for the weak resonance of the effective permittivity. 

The differences seen for the effective parameters are due to the fact that the analytical 

method of (14.8) and (14.9) does not account for cell-to-cell interactions, which are 

expected to contribute to this structure's effective behaviour since 2R ~ a (i.e. spheres 

are closed-packed). Similarly, the retrieved effective magnetic permeability of the 

spherical-shell-crystal is also fitted to the Lorentz-based analytical prediction (14.8) 

and both are plotted in figure 14.7(b) together for comparison with thin red and thick 

black solid hnes respectively. The agreement between them is also notable and similar 

to the behaviour of the sphere-crystal. 
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Figure 14.7: (a) The band structures and (b) the retrieved effective magnetic per-
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Chapter 15 

Doubly Negative Metamaterials 

Most doubly negative (DNG) metamaterials based on high-dielectric resonators are 

composed of two different particles, where the electric Mie resonance of the one particle 

is tuned at the same frequency range of the magnetic Mie mode of the other particle, 

in order to realize a negative refracting band. However, the bandwidth of the first 

electric Mie resonance for spheres is significantly more narrow-banded compared with 

the bandwidth of the first magnetic Mie mode. In figure 14.1(a) at about ASGHz, 

the stop-band due to the first electric Mie resonance arises and is ~ 92% narrower 

compared with the frequency range of the first magnetic Mie mode. Therefore, a 

negative metamaterial constructed by two sets of different dielectric spheres has an 

extremely narrow bandwidth for the negative band [66, 57, 59]. Furthermore, note 

that in the case of close-sphere-packing, a hybrid of resonances appears at slightly 

higher frequencies from the electric resonance [63, 67]. Also, if the spheres are not 

accurately enough manufactured (i.e. values of R and e), the two resonances are 

detuned, destroying the negative band. 

In order to avoid these problems and also take in full advantage the broad band-

width of the first magnetic Mie resonance for both sphere- and spherical-shell-crystals, 

we embed both dielectric-crystals in a PEC wire-mesh [11, 12, 13]. Using CST Mi-

crowave Studio, the band structures of both metamaterials (figure 15.2) were calcu-

lated numerically for a medium composed of dielectric-crystals and a wire mesh of 

radius r = 0.1mm and arranged in a lattice of a = 1mm (i.e. plasma frequency 
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Figure 15.1: (a)Embedding the high-dielectric spherical scatterers (spheres or 

spherical-shells) in a wire mesh, a negative refracting metamaterial is realized. The 

wire mesh is arranged symmetrically with the dielectric scatterer. (b) The unit cell 

simulated to numerically derive figures 15.2 

X o 
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Figure 15.2; (a) Band structure for a high-dielectric crystal made of spheres of R — 

0.45mm, a = 1mm, e = 100 -|- ai/{u)eo) and a = 3.34(5/m) and embedded in PEC 

wire-mesh of r = 0.1mm. (b) Band structure for a high-dielectric crystal made from 

spherical-shells of Ri — 0.35mm, R2 = 0.45mm (as shown in figure 13.2(b), a = 1mm, 

e = 100 -I- ai/(iOEo) and a — 3.34(5'/m), embedded in PEC wire-mesh of r = 0.1mm. 

There are two doubly degenerate negative modes for the frequencies where there is a 

stop-band for the dielectric crystals. 
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Figure 15.3: S-parameters for a 4-unit-cell slab of a negative refracting metamaterials 

composed of a wire mesh of r = 0.1mm and a crystal made from (a) dielectric spheres 

of R = 0.45mm, a — 1mm, e = 100 4- ai/{ujeo) and a = 3.34(S'/m) and (b) dielectric 

spherical-shell of Ri = G.35m,m,, % — 0.45m,m, a = Imm, Eg = 100 + (Ti/(wEo), 

a = 3.34(S/m) and ei = 1. Solid red lines show the transmission coefficients and 

dotted green lines the reflection coefficients. 

Wr7 ~ 120Gffz), as shown in figure 15.1. The high-dielectric crystals are made from 

spheres of i? = 0.45mm, e = 100 + ai/(uJSo), a = 3.34(5/m), and spherical-shells of 

i?i = 0.35mm, R2 — 0.45mm, £2 = 100 - 1 - ai/^toeo), a = 3.34(5'/m) and ei = 1. 

The band structures derived numerically are plotted in figure 15.2, where a doubly 

degenerate negative band is observed, corresponding to polarizations {By, Hz) and 

{Ez,Hy) for kx propagation. The negative bands in figures 15.2(a) and (b) appear 

for frequencies where there are stop-bands in figures 14.1(a) and (b). There is a 

small shift ( ^ 1 — 2GHz) on the frequency that the negative band appears compared 

with the stop-bands of figure 14.1, which is due to the addition of the wire-mesh 

structure in the unit-cell, and its coupling with the magnetic resonator. However, the 

most outstanding observation is that the negative band is significantly more broad 

than other negative metamaterials [68]. The band structure of the spherical-shell-

negative metamaterial, shows a negative band which is ~ 55% broader and appears at 

~ 72% higher frequencies than for the sphere-negative metamaterials (as was indicated 

from figure 14.1). Note that the manufacture and experimental verification of a DNG 

composed of dielectric spheres and a wire-mesh operating at lower frequencies has been 

discussed in [69] with similar conclusions. 
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Finally, note that the spheres and spherical-shells are arranged symmetrically with 

respect to wire mesh, in order to obtain degenerate transverse modes. Distorting the 

symmetry, the two degenerate modes split, which also has significant applications, such 

as wave-polarization splitting devices. 

The S-parameters for 4-unit-cell slabs of the two negative metamaterials were cal-

culated numerically using CST Microwave Studio and are plotted in figure 15.3(a) and 

(b) for the sphere and spherical-shell negative metamaterials respectively. As it can be 

seen, the transmission coefficient is zero for stop-band frequencies and the reflection 

coefficient approaches one as expected from the band structure. Note the difference 

for the loss (or absorption) between the spherical-shell and the sphere-based DNG. 

The difference can be explained by considering the fact that less fraction of the space 

is filled with the high-dielectric material, which induces the losses. Nevertheless, there 

is no effect on the negative behaviour of the metamaterial, by using a spherical-shell 

as a magnetic resonator rather than a sphere. 

Also, the negative band of both metamaterials is easily tuned to higher (or lower) 

frequencies, by either changing e of dielectric material or scaHng down (or up) the di-

mensions of the lattice and spherical-scatterer. For smaller values of e, the natural Mie 

mode moves to higher frequencies. For example, for a sphere-crystal of i? = 0.45mm 

and a = 1mm, the effective medium theory holds for dielectric constants e > 40 

where (A/a) > 6 and the resonant frequency is tuned up by ~ 66%. Furthermore, 

by miniaturizing the dimensions of the lattice, the resonant frequency is obviously 

tuned to higher values, where the £ required is also lower. Note that ferroelectric 

spheres of few /.im in radius and dielectric constant as low e = 20, can already be 

manufactured and have homogeneous behaviour with resonant frequency in the low 

THz range [59, 60]. However, this does not come without a cost, since the loss is also 

increased at higher frequencies, but fortunately not as significantly as for conductor-

based magnetic resonators. Limitations on the operational frequency range that the 

negative metamaterials described in this thesis, are dependent on manufacturing dif-

ficulties for handling ferroelectric ceramics for small enough lattices, and the losses of 

the conducting material of the wire-mesh, whose plasma behaviour breaks at high THz 

and optical frequencies. 
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Finally, the negative metamaterials discussed in this paper, show a negative band 

for frequencies where conducting-based metamaterials have difficulties to achieve isotrop-

ically, due to manufacturing problems. In [70, 68], the advancements of negative 

refractive metamaterials in the past few years are reviewed with respect of their oper-

ating frequencies. For the frequency range where dielectric-sphere- and spherical-shell-

crystals can easily show magnetic behaviour (i.e. high GHz- low THz), to the best of 

our knowledge there are no other reported metamaterials that show isotropic mag-

netic behaviour or isotropic negative refraction. The reason of the lack of 3D-isotropic 

conductor-based magnetic resonators is that at high GHz-low THz frequencies, a much 

smaller lattice constant is demanded (approximately one order of magnitude) compared 

with the structures described in this report. Therefore, the manufacture of an isotropic 

metamaterial is practically more challenging. However, remarkable planar metamate-

rials have been constructed for high-GHz frequencies, such as Gokkavas et.al. [71] that 

reported double split-ring resonators operating at ~ lOOGHz and fishnet structures 

that operate from few GHz to infrared frequencies [31]. Note that high-dielectric com-

posites can also be applied for planar applications, by simply replacing high-dielectric 

spheres and spherical-shells, with cylinders and rings, which show similar results but 

in 2D. 



Chapter 16 

Conclusions 

High-dielectric sphere-crystals are used as magnetic resonant metamaterials, by ex-

citing their first magnetic Mie resonance. The advantage of high-dielectric resonators 

(like ferroelectric ceramics) is that they exhibit significantly lower loss than conducting-

based resonators, establishing them as ideal for metamaterials applications. In this 

report, we investigate the behaviour of high-dielectric spherical-shell-crystals that 

through the excitation of their first magnetic Mie resonance are also magnetically reso-

nant, similarly to high-dielectric sphere-crystals. However, their resonant frequency is 

increased and the frequency range that figf f is negative is broaden for the same lattice 

dimensions as for sphere-crystals. 

By embedding the high-dielectric crystals in a wire mesh, a doubly negatively re-

fracting metamaterial is realized. The new negative metamaterials exhibit a broadband 

negative dispersion and significantly lower losses than entirely conducting-based meta-

materials operating at the same frequency range. High-dielectric spherical structures 

can be used in order to easily manufacture isotropic metamaterials that are operational 

at frequencies where conductor-based magnetic metamaterials is more challenging to 

be constructed isotropically. 
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Chapter 17 

Summary and Conclusions 

We have discussed various metamaterial structures, by describing and characterizing 

their electromagnetic properties. Also, significant problems in some structures' be-

haviour were addressed and consequently we suggested ways to overcome them. 

In the first part of the thesis, wire-mesh metamaterials were studied that simu-

late the electromagnetic properties of a low-density electron plasma, with the plasma 

frequency in the GHz range. Both the connected and non-connected designs were 

discussed and numerical calculations were compared with analytical work showing ex-

cellent agreement. It was shown that the behaviour of wire structures is strongly 

modified by spatial dispersion. Longitudinal waves incident on a wire-mesh metama-

terials cause charges to accumulate periodically. The local fields produced from the 

periodic charge accumulation on wires, give rise to spatial dispersion, which causes 

the longitudinal mode to disperse with frequency and spoils the simple local model 

description for the permittivity tensor. 

Spatial dispersion can be minimized in wire metamaterials by increasing either 

the capacitance or the inductance of the system. The capacitance can be increased 

by attaching conducting structures on the wires, where the charges associated with 

spatial dispersion are now stored on. The inductance of the metamaterial system is 

increased by coating the wires with a magnetic material, and therefore the magnetic 

field -and consequently the electric field- of the wave are enhanced. However, the 

static charge associated with spatial dispersion remains undisturbed. Therefore, the 
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relative importance of spatial dispersion on the behaviour of the structure is reduced-

Various designs were also proposed and numerically examined that manage to minimize 

spatial dispersion and create a dispersion-free longitudinal mode. Hence, the new 

wire-structures can be described by a simple local permittivity tensor, since only the 

transverse mode propagates in the metamaterial. 

In part H of this thesis, Swiss Roll metamaterials are discussed. Initially, numer-

ical calculations for non-chiral rolls are compared with analytical work, showing an 

excellent agreement. Therefore, it can be concluded that the analytical homogeniza-

tion model is exceptionally valid for Swiss Rolls operating at the MHz-GHz frequency 

range. Additional resonances were observed and identified as trapped modes within the 

spiral gap, created by the shape of the conducting sheet. Furthermore, the more com-

plicated design of chiral Swiss Rolls is discussed analytically and numerically, showing 

that chiral Swiss Rolls exhibit extreme chirality. The chirality of Swiss Rolls is signifi-

cantly higher compared with other structures discussed in the literature, and allows for 

the macroscopic rotation of the wave's polarization by 90° in less than a wavelength. 

A significant advantage of Swiss Roll metamaterials (both chiral and non), is the 

fact that their resonant frequencies are easily tuned over a wide range of frequencies 

(from few MHz to tens of GHz), by simply changing the number of turns {N), the 

packing (a), the radius {R) or the dielectric constant of the material in the gap (e^). 

Therefore, Swiss Rolls can be manufactured that are two orders of magnitude smaller 

than other magnetic resonators with the same resonant frequency, giving a much higher 

value to the (A/a) ratio. 

Finally in part HI, by exciting the first magnetic Mie mode of high-dielectric spheres 

and spherical-shells in a crystal, a magnetically resonant medium is created. Their ad-

vantage over conductor-based particles (i.e. split-ring resonators) is that they exhibit 

significantly lower losses, a property that establishes them ideal for metamaterial ap-

plications. Also, the frequency range that the effective permeability of the crystals 

is negative, is significantly broader than other magnetic resonators. Hence, when the 

high-dielectric crystals are embedded in a wire-mesh metamaterial, a broadband dou-

ble negative metamaterial is realized, with less losses compared with other negative 

metamaterials. 



Chapter 18 

Further Work 

The work discussed in this thesis has a lot of potential to inspire further technological 

applications, theoretical and experimental work. 

• Eliminating spatial dispersion from wire structures has significant advantages, 

since wire structures are widely used for technological purposes. A 2D version of 

the wire-mesh structure has been discussed in the literature and has resulted in 

many improved applications, like low-profile antennas [72, 73], leaky-wave anten-

nas [74, 75], quasi-TEM and impedance waveguides [76, 77, 78]. The discussion 

in this thesis can provide more insight into the behaviour and properties of such 

structures, and tools towards experimentalists and engineers for more efficient 

designs. 

• The conveniently small size of chiral Swiss Rolls for microwave frequencies and 

their extreme chirality, establish them as ideal for magnetic resonance imag-

ing (MRI) applications [41, 34, 40, 33, 32], as well as for polarization rota-

tion/selection antenna applications. Chiral Swiss Rolls have high optical rota-

tion, which makes them ideal for replacing the hehcal wires that exist in polariza-

tion rotation/selection antennas, and therefore tremendously reducing antenna's 

size and enhance its efficiency. 

• Applications and properties of metamaterials are frequently limited by loss, es-

pecially at higher than microwave frequencies. A solution to that problem could 
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possibly be the use of high-dielectric materials that exhibit low-losses, serving 

as magnetic resonators. This structure can be tuned up to few hundreds of 

GHz, a range where significantly smaller lattice are required for other magnetic 

resonators (such as split-ring resonators). 

• Finally, further developments can be achieved on the double negative metama-

terial proposed in this thesis, by placing the spherical dielectric crystal non-

isotropically with respect to the wire-mesh. Then, the two transverse negative 

bands are not degenerate any more, a property that can be used for numerous 

applications such as wave-polarization splitting devices. 
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Appendix A 

Effective electron mass in an 

artificial plasma 

Consider the parallel-wire medium in figure 3.1 arranged in a square lattice of constant 

a with the wires placed at the centre of the unit cell and aligned with the z-axis. When 

current flows in a wire, a magnetic field is created around the wire [11, 12], which is 

given by: 

where r is the distance from the wire, v the mean electron velocity, ro the wire's 

radius, n the density of the electrons in the wire and j = -Rr'^nve the current flowing in 

the wire. Now, consider a plasmon-like longitudinal excitation for the system shown 

in figure 3.1 (i.e. the wavevector and the electric field of the incident radiation are 

parallel to the wires and along the z-axis) and qa -C 1. Therefore, the apphed electric 

field is: 

D — [0,0, DQ]exp[i{kz — cot)] (A.2) 

From Maxwell's equations: V x H = ^ + j where j is the current confined in the thin 

wires, and D is the electric field, which is uniform in the x-y plane for qa -C 1 [8]. 

Now, approximate the cubical unit cell with a cylindrical of the same cross-section area 

(i.e. ttRI ~ 0? ^ Rc = ^ ) , where Rc is the radius of the cylindrical unit cell and 

a the lattice constant. For simplicity, assume that there are no contributions to the 

magnetic field from neighbouring wires. Therefore, the magnetic field inside a circle 
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of radius r is given by: 

^c ( r ) 27rr 

0 

trr""" 
7ri?2 (/L.3) 

for 0 < r < i?c 

for r > Rc 

Also: H(r) = X A and therefore the vector potential A can be written as 

V X A = mHc(r) = ^ 

becomes: 

j4c(r) = 

r 
w Applying Stokes' theorem, the vector potential 

mi 
27r 

0 

ln( 2W for 0 < r < i?c 

for r > Rc 
(A.4) 

Note that the integration constant is chosen such that the vector potential to be zero 

outside the cylindrical unit cell, in order to ensure no mutual inductance between the 

wires (i.e. no neighbouring contributions). By substituting for i?c = ^ , the vector 

potential at the surface of the wire (i.e r — TQ) is: 

j4c(ro) 
27T 

21 

2 2a2 
(yl.s) 

but since ro -C a , then ^ 

approximately becomes; 

0 and In h, therefore the vector potential 

27r 
01.6) 

From classical mechanics, the electrons in a magnetic field have an additional con-

tribution to their momentum of eA. Therefore, the total momentum per unit length 

of the wire is: 

eA{r)mTrQ = mgffTrrQnv 

and therefore, the effective electron mass is given by: 

/ o \ 

(A.7) 

01.8) 

However, by accounting for the neighbouring wire-contributions, a more precise 

form for the effective electron mass is derived given by: 

a 
"^e// — In 

2nro 
+ f(%) 01.9) 

where F(^x) accounts for contributions from neighbouring wires and for a square lattice 

F{x = 1) = 0.5275 [5]. For wires arranged in an orthogonal lattice of constants a and 

b, (A.9) is valid and where z = y and F{x) = —2^n(x) + y -t-oo f coth{Trnx) — l + 



Appendix B 

Dispersion Equations of 

Parallel-Wire Medium 

Consider the parallel-wire metamaterial shown in figure 3.1, with the wires along the 

z-axes and arranged in a square lattice of constant a. The aim is to find self-consistent 

solutions of Maxwell's equations, where the current in the wires support the surround-

ing fields. In order to do this, we need to consider: 

1. the mean electric field averaged over the unit cell (Ez) 

2. the difference of the electric field across the unit cell (AEz{ro)) 

B . l M e a n Electr ic field: 

The current induced in each wire, averaged over the unit cell is given by: 

< j > = ^exp{iqxX + iqyU + iqzZ ~ iut) (B.l) 

where I is the current induced on the wire and q the wavevector inside the metamate-

rial. Using the continuity equation:(i.e. V j -F ^ = 0), the charge density in each wire 

averaged over the unit cell is: 

< p >== ^^exp{iqxX -h iqyV + iqzZ - iut) (B.2) 
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Also, from Maxwell equations and the gauge of A through Lorentz condition in free 

space (i.e. V • A + = 0) [8], two differential equations of A and (j) emerge (where 

A is the vector potential and (p the scalar potential): 

1 <9̂  A 

^ ~ < j > 3) 

= {B.4) 

C, E g 

which can be solved and give; 

A = . eyiY>{iqxX + iqyV + iqzZ - icot) (B.5) 

• ex.-p{iqxX + iqyV + iqzZ — iu)t) (B.6) 
{q^ - kl)£oa?uj 

where FEO = CU/CQ. Consequently, the mean electric and magnetic fields averaged over 

the unit cell are given by: 

B = iq X A = ) exp{iqxX + iqy-y + iq^z - icot) (B.7) 
[Q ~ 

E = icuA — = lUIfloZ exp{iqxX + zg^y + iqzZ — iut) (B.8) 
(g2 -

However, we are interested for the mean electric field along the z-direction which is: 

,2 
0̂ 

Ez = — ~ exp(ig^x + iqyy + iq^z - iut) (B.9) 
eowo/ / 

B.2 Difference of t h e Electr ic Field across t h e uni t cell: 

Now, the difference of the electric field from the edge of the unit cell to the surface 

of the wire needs to be calculated. For simplicity, replace the square unit cell with 

a cylindrical unit cell of the same cross-sectional area (i.e. Rc = a / y ^ ) . A and (p 

in (B.6) are converted in cyhndrical coordinates: 

Az = AoHq^^ q^ exp{iqzZ - iut) (B.IO) 

(j) = ^0^0^^ 9^ exp(tgzZ - iut) (B.ll) 
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where Hq^\X) % ln(a:) + 1 + . . . is Hankel function.The local electric field at distance 

r from the centre of a wire is given by Ez(r) = and hence: 

Ez{r) = - i - q^) e x p ( % z - iujt) (B.12) 
TT 4fco ]/ £o V / 

The difference of the electric field from Rc to just above the surface of the wire (ro ) 

is given by : 

AEz(ro) = Ez - ^z(ro) = - iojt) (B.13) 

where kp = — — ^ \ is the wavevector associated with plasma frequency cUp. 
o 'b.rvw 

B.3 Dispers ion equat ions: 

Assuming that there are no contributions from neighbouring wires, the electric field 

at Rc = aj\pK should be zero and therefore, the difference between Ez and AEz(ro), 

gives the electric field in the wire. However, the electric field in the wire is zero, since 

the wires are made from a perfect conducting material. Hence: 

1 1 
Ez - a e z ( r o ) — — ~ 9z) 

o k o v go _a;2-g2 ^2 

The solutions of (B.14) give the dispersion equations for the thin-parallel-wire struc-

ture: 

(a) transverse electric (TE) mode: ko = w/co, but ko = 0 for g^-propagation. 

(b) transverse magnetic (TM) mode: kQ = q'̂  + kp 

(c) transverse electric and magnetic (TEM) mode: QZ = KO — UJ/CQ 



Appendix C 

Dispersion Equations of 

Wire-Mesh Metamaterials 

Similarly to Appendix B, the aim is to find self-consistent solutions of Maxwell's equa-

tions, where the current induced on the wires supports the surrounding fields. Consider 

a wire-mesh metamaterial (as shown in figure 4.1) with wires along the three orthog-

onal axes (the difference between connected and non-connected structures is stressed 

in the text). As before, we need to calculate the mean electric field averaged over the 

unit cell {Ex) and the difference of the electric field from the edge of the unit cell to 

the surface of the wire (AE];(ro)). 

C,1 M e a n Electr ic field: 

The current in the wire averaged over the unit cell is: 

< j > - ^exp{iqxX 4- iqyy + iq^z - iut) (C.l) 

where q is the wavevector inside the metamaterial and jo — / ( x sin 9 cos i^+y sin 6 sin (f)+ 

z cos 9) The charge density averaged over the unit cell is derived through the continuity 

equation, and is given by: 

< p > = ^^~exp{iqxX + iqyU 4- iqzZ - iut) (C.2) 
a'^uj 
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From Maxwell equations and the gauge of A through Lorentz condition in free space 

(=V • A + = 0) [8], differential equations for A and cj) are obtained: 

v ^ a 

v ' 

1 a ^ a 

0 

1 

= - m < j > 

< p > 
go 

Solving the above differential equations, A and 0 are derived: 

^ojo 
A = 

(g2 -

Jo q 

eyiY>{iqxX + iqyV + iqzZ — iut) 

• exp(ig3;x + iqy-y + iqzZ - iuii) 

Hence, the average electric and magnetic fields over the unit cell are given by: 

^ • a voq. x jo / • . • . 
B = zq X A = — , ^expiiq^x + iqyy + iq^z — iu)t) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

E = iw A — = 
. Jo • q 

liOjioio - %q 
EqU} 

(C.7) 

eyiY>{iqxX + iqyU-\-iqzZ — iojt) (C.8) 

However, for simplicity consider the average electric field along one of the wire axes 

(i.e. along x-axis): 

Ex = tujuojQx i^qx' 
Jo • q 
sow 

1 
exp{iqxX + iqyy + iqzZ — iut) (C.9) 

C.2 Difference of t h e Electr ic Field across t h e uni t cell: 

Similarly to Appendix B, replace the square unit cell with a cylindrical of the same 

area (i.e. Rc = a/^jTv). Therefore, A and cf) can be written for cylindrical coordinates, 

as: 

Ax = AQH^^^ ql^ ex.^{iqxX - iut) (C.IO) 

(;6 = - ^ 0 exp(%ga;a; - ( c . l l ) 

where H'^\X) % ln(x) + 1 + ... is a Hankel function. The electric field at a distance 

r from the centre of the wire and along one of the wires is given by Ex{r) = — ^ 

hence: 

-bi(r) = f r v / c g - g g 
jox̂ Q — &q • jo 

exp{iqxX — icot) (C.12) 
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The difference of the electric field from Rc to just above the surface of the wire (ro) is 

given by : 

^Ex{ro) = E{Rc) - -E(r-o) = i-^/^ln ( 
CQX k^jox 

4/co 
exp(iiga;x — iijjt) 

(C.13) 

The first term in the square brackets is due to charge accumulation on the wires. For 

connected wires, where the current at nodes is distributed over the three wires is given 

by: 

C = (C.14) 

and for non-connected wires: 

C = q . j o (C.15) 

C.3 Dispers ion equat ions: 

Finally, by assuming that there are no contributions from neighbouring wires, the 

difference of Ex and AE^;, gives the electric field in the wire, which is zero since PEC 

wires are considered. Therefore: 

ex — ls.ex = 0 

[fcoioa; • jo] CQX _ » rnTR\ 
° 

where ^ ^ is the plasma wavevector. 
R\/7R J 

C.3 .1 C o n n e c t e d wires: 

For connected 3D wires, C = q • jo /3 and (C.16) becomes: 

[kojox - %q • jo] , k ĵox qxq jo _ ^ 

For the transverse mode q • jo = 0 and therefore: 

^0 — + kp (C.18) 

For the longitudinal mode q x jo = 0 (i.e. q = and jo = joxx) and hence: 

^0 = ( d / 3 ) + (c.19) 

where qi is the longitudinal wavevector and qr the transverse wavevector. 
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C.3 .2 N o n - C o n n e c t e d wires: 

For non-connected 3D wires, C = q • jo and (C.16) becomes: 

[kpjQx - g^q • jo] k^jox gxq -jo _ 
+ = o (c.20) 

— /cq an 

Again for the transverse mode q • jo = 0 and therefore: 

ko = qt (c-21) 

For the longitudinal mode q x jo — 0 and hence: 

= d + (C.22) 

where is the longitudinal wavevector and QT the transverse wavevector 



Appendix D 

Reflection Coefficient for 

Parallel-Wire media 

D . l Semi-infinite slab: 

Consider a P-polarized wave incident on a semi-infinite slab of a parallel-wire meta-

material, as shown in figure 5.1. Assuming that the wave is incident at 2 = 0 interface, 

then by matching the electric and magnetic fields at this interface, the refiection coef-

ficient can be derived. 

D . 1 . 1 R e f l e c t e d Fie lds: 

The incident and reflected magnetic field: 

H = yHoexp{iqxX + iqyy + iq^z - iut) -F yRHoexp{iqxX + iqy-y - iqzZ - iut) (D.l) 

where R is the refiection coefficient. The electric field is derived from Maxwell equation: 

^ = V x H = ^ E = - — V x H (D.2) 
at IEQLO 

and is given by: 

E = —^^HQexp{iqxX+iqyy+iqzZ—iu)t) — ——^^-^^RHoexp{iqxX+iqyy—iqzZ—iLot) 
SQUJ EQLIJ 

(1)3) 
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D . 1 . 2 T r a n s m i t t e d F ie lds : 

The electric and magnetic fields inside the metamaterial are derived in (B.8) and given 

by: 

H = exp{iqxX + iqyy + iq^z - iivt) (D.4) 

E ILOLLQZ 
£U 

- 2 ^ exp{iqxx + iqyy + iq^z - iujt) (D.5) 
[q KQja 

For a P-polarized wave, two modes are propagating in the parallel-wire medium, the 

TEM and longitudinal mode. 

D.1.2 .1 T E M mode: 

The dispersion equation of TEM mode is: fco = qz and assume that the current induced 

in the wires due to this mode is Ti- Therefore, from (D.4), the magnetic field driven 

by TEM mode is: 

+ iqzZ - (D.6) 

and since the wavevector in the x-y plane can take arbitrary values, then (g^ —fcg) = g^. 

Hence, the Hy takes the form: 

H} = exp{iqxx + iq^z — iujt) (D.7) 

Now, the electric field is given by (D.5), but consider the electric field on surface z = 0: 

E^ = _ e x p { i q x X + iqzZ — iut) (D.8) 

D.1.2 .2 Longitudinal mode: 

The dispersion equation of the longitudinal mode is: q^ = kQ — kp, and assume the 

current induced in the wires due to this mode is Tg. Therefore, from (D.4), the magnetic 

field driven by longitudinal mode is: 

exp{iqxx + iq^z - icvt) (D.9) 

and the tangential component of the electric field from (D.5) is given by: 

iT2 HQ qx 'sj k.Q — k'^ — q^ 
El = TOO eicp{iqxX + iqzZ - iut) (D.IO) 
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At surface z = 0, the capacitance of thin wires is zero which indicates that the 

current at this surface should be zero as well. Hence: 

Ti - - T 2 (D. l l ) 

Therefore, the total magnetic and electric fields transmitted in the wire medium due 

to both modes are given by: 

Hy = 
iTiHo 1 I Qx 

9% &p. 

Ex = — 
iTiHo 

eoja" 

exp{iqxX + iqzZ — iiot) (D.12) 

e-x.-p{iqxX + iqzZ — iut) (D.13) 

D.1.2 .3 Local model Paradox: 

Assuming that the local model holds for the parallel-wire medium, then just one mode 

can propagate in the metamaterial. Therefore, the current associated with that mode 

would not be zero at the surface of the medium. This implies charge accumulation at 

the ends of the wires, which is a paradox, since the capacitance of the wires at the 

surface z = 0 is zero. This paradox can be avoided by considering a second mode, 

whose current compensates the first mode's charge accumulation, and allowing the 

current in the wires to be zero at the surface of incidence. 

D . 1 . 3 R e f l e c t i o n CoefRcient : 

By matching the magnetic fields reflected and transmitted in the medium: 

1 + i? = 1 I Qx 

91 

and matching the electric fields reflected and transmitted: 

1 - i ? = 
iTi 

+ 
A:o 

(D.14) 

(D.15) 

Solving these two equations, the reflection coefficient can be derived for a semi-infinite 

slab of a parallel wire medium. 

_ -- ko&p -- 92922 , . 
J^non-local = ,,9 , .9 _ , ,.9 , .9 _ 

9z^p + 9z9z + ô/Cp + 9%92z 

\vtiere == 
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D.2 F in i te Slab: 

By matching the electric and magnetic fields at the z = d surface, and following the 

same calculation procedure as above, the reflection coefficient for a finite slab of a 

parallel-wire medium can be derived and is given by: 

1 + 
R = 

where 

A = 

1 + 2B-A^ + B^ 

kok'^ 

sin(kod) sin{q2zd) 

B 
kokpCos{ko) klq2zCos{q2zd) 

sin{kod) 

where - 0.1 • 

(D.17) 

(D.18) 

(D.19) 



Appendix E 

Reflection Coefficient for 

Wire-Mesh media 

Consider a P-polarized wave incident on a semi-infinite slab of a 3D-connected wire-

mesh metamaterial as shown in figure 4.1. Assuming that the wave is incident at the 

plane z = 0, then by matching the electric and magnetic fields at this surface, the 

reflection coefiicient can be derived. 

E . l Ref lected Fields: 

The incident and reflected magnetic fields: 

H = yHoexp(iqxX + iqyy + iq^z — iut) -f yRHoexp(iqxX + iqyy — iqzZ — iiot) (E.l) 

and the electric fields derived from Maxwell equations: 

E = —'^Hoexp{iqxX+iqyy+iqzZ—iujt) — '^^^ RHoexp{iqxX+iqyy—iqzZ—iu)t) 
SqLJ EQUJ 

(B.2) 

E.2 Transmi t t ed Fields: 

The electric and magnetic fields propagating in the metamaterial are derived in C.8 

and given by: 

B = -^^^^~J^exp{iqxX + iqyy + iq^z - iut) (E.3) 
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E = JO'Q 
2W//0J0 - 2q exp(ig3;a: + (B.4) 

For P-polarized incident wave, both the longitudinal and transverse modes are propa-

gating in the connected wire-mesh metamaterial. 

E.2 .1 Long i tud ina l m o d e : 

The dispersion equation of the longitudinal mode is: = 3(&Q — kp), and the current 

induced in the wires due to the longitudinal mode is J l = JlHq^l = JlHo{(1l'^ +<lz^)• 

Therefore, the magnetic field driven by the longitudinal mode is: 

Bl = ^^^\exp{iqxX 4- iq^z - icot) = 0 (E.5) 

and is equal to zero, since the qL is parahel to j l and therefore x J l — 0. Now, the 

electric field driven by the longitudinal mode is given by: 

Ez, = 
,2 

iufioJLHoiqL^ + qzz) -
6CJ 

1 
• exp{iqxX+iqzZ — iujt) (E.6) 

(g2 -

and for simplicity consider the electric field tangential to surface z = 0 and since the 

longitudinal wavevector is always parallel to the electric field, then qL = fex can be 

substituted in the above equation giving: 

exp(iqo:X + iq^z - iujt) (E.7) 

E.2 .2 Transverse m o d e : 

The dispersion equation of the transverse mode is: = /cg — kp, and the current 

induced in the wires due to transverse mode is j t — Jt-ffoQT = J t + g^z). 

Therefore, the magnetic field driven by transverse mode is: 

H t = 7^^exp{iqxx + iQzZ - iLot) = —-—exp{iqxX -H iqzZ - lut) 
(g^ - A:o)a'' 

(E.8) 

and the electric field: 

^ 2 

E t 
. ,, . .JTHqQt 

iuJIJ,oJTHo{qT^ + q^z) - % - q T (g2 -
exp{iqxx+iqzz—iu)t) (E.9) 
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Consider the electric field tangential to surface z = 0: 

E^ = — exp(iga;a; + iqzZ — icot) (E.IO) 

It is required that the current at surface z = 0 to be zero, since thin wires are 

considered which have zero capacitance at this surface. Therefore, the currents induced 

from the two modes should add to zero. 

JT + JL = + J^L-f̂ oqL = 0 (E . i i ) 

and by considering current flowing in the wires along the z-axis: 

J l = — (E.12) 

Hence, the total magnetic and electric fields transmitted due to both modes are: 

H = -̂ —5 —exp{tqxx + iqzZ — iLot) (E.13) 

-E.r = — 
IUJIIOJTHQ [ ql , qxz 

E . 2 . 3 R e f l e c t i o n Coef f ic ient : 

eyi];){iqxX + iqzZ — iujt) (E.14) 

By matching the magnetic fields at the surface z = 0: 

1 + A . ( E . 1 5 ) 

and by matching the tangential electric fields at the surface of incidence: 

(E.16) 

Solving the above two equations, the non-local reflection coefficient can be derived for 

a semi-infinite slab of a connected wire-mesh metamaterial. 

0 ^ (IzqLzjk^ - kl) - [qTzqLzkl + ggfc^] ^ 



Appendix F 

Dispersion Equations for 

(non-chiral) Swiss Roll media 

Consider a metamaterial consisted from Swiss Rolls placed in a square lattice of 

constant a, aligned with the z-axes and a monochromatic wave with wavevector k 

. Maxwell equations for a monochromatic wave are; 

dB 
V X E = 

dt 
dD 

ik X E = iojjU/UoH 

V X H — —— ^ ik X H = —icjeeoE 
dt 

(F.l) 

For simplicity, consider a wave propagating in xz-plane k(kx,0, kz). Since the meta-

material is electrically inactive along the z-axes, the electric field is E(0, Ey, 0) and the 

magnetic field Hz) [40]. From (F.l): 

ik X E — i 

i j k 

kx 0 kz 

Q Ey Q 

— I k kxEy — i kzEy = kHz + i Hx) (F.2) 

ik X H = i 

and therefore: 

i j k 

kx 0 kz 

0 

= I j {kzHx kxHz) — iujEEoEy j 

^xEy — LOIXzIJ'qHZ Hz 
kxEy 

(F.3) 

(F.4) 
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-kzEy = ujfixfJ-oHx Hx = (F.5) 

^xHz — (F.6) 

Solving the above three equations, the dispersion equation is derived [40]: 

w = c o J - ^ + - ^ (F.7) 
y £yfJ'Z SyfJ'X 



Appendix G 

Electromagnetic and chirality 

terms for Swiss Rolls 

Consider uniform fields Hz and applied along a right handed chiral Swiss Roll and 

assume that: 

1. there are no local field effects therefore the cylinder is rotational symmetric and 

the current varies only across the width of the conducting sheet. Consequently, 

only JQ (figure 10.5(b)) is driven by em/. 

2. the foil within the dotted lines is not exposed to either the outside or inside of 

the chiral Swiss Roll, and therefore it can be assumed that there is no charge 

accumulation in this area, and current JQ is constant in magnitude and direction, 

written by: 

Jo = Jox sin 0 + JQZ cos 9 (G.l) 

3. the number of turns {N) is large, ensuring a large overlap of the conducting 

sheet. 

4. the current outside the dotted lines rotates until is parallel to the edges of the 

foil, and therefore the rotation is assumed to be linear with distance. 

5. and finally assume that all fields are of the form exp(—icjt) 
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Let us consider initially the current flowing through the capacitive elements of 

the structure. The charge accumulated at the edges of the foil (i.e. outside the dotted 

lines) needs to be considered, which charges the capacitor created from the overlapping 

conducting sheet. Therefore, the current across the width of the foil (figure 10.5(b))is 

given by: 

JO — JOX sin S + JQZ cos 9 = = {N — (G.2) 

where Q is the charge accumulated outside of the dotted hnes, V is the potential 

difference between two parallel conducting plates and C is the capacitance per unit 

length of each exposed turn, given by: 

^ ed£o{width) £deo2'KRsin6 , 
{separation of the plates) * (no. of turns) {N — l)d 

Since V is of the form Voexp{—iujt), then: 

. . J„ , s in9 + J„.cos6 = - 5 ^ f 5 f 2 | 5 ^ F (G.4) 

Also, the magnetic field along the Swiss Roll is given by: 

= ffo 4- Joz -- --TT-Jba ((3.5) 

where HQ is the external magnetic field, the second term of the above equation is 

caused directly by the current flow on the conducting sheet and the last term is due 

to depolarizing fields with sources at the remote ends of the cylinders. If the cylinders 

are very long, then the depolarizing field uniformly spreads over the unit cell. 

Furthermore, the emf can be calculated by considering fcj^-propagation and E'a;-field, 

ensuring a magnetic field along the z-axis, which in its turn induces current that fiow 

around the spiral ring. Using Faraday's law of induction, emf is given by: 

f = __(;\f__ 1 ) _ _ ((2.6) 

£ needs to be balanced by the ohmic drop in the potential {V) due to the capacitance 

of the structure and conductivity losses (= 2'KR{N — L)PJOX)-I therefore: 

.'. iu){N — \)ITR?'hqHZ = + lnR^N — \)pjQx (G.7) 

where p is the resistance of the conducting sheet per unit length. 
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Finally, the potential difference (V) across {N — 1) conducting sheets can be cal-

culated by integrating around a loop in the y-z plane (from r=inner-radius to r=R) of 

the structure, giving: 

y = y Eaz = (Eo + - l)27rEtaiig (G.8) 

where Ep is the electric field driven by the current per unit length of the circumference 

of the coil, which is induced by charge accumulation. Therefore: 

27rA 
Ep = 

and 

: 9 — P Jtk ((3.9) 

EQ + Ep = Eo + 
2nR 

72' P (Ar- l )27rAtai ie lUJEdEQCl 

Now, solving (G.4), (G.5), (G.7) and (G.IO) with respect to JQX and Joz'-

— ^AL t a n ^ 6 + uPHQ — Cio t a n 9EQ 

" U'^D{ALtan2 6+ B)+LO{KLtan^ E + Cp)-Ltan^ 0 ^ 

F BDLO"^ + CPLO\ [ALtan^ 9 + B] + CUItanOEQ CUJ 

LtsiD.9 \ L t a n 0 J (jj'^D{ALtein'^ 9 + B) + UJ(KL9 + Cp) — Ltaxi^ 9 L 
(G.12) 

where 

A = 

B = 

a = 

27r^E36j(Ar - 1 ) 

47rcg 

iBdEoO? 
2T^R 

TTR^ 
D = 1 ^ = 1 — F 

K = - ' ) (G.13) 

^ (C^14) 

and where F is the filling factor and F = and p is the resistance of the roll per 

unit area. 

Finally, since the average if-field is given by the sum of HQ and the depolarizing 

fields from the coils Have = Hq - J o x ^ and jj, = Bave/{poHave) then XHH, XHE are 
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given by: 

[X ^]HE/^o = 2Ltan0 - ulp +iVcu/D) " 

where 
2 _ L tan^ 6 _ tan^ 0 . . 

("0 - v i L t a n S * + j3 ' 

9 L tan^ 9 tan^ 0 Wn 
- - - D(ALt.n^e + B ) ^ ^ 

(C)J8) 

are the resonant and the magnetic plasma frequencies respectively and 

.{KLtaii^ 9 + Cp) __ 2p 

AL tan^ 6 + B poR 
r = - 2 ' == 7-15 ((3.19) 

Similarly for e, where e = DAVE/I^OEAVE) = EQ/{EQ + EP), XEE and XEH are given 

where G is a constant given by: 

a? 9 

g _ B 4^ a^d 

j4j:taji2g-k f ; 27r2A3(^-i)i, 2g gf 6bT3jR3(jV-- l)Z,taai2 9 4-o2d 

(G.21) 

and 

OJp = UJrnp (G.22) 

are the plasma frequency, and finally: 



Appendix H 

Dispersion equations for chiral 

Swiss Rolls 

For a 2D chiral medium: 

Dy • 0 XEH 0 Ey 

Dz 0 XEH E, 
(HI) (HI) 

By 0 0 Hy 

0 0 XHH _ . . 

Maxwell's equations: 

0 —KZ ky Hx Dx 

k x H = = —wD =• h 0 ~KX Hy = —OJ Dy (H.2) 

KX 0 _ H, _ 
. . 

0 kz ky Ex Bx 

k X E = —a;B => kz 0 —kx Ey = LU By 

— ky /ci 0 Ez _ Bz _ 

For kx propagation, then ky — kz = Q and the above equations lead to: 

0 0 0 KX Ey 0 XEH 0 ' Ey ' 

0 0 ~KX 0 Ez 
= UJ 

0 0 XEH E . 

0 —KX 0 0 Hy 
= UJ 

XJfE 0 0 Hy 

KX 0 0 0 Hz 0 0 XHH Hz 

CH3) 

(H.4) 
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If we use helical polarization, then: kx = ksinO, ky = 0 and kz = kcosO, (and where 

(9 = 90° for /cj^-propagation), the electric field is given by: Ex = EcosB, Ey = —iE and 

Ez = —EsinO and the magnetic field: Hx = iHcosO, Hy = H and Hz = —iHsinO. 

Now, depending on handedness of chiral Swiss Rolls, the magnetic behaviour of the 

metamaterial 

E-\.cosO 

-iE+ 

—E-^sinO 

iH+cos9 

H+ 

—iH^sinO 

for right handedness and for left handedness: 

F+ = 

0 

-iE+ 

-E+ 

0 

H+ 

_ -iH+ _ 

(13.5) 

E-Cos9 0 

—E-sin9 -E+ 
F- = = — 

-E+ 

—iH-.cos9 0 

H+ 

iH-sin9 -iH+ 

Let's take the positive solution, which means that: 

0 

0 

0 

0 

0 

— 
0 

(H.6) 

0 kx — i E ^ 0 XEH 0 —iEj^ 

'^x 0 -E+ _t_ 0 XEE 0 XEH -E+ 
= UJ 

0 0 H+ 0 0 H+ 

0 0 -iH+ 0 XHE 0 XHH -iH+ 

(H.7) 

Due to the 2D-isotropy of the medium, the above equation can be reduced to: 

0 —ik-̂  E+ E+ 
= iO~^ 

ik^ 0 iH+ 

XEE XEH 

XHE XHH 

E+ 

iH+ 
(Hi 

and therefore: 

XEE ^EH 

- 1 - 1 

XHE XHH 

0 -1 " E+ w+ ' E+ ' 

1 0 iH+ " ik+ iH+ 
(H.9) 
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leading to: 
. , - 1 1 r 77. 1 . + I p . 

(H.IO) 
- 1 

XEH XEE E+ E+ 

XHH ~XHE iH+ IK+ iH+ 

and hence the eigen-equation is derived: 

^HH 

whose eigenvalues are given by: 

- 1 

'XEE 

-XHE + 
+ 

^ J 

E+ 

iH+ 
= 0 

det k+ 

Xmi 

XEE 

-XHE + XT 

= 0 

(H.l l ) 

(H.12) 

which leads to the dispersion equation for the right handed polarization: 

= fe+± (^XEH ^ \/xeeXH\I 

Similarly, the dispersion equation for the left handed polarization is given by: 

(H.13) 

^ ^ Jxe^EXHH ) (H.14) 

where i and j in w -̂̂ and kij, show the polarization of the wave and the sign of the 

group velocity respectively. 



Appendix I 

The vector spherical harmonics 

(M and N) 

The electric (E) and magnetic (H fields of a wave with time dependent fields of exp(%wt) 

propagating in a linear isotropic homogeneous medium, obey the wave equations [61]: 

V^B + = 0 V^H + = 0 (I.l) 

and their divergence is zero: 

V - E = 0 V - H = 0 (1.2) 

Also, from Maxwell equations we know that E and H are not independent from each 

other: 

V X E = iloimH. V X H = —iweE (1.3) 

Now, we introduce two vector functions M and N that satisfy the above properties 

of an electromagnetic field, in order to simplify the problem of finding solutions to the 

field equations. M and N are constructed from a scalar function and a constant 

vector r, as: 

M = V X (rtp) N = ^ (1.4) 

whose divergence is also zero: 

V M = 0 V N = 0 (1.5) 
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and satisfy the wave equation: 

V^M + = V X (r(V^^ + = 0 (1.6) 

V^N + fe^N = 0 (1.7) 

and from (1.7), ip satisfies the scalar wave equation; 

= 0 (1.8) 

Therefore, the problem is reduced to the simpler problem of finding solutions to (1.8). 

(Note that the usual terminology is M , N : vector harmonics, ip: generating function 

and r: pilot or guiding vector) 

In this report, the scattering of a plane wave by a spherical particle is considered. 

Therefore, ijj is chosen to satisfy the wave equation in spherical coordinates: 

1 d f 2d'>p\ 1 d f dip\ 1 2 

which has solutions: 

V'emn = cosm<^f^(cos^)zn(/:r) (I.IO) 

V'omm = sin (cos g) Zn (^r) (111) 

where n,m are the principal and azimuthal quantum numbers respectively, the 

Legendre function, the subscripts e and o denote even and odd dependence on cj) 

respectively and Zn is one of the spherical Bessel functions: jn, Vn, hn^ and . 

The vector spherical harmonics generated by ip{e,o)mn are given by: 

A ,r _ / , \ , V X ]VI(g_o)mn , , 
^^{e,o)mn — V X ^{e,o)mn ^ 

which are resolved in polar coordinates as: 

TTi dP^(cosO^ 
Memn = sinmcf)P^{cos 9)Zn{p)ee - cosmcf)— Zn{p)e^ (1.13) 

Ne,7in = COS m(l)n{n+ l)P™(cos 6')er + cos m 4 > ^ [P^nip)] ed(1.14) 

smriKpP^icosO)-^ [pznip)]e^ 
sin 0 " p dp 
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Momn = 4 ^ c o s ( c o s 0 ) Z n ( p ) e g - s i n Z n { p ) e ^ (1.15) 

sin (7 U(7 

Nornn = 8 m m # ( n . + l ) f ^ ( c o s 0 ) e r + s i n m c j ) ( 1 - 1 6 ) 
p cLu p dp 

+4^ cos m(j)P^{cos 6)--^ [pZn{p)] 
sm u p dp 

where p = kr 



Appendix J 

A plane wave in vector spherical 

harmonics 

Consider a plane wave with the electric field polarized along the x-axes, incident on an 

arbitrary sphere of radius R. The incident electric field in spherical polar coordinates 

is given by: 

Einc = Eo exp ikr cos (J . l ) 

where 

ex = sin 6 cos (f)er + cos 9 sin (peg — sin (J.2) 

Now expanding (J . l ) in vector spherical harmonics: 

00 oo 

Ejnc — ^ ^ ^ ] (-Semnl^emn 4" -^omn-M^omn •^emn^emn 4" -Aornn^omn) (J 3) 
m=0 n=m 

where -B(-g and are coefficients. Taking into account that the vector 

spherical harmonics are mutually orthogonal (i.e. Memn is orthogonal to Momn): 

i-2-ir r-K 
/ / Mem'n'• sin = 0 for all m, m' , n and n ' (J.4) 

Jo Jo 

Since (J.4) is also valid for ( N o m n ; ) ; (-M^oiTiruNomn) Eiliid (]VIemn.il^omn)i the coef-

ficients are given by: 

n.n Sin p _ J O J O — y r \ 
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with similar derivations for Bomn, Aemn and Aomn coefficients. Now, from (1.13), (1.17) 

and (J.2) and accounting for the orthogonality of the sine and cosine, it can be obtained 

tha t 

^emn ~ AQJ^I^I — 0 for all TTly Tl (J.6) 

and only for m = 1: 

Bomn 7̂  0 Aemn 7̂  0 (J.7) 

Therefore, (J . l ) is expanded to spherical harmonics as: 

oo 

Einc — (j^oln^oln (J-^) 

n=l 

Note tha t since the incident field at the origin is finite, the Bessel function required 

to be used is jn in (1.11). Therefore, in order to distinguish what Bessel function is 

used for the spherical vector harmonics, the superscript (1) is used for jn and (3) for 

spherical Hankel functions hn^. We can also derive the coefficients, which are given 

by: 

Boln = i^Eo (J-9) 
n (n + 1) 

Substituting these to (J.8), the expanded plane wave to spherical harmonics is given 

by: 
OO 

n=l 

where En = i'^Eo{2n + l ) / ( n ( n + 1)). Now, using Maxwells equation (1.3) and not-

ing tha t the materials considered in this report (i.e. high-dielectrics) have magnetic 

permeability /U = 1, the magnetic field expanded in spherical harmonics is obtained: 

, oo 

( J . l l ) 
n=l 



Appendix K 

Internal and scattered fields by a 

dielectric sphere 

Consider a sphere of radius R and dielectric constant e (and = 1) and a plane wave 

incident on the sphere, with fields (expanded in spherical harmonics): 

OO 

n=l 
, 00 

n=l 

where En = i^Eo{2n + l ) / ( n ( n + 1)). 

In order to expand the scattered and internal electromagnetic fields of an incident 

wave on the sphere, we apply the condition that at the surface of the sphere the electric 

and magnetic fields obey: 

(Einc ~l~ ^scat '^int) Xej- = (Hj^^ 4" Hjnf) XGr = 0 (K.2) 

Also, note that both the scattered and internal fields' expansion is dictated by the 

expansion of the incident field, which means that the coefficients Bemn = -Aomn = 0 

and that Bomn, ^emn vanish for all values of m, except for m = 1. 

The vector harmonics inside the sphere are descried by jn(fcmti') Bessel function, 

since the field at the origin of the sphere is finite. Therefore, the electric and magnetic 
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fields inside a dielectric sphere (with /̂  = 1) are expanded to spherical harmonics as: 

'S'„) Ei„, = (K.3) 
n=l 

00 

w \ 

n=l 

where c„ and dn are internal coefficients (i.e. coefficients dominating the fields inside 

the sphere) and hint the wavevector of the wave inside the sphere. 

However, outside of the sphere, the scattered fields are well-described by both jn 

and Un Bessel functions. Therefore, the Hankel functions and hn^ are used for the 

spherical harmonics (i.e. hn\x) — jn{x) +iyn{x) and hn\x) — jn{x) — iyn{x)), and 

therefore a superscript of (3) is used. Therefore, the scattered fields are expanded to 

spherical harmonics as; 
oo 

n=l 
7 (X) 

"eln y 

n=l 

where and are scattering coefficients (i.e. coefficients dominating the fields 

scattered from the sphere), and the superscript (3) on the spherical harmonic vectors 

denotes that the Hankel function is used for tp 

The scattering coefficients are given by: 
^ ^ N'^jn {Np) [pjn {p)]' - in {p) [Npjn {Np)]' 

^ jn (Np) [pjn jp)]' -jnjp) [N pjn (A^p) ]' g\ 

The internal coefficients are given by: 

g ^ jn{p)[ph^n\p)]' - hl^\p)[pjn{p)]' 

^ ^ Njn{p)[phi^\p)]' - Nhi^\p)[pjnip)]' g\ 

where N is the refracting index of the material the sphere is made from and is given 

by A/" = ^/e, p is the size parameters given by p = kR, k is the wavevector in vacuum 
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and R the radius of the sphere and finally [.]' denotes the derivative of the function in 

square brackets with respect to p. Note that the denominators of and dn are equal, 

as those of bn and c„. 


