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Abstract 

The area of discrete choice modeUing has, over recent years, witnessed 

the development of ever more flexible model structures that allow for 

an increasingly realistic representation of travel behaviour. 

With these developments have also come important issues of specifi-

cation, estimation and interpretation, some of which are addressed in 

this thesis, mainly in the context of models allowing for random taste 

heterogeneity across respondents. As such, it is shown that severe 

risks of misinterpretation arise when relying on the commonly used 

Normal distribution, and the advantages of several alternative distri-

butions are iUustrated, while also discussing the benefits of a discrete 

mixture approach. The thesis also highlights risks of confounding be-

tween different components of the error structure, and discusses the 

development of approaches that can lead to computational savings in 

simulation-based model estimation and application. Finally, a frame-

work is developed for the representation of random variations in a 

model's covariance structure. 

With the pace of theoretical developments, the gap between theory 

and practice in the use of discrete choice models has widened. The 

applied part of the thesis aims to partly bridge this gap in one area of 

travel-behaviour research, looking at the modelling of choices made by 

air-passengers departing from multi-airport regions, with applications 

to Greater London and the San Francisco Bay area. The case-studies 

show the benefits of using advanced model approaches, in this case 

cross-nesting and random coefficients structures. At the same time 

however, the work shows that the appeal of such models in large-

scale analyses is reduced by heightened data requirements, and the 

significant rise in estimation cost. Finally, the case-studies show that, 

while the issues discussed in the theoretical part of the thesis need 

to be taken into account in interpretation, for practical purposes, the 

guidehnes in terms of specification often need to be violated. 
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Chapter 1 

Introduction 

1.1 Background 

Discrete choice models belonging to the family of Random Utility Models (RUM) 

have been used extensively in the area of travel behaviour research for over thirty 

years^. For many years after the initial methodological developments, the high cost 

of estimating advanced models meant that most applications, even in an academic 

context, were limited to the use of the most basic model structures, such as Multino-

mial and Nested Logit. Over the past ten years however, gains in computing power 

as well as improvements in estimation techniques have led to the increased use of ad-

vanced nesting structures, and more recently, models based on mixture distributions, 

such as Mixed Logit (MMNL). Aside from allowing for the increased exploitation 

of such structures that had previously been confined mostly to theoretical discus-

sions^, these gains in estimation capability have also spurred new developments, for 

example in the form of advanced mixture models. 

On the basis of this evolution in the state-of-the-art, modehers now have tools at 

their disposal that allow for the representation of complex inter-alternative substi-

tution patterns, deterministic and random variations in tastes across respondents, 

correlation across observations, and differences in the error-terms across alternatives 

as well as respondents. However, with these gains in flexibility have also come a 

number of issues relating to model specificatioii and intcu'pretation. While also ap-

plying to some extent in the case of advanced nesting structures, these issues arise 

especially in the case of mixture models, such as MMNL. Indeed, as noted by Hen-

sher & Greene (2003, page 133), /earTimg skep OMd wnwoTiy are 

' See McFadden (2000) for a history of the evohition of the state-of-the-art in the area of random 
utihty models. 

^These model structures had been known for many years, but were simply inapplicable, espe-
cially in large applications. 

12 
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the complexity of the mixed logit model." As such, it can be seen that, especially 

in the context of the representation of random taste heterogeneity, the assumptions 

made during model specification have a direct influence on model results, and an 

inappropriate choice of mixture distribution for a given taste coefficient can lead 

to problems in interpretation and potentially misguided policy-decisions. Addition-

ally, important issues of confounding may arise in the case where assumptions made 

with regards to the model's error-structure are not refiect(;d in the data. Finally, 

it should be noted that, despite the gains in estimation efficiency and computing 

power, the cost of estimating advanced model structures remains high, and while 

this again applies mainly in the case of mixture models, the numerical issues faced in 

the estimation of models based on complex nesting structures are not trivial either. 

While the above discussion is an illustration of the dramatic evolution of the 

state-of-the-art in discrete choice modelling, it should be noted that there have been 

no such fundamental changes in the state-of-practice. Indeed, although the occa-

sional analysis makes use of a cross-nesting structure or a Mixed Logit specification, 

the vast majority of large-scale real-world applications still rely mainly on the use 

of Multinomial and Nested Logit. Several reasons can be identified for this. The 

first is that the cost of estimating and applying advanced model structures remains 

so high that, while acceptable in the small-scale analyses typically conducted in re-

search studies, the size of applications in actual policy analysis, in terms of choice set 

and sample size, limits modellers to more basic structures. In this context, another 

factor is the higher cost of such models in terms of data requirements. However, 

it must also be noted that there is a general lack of appreciation amongst practi-

tioners as to the potential benefits of using advanced model structures in large-scale 

applications, in terms of providing further insights into choice-behaviour, but also 

in terms of avoiding sources of bias that are specific to the more assumption-bound 

models. Here, researchers have an important responsibility in promoting the use of 

advanced model structures while at the same time also devising ways that facilitate 

their use in large-scale applications. 

Th(! points raised in the preceding two paragraphs, namely the issues of specifica-

tion, estimation and interpretation of advanced models, and the bridging of the gap 

l)etween the state-of-the-art and the state-of-practice, are the two central themes of 

this thesis. As such, the thesis is divided into two separate, yet interrelated parts, 

one theoretical, and one applied. 

The; first part of the thesis is conccuiied with th(! state-of-the-art. and ])resents 

several theoretical developments, aimed mainly at addressing the prevailing issues 

of specification, estimation and interpretation in advanced discrete choice models. 
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The second part of the thesis looks at the state-of-practice in one area of travel 

behaviour research, namely air-travel^. Three case-studies are conducted in this 

part of the thesis, looking at the joint choice of airport, airhne, and access-mode for 

passengers departing from multi-airport regions, with Revealed Preference applica-

tions to Greater London and the San Francisco Bay area, in addition to a Stated 

Preference study of airport and airline choice in the United States. 

1.2 Aims 

As mentioned at the end of Section 1.1, the work presented in this thesis is divided 

into two separate parts. As such, it is useful to also present the aims of the two 

parts separately, looking first at the theoretical part, and then at the applied part. 

The main aims of the theoretical part of the research were: 

• An analysis of the issue of the specification and interpretation of random taste 

heterogeneity 

• Research into ways of reducing the cost of estimation of mixture models 

• A study of the issue of confounding between individual components in the 

error-structure of the discrete choice models 

• The development of a model structure allowing for random variations in inter-

alternative substitution patterns across respondents 

As hinted at in the discussion in Section 1.1, the aims in the theoretical part of the 

thesis relate to the specification, estimation, and interpretation of advanced discrete 

choice models. The main exception to this is the final item in the above list; here, a 

specific gap in the existing state-of-the-art from the point of view of model structure 

is addressed. 

A number of aims can also be identified for the applied part of the thesis, which 

are described in more detail in Chapter 8. In summary, the main aims for this part 

of the research were; 

• The development of a framework for the joint modelling of the choice of airport, 

airline and access-mode 

•''This choice i.y partly motivated by its appeal from a methodological point of view, given the 
complex nature of the choice processes undertaken by air-travellers. However, the choice is also 
based on the reasoning that, in the face of important policy decisions (c.f. Chapter 8), there 
is a need for reliable forecasts of passenger behaviour, calling for the use of flexible modelling 
approaches. 
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The representation of random taste heterogeneity in the context of air-travel 

choice behaviour 

• The simultaneous analysis of correlation along multiple dimensions of choice 

in air-travel behaviour research, using cross-nesting structures 

• The study of air-travel choice behaviour in London 

While the first three aims listed above relate directly to the earlier point about 

bridging the gap between the state-of-the-art and the state-of-practice in air-travel 

behaviour research, the fourth aim is of a topical rather than methodological nature. 

The motivation here is partly one of addressing a geographical imbalance"^, but is 

also motivated by the notion that levels of competition between airports in the 

London area are potentially much higher than in many other multi-airport regions 

(c.f. Chapter 10). 

The research also had a number of other, more local aims, and these are high-

hghted as part of the discussions presented in the appropriate chapters. 

1.3 Out l ine of t h e thesis 

To give an overview of the structure of the remainder of this thesis, we will now 

look briefly at the contents of the individual chapters: 

• Chapter 2 presents a review of existing work in the area of discrete choice 

modelling, focussing on model structure. 

• Chapter 3 looks at the use of alternatives to pseudo-random draws in the 

simulation of the integrals representing the choice probabilities of mixture 

models. After a review of existing work in this area, the chapter discusses the 

development of the Modified Latin Hypereube Sampling (MLHS) approach. 

• Chapter 4 looks a.t the issues of specification and interpretation of random 

taste heterogeneity on the basis of continuous distributions, with an emphasis 

on the case of the distribution of the value of travel time savings (VTTS). 

The chapter includes an analysis making use of a large number of different 

continuous distributions, including some that have not previously received 

widespread exposure in the context of random coefficients modelling. 

"'There has been a relative lack of research into air-travel choice behaviour in the UK over recent 
years, with a focus on other markets, such as the US. 
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• Chapter 5 discusses an alternative to the use of continuous distributions in 

random coefficients models, with the random variations accommodated with 

the help of discrete mixtures. The chapter also discusses the risk of biased 

estimates in the presence of individuals with zero valuations of changes in 

explanatory variables, and shows how the use of discrete mixture models can 

reduce the risk of such bias. 

• Chapter 6 highlights an important issue in the context of advanced discrete 

choice models, namely the risk of biased results due to confounding in the case 

of inappropriate assumptions with regards to the underlying error-structure, 

and shows how the use of sufficiently flexible; models can help reduce the; risk 

of such bias. 

• Chapter 7 presents the development of a model that allows for random vari-

ations in the inter-alternative substitution patterns across individuals. 

• Chapter 8 acts as the introduction to the applied part of the thesis. The 

chapter presents a review of existing work in the area of air-travel behaviour 

research, sets out the scope and aims for the three case-studies, and discusses 

some generic issues that need to be faced. 

• Chapter 9 presents the findings of a case-study of the combined choice of 

airport, airline and access-mode in the San Francisco Bay area, making use of 

Multinomial, Nested, and Mixed Logit structures. 

• Chapter 10 presents the findings of a case-study of the combined choice of 

airport, airhne and access-mode in Greater London, making use of Multino-

mial, Nested and Cross-Nested Logit structures. 

• Chapter 11 presents the findings of a case-study of the combined choice of 

airport and airhne using SP data^, making use of Multinomial and Mixed 

Logit structures. 

• Chapter 12 provides a summary of the work discussed in this thesis, presents 

the conclusions, and describes some avenues for future research. 

1.4 Con t r ibu t ions 

Several contributions are made in this thesis. In addition to the in-depth discussions 

of important issues, such as that of the distributional assumptions in random coef-

ficient models, and the problem of confounding between individual components of 

"'Collected via an internet-based survey in the US. 
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the error-structure of the true underlying model, these are (in order of appearance 

in the thesis): 

• The development of the MLHS approach in Chapter 3. 

• The use of discrete mixture models to allow for the presence of respondents 

with zero VTTS® in Chapter 5. 

• The development of the Mixed Covariance model in Chapter 7. 

• The use of a cross-nesting structure for the simultaneous analysis of the cor-

relation along multiple dimensions of choice in air-travel in Chapter 10. 

Several other, more small-scale contributions are also made, and these are discussed 

at appropriate stages in the remaining part of the thesis. 

' 'Although discrete mixture models have been used before, as described in Section 5.1, their 
exposure has been limited, and it seems that they have not previously been used to address the 
issue of zero valuations of changes in explanatory variables. 



Chapter 2 

Existing model structures 

2.1 I n t r o d u c t i o n 

The review presented in this chapter looks at existing work on model structures in 

the area of discrete choice analysis, while the discussion of the existing literature in 

relation to topics addressed in more detail in this thesis is presented in the api^ropri-

ate chapters, in conjunction with the new contributions, with the aim of improving 

readability. As such, existing work addressing the issue of the specification of ran-

dom taste heterogeneity in mixture models is not discussed in this chapter, but is 

presented in Chapter 4. The same applies for existing work on the use of discrete 

choice models in air-travel research, where an extensive review is presented in Chap-

ter 8. Finally, the estimation of closed form models is not discussed in detail here, 

with the focus of the thesis being primarily on the use of mixture models, where a 

detailed discussion of existing work is presented in Chapter 3. 

The discussion in this chapter is structured as follows. After a brief review of the 

main concepts of discrete choice models in Section 2.2, we look at the Multinomial 

Logit and Multinomial Probit models in Section 2.3. This is followed in Section 2.4 

by a discussion of the GEV family and its best-known member, the Nested Logit 

model. We then in turn look at cross-nesting structures in Section 2.5, multi-level 

nesting structures in Section 2.6, and recursively defined model structures in Section 

2.7. After a brief presentation of some alternative model forms in Section 2.8, we 

turn our attention to models based on mixture distributions in Section 2.9. The 

chapter closes with a summary in Section 2.10. 

18 
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2.2 Basic concepts 

111 this section, we briefly look at some of the concepts that the theory of discrete 

choice modelhng is based on, along the hne introducing some notation that is used 

during the remainder of this thesis. 

In a discrete choice experiment, a decision-maker n chooses a single alternative 

from a choice set C„,, made up of a finite^ number of mutually exclusive alternatives, 

where the choice set is exhaustive, and the ordering of alternatives has no effect on 

the choice process undertaken by the decision-maker. Each alternative i = 1,.... I 

in the choice set is characterised by a utility Uî n, which is specific to decision-makcr 

77,, due to variations in attributes of the individuals, as well as in the attributes of 

the alternative, as faced by different decision-makers^. The use of the concept of 

utility, along with the need for a decision-rule, leads to the single most important 

assumption in the field of discrete choice modelling, namely that of utility maximis-

ing behamour by respondents. As such, respondent n will choose alternative i if 

and only if Vj ^ %, with i,j G Cn, where this notation excludes the 

possibility of equality between the utilities of two alternatives. 

In an actual modelhng analysis, the aim is to express the utility of an alter-

native as a function of the attributes of the alternative and the tastes and socio-

demographic attributes of the decision-maker. Here, the hmitations in terms of data 

and the randomness involved in choice-behaviour mean that, in practice, modellers 

will only be able to observe part of the utility. As such, we have: 

Ui^n — (2-1) 

with Vî n and giving the observed and unobserved parts of utility respectively. 

Here, is defined as / where Xî n represents a vector of measurable (to 

the researcher) attributes of alternative f as faced by decision-maker and is 

^Problom.s with tho rcquiromrait of having a finite nnmbor of alternatives arise especiaUy in 
the case of continuous dependent variables, where some form of aggregation into a set of discrete 
alternatives needs to be used, as discussed for example by Train et al. (1987). The decision 
on what approach to use in the transformation of a continuous variable into a discrete one can 
have significant effects on the performance of the model and the results produced, as for example 
observed recently by Daly et al. (2005) in the context of departure time modelhng. Here, the use 
of the term aggregation must not be confused with its use in the context of calculating aggregate 
choice probabilities, i.e. using aggregation over decision-makers. This topic is not discussed in 
this thesis; a thorough comparison of the various approaches that can be used is presented by 
Koppelman (1975). 

^Here, a purely cross-sectional notation is used, with one observation per individual. 
'^Working on the assumption that, unlike in a Universal Logit type model, the utility of alter-

native i is not affected by the attributes of other alternatives j ^ i. 
'The vector x.;,,, potentially also includes interactions with socio-demographic attributes of 

respondent n. 



2.2. Basic concepts 20 

a vector of parameters representing the tastes of decision-maker n, which is to be 

estimated from the data. The function / (/?„. is free from any a priori assump-

tions, and although, in many cases, the use of a non-linear formulation has clear 

advantages^, the majority of work in the area of discrete choice modelling rehes on a 

linear formulation, such that Vî n = Pn^i,n'̂ - The inclusion of the unobserved utility 

term, means that the deterministic choice process now becomes probabilistic, 

leading to a random utihty model (RUM), with the alternative with the highest 

observed utihty having the highest probability of being chosen^. 

It can be seen that the probability of decision-maker n choosing alternative i is 

now given by: 

^ i) . (2.2) 

With the unobserved part of utihty varying randomly across respondents, the mean 

of this term can be added to the observed part of utihty, in the form of an alternative-

specific constant (ASC). The vector e„ = {^i,ny • • , ̂ i,n} is now defined to be a 

random vector with joint density /(cn), xero mean and covariance matrix il, and 

by noting that the probability of alternative i in equation (2.2) is the cumulative 

distribution of the random term we can write: 

Pn{i) — I ^ 7^ ^) f (^n) (2.3) 

where I {•) is the indicator function which equals 1 if the term inside brackets is true 

and 0 otherwise. The probability is now given by a multi-dimensional integral which 

only takes a closed form for certain choices of distribution for e„,, where the choice 

of / (e„) has a crucial impact on the behaviour of the choice-model, as described in 

the remainder of this chapter. 

Equation (2.2) shows that the choice is invariant to the addition of the same 

constant to all utilities, or the multiplication of all utilities by the same constant, 

leading to the conclusion that only differences in utility ma,iter. Aside from allowing 

us to reduce the dimensionality of the integral in equation (2.3) from / to / — 1, this 

•''As shown in some of the apphcations in this thesis, and discussed for example by Gaudry & 
Wihs (1978a), and Mandel et al. (1997). 

'"hi this context, the recent discussions by R.ajaonarison et al. (2005) are of interest, looking 
at replacing the exponential function in GEV-based models by a deformed counterpart, where 
the estimates for the deformation parameter allow modellers to determine whether the linear-in-
attributes specification is appropriate. 

'With perfect knowledge of utility (leading to the rational model), the choice probalnlities 
can be expressed graphically as a step function, while, in a R.UM, the choice probability is a 
sigmoid curve, which approaches the step function as the variance of the unobservad part of utility 
decreases. 
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statement also indicates that the absolute levels of the ASCs are of no importance. 

As such, given the infinite number of possible values leading to the same differences 

in th(! ASCs, it becomes necessary to normalise the constants to avoid overspecih-

cation of the log-likelihood function. While the use of a constraint setting one ASC 

to zero has become common practice, Bierlaire et al. (1997) show that there are 

an infinite number of approaches that can be used to avoid over-specific at ion, with, 

despite yielding the same results, substantial differences in estimation performance 

between them. Here, it should be noted that, even after an appropriate normali-

sation, problems with identification can occur in the case of very large choice sets 

(and an accordingly high number of ASCs), such that a parameterisation of the 

ASCs may in some cases be preferable, even though this leads to a violation of the 

zero-mean assumption for the error-terms (c.f. Hess, Polak & Bierlaire 2005). 

.Just as we normalise the absolute level of utility through taking differences of the 

errors and normalising ASCs, we must also normalise the scale of utility, given that 

an infinite number of different scalings of utility will lead to the same model. The 

normalisation process depends on the defined relationship between the errors in the 

utility function, and becomes more complicated in models with more complex inter-

relationships between the errors. A detailed discussion of these issues, in the case 

of independent and identically distributed {iid), heteroscedastic, as well correlated 

errors is given by Train (2003). In the present discussion, except where otherwise 

stated, we work on the assumption of a homogeneous sample, with the scale of the 

underlying extreme-value term (in the Logit-based models) normalised to a value of 

1. 

2.3 Logit and P r o b i t models 

2.3.1 T h e M u l t i n o m i a l Logit m o d e l 

The Multinomial Logit (MNL) model is the most basic member of the family of 

GEV models discussed in Section 2.4, and remains one of the most-widely used 

model forms. The Logit form,via was first derived by Luce (1959); Marschak (1960) 

later showed that the model is consistent with utility maximisation and McFadden 

(1974) showed that the form of the Logit formula necessarily implies the use of the 

type I extreme value (Gumbel) distribution for the unobserved part of the utility. 

The MXL model, which was at first also referred to as the conditional Logit 

model, is the extension of the binary Logit model to the multinomial case. There 

are numerous approaches leading to the derivation of the Logit choice probabilities. 

Ben-Akiva & Lerman (1985) base their derivation on the one given by Domencich & 
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McFadden (1975), using the properties of the Gumbel distribution. Train (2003) on 

the other hand uses explicit integration of the multivariate cumulative distribution 

of the different for j i over the distribution of Q. A very similar approach was 

taken by McFadden (1974), using integration of the first derivative (with respect 

to its term) of the multivariate cumulative distribution of the Vj over the 

range of possible values of The MNL choice probability for alternative i and 

decision-maker n is given by: 

— i F - ' (2 4) 

where the fact that the choice probabilities no longer involve the error terms 

means that the model can be estimated and applied without the use of simulation. 

The assumption of iid errors is essential to the derivation of the Logit model; the 

model belongs to a class that Manski (1977) calls the "independent and identically 

d.istribv,ted random utility" models (IIDRU). The nature of the error-terms prevents 

a treatment of correlation in the errors across alternatives or observations for the 

same respondent, while the assumption of identically distributed errors prevents a 

treatment of random variations in tastes across respondents. 

It is well-documented that the behaviour of the MNL model is strictly governed 

by the independence from, irrelevant alternatives [IIA] assumption; the ratio of the 

MNL choice probabilities for two different alternatives i and j is independent of the 

attributes or even existence of other alternatives, leading to the conclusion that any 

changes in the probability of a given alternative draw equally from the probabilities 

of all the other alternatives in the choice set (i.e. equal cross-elasticities). According 

to Hausman & Wise (1978), L.J. Savage was the first author to fully recognise and 

also criticise the effects of the IIA property. Tversky (1972) attributes the first 

critique of Luce's use of the IIA assumption to Debreu (1960). Hausman & Wise 

(1978) argue with some justification that the IIA property should rather be called 

mdepentience o/ reZe'uoMt property or m&peMdence 

property. Another way of describing the IIA property (e.g. Vovsha 1997) is that, in a 

model exhibiting IIA over alternatives, all alternatives are equally independent from 

each other. McFadden (1974) describes the IIA property by noting that in the case 

of an additional alternative, the proportional decrease in the selection probabilities 

of the existing alternatives is equal to the selection probability of the new alternative 

(with an analogous situation when an alternative is removed). 

While there are many examples where the IIA property is not acceptable (c.f. 

Ben-Akiva & Lerman 1985), such that the MNL model should not be used, there 

are however also cases where IIA is a valid assumption, namely in those cases where 
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the single alternatives are virtually unrelated, or when the relationship (closeness) 

between any two alternatives is the same for all pairs of alternatives. 

One common mistake made in the existing MNL literature, and which McFadden 

et al. (1978, page 40) call unwarranted criticism of the MNL model, is to state that 

the IIA property is exhibited by the MNL model not only for individual choice 

probabilities and homogeneous population market shares, but also in the market 

shares observed in heterogeneous populations, whereas, due to the non-linearities in 

aggregation, this is clearly not the case. Another effect of the IIA property is that 

the coefficients estimated on a subsample of the original sample of alternatives are 

the same as those estimated on the original sample; this, in the case where the IIA 

assumptions is vahd, is an important asset for modelhng work in the presence of a 

very large or unbounded choice set, as for example in destination choice modelling. 

The approach involved with the use of a subset of alternatives does not require any 

a priori, analysis of the alternatives (as would be the case with other aggregation 

methods); the alternatives are simply sampled randomly from the choice set. 

It is important to test the validity of the IIA assumption for a given choice set, 

as a, MNL model fitted to a choice set that violates IIA can lead to very misleading 

results. For a detailed discussion, see McFadden et al. (1978), who give a number of 

different tests and look into the possible sources of violation of the IIA assumption. 

Here, an important observation is that the validity of the IIA assumption does 

not necessarily depend on the nature of the choice set, but can also depend on 

the specification of the observed utility function, in such that a poor specification 

of the observed part of utility can lead to correlation in the unobserved part of 

utility between alternatives, which can result in a violation of the IIA assumption. 

Suggestions for tests are also made by Hausman & Wise (1978), who advocate 

comparisons between Logit and Probit models. 

2.3.2 T h e M u l t i n o m i a l P r o b i t m o d e l 

Although not used in this thesis®, it is worth briefly looking at the main alternative 

to GEV-based model structures in discrete choice analysis, namely the Multinomial 

Prol^it (MNP) model. The underlying assumption of Probit models is that the error 

terms follow a joint Normal distribution with zero mean and covariance matrix 

E, with no a priori restrictions on the correlation structure in the distribution. 

This means that the Probit model allows for any degree of correlation between the 

single error terms and can henc(! rc^present v(!ry different substitution pattc^rns. The 

^The focus in the present thesis on GEV and GEV mixture models reflects current trends, but 
is also due to the fact that, for the air-travel behaviour analyses conducted in the applied ])art of 
the thesis, the cost of using Probit models would be prohibitively high. 
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absence of the assmiiption of identically distributed error terms means that taste 

variation can also be incorporated in Probit models. Additionally, repeated choices, 

such as those observed with panel data, can be fully incorporated in the existing 

framework of the MNP model, by allowing for correlation in the unobserved part of 

utility both between alternatives and between choice situations. 

The Probit model has its roots in psychology (Thurstone 1927); the work by 

Marschak (1960) led to its use as a utility maximising model. Hausman & Wise 

(1978) and Daganzo (1979) further discussed the Probit model, and especially its 

ability to represent very diverse substitution patterns, as well as random taste vari-

ation across the population and between choice situations. 

The MNP choice probabilities are given by: 

Pni'i') = P { ĵ,n — î,n < K:,n " Vj^n Vj 7̂  i) 

= / ^ (e,,n — ei,n < Vi,n ~~ i) <t> (^n) dc^, (2.5) 
f n. 

where J (•) is the indicator function and 

= 7̂  . (2.6) 

From equation (2.5), it can be seen that the calculation of the Multinomial Probit 

(MNP) choice probabilities requires the solution of an /-dimensional integral^ that 

does not have a closed form expression. This thus needs to be approximated through 

simulation or other numerical approaches (c.f. Train 2003, pp. 118-137). Initially, 

the high cost of estimation meant that the use of Probit models was restricted 

to choice situations with a very low number of alternatives. While recent gains 

in computer speed and estimation efficiency have somewhat lessened the problem, 

the use of the MNP model still imposes a heavy computational burden, as noted 

for example by Weeks (1997). Another discussion of the estimation of the MNP 

model is given by Horowitz (1991), who also discusses the issues involved with 

forecasting. Another issue that needs to be faced with the use of Probit models is 

that of identification, an issue discussed amongst others by Train (2003), and which 

is strongly related to that of a choice of an appropriate covariance structure (c.f. 

Hausman & Wise 1978), 

Finally, a major disadvantage of the Probit model, especially in the context of 

this thesis, is the requirement to use a Normal distribution for representing random 

taste heterogeneity, leading to significant losses in terms of flexibility, and issues 

"Respectively 7 — 1 after taking differences. 
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of interpretation in the case of counter-intuitive results suggesting large shares of 

urrongly-sigYied coefficient values. At least from the point of view of random taste 

heterogeneity, the continued development of GEV mixture models, which do not 

impose any restrictions on the choice of distribution, has further decreased the 

appeal of the MNP model. 

2.4 T h e G E V family and t h e N e s t e d Logit mode l 

The Generalised Extreme Value (GEV) family of models, introduced by McFadden 

(1978), is a set of closed form discrete choice models that are all based on the use 

of the extreme-value distribution, and which allow for various levels of correlation 

among the unobserved part of utility across alternatives. This is done through 

dividing the choice set into nests of alternatives, with increased correlation, and thus 

higher cross-elasticities, between alternatives sharing a nest. As such, alternatives 

sharing a nest are more likely substitutes for each other. The use of such a nesting 

structure means that GEV models are most easily understood in the form of trees, 

with the root at the top, elementary alternatives at the bottom, and composite 

alternatives, or nests, in between. 

The MNL model is the most basic member of this GEV family, using a single 

nest of alternatives, resulting in equal cross-elasticities across all alternatives. While 

in the MNL model, the error terms are distributed iid extreme value, in the general 

GEV formulation, the error terms follow a joint generalised extreme value distribu-

tion; the individual error terms follow a univariate extreme value distribution, but 

the error terms associated with alternatives sharing a nest are correlated with each 

other. This structure leads us away from the diagonal variance-covariance matrix 

of the MNL model. 

2.4.1 G E V choice probabi l i t i es 

The GEV theory is based on the use of a generating function, usually defined as 

G, which takes the vector ( e ^ . . . . , as its argument^°. A general notation is to 

set Yi — The arguments of G are then {Yi,... ,Yj), which are clearly strictly 

positive. McFadden (1978) defines the function G through four conditions; 

GEVi : G{Yi,..., y?) is non-negative 

GEV2: G{Yi,..., Y f ) is homogeneous of degree 1, 

meaning that G{qYi, . . . , a-Yj) = aG{Yi,..., 17). 

10 The a.syocia,tion with a given respondent n is dropped for now. 
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GEV3: G(Yi, ...,Yi) = +00, Vi e (1 , . . . , / ) 

GEV4: For any distinct ,%&) from (1 , . . . , the order partial derivative 

of G, is > 0 if fc is odd and is < 0 if A: is even. 
, ..;Oi 

McFadden (1981) adds a fifth condition: 

GEV5: Assume that G(Yi,. . . ,Yi) has parameters x and /?, such that the Yi are 

functions of these parameters (e.g. Yi = and that two choice sets 

B = (ai, . . . ,a/) and B' = (61,..., 6/,..., 6/+^) have alternatives with parame-

ter vectors given by xb — {xa^ Va,- G B} and xb' = {xbj E B'}. If 

these parameters satisfy the condition that Xâ  — xi,. for j = 1, . . . , / , then 

GEVs essentially states that the addition of any number of alternatives with zero 

utility does not affect the choice process. Daly (20016) notes that this might be 

necessary in order to ensure the symmetry of the partial derivatives. This condition 

was not included in the original definition of the GEV family (McFadden 1978) and 

was also ignored in most well-known texts (e.g. Train 2003); conditions GEV1-GEV4 

thus seem to be sufficient to dc.finc; a GEV model. 

Ben-Akiva & Francois (1983) generalise condition GEVg such that G{...) needs 

to be homogeneous of degree /x with /i > 0 rather than fj. — 1, as given by McFadden 

(1978). This means that G{aYi,..., aYj) = a'^'G{Yi,..., Yj), with /i > 0. 

The GEV choice probability for alternative i is now given by: 

where Q ( ] ^ , 

As mentioned above, the MNL model is the most basic member of the GEV 

family, using a single nest grouping together all alternatives. Its generating function 

is simply given by: 

/ 

(3 (T/i,...,}/}) = (2.8) 
i=l 

where the use of a single level of nesting (i.e. all alternatives nested below the root) 

is reflected in the use of single level of a summation. 

2.4.2 T h e N e s t e d Logit m o d e l 

The most basic example of a GEV model with an actual nesting structure is the 

two-level Nested Logit (NL) model, which is based on the use of mutually exclusive 
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subsets Sm {m = 1,..., M) of the choice set C, such that C = IJjILi Sm- This can be 

extended to multi-level NL models, in which the nests on any given level are again 

mutually exclusive, with the lower-level nests (grouping of elementary alternatives) 

themselves grouped into nests at higher levels of nesting. A general formulation, 

with multi-level choice probabilities, is for example given by Koppelman & Sethi 

(2000). 

A first version of the NL model was proposed by Domencich & McFaclden (1975), 

l)ut as Mc.Fadden (1978) notes, this model was using an 'unsatisfactory definition 

of inclusive value'. The correct form for the inclusive value term was developed by 

Ben-Akiva (1973, 19746), the consistency of the NL model with utility maximisation 

was later proved independently by Williams (1977), and Daly & Zachary (1978), 

with McFadden (1978) developing the GEV form. A more detailed history of the 

development of the NL model is given by Ortuzar (2001). 

The NL choice probabilities are represented through a product of successive 

choice probabilities that represent a chain from the root of the tree to the elemen-

tary alternative for which the probability is calculated. The utility of a composite 

alternative (nest) is determined by the utihties of those nodes that have the compos-

ite alternative as their direct ancestor, this way, the utility of elementary alternatives 

is propagated up through the tree. This is done through the use of a logsum term 

(also referred to as inclusive value or accessibility), where the logsum of nest m is 

given by the denominator of the conditional choice probability in nest m. A struc-

tural (logsum) parameter is associated with each node, determining the correlation 

between error-terms of the alternatives within the different nests. 

The generating function for a two-level NL model with M nests is given by: 

M / J \ 
G ( y i , , ^ , , y , ) = 5 ] . (2.9) 

•m=l \i&S,n J 

where A ,̂ is the logsum parameter associated with nest m. The notation used here, 

which is equivalent to that used by Koppelman & Sethi (2000) and Train (2003), 

corresponds to the interpretation of the logsum parameter as the independence para-

meter, with higher A ,̂ meaning lower correlation. Two alternative notations exist; 

with Am giving the structural parameter as used in equation (2.9), Ben-Akiva k, 

Bierlaire (1999) (amongst others) define the structural parameter as while Mc-

Fadden (1978) (amongst others) defines the structural parameter as 1 — Am,. The 

different notations yield the same results, but lead to different requirements in terms 

of the acceptable range for A ,̂ and the interpretation of the estimates of Am- In the 

present notation, we have used norm,a,lisa.tion from, the top, such that the structural 
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parameter at the root, Aq, is equal to 

The value of the different structural parameters is generally constrained to lie 

between 0 and 1, where values below 0 are inconsistent with utility maximisation 

while values above 1 are only consistent with utility maximisation for special ranges 

of the explanatory variables. In a two-level NL model, the correlation in nest m with 

structural parameter /\„, is given by 1 — A^. As described by Koppelman & Sethi 

(2000), the estimated parameters at each node are equal to the ratio between the 

actual structural parameters for that node and its immediate predecessor, and the 

range conditions apply to this ratio. At the highest level of nesting, this means that, 

in the case of normalisation from the top, the actual structural parameter needs to 

be lower than 1, while, for the remainder of the tree, the range requirements for the 

ratios of parameters prescribe decreasing structural parameters as we move down 

the tree^^. 

It can easily be seen from equation (2.9) that the NL model reduces to the MNL 

model (c.f. equation (2.8)) if all structural parameters are equal to 1. On the 

other hand, with all nesting parameters A ,̂ tending to zero, the choice among the 

alternatives in a nest becomes a deterministic choice such that the alternative with 

the maximum utility is chosen. Train (2003) notes that this effectively means that, 

as Am tends to zero Vm (while being positive), we move towards the elimination by 

aspects (EBA) model (c.f. Tversky 1972). 

In a NL model, the direct-elasticities for single-nest alternatives are the same 

as in the MNL model, as are the cross-elasticities for two alternatives not sharing 

a nest. However, for an alternative sharing a nest with other alternatives, the 

direct-elasticity is higher than in the MNL model, as is the cross-elasticity for two 

alternatives sharing a nest, where this stays constant across alternatives sharing a 

nest, such that IIA still holds within nests. Both direct and cross-elasticities increase 

with decreasing A .̂- Finally, in models with multiple levels of nesting, the correlation 

between two alternatives depends on the structural parameter associated with the 

lowest nest shared by the two alternatives, meaning that the cross-elasticities are 

higher when the lowest common nest is situated lower down the tree. 

A final point needs to be addressed before we proceed to more eomplicatcxl 

nesting structures. Indeed, for years following the introduction of the NL model. 

'^An alternative normalisation is to set one of the structural parameters at the lowest interme-
diary level equal to 1 {norrn.alisation from the bottom), and, although McFadden (1978) argues 
that this approach may lead to a simpler formulation, it seems to have become common practice 
to •iwrm.alise from, the top, i.e. to set Ao = 1. 

'^I.e. with A„ and A; giving the structural parameter in the upper and lower intermediary level 
in a three-level NL model, the ratios ^ and ^ need to be constrained between 0 and 1, such that 
we get the condition that 0 < A( < A„ < 1, where, with equality between the two parameters, the 
lower level of nesting becomes obsolete. 
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there existed two different forms of the model, a fact that was largely ignored, with 

the choice of approach often determined solely on the basis of the estimation software 

u s ( k 1 . The problem was first disc.ussed in detail by Koppehnan & Wen (1998). The 

difference between the structure presented here, which can also be referred to as the 

Utility Maximising Nested Logit (UMNL) model, and the alternative form, which 

Koppelman & Wen (1998) call the Non-normalised Nested Logit (NNNL) model, 

is that, in the latter, the exponent of Yj in equation (2.9) is equal to 1, rather 

than Koppelman & Wen (1998) note that the two models are equivalent only 

if all structural parameters are the same across nests, when the only difference 

between the models lies in the scale of utility. They state that, when this condition 

is not satisfied, the NNNL model is not consistent with utility maximisation as the 

addition of a constant to the utility of each elementary alternative is, in the absence 

of normalisation, not equivalent to the addition of a constant at the level of the nest. 

Although Daly (2001a) discusses cases where this reasoning may not apply, such as 

in the case where no coefficients are shared across nests^^, the normalised version 

has now essentially become established as the correct form. The issue described here 

has also been addressed by Hensher & Greene (2002), Carrasco & Ortuzar (2002), 

and Heiss (2002), who also focusses on implementation. 

2.5 Mode l s allowing for cross-nest ing 

The number of different GEV models introduced since the initial development of 

the GEV framework (McFadden 1978), and especially over the last few years, has 

shown the flexibility allowed by this structure. With the increases in complexity and 

flexibility however also comes an increased cost of estimation, along with increased 

risks of misspeciflcation. 

The characteristic that differentiates advanced GEV models from the basic NL 

model is that they allow for cross-nesting (multi-nest-membership). A cross-nesting 

structure can be used in the case where there is heightened substitution between 

alternatives A and B, as well as between alternatives A and C, without heightened 

substitution between alternatives B and C. There are many problems in which 

the extra flexibility of the CNL model has the potential to offer considerable im-

provements, and a number of recent applications (e.g. Bier lair e et al. 2001) have 

confirmed these theoretical advantages, even with a relatively low number of nests 

or alternatives. 

As well as allowing for multi-nest membership, the majority of cross-nesting 

models allow for differences in the degree of allocation of alternatives to nests, hence 

\See also Koppelman & Wen (2001). 



2.5. Models allowing for cross-nesting 30 

reflecting the different degrees of similarity between them. The more two alterna-

tives belong to the same nests, the higher will be the cross-elasticity between their 

probabilities. The cross-elasticity will be at its maximum if all inclusion factors are 

equal for the two alternatives; Vovsha & Bekhor (1998) note that this is analogous 

to the common nest situation in a NL model. 

The degree of cross-nesting allowed by the different models, and hence their 

flexibility, varies across models. While some of the existing GEV models offer major 

iniprovc'.ments in flexibility, others are simply nhnor extensions of existing models, 

often constructed for a very specific modelling application. The relationship between 

the different model forms is best illustrated by starting with a very general model 

form, and by showing how restrictions of this form yield the more specific model 

forms. This is the topic of the following few sections, where in each case, only the 

generating function of the models is reproduced; a more detailed description of the 

main models, including the actual choice probabilities, is again given by Koppelman 

& Sethi (2000). 

2.5.1 T h e Genera l i sed N e s t e d Logit m o d e l 

A very general version of a two-level GEV model is given by the Generalised Nested 

Logit (GNL) model of Wen & Koppelman (2001), which allows alternatives to be-

long to different nests, with different degrees of allocation for different nests, and 

differential levels of correlation in different nests. In the GNL model (and other 

cross-nested models), the choice probabilities (and hence also the elasticities) of an 

alternative are represented by a sum over nests, taking into account the differences 

in the membership (allocation) to different nests. Only nests for which an alter-

native has a strictly positive allocation parameter are included in this sum, while 

for cross-elasticities, strictly positive allocation parameters are necessary for both 

alternatives considered. 

The generating function of the GNL model is given by: 

G ( y : . - . . . y i ) = E • p . io ) 
m.=l \jESm, / 

where is the allocation parameter for alternative j and nest m, and where, 

primarily for reasons of interpretation, we set 0 < < 1 Vj, rn and ~ 

IVj. 

By imposing certain restrictions on the structural parameters and allocation 

parameters, the GNL model can be adapted to represent all existing two-level GEV 

models. The MNL model is a special case of the GNL model, using a single nest. 
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with structural parameter equal to 1 and allocation parameters equal to 1 for all 

alternatives. In a two-level NL model, each alternative belongs to one nest only; the 

allocation parameter of a given alternative is thus equal to 1 in this nest, and 0 in 

all other nests. 

The GNL model is restricted to a two-level structure, by using only two levels 

of summation in equation (2.10). This can be seen as a serious restriction in cases 

where a multi-level structure is required. Wen & Koppelman (2001) discuss how the 

GNL model can be used to approximate a multi-level NL structure by a two-level 

cross-nesting structure; the precision of this approximation however clearly depends 

on the application at hand. 

Wen & Koppelman (2001) note that there exist two models that are very similar 

to the GNL model; these are the Choice Set Generation Logit Model (GenL or 

GenMNL, referred to as General Logit by Koppelman & Sethi 2000 and Wen & 

Koppelman 2001) and the Fuzzy Nested Logit (FNL) model. The GenL model was 

proposed by Swait (2001a) with the aim of simultaneously evaluating choice set 

generation and choice within the generated choice set, where, mathematically, the 

only difference to the GNL model comes in the form of strict allocation parameters. 

The FNL model addresses the GNL model's biggest shortcoming in that it allows 

for multi-level models. There is no published material on the FNL model; the 

only available material (Vovsha 1999) describes an application of the FNL model, 

defining the model as the "full cross-nested Logit" model, in the context of combined 

residential place and workplace choice. The generating function of this FNL model is 

given by a sum of two Gross-Nested Logit (GNL) generating functions, the resulting 

model structure essentially consists of two individual GNL models, which have the 

same elementary alternatives (one with residential choice at the upper level and one 

with workplace choice at the upper level). This leads to a three-level FNL model, 

with cross-nesting at the lower level. Extensions to higher levels of nesting are 

possible, but such a form is not given exphcitly by Vovsha (1999). 

2.5.2 T h e Cros s -Nes t ed Logit m o d e l 

The first use of the notion "Cross-Nested Logit" is generally attributed to Vovsha 

(1997); however, the history of the CNL model reaches back to the initial devel-

opments of the GEV family. A predecessor of the common CNL model form was 

proposed by McFadden (1978), where each alternative belongs to every nest, and 

where the allocation parameters can vary across nests, but are required to stay con-

stant across all alternatives in the same nest, leading to a generating function given 
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by: 

M 
1 

= 1 , (2.11) 

m=l \j&S,n J 

with > 0 . 

The non-normalised CNL model 

The CNL model proposed by Vovsha (1997) was developed for the modelling of mode 

choice. Unlike McFadden (1978), Vovsha (1997) allows the allocation parameters to 

vary over alternatives, but on the other side requires the structural parameters to 

be the same for all nests. The generating function for this model is given by: 

= , (2.12) 

m=l \j€Sm / 

with > 0 Vj, ajid = 1V;. 

Aside from the use of a common structural parameter A across all nests, and 

the special form for the constraint on the allocation parameters, the other main 

characteristic of this model is the absence of the ^ exponent inside the sum over 

alternatives sharing a common nest. While the absence of this exponent has been 

picked up in the existing hterature, there has been little or no discussion as to 

the reasons for this form of the generating function. However, the absence of the 

exponent can be quite easily explained by the fact that the derivation of the CNL 

model given by Vovsha (1997) is based on the NNNL model rather than the standard 

NL model. The fact that this version of the CNL model lacks the ^ exponent means 

that it cannot be seen as a sp(;cial ease of the GNL model without some redefinition 

of the GNL parameters. 

The normalised CNL model 

A (lift'erent version of the CNL model was developed by Vovsha &: Bekhor (1998) 

for the modelhng of route choice; this version includes the j exponent in the inner 

sum, and can thus be referred to as the normalised CNL model, essentially being a 

version of the UMNL model that allows for cross-nesting. The generating function 

of this model is given by: 

M / \ 

<7(n n ) - E I E I . (2.13) 
m=l \jeSm J 
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with the condition on the allocation parameters simplified to — I V j . 

The CNL model given by Vovsha & Bekhor (1998) can be constrained to be equal 

to a NL model with equal structural parameters across nests, and can similarly be 

seen to be a special case of the GNL model, with all structural parameters taking 

on the same value. 

Alternative CNL model forms 

Various alternative forms of the normalised CNL model have been proposed. These 

include the model given by Papola (2004), which, unlike the two models given by 

Vovsha (1997) and Vovsha & Bekhor (1998), allows the structural parameters to be 

different in different nests, making the model more general and essentially equivalent 

to the GNL mode. Papola (2004) also discusses the flexibility of the CNL model 

in terms of correlation structure, stating that for any given homoscedastic variance-

covariance matrix, there is a specific CNL model counterpart. 

Ben-Akiva & Bierlaire (1999) (further expanded by Bier lair e 2005) give a for-

mulation of the general CNL model that generalises some of the other existing 

formulations, by making fewer assumptions about the relationship of allocation pa-

rameters across nests. This version of the CNL model is characterised by the partial 

al3sence of the exponent in the inner sum of the generating function, where the 

exponent ^ is used only for Yi and not for This partial absence, which is 

essentially the only difference with the GNL model, hampers comparisons between 

the models, leading to a requirement for the redefinition of some of the variables and 

parameters in the GNL model to achieve equivalence. Bierlaire (2005) shows that 

conditions on the allocation parameters (i.e. sum to 1) used in previous derivations 

are not necessary for model validity. This revelation is similar to that made by Wen 

& Koppelman (2001) in the context of the GNL model; constraints on the sum of 

the allocation parameters are not strictly necessary but can facilitate interpretation 

and make the models more intuitive, aside from enabling parameter identification. 

2.5,3 T h e L ink -Nes ted Logit m o d e l 

The Link-Nested Logit (LNL) model, proposed by Vovsha & Bekhor (1998), is a 

specialised model for route choice based on the normulised CNL model. The spa-

tial overlap of routes is represented by a nesting structure that allows for different 

degrees of nest allocation, depending on the extent of overlapping. The links (i.e. 

sections of path) where the individual routes overlap become the nests, the alloca-

tion parameters reflect the proportion of the route length (or time) spent on each 

link. The LNL model uses a maximum degree of nesting, such that the structural 
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parameters are close to zero. This means that two routes are treated as very similar 

on the section of the path where they overlap, with the obvious effect this has on 

the cross-elasticities. 

2.5.4 T h e P a i r e d C o m b i n a t o r i a l Logit m o d e l 

The Paired Combinatorial Logit (PCL) model (Chu 1989, Koppelman & Wen 2000) 

uses a two-level nesting structure with a single nest for each pair of alternatives, 

leading to 2\(i-2)\ different nests. Equal proportions of an alternative a,re assigned 

to each of the I — 1 nests that the alternative belongs to; the PCL model is thus a 

restricted version of the GNL model, with equal allocation of an alternative to its 

/ — 1 nests^^. The generating function of the PCL model is given by: 

G ( n , = ^ g ( ( a y . ) ^ + , (214) 
i=\ j=i+l 

where A,, defines the structural parameter associated with the nest containing al-

ternatives i and j. 

The main characteristic of the PCL is that any two alternatives share exactly 

one nest, whereas in the other cross-nesting models, two alternatives can share 

multiple nests. Koppelman & Wen (2000) note that while both the NL model and 

the PCL model are generalisations of the MNL model, neither model is a restriction 

of the other model. They also observe that, while the PCL model achieves a more 

important relaxation of the IIA property than the NL model, the upper limit on the 

cross-elasticities in the PCL model is lower than in the NL model, given the equal 

allocation of an alternative to each nest in the PCL model. 

2.5.5 T h e P a i r e d G N L m o d e l 

Wen & Koppelman (2001) also propose the Paired GNL (PGNL) model, which im-

poses no restrictions on the allocation parameters. By allowing for different degrees 

of association bc^tween different alternatives, including the possibility of zero associ-

ation between some alternatives, important gains in flexibility are obtained, which 

however need to be offset against heightened estimation cost. 

^^The original PCL model sets = 1 for all nests m that alternative i belongs to, while 
the conditions on the allocation parameters in the GNL model lead to values of j ^ . The choice 
probabilities in the two models are identical, as the use of equal allocation parameters for all nests 
means that they cancel out. 
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2.5.6 T h e O r d e r e d Genera l i sed E x t r e m e Value m o d e l 

Another well-known member of the family of Cross-Nested Logit models is the Or-

dered Generalised Extreme Value (OGEV) model, even though this model was intro-

duced some time before the first use of the term "Cross-Nested Logit". The OGEV 

model was proposed by Small (1987) in the context of departure time (or arrival 

time) choice modelling. The OGEV model is another example of a semi-normalised 

model, in that it uses the inverse of the structural parameter as an exponent for the 

arguments of the generating function, but not for the ahocation parameters. The 

generating function of the OGEV model is given by: 

M 

m=l 

^ _l_ 

J^Sm 
(2.15) 

where the nests are defined such that they contain up to L + l contiguous alternatives, 

with nest m defined as: 

'S'm = {; G { 1 , 7 } I m - I, < j < m} (2.16) 

In the OGEV model, allocation parameters do not depend on the nest, but on the 

position of an alternative within a nest. As such, the number of different weight 

parameters (i.e. allocation parameters) is equal to L-\-l (the L-l-l different positions 

that an alternative can take), where Small (1987) imposes the conditions that all 

weights are non-negative and sum to 1. 

The OGEV model nests adjacent time intervals, where the number of alternatives 

in a nest depends on the specification. The fact that neighbouring time intervals 

necessarily share more nests than non-neighbouring nests increases the correlation 

and cross-elasticities between such alternatives. 

2.5.7 T h e Pr inc ip les of Di f fe ren t i a t ion m o d e l 

Another model that is sometimes grouped together with other models of the family 

of cross-nested models is the Principles of Differentiation (PD) model, which was 

developed by Bresnahan et al. (1997) to overcome the problems with the sensitivity 

of the NL model to the order of the levels of nesting. 

The PD model works by clustering alternatives according to their attributes, 

known as principles of differentiation. A certain number of dimensions are used 

for nesting, where each dimension defines an aMribute of the alternative, with the 

subnests in a nest representing the different values that the respective attribute can 

take. In the resulting model, each alternative belongs to exactly one subnest in each 
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such group. To avoid the use of multi-level nesting, Bresnahan et al. (1997) then de-

fine the model as a weighted sum of individual two-level NL models, with the weights 

assigned to the different two-level NL models indicating the relative importance of 

the different attributes in the calculation of probabilities and cross-elasticities. This 

makes the model mathematically (though not conceptually) equivalent to a two-level 

cross-nested model, with the weight parameters equating to allocation parameters 

(see also Wen & Koppelman 2001). 

The generating function for a PD model with M dimensions (principles of dif-

ferentiation, i.e. number of two-level NL models used in weighted sum) is given 

by: 

M 

G ( y i , . . . , y z ) = E 
m,=l 

0!r E y , " (2.17) 

where j E {k,m.) defines the group of alternatives that exhibit aspect k as the 

value of attribute m, while represents the weight assigned to dimension m, with 

Bresnahan et al. (1997) imposing the constraint that am = 1-

The model can be rewritten as a restricted version of the GNL model on the basis 

that the structural parameter is the same for all "subnests" of nest m and that 

the weight parameters are the same for all elementary alternatives that belong 

to (subnests of) nest m. This then yields a generating function of the required form, 

with two levels of summation: 

E 
{m,k\l<m<M Szk£vi) 

E M y (2.18) 

The fact that the weight parameters are identical for all alternatives in a given 

nest makes the model similar to the McFadden (1978) model, while the fact that 

higher weights are assigned to more important attributes (thus giving them more 

discriminatory power) makes the model conceptually similar to the EBA model. 

2.6 Mult i - level G E V models 

As Daly (20016) notes, while the structure of multi-level NL models has frequently 

been discussed and while such models have occasionally been used in practice, there 

is a distinct lack of more advanced multi-level GEV models. Indeed, except for the 

applied version of the FNL model given by Vovsha (1999), all advanced GEV models 

discussed so far in this section use a classical two-level structure with choice of nest 
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on top of choice of elementary alternative. The absence of such multi-level advanced 

GEV models may in part be seen as a reflection of the fact that the flexibility offered 

by cross-nested structures allows for many multi-level processes to be approximated 

closely by two-level structures. 

Besides the "full cross-nested Logit" model, a notable exception to the two-level 

GEV structure is the MNL-OGEV model proposed by Bhat (19986). This model 

is used for the simultaneous choice of mode and departure time for shopping trips. 

The model uses a MNL model for mode choice at the upper level, with an OGEV 

model for departure time choice attached to each 'leaf of the upper tree. Each mode 

is thus associated with every possible departure time. The generating function of 

this model is given by: 

G (Yi,i,. • •, Yi^j,..., Yi^i;..., Yi^j) — ^ 
1=1 

j+i 

E 
.7 = 1 

1 i 1 1 
- y . , + -Y"-
9 ^ O J,.7 

(2.19) 

where Yî j defines the generating function variable associated with the mode and 

j"'' departure time, with the conditions that = Yi^j+i = 0 (as in the OGEV 

model). The structural parameters are constrained to be the same for all nests on 

a given level, where, with used for the mode level and Xd used for the departure 

time level, we have 0 < < A,„, < 1 . In the formulation in equation 2.19, the 

OGEV sub-model allows for correlation only between directly adjacent time-periods. 

Finally, it can be seen that the presence of three levels of nesting means that the 

MNL-OGEV generating function in equation (2.19) cannot be written as a special 

case of the GNL generating function. 

The version of the FNL model given by Vovsha (1999) is very similar to the 

MNL-OGEV model, as it is essentially a CNL model grafted onto the leafs of a 

MNL model. As the OGEV model is a special version of a CNL model, the MNL-

OGEV model can thus be seen as a restricted version of the FNL model, a fact that 

also illustrates the greater flexibihty of the FNL model when compared to the GNL 

model. 

2.7 Recurs ive G E V models 

One of the major issues with GEV models is that of efficient estimation, a compli-

cation that arises especially in the case of multi-level or cross-nesting structures. In 

this context, an appealing approach comes in the form of a recursive formulation of 
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the model structure^^. 

2.7.1 Recu r s ive N L mode l s 

The development of such an approach was first discussed by Daly (1987) in the 

context of the NL model, i.e. in the absence of cross-nesting. In the recursive 

formulation, a hierarchy (or tree) function t is defined such that t{s) returns s', the 

tree element (node) located directly above s: 5 ' is thus the nest containing s. Two 

sets of nodes are defined for each node, one containing its ancestors (up to but not 

including the root) and one containing its siblings (nodes with the same "immediate 

ancestor"). For any node in the tree (elementary or composite), the probabihty of 

choosing the alternative represented by this node is now equal to the probabihty 

of the alternative having higher utility than any of its sibhngs. The likelihood of 

an elementary alternative is given by the product of the probabilities of all nodes 

included in the path going from the elementary node to the upper-most non-root 

element in the path. This form of the likehhood, and of the resulting log-likelihood, 

greatly facilitates estimation of the NL model. Daly (1987) develops the recursive 

approach in the context of the NNNL model, but Daly (2001a) shows that the 

approach is also applicable for the "normalised" NL (UMNL) model. In either case, 

the approach is free from any assumptions regarding the number of nesting levels. 

2.7.2 G e n e r a l recurs ive G E V mode l s 

While the recursive approach discussed above has the potential to offer significant 

savings in the estimation of (multi-level) NL models, it does not allow for cross-

nesting and can thus not represent any of the more general GEV models. The 

approach discussed by Daly & Bierlaire (2005), which is a combination of the work 

of Daly (20016) on the Recursive Nested Extreme Value (RNEV) model, and Bier-

laire (2002) on the Network GEV model, overcomes these shortcomings and is able 

to represent any existing GEV model. Defining D to be the set of all nodes in 

the tree (elementary and composite), this approach uses a non-circular single-root 

function N{m), which, for a non-elementary node m {m E D\E, where E is the set 

of elementary alternatives), returns the elements (either elementary or composite) 

contained in the nest represented by node m. The use of a single root, together with 

a condition of non-circularity, implies that for every elementary alternative e, there 

exists at least one sequence leading from the root to the elementary alternative c. 

'̂""Tlie presentation of the full details of the mathematical implementation of these methods is 
very lengthy, and as such, is not repeated here; a complete description of the models can be found 
in Daly (1987) and Daly & Bierlaire (2005). 
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In the inverse direction, this sequence is equivalent to the ancestor sequence used by 

Daly (1987). However, in the new model, for any given node m, there is no require-

ment that the parent function t{m) yields a single node from the upper level; the 

absence of this requirement means that the model allows for cross-nesting. The fact 

that the model also allows for multiple levels of nesting means that it generalises all 

existing GEV models, including the GNL model. 

The choice probabilities in a recursive model allowing for cross-nesting are ef-

f(u:tiv(;ly sums of recursive NL probabilities as defined by Daly (1987), accounting 

for the different ways of moving between the root and an elementary alternative, 

due to the presence of cross-nesting. The individual sequences leading from the root 

to the different elementary alternatives can be seen as alternatives in an extended 

recursive NL model. The final choice probability of an alternative i is then simply 

the sum of the probabilities of all those alternatives (in the recursive NL model) 

that represent sequences to the elementary alternative i in the combined model. 

As the model is thus a sum of recursive NL models, it generalises the NL model, 

with no restriction on the number of levels of nesting. By allowing for cross-nesting, 

the resulting two-level model is identical to the GNL model, hence also generalising 

all the models that GNL generalises. The fact that the model is not limited to a 

two-level structure however means that it is more flexible than the GNL model, and 

is also able to represent the MNL-OGEV model. The model is thus very similar in 

flexibility to the FNL model, although it is inherently different from this model, due 

to its recursive approach. 

2.8 Some a l t e rna t ive mode l fo rms 

Several other model structures deserve to be mentioned briefly. In this section, 

we look specifically at three types; heteroscedastic extreme value models (Section 

2.8.1), models related to the Universal Logit model (Section 2.8.2), and choice set 

generation models (Section 2.8.3). 

Two additional models that could be included here are the Covariance Nested 

Logit (COVNL) model of Bhat (1997), and the Elimination by aspects (EBA) model 

of Tversky (1972). The COVNL model is not discussed here as a detailed descrip-

tion is presented in Chapter 7, which is dedicated entirely to the representation of 

covariance heterogeneity. For the EBA model, space considerations and the scope of 

the thesis led to the decision to avoid a detailed description of the model; however, 

the similarity between the EBA model and GEV structures is a topic of continuing 

interest (c.f. Batley & Daly 2003). 
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2.8.1 M o d e l s w i t h he t e roscedas t i c e r r o r - t e r m s 

Although not central to this thesis, a topic of great importance is the treatment of 

heteroscedasticity in discrete choice models, either in terms of differences in error 

variances across alternatives or across individuals. Aside from the use of an error-

components formulation (c.f. Section 2.9.1), an alternative approach is based on a 

modified specification for the scale parameters of the error-terms. 

Bhat (1995) presents such a Heteroscedastic Extreme Value (HEV) model based 

on a MNL structure, with different scale parameters for different alternatives. Here, 

the resulting model does not possess a closed form expression, leading to a more 

expensive estimation process, which can however be justified in the presence of 

significant levels of heteroscedasticity, which could lead to biased results in models 

based on a homogeneous error-structure. Hensher (1999) exploits the approach 

in the search for appropriate nesting structures; here, the insights obtained with 

regards to the variance of the error-terms for the different alternatives can provide 

some guidance for the specification of a nesting structure. 

Another treatment of heteroscedasticity arises in the case of datasets from two 

separate sources, with the potential of different scale factors for the two groups. 

The most common example of such a scenario comes in the combined use of Stated 

Preference (SP) and Revealed Preference (RP) data. Bradley & Daly (1996) address 

this issue with the help of a NL structure based on single-alternative nests split 

into two groups, according to the data-source, where the nesting parameter stays 

constant across nests within the same group. This approach can clearly also be used 

to account for heteroscedasticity across different population groups. As suggested 

by Munizaga et al. (2000), the model can be described as the Single Element Nested 

Logit (SENL) model. 

Accounting for heteroscedasticity across individual respondents, as opposed to 

groups of respondents, poses a more formidable task, given that it becomes essen-

tially impossible to estimate individual-specific scale parameters. Here, one example 

of a possible approach is that of the Heterogeneous Conditional Logit (HCL) model 

of Steckel & Vanhonacker (1988), where the scale parameter of the underlying Logit 

model is distributed across individuals according to a Gamma distribution, where a 

closed form version of the model is obtained with the use of an Exponential distri-

bution. An alternative approach in this context is to relate the scale parameter to 

individual-specific attributes, as discussed by Swait & Adamowicz (1996, 2001) in 

the development of their Heteroscedastic Multinomial Logit (HMNL) model. 

A discussion of the representation of heteroscedasticity, across observations as 

well as across alternatives, is given by Munizaga et al. (2000), who also offer a 

comparison of different model structures (MNL, NL, SENL, HEV and MNP) on 
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simulated data with heteroscedasticity between two groups of alternatives, or two 

groups of respondents. The results show a relative level of robustness of the MNL 

model in the case of heteroscedasticity across observations, which is however not the 

case when dealing with heteroscedasticity across alternatives, where, in addition to 

the MNP model, the NL model offers good performance. The performance of the 

MNL model in the presence of heteroscedasticity across observations should however 

be put into context by the use of just two segments of the population, and the use 

of common coefficients in the two groups in the generation of the data. 

2.8.2 T h e Unive r sa l Logit fami ly 

In the models described thus far in this chapter, the utility of an alternative i 

depends only on attributes of that alternative. A number of models, described as 

Universal Logit (or Mother Logit) models, have been developed which relax this 

restriction. 

The Universal Logit (UL) model was first introduced by McFadden (1975), based 

on an underlying MNL model, with the probability for alternative i given by: 

Q9i,n 
P^(i) = ^^7 . (220) 

E , . i t-®'" 

where cjj^nyj can be a function of the attributes of all alternatives in the choice set. 

Although the UL model has been used in several applications (e.g. McFadden et al. 

1978, Timmermans et al. 1991, Lafferiere & Gaudry 1993), the popularity of the 

model has been hampered by the doubts expressed by McFadden et al. (1977) in 

relation to the model's consistency with utility maximisation, and the difficulty of 

finding an appropriate specification of utility (c.f. Ben-Akiva 1974a). 

Another example of a model belonging to this wider family is the Dogit model 

(introduced by Gaudry & Degenais 1978), which allows some or all of the ratios 

of alternatives to violate the IIA property, thus dodging the dilemma of choosing a 

priori between a model that is fully constrained by the IIA assumption and a model 

which is entirely free of the assumption. The Dogit model is also popular because of 

an alternative interpretation, which divides the market share of each alternative into 

two parts; one part (captivity level) satisfying a compulsive need by the decision-

makers, and another part that is in competition with other alternatives. The choice 

probability for alternative i is then given by; 
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where ^ in equation (2.21) is a (positive) captivity term, which satisfies 

a compulsive need for alternative 2, while the remaining share — / — is spent 

according to the MNL model. This not only means that the minimum market share 

for an alternative is no longer necessarily zero, but also allows for two alternatives 

with identical attributes to have different market shares. The Dogit model has rarely 

been used in practice, with one example of an application being Gaudry & Wills 

(19786). 

The Dogit model was generalised by Swait & Ben-Akiva (1987), in the form of 

the Parameterised Logit Captivity (PLC) model (originally developed by Ben-Akiva 

1977), in which the captivity level parameters are allowed to vary over observations, 

as a function of the attributes of the decision-maker and the alternative in the 

current observation. The development of this model is linked to the issue of choice set 

generation, from the point of view that the model does not represent a choice process 

on a free choice set, due to the presence of captivity (c.f. Swait & Ben-Akiva 1987). 

Finally, Fry & Harris (2002) have recently proposed the Dogit Ordered Extreme 

Value (DOGEV) model, which combines the DOGIT model with an OGEV model, 

thus accounting simultaneously for an ordering of the variables and the presence of 

captivity. 

Another model belonging to the UL family is the C-Logit model developed by 

Cascetta et al. (1996) in the context of route choice modeUing. The C-Logit model 

uses a "commonality factor" which is subtracted from the utility of a certain path 

linking the origin and the destination. The "commonality factor" measures the 

similarity of the path with other possible paths linking origin and destination. The 

higher the "commonality factor" of a path, the lower will be the (individual) utility 

of this path, and hence also its choice probability. 

With / being the set of possible paths hnking origin and destination, we can 

measure the probability of decision-maker n choosing path i as: 

pVi,n. — CFi 

where CFi is the "commonality factor" for path %, and where different specifications 

for CFi lead to different forms of the C-Logit model and hence also different choice 

probabilities (Cascetta et al. 1996). 

2.8.3 Choice set gene ra t ion mode l s 

Choice set generation models form an interesting class of sub-models in the field of 

discrete choice modelling. Such models acknowledge the fact that not all alternatives 
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will be considered by all respondents. This can be achieved either in the context of 

the discussions in Section 2.8.2 in terms of an individual being captive to a specific 

alternative, or on the basis of the two-stage choice paradigm of Manski (1977), with 

probabilistic choice set generation in the first step, followed by the choice of an 

alternative from this choice set in the second step. 

Aside from the PCL model (Swait & Ben-Akiva 1987) mentioned in the previous 

section and the GenL model (Swait 2001a) discussed in Section 2.5.1, models ac-

counting for differences in choice set formation are discussed for example by Swait & 

Ben-Akiva (1985), Andrews & Srinivasan (1995), and Ben-Akiva & Boccara (1995). 

The study of Basar & Bhat (2004) is of special interest in the current thesis, given 

its application to airport choice modelling, and will be touched on in more detail in 

SecUonS.S. 

2.9 Mode l s using m i x t u r e d i s t r ibu t ions 

Over recent years, the Mixed Multinomial Logit (MMNL) model has become one 

of the most widely used tools in the area of demand modelling. In this section, we 

first look at the existing body of work on MMNL models, before proceeding to the 

more general family of GEV mixture models. 

2.9.1 T h e M i x e d M u l t i n o m i a l Logit m o d e l 

The first applications of the MMNL model came in the work of EPRI (1997), Boyd 

& Mellman (1980) and Cardell & Dunbar (1980). However, the MMNL model has 

only become widely used over the past five to ten years, as the cost of estimation 

was previously prohibitively high. 

The choice probabilities in the MMNL model are calculated as the integral of 

MNL choice probabilities over the assumed distribution of random terms. Formally, 

whereas in the MNL model, the utility that decision-maker n gets from choosing 

alternative i is given by 

Uî n = + £i,n; (2.23) 

the corresponding utility in the MMNL model is given by: 

Ui^n — ̂ i,n 4" Vi,n ^i,n- (2.24) 

In both cases, the s terms are assumed to be distributed iid extreme-value over 

alternatives and decision-makers. But, whereas in the MNL model, this leads to a 
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closed form expression for the choice probabihties (c.f. Section 2.3.1), the presence 

of the additional vector of error terms (grouping together < . . . , 7̂ ; ^ >) hi 

the MMNL model results in general in an integral without a closed form expression. 

As such, the model needs to be estimated with the help of numerical processes, 

where typically, simulation is used. This issue is not discussed here, but is the topic 

of Chapter 3. 

In the MMNL model, the mean of ?7„, is set to be zero, and no a priori con-

straints exist on the distribution of r/,„; the researcher is free to make an appropriate 

and convenient choice. The resulting model form is very flexible, and free of any 

restrictive assumptions, such as IIA. For a given choice of distribution / ( ) for i]n, 

with parameter vector H, the MMNL choice probabihty is given by: 

f%(7:) = / (?: 177^) / (77̂  I ri) dT;̂ , (2.25) 
J-'hi 

where {i | -qn) is the MNL choice probabihty for alternative i and decision-maker 

7i, conditional on r]n-

Two conceptually different, yet mathematically equivalent modelhng approaches 

can arise from this notation; the Random Coefficients Logit (RCL) model, and the 

Error-Components Logit (ECL) model. The former exploits the error structure to 

allow for random taste heterogeneity, while the latter allows for inter-alternative 

correlation and heteroscedasticity. The two approaches can also be combined to 

allow jointly for random taste heterogeneity, inter-alternative correlation, and het-

eroscedasticity. We will now look at the two approaches in turn. 

In the RCL formulation, some elements in the parameter vector /?.„ used in the 

calculation of the utility are assumed to be randomly distributed rather than fixed, 

such that the error term r/.„ represents the deviation from the mean observed utility 

K caused by the fact that /?„ is no longer the same for all decision-makers. As such, 

we obtain: 

(/). I d/)., (2.26) 

where [i \ j3n) is now the MNL choice probability for alternative i and decision-

maker n, conditional on the vector of taste-coefficients which is distributed 

across the population according to f {Pn \ ^̂ )- Generally, a continuous distril)ution 

will be used for / (Ai. I ̂ ) ; the use of discrete distributions is discussed in detail 

in Chapter 5. This specification can also be adapted to allow for repeated choice 

(i.e. panel data), where the typical approach, which is addressed in several places in 

this thesis, is to assume that the tastes vary across respondents, l^ut stay constant 
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across the observations for a given respondent. Along the same line, it is possible to 

account for the effects of past experience on decision-makers' tastes, a subject that 

is however addressed less frequently in the existing literature. With the random, 

coefficients specification, the crucial part of the model formulation is the choice of 

which coefficients are to be randomly distributed, and the choice of what random 

distributions should be used. This issue is the topic of extensive discussions in 

Chapter 4, which also includes a summary of existing work. Applications of the 

RCL formulation include Algers et al. (1998), Revelt & Train (1998), Bhat (20006), 

and Han et al. (2001). 

The second (and less frequent) interpretation of the MMNL model is that of the 

erroi"-components specification. Here, the utility of an alternative i for decision-

maker n is rewritten as: 

Ui^n = Vi,n + (2.27) 

where and are defined as in the context of the corresponding MNL model. 

The two additional terms in the utility function define the error-components struc-

ture; 7„, is a vector of random coefficients with a mean of zero and a covariance 

matrix E, which is generally specified to be diagonal, and where typically, a Nor-

mal distribution is used, while is a vector of 0 and 1 terms which determine 

what error-components enter the utility of alternative i. The choice probability for 

alternative i is then obtained by integration over the distribution of 7„, with: 

;)»(%) - / , 46 (-y. I 0, dlTn, (2/28) 

where ( j ) (7„, | 0, S) is the joint Normal density function of the elements in 7n, with 

mean 0, and covariance matrix S. 

If a given element is equal to 1 jointly in Zî n and correlation is intro-

duced between the error-terms of the utilities for the two alternatives, with the 

extent of correlation depending on the variance of the associated error-component 

term in 7„, The inclusion of different error-components in different utilities induces 

heteroscedasticity, where controlled heteroscedasticity can be introduced for single 

alternatives by ensuring that the associated dummy term in Vj is equal to 1 

only for the concerned alternative It can be seen that, with Zj.n, containing only 

zero entries Vj, the model reduces to MNL. In practice, such a treatment of corre-

lation by an ECL structure can come at the cost of a high number of dimensions 

" 'The issue of controlled versus uncontrolled lieteroscedasticity is discussed in more detail in the 
context of the ECL applications in Appendix A. 



2.9. Models using mixture distributions 46 

of integration, as well as important issues of identification, which are addressed in 

detail by Walker (2001), Walker et al. (2003), and also Bowman (2004). Two recent 

applications of the ECL formulation are given by de Jong et al. (2003), and Hess, 

Polak, Daly & Hyman (2004). 

Finally, a number of applications have also looked at incorjDorating deterministic 

heterogeneity components into the distribution of the random terms, either in the 

mean or the standard deviation, hence allowing the modeller to relate the variation 

of random coefficients to individual-specific observed attributes. This can be useful 

in an RCL as well as ECL context. A recent example of such an approach is given 

by Greene et al. (2005). 

2.9.2 G E V m i x t u r e mode l s 

As mentioned in Section 2.9.1, the RCL and ECL approaches can be combined 

straightforwardly, allowing for the joint modelling of random taste heterogeneity and 

inter-alternative correlation. This however comes at the cost of important issues in 

identification, and heightened cost of estimation and application when using error-

components for the representation of correlation. Furthermore, although the MMNL 

model has the theoretical property of being able to approximate other random utihty 

models arbitrarily c l o s e l y t h i s may not always be as straightforward in practice 

(c.f. Garrow 2004). 

While integration over mixture distributions is necessary in the representation 

of continuous random taste heterogeneity, this is not strictly the case for inter-

alternative correlation. Indeed, just as, conditional on a given value of the taste-

coefficients, a RCL model allowing for random taste heterogeneity reduces to a MNL 

model, a model allowing for inter-alternative correlation in addition to random taste 

heterogeneity can in this case be seen to reduce to a given GEV model (assuming 

that an appropriate GEV model exists). As such, the correlation structure can be 

represented with the help of a GEV model, while the random taste heterogeneity 

is accommodated through integration over the assumed distribution of (3. The use 

of the choice probability of a more complicated GEV model as the integrand in 

equation (2.26) leads to a more general type of a GEV mixture model, of which the 

R.CL model is simply the most basic form. Applications of this approach include 

for example Chernew et al. (2002), Bhat & Guo (2004) and Hess, Bierlaire & Polak 

(2005a). In such a GEV mixture model, the number of random terms, and hence 

the number of dimensions of integration (and thus simulation) is limited to the 

number of random taste coefficients, whereas, in the ECL model, one additional 

'"As noted by Garrow (2004), although generally attributed to McFadden & Train (2000), these 
a,p])roxiniation qualities were already discussed earlier, by Dalai & Klein (1988). 
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random term is in principle needed for the representation of each separate nest. It 

should be noted that the potential runtime-advantage resulting from this difference 

in dimensions of integration only manifests itself beyond a certain number of nests, 

as the more complicated form of the integrand in GEV mixture models initially gives 

the ECL model a computational advantage. The use of GEV mixture models does 

however have another advantage over the use of the ECL model in that it avoids 

the issues of identification that are specific to this latter model form, although other 

identification issuers, specific to the underlying GEV struc'ture, may arise. 

Finally, it should be noted that while the error-components method has histori-

cally only been used with a MNL model as the basis, the approach can theoretically 

also be used when the underlying model is of GEV form, for example in the case 

where some correlation is to be captured by the GEV structure, with a remaining 

amount of correlation (or indeed heteroscedasticity) to be explained by the error-

components. This can be useful in the case where existing GEV structures are 

incapable of capturing the full array of correlation in the data, while the exclusive 

reliance on error-components would lead to excessive computational cost or issues 

of identification. The work presented in this thesis concentrates on the use of ran-

dom coefficients GEV mixture models; the analysis of the potential of advanced 

error-components GEV models (not based on MNL) is an important area for future 

research. 

2.10 Discussion 

The review of existing work presented in this chapter has highlighted the rapid pace 

of theoretical developments in the field of discrete choice modelling, especially over 

the past few years. It has also shown that the work has pursued two main, and quite 

separate directions, namely the development of ever more flexible GEV structures, 

and the further investigation of models based on mixture distributions. 

In the face of this rapid pace of developments, and the high number of different 

angles of research, the discussion presented in this chapter has focussed only on 

the main developments. Many interesting extensions are possible, and have been 

pursued, and these cannot all be discussed here. One such extension of the basic 

framework is the treatment of cutofl's, the inclusion of which moves us away from a 

purely compensatory model. Recent discussions of this topic, which can be related to 

choice set formation, include (Swait 20016) and Cantillo & Ortiizar (2005), who allow 

the thresholds to vary across respondents. Other extensions of interest include an 

incorporation of learning effects into the models, or the modelling of group decision-

making. 
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The theoretical progress in the area of discrete choice modeUing is set to continue, 

for example with the development of mixture models based on more advanced GEV 

models, and the exploration of hybrid structures. 

Despite the excitement about the development of new, more flexible model struc-

tures, a word of warning is required. Indeed, with the gains in flexibility also comes 

an increased risk of misspecification and misinterpretation. This apphes especially 

in the context of mixture models, and with the surge in popularity of the MMNL 

model have also come a number of warnings as to the potential risks involved with 

the use of such a powerful model structure, where an uninformed specification can 

lead to misleading results. This extends particularly to the choice of mixture dis-

tributions in random coefficients modelling, an issue that is central to this thesis. 

Discussions of the risks involved are given for example by Walker (2002) and Hensher 

& Greene (2003), while Munizaga & Alvarez-Daziano (2002) also urge for caution 

and an informed choice of specification, especially in terms of covariance structure 

in the ECL formulation. 

It must be stressed that the risks of misspecification apply not just with mixture 

models, but can similarly cause problems in the case of advanced GEV models, 

where important issues with identification can arise, as illustrated in the use of 

cross-nesting structures in Chapter 10. Furthermore, in both cases, the gains in 

flexibility need to be put into context by the often significant increases in the cost 

of estimation. 

Another issue is that, with the pace of theoretical developments, models are 

often only tested in a handful of applications, primarily by the actual authors de-

veloping the structure. This leads to a lack of insight into the general performance 

of given model structures when faced with a variety of problems. The same issue 

extends to the testing of the rol nistness of the models in the face of misspe.eifiea-

tion. Additionally, it should be noted that the sheer number of different models, 

especially in the GEV context, can lead to problems in deciding which model to use 

for a given problem, as the different structures are often very similar to each other. 

Finally, it should also be noted that more work is required to determine whether 

advanced models consistently l(;ad to different pohcy conclusions than more l)asic 

models, along the lines of the work of Viton (2004) in the context of the MMNL 

model. 

Despite these issues, the new models have the potential of offering a more realistic 

representation of real-world behaviour, and as such should be preferred, if the issues 

of a])plieabihty can be, overcome. This howc^ver leads us to the final ])oint, which 

relates to the gap between the state-of-the-art and the state-of-practice. Indeed, it 

should be noted that, despite the rapid theoretical developments, only a handful of 
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models, namely MNL, NL, and more recently MMNL have found widespread use 

in actual practical modelling work, where even CNL models are used only sparsely. 

As such, it can be seen that the pace of theoretical developments much exceeds 

the actual implementation and application of models in practice. Here, more effort 

should go into large-scale testing, education, and improved implementation of the 

advanced models, given their potential benefits when applied to real-world problems. 

As such, while technical endeavours are laudable, the raison-d'etre of research should 

at least in part be seen to be the development of techniques that improve the realism 

of modelling processes used to assist policy-makers in their strategic decisions. Here, 

the advanced models clearly have a role to play, such that more should be done to 

encourage their widespread use. This reasoning forms part of the motivation for the 

choice of air-travel as the main area of application in this thesis. 



Chapter 3 

Efficiency in simulation-based 

estimation and application 

3.1 I n t r o d u c t i o n and context 

The requirement to use simulation^ in the estimation of discrete choice models whose 

choice probabilities do not posses a closed form expression is well-documented in the 

existing literature (see Section 2.9 and Train 2003). Although often not mentioned, 

it should be stressed that this requirement to use simulation extends not just to 

the estimation of such models, but also to their application. While only a single 

run of the simulation-process is generally required in each model apphcation, the 

aim is often to analyse a number of different policy scenarios, each requiring a 

separate application of the model, hence leading to substantial computational costs. 

As such, the more advanced model structures are at present not seen as tools that 

could readily be implemented in large-scale forecasting systems. This means that 

reductions in the computational cost of simulation processes are crucial not just 

from the point of view of estimation, but indeed also application. 

This chapter discusses ways of improving the efficiency of simulation-processes 

for mixture models, focussing on the use of alternatives to classical Monte-Carlo 

integration. Such alternative approaches, broadly referred to as quasi-Monte Carlo 

approaches, can lead to a more accurate approximation of integrals, hence leading 

to a lower requirement in terms of the number of draws used in these processes, 

with consequent reductions in computational cost. In the context of discrete choice 

modelling, only one type of approach, namely the Halton sequence, has received 

^It should be noted that, there are alternative approaches for solving integrals that do not have 
a. closod form solution. Those are however only slowly being introduced to the field of discrete 
choice modelling (e.g. BrefHe et al. 2005), where simulation remains the standard approach. As 
such, alternative approaches are excluded from the discussion presented in this chapter. 

50 
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widespread exposure, mainly due to its advantages in terms of implementation. 

However, the Halton sequence has severe limitations in high-dimensional applica-

tions, which have been discussed at length, for example by Bhat (2003). 

The main aim of this chapter is to propose an alternative approach, referred to 

as Modified Latin Hypercube Sampling (MLHS), which is free of the problems ex-

hibited by Halton sequences, while still maintaining the advantages in terms of easy 

implementation. Additionally, the chapter aims to further investigate the problems 

with Halton sequences, and the various approaches proposed to address these prob-

lems. Here, the description of one such approach, referred to as the Shuffled Halton 

sequence, and introduced into the area of discrete choice modelling as part of the 

research described in this thesis, serves as the stepping stone in the development of 

the MLHS approach. 

The remainder of this chapter is organised as follows. We first look at the need 

for simulation in the use of GEV mixture models (Section 3.2), and discuss the use of 

alternatives to standard Monte Carlo integration, in the form of quasi-Monte Carlo 

approaches (Section 3.3). Sections 3.4 and 3.5 look at the most commonly used 

type of quasi-Monte Carlo approach, the Halton sequence, in its original as well as 

adapted versions. The development of the MLHS approach is described in Section 

3.6, and Section 3.7 presents two empirical applications. After a discussion of some 

more advanced quasi-Monte Carlo approaches in Section 3.8, the conclusions of the 

chapter are presented in Section 3.9. To a large extent, this chapter is based on 

material pubhshed in Hess et al. (2003) and Hess, Train & Polak (2005). 

3.2 S imula t ion processes in e s t ima t ion a n d appli-

ca t ion 

Using a notation slightly adapted from that used in Section 2.9.1^, we let P„, {i | (3, j]) 

define the probability of an underlying GEV model, say MNL, conditional on rj, 

which is a vector of random variables included in the utility functions in addition 

to the usual extreme-value terms. From this, we get: 

p̂ (7:1 /9, = / & (?: I /?,)?)/ h I d??, (S-i) 
Jr] 

to be the unconditional (on rj) probability of alternative i for respondent n, obtained 

through integration over the distribution of 77, where, in addition to (3, the resulting 

-Here, we additionally show the dependency on {3, which is to define a vector of fixed coefficients, 
constant across individuals. 
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probability is now conditional on a given value for Q,. the vector of parameters for 

the distribution of r/. 

In discrete choice models, the choice probabilities of the individual alternatives, 

with a given set of parameters, are a requirement in model estimation as well as 

application. In the absence of a closed form solution for the integral in equation 

(3.1), the value of these choice probabilities needs to be approximated with the help 

of numerical processes, where typically, simulation is used. 

The process by which an integral is approximated through simulation is the same 

in estimation and in application, though certain external factors change, notably 

the number of simulation iterations. Here, an iteration is defined to be a separate 

evaluation of the integral in equation (3.1), with a different value for the vectors (3 

and n . 

The integral given in equation (3.1) is of the form: 

where x is distributed according to / (z). The calculation of ^ involves the averaging 

of g (.%') over the entirety of the continuous domain of / (x). When it is not possible 

to solve the integral directly, its value can be approximated by a process referred 

to as Monte-Carlo integration (MCI). In this, the value of g {x) is averaged over a 

finite set of draws from / (x). 

Going back to the example at hand, in MCI, the integral of (-i | (j, rj) over the 

continuous domain of r/ is replaced by a summation over a finite set of realisations of 

the vector rj, each carrying equal weight. Formally, with rjr,r = 1,... ,R representing 

R independent draws from / (77 | Q), the integral representing the choice probability 

in equation (3.1) can be approximated as: 

p.n.{t \ p.fi) = 
B. 

•r=l 

(3.3) 

Each independent draw from f (i] | H) carries the same weight, such that this 

term can be placed outside of the summation. Typically, the draws from / {rj | fi) 

are based on appropriate transformations of uniform draws contained in the 0 — 1 in-

terval, where the required procedures are described in detail by Train (2003, Chapter 

9). Essentially, in the case of univariate densities / ( e ) of a form where the corre-

sponding cumulative distribution function F (e) is invertible, the inverse cumulative 

chstribution function can be used, such that a draw from f (5) is given by (//,), 

where jl/, is a standard uniform variate. The situation becomes more complicated 

in the case of truncated distributions, where the standard uniform draw needs to 
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be transformed so as to fall into the permissible range. Further complications arise 

in the case of multivariate distributions. While, in simple scenarios (e.g. multi-

variate Normal), a Choleski transformation can be used, there are cases in which 

more advanced approaches, such as accept-reject simulators, importance sampling, 

Gibbs sampling (Geman & Geman 1984), or even the Metropolis-Hastings algorithm 

(Metropolis et al. 1953, Hastings 1970) are required. Such cases are not discussed 

in this work. 

With the use of independent draws rjr,r = 1 , . . . , R, the estimator in equation 

(3.3) is unbiased by construction. The variance of the estimator is inversely propor-

tional to the number of draws used, R, such that, as R, increases, the simulation error 

decreases. The use of a finite number of draws invariably results in some simulation 

error; this is however not avoidable in the absence of a closed form solution. 

The above discussion applies directly in the case of model application. Some 

further clarifications are required in the case of estimation. The purpose of estima-

tion is the calibration of the model parameters on a given set of choice data, during 

which process the value of the model parameters is chosen so as to maximise the 

likelihood of the choices observed in the dataset. 

For now, we will ignore the special case of repeated choices by the same respon-

dent, to which we will return below. Let jn define the choice observed for individual 

7)., with = 1 , . . . , A/". In a fixed parameter model, let {jn | P) give the probabil-

ity of the choice observed for individual n, conditional on the vector of fixed model 

parameters /?. The log-hkelihood^ of the model given the choices observed in the 

data, conditional on (3, is then given by: 

CC (U) = In (£ (/J)) 

N 

== I /))), (3.4) 
n=l 

with /:(/9) - (jn I /3). 

Typically, Maximum Likelihood Estimation [ML) is used in the estimation of 

discrete choice models, where, at the Maximum Likelihood Estimator {MLE) /5, we 

have: 

a / : / : 
' = 0 (3.5) 

•'̂ For practical (numerical) reasons, it is generally preferable to replace the likelihood function 
by the log-likelihood. Because the logarithm is an increasing function, the maxima occur at the 
same parameter values. 
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The extension to the case of models with random parameters is straightforward. In 

the presence of choice probabilities of the form given in equation (3.1), we use MCI 

simulation as in equation (3.3) to approximate the choice probability Pn [jn | P, H) 

for each n. 

The log-likelihood function in equation (3.4) is now replaced by the simulated 

log-likelihood, given by; 

N 

^)/:/:(/?, M) = (jn I /3, (])) , (3.6) 
n=l 

where, in addition to /?, this is conditional on the vector fl, giving the parameters of 

the distribution of the random terms rj. For ease of notation, let 0 define a vector 

grouping together the fixed model parameters and the parameters of the distribution 

of the random parameters, such that G = (/?, Cl). The MLE is now replaced by the 

Maximum Simulated Likelihood Estimator (MSLE), where in this case, we have: 

== 0 (3.7) 

It has been shown (Lee 1995) that if R is increased faster than the square root of the 

number of observations (\/iV), Maximum Simulated Likelihood {MSL) estimation 

is asymptotically equivalent to ML estimation^. Just as was the case in model 

application, the use of a fixed number of draws R induces simulation bias and 

variance. While in application, if uncontrolled, this can lead to biased forecasts, in 

estimation, it can lead to biased estimates of model parameters, which in turn will 

lead to problems in model application. It is thus crucial to minimise the potential 

effects of simulation error. This can be achieved by the use of a sufficiently high 

number of draws, R, and hence steps in the simulation process. 

The problem is that, in model estimation, a very high number of iterations are 

While the vast majority of apphcations using mixture models rely on MSL for model estimation, 
it is worth noting that there are two main alternative options that could be used instead of 
MSL, namely the Method of Simulated Moments (MSM) proposed by McFadden (1989), and the 
Method of Simulated Scores (MSS) proposed by Hajivassiliou & McFadden (1998). Both of these 
approaches have advantages and disadvantages when compared to MSL, as discussed for example 
by Train (2003), and it is not the aim of this thesis to discuss these alternative methods in great 
detail. However, one point is worth noting. By the nature of the models under investigation, 
simulation is recjuired with the use of either of these three approaches. As such, it can be seen 
that the developments presented in this chapter are applicable to all three methods, and are not 
limited to MSL. Given that at least in some cases, MSM and MSS have advantages over MSL, their 
wide-scale use in the estimation of discrete choice models remains an important avenue for future 
research. Another topic of interest which is not discussed here is the use of Bayesian instead of 
classical approaches for estimation (c.f. Ti ain 2001). The reliance of such methods on random draws 
however again means that the use of alternatives to standard pseudo-random draws is possible. 
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potentially required, each involving the simulation of the probabilities of all ob-

served choices. Increases in the cost of individual runs (iterations) of the simulation 

algorithm are thus multiphed by the number of iterations used by the optimisation 

algorithm. This makes the use of a very high number of draws impractical in many 

cases. The exploration of alternative approaches is the main topic of this chapter. 

Before moving on to the issue of the efficiency of simulation processes, we will 

briefly look at the case of repeated choices by the same individuals. In this case, we 

no longer model independent choices, but sequences of choices for individuals. In 

the most basic treatment of repeated choice, we assume that the tastes vary across 

individuals, but stay constant across observations for the same individual. For this, 

we replace the individual choice probabilities in the log-likelihood function by the 

probabilities of the observed sequence of choices. Specifically, let 7%i , . . n j ; , give 

the observed choices for individual ri, across the choice situations faced by that 

respondent. We can then write the probability of the observed sequence of choices 

for individual n as: 

"Tn 
jLn (/?, f)) = ][][ I /3, (3.8) 

.i=ni 

with Pn {,] I P, O) given by equation (3.1). The simulated analogue of this probability 

is given by: 

R 

SLn (/9, n) = — 
r=l 

n ^ (;' I Vr 

L7=ni 

(3.9) 

where the order of summation and product is crucial. This term is then used to re-

place the basic simulated choice probabihties P„ {jn | /?, O) in equation (3.6), giving: 

N 

,sy:/:(;g,n) = Y] i ] i (^ i ,^ (^ ,^ i ) ) (3.10) 
n=l 

It is worth mentioning that this specific treatment of repeated choice applies only in 

the case of random parameter models; in the absence of the summation over draws 

in equation (3.9) (i.e. R=l ) , the log-likelihood function is identical for the panel 

(repeated choice) and cross-sectional cases. 

The above specification makes the considerable assumption that the tastes of 

decision-maker n stay constant across the Tn choice-situations faced by this respon-

dent. It can easily be argued that this is preferable to the case where the repeated 

choice information is not taken into account at all, equating to an assumption of 

equal inter-agent and intra-agent variations in tastes. Although the vast majority 
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of applications do indeed rely on the above described specification, there are cases 

where its underlying assumption may not be fully satisfied, such as for example with 

RP data collected over a long period of time, where tastes can indeed be expected 

to vary, or SP surveys with a high number of choice situations, where factors such 

as fatigue, habit formation and learning need to be taken into account. To some 

extent, such effects can be represented with the help of dummy variables that do not 

lead to an increase in the dimensionality of the integral. However, there are limits 

to what can be achieved with such an approach, and in many cases, it may not be 

sufiicient. One example of a more flexible approach is given by Train (2003, page 

151), where the tastes for a given individual are serially correlated across observa-

tions. While this increases flexibility, it also leads to a requirement for additional 

levels of integration, such that the merit of such approaches needs to be evaluated 

on a case-by-caae basis. 

As a final point, it should be noted that, in order to avoid correlation in sim-

ulation error across individuals, separate sets of draws are generally used across 

individuals''. As such, it can be seen from equations (3.6) and (3.10) that, with K 

dimensions of integration, {J2n=i '^n) K-dimensional sets of R draws are required 

when using a cross-sectional approach despite the presence of multiple choices per 

individual, while only N such sets are required in the panel data approach. This 

does however not guarantee a lower computational cost for the panel approach, given 

the more complicated form of the derivatives of the log-likelihood function. 

3.3 Al te rna t ives t o s t a n d a r d M o n t e Car lo inte-

g ra t ion 

As noted in Section 3.2, the use of a very high number of draws in MCI may not 

always be practical or even possible, due to the heightened computational cost it 

engenders. On the other hand, the use of a comparatively low number of pseudo-

random (also known as Pseudo-Monte Carlo, or PMC) draws can lead to high sim-

ulation error, and biased results, which is similarly unacceptable. This is caused 

primarily by the fact that, especially in short sequences, the randomness of PMC 

draws will lead to an uneven distribution of draws across the area of integration, 

along individual dimensions, as well as the distribution in the unit hypercube. This 

phenomenon, which is also referred to as low uniformity or poor quality of coverage, 

translates directly into poor coverage for the draws obtained after transformation to 

"'A di.scussion of the properties of the MSLE in the case where the same draws are used across 
all observations is given by Lee (1992) 
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the appropriate distribution. The uneven distribution of draws means that the sim-

ulation will assign unequal weight to different parts of the domain of the (density) 

functions used inside the integrals, resulting in a biased approximation. As such, it 

is desirable to use alternatives to PMC draws that offer a better quality of coverage 

of the 0 — 1 space, in single as well as multiple dimensions. 

Another point worth considering is that of correlation between successive draws, 

ft can be seen that, in the presence of negative correlation across draws, the vari-

ance of the simulator is lower®. As noted by Train (2003), the same concept also 

apphes in the summation of separate simulators, as in a simulated log-likelihood 

function, where negative correlation in the draws across observations/individuals 

leads to lower variance for the simulated log-likelihood function. It can easily be 

seen that, when looking at individual simulated terms, the issues of covariance across 

draws and coverage of the 0 — 1 area are inter-related, with lower variance equat-

ing to better coverage. This is most aptly described by noting that with negative 

correlation, a draw in one extreme of the domain will be compensated by a draw 

in the other extreme of the domain, a principle that is used directly in the case 

of antithetic draws, as described by Hammersley & Morton (1956). Clearly, by 

being uncorrelated, PMC draws are not able to exploit the advantages of negative 

correlation. 

From the above discussion, it can be seen that the use of alternatives to PMC 

approaches in Monte Carlo integration can have great benefits in estimation and 

application. Although not strictly applicable in all cases, the general term Quasi-

Monte Carlo (QMC) integration can be used to describe this set of approaches. 

QMC sequences are designed in a deterministic fashion, with the aim of providing 

more uniform coverage of the area of integration and negative correlation across 

draws. The use of such QMC secpiences can lead to significant improvements in the 

precision of the simulated probabilities, and consequently MSL estimation, hence 

leading to lower requirements in the number of draws used, with corresponding 

reductions in the computational cost of model estimation and application. 

In the following sections, we look at existing work and new developments in 

terms of QMC approaches that are applicable in the simulation-based estimation 

and application of mixture models, such as MMNL. The work centres mostly on 

(quality of coverage offered by these sequences, as opposed to an in-depth discussion 

of negative correlation across draws. Here, we look solely at the case of a uniform 

distribution in the unit hypercube, which is the base for any transformations to 

other domains and distributions. It should be noted that this work does not aim 

to offer a definitive answer to the problem of simulation efficiency, or even define 

'An illustration of this is given by Train (2003, page 218). 
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a near-optimal type of drawing algorithm. This belongs firmly to the domain of 

computational statistics; the work set out in this chapter merely aims to discuss 

approaches that offer gains in efficiency in the context of discrete choice modelling, 

while remaining easy to implement and widely applicable. 

3.4 H a l t o n sequences 

The only widely used type of QMC series in the field of discrete choice modelling 

is the Halton sequence (Halton 1960), introduced to this area by Bhat (2001), with 

some examples of applications given by Revelt & Train (1999), Bhat (2000a) and 

Hensher (2001a). Halton sequences are generated according to a purely determin-

istic approach based on the use of prime numbers. Specifically, a one-dimensional 

sequence based on prime p [> 2) fills the 0 — 1 space by dividing this space into p 

segments, and by systematically filling in the empty spaces, using cycles of length p 

that place one draw in each segment. The use of prime numbers as the base of the 

Halton approach reduces the problems with collinearity, by avoiding the case where 

the cycle-length of one sequence is an integer multiple of the cycle-length of another 

sequence. 

Formally, the element in the Halton sequence based on prime p is obtained 

by taking the radical inverse of integer •/, in base p by reflection through the radical 

point. We have: 

L 

i = ^ ^ h i { i ) p \ (3.11) 
1=0 

with 0 < 6; (i) < p — 1 and p^ < i < and use the values for hi (z) that solve 

equation (3.11), in writing the resulting Halton element in base p as: 

(i) = O.bo (%) (%)... (z). (3.12) 

This can be rewritten in decimal form as: 

L 

l=G 

Aside from offering good quality of one-dimensional coverage, Halton sequences ad-

ditionally have the advantage of negative correlation - later draws fill in the spaces 

left by existing draws. This is a direct result of the cyclical nature of the sequences. 

This also leads to negative correlation in the sets of draws used across individ-
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uals/observations, resulting in a correction effect, and a reduction in simulation 

error. 

A problem caused by the deterministic nature of QMC sequences is that it is 

not possible to practically estimate the simulation error obtained when using these 

sequences. As Bhat (2003) notes, theoretical results can be used for this purpose, 

but they tend to lead to conservative bounds on the estimation error. As such, 

the use of randomisation approaches is preferable; here, the simulation error is 

calculated by nuiasuring the deviation between the results obtained with diffe.rently 

randomised versions of the original sequence. The deterministic Halton sequence 

can be randomised in several ways. Tuffin (1996) and Bhat (2003) suggest random 

shifting, which is implemented by adding the same random draw to all elements in 

the Halton sequence, and by subtracting 1 from any of the elements whose value 

exceeds 1 as a result of this process. Another procedure, suggested by Wang & 

Hickernell (2002), is to eliminate the first G elements of the sequence, where G is 

chosen randomly. 

Multi-dimensional Halton sequences are constructed through combination of one-

dimensional sequences generated from different primes. The same principle applies 

in the case of randomised or otherwise transformed versions of Halton sequences. 

It can be observed that individual Halton sequences are highly correlated, es-

pecially at the start of the sequences, manifesting itself most visibly in the form of 

collinearity between the two sequences. A cure commonly suggested in the existing 

literature is to remove the first few points (say L) in each sequence, hence changing 

the starting position in the individual cycles, where, according to Ti'ain (2003), the 

number of draws removed should be at least as large as the largest prime used in 

generating the sequences. While, depending on the value of L used, this does indeed 

remove the correlation at the start of the sequence, it is not true that the correlation 

does not reappear at later stages in the sequence. Indeed, the collinearity occurs in 

the case where, for a given draw from the multi-dimensional sequence, more than 

one of the one-dimensional sequences have just completed a cycle, and are about to 

start a new cycle. 

Asid(! from offering high unifornhty along individual dimensions, it can be ob-

served that Halton sequences similarly offer good quality of multi-dimensional cov-

erage when combining individual sequences, at least in the case of sequences based 

on low primes. It should be noted that this is in fact a direct result of the collinear-

ity described above, a point that is often not recognised. Indeed, the way in which 

the individual s(;(]ueuces combine means that the unit hypcTcube, is filled in with 

the help of diagonal lines (of collinear points) of varying length (which depends on 

the position in the individual one-dimensional cycles). An illustration of this is pro-
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First 6 two-dimensional draws 
using primes 7 and 11 

First 25 two-dimensional draws 
using primes 7 and 11 

First 13 two-dimensional draws 
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First 100 two-dimensional draws 
using primes 7 and 11 

p=7 

Figure 3.1; Illustration of two-dimensional filling-in effect using Halton sequences 
based on primes 7 and 11 

vided in Figure 3.1, which shows the two-dimensional Halton sequence generated 

from primes 7 and 11, for various sequence lengths. The plots clearly show how 

the multi-dimensional sequence is composed of individual diagonal lines of points, 

of varying length. While this leads to poor coverage when using a low number of 

draws, the uniformity of coverage increases as a higher number of draws is used. 

With the use of prime numbers whose ratio is not close to an integer, the average 

length of the multi-dimensional cycles is low relative to the length of cycles in the 

sequence based on the highest prime, a fact that leads to low correlation between 

sequences. 

While the desirable properties of single and multi-dimensional Halton sequences 

l)ased on low primes have received a lot of attention in the existing literature, the 

reason for this good behaviour (as described above) is not generally explained. As 

such, it is of little surprise that a link is not generally made between the good 

performance in low dimensions and the poor performance in high dimensions, at 

least in the discrete choice literature. Indeed, it is well-known that, when using high 

primes, the individual Halton sequences can be so highly correlated that, at least 

with the use of a moderate number of draws, the multi-dimensional sequences are 

formed by a set of diagonal lines and offer very poor quality of multi-dimensional 
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coverage, which in turn can lead to poor simulation and estimation performance. 

With the benefit of the above discussion on cohinearity, it can be seen that 

the same principle of matching up of sequences that led to good quality of multi-

dimensional coverage in low dimensions now leads to problems with correlation when 

using high primes. With the use of low prime numbers as the base, the relatively 

low number of perfectly collinear parts of the sequences means that the overall 

level of correlation between the sequences is at an acceptably low level. At the same 

time, the short individual cycle lengths means that the number of multi-dimensional 

cycles is sufficiently high to guarantee good quality of multi-dimensional coverage. 

With the use of high prime numbers, these advantages begin to unravel. Indeed, the 

length of the individual cycles now increases the scope for collinearity, leading to 

high correlation between individual sequences. The low number of multi-dimensional 

cycles in turn leads to a poor filling-in of the unit hyper cube. 

While most readily recognised with high primes, these problems actually arise 

to some degree whenever the ratio of any two prime numbers used is close to an 

integer value, as observed by Hess & Polak (20036). Although Bhat (2003, page 

841) similarly notes that "i/ie deterioration becomes clearly noticeable beyond five 

dimensions", there still seems to be a wide-held belief that the problems with corre-

lation occur only in high dimensions (e.g. well above 5), and untransformed Halton 

sequences continue to be used widely, something that is helped by the fact that most 

estimation packages for MMNL only offer a choice between PMC and standard Hal-

ton draws. 

As an illustration of the correlation problems, Figure 3.2 shows four sets of 

tAvo-dimensional Halton sequences, using different pairs of prime numbers, with 

three different sequence lengths (100, 200 and 500 draws), while Figure 3.3 shows 

three sets of corresponding PMC sequences using the various sequence lengths. It 

should be noted that, for the Halton sequences, the plots always show the start of 

the sequences; on the basis of the above discussion, it was decided not to use the 

approach of removing the initial part of the sequence. The conclusions in terms of 

correlation are not affected by this decision. 

The plots clearly show the more uniform distribution in the Halton sequences 

based on the lowest possible pair of primes (2 and 3), when compared to the corre-

sponding PMC sequences. They also show that the differences are most visible in 

the case of a low number of draws; at higher values of i?, the effects of the random, 

distribution of the PMC draws are more or less cancelled out. This relates directly 

to the results of Train (1999) and Bhat (2001), who suggest that as little as 100 - 1 2 5 

Halton draws can offer better performance than 1000 PMC draws. 

The plots in Figure 3.3 show that the use of a low number of PMC draws can 
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Figure 3.2: Two-dimensional Halton sequences for different sequence lengths and 
combinations of prime numbers 

result in clumping of draws in some areas of the multi-dimensional 0 — 1 area, and 

consequently low coverage in other areas. The results also show the variability in 

performance of the PMC sequences over different runs. On the other hand, the plots 

for the Halton sequences based on higher primes clearly reveal how the high correla-

tion between individual sequences can lead to very poor quality of coverage. In fact, 

it can be seen that in the presence of problems caused by heightened correlation in 

Halton sequences, the coverage offered by PMC sequences of corresponding length 

is visibly better. While the problems clearly increase in severity with higher primes, 

it can be seen that they are already substantive as of dimensions 6 and 7 (primes 13 

and 17), making standard Halton sequences inapplicable in a high number of cases. 

As a further illustration. Figure 3.4 shows two-dimensional plots for all combinations 

of primes between dimensions 5 and 15, with the commonly used sequence length 

of 100 draws. These plots reinforce the point that the problems with correlation 
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Figure 3.3; Two-dimensional pseudo-random number sequences for different se-
quence lengths 

are not limited to very high primes. Additionally, several cases clearly support the 

conclusions of Hess & Polak (20036) with regards to primes whose ratio is close to 

an integer value (e.g. dimensions 7 and 8, 5 and 9, and 10 and 11). The problems 

with poor coverage are admittedly eased when using a higher number of draws, but 

even with relatively low primes, the required number of draws can be sufficiently 

high for the advantages of Halton sequences to disappear when compared to PMC 

sequences. Finally, it should be noted that, although the discussion here focusses 

on the two-dimensional case (for ease of illustration), problems also occur in the 

K-dimensional 0 — 1 space, with K > 2. 

Although, in the case of low primes, Halton sequences can lead to improvements 

in performance over PMC draws (and have been used successfully in different areas 

of research, including transport studies), the problems with correlation in higher di-

mensions hmit their applicability. Furthermore, the above discussion has highlighted 

that the maximal allowable dimension for using Halton sequences may in fact be 

lower than suggested in the existing literature (where typically, authors have tended 

to discuss the problems above prime 41, i.e. dimension 13). Additionally, some 

existing results cast further doubt with regards to the performance of Halton draws. 

For example. Train (2003, pp.231-233) reports the results of a five-dimensional ex-
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ample using 100 and 125 Halton draws, where the first 5 primes were used, and 

where a different ordering of the primes was used in 5 separate runs. While the 

variation across runs was in both cases lower than that observed with 1,000 PMC 

draws, there was greater variability when using 125 draws than when using 100 

draws, with no apparent reason. This is contrary to the principle that a rise in the 

number of draws should lead to lower simulation error. 

All these observations, in conjunction with the fact that Halton sequences are still 

gaining in popularity in th(! field of transport studies (where they remain tlu^ only 

wildly-used type of QMC approach), are a cause of concern. This is just furthered 

by the fact that seemingly an increasing number of studies rely on the use of a mere 

100 draws or less per dimension and individual^, which could be seen as a misguided 

interpretation of the results of Train (1999) and Bhat (2001) with regards to the 

superior performance with 100 — 125 Halton draws when compared to 1000 PMC 

draws. 

3.5 A d a p t e d versions of H a l t o n sequences 

Two main methods for reducing the correlation in Halton sequences have been dis-

cussed in the discrete choice literature; scrambling and shuffling. We will now look 

at the two approaches in turn. 

3.5.1 S c r a m b l e d H a l t o n sequences 

The scrambled Halton sequence for prime p is written as: 

L 

1=0 

where ap is the operator of permutations for the possible values of bi {i) in base 

p. Scrambling permutations aim at disrupting the cyclical nature of the Halton 

sequence while maintaining high uniformity of coverage. However, it has not proved 

possible to obtain optimal permutations, so that heuristic methods are used to de-

rive good permutations, and these become increasingly onerous to derive as the 

prime p increases (c.f. Hess & Polak 2003a). This can reduce the appeal of using 

scrambled Halton sequences in high-dimensional problems, if permutations for the 

appropriate number of dimensions are not readily available from previous research. 

'There are examples in the transport hterature of modehers relying on as little as 50-100 Halton 
draws per individual and per dimension in applications with as many as 8 randomly distributed 
coefficients. 
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Different methods for producing the permutations have been proposed in the lit-

erature, namely by Braaten & Weller (1979), Hellekalek (1984), Kocis & Whiten 

(1997) and Tuffin (1998). Scrambled Halton sequences were first discussed in the 

context of discrete choice modelling by Bhat (2003), using the scrambling approach 

proposed by Braaten & Weller (1979). 

Bhat (2003) compares the performance of scrambled Halton sequences to that 

of standard Halton and PMC sequences using a 10-dimensional application. The 

results suggest that while both Halton-based approaches outperform the PMC se-

quences, the scrambled Halton sequences also offers lower bias in the estimated 

parameters than the standard Halton sequence, as well as lower simulation error 

(evaluated on the basis of multiple randomised versions of the sequences). 

At the same time however, it has been observed that, while the scrambhng 

approach generally achieves a significant reduction in the level of correlation, for 

some choices of prime numbers, the performance of the method is unsatisfactory, 

with high residual correlation and very uneven coverage (Hess & Polak 2003 a). 

This is illustrated in Figure 3.5, which shows plots of six two-dimensional scrambled 

Halton sequences, generated from primes between 23 and 47. These plots show that, 

for some choices of primes, the use of the scrambhng approach leads to a grouping 

of draws around either of the two diagonal lines, and subsequently poor coverage in 

two of the four corner areas. Although the problems again decrease with a higher 

number of draws, this remaining high level of correlation and poor coverage is still 

a cause for concern, and previous discussions have seemingly failed to address this. 

3.5.2 Shuff led H a l t o n sequences 

The approach based on generating multi-dimensional sequences by combining ran-

domly shuffled one-dimensional Halton sequences was first suggested by Morokoff 

& Caflisch (1994), and was introduced to the field of discrete choice modelling by 

Hess & Polak (2003a) in the context of the research described in this thesis. 

The generation of a shuffled Halton sequence uses a one-dimensional standard 

Halton sequence of length E, generated from prime p, as its input. Let; 

= (y'p (1), - -, V'p (^)) , (3.15) 

where ^Ppii) is defined as in equation (3.13). Differently shuffled versions of this 

sequence are then used in different runs of the shuffling algorithm, with the sequence 

used in the run being given by: 

(3.16) 
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Figure 3.5: Correlation in two-dimensional scrambled Halton sequences 

where H is a function that creates a sequence with the elements of Hp arranged in 

the order given in the vector Ij, where I j is a random permutation of the ordered 

index vector of length R, and where a is a permutation operator that yields the 

permutation I j of the index vector I in the run. The use of different permutations 

of the index vector for different dimensions (for which different primes will still be 

u s c h I ) disrupts the, cyclical ordering in the different dinicnisions in diliV.rcnit ways and 

hence manages to reduce correlation between the individual sequences. 

There are no great difficulties involved in implementing the shuffling approach, 

and procedures to randomly permute the order of elements in a vector are in fact 

included in many numeric libraries. If no such procedure is readily available, the 

method can be implemented with just a few hnes of computer code. The easiest 

and most efficient way of coding the shuffling of a vector v of length R seems to be 

to start with a vector of length R. of uniformly distributed draws, and to create a 

vector II) containing the ranking of the elements in this vector. The shuffled vector is 

then produced by drawing the elements from vector v according to the order given 

by vector 

In theory, it is with this approach no longer necessary to base the generation 

•̂ I am grateful to William Greene for this suggestion. 
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of N /-C-dimensional shuffled Halton sequences of length R on the use of K one-

dimensional Halton sequences of length N R generated from different primes. Indeed, 

thĉ  use of a different ordering for different individuals will lead to different sets of 

multi-dimensional draws, albeit still based on the same one-dimensional sequences. 

Even though this does entail significant computational savings, the use of different 

one-dimensional draws across individuals may be seen as preferable. 

Although the performance of the shuffied Halton sequence is clearly dependent 

on the specific shuffling used in a given run, it has been shown that the method can 

offer stable performance over runs in the estimation of MMNL models (Hess et al. 

2003). Compared to the scrambling approach, the shuffling approach disrupts the 

correlation between the one-dimensional sequences much further, to such an extent 

that the levels of correlation are comparable to those observed in multi-dimensional 

PMC sequences (c.f. Hess & Polak 20036). In the case where the cyclical nature of 

the individual sequences and its associated filling-in effect guarantees good multi-

dimensional coverage in the standard sequences (i.e. low primes), the shuffling 

almost surely leads to a reduction in the quality of coverage, and poorer performance 

than with the standard (and possibly scrambled) sequences. On the other hand, in 

the case where the correlation has a detrimental effect (i.e. higher primes), the use 

of the shuffling approach can lead to better coverage than that obtained with the 

standard and scrambled sequences. This latter point is most readily illustrated in a 

graphical fashion by producing plots of shuffled Halton sequences on the basis of the 

same primes used for the scrambled sequences shown in Figure 3.5. The resulting 

plots (Figure 3.6) show that, for these choices of primes, the use of the shuffling 

approach leads to a lower level of correlation, and hence more uniform coverage, 

than the use of the scrambling approach®. 

As hinted at previously, the random shuffling removes desirable as well as un-

desirable effects of the cyclical nature of the one-dimensional sequences. As such, 

there is, with this approach, no guarantee of obtaining heightened multi-dimensional 

quality of coverage, and it should only be used in the presence of significant problems 

with correlation. The approach does however maintain one advantage over PMC 

sequences in these cases, namely its better one-dimensional coverage. 

3.6 Modi f ied La t in H y p e r c u b e sampl ing 

The above discussion has highlighted the serious issues that can arise with the 

use of Halton sequences in the estimation of models based on integrals even of 

'^It should be noted that, as the .shutfiiiig approach produce,s different results in different runs, 
the plots shown in Figure 3.6 are specific to the given runs. 
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Figure 3.6; Examples of two-dimensional shuffled Halton sequences for combinations 
of primes 23 to 47 

modest dimensionality. The discussion has also shown that the classic solution 

to dealing with the shortcomings of the standard Halton sequences, namely the 

scrambled Halton sequence, may not be appropriate in all cases. On the other hand, 

the shuffled Halton sequence is able to reliably deal with the problems caused by 

correlation between individual secjucuices, yet cannot offer any guarantees in t(;rms 

of the quality of coverage in the unit hypercube. 

These problems with Halton sequences cast some doubts as to their usefulness 

in the simulation-based estimation of discrete choice models, despite their appeal in 

terms of simplicity. On the other hand, more advanced methods are often difficult 

to implement in the framework of existing estimation packages, something that is 

reflected in the fact that such tools generally only offer a choice between PMC and 

Halton draws. 

These arguments formed the main motivation for the work described here, lead-

ing to the development of the Modified Latin Hypercube Sampling (MLHS) ap-

proach^". 

'"The MLHS work is published in Hess, Train fe Polak (2005). Independently of the research 
presented here, the idea of using A'lLHS was also put forward in an e-mail by John Bowman, shortly 
after work on this analysis had started. 
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Two main points need to be considered in explaining the reasoning underlying 

the MLHS approach. The first of these is the way in which Halton sequences are 

based on the principle of obtaining good coverage with the help of sub-sequences 

of evenly spaced points, with each additional sub-sequence filhng in spaces left un-

filled by previous sub-sequences. Halton sequences were developed in the context of 

series, which are defined as being sequences whose length can be extended without 

changing the original points, while still maintaining their statistical properties. This 

requirement allowed theoretical analysis of the asymptotic properties of the series, 

such as measuring the uniformity of coverage as the length of the series extends with-

out bound. However, for any given length of the sequence, the points are not evenly 

spaced, and hence the one-dimensional coverage is not as uniform as possible. This 

is an effect of the sequential nature of these sequences, making their performance 

depend heavily on the exact number of draws used; this in turn can explain the fact 

that increases in sequence length do not necessarily lead to constant improvements 

in simulation performance, as for example observed by Hess et al. (2003), and, as 

described above, by Train (2003). With a given number of points, the most uni-

form coverage possible in single dimensions is necessarily attained by spacing those 

points evenly. Such a sequence of evenly-spaced points cannot be extended without 

changing the original points and therefore does not qualify as a series in the way 

that a Halton sequence does. This could be seen as a disadvantage, since the re-

searcher cannot add points without recalculating the original points. However, for 

the purposes of numerical simulation rather than theoretical analysis of asymptotic 

properties, some preset number of points is always used^^, and with a given number 

of points, the best coverage is attained by spacing them evenly. This constitutes the 

first aspect of the MLHS approach. 

The second aspect arises with respect to combining individual sequences to create 

multi-dimensional sequences. When combining one-dimensional Halton sequences 

into multi-dimensional vectors, the cyclical nature of the individual sequences leads 

to a varying level of correlation between points in the individual sequences. In the 

case of sequences based on low primes, this has desirable effects in that it leads 

to high uniformity in the multi-dimensional distribution of points. However, as 

of dimensions 5 — 8, the coUinearity has undesirable impacts in that it leads to 

poor multi-dimensional quality of coverage, as described in Section 3.4. The use 

of a scrambling approach still allows for a deterministic matching-up of individual 

sequences, hence maintaining the desirable effect of a multi-dimensional filling-in 

process (conditional on finchng an appropriate scrambling heuristic). However, as 

" T h i s is not entirely true in the case of adaptive drawing algorithms, as briefly referred to in 
Section .3.9. 
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shown in Section 3.5.1, the approach does not always lead to a satisfactory reduc-

tion in the level of correlation. While such reductions are offered by shuffled Halton 

sequences, there is, with this approach, no guarantee as to the quality of multi-

dimensional coverage in the resulting shuffled sequences, given that points from 

individual sequences are now matched-up in a completely random fashion. As such, 

it can be argued that the best guarantee of obtaining good multi-dimensional cov-

erage when combining randomly shuffled one-dimensional sequences is to base the 

approach on sequences with the highest possible one-dimensional uniformity. This 

constitutes the second aspect of the MLHS approach. 

The two aspects discussed above can now be combined, and it can be seen that 

there is no reason to use Halton sequences as the input to the shuffling algorithm, but 

that rather, sequences with the highest possible one-dimensional quality of coverage 

should be used. This forms the basic theory behind the MLHS approach. The 

method combines randomly shuffled versions of sequences of evenly spaced points, 

where the shuffling eliminates the correlation between individual sequences. As the 

shuffling of the uniform vectors does not change the coverage in any of the one-

dimensional sequences, the resulting sequence provides more uniform coverage in 

each dimension than any type of Halton sequence, or other type of QMC approach. 

We now describe the sequence more formally. It can easily be seen that the most 

basic way of guaranteeing equal distances between a set of R draws is to set the f'-

draw to be equal to ; the difference between any two adjacent draws is now 

equal to as is the difference between the extreme points and the border of the 

0 - 1 interval. However, this approach is clearly impractical as it prohibits the use 

of different draws in different dimensions, as well as in different runs. The problem 

thus lies in devising a method that leads to equal distances between adjacent draws 

without recpiiring the draws to be the same in different dimensions and runs. 

We propose an approach that starts with a sequence of draws defined by: 

¥>0) = ^ . J = (3.17) 

A random number x is then drawn, such that 0 < x < ^ ; this can be obtained by 

drawing a pseudo-random number^^ contained in the interval ]0,1[, thus using strict 

upper and lower limits, and dividing this number by R. The elements in the final 

sequence are then given by: 

V'0) = v:0')4-z, ; = (3.18) 

^^The spread of the values of x across sequences can be made more uniform by basing the draws 
of X themselves either on a quasi-random approach, or by using a pseudo-random number generator 
with proven properties. 
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In the resulting sequence, the distances between adjacent draws are all equal to 

satisfying the condition of equal spacing. Furthermore, the combined distance 

between the two extreme points and the respective borders of the 0 — 1 interval is 

also equal to if the interval is regarded as being cyclical, all "adjacent" distances 

are equal to Multi-dimensional sequences are constructed by simple combination 

of randomly shuffled one-dimensional sequences, leading to low cross-dimensional 

correlation. The addition of the random variate x has the desired effect that the 

draws used are. different across dimensions, as well as across runs, while still keeping 

the distance between adjacent draws at ^ , such that the quality of one-dimensional 

coverage remains unchanged. 

An important difference arises between MLHS and Halton-based sequences. In-

deed, in the latter approaches, to generate a set of R draws for N individuals, 

subsets of length R from a sequence of length NR are used, while, given that MLHS 

sequences are not created as series, it is necessary to generate the N sets of R draws 

independently, to guarantee equal quality of one-dimensional coverage across the N 

sequences. At this point, it should also be noted that the MLHS approach is not a 

quasi-Monte Carlo approach per se; rather, it should be described as an approach 

that attempts to pick random numbers in a stratified way. 

The procedure described here is very similar to the Latin Hypercube Samphng 

(LHS) approach proposed by McKay et al. (1979) - hence the name, MLHS. LHS is 

the same as MLHS, except that for LHS, a different draw is taken for each element in 

each dimension, rather than using the same draw for all elements in each dimension. 

That is, for LHS, equation (3.18) is changed to; 

= j = (3.19) 

where Xj is a separate draw from a Uniform distribution between 0 and 

The use of these different drawing approaches leads to important differences 

between MLHS and LHS. The motivation for MLHS was to attain a sequence that 

has more uniform coverage in each dimension than Halton sequences. An evenly 

spaced set of points necessarily attains that goal and is the most uniform set possible. 

Using one common draw to shift all points retains this uniformity. In contrast, when 

using a separate draw for each point, as in LHS, the resulting set of points is less 

uniform than evenly spaced points and can potentially be less uniform than the 

Halton sequence. It should be noted however that the LHS method allows for the 

possibility of a type of cancelling out, by which a draw that moves one point to the 

higher end of its segment is counteracted by a draw that moves another point to 

the lower end of its segment. Inherently, however, the goal of uniformity operates 
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against the potential for cancelling out in this way. 

The MLHS approach has a disadvantage in that it is not easily possible to ac-

curately define the asymptotic properties of the method, since it is not a series. 

This is a drawback in that it does not allow us to compare the method asymptot-

ically with other approaches. However, some comparisons can be made. Firstly, 

the coverage offered by MLHS is necessarily better than that of the shuffled Halt on 

sequence, given that both approaches rely on random shuffling of one-dimensional 

sequences in the construction of multi-dimensional sequences, where with oiu new 

approach, the coverage offered by the one-dimensional uniform sequences is supe-

rior to that of the one-dimensional Halton sequences. Secondly, the same reason-

ing can be used in the comparison with pseudo-random sequences. Indeed, multi-

cUmensional pseudo-random number sequences are in fact simply combinations of 

one-dimensional pseudo-random sequences, where the ordering of points in these 

one-dimensional sequences is similarly random, just as in the case of MLHS. The 

fact that the one-dimensional ordering of points is thus random in both cases means 

that, asymptotically, any differences between the two approaches in terms of the 

resulting multi-dimensional quality of coverage depend solely on the quality of cov-

erage of the one-dimensional sequences, which is better in the case of MLHS. 

3.7 Empi r ica l compar i sons 

The previous sections have looked at the theoretical differences between the various 

types of Halton sequences and the MLHS approach. In this section, we turn our 

attention to the actual substantive differences between the different approaches when 

used in the simulation-based estimation of discrete choice models. 

These issues have been discussed in great detail by Hess et al. (2003), Hess, Train 

& Polak (2005), Bastin et al. (2005), and other work referenced in these pubhcations. 

In the present work, we hmit the comparison to two separate case-studies. Aside 

from space constraints, this is motivated by two main principles. 

• The first principle is based on the discussion in Section 3.6, which has described 

the clear advantages of MLHS over shuffled Halton, effectively making the 

latter approach redundant 

« The second principle is that, given that MLHS draws are constructed on 

the basis of independently shuffled one-dimensional sequences, their multi-

dimensional quality of coverage is almost guaranteed to be lower than that 

^•^Comparisons between the shuffled Halton sequence and standard and scrambled Halton se-
quences in the estimation of MMNL models are presented by Hess et al. (2003). 
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obtained with standard (and potentially) scrambled Halton sequences gener-

ated from low primes. 

As such, the two applications described in this section have the following rather 

separate aims: 

• The first application compares the performance of the three types of Halton 

sequences, the MLHS approach, and PMC draws, in the estimation of a MMNL 

model with sixteen dimensions of integration. The high dimensionality of the 

integi al allows us to gauge the relative performance of the different methods 

in high-dimensional problems. 

The second application compares the performance of MLHS draws and PMC 

draws in the estimation of a MMNL model with a low number of dimensions 

of integration (4). This allows us to validate the theoretical claims made with 

regards to the advantages of MLHS draws over PMC draws. 

3.7.1 App l i ca t i on A 

The first application uses a sixteen-dimensional MMNL model estimated on SP data. 

This application was conducted as part of work described by Hess, Train & Polak 

(2005). 

The data used in this application were collected as part of a survey looking 

into potential customers' choices between three types of vehicles in California; gas 

internal combustion (ICV), electric (EV) and gas-electric hybrid (HV). The data are 

described in more detail by Train & Hudson (2000), and have previously been used 

by Sandor k. Train (2004) and Train & Sonnier (2005). A total of 500 respondents 

were included in the dataset, and each respondent was presented with up to 15 

different choice situations between three vehicles, where the individual choice sets 

do not necessarily contain one vehicle of each of the three types considered. The 

total number of observations in the dataset is 7, 437. Two different datasets were 

available for the original study; a basic dataset and an enhanced dataset. The 

present analysis uses the latter dataset, in which respondents were provided with 

prior information on EV vehicles and on air quality in Cahforriia. This has been 

observed to have a significant positive effect on the attitude of respondents towards 

EV vehicles (Train & Hudson 2000). 

Each alternative used in the dataset is described by a total of 6 attributes: 

• Car type (ICV, EV or HV) 

• Body type (10 different types, ranging from mini car to mini van) 



3.7. Empirical comparisons 75 

• Purchase price ($l,000's) 

• Operating cost ($/month) 

• Performance (grouped into high, medium and low performance) 

• Range (lOO's of miles between refuehng/recharging) 

Although the performance of the vehicles is simply divided into three levels, the 

respondents were actually provided with more detailed information on top speed 

and seconds needed to reach 60mph; these were however directly linked to the three 

levels of performance. In addition to this, the range attribute was set to constant 

values for ICV and HV vehicles; the reason for including this attribute was simply 

to gauge the effect on respondents' choices of increases in the range of EV vehicles. 

For the empirical estimation, a MMNL model was used, acknowledging the re-

peated choice nature by assuming constant tastes across responses for the same 

individual. The dummy variables for type of vehicle take the role of alternative 

specific constants; for reasons of identification, no coefficient was associated with 

ICV vehicles, such that the coefficients associated with the dummy variables of the 

two other types of vehicle represent the net impact of unmeasured variables (includ-

ing general attitude of respondents) on the utility of EV and HV vehicles relative 

to ICV vehicles. Similarly, some normalisation was performed for the other vari-

ables included in the model. For the body type, midsize car was taken as the base, 

whereas for the performance variables, medium performance was chosen as the base. 

Finally, as the range variable had been kept constant for ICV and HV vehicles, a 

coefficient associated with this attribute was only estimated for EV cars. This leads 

to a total of two estimated ASCs, three marginal utility coefficients, and eleven 

dummy coefficients. 

All parameters used in the utility function were specified to vary randomly across 

respondents, where a Lognormal distribution was used for the three marginal utility 

coefficients (with an appropriate sign change for the price and cost attributes), while 

a Normal distribution was used for the various constants. The final model thus uses 

16 randomly distributed coefficients, leading to 32 parameters to be estimated. It 

seems that this makes it the highest-dimensional MMNL analysis comparing differ-

ent types of Halton sequences to date. Kenneth Train's Gauss codê "̂  was used for 

the estimation of the models. 

In order to obtain true values of the parameters for use as reference points in the 

comparison of the different types of draws, ten runs based on 2, 000*5 pMC draws 

'''See http;//elsa.berkeley.edu/~train/ 
'•"•A stability analysis showed this number to be sufficient for obtaining stable estimates, with 
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Parameter Estimate Std.err. Parameter Estimate Std.err. 

Price 
s 

-2.546 
0.731 

0.06 
0.04 

Sm. Car ^ 
a 

-1.326 
1.120 

0.17 
0.29 

Op.Cost 
s 

-3.540 
0.853 

0.11 
0.08 

Lrg. Car ^ 
a 

-0.463 
L183 

0.17 
0.27 

Range ^ 
-0.586 
0J.22 

0.25 
0.22 

Sm. SUV ^ 
0" 

-0.796 
0L758 

0.16 
0.28 

Electric ^ 
a 

-1.979 
1.278 

0.21 
OJ^ 

Mid. SUV ^ 
a 

0.331 
0.778 

0.15 
0.33 

Hybrid ^ 
a 

0.791 
1.140 

0.10 
0.10 

Lrg. SUV ^ -0.160 
1.580 

0.24 
0.41 

High Perf. ^ 
0J.84 
0.609 

0.06 
0.09 

Comp. PU 
0" 

-L290 
1XM8 

0A8 
0.28 

Low Perf. 
a 

-^492 
0.551 

01^ 
OAO 

Full PU ^ 
(7 

-0.771 
1.589 

0.19 
0.31 

Mini Car 
a 

-2.983 
1.936 

0.23 
0.31 

Minivan 
a 

-0.479 
1.500 

0.19 
0.25 

Table 3.1; Estimation results on vehicle-type choice data 

(per individual and per dimension) were used. Prom the results, mean values of 

the parameters were calculated over runs, in addition to standard errors of the true 

parameters (calculated as the square root of the average of the squared standard 

errors from individual runs). 

The results from this estimation are summarised in Table 3.1, which gives the 

estimates of the different parameters, along with their standard errors. For the 

coefficients following a Normal distribution, these correspond to the mean (/i) and 

standard deviation (cr), while for the coefficients following a Lognormal distribution, 

they give the mean (c) and standard deviation (s) of the underlying Normal distri-

bution. The corresponding mean and standard deviation for the actual Lognormal 

distribution can be obtained by 

yu, = exp I c + — (3.20) 

and 

a — /v,\/exp (s^) — 1 (3.21) 

respectively. For the three coefficients in question, price, cost and range, this calcu-

lation leads to mean values of —0.102, —0.042 and 0.561 respectively, after a sign-

change for the price and cost-coefficient, along with standard deviations of 0.086, 

no significant changes in likelihood, parameter estimates or standard errors when using a higher 
number of draws. 
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0.043 and 0.069 respectively. 

The estimated values of the coefficients indicate the changes in utility following a 

unit change in the respective attribute, with all other attributes kept constant. The 

results produced in the present analysis are broadly consistent with those produced 

by Train & Hudson (2000), showing significant negative impacts of increases in price 

and operating cost, along with positive impacts of increases in range, with high 

variations in sensitivity levels across respondents especially for price and operating 

cost. With medium performance used as the base, the signs of the coefficients 

for high and low performance are as expected, indicating that high performance is 

preferred to medium performance while low performance leads to lower utility than 

medium performance. The results suggest that the (mean) effect of moving from 

low to medium performance is around 2.5 times as important as the effect of moving 

from medium to high performance. The estimate for the coefficient associated with 

the dummy variable for electric vehicles can be most easily interpreted by summing 

it with the range coefficient (which was set to zero for all non-electric vehicles); this 

shows that on average, ceteris paribus, an electric vehicle needs a range of 353 miles 

to be valued equally highly as an ICV vehicle. With inferior range, EV vehicles 

are valued lower than ICV vehicles, while HV vehicles are valued more highly than 

ICV vehicles. In terms of body type, only the mid-size SUV is on average preferred 

to the mid-size car (used as base). It should also be noted that the mean of the 

coefficient associated with large SUV's is not significantly different from zero, while 

its standard deviation is significant. 

For the comparison of the different types of draws, four sequence lengths were 

used, namely 50, 100, 200 and 500. Ten runs were used for the non-deterministic 

methods (shuffled Halton draws, MLHS and PMC), while, for the Halton-based ap-

proaches, the first sixteen ehgiblc primes (2 to 53) were used. With the; aim of testing 

the abihty of the draws to recover the true parameters, the root-mean-squared-error 

(RMSE) between the estimated value and the true value of each parameter was 

calculated across runs. For standard and scrambled Halton sequences, this equates 

to the absolute difference between the true and estimated parameter, given that 

only a single run was used. In order to account for the shape of the log-hkelihood 

function, these error values were then expressed as a proportion of the standard 

error of the true parameter (c.f. Sandor & Train 2004), before being averaged across 

the 32 parameters that were estimated. This approach is based on the understand-

ing that standard errors are related to the shape of the log-hkelihood function at 

tlic. maximum. A high standard error for a parameter indicates a fiat sluqx; of the, 

log-hkelihood function for this parameter at the maximum of the function; slight 

changes in the value of the parameter have little effect on the value of the log-
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Standard Scrambled Shuffled 
Draws Halton Halton Halton MLHS PMC 

50 0.7579 (17682 0.7577 0.7377 0.7627 
100 0.5807 0^964 0.5521 0.5017 0.5664 
200 0.3762 0.3878 0.3682 0.3630 0.3858 
500 0.2278 0.2177 0.2280 0.2152 0.2448 

Table 3.2: Estimation performance of different types of draws on vehicle-type choice 
data; average (across parameters) RMSE as proportion of standard error 

likelihood function. The converse is the case for low standard errors. The inverse of 

these standard errors can thus be used as weights for the parameters in the calcula-

tion of estimation performance (when comparing different types of draws), such that 

a higher simulation error is tolerated for parameters that have a higher standard 

error (c.f Sandor & Train 2004). 

The first observation that can be made from Table 3.2 is that the performance 

of the standard Halton draws is surprisingly good, despite the problems with high 

correlation that would be expected in such a high-dimensional application. An-

other interesting observation is that the use of scrambled Halton sequences actually 

leads to poorer performance than the use of standard Halton sequences for three 

out of the four sequence lengths (50, 100 and 200 draws). Except for the longest 

choice of sequence length (500 draws), the standard and scrambled Halton draws 

are outperformed by the shuffled Halton draws, suggesting that, especially with 

short sequences, the shuffling approach can offer improvements over the other two 

approaches in high dimensional problems. The MLHS method leads to the best 

performance for all four sequence lengths. Finally, it should be noted that the use 

of PMC draws leads to surprisingly good relative performance, given earlier results, 

for example by Train (1999) and Bhat (2001). Stated more directly, the alternative 

methods did not provide very much improvement over PMC draws. 

A possible reason for the smah improvement could be the high dimensionality 

of the application compared with those of earlier applications. As stated above, 

the Halton and MLHS procedures are not specifically designed in multiple chmen-

sions; rather they are all designed as one-dimensional sequences that are combined 

to create multi-dimensional sequences. It might be the case that, as the number of 

dimensions rises, the importance of one-dimensional coverage diminishes. Or, stated 

alternatively, any unstructured combination of one-dimensional sequences may start 

to more closely resemble a purely random sequence as the number of dimensions 

rises. This conclusion suggests the need for comparisons with sequences like sys-

tematic sampling and {t, m, a)-nets, which, as discussed in Section 3.8, provide better 
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uniformity over dimensions by relinquishing uniformity in each dimension. 

The results of the application do suggest that the lowest error is obtained by 

the MLHS approach. However, aside from being based on a single apphcation, it 

should be clear that the differences in performance between the single methods are 

probably too small to allow us to generalise the results. Systematic analyses using 

synthetic datasets would provide more insight, as would an extension of the parame-

ter space used in comparison to the entire variance-covariance matrix. Nevertheless, 

the results in this study are interesting and intuitive. They indicate that if a multi-

dimensional sequence is going to be created by randomly combining one-dimensional 

sequences, then performance is enhanced by obtaining more uniform coverage in each 

dimension, which is attained by MLHS relative to shuffled Halton sequences, and 

by MLHS and shuffled Halton sequences relative to pure pseudo-random sequences. 

3.7.2 A p p l i c a t i o n B 

The second application uses a four-dimensional MMNL model estimated on RP 

mode choice data with 5 alternatives. This application was conducted as part of the 

work published in Bastin et al. (2005), although the runs using 1,000 MLHS draws 

were repeated due to some inconsistencies in the original results. 

The Mobidrive dataset used here was collected in 1999 in two cities of Germany 

(Karlsruhe and Halle-Salle), from 160 households and 360 individuals, where each 

individual was observed during six continuous weeks (c.f. Axhausen et al. 2002). In 

the present analysis, only the dataset for Karlsruhe is used; appropriate level-of-

service data for the used and non-used alternatives were added separately All trips 

are grouped into tours, and the population is divided into workers (commuters and 

education) and non-workers. For each worker, the daily chain is divided into morn-

ing, commute and evening patterns. For non-workers, we define the main activity 

as the longest out-of-home activity recorded, where the daily activity chains are 

represented in relation to this pivotal activity and organised into morning, principal 

and evening patterns. With this definition, a total of 5, 795 tours were identified, 

performed by 136 individuals belonging to 66 households, with an average daily 

number of 1.72 tours per individual. 

The final model contained 21 parameters, of which four were specified to be 

randomly distributed, namely the coefficients associated with time, cost, total travel 

time and time budget. For ease of estimation, a Normal distribution was used for 

tlie.sc, (•.()(;ffi(',i(uits. This liowevc r̂ led to significant pr()l)abiliti(;s of countcT-intuitively 

signed coefficients, which should be seen as an artefact of the use of the Normal 

distribution (c.f. Chapter 4). As such, the results produced by this model are not 
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MLHS 200 draws 500 draws 1000 draws 2000 draws 
Bias/std.err. 0.0269 0.00961 0.00558 0.00311 

RMSE/std.err. 0.04516 0.02486 0.02414 0.02261 
St.dev./std.err. 0.03678 0.02387 0.02449 0.02316 

Est. time (s) 381 967 2,474 4,468 

P M C 1000 draws 2500 draws 5000 draws 
Bias/std.err. 0.01946 0.01076 0.00491 

RMSE/std.err. 0.05128 0.04215 0.03615 
St.dev./std.err. 0.04927 0.04244 0.03769 

Est. time (s) 2,280 5̂ %W 11,064 

Table 3.3; Estimation performance of different types of draws on Mobidrive data 

reliable from a policy-decision perspective, but the model can still be used for the 

present analysis, where the aim is of a purely mathematical nature. 

The models in this application were estimated with AMLET (Bastin et al. 2003), 

where, in the present example, a basic trust region optimise: was used. The true 

parameters were generated by running the model ten times with 10, 000 pseudo-

random draws per individual. As in the first example, the square-root of the average 

of the squared errors was again calculated over runs. Ten independent runs were 

performed in order to produce the performance indicators. Aside from the RMSE, 

two additional measures were used to compare the results to those obtained with 

the reference model, namely the bias (difference between the mean estimate across 

runs and the reference estimate), and the standard deviation of estimates across 

runs. In each case, the measures were calculated as a proportion of the standard 

error of the associated parameter, before being averaged across parameters. 

Given the above discussion about the quality of the estimates on the basis of 

the distributional assumptions, the substantive model estimates are not reproduced 

here, but can be found in Bastin et al. (2005). Rather, we look only at the per-

formance of the models using MLHS and PMC draws in terms of reproducing the 

estimates obtained with the reference model. These performance measures are re-

ported in Table 3.3. For MLHS, the results are presented for sequences of length 

200, 500, 1,000 and 2,000 draws, while for PMC, the results for 1,000, 2,500 and 

5,000 draws are shown. 

The first observation that can be made from the results is that when compar-

ing the performance with the only common number of draws, 1,000, the MLHS 

draws provide better performance than the PMC draws for all three measures of 

performance. Except for the bias measure, the same applies when comparing the 

results obtained with 200 MLHS draws to those obtained with 1,000 PMC draws. 
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while, with 500 MLHS draws, all three indicators show better performance than 

with 1, 000 PMC draws. Additionally, the results show better performance with 500 

MLHS draws than with 2, 500 PMC draws, as well as for 2, 000 MLHS draws when 

compared to 5,000 PMC draws, while, with 1,000 MLHS draws, the bias is only 

slightly higher than with 5,000 PMC draws, whereas RMSE and standard deviation 

are lower. The results for MLHS show decreasing bias and RMSE with increases 

in i?, while the standard deviation, which is much lower than with PMC draws 

(showing greater stability), remains relatively stable beyond 500 draws (with a mi-

nor increase between 500 and 1, 000, which is however almost surely an observation 

biased by the low number of runs). Although more runs are required to improve 

the reliability of the conclusions, the overall results are very encouraging, and the 

implied possibilities in terms of computational savings are quite impressive. Indeed, 

the ability to obtain better performance with 500 MLHS draws than with 2, 500 

PMC draws would mean savings by around 80% in runtime, while, with the results 

for 2, 000 MLHS draws and 5, 000 PMC draws, the savings are still around 60%. 

3.8 A l t e rna t ive Q M C approaches 

As described in the preceding sections, multi-dimensional Halton and MLHS se-

quences are created by combining one-dimensional sequences. Several QMC se-

quences have been proposed that are created directly in the multi-dimensional space. 

Generally, these sequences obtain more uniform spacing of points over the multiple 

dimensions while attaining less uniformity in individual dimensions. 

One such method is the systematic sampling approach proposed by McGrath 

(1970). This approach produces a A^-dimensional uniform grid of R. points by ran-

domly drawing ^ points in one of the M /\-dimensional parts of the grid and 

translating these points into the remaining M — 1 grid areas. Alternatively, the 

draws in each sub-area are drawn randomly. The precision of either approach in-

creases with M. The main difhculty with these grid methods is that of finding 

appropriate values of M (and /?), such that ^ and V M are integer values. Clearly, 

the best performance with this method is obtained in the case where a division can 

be used such that each sub-cube of the 0 — 1 hypercube contains exactly one draw. 

This is only possible in the rare case where is an integer value. Alternatively, 

it is possible to use a division of the 0 — 1 hypercube into hyperrectangles, rather 

than hypercubes; the use of different divisions along different dimensions however 

potentially reduces multi-dimensional uniformity. 

It is of interest to briefly compare the systematic sampling method to the MLHS 

approach, hence highhghtiug the differ(;nt:es l)etween a sequence designed in multiple 
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dimensions and a sequence based on the combination of one-dimensional sequences. 

Indeed, it should be highlighted again that, with a method based on the combination 

of randomly shuffled one-dimensional sequences, there is no guarantee of good niulti-

chmensional coverage, even in the case of very good one-dimensional uniformity. It 

is clear that the one-dimensional quality of coverage of a grid method increases 

as M and hence VM (the number of intervals per dimension) increases^®. This 

quality of coverage will however necessarily be inferior to that obtained in single 

dimensions by the MLHS method, as this effectively uses R equally-sized intervals 

along each dimension with one draw per interval. Only in the case where K = 1 

and M = R will the systematic sampling approach lead to the same degree of 

one-dimensional uniformity of coverage. As the systematic sampling approach does 

not rely on any shufhing of the one-dimensional draws, but explicitly creates a grid 

of multi-dimensional points, the multi-dimensional quality of coverage should be 

superior to that of MLHS; this however presumes sufficiently high values for M (with 

correspondingly small cells and low numbers of draws per cell), which are often not 

possible. These difficulties, which hamper general implementation of the systematic 

sampling approach, have thus far prevented the deployment of this approach in the 

area of discrete choice modehing. 

Another type of QMC sequences designed in multiple dimensions are (t, rn, s)-

nets, as discussed in the context of discrete choice modelling by Sandor & Train 

(2004). These nets constitute a general class that includes Sobol, Faure, Nieder-

reiter, Niederreiter-Xing, and other sequences. The specification and construction 

of {t. m, ,y)-nets differ across different numbers of dimensions and points. They are 

restrictive in the number of points that can be used for any given number of dimen-

sions, and, like the grid procedures, generally attain more uniform multi-dimensional 

coverage at the expense of uniformity along each individual dimension. Sandor & 

Train (2004) compare four kinds of {t, m, .s)-nets with Halton sequences in the es-

timation of MMNL models. They find that two of the (t,m, s)-nets performed 

better than Halton sequences, while the other two performed worse, suggesting that 

more complicated methods do not necessarily offer universal improvements in per-

formance. 

Moving back to sequences produced in single dimensions, another potentially 

interesting solution is the use of Sobol sequences, which have significant advantages 

over Halton sequences in terms of much lower degradation in performance in higher 

sequences. A recent application by Garrido (2003) confirms these advantages in 

Mie c()nt(>,xt of MMNL estimation, showing that Sobol seciue.nc.es offer more, stable 

performance than Halton draws. However, Garrido (2003) not only repeats findings 

lU A similar reasoning applies in the case of hyperrectangles, instead of hypercubes. 
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by Train (2003) showing that increases in sequence length with Halton draws do 

not always lead to increases in performance, but worryingly, observes a similar 

phenomenon with Sobol sequences. While such problems should occasionally be 

expected in the case of approaches using random perturbations, purely deterministic 

approaches should be immune to such problems. 

As Train (2003) observes, the number of different approaches for producing QMC 

numbers is so high that it is impossible to describe all of them in a single text. This, 

in any case, is not the aim of this chapter, as set out in Section 3.3. There are major 

differences between the various approaches, in terms of the ease of implementation, 

as well as in their performance. Examples of more advanced types of QMC number 

sequences are for example given by Bratley & Fox (1988), Bratley et al. (1992), Owen 

(1995) and Niederreiter & Xing (1998), while good reviews of the different available 

methods are given by Bratley et al. (1992) and Krommer & Ueberhuber (1994). 

Spanier & Li (1997) discuss the potential of combining QMC and PMC approaches, 

and Shaw (1988) discusses the use of QMC sequences in Bayesian statistics. 

In concluding, it should be noted that the increased complexity of advanced 

methods often counterbalances their advantages in terms of performance, especially 

with the relatively simple problems faced in transport studies. This is reflected in 

the fact that in this area of research, Halton sequences have established themselves 

as the most popular choice of QMC sequence. As Train (2003, page 239) notes; "It is 

to reTTiemter, Aowe'uer, m t/ie o/ (Agge 

can (zZiuaT/g cgroiua. T'/ie reseorc/ier Meeds (o decicfe 

w/iet/ier Zeomm^ OMcf Mew met/iock o/ drawg M ?7iore ezpe(f%eMt, ^%'ue7i 

/ler tzme coMgtromts, t/ioM n/nTimp Aer modeZ wzt/i ?7iore (frows." 

3.9 S u m m a r y and Conclusions 

This chapter has discussed issues relating to the estimation and application of mod-

els based on integrals without a closed form solution, and specifically, the high cost 

incurred as a result of the numerical processes that are required to evaluate the 

choice probabilities of such models. The discussion has centred on simulation, and 

specifically, on the use of alternatives to PMC draws in classical Monte-Carlo in-

tegration. As such, the chapter has discussed the development of an alternative 

approach to the commonly used Halton sequence for use in simulating the choice 

probabilities of CEV mixture models. The approach, MLHS, has certain advantages 

over other approaches, in terms of simplicity of implementation, as well as reduced 

risk of problems with inter-dimensional correlation in high-dimensional problems. 

The two brief applications presented in this section lead to mixed conclusions. 
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On the one hand, the second application shows that, in low-dimensional problems, 

MLHS draws offer more stable performance than PMC draws, and have the potential 

to lead to impressive savings in computational costs. On the other hand, the. first 

apphcation has shown that, in high-dimensional problems, there is little to pick 

between the different QMC approaches attempted (although the MLHS approach 

seemingly offers the best performance), and that the performance of PMC draws is 

actually quite acceptable. This can be interpreted in two ways; either that the QMC 

sequences attempted are not adequate for the use in high-dimensional problems, or 

that the disadvantage of PMC draws decreases with increasing dimensionality. 

More research remains to be done to provide an answer to this question, as well 

as in the general testing of the MLHS approach, in terms of the analysis across 

a wider range of modelling scenarios, and the comparison in performance across a 

wider set of QMC sequences. In this work, the comparison was limited to those 

approaches developed during the research presented in this thesis, along with the 

most commonly used types of sequences in discrete choice modeUing. While the 

results from the high-dimensional apphcation cast some doubt as to the usefulness 

of basic QMC approaches in high-dimensional MMNL models, it should be remem-

bered that the majority of applications in choice modelling use only a very limited 

number of randomly distributed coefficients. Given the persisting doubts surround-

ing the commonly used Halton sequence, it seems that MLHS draws could provide 

an interesting alternative, which has by now been implemented in AMLET as well 

as BIOGEME, while the manual implementation in ALogit and a number of other 

estimation packages is straightforward. 

In closing, one topic that deserves a brief mention is the use of adaptive drawing 

algorithms. Such approaches are based on the notion that a lower level of simu-

lation accuracy is needed in the early stages of estimation, when the optimisation 

takes only rough steps in the general direction of the optimum. On the basis of 

this reasoning, a lower number of draws can be used in early iterations, leading to 

significant reductions in the cost of estimating MMNL models, as shown by Bastin 

et al. (2003). As such, while QMC approaches aim to reduce the average cost per 

iteration through the use of a lower number of more uniformly positioned draws, 

adaptive drawing approaches, which are generally based on PMC draws, reduce the 

average cost by accepting lower levels of precision in initial iterations. Two different 

versions of such an algorithm have been tested in the context of mixture models; the 

liasic trust-region with dynamic accuracy (BTRDA^^) approach of Bastin (2004), 

which is currently restricted to MMNL, but allows for flexible changes in the numl)er 

Used for example by Bastin et al. (2005). 
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of draws in each iteration, and the BIOMC^® optimiser implemented in BIOGEME, 

which can be used with any type of GEV mixture model, but where the changes in 

the number of draws are determined prior to the start of the estimation work. The 

main issue with the use of adaptive drawing techniques is that of implementation. 

Here, it should be noted that the use of a manual approach, which precedes the 

actual full-scale estimation by one using a lower number of draws with a less strict 

convergence criterion, can yield comparable savings, without a need for a special im-

plementation, as illustrated by Hess (2005). Finally, a common sense approach, in 

which MNL estimates are used as starting values in MMNL estimation^®, at least for 

the fixed coefficients and the mean values of any normally distributed coefficients, 

can also lead to important reductions in overall estimation time, while yielding the 

same results, as observed by Hess (2005). 

^^Used for example by Hess, Bierlaire & Polak (2005a). 
^"Respectively GEV estimates in the case of GEV mixture models. 



Chapter 4 

Specification and interpretation of 

random coefficients models 

4.1 I n t r o d u c t i o n and context 

As described in Chapter 2, researchers and practitioners are increasingly using the 

MMNL model for a representation of random variations in sensitivities across re-

spondents^. This not only offers great benefits in terms of providing insights into 

variations in tastes across respondents, but also potentially avoids bias in the es-

tiuiatcxl trade-offs in models based on the; use; of fixed taste coefficients (see for 

example Algers et al. 1998, Hess & Polak 2004o). 

However, while the MMNL model can offer great gains in flexibility, the pitfalls 

are similarly significant, as stressed for example by Hensher & Greene (2003). Aside 

from the greater cost in terms of model estimation and application, as discussed 

in Chapter 3, two main issues arise with the use of the MMNL model; the choice 

of statistical distribution for randomly distributed coefficients, and the economic 

interpretation of such coefficients. The additional issue of deciding which parameters 

should be modelled as being randomly distributed across agents can be addressed 

relatively straightforwardly on the basis of statistical tests. 

This chaptei' looks specifically at flu; issues of the; choice of distribution and 

the interpretation of the resulting parameter values, and discusses how the two are 

strongly inter-related. The discussion centres on one specific application of MMNL 

models, namely the estimation of variations in the valuation of travel time savings 

(VTTS). 

While the issue of the choice of distribution especially has been discussed re-

The issues described in this chapter apply to mixture models in general, and are not constrained 
to J \ ' I M N L . For reasons of simplicity, the discussion here centres on the MMNL model, which is 
the only widely used mixture model. 

86 
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peatedly in the existing hterature, with some examples being the work of Hensher 

& Greene (2003), S0rensen (2003) and Train & Sonnier (2005), it should be noted 

that the number of distributions tested in previous work has generally been rather 

limited. Additionally, the vast majority of actual modelling analyses still rely ex-

clusively on the use of the Normal distribution, while only a handful of alternatives 

to the Normal distribution have received even modest exposure. This is despite the 

fact that there is a body of work that shows that misspecification of taste hetero-

geneity, as for example in the use of an inappropriate distribution, can undermine 

the reliability of widely used benefit measures such as the rule of a half or the log-

sum, (c.f. Cherchi & Polak 2005). From this point of view, there is an urgent need 

for extensive research into the applicability of hitherto unused (or rarely used) dis-

tributions in the context of mixture models. As such, the aim of the applied part of 

this chapter is to conduct a case-study using a high number of different continuous 

distributions in a single apphcation, hence highlighting the potential differences in 

performance as well as substantive results^. 

The other issue addressed in this chapter is that of the interpretation of results 

produced with the help of models allowing for a random distribution of tastes across 

respondents. This discussion is positioned in the context of recent results showing 

counter-intuitive findings in terms of a share of the population with negative VTTS, 

i.e. travellers who actually seek increases in travel time (e.g. Cirillo & Axhausen 

2004). Here, the aim of this chapter is to establish whether such results should 

be seen as actual evidence of the existence of such individuals, or should rather be 

regarded as effects of model misspecification or data problems. The evidence from 

the case-study is used to support the more theoretical claims. 

To a large extent, the material presented in this section has been published 

nr Hess, Bierlaire & Polak (2005c), but the case-study presented here is far more 

comprehensive, where the original apphcation made use of only three distributions 

(Normal, Lognormal and S b ) - Additionally, the work is motivated by the findings 

of Hess & Axhausen (2005), who, in a comparison of the approximation power 

of different distributions to simulated datasets, highlight problems with the tail-

behaviour of unbounded symmetrical distributions, such as the Normal. 

The remainder of this chapter is organised as follows. The next section discusses 

the state-of-practice in terms of the choice of distribution in MMNL modelling. The 

importance of the distributional assumptions and the issues faced in the interpreta-

tion of MMNL results are illustrated in the VTTS case-study presented in Section 

^The work presented in this chapter is based entirely on standard continuous distribution func-
tions, and ignores the potential use of empirical distributions. Additionally, any estimation work 
is based purely on standard techniques, with options such as the conditioning on respondents' 
choices (c.f. Sillano & Ortuzar 2004) not explored here. 



4.2. Choice of distribution: the state of practice 

4.3. Section 4.4 looks at the interpretation of results showing a significant share 

of respondents with counter-intuitively signed travel time coefficients. Finally, Sec-

tion 4.5 summarises the findings of the chapter, and offers some guidance for good 

practice. 

4.2 Choice of d i s t r ibu t ion : t h e s t a t e of p rac t i ce 

As indicated in Section 4.1, the choice of distribution for a randomly distributed 

coefficient plays a crucial role in the specification of a MMNL model. In practice, 

only the Normal (Gaussian) and Lognormal distributions have found widespread 

application in MMNL modelling. Several authors have also advocated the use of the 

Triangular distribution (e.g. Hensher & Greene 2003), while recently, good results 

have also been obtained with Johnson's S b distribution (c.f. Train & Sonnier 2005). 

While the use of the Normal distribution can be appropriate in the case of co-

efficients without a strict sign assumption, the fact that it is unbounded can cause 

severe problems with interpretation when used for coefficients where such an a priori 

assumption exists in principle (e.g. travel time coefficients). Additionally, problems 

can arise in the case of asymmetrical true distributions. While the use of the Lognor-

mal distribution can at least partly address these issues, problems can be caused by 

the long tails (c.f. Hess & Polak 2004a). Additionally, computational problems and 

slow convergence limit the apphcabihty of the Lognormal distribution. The issues 

of the long tail can be avoided with the use of the Triangular distribution, which has 

the advantage of being bounded to either side. However, in its standard form, the 

distribution faces the same problem as the Normal in terms of a symmetrical shape, 

where the asymmetrical variant is difficult to implement, given the complications 

with estimating the location of the peak. 

The main factor leading to the almost exclusive reliance in MMNL modelling 

on the above listed distributions is the relatively limited repertoire of distributions 

supported by existing MMNL estimation packages, where only a small subset of 

modellers make use of their own, pur pose-written code. Within the set of available 

distributions, the choice is often infiuenced by issues of numerical problems when 

using the advanced distributions, but it must be said that the limited awareness of 

the potential benefits of using a broader range of distributions also plays a role in 

the preeminent position of the Normal distribution. 
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4.3 V T T S case-s tudy 

We now turn our attention to the VTTS case-study, which serves as an indication 

of the effects of distributional assumptions in the use of MMNL models. 

4.3.1 I n t r o d u c t i o n 

The computation of VTTS measures has been one of the main applications of ran-

dom utility models, with some recent discussions of the topic including Algers et al. 

(1998), Hensher (2001 a, 6, c), Lapparent & de Palma (2002), Cirillo & Axhausen 

(2004) and Sillano & Ortuzar (2004). The VTTS is an important willingness-to-pay 

indicator, used for example for cost-benefit analysis in the context of planning new 

transport systems, or for pricing. In discrete choice models, the computation of 

VTTS measures is relatively straightforward, given by the ratio of the partial deriv-

atives of the utility function with respect to travel time and travel cost (i.e. the 

marginal rate of substitution between travel time and travel cost, at constant util-

ity) . Although this is an intuitively plausible approach, it is important to appreciate 

that the justification for this approach to the valuation of travel time savings rests 

not on plausibility but rather on a substantial body of microeconomic theory that 

addresses the issue of how individuals allocate time amongst alternative activities, 

including travel. Indeed, the topic of time allocation and valuation has been the 

subject of intense study from a variety of different perspectives for several decades 

(see, among others, Becker 1965, Oort 1969, De Serpa 1971, Evans 1972, Truong & 

Hensher 1985, Bates 1987 and Jara-Diaz & Guevara 2003). The papers by Jara-Diaz 

(2000) and Mackie et al. (2001) provide excellent overviews of the development of 

this hterature. 

Under the strong but necessary assumption that all effects of these two attributes 

(travel time and travel cost) are captured in the observed part of utility, the VTTS 

measure is simply computed as: 

dV/dTC 

with V giving the observed part of utility, and TT and TC representing the travel 

time and travel cost attributes respectively. In the case of fixed taste coefficients, and 

with the commonly used linear-in-attributes utihty function, this formula reduces to 

Ptc-, where (5tt and /?tc are the time and cost coefficients, giving the marginal 

utilities of increases by one unit in travel time and travel cost respectively. Estimates 

of these marginal utihties are produced by calibrating the model on the choice data 
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used in the estimation^. Even with the use of non-hnear transforms, such as the 

natural logarithm, the computation remains relatively straightforward, although the 

actual values of the attributes now enter into the computation of the trade-offs. 

With the increased use of the MMNL model in the area of transport studies, 

researchers have begun to increasingly exploit the power of this model to repre-

sent a random variation in the marginal utility of travel time and travel cost across 

respondents (e.g. Algers et al. 1998, Cirillo & Axhausen 2004). However, the ex-

tension of the theoretical foundations of the calculation of the VTTS to the case 

where (Stt and/or (3tc are modelled as random parameters is not straightforward. 

Indeed, in the MMNL analysis of the distribution of the VTTS measures across a 

population of respondents, the distributional assumptions play a crucial role, and 

have a significant effect on model interpretation. 

In this discussion, we focus on the marginal utility of travel time, but a similar 

principle applies in the case of the marginal utility of travel cost, or indeed in the case 

where the VTTS is modelled directly, as opposed to being based on the ratio of P t t 

and Pre (c.f. Fosgerau 2004). It should be noted that this approach has potential 

advantages, especially in the case of random coefficients models, as it avoids the 

issues involved with calculating a distribution of the VTTS on the basis of a ratio 

of two randomly distributed coefficients. As such, the continued exploration of such 

approaches in random coefficients models is an important avenue for future research. 

In models that are based on the use of fixed taste coefficients, researchers gener-

ally have an a priori expectation of obtaining a negative travel time coefficient, and 

models producing positive values will normally be rejected on the grounds of model 

misspecification or lack of explanatory power in the data. While the sign-issue is 

thus relatively straightforward in the case of fixed coefficients models, it becomes 

more complicated in the case of models allowing for random taste heterogeneity. 

Indeed, in such models, the use of an unbounded distribution can lead to a non-zero 

probability of positive as well as negative travel time parameters. In this case, it is 

however not clear a priori whether such estimates do in fact indicate the presence 

of respondents with negative VTTS in the population, or whether they are simply 

an artefact of the model specification or the poor (quality of the data used in model 

estimation. 

One potential source of model misspecification can come in the form of an in-

appropriate choice of mixture distribution for the travel time coefficient. Like for 

most other coefficients, the most common choice of distribution for the travel time 

•'Here, it should be noted that the coefficient values themselves are estimators which are as-
yui])totically normally distributed. As such, the ratio of Ptt and f i r e iw itself a random variable, 
as discussed by Armstrong et al. (2001). 
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coefficient is the Normal distribution. Here, the unbounded nature of the Normal 

distribution can lead to major complications. Indeed, in the case where the true 

distribution yields strictly negative values, but has a mean close to zero with a long 

tail into the negative space of numbers, the symmetrical nature of the Normal dis-

tribution can, in approximation, lead to a significant share of positive values, even 

though such values are not actually revealed by the data. On the other hand, in 

the case where the source for such estimates are some problems with the data, the 

Normal distribution has the potential to produce such values, hence allowing the 

modeller to identify the problem and motivate an investigation into its causes. Al-

though, without an in-depth investigation, it is desirable not to explain a significant 

probability of a positive travel time coefficient by the notion that some agents have a 

negative VTTS, it is similarly bad practice to simply constrain the model to purely 

negative values for I3tt, hence ignoring the impact of data or model imperfections. 

The issue with the Normal distribution is thus the problem of deciding whether 

a non-zero probability of a positive coefficient is revealed by the data or is simply 

an artefact of the symmetrical nature of the distribution. Here, it can be seen 

that the Triangular distribution, in its symmetrical form, leads to similar problems, 

although by being bounded, it at least avoids the long tails. As such, the aim 

should be to use distributions that can signal the presence of such effects with a 

minimal risk of the effects actually being caused by the distribution itself. Here, the 

above arguments in relation to the Normal and the symmetrical Triangular suggest 

that such a distribution should not make too strict an a priori shape assumption. 

Additionally, it should be clear that distributions with estimated bounds have an 

advantage in terms of not making an a priori assumption about the range of the 

distribution. Here, it should be noted that with any distribution bounded on one 

side,, th<; estimation of an additional offset parameter eliminates the issue of jixcd 

bounds alluded to by Hess, Bierlaire & Polak (2005c). As such, even distributions 

generally seen as being bounded at zero can be specified with a flexible bound and 

thus have the potential to signal the presence of wrongly-signed coefficient values'*. 

Given the problems caused by the long tails of some the distributions bounded on 

just one side (e.g. Lognormal), it can be argued that distributions bounded to either 

side, with estimated bounds'", such as the Johnson Sb, have an advantage. In the 

case of flexible underlying distributions, the risk of values with the wron,g sign being 

"'Here, it is worth noting that a sign change on the attribute can be used in the case of asym-
metrical distributions with an a priori constraint on the sign of the skewness (e.g. Lognormal), to 
act as a. mirror function for the distribution of the coefficient. 

'"'For distributions with strict domains of definition, an additional offset and range parameter 
can be used to obtain a distribution bounded on either side, with no a priori assumption on the 
location of the bounds. 
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caused by the shape of the distribution, as with the Normal, largely disappears, 

although problems may still occur in the case of a significant mass at the endpoints, 

such as in the presence of individuals with zero VTTS (c.f. Cirillo & Axliausen 2004, 

Hess, Bier lair e & Polak 2005 c). 

It should be noted that another possible approach comes with the use of empirical 

or non-parametric distributions. However, such approaches are only beginning to be 

exploited in the estimation of MMNL models, and difficult issues of implementation 

and estimation need to be faced. The use of such distributions is not discussed in 

this work (with the exception of discrete mixtures in Chapter 5), but remains an 

important avenue for future research. 

4.3.2 D a t a a n d m o d e l speci f ica t ion 

The study presented here makes use of data collected as part of a recent value of 

time study undertaken in Denmark (Burge & Rohr 2004). The same dataset was 

also used in the non-parametric VTTS study of Fosgerau (2004), but the results of 

the two studies are not directly comparable, mainly because of the use of a different 

subsample. 

In this study, we make use of data describing a binomial choice process for 

car-travellers on shopping trips, with alternatives described only in terms of travel 

cost and travel time. Each respondent was presented with 9 choice-situations, in-

cluding one with a dominating alternative. After ehminating the observations with 

a dominating alternative, as well as additional data cleaning®, a sample of 1,767 

observations was obtained, for 230 respondents. With the sole aim of exploring 

the effects of different distributional assumptions, a very basic utility function was 

used, such that, in addition to an ASC associated with the first alternative, two 

coefficients were specified, associated with travel cost (DKK^) and travel time (min) 

respectively, with both attributes entering the utihty in linear form. In the MMNL 

models, the repeated choice nature of the dataset was accommodated under the 

assumption of tastes varying across respondents, but not across observations for the 

same respondent. Finally, no treatment of the correlation between the travel cost 

and travel time coefficients was used in the present analysis. 

Aside from a MNL model, estimated as the base model, a high number of differ-

ent MMNL models were estimated in the current analysis, making use of different 

continuous distributions for the representation of the variation in the cost and time 

sensitivity across respondents. Given the high number of possible combinations of 

''Here, any individual who did not choose the dominating alternative in the dominated choice-
situation was removed from the sample, as were non-traders. 

^DKK1%€0.13 
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distributions, the models were in each case specified with the same choice of distri-

bution for the two coefficients. In total, eleven MMNL models, each with difi^erent 

distributional assumptions, were estimated, making the analysis more comprehen-

sive than most other existing studies looking at the choice of distribution. Several 

additional distributions, most notably the Beta, could not be used in the present 

analysis, as it was not possible to estimate an appropriate model®. For each type of 

distribution, the model was coded in Ox version 3.40 (Doornik 2001), and estimated 

using 1, 000 Halton draws per dimension and per individual®. 

For ease of presentation, a common notation was used across distributions, with a 

and 7 giving the main parameters of the distribution, where a and h were additionally 

used to define the domain of the distribution, where appropriate. We will now look at 

the various distributions used in the analysis, where details on the actual functional 

form of the distributions are only given for the Johnson Sb and Su distributions, 

with details for the remaining distributions available in the general literature (e.g. 

Evans et al. 2000). 

Normal: specified with mean a and standard deviation 7 

Lognormal: specified with mean a and standard deviation 7 for the underlying 

Normal distribution. An additional offset parameter a was estimated, and the 

attribute entered the utility function under a sign change. 

Johnson Sb'- specified with offset parameter a, range parameter 6, and shape pa-

rameters a and 7, with probability density function {pdf) given by; 

> (") = ( . - o.) la+b - x )^ ( ° + 

where a < x < a + 6, () is the standard Normal density function, and 

where rt G (—00, +00) and 7 > 0. The shape parameter a has an effect on 

the skewness of the distribution, where negative values give a right-skewed 

distribution, zero gives a symmetrical distribution, and positive values give 

a left-skewed distribution. The second shape parameter 7 defines the actual 

shape of the distribution in terms of peak, with values greater than 1 leading to 

a single, progressively steeper peak, while values lower than 1 will eventually 

lead to two peaks/modes at the extremes of the domain. With the notation 

^AVith the Beta, problems with exploding parameters as well as standard errors were encoun-
tered, with different implementations, and across a wide range of starting values, and various 
(estimation approaches. Although these problems could be specific to the present application, more 
work is required to exploit the applicability of the Beta in the context of mixture models. 

'^I.e. leading to the use of 460,000 draws in each model. 
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in equation (4.2), a draw from the S b distribution is obtained as: 

Z = G ' (4 21) 
1 + exp 

7 

where z is a draw from a standard Normal distribution. 

Symmetrical Johnson Sb- specified as in equation (4.2), but with a = 0. 

Johnson Su- specified with probability density function 

{x - a)^ + 6̂  

, 2 
X — a X — a ^a' + 7ln I + ) + 1 I I , (4.4) 

where a draw can be produced as: 

escp, (2:22)' __ 1 
x- = a + & — — r — . (4.5) 

2 exf) ^2:̂ 2 

The Su distribution is unbounded, but, unlike the Normal distribution, it can 

be asymmetrical, with the skewness depending on a. With this distribution, 

the meaning of a and h is different from the offset and range parameters, 

given that the distribution is unbounded. Here, they take on the meaning of 

a location and scale parameter. 

Triangular: specified to be symmetrical, with lower bound a, upper bound b, and 

mode at 

Gamma distribution: specified with shape parameter a, and scale parameter 7. 

An additional offset parameter a was used, and the attribute entered the utility 

under a sign change. 

Exponential: specified with scale parameter a. An additional offset parameter a 

was used, and the attribute entered the utility under a sign change. 

Logistic: specified with location parameter a and scale parameter 7. 

Weibull: specified with shape parameter 7, offset parameter a, and with the at-

tribute entering the utility under a sign change. In the implementation in Ox, 

the pdf is defined such that the (estimate, for n is in fact not the standard scale 

parameter, say 77, but represents 

Uniform: specified with lower endpoint a, and range parameter b. 
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4.3.3 E s t i m a t i o n resu l t s 

The results of the estimation are summarised in Table 4.1 for the MNL model and 

the first group of MMNL models (Normal, Lognormal, Johnson S b and Johnson 

Sij), and Table 4.2 for the second group of MMNL models (Gamma, Triangular, 

Exponential, Logistic, Weibull and Uniform). In each case, the estimation results 

are shown for the ASC, along with the four parameters (a, b, a , and 7) defining 

the distribution of the travel cost and travel time coefficient. Additionally, on the 

basis of the estimated parameters for the distribution of the two coefficients, the 

probabilities of counter-intuitively signed (i.e. positive) coefficients were calculated 

in each of the models. Finally, the results also present the mean implied VTTS 

for each model, along with the standard deviation. In each case, these measures 

were produced by a simple simulation process, making use of 1,000,000 random 

draws for each of the two coefficients, based on the final model estimates for the 

parameters of the distribution. Here, special care was required in the models showing 

a non-zero probability of positive values for the travel cost coefficient. The fact that 

the domain for the denominator of the VTTS ratio straddles zero in such cases 

leads to extreme values in the simulation, and an over estimation of the variance 

of the VTTS. For this reason, the upper and lower^° few percentile points were 

removed from the distribution of the cost coefficient in the models using the Normal 

distribution (2%), Triangular distribution (2%) and Logistic distribution (3%). A 

similar treatment was not used in the case of the travel time coefficient: here, the 

removal of a sufficient number of percentile points (e.g. 15% for the Normal) would 

have led to a severely underestimated standard deviation. Additionally, by being 

included in the numerator, the presence of values close to zero causes fewer problems 

than is the ease for the cost co(vffic,ie,nt. 

We will now look at the results in more detail. The first observation relates to 

the performance of the various approaches in terms of model fit. All eleven MMNL 

models lead to significant improvements in LL over the MNL model, ranging from 

57.27 units in the model based on the Exponential distribution, to 66.04 units in 

the model based on the S b distribution with both shape parameters estimated. The 

differences in performance between the various MMNL models are very small, and, 

when taking into account the cost in terms of parameters, some of the other models 

(e.g. Gamma) in fact score slightly higher in the adjusted measure than the model 

leased on the 5 * 5 E v e n though the differences in model fit are too small to lend 

"'To minimise the distortion to the mean. 

Given that the different MMNL models eannot be eompared with nested hkehhood-ratio tests, 
l^reference is given to the adjusted measure, where other possibihties include for example the 
Akaike Information Criterion (AIC). 
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MNL Normal Lognormal Johnson 
Sb 

Johnson 
Sb (sym.) 

Johnson 
Su 

Final LL -1096.64 -1038.00 -1031.85 -1030.60 -1031.97 -1032.77 
Parameters 3 5 7 9 7 9 

adj. p^(0) 0.1022 0.1484 0.1518 0.1512 0.1517 0.1494 

Parameter est. (t-stat.) est. (t-stat.) est. (t-stat.) est. (t-stat.) est. (t-stat.) est. (t-stat.) 
A S C 0.302 (5.92) 0.367 (6.34) 0.369 (6.35) 0.363 (6.29) 0.361 (6.28) 0.366 (6.46) 

C o s t (DKK) 
a - - -0.37 (-0.04) -75.727 (-7.63) -68.348 (-7.99) -6.951 (-1) 
b - - - 56.686 (6.14) 51.372 (6.02) 0.095 (3.52) 
a -17.295 (-10.44) -36.146 (-9.88) 3.543 (10.82) -0.147 (-4.82) 0 5.906 (4.34) 
7 - 17.373 (6.53) 0.7 (3.39) 0,006 (0.29) 0.065 (0.64) 0.953 (4.74) 

% positive 0.00% 1.87% 0.00% 0.00% 0.00% 
T i m e (min) 

a - - -0.22 (-0.03) -35.958 (-3.84) -30.747 (-6) 7.439 (0.38) 
b - - - 29.94 (2.57) 25.036 (3.27) 0.284 (1.68) 
n. -8.293 (-6.37) -16.21 (-7.11) 2.687 (4.24) -0.258 (-0.78) 0 10.385 (1.39) 
7 - 15.341 (6.46) 0.746 (2.48) 0.276 (0.84) 0.152 (0.58) 2.022 (1.5) 

% positive 0.00% 14.53% 0.00% 0.00% 0.00% 0.87% 

DKK/hour DKK/hour DKK/hour DKK/hour DKK/hour DKK/hour 
VTTS (ai) 2&77 4L22 ^ ^ 7 3&56 3&62 46.27 
VTTS (cr) - 108.11 59.56 34^6 35.52 50.62 

Table 4.1: Estimation results for MNL model and MMNL models based on Normal, 
Lognormal, Johnson Sb and Johnson Su distributions 

significant weight to any comparisons across models, some interesting observations 

can be made. As such, all distributions, except for the Exponential, Logistic and 

Weibull, lead to better model fit than the Normal, from the point of view of the final 

LL, as well as the adjusted measure. While this should come as no surprise in the 

case of flexible distributions, such as the Johnson Sb and Su, and the Gamma, it is 

striking that the Uniform distribution obtains slightly better fit than the Normal. 

A crucial part of the results looks at the imphcations in terms of the presence of 

individuals with counter-intuitively signed values for the travel time and travel cost 

coefficients. A positive value for a travel time coefficient represents a situation where, 

all else (i.e. travel cost) being equal, a respondent prefers the slower alternative. 

Similarly, a positive value for the travel cost coefficient represents a situation where, 

with constant travel time, a respondent chooses the more expensive alternative. No 

such observations were included in the estimation; as such, results showing a non-

zero probability of a positive travel time or travel cost coefficient should be seen as 

an artefact of the distributional assumptions. 

For the travel cost coefficient, a non-zero probability of a positive coefficient was 

indicated by the models based on the Normal (1.87%), Triangular (1.12%) and Logis-

tic (2.10%) distributions. For the travel time coefficient, the situation is more severe, 

with high probabilities in the case of the Normal (14.53%), Triangular (14.60%) and 

Logistic (14.74%) distributions. These results could lead to misleading conclusions 

in terms of the presence of individuals with negative VTTS. Lower probabilities of 
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Gamma 
Symmetrical 
Triangular 

Exponential Logistic Weibull Uniform 

Final LL 
Parameters 

adj. p2(o) 

-1031.61 
7 

0.1520 

-1037.74 
5 

0.1486 

-1039.37 
5 

0.1473 

-1038.81 
5 

0.1478 

-1039.18 
7 

0.1458 

-1035,75 
5 

0,1503 

Parameter est. (t-stat.) est. (t-stat.) est. (t-stat.) est. (t-stat.) est. (t-stat.) est. (t-stat.) 
A S C 0.368 (6.33) 0.367 (6.34) 0.352 (6.24) 0,366 (6.33) 0.352 (6.25) 0.366 (6.33) 

C o s t (DKK) 
a 
b 
a 
1 

% positive 

9.636 (1.63) 

1.012 (1.66) 
0.03 (2.01) 

0.00% 

-80.341 (-7.94) 
6,499 (1.38) 

1.12% 

6.436 (3.4) 

0.026 (7.91) 

0.00% 

-35.014 (-9.92) 
9,194 (5.95) 

2,10% 

6.631 (2.34) 

0.028 (1.36) 
0.986 (5.67) 

0.00% 

-77,714 (-7,69) 
73,602 (6.29) 

0,00% 
T i m e (min) 

a 
b 
n 
7 

% positive 

3.656 (0.6) 

1.011 (0.99) 
0.066 (1.47) 

0.00% 

-52.673 (-7.87) 
19.449 (3.1) 

14.60% 

16.508 (7.71) 

19.541 (0.05) 

0.00% 

-15,612 (-7.02) 
8.875 (6.31) 

1^M% 

16.518 (8.65) 

6.559 (0.83) 
0.1 (0.33) 

0.00% 

-38,99 (-7.58) 
40,811 (4,61) 

4,68% 

DKK/hour DKK/hour DKK/hour DKK/hour DKK/hour DKK/hour 
VTTS (M) 
VTTS (a) 

42.46 
49.32 

39J8 
M.24 

42.01 
33.95 

34^9 
53.04 

49.88 
38.02 

44^5 
59,06 

Table 4.2: Estimation results for MMNL models based on Gamma, symmetrical 
Triangular, Exponential, Logistic, Weibull and Uniform distributions 

a wrongly signed travel time coefficient are observed with the Johnson Su (0.87%) 

and the Uniform (4.68%). 

Important differences arise between the MNL model and the various MMNL 

structures in terms of the implied VTTS. Here, the failure to account for the varia-

tion in the sensitivity to travel time and travel cost leads to a significant underesti-

mation of the mean VTTS in the MNL model. These findings in terms of differences 

between VTTS estimates produced by MNL and MMNL models are consistent with 

a similar observation by Algers et al. (1998); however, in that research, the MNL 

model produced significantly higher VTTS than the MMNL models, while in the 

present work, the opposite is the case. This is an indication that the error can act 

in either direction^^. 

Some differences also exist between the eleven MMNL models in the estimated 

VTTS. In general, these differences are however relatively small especially when 

looking at the mean VTTS, which is relatively stable aside from a few outliers, 

notably with the Logistic (underestimation) and WeibuU (overestimation), and to a 

lesser extent the Johnson Su- The differences are more significant when looking at 

the implied variation in the VTTS across respondents. Here, the use of the Normal 

leads to overestimation, which is partly caused by the presence of negative as well 

as positive travel time coefficients in the; simulation, a factor that also plays a role in 

should also be noted that Algers et al. (1998) make use of the median instead of the mean 
in these comparisons. 
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PTC - Normal pTT - Normal 

^ r c L o g n o r m a l , with sign-change 

- 8 0 0 -eOO - 4 0 0 - 2 0 0 0 

Pre 

(5tt - Lognormal, with sign-change 

- 2 5 0 2 0 0 - 1 8 0 - 1 0 0 - 5 0 0 

IVr 

Figure 4.1: Implied distributions for P r e and (3tt'- MMNL models based on Normal 
and Lognormal distributions 

the case of the Triangular, Logistic and Uniform distributions. Finally, the long tails 

in the case of the Lognormal, Johnson Su and Gamma also lead to higher variation 

in the trade-off. 

We will now look at the implied distribution for I S t c and P t t in each of the 

different MMNL models. For this, plots of the distributions are shown in Figure 

4.1 for the Normal and Lognormal, Figure 4.2 for the Johnson S b (asymmetrical 

and symmetrical), Figure 4.3 for the Johnson Su and Gamma, Figure 4.4 for the 

Triangular and Exponential, and Figure 4.5 for the Logistic and Weibull. The 

Uniform distribution was excluded from this graphical analysis. 

The results for the Normal and Lognormal (Figure 4.1) indicate the presence of 

a mode relatively close to zero, with a long tail to the left, which is given excessive 

weight by the Lognormal. In the case of the Normal, the symmetrical nature of the 

distribution means that, in order to accommodate the strong variation to the left 

of the mode, the tail to the right extends into the positive part of the domain for 

both Pxc and P t t - Although, with the Lognormal, the additional offset parameter 

is negative for both (3tc and P t t (and hence positive after a sign-change), the 

difference to zero is in each case insignificant. 

The results for the models based on the asymmetrical and symmetrical Johnson 
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Pre ~Sb Ptt~SB 

-80 -70 -60 -50 -40 -30 -20 -10 

Pre 

Pre " Sg (symmetrical) (Vr - Sb (symmetrical) 

-70 -60 -50 -40 -30 -20 -10 

Pre 
30 - 2 5 - 2 0 - 1 5 - 1 0 - 5 

Figure 4.2: Implied distributions for (3tc and P t t - MMNL models based on Johnson 
S b (asymmetrical and symmetrical) distribution 

S b distribution (Figure 4.2) indicate the presence of two modes for (Stc and P t t , 

a phenomenon that none of the other distributions is able to pick up^^. The dif-

ference in model fit between the two approaches is very small, suggesting that the 

additional constraint on a is acceptable, especially in the case of /?rr, where a was 

not significantly different from zero in the unconstrained model. Here, it should be 

noted that, in both models, the additional shape parameter 7 obtains very low levels 

of significance, where similar problems with the S b were already observed by Hess, 

Bierlaire & Polak (2005c), causing some concern^^. Finally, in both models, the 

implied range for P t c and P t t is exclusively negative, on the basis of the estimated 

offset and range parameters. 

The results for the Johnson Su and the Gamma distribution (Figure 4.3) are 

comparable to those obtained with the Lognormal distribution, a conclusion that 

also applies in terms of the implied VTTS (mean and standard deviation). However, 

posterior analysis would be of interest, allowing modellers to relate the distribution to 
sodo-demographic information. 

i^The t-statistic is calculated with respect to 0, and not 1, where the difference would be sta-
tistically significant. A value of 7 tending to 0 leads to a bi-modal distribution. As such, while 
suggesting problems in terms of the robustness in the estimation of 7, the results can also be seen 
as a strong indication of the presence of multiple peaks. 
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&TC " Su pTT~Su 

1500 -1000 -500 

Pre 

~ Gamma, with sign-change 

-200 -150 -100 -50 0 

Ptt - Gamma, with sign-change 

Figure 4.3: Implied distributions for (3tc and (3tt'- MMNL models based on Johnson 
Su and Gamma distributions 

the Su seems to lead to an even longer tail than the Lognormal in the case of 

while, with the Gamma, the tails are more moderate. The results for the Gamma 

imply strictly negative values for P t c and P t t (after a sign-change), although the 

offset parameters are different from zero only at the 90% and 45% level respectively. 

Additionally, some issues with significance arise for a, significant at the 90% and 

68% level for P t c and P t t respectively, while 7 is significant only at the 86% level 

for f3xT- For the Johnson Su, the location parameter is not significantly different 

from zero at reasonable levels of confidence for either or P t t , where issues 

with significance also arise for the remaining parameters in the case of P t t , with 

confidence levels of 91%, 84% and 87% for b, a and 7 respectively. 

The first observation that can be made from Figure 4.4 is that the model based 

on the Exponential distribution fails to pick up the variation in P t t - The results 

in Table 4.2 support the impression that this distribution is inappropriate for P t t , 

with a very high standard error associated with the a parameter. Aside from that, 

the offset parameters for both coefficients are significantly different from zero, and, 

after a sign change, indicate an exclusively negative domain for P t c and P t t - The 

results for the Triangular distribution are very similar to those obtained with the 
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Pre - Triangular ^ r r ~ Triangular 

Pre " Exponential, with sign-change 

- 4 0 0 - 3 0 0 - 2 0 0 - 1 0 0 0 

Pre 

pxT - Exponential, with sign-change 

Figure 4 .4: Implied distributions for P t c and P t t ' - M M N L models based on Trian-
gular and Exponential distributions 

Normal, in terms of model fit, VTTS estimates^®, and crucially, the conclusions in 

terms of the presence of individuals with positive values for Pre and PTT, where this 

is again an effect of the symmetrical nature of the distribution, in conjunction with 

a mean close to zero, along with high variation. Here, it should also be noted that 

the upper bound b is not different from zero in the case of P t c , while, for P t t , it is. 

The plots for the Logistic and Weibull distribution (Figure 4.5) again show that, 

while model fits are comparable, there are important differences between symmetri-

cal and asymmetrical distributions in the present application. As such, both distri-

butions pick up significant variation in the sensitivity to P t c and P x t , along with a 

mean close to zero. While the symmetrical shape of the Logistic distribution leads 

to probabilities of 2.10% and 14.74% for positive values of PTC and PTT respectively, 

the offset parameters (a) in the case of the Weibull are significantly different from 

zero, and, after a sign-change, show an exclusively negative domain for the two coef-

ficients. As was the case with a number of other distributions, issues with parameter 

significance also arise with the Weibull, namely with a for both coefficients, and 7 

in the case of P t t -

^^Here, the standard deviation is lower in the model based on the Triangular, but is still the 
second highest across all models. 
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Pre ~ Logistic Prr - Logistic 

-150 -100 -50 0 50 

3 0 0 - 2 0 0 

Pre ~ Weibull, with sign-change IVr ~ Weibull, with sign-change 

Figure 4.5: Implied distributions for Pre and P t t - MMNL models based on Logistic 
and Weibull distributions 

4.3.4 S u m m a r y of findings 

The analysis presented in this section has revealed the presence of significant levels 

of variation in the sensitivity to travel cost and travel time^® in the population of 

travellers used in model estimation, allowing the various MMNL models to offer 

significant improvements in model fit over the MNL model. 

The analysis has also shown that the model fit obtained by the eleven MMNL 

models is remarkably similar. However, in what is a strong indication that model 

fit on its own is not a reliable measure when comparing mixture models based on 

different distributional assumptions^^, the substantial differences across models are 

quite important. This manifests itself partly in the estimates for the VTTS, where, 

although the mean values are comparable, there are some differences in the implied 

variation in the VTTS across respondents. More significant differences arise in 

terms of the imphed shape for the distribution of P t c and P t t - These differences 

manifest themselves mainly in the form of differences in the weight in the tails, 

^®With the exception of the model based on the Exponential distribution. 
i^It can be argued that too little weight is given to the behaviour in the tails of the population. 

However, it is the tails that are often important in the context of policy analysis, such as in the 
case of the introduction of tolled facilities, where the upper tail of the VTTS distribution is of 
interest, and the case of welfare impacts, where the lower tail is of interest. 
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between symmetrical as well as asymmetrical distributions. The most startling 

result however arises in the case of the Sb distribution, which indicates the presence 

of two modes^® in the distribution of and f3xT-

In the present context, the most interesting differences arise in terms of the 

bounds on the distribution of the VTTS. In the absence of a direct estimation of 

the VTTS, we are constrained to looking at the probability of positive estimates 

for P t c and P t t - On the basis of the data used in the estimation, the marginal 

valuations of changes in travel time and travel cost should be exclusively negative, 

leading to exclusively positive VTTS. However, in the results, several of the models 

indicate significant probabilities for negative values of P t t - From the results, it be-

comes clear that problems arise in the case of symmetrical unbounded distributions 

(Normal & Logistic), as well as in the case of bounded distributions with a strong 

shape assumption (symmetrical T r i a n g u l a r I n the present analysis, no problems 

are observed in the case of flexible distributions bounded either on both sides {Sb), 

or on the side where a strict truncation occurs in the data (Lognormal, Gamma, 

Exponential and Weibull). However, the use of distributions bounded on one side 

can lead to problems with a long tail to the other side, as in the case of the Lognor-

mal. Finally, the Johnson Su distribution, which is unbounded, is flexible enough 

to accommodate the correct mean and standard deviation, without leading to over-

estimated weight in the tails^°. These findings are consistent with the theoretical 

claims made in Section 4.3.1. 

The findings from this case-study are supported by those obtained by Hess, 

Bierlaire & Polak (2005c), who, on the basis of simulated data, show that the use 

of the Normal distribution can wrongly indicate the presence of individuals with 

positive values for P t t in the case where the true distribution is entirely negative, 

with a long tail to the left. Additionally, results by Cherchi & Polak (2005) support 

the findings that model fit is not the best indicator when interested in substantive 

findings such as VTTS, and that results with counter-intuitive signs are often just 

an artefact of distributional assumptions. 

In closing this discussion, it is worth briefly returning to the comparison between 

the Normal and the Uniform distribution. The results in terms of tail behaviour 

show far fewer problems for the Uniform distribution in terms of wrongly-signed 

travel time coefficients than for the Normal (4.68%, compared to 14.53%). This, in 

conjunction with the results in terms of model fit, could suggest that the Uniform 

'^There is clearly a possibility of more than two modes; the Sb distribution is however limited 
to two modes. 

'"Lower bias could be expected in the case of the asymmetrical Triangular, thanks to heightened 
flexibility. 

^"The probability of 0.87% for a positive Ptt is neghgible. 



4.4. Interpretation of counter-intuitively signed coefficients 104 

distribution might be a more appropriate choice of default distribution in the initial 

search for random taste heterogeneity, especially when also taking into account that 

models based on the Uniform distribution are generally easier to estimate than those 

based on the Normal. 

4.4 I n t e r p r e t a t i o n of counter - in tu i t ive ly s igned co-

efficients 

As alluded to in Section 4.3.1, there are several potential reasons why an estimation 

process can yield a non-zero probability of a positive travel time coefficient, aside 

from the effects of the shape of the assumed distribution. 

Before moving on to potential explanations for positive travel time coefficients, 

it is worth briefly revisiting the micro-economic framework that governs the concept 

of VTTS. The currently accepted position is that individuals are assumed to po-

tentially derive utility both from the consumption of goods and from the time they 

spend in different activities (though of course this may vary across individuals). 

This is represented by a direct utility function that includes both goods consumed 

and activity time as arguments. Individuals are assumed to organise their consump-

tion of goods and their allocation of time between activities (e.g. work, travel and 

leisure) such that this direct utility is maximised, subject to constraints on the total 

amount of time and wealth available, and technical constraints on the minimum 

amount of time that it is necessary to allocate to a particular activity and/or to the 

consumption of a good. 

The framework in this form was first crystalised in the work of Oort (1969) 

and, especially, De Serpa (1971), which serves as a useful point of reference for the 

discussion. A simple version of this framework would consider the allocation of time 

l)(;tw(x:n say work, leisure and travel. Within this framework, De Serpa defined thrcx: 

concepts of the value of time. The first is the resource value of time, which arises 

because the total amount of time available for allocation to all activities is fixed by 

the total time constraint. The second is the value of time allocated to a particular 

activity, which arises because time (including travel time) itself is seen as a potential 

source of (positive or negative) utility, and not simply as a factor contributing to 

the production of other goods. The third concept is that of the value of saving 

time in a particular activity, which arises because of the technical constraints on 

the minimum amount of time that must be allocated to particular activities (for 

example in our case, the minimum time for a trip). This is equal to k/X, where k is 

the Lagrange multiplier associated with the minimum travel time constraint, and A 
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is the Lagrange multiplier associated with the income constraint. It can be shown 

(see Jara-Diaz 2000) that; 

where L is the time allocated to leisure, G is the consumption of goods, and t is the 

time allocated to travel. 

A number of authors (see Jara-Diaz 2000) have shown that the marginal rate 

of substitution between the time and cost parameters in the (conditional indirect) 

utility of a discrete choice model is precisely equal to the ratio k/\. Hence it follows 

from equation (4.6) that the VTTS which we are considering in this discussion is, 

from a microeconomic perspective, composed of two distinct components; the value 

associated with the ability to use time released by reductions in travel time in other 

activities (such as work or leisure) and the value associated with the change in utility 

derived directly from the travel experience itself. It seems that there has only been 

one recent attempt to disentangle these two components of the VTTS, by Jara-Diaz 

& Guevara (2003), where the empirical results reported suggest that for the sample 

of Chilean commuters studied, the VTTS was dominated by the strongly negative 

utility associated with the travel time experience itself. 

Working in the above described framework, we should note that the Karush-

Kuhn-Tucker optimality conditions guarantee that k > Q, with the equality con-

dition (i.e., zero VTTS) applying if and only if the individual allocates more than 

the minimum required amount of time to the trip. For these circumstances to come 

about, the individual would have to derive a positive utility from time spent trav-

elling at a rate exactly equal to fi/X, where /y, is the Lagrange multiplier associated 

with the total time constraint. That is to say, the traveller would be indifferent as 

l)etween time spent in leisure and time spent travelling. Note further that in this 

model, there is no circumstance under which A; < 0 could be observed. Assum-

ing that A > 0, this implies no circumstances in which a negative VTTS could be 

observed. 

The above discussion has demonstrated that if one accepts the conventional 

microeconomic time allocation framework as providing an adequate basis for eval-

uating travel time savings, then positive and zero values of travel time savings are 

theoretically possible, but not negative ones. However, several recent papers discuss 

positive elasticity with respect to travel time. There are interesting statements like: 

2̂1/65 77%e a c/iOTice (o worA; I 'm (o (fo /or t/ie 

'it's 'm,y decom/pression tim.e.''' (Sipress 1999, cited by Redmond & Mokhtarian 2001). 
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Also, the conventional interpretation of travel as a derived demand, implying a disu-

tility for time spent travelling, may be questioned. Mokhtarian & Salomon (2001) 

discuss the phenomenon of undirected travel, that is cases in which travel is not a 

byproduct of the activity but itself constitutes the activity, and argue that this may 

explain the evidences of excess travel observed even in the context of mandatory 

journeys. 

Of course, it could be objected that the empirical results reported in the lit-

erature regarding negative VTTS provide prima facia evidence that the existing 

time allocation theory is incorrect or inadequate. However, while there are certainly 

many respects in which the existing theory could and should be improved (see for 

example the discussion in Mackie et al. 2001 and the recent work of Jara-Diaz 2003), 

it seems rather more likely that some of the recent findings of negative VTTS in the 

literature can be explained on the basis of inappropriate distributional assumptions. 

Aside from the potential effects of inappropriate distributional assumptions, or 

data problems, two main possible explanations arise in the case of results showing 

positive travel time coefficients, as discussed by Salomon & Mokhtarian (1998). The 

first reason is the presence of unobserved objective factors. This is the case when 

the negative marginal utility of travel time increases is compensated by the gains in 

utility resulting from simultaneously conducted activities. The problem here is that 

our existing conceptual frameworks tend to lead us to think of travel and activity 

participation as distinct, whereas this is clearly not always the case. This topic is 

set to become increasingly important in the analysis of travel patterns due to the 

development of mobile data communication tools that massively expand the capacity 

for conjoining activities and travel in novel ways. The development of models that 

are able to analyse such conjoint activity patterns is thus an important avenue for 

future research. 

A similar reasoning to that of conjoint activities applies in the case of desirable 

travel-experience factors (c.f. Young & Morris 1981). As an example, commuters 

walking to work may prefer a slightly longer path through a scenic park to a shorter 

walk through congested and polluted streets. Similarly, people may prefer to use 

their car for going shopping for comfort reasons, even though the presence of bus 

priority lanes would make for a quicker bus journey. The impact of such unobserved 

attributes is related to the second reason for excess travel cited by Salomon & 

Mokhtarian (1998); namely the presence of unobserved subjective factors. As an 

example, the pleasure of driving an automobile, combined with the social positive 

perception of having and using a car, relayed by the marketing of automobiles, may 

explain the presence of excess travel. ' 

The impacts of such travel-experience factors can be illustrated relatively easily 
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with the help of suitably generated synthetic data. As such, Hess, Bierlaire & Polak 

(2004) show that failing to account properly for the impact of travel-experience 

factors can significantly affect the split between positive and negative coefhcients 

in MMNL models, or even falsely indicate the presence of significant random taste 

heterogeneity in the case where only fixed coefficients were used in data generation. 

Clearly, it is often not possible to unambiguously quantify the impact of con-

joint activities or travel-experience factors^^, and there is thus a significant risk of 

a biased estimate of the travel time coefficient. The possibility of such bias can 

never be discounted, even in the case of intuitively correct results. However, the 

issues described above should be considered especially in the explanation of posi-

tive travel time coefficients (or a positive probability of such coefficient values), and 

researchers should strive to include as many descriptive attributes as possible, to 

reduce the impact of the correlation between travel time and unmeasured variables 

on the estimation of travel time coefficients^^. If, despite efforts to reduce the im-

pact of unobserved factors, and with the use of flexible bounded distributions, the 

results still indicate a significant share of positive travel time coefficients, modellers 

should acknowledge the potential impact of unobservables on their estimates, and 

an appropriate re-labelling of the coefficients is desirable to avoid any confusion. 

Here, it should be noted again that a model allowing for a non-zero share of positive 

(3tt may well obtain better model fit, by being able to capture the effects of unob-

served attributes. However, if one accepts the validity of the time allocation theory 

discussed above, then it would be wrong to use this better model fit as a proof of 

the existence of such valuations, and it should rather be seen as an indication of the 

extent of the impact of such unmodelled factors. 

4.5 S u m m a r y and Conclusions 

This chapter has discussed issues of specification and interpretation that need to be 

faced when using mixture models such as MMNL to represent random variations in 

tastes across respondents. 

The main aim of this chapter was to explore the potential of hitherto little used 

distributions in the estimation of random coefficients models. In this context, a 

^^Factors such as comfort can clearly influence choice behaviour, but are notoriously hard to 
measure, and hence include in models. 

^^It can be seen that by explicitly accounting for all travel-experience attributes, only the actual 
cost in time as a resource would remain; this would be constant across alternatives (e.g. modes 
or activities) for a given person at a specific moment in time. As such, obtaining different VTTS 
for different alternatives in a mode choice analysis is in fact a sign that some travel-experience 
attributes have not been included in the utility specification; exploring and exploiting such different 
VTTS measures is however often one of the main objectives of such studies. 
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VTTS case-study was conducted, making use of distributions such as the Johnson 

Su, Gamma, WeibuU and Logistic, in addition to more common choices, such as 

the Normal, Lognormal and Johnson Sb- The results from this analysis have shown 

that, while the various distributions lead to similar performance in terms of model 

fit, they lead to major differences in the substantive results. These relate partly 

to the mean and standard deviation of the imphed distribution of the VTTS, but 

manifest themselves especially in terms of the findings with regards to the presence of 

individuals with negative VTTS. Here, the flexible distributions, such as the; Johnson 

S b , indicate a zero probability for such negative measures, which is consistent with 

the data. On the other hand, the commonly used Normal distribution indicates 

a probability of 14.53% for positive valuations of increases in travel time. Similar 

problems are observed with other symmetrical distributions. 

The results presented in this chapter clearly support the notion that the distrib-

utional assumptions made during model specification can have a significant impact 

on model results, a fact that needs to be borne in mind in the interpretation of the 

results. Furthermore, at least in the present study, the results validate the theoret-

ical claims from Section 4.3.1, showing a lower risk of misspecification with more 

flexible distributions. This suggests that modellers should increasingly look into the 

use of alternatives to the Normal distribution for the representation of random taste 

heterogeneity. While, in some cases, the use of the Normal may be appropriate in 

studies interested solely in the mean and standard deviation, the presence of strong 

asymmetries in the true distribution can lead to bias even in these more overall mea-

sures, as shown in the case of the standard deviation in the application presented 

in this chapter. In no case however should a distribution like the Normal be used 

to infer any conclusions in relation to the behaviour in the tails of the population. 

Here, it seems preferable to use distributions bounded on either side, such as the 

Johnson Sb, with bounds estimated from the data, to still allow for the effects of 

data problems or incomplete specifications to manifest themselves. 

More work remains to be done, in terms of further tests with the distributions 

used in this chapter, as well as the use of other distributions, or mixtures of distrib-

utions. Additionally, the high standard errors observed for some of the parameters 

of the more flexible distributions (e.g. Johnson Sb, Su and Gamma) are a cause for 

concern, and it remains to be seen whether these findings are specific to the applica-

tion at hand. Finally, to allow more widespread use of such distributions in mixture 

models, some effort needs to go into devising efficient and robust approaches for 

estimating models based on distributions more complex than the Normal. 

The second part of this chapter has discussed an important and timely issue, 

namely the interpretation of results showing a significant share of travellers with 
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negative VTTS, in the case where appropriate measures have been taken to min-

imise the potential bias caused by inappropriate distributional assumptions. Here, 

the theoretical discussions in Section 4.4 have shown that, under the microeconomic 

theory of time allocation, positive as well as zero^^ VTTS measures are possible, 

l3ut negative measures are not. The discussion has also shown how the estimation 

can be biased, to the point of indicating high shares of positive travel time coefE-

cients, by the presence of unmodelled factors, such as travel-experience attributes, 

or conjoint activities. If problems with counter-intuitively signed coefficients occur 

in practice, then it is critical to acknowledge the potential impacts of such factors, 

and to interpret the model appropriately. Specifically, the name of the estimated 

parameter should be changed in order to emphasise that it potentially captures more 

than one specific effect, and its use to compute VTTS measures, and/or to perform 

cost-benefit analysis, should be avoided. 

Here, it should be noted that important further insights into the distribution of 

taste coefficients can be obtained by conducting a posterior analysis to determine 

the individual-specific taste coefficients conditional on the observed choices. Indeed, 

even in the case where the original estimation results indicate a significant proba-

bility of positive travel time coefficients, it is conceivable that, in such an analysis, a 

positive coefficient would only be associated with a very low number of respondents 

(c.f. Sillano & Ortuzar 2004), This further underlines the risk of misinterpretation 

with MMNL models, and suggests that a model indicating a non-zero probabil-

ity of positive travel time coefficients should not be used for VTTS calculation or 

forecasting without first conducting an appropriate posterior analysis. 

Finally, in the context of the VTTS discussions in this chapter, it should be noted 

that a whole range of other effects, besides the distributional assumptions and the 

presence of unmodelled travel-experience attributes and conjoint activities, can have 

an influence on the estimation of the VTTS. Such factors, which can play a role in 

fixed as well as random coefficients models, include for example the assumptions 

made with regards to model structure in terms of correlation across alternatives 

and/or observations, the assumptions made with regards to the utility function (i.e. 

linear vs non-linear), and the design of survey questionnaires in the case of SP data. 

These issues are discussed for example by Gaudry et al. (1989) and Hensher (20016, 

2004). 

23 See also Richardson (2003). 



Chapter 5 

Discrete mixture models 

5.1 I n t r o d u c t i o n and context 

The discussion in Chapter 4 has highhghted the fact that the important gains in 

flexibility and accuracy that can be obtained with the use of mixture models come 

at the cost of having to face major issues in the specification and interpretation of 

such models. 

One of the main complications is the need to specify distributions for random 

taste coefficients in the relative absence of information about the true underlying 

pattern of taste variation. Even with the use of the most flexible distributions avail-

able, it seems almost inevitable that there will be some discrepancy between the true 

and postulated distribution; cases will arise in which real-world behaviour cannot 

be characterised adequately by one of a set of standard statistical distributions. 

One case in point arises in the modelhng of tastes which may theoretically have a 

significant mass at zero but be exclusively positively or negatively signed elsewhere 

(c.f. Cirillo & Axhausen 2004). The situation becomes even more complicated in the 

case of an attribute which some individuals value positively and some individuals 

value negatively, with a remaining part of the population being indifferent to the 

attribute. This applies for example in the case of attributes describing discrete 

qualitative features of an alternative, such as a distinction between forward and 

backward facing seats for rail-travel. Representing this situation is not possible 

with the use of standard continuous distributions^, and the results obtained with 

such distributions may lead to unwarranted conclusions. 

Given these problems, it is of interest to explore alternative ways of representing 

random variations in tastes across respondents, avoiding some of the issues discussed 

above. 

'The notion of a mass at a specific point (especially if not at the extremes of the domain) does 
not apply. 

110 
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One possible solution is to use Kernel densities of individual-specific coefficient 

values in the search for an appropriate distribution. The most basic approach con-

sists of estimating individual-specific MNL models, which is only possible in the 

presence of multiple observations per individual, and to infer information about the 

true distribution from plotting the Kernel density of the hence obtained coefficient 

values. This causes significant problems in practice, given the potential lack of in-

formation in the resulting small datasets. In this context, Hensher & Greene (2003) 

advocate the use of a jackknife-style procedure that starts with the full sample, and 

proceeds by ehminating individuals one-by-one, each time estimating a new model. 

The resulting set of estimates can then be used to produce a Kernel density function. 

In practice, the applicability of such methods is often limited by high computational 

cost and data requirements. 

A second approach is to use empirical distributions, based on estimating a set 

of support points with corresponding masses, with linear segments between support 

points. The success of this approach however not only depends crucially on the 

number of support-points used, but important issues of implementation need to be 

faced for the estimation of the support points, where problems with singularities 

arise. 

A final approach comes in the use of non-parametric approaches, which are free 

of a priori assumptions about the shape of the true distribution. The application of 

such approaches to the estimation of VTTS is described by Fosgerau (2004). The 

results show that the non-parametric approaches outperform a set of parametric 

approaches, but the fact that such methods are very data-hungry leads to prob-

lems in recuperating the distribution in the tails of the population, a situation that 

Fosgerau addresses through the use of a semi-parametric approach, where part of 

the distribution is accounted for through a set of covariates. While very promis-

ing, non-parametric and (to a lesser extent) semi-parametric regression approaches 

can be difficult to use in practice, and more work is required to allow widespread 

application. 

The three approaches described above are able to deal with the main issue de-

scribed in Chapter 4, namely the behaviour in the tails of the distribution. Similarly, 

they do, unlike most standard continuous distributions, have the ability to allow for 

a multi-modal distribution of a specific taste coefficient. However, it seems that nei-

ther of the three approaches can deal adequately with the presence of a heightened 

mass at a given point, such as a zero VTTS. While the use of Kernel densities (and 

potentially also the empirical approach) can signal the presence of such mass points, 

the issue of how to incorporate them in the final model remains. 

In this chapter, we explore an alternative approach, based on the idea of replacing 
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the continuous distribution functions by discrete distributions, spreading the mass 

among several discrete values. Theoretically, such discrete mixtures allow modellers 

to deal with each of three issues described above (tail-behaviour, multiple modes, 

inflated mass), although certain issues, notably in estimation, need to be addressed, 

as described in Section 5.2. 

Mathematically, the model structure of a discrete mixture model is similar to 

that of a latent class model (c.f. Kamakura & Russell 1989, Chintagunta et al. 

1991), assigning different coefficient values to different parts of the population of 

respondents, a concept discussed in the field of transport studies for example by 

Greene & Hensher (2003) and Lee et al. (2003). The work of Gopinatli (1995) 

especially is of interest in the context of the case-study described in this chapter, 

as it makes use of a latent class model in the analysis of variations in the VTTS 

across respondents, showing the presence of multiple subgroups in the population. 

Latent class approaches make use of two sub-models, one for class-allocation, and 

one for within-class choice. The former models the probability of an individual being 

assigned to a specific class as a function of attributes of the respondent and possibly 

of the alternatives in the choice set. The within-class model is then used to compute 

the class-specific choice probabilities for the different alternatives, conditional on 

the tastes within that class. The actual choice probability for individual n and 

alternative i is given by a sum of the class-specific choice probabilities, weighted by 

the class-allocation choice probabilities for that specific individual. 

The latent-class approach is appealing from the point of view that it allows 

for differences in sensitivities across population groups^, where the group-allocation 

can be related to socio-demographic characteristics. However, in practice, it may 

not always be possible to explain group-allocation with the help of a probabilistic 

model relating the outcome to observed variables^. As such, in this chapter, we 

explore the use of models in which the class-allocation probabilities are independent 

of explanatory variables, and are simply given by constants that are to be estimated 

during model calibration. The resulting model thus exploits the class-membership 

concept in the context of random coefficients models, with a limited set of possible 

values for the coefficients. In theory, existing discrete distributions (e.g. Poisson) 

could be used; however, this comes at the cost of flexibility in terms of an a priori 

shape assumption. This problem does not exist in the case where a flxed set of 

coefficient values are used that each have an associated probability, but where the 

values and associated probabilities are free from any a priori constraints. 

^It .should be noted that latent class approaches can also be exploited to allow for differences 
in utility .specification or even choice set formation across population p,roupR. 

•^This situation is similar to the case where taste heterogeneity ca,nnot be explained determin-
istically. leading to a requirement for using random coefficients models. 
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Although the properties of discrete mixture models have been discussed by sev-

eral other authors (e.g. Wedel et al. 1999), the model structure has not received 

widespread exposure or application, despite its many appealing characteristics. In-

deed, thus far, there have seemingly been only two applications of this approach in 

the area of transport research, by Gopinath (1995), in the context of mode choice 

for freight shippers, and by Dong & Koppelman (2003), who make use of discrete 

mixtures of MNL models in the analysis of mode choice for work trips in New-York, 

referring to the resulting model as the "Mass Point Mixed Logit model". 

Given the above discussion, part of the aim of this chapter is to re-explore the 

potential advantages of discrete mixture models, with the hope of encouraging their 

more widespread use. However, the main aim, and contribution of this chapter, 

is to demonstrate how the model structure can be exploited to allow for a part of 

the population in which people are indifferent to changes in a specific attribute, a 

treatment that is not generally possible with the use of continuous mixture struc-

tures. Although the discussion in this chapter looks specifically at the case of zero 

valuations of changes in travel time (leading to zero VTTS), the same principle ap-

plies in the case of other attributes. Finally, the analysis also aims to investigate 

the potential bias in coefficient estimates that can result from not allowing for the 

presence of individuals with such zero valuations. 

The remainder of this chapter is organised as follows. The next section sets out 

the theory behind discrete mixture models. Section 5.3 describes a set of tests of 

the validity of the model structure conducted with the help of synthetic data, while 

Section 5.4 presents the main case-study testing for the presence of respondents 

with zero VTTS. Finally, Section 5.5 summarises the contents of the chapter and 

presents the conclusions of the study. To a large extent, the material covered in this 

chapter corresponds to that discussed by Hess, Bierlaire & Polak (20056). 

5.2 Me thodo logy 

We will begin by introducing some general notation, which will be used throughout 

the remainder of this chapter. Specifically, let again be a vector defining the at-

tributes of alternative i a.s faced by respondent n (potentially including interactions 

with socio-demographic variables), and let /? be a vector defining the tastes of the 

decision-maker, where, in purely deterministic models, /3 is constant across respon-

dents. Let Xn be a vector grouping together the individual vectors across the 

alternatives contained in the choice set of respondent n, and let 7 represent an ad-

ditional set of parameters, which can for example contain the structural parameters 

(and possibly allocation parameters) used to represent inter-alternative correlation 
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in a GEV context. In a very general form, we can then define (z | x„,C„,7,/?) 

to give the choice probabihty of alternative i for individual n, with a choice set 

conditional on the observed vector and for given values for the vectors of parame-

ters P and 7 (to be estimated). Due to the potential inclusion of socio-demographic 

attributes in Xn, this notation allows for deterministic variations in tastes across 

respondents. 

This notation can now be used as the building block for models allowing for a 

distribution of tastes across respondents. In a continuous mixture model, the choice 

probabilities are then given by; 

J (3 

where the vector f3 is distributed according to f {/3 \ Q), with vector of parameters (1. 

With Pn {i I Xn, Cn,J,P) giving MNL choice probabilities, equation (5.1) represents 

the choice probabilities in a MMNL model; however, any other GEV-type choice 

probability can be used for P„ (i | Cn, 7,/i), with an explicit role for the vector 

7, leading to a more general GEV mixture model. 

From the point of view of statistics, speaking in the context of mixture densities, 

the MMNL model is a continuous mixture of MNL models over the distribution of 

In this chapter, we replace these continuous mixtures by discrete mixtures^, hmiting 

the number of possible values for fj. As such, we now divide the set of parameters P 

into two sets; j3 represents a part of fi containing deterministic parameters, while (5 

is a set of K random parameters that have a discrete distribution. Within this set, 

the parameter Pk has m,k mass points P'l, j = 1 , . . . , each of them associated 

with a probability tt^, where we impose the conditions that 

0 < ttJ < 1, fc = 1 , . . . , /i ; J = 1 , . . . , ?nfc, (5.2) 

and 

.7 = 1 

7r{ = 1, k — 1,..., K. (5.3) 

''A mixture density is a pdf which is a convex linear combination of other pd/'s. If / ( e , 0) is a 
jxlf, and if w{d) is a nonnegative function such that f^ w(a)da = 1, then g(£) = f^w(a)f(£, 9)da 
is also a pdf. We say that g is a mixture of f . With this in mind, the MMNL model is indeed a 
mixture of MNL models over the continuous distribution of the vector of tastes f j . 

"'Returning to the domain of statistics, it is clear that discrete mixtures of pd,fs are also possible. 
If / (e , 0) is a pdf, and if Wi, i = are nonnegative weights such that = 1 then 
9(e) = i2'i=i Wifie, 9i) is also a pdf. We say that 5 is a discrete mixture of / . 
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For each realisation , . . . , of p, the choice probability is given by 

{̂2 I 3:n,C'n,7,^= 0 , % ' , . , ^ ) ) , (5-4) 

where the deterministic part of ^ stays constant across realisations of the vector p. 

The unconditional® choice probability for alternative i and decision-maker n can 

now be written straightforwardly as a mixture over the discrete distributions of the 

various elements contained in P as: 

mi mjc 

= ^ ^ & (i I 2:^,0^,7,^ . ( 5 - 5 ) 
. 7 1 = 1 , 7 k = 1 

where (3, p and vr (tt = (ttJ, . . . , , . . . , . . . , 7r^^)) are vectors of parameters 

to be estimated in a regular maximum likehhood estimation procedure. An obvious 

advantage of this approach is that, if the probabihty model (equation (5.4)) used 

inside the mixture has a closed form, then so does the discrete mixture itself. 

In this chapter, we mainly focus on the simple case where the underlying choice 

model is of MNL form; however, the form given in equation (5.5) is appropriate 

for any underlying GEV model. The approach can easily be extended to the case 

of combined discrete and continuous random taste variation, by partitioning P into 

three parts; the above defined parts p and /?, and an additional part /?, whose 

elements follow continuous distributions. This however leads to a requirement to use 

simulation, as with all continuous mixture models. Allowing for continuous random 

terms in addition to discrete random terms not only increases flexibility from the 

point of view of random taste heterogeneity, but also allows for the use of error-

components to represent heteroscedasticity and inter-alternative correlation, where 

the latter is however also possible with the use of an underlying GEV structure. 

Finally, independently of the additional incorporation of continuous random vari-

ations in tastes, a treatment of repeated choice observations analogous to the stan-

dard continuous mixture treatment'^ is made possible by replacing the conditional 

choice probabilities for individual observations in equation (5.5) by probabilities for 

sequences of choices, and by using the resulting discrete mixture term inside the LL 

function. 

The approach we use in this chapter clearly offers greater modelling flexibility 

than an approach based on fixed-point estimates, by allowing for random as well as 

' 'On a specific realisation of /3, not on the distribution of /3. 
'Tastes varying across individuals, but not across observations for the same individual. 
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deterministic variations in tastes. It may also seem tempting to see the approach 

as an alternative to models using continuous distributions. However, while the 

approach does have the advantage of being free from any assumptions resulting from 

the choice of a specific statistical distribution, it is in most cases impractical to use 

discrete mixtures as an approximation to continuous mixtures, notably because of 

the resulting over-specification in terms of the number of parameters, which can lead 

to problems in estimation. In the remainder of the chapter, we therefore rely mainly 

on the notion that the approach is an extension of a fixed point model, as opposed to 

an approximation to a continuous mixture model. A detailed comparison between 

continuous and discrete mixture models, across a number of different datasets, is an 

important topic for future research®. 

Several issues arise in the estimation of discrete mixture models. Firstly, the non-

concavity of the log-likelihood function does not allow the identification of a global 

maximum, even for discrete mixtures of MNL. Given the potential presence of a 

high number of local maxima, performing several estimations from various starting 

points is thus advisable. Also, it is good practice to use starting values other than 0 

or 1 for the parameters. Secondly, constrained maximum likelihood must be used 

to account for constraints (5.2) and (5.3). Here, it should be noted that eliminating 

(5.3) by replacing with 

= 1 - (5.6) 
. 7 = 2 

does not help, as the constraint 0 < vr̂  < 1 now leads to the new condition 0 < 

- 1- Thirdly, clustering of mass points (for example around the mode 

of the true distribution) is a frequent phenomenon with discrete mixture models. 

Although this can be a sign that the number of mass points is too large^, it may 

in some cases also be a feature of the optimisation algorithm, such that the use of 

additional bounds on the mass points is useful, based on the definition of (potentially 

mutually exclusive) a priori intervals for the individual mass points. 

For the purpose of this analysis, the model was coded into BIOGEME^° (Bierlaire 

2003), where various constraints on the parameters can be imposed to address the 

issues described above. This also allows modellers to test the validity of specific 

*Heie, some initial results by Hess, Bierlaire & Polak (20056) show that, even though the 
IMMNL model obtains better model fit than a corresponding discrete mixture model with just two 
support points, the differences are relatively small, suggesting that even a small number of mass 
points can be sufficient to account for major parts of the variation in tastes. 

"In this context, a heuristic is needed to determine the optimal number of support points in 
actual applications. 

"'See also littp://roso.epfl.ch/biogeme 
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Parameter Value 
ASG for car 4 

Interchanges -1.15 
Travel cost (GHF) -0.3 

Frequency (per hour) 0.9 
Rail travel time (min.) -0.07 

Table 5.1: Generic parameter values used in generation of synthetic data 

assumptions, such as a mass at zero for the VTTS. At this point, it should be noted 

that, in testing for a mass at a specific support point, only zero should be used as 

a candidate value. Indeed, this equates to explicitly allowing for the presence of 

individuals for whom the utility functions are unaffected by changes in a specific 

attribute. For other values, the notion of a heightened mass does not apply, under 

the standard assumption of the true distribution being continuous. 

5.3 Tes t ing t h e validity of t h e d iscre te m i x t u r e 

s t r u c t u r e 

Before proceeding to the use of discrete mixture models in practice, it is important to 

investigate the validity of the approach as well as its implementation in BIOGEME, 

toy testing its performance on synthetic data where the true values of the parameters 

are known. For this, a quasi-simulated dataset was produced on the basis of a 

sample of 1, 242 observations taken from a binomial mode choice survey (car vs rail) 

conducted in the context of the analysis of the VTTS in Switzerland (Axhausen et al. 

2004, Koenig et al. 2004). For the present analysis, the sample size was augmented 

from 1, 242 to 5, 000 through minor random variations on the observed attributes. 

The utility specification in this model uses travel cost, travel time, frequency, 

and the number of interchanges as explanatory variables, where linear specifications 

are used for all attributes, and where the ASC for rail is normalised to zero. In 

order to generate the synthetic choices, we assume that, except for the travel time 

coefficient for the car alternative, the true parameters are fixed as shown in Table 

5.1, giving a true VTTS for rail-travel of 14GHF/hour^^ 

In the first experiment, we assume that the population is divided into two seg-

ments, The VTTS for car-travel in the first segment, composed of 50% of the 

sample, is assumed to be 16CHF/hour (car travel time coefficient at -0.08), while 

It is 6CHF/hour for the second segment (car travel time coefficient at -0.03). 

"CHFl %€0.65 
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Sample size: 5,000 
Final log-likehhood: -868.446 

Adjusted p^(0); 0.7468 

Parameter est. t-stat. 
ASC for car 4.0265 15.76 

Interchanges -1.2306 -12J0 
Travel cost (CHF) -0.3138 -19.62 

Frequency (per hour) 0.9282 14.15 
PxT r̂aii (min.) -0.0776 -1&58 

(min.) -0.0770 -5.73 
AT,car(-B) (min.) 410373 -3.54 

Mass for Arr,cor(^) 0.5149 &55 
Mags for ,0rr,car(-8) 0.4851 240 

Table 5.2: Results for first synthetic data experiment 

The resulting dataset was then used in the estimation of a discrete mixture 

model with an underlying MNL structure and two support points for the car travel 

time coefficient, where the results are shown in Table 5.2. The results show a 

near-perfect recovery of the 50% — 50% split in VTTS, where the upper VTTS is 

slightly underestimated, at 14.72CHF/hour, while the lower one is overestimated, at 

7.13CHF/hour. The VTTS for rail is also slightly overestimated, at 14.84CHF/hour. 

These slight biases are however well within acceptable bounds. 

In the second experiment, we assume that the segment with the lower VTTS 

represents only 30% of the population. The estimation results for this dataset are 

summarised in Table 5.3, showing that the 70% - 30% spht is reproduced almost 

perfectly. Both VTTS measures are slightly underestimated, at 4.70CHF/hour and 

13.75CHF/hour, instead of 6CHF/hour and 16CHF/hour respectively. The rail 

VTTS is estimated at 13.73CHF/hour, instead of 14CHF/hour. Again, these biases 

are acceptable. 

Although more testing is required, the two experiments described here have 

shown that the discrete mixture models are indeed able to recover the values and 

market shares of discretely distributed coefficients. The extension to cases with more 

than two mass points is possible, although the estimation becomes significantly more 

complicated, with the presence of several local maxima, and possible degeneracy, 

that is convergence of two points toward a common value. 
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Sample size: 5,000 
Final log-likelihood: -906. 999 

Adjusted p^(0): 0.7357 

Parameter est. t-stat. 
ASC for car 4.1307 16.38 

Interchanges -1^W55 -12.90 
Travel cost (CHF) -0.3203 -20.17 

Frequency (per hour) 0.9600 14.91 
PxT r̂aii (min.) -0.0733 -14.04 

-0.0251 -2.35 
AT,car(B) (min.) -0.0734 -7.25 

Mags for /%rr,coT.(̂ ) 0.2704 219 
Mags for /)rr,car('B) 0.7296 5.91 

Table 5.3: Results for second synthetic data experiment 

5.4 V T T S case-s tudy 

We now turn our attention to the analysis exploiting the discrete mixture structure 

to allow for the presence of individuals with zero VTTS. For these experiments, SP 

data from the Swiss VTTS study were used, in the form of a binomial route choice 

survey for rail travellers. The sample used in the present analysis includes 315 

observations from business travellers, 1,881 observations from leisure travellers, and 

288 observations from travellers on shopping trips^^. The relatively small sample 

sizes for the business and shopping groups could decrease rehability of the results 

in these two groups, although problems with significance were only observed in one 

case, as detailed later on. 

Again, the final utility specification uses travel cost, travel time, frequency, and 

the number of interchanges as explanatory variables, where linear specifications are 

used for all attributes. No significant ASCs could be identified in the present niodcil. 

The analysis first looks at a simple MNL model, estimated separately for each of 

the three subgroups, with results summarised in Table 5.4. The results show that 

all estimates are of the correct sign, and significant, with the exception of the travel 

time coefficient for respondents on shopping trips, which is significant only at the 

74% level. In terms of substantive results, the estimation does, as expected, show 

higher VTTS for business travellers, with very low VTTS for shopping trips, where 

the value does however need to be put into context by noting the high standard 

error for the travel time coefficient. 

'^Thi.s analysis differs from that conducted by Hess, Bierlaire & Polak (20056) in the use of three 
•separate population segments, and a slightly different specification of the utility function. 
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Business Leisure Shopping 
Sample size 315 1,881 288 

Final log-likelihood -1&L69 -925.36 -139.30 
Adjusted p^(0) 0.4106 0.2872 0.2822 

Parameter est. t-stat. est. t-stat. est. t-stat. 
Interchanges -1.1285 -6.60 -1.1737 -18.95 -0.9394 -6.30 

Travel cost (CHF) -0.3051 -5.08 -0.1335 -5.36 -0.5658 -3.75 
Frequency (per hour) 0.5970 6J1 0.4188 12.19 0.6603 7.22 

Travel time (min.) -0.1258 -7.71 -0.0300 -7.48 -0.0465 -1.13 

VTTS (CHF/hour) 24.73 13.50 4.93 

Table 5.4: VTTS case-study: MNL estimation results 

We next estimate discrete mixtures of the three MNL models, with results sum-

marised in Table 5.5. With the aim of investigating the presence of individuals with 

zero valuations of travel time changes, the models are specified with two travel time 

coefficients, of which one is fixed at zero, while the other is initialised to zero, but 

estimated freely. Here, it should be noted that the implementation of the models 

used in the present analysis does not allow for a treatment of the repeated choice 

nature of the dataset, such that intra-agent and inter-agent variations in tastes are 

treated in the same way. As in the continuous mixture case, this can be expected 

to yield consistent estimates, while the use of the panel approach produces efficient 

estimates. 

The results show that, at the cost of two additional parameters, the discrete mix-

ture models offer improvements in LL by 1.30, 17.23 and 1.32 units for respondents 

on business, leisure and shopping trips respectively. As such, in the present case, 

the discrete mixture approach leads to significant improvements only in the case of 

leisure travellers. However, important insights are also gained in the remaining two 

population segments. 

The results show significant differences across the three population groups in 

terms of the presence of respondents with a zero VTTS. Indeed, in the model for 

business travellers, the share is very low, at 9.63%, while for leisure travellers, and 

respondents on shopping trips, the shares are a very high 65.63% and 84.59% re-

spectively. In the case of business-travellers, the share is different from 0% only at 

the 75% level, while, for shopping trips, it is different from 100% only at the 89% 

level. 

Tests showed that the data did not include any non-traders'"'^, such that the 

^•'Here, the notion of non-trader refers to respondents always choosing the same alternative 
(e.g. alternative A), respondents always choosing the cheapest alternative, and respondents always 
choosing the fastest alternative. 
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Business Leisure Shopping 
Sample size 

Final log-likelihood 
Adjusted p^(0) 

Parameter 

315 
-123.39 
0.4074 

est. t-stat. 

1,881 
-908.13 
0.2988 

est. t-stat. 

288 
-137.98 
0.2788 

est. t-stat. 
Interchanges 

Travel cost (CHF) 
Frequency (per hour) 

(min.) 
PrriB) (min.) 

Mass for 
Mass for P T T { B ) 

VTTS (A) (CHF/hour) 
VTTS (B) (CHF/hour) 

-1.3298 -5.33 
-0.3416 -4.39 
0.6862 5.00 
-0.1635 -4.07 

0 
0.9037 10.81 
0.0963 1.15 

-1.5022 -15.21 
-0.2268 -5.86 
0.5237 11.14 
-0.1570 -4.52 

0 
0.3437 7.70 
0.6563 14.71 

-1.1109 -5.58 
-0.7190 -3.32 
0.7603 6.00 
-0.5236 -1.99 

0 
0.1541 1.62 
0.8459 8.87 

Interchanges 
Travel cost (CHF) 

Frequency (per hour) 
(min.) 

PrriB) (min.) 
Mass for 
Mass for P T T { B ) 

VTTS (A) (CHF/hour) 
VTTS (B) (CHF/hour) 

28.71 41.54 43^9 

Interchanges 
Travel cost (CHF) 

Frequency (per hour) 
(min.) 

PrriB) (min.) 
Mass for 
Mass for P T T { B ) 

VTTS (A) (CHF/hour) 
VTTS (B) (CHF/hour) 0 0 0 

Table 5.5: VTTS case-study: Discrete mixture MNL estimation results, with one 
support point fixed at zero 

results should not be seen as a simple effect of estimation bias due to captivity. The 

fact that a much lower share of travellers with zero VTTS is observed in the business 

models is consistent with intuition. Although it is realistic to assume that, in the 

absence of a binding time constraint, a non-trivial part of respondents travelling for 

leisure or shopping purposes are indeed indifferent to travel time changes (either 

positive or n e g a t i v e ) t h e high shares observed in these two population groups are 

still striking, and call for a closer investigation, in the form of a comparison with an 

unconstrained model, which is carried out below. 

Before proceeding to these additional tests, it is worth looking at the findings 

in terms of VTTS in the share of the population associated with PTT{A). In the 

model for business travellers, the results are roughly similar to those observed in 

the model using a fixed travel time coefficient (increase by 16.09%), which was 

to be expected, given the low probability associated with PTT{B). On the other 

hand, in the models for leisure and shopping trips, the VTTS in the share of the 

population associated with f h r i ^ ) increases dramatically in comparison with the 

fixed coefficients model, and in fact yield VTTS higher than those observed in the 

model for business travellers. This however needs to be put into context by noting 

that the present model specification in effect groups the population into two very 

crude groups, one for respondents with a zero VTTS, and one for all remaining 

respondents. Further insights could be expected with the use of a higher number of 

must be stressed that this does not imply that travellers seek increases in travel time, but 
that they are simply equally indifferent to increases as to decreases. 
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support points, but this requires additional work to deal with identification issues. 

Two interesting further observations can be made from these models. The first 

()l)servation relates to the model for respondents on shopping trips. Here, the fixed 

travel time coefficient in the simple MNL model was significant only at the 74% level 

(c.f. Table 5.4). However, when allowing for the presence of respondents with a zero 

valuation of travel time changes, the coefficient in the remainder of the population 

is significant at the 95% level, although it should be noted that the associated mass 

is significantly different from zero only at the 89% level. Again, the re.sults need to 

be put into context by the small sample size, but the results do suggest that the 

estimation of a significant common coefficient for the entire population is hampered 

by the presence of respondents with a zero VTTS. The second observation deals 

with a related point. In the presence of significant variations in a given coefficient 

across respondents, the use of a common fixed coefficient can be seen to yield an 

approximate average value of this coefficient across respondents. In the present 

case, the simple MNL model is clearly unable to explicitly represent the presence 

of a part of the population with a zero VTTS, and as such, can be expected to 

produce a biased fixed-point estimate. This notion is supported by a calculation of 

the weighted average on the basis of the results from the discrete mixture model. 

Indeed, using PTT{A) -t- I3TT{B), we obtain values of 25.95, 14.27 and 6.73 

CHF/hour in the models for business, leisure and shopping trips respectively, where 

these values are indeed very close to the fixed-point VTTS obtained with the simple 

MNL model^^. 

We now turn our attention to the comparison between the constrained and un-

constrained model. The aim of this process was to test the hypothesis that there is 

a significant mass at zero, by comparing the model estimated with PTT{B) fixed at 

zero to its unconstrained counter-part. For this, the three models shown in Table 

5.5 were re-estimated as shown in Table 5.6, where both and were 

estimated freely from the data. 

The results are highly interesting. They show that, in the model for business 

travellers, the unconstrained model leads to a statistically significant improvement 

in LL by 3.12 units, at the cost of one additional parameter, hence rejecting the 

constrained model. Furthermore, both estimated support-points are significantly 

different from zero, at high levels of confidence. The distribution of the mass between 

the two support-points is very even, and not significantly different from a 50%-50% 

spht. Furthermore, the VTTS in group (A) is higher than that produced by the 

constrained model (c.f. Table 5.5), while the weighted average, at 25.68 CHF/hour, 

'"It is important to note that, because of the non-linearity of the model, this comparison is 
meaningful at a qualitative level only. 
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Business Leisure Shopping 
Sample size 

Final log-likelihood: 
Adjusted 

Parameter 

315 
-120.27 
0.4171 

est. t-stat. 

1,881 
-907.41 
0.2987 

est. t-stat. 

288 
-137.34 
0.2769 

est. t-stat. 
Interchanges 

Travel cost 
Frequency 

Mass for PTT {-A) 
Mass for P T T { B ) 

P T T [A) 
P T T { B ) 

VTTS (A) (CHF/hour) 
VTTS (B) (CHP/hour) 

-1.5835 -5.21 
-0.52M -&54 
0.9033 4.18 
0.4718 3.49 
0.5282 3.91 
-0.3408 -3.38 
-0.1176 -4.09 

-1.5256 -14.66 
-0.2130 -5.71 
0.5292 11.12 
0.4121 5.02 
0.58^ 7^6 
-&13^ -3.89 
0.0119 1.15 

-1.2352 -4.89 
-0.7048 -3.00 
0.8573 4.98 
0.2852 1.39 
0.7148 3.48 
-0.4905 -1.92 
0.1157 0.87 

Interchanges 
Travel cost 
Frequency 

Mass for PTT {-A) 
Mass for P T T { B ) 

P T T [A) 
P T T { B ) 

VTTS (A) (CHF/hour) 
VTTS (B) (CHP/hour) 

39.26 38.79 41.76 

Interchanges 
Travel cost 
Frequency 

Mass for PTT {-A) 
Mass for P T T { B ) 

P T T [A) 
P T T { B ) 

VTTS (A) (CHF/hour) 
VTTS (B) (CHP/hour) 13.55 rf.s. I4.S. 

Table 5.6: VTTS case-study: Discrete mixture MNL estimation results, with both 
support points estimated from the data 

is almost identical to that from the constrained model, and again close to the MNL 

value. Overall, these results reject the hypothesis of a significant mass at zero for 

the travel time coefficient in this population segment, such that the mass of 9.63% 

can be explained on the grounds that it captures mass from values close to zero. 

However, the results also provide proof of heterogeneity, with two different support 

points for PTT, and better model fit than the MNL model. 

While; the above process thus rejects the hypothesis of a significant share; of trav-

ellers with a zero VTTS in the business segment, the situation is very much different 

in the leisure and shopping segments. Here, the unconstrained model achieves gains 

in LL by 0.72 and 0.64 units in LL respectively, neither of which is significant, com-

ing at the cost of one additional estimated parameter. Additionally, the estimated 

values for P T T { B ) are not significantly different from zero, with confidence levels of 

75% and 62% respectively. As such, the positive estimate for the two coefficients 

is of little importance, and should in no case be seen as a proof of the presence of 

respondents with a negative VTTS (see also Chapter 4). This is supported by a 

calculation of the standard error of the actual ratio between and Pre, on 

the basis of a simulation experiment taking into account the correlation between the 

point estimates as well as their asymptotically Normal distribution (c.f Armstrong 

et al. 2001), showing significance levels for VTTS(B) of 72.72% and 59.61% in the 

leisure and shopping groups respectively. The VTTS for respondents in group (A) 

IS quite close to that observed in the constrained models. Overall, the results show 

that, in these two groups, the unconstrained model does not reject the constrained 
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model, such that the test does not offer convincing proof to suggest that the find-

ings with regards to the high shares for a zero VTTS in the constrained models are 

incorrect. 

5.5 S u m m a r y and Conclusions 

In this chapter, we have discussed an alternative approach for representing inter-

agent variations in tastes, and by extension, choice behaviour. The approach is 

based on the use of discrete mixtures of choice models, replacing the fixed-parameter 

choice probabilities by a weighted sum of choice probabihties calculated on the basis 

of different values for the specific coefficients for which taste heterogeneity is to be 

introduced. The weights associated with the different support-points reflect the 

market shares of the respective coefficient-values in the sample population. This 

approach has certain conceptual advantages over continuous mixtures, by being free 

from any a priori assumption with regards to the shape of the true distribution. 

Additionally, discrete mixtures can clearly serve as a starting point in the search for 

an appropriate continuous specification. 

The main aim and contribution of this chapter was to demonstrate how discrete 

mixture models can be used to test for the presence of respondents with zero valua-

tions of changes in a specific travel-attribute, where, in the present case, we, looked 

specifically at the case of a zero VTTS in a route choice experiment. The results, 

and subsequent validation thereof, show that, while no evidence of a significant 

share of such individuals exists in the case of business travellers, a share of 66% was 

found for leisure travellers, with a corresponding share of 85% for respondents on 

shopping trips. 

These results are striking, and are possibly in part specific to the data at hand, 

such that more testing is required. Additionally, it should be noted that, in the case 

of SP data, another potential reason for results showing zero valuations for changes 

in a given attribute for some individuals is the design of the surveys, for example 

in the case of a lack of variation for the concerned attribute for these individuals 

(i.e. insufficient stimuli). A similar issue arises in the presence of non-traders. As 

such, further tests should also be conducted on RP data. However, it should be 

noted that, while, with SP data, multiple possible explanations for zero valuations 

arise, discrete mixture models maintain their advantage, in terms of being able to 

highlight the impact of such problems. 

Even though the results of this research cannot be generalised without further 

investigation, certain observations can be made. Indeed, the comparisons between 

the MNL and discrete mixture models have shown that a failure to account for the 
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presence of individuals with a zero valuation of changes in a travel-attribute can lead 

to significant bias in the estimated coefficients, and by extension the willingness-

to-pay indicators, possibly resulting in misguided policy-measures. Although the 

discussion in this chapter was limited to the case of changes in travel time, zero 

valuations potentially play a role for a whole range of attributes, such as for example 

frequency, and qualitative attributes. Additionally, problems with survey design 

can potentially also lead to apparent "zero-valuations" in the case of attributes such 

as cost, where a consistent negative effect would be expected. This problem has 

seemingly not been addressed in the existing literature, at least not in the context 

of discrete mixture models. Clearly, the ramifications of this issue are very serious 

indeed, and the results presented in this chapter call for a thorough investigation 

into the prevalence of zero valuations, across a host of variables, datasets and data-

sources (i.e. RP vs SP). 

In closing, it should be noted that the same issues in terms of biased results can 

be seen to apply in the case of continuous mixture models when relying on the use 

of distributions that are not able to represent a heightened share at zero. Here, 

the presence of individuals with zero valuations for changes in a specific attribute 

can potentially also lead to biased results in terms of the existence of a share of 

respondents with counter-intuitively signed coefficients^^. In this context, important 

work remains to be done in terms of exploring the use of model structures allowing 

for a variation in tastes in the non-zero domain, in addition to the presence of a 

significant mass at zero, in the spirit of the theoretical distribution discussed by 

Cirillo & Axhausen (2004), who propose the use of a Normal distribution with a 

heightened mass at zero. Such an approach can in fact be used in combination 

with any type of continuous distribution, where a discrete mixture is used across 

two values, one of them equal to zero, while the second value in addition follows 

a continuous distribution. While straightforward from a conceptual point of view, 

the approach causes considerable problems in estimation, such that the search for 

efficient ways of implementing such combined distributions in estimation packages 

is an important topic for future research. 

"'Returning to the issue of an asymmetrical true distribution with a mean close to zero, as 
discussed in Section 4.3.1. 



Chapter 6 

Confounding between substitution 

patterns and random taste 

heterogeneity 

6.1 I n t r o d u c t i o n and context 

As discussed in Section 2.9, modellers have recently begun exploring more advanced 

•structures allowing for the joint representation of inter-alternative correlation and 

random taste heterogeneity, in the form of combined ECL-RCL models or non-

MMNL GEV mixture models. These approaches allow for important gains in flexi-

bility and accuracy in the case where both phenomena potentially have an impact 

on choice behaviour. Traditionally, such model structures have been seen simply as 

a tool for jointly representing the two phenomena listed above. However, although 

they have usually been discussed separately, it should be noted that the differences 

])etween these two phenomena are not necessarily that clear-cut, and that there is a 

significant risk of confounding. As such, advanced mixture structures are not only a 

tool allowing for the joint representation of the two phenomena, but potentially also 

a means of avoiding misleading results caused by confounding in models allowing 

only for either of the two phenomena to have an effect. 

The aim of this chapter is to explore the issue of confounding between inter-

alternative correlation and random taste heterogeneity and to illustrate how ad-

vanced mixture structures can be used to reduce the risk of biased results. The 

main motivation for this study lies in the work of Hess, Bier lair e & Polak (2005 a), 

who, in the estimation of mode choice models, observe that when jointly allowing 

for the two phenomena, the impact of either is reduced significantly, and the sub-

stantive conclusions change, suggesting that confounding does indeed occur in those 

126 
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models using a treatment only for one of the two phenomena. 

The technical reasons for confounding between inter-alternative correlation and 

random inter-agent taste variations can be explained straightforwardly by looking 

separately at the cases of unmodelled random taste heterogeneity and unmodelled 

inter-alternative correlation, in the context of a mode choice scenario involving three 

alternatives 

We first look at the case where the prevalence of random taste heterogeneity 

masks the findings in terms of inter-alternative correlation. Let us assume that the 

sensitivity to a given attribute in the utility of alternatives A and B varies randomly 

across respondents. Clearly, these random disturbances would lead to correlated 

error-terms for the utilities of these two alternatives, which would be picked up 

by a GEV model nesting together alternatives A and B. In a model allowing for 

inter-alternative correlation but not inter-agent taste heterogeneity, results showing 

heightened correlation between alternatives A and B are then at least partly biased 

by the unexplained random variations in tastes relating to attributes included in 

the utility functions of these two alternatives. 

The opposite scenario, in which the presence of simple inter-alternative correla-

tion can mask the findings in terms of random taste heterogeneity, is most easily 

explained from the point of view of an ECL model. Let us assume that correlation 

between the unobserved utilities for alternatives A and B exists due to the pres-

ence of shared unobserved attributes for these two alternatives. The standard way 

of accounting for such correlation is through the use of a GEV structure, nesting 

together the two alternatives. The correlation can however also be accounted for 

with the help of an ECL approach, where an additional randomly distributed error-

component is added to the utilities of alternatives A and B. Additionally, as noted 

by Walker (2001), the correlation in a two-nest model with three alternatives can be 

accommodated by including an error-component only in the utility of that alterna-

tive which is nested on its own, i.e. alternative C in the present context. As such, it 

can be seen that, when allowing for random variations in a coefficient included either 

jointly in the utihties of alternatives A and B, or solely in the utility of alternative 

C, the resulting model in fact approximates an ECL formulation, where the dummy 

variables associated with the error-components however no longer take on simple 

0 - 1 values. This means that the random taste heterogeneity can in fact simply 

be an artifact of the inter-alternative correlation caused by the unobserved shared 

attributes. The scope for confounding is clearly increased significantly in the case 

wlic.re the, attribute associated with the concerned coefficient exhibits little, variation 

across observations, or where, in the case of a coefficient included in multiple utility 

functions, the associated attributes are highly correlated across alternatives. 
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The above discussion has shown that allowing only for either inter-alter native 

correlation or random taste heterogeneity can mask the findings with regards to 

the; other phenomenon. The effects of this can be quite significant. Although, in 

some cases, it is possible for the wrongly specified model to attain similar model 

fit and even reproduce similar behaviour, the risk of misinterpretation of results 

persists. This relates to the implied cross-elasticities as well as to implications in 

terms of behaviour in the tails of the population. While testing separately for the 

two phenomena, say with a GEV and a RCL model, can alert the modeller to the 

relative performance of the two approaches, it does not remove the risk of biased 

findings and a joint model should be used, in order to minimise the potential risks 

of confounding. 

The issue of confounding in discrete choice models has been discussed in var-

ious contexts in the existing literature. As such, Kitamura & Bunch (1990) look 

at the dangers of confounding unobserved heterogeneity and state dependence, and 

discuss the difficulty of a specification search in such a context. Another discussion 

of the issues with confounding in the context of state dependence is given by Heck-

man (1981). Swait & Bernardino (2000) look at the confounding between correla-

tion structure and (deterministic) taste heterogeneity, and illustrate how accounting 

jointly for the two effects in NL models can allow the effects of the two phenomena 

to be separated. While the discussion by Swait & Bernardino looks exclusively at 

closed form models, issues with confounding also arise in the case of mixture mod-

els. Indeed, the results of Cherchi & Ortiizar (2004) on MMNL models suggest some 

confounding between correlation, random taste heterogeneity and heteroscedastic-

ity, while results by Hess, Bierlaire & Polak (2004) show that not accounting for 

correlation in the unobserved utility terms can lead to erroneous conclusions with 

regards to the presence of random variations in tastes across respondents, a point 

strongly related to the issue of unmodelled travel-experience attributes discussed in 

Section 4.4. 

While the above results are an indication that such problems with confounding 

can arise, they cannot easily be generalised, given the use of real-world data, where 

the true error-structure is not known, in the case of Swait & Bernardino (2000), 

Cherchi & Ortiizar (2004) and Hess, Bierlaire & Polak (2005 a), and the use of a very 

basic and small-scale synthetic data experiment by Hess, Bierlaire & Polak (2004). 

What is needed in this case is a large-scale systematic comparison, using synthetic 

data, across a range of diiferent scenarios. This is the approach taken in this chapter. 

We concentrate on the case of random instead of deterministic taste heterogeneity, 

and the potential for confounding thereof with simple inter-alternative correlation. 

The discussion in this chapter focusses on the use of GEV mixture models; the use of 
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combined RCL-ECL models on the same data is discussed in Appendix A. Finally, 

an additional source for confounding, namely the presence of heteroscedasticity, is 

not explored here. 

The remainder of this chapter is organised as follows. Section 6.2 presents six 

case-studies illustrating the risk of confounding when not jointly allowing for the 

two phenomena, while Section 6.3 presents three forecasting exercises, showing the 

impact of wrongly specified models on predicted changes in market shares under hy-

])()thetic.al policy-changes. Finally, Section 6.4 summarises the findings and presents 

the conclusions of this chapter. 

6.2 Case-s tudies 

This section presents a number of case-studies illustrating the issue of confounding 

and showing how the use of a joint modelling approach can help reduce the problems. 

The most reliable way of conducting such an analysis is based on the use of 

simulated data, such that the true error structure is known. For the present study, 

separate quasi-simulated datasets were generated for the different case-studies, mak-

ing use of data from an SP survey conducted to estimate the hypothetical demand 

for a new high-speed transit system in Switzerland; the Swiss Metro (c.f. Abay 

1999, Bierlaire et al. 2001). This dataset provides us with good attribute-level data, 

avoiding the issues caused by the randomness in purely-simulated data. The choice-

vectors used in the various case-studies are entirely independent of the original SP 

survey responses. 

Three alternatives were included in the choice set; car, rail and Swiss Metro 

(SM). For the present study, a subset of 3,000 individuals were used, each with 

all three alternatives available to them. Only three attributes, namely travel time, 

travel cost, and headway (for rail and SM) were used here. In each case-study, 

separate travel time coefficients were used for the three modes (/?rr,car, PrT^raii: and 

P T T , S M ) , in conjunction with a common travel cost coefficient {Pre), a joint headway 

coefficient for rail and SM {PHW), and two ASCs, for car and SM {DEAR and S S M ) -

The simulated datasets were all generated on the basis of a purely cross-sectional 

approach, making use of the original level-of-service data presented to respondents 

in the SP survey. 

The experimental design used for the case-studies presented in this section re-

flects the three separate scenarios in which issues with confounding of the type 

discussed in this chapter can arise. The first group contains two examples in which 

the true model is of closed GEV form, reflecting the case where the true error-

structure leads to heightened inter-alternative correlation, while the target model 
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allows only for random taste heterogeneity. The opposite scenario acts as the basis 

for the second group of case-studies, which contains three examples in which the 

true model is a R.CL model with random variation in at least one of the coefficients. 

Finally, the third group contains a single example, where the true model is a mixture 

of a two-nest NL model, representing the situation in which both phenomena play 

a role, with the target model allowing only for one of the two effects to be mod-

elled. In each case, models allowing for randomly distributed taste coefficients make 

use of the Normal distribution, reducing computational cost, but also reflecting the 

current state-of-practice. All models presented in this chapter were estimated using 

BIOGEME. 

6.2.1 T r u e mode l : N L w i t h two nes t s 

111 the first case-study, we assume that all taste coefficients take on fixed values 

across all respondents, and that the rail and SM alternatives are nested together 

in a simple two-level NL model, with an associated structural parameter of 0.5, 

leading to a correlation of 0.75 between the unobserved utility terms for the two 

alternatives. Four types of model were estimated on this dataset; MNL, NL, RCL, 

and NL mixture. The results of the analysis are summarised in Table 6.1, which 

also gives the log-hkelihood of the true model as calculated on the data used in 

the analysis, allowing us to establish the relative performance of the different target 

models. 

All three possible two-nest NL structures were estimated on the data, but height-

ened correlation was only found in the model using the same structure as the true 

model, i.e. nesting together rail and SM. No further gains could be made by esti-

mating a CNL model on the data. The results show that the NL model manages to 

reproduce the behaviour of the true model, especially with regards to the structural 

parameter, although all three VTTS measures are overestimated, with the maximum 

bias arising in the VTTS for car, which is overestimated by 9.8%. This bias can 

probably be explained on the grounds of sampling error, leading to an understated 

cost-sensitivity in the data. Further investigation is required to establish why no 

such understating occurs for the travel time coefficients. The results also show that, 

by not allowing for the correlation between rail and SM, the MNL model obtains 

lower model fit than the NL model, and leads to bigger bias in the three VTTS 

measures, with overestimation by rates of between 13% and 18.7%. 

The simple RCL model, allowing only for random variations in tastes and us-

ing no explicit treatment of inter-alternative correlation, offers an improvement in 

log-likelihood (LL) by 14.7 units over the MNL model. A closer inspection shows 
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True model MNL NL RCL NL mixture 
Final LL -903.35 -93L47 -900.20 -916.77 -899.15 
adj. p2(0) 0.7235 0.7153 0.7244 0.7182 0.7232 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

^car -4.000 -5.624 -16.70 -4.079 -13.22 -6.644 12.54 -4.222 10.99 
-3.000 -4.918 -19.63 -3.208 -12.82 -5.722 15.37 -3.319 10.33 

PTC [IA -0.100 -0.126 -20.50 -0.105 -20.47 -0.170 11.13 -0.110 13.93 
PTG (cr) - - - - - 0.015 1.13 0.008 0.90 

PHW M -0.020 -0.033 -17.13 -0.022 -13.21 -&039 13.88 -&023 10.70 
(o") - - - - - 0.001 &48 0.001 &73 

/)rr,car -0.030 -0.045 -14.88 -0.035 -13.79 -0.061 10.47 -0.036 10.33 
pTT,car (W - - - - - 0.017 5.14 0.004 1.06 

pTT,raU (a) -0.040 -0.059 -2&15 -0.043 -16.82 -0.073 14.00 -0.045 1L88 
- - - - - 0.001 0.95 0.002 1.58 

PTT,SM ifj-) -0.035 -0.050 -14.15 -0.039 -14.28 -0.064 -10.94 -0.040 11.06 
PTT,SM (O") - - - - - 0.001 &87 0.001 &67 

^rail,SM 0.50 1.00 - 0.51 5.96 1.00 - 0.47 4.15 

CHF/hour CHF/hour CHF/hour CHF/hour CHF/] lour 
VTTS (car) 18.00 21.37 1&77 21.62 19.82 

VTTS (car) (a) - 6.47(*) 2.45( 
VTTS (rail) (//) 2100 27.97 24.59 26.07 24.64 

VTTS (rail) (cr) - 2.3l( **) 2IW( **) 

VTTS (SM) (/i) 2L00 2&74 22J3 22^3 2&13 

VTTS (SM) (cr) - &03( **) 1.57( **) 

(*/**) One/both involved dispersion parameters not significant at 95% level 

T-statistics for structural parameters calculated wrt 1 

Table 6.1: Estimation results on synthetic data generated with two-nest NL model 

this to be due to a single additional statistically significant parameter, namely the 

standard deviation for the travel time coefficient for car. As such, the RCL model 

falsely indicates significant variations in the sensitivity to car travel time across the 

population, where no such variations exist in the actual data. Here it can be seen 

that the RCL model is giving an approximation to an ECL approach, using a single 

error-component associated with the car alternative, where this is less successful 

than the correct NL approach (lower LL), given the high level of variation in the 

associated attribute, which hinders the approximation. Without prior knowledge of 

the true error-structure, which can yield the above explanation, these results would 

suggest the presence of significant levels of random taste heterogeneity, where this 

is entirely due to the issue of confounding described in Section G.l. The final model 

estimated on the data, a NL mixture structure, obtains a model fit very similar to 

that obtained with the true structure, a two-nest closed form NL model. In this 

model, the structural parameter is again closely reproduced, as was the case in the 

NL model. Furthermore, none of the five standard deviation parameters is statis-
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tic ally sigiiificaiit at the usual 95% level. It should be noted that, for two of the 

parameters, namely the standard deviations for Phw and PTT,raii, the level of signif-

icance is higher than in the RCL model. In both cases however, the relative level of 

the standard deviation when compared to the mean value remains very small, such 

that the model does not show any significant levels of variation. This was not the 

case for the standard deviation of PTT,car hi the RCL model, where a 95% confidence 

interval would lead to a 50% spread to either side of the mean. 

The VTTS measures reproduced for the two mixture structures were generated 

by simple simulation, using the final estimates shown in Table 6.1. As such, the 

simulation exercise also made use of standard deviations that were not statistically 

significant. However, in these cases, the relative size of the dispersion parameter 

when compared to the mean value was small, and a separate analysis showed that 

using fixed values for the concerned coefficients did not change the mean estimates 

in any significant fashion. Additionally, it was not necessary to use special treat-

ment for I3TC (such as removing upper percentiles) to avoid extreme values caused 

by a division by a value close to zero, given the statistically insignificant standard 

deviation for this coefiicient. The results show that the NL mixture model repro-

duces essentially the same mean VTTS measures as the two-nest NL model, which 

further reinforces the findings that this structure avoids issues of confounding. The 

use of the RCL model leads to higher overestimation of the three mean VTTS mea-

sures than is the case for the NL mixture model, where, except for car, the bias 

is however lower than in the MNL model. Finally, the model does suggest a high 

level of variation in the VTTS for car across respondents, with lower and upper 95% 

confidence limits of 8.94CHF/hour and 34,30CHF/hour respectively^ The extent 

of this variation, which is purely an artifact of confounding, could lead to misguided 

policy implications in real-world scenarios where policy-makers are often interested 

in the behaviour in the tails of the population, such as travellers with very high 

VTTS in the case of road-pricing or tolls. 

6.2.2 T r u e mode l : C N L w i t h two nes t s 

In the second case-study, we a,gain assume that all taste coefficients take on fixed 

values across all respondents. However, in addition to the correlation between rail 

and SM, the rail alternative is now nested with car, with an allocation by equal 

shares of the rail alternative to the two nests, where the nesting parameters in the 

'Here, a simple confidence interval based on a Normal distribution was used, which is not fully 
appropriate, given that the actual distribution of the VTTS is given by a ratio of two Normals. 
However, with the standard deviation of P r e being close to zero, the distribution of the ratio 

does indeed approximate a Normal distribution. 
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True model MNL CNL RCL CNL mixture 
Final LL -860.82 -882.30 -855.90 -874.26 -855.87 
adj. p2(o) 0.7355 0.730 0.737 0.731 0.735 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

^car -4.000 -6.125 -16.82 -3.932 -13.71 -7.880 -7.37 -3.937 13.52 
-3.000 -4.879 -18.46 -3.100 -13.51 -6.218 -8.13 -3.100 13.42 

PTC (Ai) -0.100 -0.148 -20.60 -0.100 -1&62 -0.206 -6.72 -0.101 14.37 
PTC (c) - - - - - 0.045 3.28 0.004 0.21 

pHW (m) -0.020 -0.031 -15.74 -&018 -11.23 -0.040 -7.16 -0.018 11.11 
PHW (c) - - - - - &006 0.60 0.000 0.01 

(/:) -0.030 -0.043 -16.26 -0.029 -12.50 -0.060 -6.57 -0.029 12.32 
Ar.car (cr) - - - - - 0.012 4.16 0.000 0.10 
PTT,rail (m) -0.040 -0.061 -21.95 -0.040 -14.54 -0.082 -7.30 -0.040 14.29 

- - - - - 0.008 &78 0.000 &06 
-0.035 -0.050 -14.30 -0.033 -11.74 -0.066 -6.46 -0.033 11.53 

PTT,SM {C) - - - - - 0.008 1.54 0.000 0.13 

^rail,car 0.50 1.00 - 0.42 3.63 1.00 - &42 &53 
^rail,SM 0.33 1.00 - 0.36 4.44 1.00 - 0.36 3.94 

car 0.5 - - 0.50 &07 - - 0.50 0.06 

^ro.U,rail — SM 0.5 - - 0.50 -0.07 - - 0.50 -0.06 

CHF/hour CHF/hour CHF/hour CHF/hour CHF/hour 
VTTS (car) (/i) l&OO 17.65 17.17 18.55 17.17 

VTTS (car) (cr) - 6.93 &73( **) 

VTTS (rail) (/t) 24.00 24.94 2^75 2&25 2375 

VTTS (rail) (cr) - 7.93 1.0l( **) 

VTTS (SM) (/:) 21.00 2&16 19.64 20.53 19.65 

VTTS (SM) ((%) - 6.83(*) oasf **) 

{*/**) One/both involved dispersion parameters not significant at 95% level 

T-statistics calculated wrt 1 for structural parameters and wrt 0 . 5 for allocation 

parameters 

Table 6.2: Estimation results on synthetic data generated with two-nest CNL model 

rail-car and rail-SM nests are set at 0.5 and 0.33 respectively. 

The results of this analysis are summarised in Table 6.2, showing the estimates 

for two closed form models, MNL and CNL, and their mixture counter-parts. Simple 

NL and NL mixture models (without cross-nesting) were also estimated on the data, 

showing that not allowing for cross-nesting produces biased results in terms of trade-

offs, as well as in terms of random taste heterogeneity in the mixture model. The 

results reproduced in Table 6.2 show that the CNL model slightly underestimates the 

three VTTS measures; the bias is biggest for rail-travel, where, incidentally, the bias 

produced by the MNL model is smaller, as is the case for car-travel. Nevertheless, 

by not allowing for the correlation between rail and car, and rail and SM, which is 

reproduced closely in the CNL model, the MNL model obtains a poorer model fit. 

The RCL model estimated on this dataset suggests the presence of significant 
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variations for P tc , Prr^car and pTT,raih with additional variation, significant at the 

88% level, for PTT,SM- In the model used to generate the data, all coefficients were 

kept fixed, suggesting that this is due entirely to confounding^. This is supported by 

the findings for the CNL mixture model, where all standard deviations obtain verj'-

low levels of statistical significance. While the RCL model obtains better fit than the 

MNL model, its fit is lower than for the CNL and CNL mixture models, which obtain 

almost exactly the same final LL, along with indistinguishable results, suggesting 

that confounding is not an issue in the CNL mixture model, which is thus able to 

correctly interpret the error-structure. The risk of reaching misleading conclusions 

on the basis of the RCL model are further highlighted by the fact that, while the 

mean VTTS measures^ are acceptable, the model suggests very wide confidence 

intervals, which can again cause problems in pohcy-analysis. 

6.2.3 T r u e mode l : R C L w i t h single r a n d o m coefficient 

In the first of the RCL case-studies, we allow for random variations in a single 

coefficient, namely that associated with travel time for the car-alternative. The 

fact that this coefficient is used only in the utility of a single alternative increases 

the scope for an approximation to an ECL model (c.f. Section 6.1). However, it 

should be noted that there is significant variation in the associated attribute across 

respondents, such that the study still allows us to highlight the issues of confounding 

in a fairly general case. 

The results of this analysis are summarised in Table 6.3, showing the results for a 

MNL model, a NL model nesting rail with SM, and the mixture counterparts of these 

two models. The remaining two NL models collapsed back to a MNL structure, while 

no further gains could be made with the use of a CNL model. The only coefficient for 

which it was possible to identify any random variations in either of the two mixture 

models is fjTT,car, such that all other coefficients are kept fixed in the presentation 

of the results. As such, with the only randomly distributed coefficient entering the 

VTTS calculation in the numerator, no simulation was required in the computation 

of the VTTS measures. 

The actual results show that, while the MNL model retrieves the mean VTTS 

for car-travel, it overestimates the VTTS measures for rail and SM, despite the fact 

that the associated travel time coefficients were kept fixed in the generation of the 

data. On the other hand, the NL model nesting together rail and SM underestimates 

^Here, it should be noted that, while significant, the estimated dispersion parameters are in 
fi;eiieral small compared to the associated mean parameter. 

•^Simulation was used in the computation of the VTTS measures in the mixture models. Again, 
no special treatment was required in the case of P r e , given that the upper limit of reasonable 
confidcnco intervals for (JTC was well below zero. 
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True model MNL NL RCL NL mixture 
Final LL 
adj. p2(0) 

-1371.12 
0.5816 

-1377.09 
0.5801 

est. t-stat. 

-1371.15 
0.5815 

est. t-stat. 

-1365.76 
0.5832 

est. t-stat. 

-1365.23 
0.5830 

est. t-stat. 

^CAR -4.000 
-3.000 

-3.450 -14.46 
-2.762 -13.93 

-2.932 -11.26 
-2X)55 -&10 

-3.662 -13.63 
-2.891 -13.81 

-3 j#7 -&46 
-2.565 -6.99 

PTC 
PHW 

pTT,car (m) 

PTT^rail 

PTT,SM 

-0.100 
-0.020 
-0.030 
0.015 
-0.040 
-0.035 

-0.069 -20.74 
-0.016 -10.38 
-0.021 -10.20 

-0.033 -19.09 
-0.027 -10.64 

-0.065 -19.98 
-&012 -7^6 
-0.018 -8.72 

-0.027 -12.35 
-0.024 -10.08 

-0.085 -14.37 
-0.017 -10.32 
-0.027 -9.85 
0.011 5.35 
-0.038 -17.10 
-0.033 -10.46 

-0.080 -11.57 
-0.015 -6.91 
-0.025 -7.00 
0.010 4.08 
-0.034 -9.04 
-0.030 -8.02 

^rail,SM 1.00 

CHF/hour 

1.00 

CHF/hour 

0.71 2.79 

CHF/hour 

1.00 

CHF/hour 

0.88 0.95 

CHF/hour 
VTTS (car) 
VTTS (car) (cr) 

VTTS (rail) 
VTTS (SM) 

l&OO 
9.00 
&100 
2L00 

1&03 

28.57 
23.84 

16.55 

25.34 
22.52 

19.19 
7.91 

26.53 
2&.27 

1&48 
7.18 

2&77 
2Z85 

T-statistics for structural parameters calculated wrt 1 

Table 6.3: Estimation results on synthetic data generated with RCL model with 
randomly distributed car travel time coefficient 

the mean VTTS for car-travel, but offers a better approximation to the true VTTS 

for rail and SM. However, the model incorrectly retrieves heightened correlation 

between rail and SM. This can be seen to be an effect of the random variation in the 

sensitivity to car travel time in the data, such that the true model has similarities to 

an ECL structure in which a single error-component is used in the utility of the car 

alternative''. Given the fact that the associated attribute varies significantly across 

observations, it should come as no surprise that the NL model offers a lower model 

fit than either of the two mixture structures, which correctly retrieve the variation in 

the sensitivity to car travel time, although some bias remains in the VTTS measures, 

which, except for the standard deviation of the VTTS for car-travel, is lower in the 

NL mixture model. Finally, it can be seen that the NL mixture model retrieves a 

structural parameter which, although being smaller than unity, has a high associated 

standard error, making the difference statistically insignificant, unlike in the NL 

model, where the difference was also more than twice as large. 

This application thus highlights the fact that the findings in terms of inter-

alternative correlation can be biased by the presence of unexplained random vari-

ations in taste coefficients, and suggests that the use of mixture models, jointly 

allowing for the two phenomena, can help to reduce these risks of confounding. 

'It can be seen that this case-study is the counterpart of the one presented in Section 6.2.1. 
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True model MNL NL RCL NL mixture 
Final LL -1326.49 -1775.25 -1631.61 -1322.96 -1320.93 

0.5951 0.4592 0.5025 0.5962 0.5965 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

^car -4.000 -2.638 -&38 -0.948 -8.99 -3.812 -14.61 -3.516 -12.51 
5SM -3.000 -2.718 -14.57 -L682 -12.46 -3.009 -14.14 -2950 -14.43 

-0.100 -0.026 -0.015 -12.13 -0.096 -18.14 -0.086 -12.54 
&035 - - - - 0.035 1%89 &033 12.38 
-0.020 -0.015 -10.61 -0.005 -7.54 -0.018 -11.02 -0.017 -10.59 

f3TT,car -0.030 -0.017 -7.30 -0.007 -&78 -0.032 -14.39 -0.029 -12.67 
PTT,ra.il -0.040 -0.025 -8.35 -0.010 -9.65 -0.041 -19.66 -0.038 -15.69 

-0.035 -&018 -4.74 -0.004 -3.35 -&036 -12^3 -0.033 -10.29 

^rail^car 1.00 1.00 - 0.20 7^5 1.00 - 0.82 L89 

CHF/hour CHF/hour CHF/hour CHF/hour CHF/hour 
VTTS (car) (/i) 2&33 39J7 3a04 2&83 2&93 
VTTS (car) (a) 10.29 11.87 
VTTS (rail) (/i) 27.11 56.90 40.52 29.41 30.91 
VTTS (rail) (a) 11.14 13.26 15.34 
VTTS (SM) (^) 23J2 40.36 17.61 26.08 26.84 
VTTS (SM) (fi) 9.75 11.76 13.31 

T-statistics for structural parameters calculated wrt 1 

Table 6.4; Estimation results on synthetic data generated with RCL model with 
randomly distributed travel cost coefficient 

6.2.4 T r u e mode l : R C L w i t h single r a n d o m coefficient s h a r e d 

by all t h r e e a l t e rna t ives 

In the second of the RCL case-studies, the travel cost coefficient, which is common 

to all three alternatives, is specified to follow a random distribution. 

The results of this analysis are summarised in Table 6.4, reporting the estimates 

of a MNL model, the NL model nesting together rail and car, and their two mixture 

counterparts. The remaining two NL structures and their mixture counterparts 

collapsed back to MNL and RCL structures respectively. The only coefficient for 

which it was possible to identify any random variations in either of the two mixture 

models is PTC-, such that all other coefficients are kept fixed in the presentation of 

the results. The first observation that can be made is the much better model fit 

obtained by the mixture models, which illustrates the impact of not allowing for 

random variations in the travel cost coefficient in the two closed form models. The 

difference is much bigger than was the case in the example described in Section 6.2.3, 

which is partly due to the fact that the travel cost coefficient is used in the utilities 

of all three alternatives. The next observation relates to the results of the NL model, 

which shows heightened correlation between the error-terms for the utilities of the 

rail and car alternatives; this is an effect of confounding between taste heterogeneity 
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and inter-alternative correlation, given that the structural parameters in the data 

generation process were all fixed to a value of 1®. While the NL mixture model 

also retrieves some correlation between the rail and car alternatives, the associated 

structural parameter is much closer to a value of 1, although it is significantly 

different from it at the 94% level. This suggests that the NL mixture model is able 

to avoid most, but not all of the confounding®. 

Finally, in terms of the recovery of the true VTTS distribution, the results show 

very strong overestimation of the mean VTTS measures in the two closed form 

models, except for the mean VTTS for travel on SM, which is underestimated in the 

NL model. The two mixture models^ offer acceptable performance in the recovery 

of the mean and standard deviation for the three VTTS measures, where some bias 

remains, which is bigger in the NL mixture model, and which can again be seen as 

a sign of samphng error. 

6.2.5 T r u e mode l : R C L w i t h two r a n d o m coeff icients 

The final of the three RCL case-studies combines the approaches from Section 6.2.3 

and Section 6.2.4 in that both lixT^car and (5tc are assumed to vary randomly across 

individuals. 

The findings of the analysis are summarised in Table 6.5, showing results for 

a MNL model, a NL model nesting rail with car, and the mixture counterparts of 

these two models. No correlation could be retrieved with either of the two remaining 

NL structures or their mixture counterparts. Furthermore, the only coefficients for 

which it was possible to identify any random variations in either of the two mixture 

models are pTT,car and P t c , such that all other coefficients are again kept fixed in 

the presentation of the results. 

The findings from this analysis are consistent with those reported in Section 

6.2.3 and Section 6.2.4. The model fit obtained by the two mixture structures is 

superior to that obtained with the closed form counterparts, which is a direct result 

of allowing for random variations in /5rr.cor and PTC- The NL model outperforms the 

MNL mod(!l, by retrieving some of the effects of the random variations in pTT,car and 

PTC as correlation in the error-terms of the utilities for the car and rail alternatives, 

again highlighting the issue of confounding. Interestingly, like in the model reported 

•"'It is worth noting here that the travel cost attributes for car and rail are not strongly correlated, 
reducing the scope for an approximation to an ECL structure. 

"The results could also suggest some errors in data generation, but the experiments were re-
peated with different sets of draws in the generation process, and similar results were obtained. 

"Here, it should also be noted that, to avoid extreme values due to a division by a value close 
to zero, the lower and upper two percentile points were removed from the distribution of f i r e in 
the simulation of the VTTS measures. 
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True model MNL NL RCL NL mixture 
Final LL -1550.59 -1882.74 -1804.19 -1543.84 -1543.13 
adj. p^(0) 0.5268 0.4266 &4502 0.5288 0.5288 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

^CQT -4.000 -2.485 -8.06 -1.063 -8.59 -3.732 -11.91 -3.532 -10.75 
5SM -3.000 -2.652 -14.75 -L848 -12.92 -3.006 -13.66 -2.983 -13.97 

Pre (p) -0.100 -0.021 -2.70 -0.012 -11.51 -0.085 -10.92 -0.080 -9.37 
0.035 - - - - 0.031 10.84 0.029 9.31 

PHW -0.020 -0.013 -9.80 -0.005 -6J7 -0.016 -9.47 -0.016 -&08 
-0.030 -0.012 -8.88 -0.006 -7.40 -a025 -8.41 -0.025 -8.28 

Arr,cor W 0.020 - - - - 0.016 5.91 0.016 5.74 
PTT.RAIL -0.040 -0.022 -9.88 -0.010 -9.12 -0.038 -14.66 -0.036 -13.40 
PTT,SM -0.035 -0.013 -4.90 -0.004 -2.97 -0.031 -9.35 -0.030 -&62 

^rail,car 1.00 1.00 - 0.30 &43 1.00 - 0.86 0.99 

CHF/hour CHF/hour CHF/hour CHF/hour CHF/hour 
VTTS (car) 2&34 34.27 2&15 20.59 21.34 
VTTS (caz) (o-) 1&94 17.36 17. 88 
VTTS (rail) (/t) 27^5 63.30 49.24 3&49 31.06 
VTTS (rail) (cr) 11.23 13.83 14.03 
VTTS (SM) (/t) 2&76 38 22 18.99 25.25 2&47 
VTTS (SM) (cr) 9.83 11.45 11.50 

T-statistics for structural parameters calculated wrt 1 

Table 6.5: Estimation results on synthetic data generated with RCL model with 
randomly distributed travel cost and car travel time coefficients 

in Section 6.2.4, the NL model again underestimates the mean VTTS for SM travel, 

while overestimating those for car and rail, and the MNL again overestimates all 

three of the measures. Again, the two mixture models offer good approximation of 

the true mean and standard deviation of the VTTS measures^, where the remaining 

bias is again slightly larger in the NL mixture model. Finally, in this example, the 

nesting parameter in the NL mixture model is different from unity only at the 68% 

level, showing reduced risk of confounding. 

6.2.6 T r u e mode l : N L m i x t u r e 

The final case-study, in which the true model allows for random taste heterogeneity 

as well as inter-alternative correlation, makes use of a NL mixture structure, nesting 

together rail and SM with a nesting parameter of 0.5, and letting f j r c vary randomly 

across respondents, hence combining the approaches from Section 6.2.1 and Section 

6.2.4. 

The results of this analysis are summarised in Table 6.6. Five models were 

retained; one MNL model, the NL models nesting rail with SM, and rail with car, a 

^In the simulation, the lower and upper two percentile points of the distribution of f i r e were 
once again removed. 



6.2. Case-studies 139 

True model MNL NL (rail-SM) NL (rail-car) RCL NL mixture 
Final LL -1151.42 -1562.29 -1560.55 -1525,55 -1163.73 -1147.78 

adj. p2(o) 0.6467 0.5239 0.5241 0.5347 0.6433 0.6478 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

Scar -4.000 -3.548 -15.96 -3.548 -12.92 -2,197 -11.25 -5.629 -11.92 -3.558 -11.35 
-3.000 -3.592 -17,11 -3,585 -10,91 -2.766 -14,54 -4.824 -13.50 -2.628 -10.14 

Ptc (m) -0.100 -0,035 -20.14 -0.035 -19,99 -0.028 -16,23 -0.152 -8.75 -0.093 -14.72 

ftrc ("•) 0.035 - - - - - - 0.061 8.64 0.037 14.38 

I^HW (M) 
-0.020 -0.023 -14,16 -0.022 -10.98 -0,014 -9,91 -0.034 -10.05 -0.018 -9.74 

0HW i<^) - - - - - - - 0,009 1.97 0.001 0,49 

PTT,r.ar -0.030 -0.021 -14,15 -0.020 -13,51 -0.015 -11.83 -0,054 -7.78 -0.028 -10.05 

PTT,car (o") - - - - - - - 0,016 4,10 0.002 0.73 

PTT,rail (m) -0.040 -0.032 -20.79 -0,032 -15,72 -0,022 -13.63 -0.065 -12.13 -0.037 -12.85 

PTT,rail (O") - - - - - - - 0,002 2.14 0.001 1.05 

Ptt,sm (m) -0.035 -0.022 -10.13 -0.022 -10,50 -0.013 -6.28 -0.059 -9.83 -0.034 -11.61 

f^TT.SM ("•) - - - - - 0,003 1.17 0.001 0.56 

^rail,S M 0.50 1.00 - 0 ^ 9 1,22 1.00 - 1,00 - 0 ^ 8 4 ^ 9 

^rn.il,car 1.00 1.00 - 1,00 - 0 ^ 9 5^2 1,00 - 1.00 -

CHF/hour CHF/hour CHF/hour CHF/hour CHF/hour CHF/hour 
VTTS (car) 20.37 35.39 35.52 33.17 25.23 21.69 

VTTS (car) (tr) 16.46 11.95(*) 

VTTS (rail) (p) 27.16 54.77 54.86 47.84 30.79 

VTTS (rail) (<j) 11.31 17.26 15.56^*) 
VTTS (SM) (;i) 23.76 37.71 37.92 29.21 27,72 26.12 

VTTS (SM) (ct) 9.9 15,52^*) 14.2o(*) 

DispcTsioii pa rame te r for travel t ime coefficient not significant at 95% level 

T-stat is t ics for s t ruc tu ra l pa ramete r s calculated wr t 1 

Table 6.6: Estimation results on synthetic data generated with two-nest NL mixture 
model 

RCL model, and a NL mixture nesting rail with SM. Both NL models outperform 

the MNL model, although the improvement offered by the model nesting rail with 

SM is only marginal. Here, a striking observation can be made. In the true model, 

rail is nested with SM. However, in the simple NL models, which do not allow for the 

additional variation in Pre, better performance is obtained by nesting rail with car, 

while, in the model nesting rail with SM, the structural parameter is significantly 

different from unity only at the 78% level. The notion that this is most probably an 

effect of confounding between correlation and taste heterogeneity is supported by the 

observation that, in the corresponding mixture models, only the model nesting rail 

with SM manages to retrieve significant amounts of correlation, where the estimated 

structural parameter is virtually indistinguishable from that used in the generation 

of the data. The use of CNL structures, in the closed form as well as mixture models, 

did not yield any improvements over the simple NL or NL mixture models. The 

same applies for the two other possible NL mixture structures not included in Table 

6.6. 

Both mixture models correctly retrieve the variation in fSxc- However, the simple 

RCL model additionally retrieves significant variations in Phw, PTT,car and PTT,RaU, 
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while, for P T T , S M , the dispersion parameter is significant only at the 76% level. Also, 

it should be noted that, for I^TT^RAII and P T T , S M , the estimated dispersion parameters 

are very smaU when compared to the associated mean parameter. In terms of VTTS 

measures, the three closed form structures overestimate all three measures, where 

the bias is smallest in the model nesting rail with car. In the two mixture models, the 

lower and upper two percentile points of the distribution of Pre were again removed 

in the simulation of the VTTS measures. The results show much lower bias than in 

the closed form models when looking at the retrieval of the mean VTTS measures, 

which is an effect of allowing for the variation in PTC- Some bias remains, which 

is lower in the NL mixture model than in the RCL model. The higher standard 

deviations for the VTTS measures in the RCL model are an effect of the additional 

levels of variation retrieved for the travel time coefficients for car, as well as the 

overestimated variation in pre , which also plays a role in the NL mixture model. 

6.3 I m p a c t of confounding on mode l forecas ts 

The final part of the analysis consisted of illustrating the impact of confounding 

between random taste heterogeneity and inter-alternative correlation on model fore-

casts. This gives an account of the potential risk of misleading policy decisions, 

complementing the earlier comments relating to the problems caused by incorrect 

results in terms of the variation in behaviour across respondents (c.f. Section 6.2.1). 

The forecasting exercises make use of one example from each of the three groups 

of case-studies described at the beginning of Section 6.2, namely the simple two-

level NL data (Section 6.2.1), the RCL data with randomly distributed PTC (Section 

6.2.4), and the NL mixture data (Section 6.2.6). In each case, the forecasting sce-

nario looks at a hypothetical increase in the cost of rail-travel by 20%, permitting 

us to gauge the impact of allowing for heightened substitution between rail and 

SM, and random variations in the sensitivity to travel cost. The use of the data 

generated in Section 6.2.4, where the NL mixture model also reveals some incorrect 

correlation between two of the alternatives, allows us to look at forecasts produced 

in the case where flexible structures are also affected by some confounding. In each 

of the forecasting exercises, we look at the choice probabilities for a representative 

individual in addition to the overall market shares. In both cases, the results show 

the original and forecasted choice probabilities respectively market shares, along 

with the relative change in these measures for the three alternatives, and the bias 

in the predicted change, calculated as where A gives the proportional change 

in choice probability or market share in the target model, and AT gives the propor-

tional change in choice probability or market share in the true model. We will now 
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look at the results of the three forecasting examples in turn. 

The results of the forecasting analysis making use of the data generated by a two-

level NL model (c.f. Section 6.2.1) are summarised in Table 6.7. The results with the 

true model for the representative individual show a decrease in probability for the 

rail alternative by 58.45%, as a result of an increase in rail-fares by 20%. They also 

show a disproportional shift towards the SM alternative as a result of the heightened 

correlation between rail and SM, while, in the MNL model, the IIA assumption leads 

to a proportional shift in probability towards car and SM, and hence significant bias 

in the forecasted choice probabilities. The RCL model also underestimates the 

shift towards the SM alternative, with a corresponding overestimation of the shift 

towards the car alternative, where the bias is slightly smaller than in the MNL model, 

thanks to the fact that the model approximates an ECL structure in representing 

the correlation between rail and SM with the help of a randomly distributed car 

travel time coefficient, which takes a role similar to an error-component. Here, the 

confounding thus actually means that the model gives a more accurate performance 

than the MNL model, but the risk of misguided interpretation remains, given that 

the model implies the presence of significant variations in the sensitivity to changes 

in car travel time. The most accurate prediction performance is offered by the NL 

model and its mixture counterpart. 

At the population level, the results from Table 6.7 show a decrease in market 

share for rail in the true model by 44.19%. The heightened correlation between rail 

and SM leads to a greater shift in market share from rail to SM than from rail to car. 

The estimated NL and NL mixture models produce forecasts that are very similar 

to those obtained with the true model, reflected in the low bias reported in the final 

part of Table 6.7, while the use of the MNL model leads to underestimated changes 

in the market shares of rail and SM. Here, the averaging across observations means 

that the IIA assumption, which holds at the individual level, does not hold at the 

population level. Finally, the results do show that the use of the RCL model leads 

to some bias in prediction, by underestimating the changes in the market shares for 

rail and SM. The bias is in this case rather small, which is again a reflection of the 

fact that the RCL model otters an approximation of an ECL approach with a single 

error-component in the utility function of the car alternative. 

The results of the forecasting experiment using the data generated with a RCL 

mode] with randomly distributed p r e are summarised in Table 6.8. 

The results for the representative individual show a decrease in choice probabil-

ity for rail by 33.72%, with a slightly bigger shift towards car. In the MNL model, 

the IIA assumption guarantees proportional shifts, but they are massively underes-

timated, with a lower than warranted decrease in the choice probability for the rail 
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Choice probabi l i t i es for representa t ive indiv idual 

Original choice probabilities Forecasted choice probabilities 

Car Rail SM Car Rail SM 

True model 46.74% 21.63% 31.63% True model 50.73% 8.99% 40.28% 
MNL 50.07% 24.46% 25.47% MNL 57.14% 13.79% 2&0^% 

NL 49.37% 20.02% 30.61% NL 53.39% 7.90% 38.71% 
RCL 50.41% 21.79% 27.80% RCL 57.41% 10.00% 32.59% 

NL mixture 50.01% 19.54% 30.45% NL mixture 53.94% 7.19% 3&87% 

Relative change in choice probabilities Bias in predicted change 

Car Rail SM Car Rail SM 
True model +8.54% -58.45% +27.35% True model - - -

MNL +14.13% -43.63% +14.13% MNL +65.43% -25.35% -48.35% 
NL +&15% -60.53% +26.44% NL -4.61% +3.56% -3.31% 

RCL +13.89% -54.10% +17.22% RCL +62.70% -7.44% -37.03% 
NL mixture +7.85% -63.21% +27.67% NL mixture -8.04% +&1^% +1.18% 

Overall market shares 

Original market shares Forecasted market shares 

Car Rail SM Car Rail SM 

True model 55.69% 23.69% 20.62% True model 58.46% 13.22% 28.32% 
MNL 55.73% 23.43% 20.83% MNL 5&5^% 14.90% 26.65% 

NL 55.73% 23.49% 20.79% NL 58.47% 13.12% 28.41% 
RCL 55.74% 23.4^% 20.87% RCL 58.55% 13.92% 27.80% 

NL mixture 55.78% 23.50% 20.73% NL mixture 58.53% 13.01% 28.46% 

Relative change in market shares Bias in predicted change 

Car Rail SM Car Rail SM 

True model +4.97% -44.19% +37.36% True model - - -

MNL +&0^% -36.40% +27.91% MNL +1.56% -17.62% -25.30% 
NL +4.92% -44.16% +36.67% NL -L01% -0.06% -1.86% 

RCL +&04% -40.70% +33.24% RCL 1.40% -7.90% -11.03% 
NL mixture +4.92% -44.62% +37.31% NL mixture -0.90% +0.98% -0.12% 

Table 6.7: Forecasting exercise using data generated by two-level NL model 
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Choice probabi l i t i es for representa t ive indiv idual 

Original choice probabilities Forecasted choice probabilities 
Car Rail SM Car Rail SM 

True model 38.64% 27.65% 33.71% True model 43.79% 18.32% 37.89% 
MNL 36.84% 37.00% 26.16% MNL 38.79% 33.66% 27.55% 

NL 39.77% 29.05% 31.17% NL 46.03% 22.13% 3L8^% 
RCL 39.11% 28.46% 32.43% RCL 44.29% 19.32% 36.39% 

NL mixture 40.23% 27J^% 32.65% NL mixture 46.10% 17^^% 35.96% 

Relative change in choice probabiUties Bias in predicted change 

Car Rail SM Car Rail SM 
True model 4-13.31% -33.72% +12.39% True model - - -

MNL +5.31% -9.03% +5.31% MNL -60.15% -73.22% -57.19% 
NL +15.73% -23.84% +&15% NL +18.11% -29.31% -82.63% 

RCL +13.23% -32.12% +12.24% RCL -0.63% -4.74% -1.27% 
NL mixture +14.60% -33.86% +10.14% NL mixture +9.66% +0.41% -18.20% 

Overall marke t shares 

Original market shares Forecasted market shares 

Car Rail SM Car Rail SM 

True model 53.9^% 23.78% 22.28% Ti'ue model 56.68% 15.02% 28.30% 
MNL 53.67% 24.2^% 22.07% MNL 55.54% 20.42% 24.04% 

NL 52.73% 25.21% 22.07% NL 56.11% 20.53% 23.36% 
RCL 53.64% 24.27% 22.09% RCL 56.41% 15.63% 27.97% 

NL mixture 53.61% 24.25% 22.13% NL mixture 56.47% 15.91% 27.62% 

Relative change in market shares Bias in predicted change 

Car Rail SM Car Rail SM 

True model +5.08% -36.82% +26.99% Ti'ue model - - -

MNL +3.49% -15.86% +8.96% MNL -31.32% -56.93% -66.81% 
NL +6.41% -18.55% +5.8^% NL +26.28% -49.62% -78.27% 

RCL +5.15% -35.61% +26.64% RCL +1.36% -3.27% -1.33% 
NL mixture +&3^% -34.40% +24.77% NL mixture +5.15% -6.55% -8.24% 

Table 6.8; Forecasting exercise using data generated by RCL model with randomly 
distributed travel cost coefficient 
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alternative. The NL model nesting rail with car overestimates the shift towards car, 

as well as underestimating the actual decrease in probability for the rail alternative. 

The RCL model, and to a lesser degree the NL mixture model, manage to replicate 

the behaviour of the true model, where the remaining bias in the NL mixture model 

is down to the confounding which is also exhibited by this model. 

In the results for the overall market shares, there is a much bigger relative shift 

in market share towards the SM alternative, which can be explained on the grounds 

of the low initial market share for SM, when compared to that of car. The ac-

tual results in terms of bias are consistent with those observed in the case of the 

representative individual, showing that the MNL and especially the NL model sig-

nificantly underestimate the shift in market share towards the SM alternative. In 

the NL model, this is a direct effect of the nesting of car with rail, which is caused by 

confounding. Again, some bias remains in the NL mixture model, which is caused 

])y the fact that this model picks up some of the taste heterogeneity in the form of 

correlation between car and rail. However, the bias is much lower than in the NL 

model. The best performance is obtained by the RCL model, which retrieves the 

l^ehaviour from true model almost perfectly, although it underestimates the decrease 

in the market share of rail. 

The results of the final forecasting example, making use of data generated with 

a NL mixture model (c.f. Section 6.2.6), are summarised in Table 6.9. 

The results for the representative individual show a decrease in the choice prob-

ability for rail by 55.58%. with a bigger shift towards SM than car, which is an effect 

of the nesting structure in the true model, which ensures correlation between rail 

and SM. In the MNL model, the IIA assumption leads to proportional changes, as 

well as a major underestimation of the actual changes. The NL model nesting car 

with rail, whose parameters are heavily influenced by confounding, undc^restimates 

the decrease in probability for rail, and falsely predicts a larger shift towards the car 

alternative. The NL model nesting rail with SM also underestimates the changes in 

probability, and the confounding in this model leads to an underestimation of the 

correlation between rail and SM, although it does show a bigger than proportional 

•shift towards the SM alternative. The R.CL model offers better performance than 

any of the closed form models, yet underestimates the changes in probability for rail 

and SM. However, it correctly predicts a bigger shift towards SM, which illustrates 

the positive effect of confounding in this case, leading to an approximation of an 

ECL structure. The bias in the change of the probability for car in the NL mixture 

model needs to be put in context by the small change in this probability. 

The population-level results show a decrease in market share for rail by 43.13%, 

with a much bigger shift towards SM than to rail. Thanks to the averaging across 
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Choice probabi l i t i e s for representa t ive indiv idual 

Original choice probabilities Forecasted choice probabilities 
Car Rail SM Car Rail SM 

True model 46.79% 21.37% 31.84% True model 50.65% 9.49% 39.86% 
MNL 41.64% 34.43% 23.93% MNL 44.35% 30.17% 25.48% 

NL (rail-car) 44.66% 28.18% 27.16% NL (rail-car) 49.19% 22.56% 28.25% 
NL (rail-SM) 42.39% 35.29% 22.33% NL (rail-SM) 45.18% 30.68% 24.15% 

RCL 53.29% 20.36% 26.35% RCL 57.74% 12.00% 30.26% 
NL mixture 48.69% 19.10% 32.21% NL mixture 51.84% 9.10% 39.06% 

Relative change in choice probabilities Bias m predicted change 
Car Rail SM Car Rail SM 

True model +8.25% -55.58% +25.18% True model - - -

MNL +&50% -12.38% +&50% MNL -21.21% -77.73% -74.18% 
NL (rail-car) +10.14% -19.93% +4.00% NL (rail-car) +22.91% -64.15% -84.12% 
NL (rail-SM) +6.59% -13.07% +&15% NL (raiLSM) -20.15% -76.48% -67.63% 

RCL +8.36% -41.06% +14.83% RCL +1.29% -26.13% -41.10% 
NL mixture +6.47% -52.36% +21.2^% NL mixture -21.54% -5.78% -15.53% 

Overall marke t shares 

Original market shares Forecasted market shares 
Car Rail SM Car Rail SM 

True model 55.12% 23.65% 21.23% True model 57.82% 13.45% 28.73% 
MNL 55.83% 22.73% 21.43% MNL 57.80% 1&67% 23.53% 

NL (rail-car) 55.83% 22.73% 21.43% NL (rail-car) 58.45% 18.22% 23.33% 
NL (rail-SM) 56.00% 23.14% 20.86% NL (rail-SM) 57.99% 18.87% 23.13% 

RCL 55.71% 22.60% 21.68% RCL 58.36% 13.72% 27.92% 
NL mixture 55.73% 22.70% 21.57% NL mixture 58.32% 12.88% 28.80% 

Relative change in market shares Bias in predicted change 
Car Rail SM Car Rail SM 

True model +4.91% -43.13% +35.31% True model - - -

MNL +3.53% -17.88% +9.77% MNL -28.11% -58.55% -72.32% 
NL (rail-car) +4.69% -19.84% +&8^% NL (rail-car) -4.49% -53.99% -74.95% 
NL (rail-SM) +3.56% -18.44% +10.90% NL (rail-SM) -27.42% -57.24% -69.13% 

RCL +4.76% -39.30% +28.74% RCL -2.99% -8.88% -18.62% 
NL mixture +4.65% -43.25% +33.48% NL mixture -5J6% +0.28% -5.18% 

Table 6.9: Forecasting exercise using data generated by two-level NL mixture model 

individuals, the MNL model and the NL model nesting rail with car now correctly 

indicate a bigger shift in market share towards SM, but underestimate the extent of 

the disproportionality as well as of the actual changes in the market shares, especially 

for rail and SM. A similar issue with underestimation affects the model nesting rail 

w i t h SM, which is again an effect of confounding leading to an attenuation of the 

nesting parameter in this model. As was the case with the representative individual, 

the RCL model again underestimates the changes in market share for rail and SM, 
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while the best overall performance is obtained by the NL mixture model. 

6.4 S u m m a r y and Conclusions 

The, aim of this chapter was to highlight a major issue that can affect estimation 

results in models allowing for an analysis of the error-structure, namely that of 

confounding between simple inter-alternative correlation and random inter-agent 

taste heterogeneity. 

The theoretical discussions have shown that it is possible for the estimates relat-

ing to random taste heterogeneity to be biased by the presence of unexplained inter-

alternative correlation, and conversely, for the estimates relating to inter-alternative 

correlation to be biased by the presence of unexplained random inter-agent taste 

heterogeneity. 

Two possible scenarios arise in which this issue of confounding can play a major 

role. The first case is one where, in the true model, only one of the two phenomena 

plays a role, but where the estimated model allows only for the other phenomenon 

to have an effect. Here, the effects of the unexplained phenomenon can lead to 

erroneous results showing an effect of the other phenomenon. In the second sce-

nario, both phenomena play a role, but the model employed in estimation allows 

only for the presence of either of the two phenomena. Here, the presence of the 

second, unexplained phenomenon, can lead to biased estimates in relation to the 

other phenomenon. 

The six case-studies presented in this chapter have presented examples of each 

of the cases discussed above. The first two case-studies have illustrated how the 

presence of unexplained inter-alternative correlation can lead to erroneous results 

with regards to the prevalence of random taste heterogeneity (Section 6.2.1 and Sec-

tion 6.2.2). The following three case-studies have illustrated the converse, showing 

how the presence of unexplained random taste heterogeneity can lead to erroneous 

results with regards to the presence of inter-alternative correlation (Section 6.2.3, 

Section 6.2.4, and Section 6.2.5). Finally, the case-study presented in Section 6.2.6 

has shown that, in the case where both phenomena play a role, not accounting for 

the effect of one of the two phenomena can lead to biased results in relation to 

the second phenomenon. Each of the six case-studies has also shown how, by using 

models allowing jointly for the effects of the two phenomena, the risk of confounding 

is much reduced, although, in some cases, minor issues with confounding can still 

exist even with the use of such models (c.f. Section 6.2.4). 

The forecasting examples presented in Section 6.3 have shown that the use of 

models effected by confounding can lead to biased forecasts of market shares, which 
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can in turn lead to misguided policy decisions. While the issue with misleading fore-

casts arises especially in the case of incorrect results in relation to inter-alternative 

correlation, problems are also caused in the case of incorrect results in terms of ran-

dom taste heterogeneity, for example by giving an inadequate account of variations 

in willing-to-pay measures across individuals, which can lead to major problems in 

cost-benefit analysis. 

The results discussed in this chapter offer strong evidence that modellers should 

acknowledge the potential risk of confounding, especially given the lack of a priori 

knowledge as to the true nature of the error-structure. While testing separately 

for the two phenomena, say with a GEV and a RCL model, can alert the modeller 

to the relative performance of the two approaches, it does not remove the risk of 

biased findings. As such, the findings from this chapter suggest that modellers 

should always allow for the effects of both phenomena in a joint fashion, either in a 

GEV mixture structure, as described in this chapter, or with the help of a combined 

ECL-RCL formulation, as discussed in Appendix A. 



Chapter 7 

Mixed Covariance models 

7.1 I n t r o d u c t i o n and context 

While the developments discussed in Chapter 2 in relation to closed form GEV as 

well as GEV mixture models have led to gradual gains in modelling flexibility, by 

allowing modellers to accommodate correlation across alternatives as well as deter-

ministic and random taste heterogeneity across respondents, little effort has gone 

into the development of model forms allowing for a representation of heterogeneity 

across respondents in the correlation structure in place between the different alter-

natives. Such correlation heterogeneity is however potentially a crucial factor in the 

variation of choice-making behaviour across decision-makers. As an example, in an 

airline choice scenario, travellers' behaviour can be strongly affected by their mem-

l-oership in a given airline's frequent flier programme, to the point that, in the case 

where seats on their desired flight are not available, they are more likely to switch 

to a different flight on the same airline than to choose a flight by an alternative 

airline. In many cases, it may not be possible to accommodate the effects of airline 

allegiance directly, mainly for data reasons (c.f. Chapter 8). In these circumstances, 

the greater substitution between flights on the same airline can be accommodated 

through a nesting structure that allows for correlation between flights on the same 

airline. It is clearly possible that the effects of airline allegiance, and hence the level 

of correlation, vary across travellers, meaning that the use of an approach which 

imposes covariance homogeneity potentially leads to biased model results. 

While some of the covariance heterogeneity can conceivably be accommodated 

through an appropriate segmentation of the population (using separate models), it 

is likely that some within-segment heterogeneity remains. The existing literature 

•seems to contain only two examples of a model allowing for such heterogeneity. The 

first of these comes in the form of the Covariance Nested Logit (COVNL) model 

discussed by Bhat (1997). In the COVNL model, the structural parameters them-
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selves (and hence the pattern of substitution between alternatives) are a function 

of so cio- demographic attributes of the decision-makers, such that the correlation 

heterogeneity is explained with the help of these attributes. Koppelman & Sethi 

(2005) later expand this approach by incorporating covariance heterogeneity in a 

GNL mo del where they additionally allow for heteroscedasticity across respon-

dents through a parameterisation of the scale factor, describing the resulting model 

as the Heterogeneous Generalized Nested Logit (HGNL) model. 

While it is highly desirable to explain any covariance heterogeneity in a deter-

ministic way, this is clearly not always possible. The aim of this chapter is therefore 

to develop a model structure that can accommodate random covariance heterogene-

ity in addition to deterministic covariance heterogeneity. The discussion presented 

in this chapter is based on an underlying GEV model for representing the correla-

tion between alternatives; it is similarly possible to do this with the help of an ECL 

structure, and the development of such a framework is described in Appendix B. 

The model structure developed in this chapter was first discussed by Hess, Bolduc 

& Polak (2005). 

The remainder of this chapter is organised as follows. The methodology for the 

Mixed Covariance GEV model is introduced in Section 7.2. Section 7.3 presents an 

application showing how one specific example of a Mixed Covariance GEV model 

works in practice. Finally, Section 7.4 presents the conclusions of the research. 

7.2 Me thodo logy 

We will now develop the structure for our Mixed Covariance GEV model, where the 

derivation described here looks mainly at the case of a simple two-level NL model; 

the extension to multi-level as well as cross-nesting structures is possible, and several 

notes to that extent are made in the text. The exposition of the theory is divided 

into three parts. We first look at the general model form, in Section 7.2.1, before 

moving on to the cases of purely random variation (Section 7.2.2) and combined 

deterministic and random variation (Section 7.2.3). 

7.2.1 G e n e r a l m o d e l f o r m 

The choice probabilities in a nested model are represented through a product of 

successive choice probabilities that represent a chain from the root of the tree (upper-

most node) to the elementary alternative for which the probability is calculated. In 

a two-level NL model, the choice probability of alternative i (belonging to nest rn) 

Thus also allowing for cross-nesting. 
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for individual n is then given by; 

Pn (4 = Pn (Sm) Pn (% | Sm) 

A I ^ 

(7.1) 

with logsum term 

Im,n = In ^ e , (7.2) 
j&Sm. 

where Vĵ n gives the observed utility for alternative j and individual n, Xm is the 

structural parameter associated with nest m, defines the set of alternatives 

contained in nest rn, and M gives the total number of nests. The extension of the 

choice probability from equation (7.1) to the multi-level case is straightforward, with 

details given for example by Koppelman & Sethi (2000). 

The COVNL model of Bhat (1997) expands on the standard NL model, by 

parameterising the structural parameters A as: 

— F (a -I- , (7.3) 

where a is a constant, Zn is a vector of attributes of decision-maker n, and 7 is a 

vector of coefficients. In this notation, Xm,n is the structural parameter for nest rn 

and decision-maker n. Both a and 7 are to be estimated. 

To ensure consistency with utihty maximisation, F () needs to be specified so 

as to produce values in the 0 — 1 interval. Furthermore, Bhat (1997) states that 

increases in Zn should have a monotonic effect on (where this ensures consistency 

in the case of multi-level structures, c.f. equation (7.7)). This double requirement 

can be satisfied by using a function F () with: 

F ( - o o ) = 0 

F (-t-00) = 1 

/(%) = (7 4) 

These conditions are met by the use of a continuous cumulative probability distri-

Ixition function, where Bhat (1997) suggests the use of the logistic distribution. 

We now extend this approach to the case where follows a random distribution 

across individuals. Conditional on a given set of values for the vector (of length 

M) of structural parameters A, the NL choice probabihties are given by equation 
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(7.1). We now assume that the vector A is distributed according to / (A | fi), where 

Q is a vector of parameters of the distribution of the different elements of A This 

specification is general, and can be adapted for the special cases presented in Sections 

7.2.2 and 7.2.3. 

The conditional choice probability in equation (7.1) is now replaced by the un-

conditional choice probability: 

I AO / ( A I OOdA Cf.5) 

- y ( A | ( ^ d A , (7.6) 

' A 

r A f ^ 
j gAm.'m.n, g 

where A = (Ai,..., A^}- Here, equation (7.6) is specific to the two-level NL model 

given in equation (7.1), while equation (7.5) shows the general form, where Pn {i | A) 

can represent the conditional choice probability for any GEV modeP. The logsum 

term Im is defined as in equation (7.2), and it should be noted that this logsum term 

is conditional on a given value of A^, and hence A, by being inside the integral. The 

behaviour of the model depends crucially on the specification used for / (A | U), 

where the requirements on the range of the structural parameters need to be borne 

in mind. This issue is discussed in more detail in the description of the two special 

cases in Sections 7.2.2 and 7.2.3. 

The approach becomes more complicated in the case of multi-level structures, due 

to the condition that the structural parameters need to decrease as we move down 

the tree. In the COVNL, this is made possible by specifying the structural parameter 

of a lower-level nest, A/, as in equation (7.3), and by adapting the specification of 

the upper-level nesting parameter as; 

A„,,,i = F [(o! + + G (6 + , (7.7) 

where Wn is an additional vector of individual characteristics, which can be the 

same as and where 5 and 77 are a constant and a vector respectively that need 

to be estimated. Finally, G () is a monotonically increasing function mapping real 

numbers onto the space of positive real numbers, such as for example with the 

exponential distribution. 

In the case of the Mixed Covariance NL model, the issue becomes more compli-

cated, as the different structural parameters are now random variables. To ensure 

^In the case of cross-nesting structures, there is an additional dependency on a vector of aho-
cation parameters, which is not explicitly stated in equation (7.5). There is in that case also a 
possibility of allowing for deterministic as well as random variations across agents in the allocation 
parameters. 
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consistency with utility maximisation, the distribution of the structural parameters 

must be specified such that structural parameters belonging to the same link in a 

tree are no longer distributed independently. As it is desirable not to have to impose 

a constraint of equality of the structural parameters on a given leveP, it is preferable 

to use a top-down approach in the notation for the Mixed Covariance NL model, 

given that a specific node may have multiple descendants, while, in a model without 

cross-nesting, each node has only one direct ancestor. 

One possible way of ensuring decreasing structural parameters is to specify the 

values as follows. With an upper-level structural parameter being given by; 

(7 8) 

the structural parameter of one of its descendants, Xu, is given by: 

k i = Xii, (7.9) 

with 

, (7.10) 

where, in either case, the subscript imposed on Q refers to the subelements linked 

to the structural parameter in question. This approach avoids the need to specify a 

complete joint density for the structural parameters. 

The structural parameter at a lower level is thus given by multiplying the struc-

tural parameter at the level above it with a draw from the distribution used for 

the structural parameter at the lower level. As this draw is contained between 0 

and 1, the resulting product is necessarily constrained between 0 and A„, giving 

0 < < A.„, < 1 . If, at a given level, the draw from the distribution approaches 

1, such that the resulting structural parameter takes the same value as its ancestor, 

this level of the tree becomes obsolete in that link, and the nests below it can be 

attached directly to the ancestor node. Extension of this theory to models with 

more than three levels is straightforward. 

Extensions to models allowing for cross-nesting is also possible, although slightly 

more tedious. In this case, a given node can have multiple ancestors, and the 

condition of decreasing structural parameters needs to apply for each of the links 

to an ancestor. This means that the structural parameter at a given node needs 

to be less than or equal to that of the direct ancestor with the lowest structural 

parameter. Hence, in equations (7.9) and (7.10), A„, is accordingly replaced by the 

'This approach is taken by Bhat (1997). 
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structural parameter of this specific ancestor node. As it is thus possible to adapt 

this approach for models allowing for cross-nesting as well as for models allowing 

for multi-level nesting, it can be seen that the approach should be applicable for all 

existing GEV structures. 

The final step in the theoretical development of our proposed model form is the 

representation of taste heterogeneity across individuals, where this heterogeneity 

relates to the coefficients multiplying the attributes of the alternatives, as opposed 

to the structural parameters. The above framework clearly already allows for de-

terministic variations in tastes; additional random variation can be accommodated 

very easily in the present model form, through integration of the choice probabili-

ties that are conditional on p over the assumed distribution of the taste coefficients. 

This comes in addition to the integration over the distribution of the structural 

parameters. 

Let Pn (i I j3, A) give the choice probability of alternative i for individual n, 

conditional on /3 and A. Following the theory described in this section, we then 

have: 

(?: I /3) = ^ f k (?: I A) y (A I r])dA. (7.11) 

By assuming that the tastes are distributed randomly across decision-makers ac-

cording to 5r(/3 I 0) , with parameter vector 6 , we obtain the unconditional choice 

probability'^: 

/ P . ( 2 | / 3 ) p ( / 3 | 8 ) d / 3 
J(3 

= I /3, A) y (A I ̂ ])dA^ ^ (/3 I 8 ) d/3. (7.12) 

7.2.2 M o d e l w i t h p u r e l y r a n d o m covar iance h e t e r o g e n e i t y 

We now look at the case where any variation in the structural parameters (and hence 

the correlation) across individuals is purely random. Two possible approaches arise 

in this case. 

In the first approach, wc rewrite the choice probabilities in equation (7.5) as: 

& (z) = / & (21 A = r (%/)) / (1/1 n)d%/, (7.13) 
•J y 

where T [y) is a transform that maps the elements in y from the real space of num-

' Although beyond the scope of the present discussion, it is possible to expand this approach to 
the case where /3 and A follow some form of joint distribution. 
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bars into the 0 — 1 interval With this approach, any choice of statistical distribution 

can be used for f {y | 0), and a transform such as the logistic distribution can be 

used for T (y). 

The second approach avoids the use of the additional transform T {y), and draws 

for the structural parameters are produced directly from the function / (A | 11), as 

shown in equation (7.5). In this case, the condition on the range of the structural 

parameters applies directly at the level of / (A | H), leading to a requirement to use 

distributions bounded on either side, with the left bound being greater than 0, and 

the right bound being smaller than 1. The vector H now contains the parameters of 

the actual distribution of the structural parameters, as opposed to the distribution 

of the random vector y used as the base of the transform described in the first 

approach. A number of different statistical distributions can be used with this 

approach, including basic examples such as the Uniform or Triangular, or more 

advanced ones, like the Johnson SB distribution. 

It is not clear a priori which of the two approaches is preferable. The former 

approach allows for greater freedom in the choice of distribution for / (y | 17), while 

the latter approach provides more control over the actual shape of the distribution 

of the structural parameters. The merits of the two approaches potentially need to 

be evaluated on a case-by-case basis. 

7.2.3 M o d e l w i t h de t e rmin i s t i c a n d r a n d o m covar iance he t -

e rogene i ty 

While the description in Section 7.2.2 has shown that the framework developed in 

Section 7.2.1 can be adapted straightforwardly to allow for a purely random distri-

bution of structural parameters across individuals, the use of this approach leads to 

similar issues of interpretation as in the case of randomly distributed taste coeffi-

cients in a GEV mixture model. Indeed, this approach provides little information 

about the values of the structural parameters for a given individual or a given 

population group, although posterior methods can be used to infer some such infor-

mation. It is thus clearly preferable to as much as possible explain this covariance 

heterogeneity in a deterministic manner, as in the COVNL model of Bhat (1997). 

As mentioned in the introduction, this is not always possible, such that the Mixed 

Covariance models presented in this chapter present a useful alternative. However, it 

is conceivable that there are cases in which it is possible to explain some of the vari-

ation in a deterministic way, while some remaining part of covariance heterogeneity 

can only be explained in a random way, along the lines of A = F {a + j'Zn -h e), 

where e is a random component. Two approaches are possible in this case; one is 
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to use a mixed version of a formulation analogous to the COVNL formulation (but 

within a top-down approach), while the other is to parameterise the parameters of 

the distribution used to represent covariance heterogeneity in the Mixed Covariance 

GEV model. We will now look at these two approaches in turn. 

Extension of COVNL approach 

We begin the description of this approach by rewriting the choice probabilities in 

equation (7.5) as: 

f (%) = / f (21 A = T ( ^ 0))) / (6 I r])d8, (7.14) 
Je 

In this notation, T () is defined as previously as a transform mapping independent 

elements from the real space of numbers into the 0 — 1 interval. The function 

H {zn,0) is used to generate a vector of length m of real numbers, as a function 

of the parameters contained in the vector 6 and the vector of individual-specific 

attributes z^, with 0 being distributed according to f {6 \Q). This model can be 

seen to be an extension of the COVNL model described in Section 7.2.1 as follows. 

Let us assume that we have a model with a single structural parameter A„,. It can be 

seen that, by specifying T () to be the logistic transform, H {Zn, 6) to yield a-t-Yz^, 

and setting / (6 = {a, 7) | f2) = 1, the model reduces to the COVNL model. In this 

case, the parameters contained in the vector G are fixed across individuals. However, 

the model uses a top-down approach, which makes for easier adaptation in the case 

of multi-level structures or cross-nesting structures (see Section 7.2.1). 

By removing the assumption that / {6 = (a, 7) | H) = 1, we obtain a model with 

random variation in the structural parameters across individuals. Depending on the 

specification of / (0 | 0), only some of the elements in 9 will be random, allowing for 

example for a random offset a across individuals, with purely deterministic variation 

on top of it, or a fixed offset point with random and deternunistic variation on top of 

it, or both. Different choices for H () and T () (with appropriate domain conditions) 

lead to differences in model behaviour. Finally, it can be seen that by setting all 

elements in Zn to be zero, we obtain a model with purely random variation as in 

the first approach described in Section 7.2.2 if a is distributed randomly, while the 

model reduces further to NL if a is kept fixed across rc^spondents. This completes 

the extension of the COVNL framework to the case with random parameters. 
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Parameterisation of distributional parameters 

We will base our derivation of the parameterisation method on the second approach 

described in Section 7.2.2, such that draws for are obtained directly from an 

appropriate distribution with an acceptable domain, as opposed to requiring the 

use of a transform (which is also possible). Let us assume that we have E 0, 

such that Wm represents for example the mean used in the distribution function of 

structural parameter with a corresponding variable Om E H giving the dispersion 

parameter of the distribution of structural parameter A^. For now, let us assume 

that (Tm, stays constant across individuals; extension to the case where it varies 

(deterministically across individuals) in addition to is straightforward. We now 

look at the case where some of the variation in A^ is explained by random variation 

(through using the distribution / (A^ | o"m) and some variation is explained by 

the attributes of the decision-maker, by parameterisation of Specifying 

to be the mean value of the distribution of A ,̂ for decision-maker n, we can then 

simply use: 

OJ. 

where Zn represents a vector of attributes of decision-maker n, and and 7^^^ 

represent a constant and a vector of coefficients respectively, both of which are 

specific to the parameter uJm,-

In the case where no parameterisation of the parameters of the distribution is 

(or can be) used, only the constant will be estimated. In this case, Um,n stays 

the same across respondents, and the only differences in the value of A ,̂ across 

respondents are due to random variation. On the other hand, a model version that 

is very similar to the COVNL model can be obtained by only using one distributional 

parameter for each structural parameter, i.e. by setting 

P (Am,n = | H) = 1 (7.16) 

This is equivalent to setting the dispersion term am to be equal to zero. In this case, 

different structural parameters are still used for different individuals, but they no 

longer vary randomly across individuals; the variation is entirely deterministic. By 

further setting 7^^ — 0 for all rn, the model reduces to the NL model. 
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Discussion 

It is of interest to briefly discuss the diff^erences between the two approaches. Both 

approaches attain the goal of jointly introducing deterministic and random covari-

ance heterogeneity. The former approach has the advantage of easier interpretation, 

and possibly simplifies more easily to models with purely deterministic covariance 

heterogeneity, as well as models with fixed covariances. The only apparent advan-

tage of the second approach is that it can avoid the need for additional transforms 

in the case where strictly bounded statistical distributions are used. Although, like 

the first approach, this variant also allows for an effect by an unlimited number of 

socio-demographic attributes, their impact needs to be gauged simultaneously for 

a minimum of two separate values, giving the mean and dispersion of the associ-

ated statistical distribution. As such, the former approach is probably preferable, 

although a detailed empirical comparison would be needed to reach a definitive 

answer. 

7.3 Appl ica t ion 

In this section, we present an application of one specific type of Mixed Covariance 

GEV model, namely a discrete mixture of a two-level NL model, with two possible 

levels of correlation in the population, leading to a Discrete Mixture Covariance NL 

(DM-COVNL) model. As such, the work presented here relates to the discussion on 

discrete mixture models in Chapter 5, where, in the present context, the mixture 

allows for covariance heterogeneity, as opposed to taste heterogeneity®. 

The justification for using the DM-COVNL model instead of a continuous mix-

ture in this application is primarily a pragmatic one. Indeed, while it can simply 

be seen as a special case of a continuous mixture, it has the clear advantage of 

not requiring simulation in estimation. However, the discrete approach also has 

some advantages in terms of illustration of the differences with a homogeneous co-

variance model, as well as having conceptual advantages in terms of the notion of 

an unobserved attribute leading to inter-alternative correlation for only part of the 

population of decision-makers. 

Using a notation similar to that used in Chapter 5, the choice probability for 

''Here, it should be noted that the issue of confounding between the two, as discussed in Chapter 
6, can also apply in the case of mixed covariance models. 
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alternative i and individual n in a model with K nests is given by: 

Ml Mx 

&Im E - Z • <", P.it) 
mi=l = l 

where the structural parameter A ,̂ associated with the nest, takes on sep-

arate; values, defined as to where each has an associated probability (or 

mass), with 0 < tt^'' < 1 V/c, ruk, and where — 1 V/c. Here, in addition 

to the taste coefficients, estimates need to be produced for the different levels for all 

the structural parameters, as well as for the associated probabihties. 

With the aim of illustrating the ability of the model to recover covariance het-

erogeneity, and to show the bias resulting from an inappropriate assumption of co-

variance homogeneity, the application presented here makes use of simulated data. 

The data used are again based on the Swissmetro dataset (c.f. Section 6.2). This 

time, a sample of 9,000 observations was used, based on an original sample of 3, 000 

observations, where the data augmentation was based on small random variations 

of the original attribute levels. The base specification used for the utility function 

is the same as that in Section 6.2, with separate travel time coefficients for rail, SM 

and car, a common cost-coefficient, a headway coefficient common to rail and SM, 

and two ASCs, associated with SM and car. 

Unlike in the applications conducted in Chapter 6, the generation of the data 

is now based on the principle of nine observations per individuals, as opposed to a 

purely cross-sectional approach. In the generation of the data, the 1, 000 individuals 

were split into two groups. In the first group, representing 30% of the population, 

there is high correlation between the error-terms for the rail and SM alternatives, 

with a structural parameter equal to 0.3. In the remaining 70% of the population, 

the structure equates to a MNL model. The allocation to the two groups is per-

formed on a purely random basis (taking into account the 30% — 70% split), such 

that a deterministic segmentation of the population cannot be used to account for 

the differences in correlation structure. This construction represents a situation hi 

which, for example, for some individuals, an unobserved attribute leads to height-

ened substitution between rail and SM, while, for the remainder of the population 

it does not®. 

On the basis of the resulting individual-specific structural parameters, and the 

(oefficient values reported for the true model in Table 7.1, the choice probabilities 

for the three alternatives were calculated for each individual, on the basis of a 

two-level NL structure nesting rail with SM, where, for those individuals with A = 

'This could for example simply reflect an inherent dislike of car-travel for some respondents. 
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1, the probabilities correspond to a MNL structure. A Monte-Carlo exercise was 

then used to determine the chosen alternative. As such, for each individual, the 

actual structural parameter applying for that respondent was used. This is more 

correct, and consistent with the underlying true model, than an approach which 

uses simulation over the two values, assigning to each individual the weighted choice 

probability across the two values for A. As such, the resulting dataset reflects a real-

world situation (in which a single value applies for each individual), rather than 

a DM-COVNL approximation to such a real-world situation. This in turn means 

that the estimation can show how well the DM-COVNL model, which does use a 

weighted average across the two values for A, can replicate the true model. 

Three separate models were estimated on the resulting dataset; a MNL model, 

a simple NL model nesting together rail and SM, and a DM-COVNL model. All 

three models were coded in Ox. In the DM-COVNL model, we estimate two distinct 

structural parameters for the rail-SM nest, specified as Â  and A .̂ As such, with Xa, 

the choice probability of rail in the t*''' choice situation for individual n is given by: 

Aobje +e A* | 

Ao) . ' (7-18) 
A„, I n l e ^ + e I e e 

(jVcar.n.t g \ / 

where Vraii,n,t, ysM,n,t and Vcar,n,t give the observed utility for rail, SM and car respec-

tively, for individual n, in choice situation t. The corresponding choice probabilities 

for SM and car are given by: 

/ '^SM,n,t \ 
A„,In e >'0. + e 1 VsM.r,.,t. 

g V / g An, 
Pn,t {SM I Aa) = / VraU,r^,t KgM.n.t \ VraU,r,.,t KSM.n.t ' 

An In I e ^ + e ^ j e 

gVcar,n,t g V / 

and 

gVco.r.n.t 

Pn,t {car I Aa) = / Vro.U.r..t ^SM,n,t \ (7.20) 
Aa In e ^ + e ^ 

On the basis of equations (7.18), (7.19) and (7.20), the probability of the observed 

•sequence of choices for individual n, conditional on A ,̂ is given by: 

^ I Xa) — [^n,t,railPn,t {rClH | A^) 4- 5n,t,SMPn,t {SM | Ag) -f Sn^t,car Pn,t {cUr \ A^)] , 
t=l 

(7.21) 
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where T„ gives the number of choice-situations for respondent n (equal to 9 in this 

application), and where the dummy variable 5n t̂,raii is equal to 1 if respondent n 

chooses rail in the choice-situation, and zero otherwise, with a corresponding 

definition for and '5n,t,cav 

With an equivalent notation in the case of the second structural parameter, A ,̂ 

the contribution by individual n to the hkelihood function is given by; 

Z, (n,) = Z, (n I Aa) + TTÂ  Z, (n, I Ab), (7.22) 

where tta,, and ttaj, give the mass for Â  and Aj respectively, with 0 < 7rx„ < 1, 

0 < tta,, < 1, and 4- = 1. The fact that the weighting over the two support 

points occurs at the level of L (n | Aq) and L (n | Aj,), rather than at the level of 

individual choice probabilities, reflects the notion that the level of correlation stays 

constant across replications for the same individual. 

Finally, on the basis of equation (7.22), the log-likelihood function for the DM-

COVNL model used in this example is given by: 

N 

LL = In I J J 1/ (n) 
\n=l / 

N 

= ^ In [TTXa L {n 1 Aa) 4- TTX, L (n | A^)], (7.23) 
n=l 

where N gives the total number of individuals, with, in the present application, 

N = 1,000. 

The estimation results for the three models are summarised in Table 7.1, together 

with the coefficient values used in the generation of the data. The results show that 

the use of the NL model leads to statistically significant improvements in model fit 

(jver the MNL model, by 20.89 units, at the cost of one additional parameter. The 

DM-COVNL model leads to the best model fit overall, offering an improvement by 

29.62 units over the NL model, with two additional estimated parameters (A,, and 

Tix^y. It should be said that, although statistically significant, these improvements 

are not dramatic, suggesting that the likelihood function is relatively unaffected by 

the treatment of correlation. Additionally, it can be seen that the results in terms 

of willingness to pay indicators are very similar across the three models. Indeed, the 

recovery of the values is very good, and the differences in bias are very small, 

where the lowest bias is obtained with the DM-COVNL model®. 

'In the code written in Ox, only 7r;̂ „ was estimated, with tta,, given by 1 — tta , , . 
*The fact that the bias decreases as we move from the MNL model to the NL model and on 

to the DM-COVNL model does suggest some interaction between observed and unobserved utility 
components, where a proper treatment of the unobserved utility components in the DM-COVNL 
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True model MNL NL DM-COVNL 
Final LL - -7136.16 -7115.27 -7085.65 

Parameters - 7 8 10 
adj. p^(0) - 0.2776 0.2796 0.2824 

est. t-stat. est. t-stat. est. t-stat. 
^car -4 -4.3977 -34.31 -4.0194 -3&96 -3.9547 -30.77 

-3 -3.5073 -33.80 -3.0582 -28.01 -3.0376 -28.51 
A'C -0.1 -0.1082 -51.03 -0.0999 -42.17 -0.0994 -41.82 

-0.02 -0.0233 -32.06 -0.0205 -27.62 -0.0202 -28.27 
Ar.car -0.03 -0.0331 -39.36 -0.0302 -33.17 -0.0300 -32.97 
Ar.raiZ -&04 -0.0446 -47.61 -0.0402 -37.32 -0,0399 -37,31 
Ptt,sm -0.035 -0.0382 -37.14 -0.0350 -33.32 -0.0347 -33.42 

Aa 1 - 0.78 7.52 1.00 0,00 
Af, 0.3 - - 0.32 12,50 

0.7 - - 0.71 9.96 

Monetary value CHF/hour CHF/how CHF/hour CHF/hour 
l&OO 1&36 1&13 18,11 

TTrail 24^0 24J4 24A7 24.11 
TTsm 21.00 21.21 21,05 2&96 

12.00 1&95 1&33 12.22 

T-statistics for structural parameters calculated wrt 1 

Table 7.1: Estimation results on mixed covariance data 

More significant differences however arise when looking at the implications in 

terms of correlation between the unobserved utility components for the rail and SM 

alternatives. The MNL model, by definition, offers no treatment of the correlation, 

and as such fails to allow for the heightened substitution between rail and SM. The 

simple two-nest NL model is based on the assumption of a homogeneous correlation 

structure. Here, the estimate produced for the unique nesting parameter in this 

model, at 0.78, is virtually indistinguishable from the weighted average of the two 

structural parameters present in the true population (0.3 • 0.3 4- 0.7 • 1.0 = 0.79). 

This result is consistent with a similar observation made in the case of discrete 

mixture models for taste heterogeneity (c.f. Section 5.4), reflecting the fact that 

single parameter models yield estimates that are weighted averages of the actual 

values present in the population. It should be noted that, in the current example, 

with only two parameters, this approximation is made relatively easy, and more 

bias could be expected in the presence of more than two values for a parameter. 

Finally, the DM-COVNL is able to essentially perfectly recover the nature of the 

correlation structure in place in the true data; Xa obtains a value equal to 1.0, 

while, for A/,, the estimated value is very close to the true value of 0.3, with the 

model results in lower impact on the observed utility components. 
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Original probabilities Forecasted probabilities 
Rail SM Car Rail SM Car 

True model 17.49% 33.01% 49.49% 4.07% 38.38% 57.55% 
MNL 15.65% 30.76% 53.59% 3.15% 35.32% 61.53% 

KL (A = 0.78) 14.41% 32.41% 53.18% 2^7% 38.67% 59.16% 
DM-COVNL (A = 1) 17.38% 32.23% 50.39% 4.07% 37.42% 58.50% 

DM-COVNL (A = 0.32) 4.94% 35.06% 60.00% 0.03% 38.98% 60.98% 
DM-COVNL (total) 13.73% 33.06% 53.21% 2.89% 37.88% 59.23% 

Relative change Bias in predicted change 
Rail SM Car Rail SM Car 

True model -76.76% 4-16.28% +16.28% - - -

MNL -79.87% +14.82% +14.82% +4.06% -8.96% -8.96% 
NL (A = 0.78) -84.93% -t-19.31% +11.26% +10.65% +18.62% -30.84% 

DM-COVNL (A = 1) -76.55% -1-16.10% +16.10% -0.27% -1.07% -1.07% 
DM-COVNL (A = 0.32) -99.30% 4-11.18% +1.65% +29.37% -31.29% -89.89% 

DM-COVNL (total) -78.96% 4-14.57% +11.32% +2.87% -10.48% -30.46% 

Table 7.2: Forecasting on mixed covariance data: representative individual with 
Ao, = 1.0 (observation 2,044) 

difference being significant only at the 28% level. Similarly, the estimated shares for 

the two structural parameters, at Tr̂ ,,, = 0.71 and tta,, — 0.29 are indistinguishable 

from the true 70% — 30% split. In an actual application, it would, after model 

estimation, be of interest to proceed with a posterior analysis, to produce the most 

likely structural parameter for each individual. The same approach would be used 

in the case of a continuous mixture model. On the basis of the results from such an 

analysis, attempts could then be made to relate the correlation to socio-demographic 

attributes, and to use an appropriate segmentation in later forecasting applications. 

In practice, posterior analyses of this nature are used very sparsely; in the absence 

of the resulting insight into the actual structural parameters, the mixture model, 

in this case the DM-COVNL model, would thus potentially be used directly in 

forecasting^. As such, it is of interest to compare the forecasting performance of 

the three models. To illustrate the differences in performance depending on the 

correlation structure in place in the true data, two representative individuals were 

selected, one belonging to the group with A„ (respondent 228), and one belonging 

to the group with (respondent 812). In each case, a single observation was 

selected, where, for respondent 228, the first observation was used (observation 

2,044), while, for respondent 812, the second observation was used (observation 

7,301). The forecasting analysis looks at the changes in the choice probabilities 

for the three alternatives following an increase in the cost of rail-travel by 10%. 

The results of the forecasting exercise are summarised in Table 7.2 for observation 

•̂ As opposed to using a posterior segmentation. 
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Original probabilities Forecasted probabilities 
Rail SM Car Rail SM Car 

True model 37.96% 25.03% 37.01% 20.86% 3&6̂ % 40.50% 
MNL 36.60% 33.01% 30.38% 29.22% 36.86% 33.92% 

NL (A = 0.78) 36.92% 32.33% 30.75% 28.63% 37^4% 34.03% 
DM-COVNL (A = 1) 38.13% 33.83% 28.05% 3L17% 37.63% 31.20% 

DM-COVNL (A = 0.32) 36.56% 25.01% 38.43% 20.61% 37.46% 41.93% 
DM-COVNL (total) 37.67% 31.24% 31.09% 2&0̂ % 37.58% 34.35% 

Relative change Bias in predicted change 
Rail SM Car Rail SM Car 

True model -45.07% +54.39% +9.45% - - -

MNL -20.16% +11.64% +11.64% -55.26% -78.60% +23.17% 
NL (A = 0.78) -22.45% +15.51% +10.65% -50.18% -71.49% +12.70% 

DM-COVNL (A - 1) -18.25% +11.24% +11.24% -59.51% -79.33% +18.98% 
DM-COVNL (A = 0.32) -43.62% +49.75% +&11% -3.21% -8.53% -3.56% 

DM-COVNL (total) -25.47% +20.29% +10.47% -43.47% -62.69% +10.80% 

Table 7.3: Forecasting on mixed covariance data: representative individual with 
Afc = 0.3 (observation 7,301) 

2,044 and Table 7.3 for observation 7,301. The bias measure used as an indicator 

of the correct recovery of the behaviour implied by the true model is defined as in 

Section 6.3. In each case, the results for the DM-COVNL are spht into three parts, 

showing the results for the part of the model that uses Aa, the part of the model 

that uses A ,̂ and the results for the combined model. This gives an idea of the gains 

in performance that could be expected if the forecasting exercise was preceded by 

a posterior analysis that was able to yield an appropriate segmentation, while also 

giving an account of the bias introduced by using the actual DM-COVNL, instead 

of its sub-parts. 

The results for observation 2, 044 (Table 7.2) show a decrease in the choice prob-

ability of rail from 17.49% to 4.07%, following an increase in rail-fares by 10%^°. The 

fact that \a is used for this individual implies an equal relative shift of probability 

towards SM and car. The same applies in the MNL model and the DM-COVNL 

sub-model with A ,̂ resulting in the lowest bias for these two models, where the fact 

that the bias in the DM-COVNL sub-model is lower than in the MNL model (with 

the same treatment of correlation) can potentially be explained on the basis of more 

accurate estimates for the marginal utility coefficients. This is a result of the fact 

that the overall DM-COVNL model accounts for the correlation in the second sub-

group, which the MNL model does not, where interaction between the observed and 

unobserved utility components leads to the bias in the estimates. The effects of the 

'"Lower decreases were observed at the population level (—35.89%), but the individual-
observation results are used here, as they provide more insight into substitution patterns. 
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correlation structure become most visible when looking at the forecasts produced 

by the NL model, with A = 0.78, and the DM-COVNL sub-model with Â  = 0.32. 

Here, either approach leads to biased forecasts, by falsely indicating heightened sub-

stitution from rail to SM, where, due to the higher imphed correlation, the bias is 

bigger in the DM-COVNL sub-model with At than in the NL model. Here, it should 

also be noted that the DM-COVNL sub-model with Aj, significantly underestimates 

the original choice probability for rail. Finally, the combined DM-COVNL model 

leads to lower bias than the NL model, where it should also be said that the DM-

COVNL model performs quite well overall for the changes in the probability for rail 

and SM, with the only major bias, when compared to the MNL model^\ arising for 

the change in the probability of the car alternative. 

The results for observation 7, 301 (Table 7.3) show a decrease in the choice proba-

1)ility of rail from 37.96% to 20.86%, following an increase in rail-fares by 10%. With 

individual 812 belonging to the 30% of the population with heightened correlation 

between rail and SM, the true model shows a much bigger relative shift from rail to 

SM than to car, a situation that is recovered almost perfectly in the DM-COVNL 

sub-model using A(, = 0.32. The MNL model wrongly predicts equal relative shifts 

in probability from rail to SM and from rail to car, where the same applies for the 

DM-COVNL sub-model using Aq, = 1.0. While the NL model correctly recovers the 

fact that there is a bigger than proportional shift towards SM than towards car, 

it underestimates the extent of the differences, through underestimating the corre-

lation between the unobserved utility terms for rail and SM. The same occurs in 

the overall DM-COVNL model, where the underestimation is however less severe 

than in the NL model^^. It should also be said that all models, except the DM-

COVNL sub-model with Â  = 0.32, significantly underestimate the decrease in the 

probability of the rail alternative, where this bias is however smallest in the overall 

DM-COVNL model, which also obtains the lowest overall bias out of the three full 

models. 

In summary, this application has shown that the DM-COVNL model is able 

to recover the distribution of the covariance in the simulated dataset arbitrarily 

closely, while the simple NL model produces a weighted mean of the true values, on 

the basis of an assumption of covariance homogeneity. The forecasting application 

has also shown that the DM-COVNL model leads to lower bias than the NL model. 

Here, it should be noted that, in the special case described here, the MNL model 

performs well for the part of the population with no correlation between rail and 

"Which has the clear advantage m this case in terms of the correct correlation structure. 
' ' 'The shift from rail to SM is close to twice as big as the shift from rail to car, while, in the NL 

model, the ratio is below 1.5. In the true model, the ratio is close to 6. 
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SM. whereas it leads to significant bias in the remaining part of the population^^. 

The fact that, in each case, the lowest bias is obtained by the appropriate DM-

COVNL sub-model again illustrates the potential gains that could be obtained by 

conducting a posterior analysis to attempt to relate the difference in correlation 

structure to socio-demographic attributes with the aim of obtaining an appropriate 

segmentation for use in the actual forecasting exercise. 

7.4 S u m m a r y and Conclusions 

The aim of this chapter was to extend the standard discrete choice modelling frame-

work so as to allow for random variations in the covariance structure across respon-

dents. The discussion in this chapter has centred on the case of an underlying GEV 

model, and specifically, a two level NL model. The extension to other underlying 

GEV structures poses no major difficulties, as described in the text, while the use 

of an alternative approach, based on an underlying ECL structure, is described in 

more detail in Appendix B. 

The development of the Mixed Covariance GEV structure in this chapter has 

shown how it is possible to allow jointly for random as well deterministic variations 

in the covariance structure across respondents. Additionally, it is possible, by adding 

an extra layer of integration, to allow for random taste heterogeneity, in addition 

to covariance heterogeneity. Here, it should also be noted that additional random 

terms can be added to allow for heteroscedasticity across alternatives, leading to 

additional dimensions of integration. 

The application presented in Section 7.3 has described one special case of a 

Mixed Covariance GEV model, in which the mixture is discrete rather than con-

tinuous. The results have shown that the DM-COVNL structure is able to recover 

the covariance structure in place in the data very closely, and leads to lower bias 

in forecasting than the simple NL model, which is based on the assumption of a 

homogeneous covariance structure. 

Much work remains to be done, including the development of more sophisticated 

mixed covariance structures, the testing of continuous mixture structures on simu-

lated data, and the use of discrete and continuous mixture structures with real data. 

Here, it should be noted that the discussion in this chapter has focussed primarily on 

variations in the extent of correlation across respondents, rather than variations in 

the actual correlation structure. The latter applies for example in the case where, for 

individual A, there is correlation between alternatives 1 and 2, while, for individual 

'•^Much poorer overall performance would be obtained in the case where, in the true model, both 
structiu-al parameters are inferior to 1, or it the share for An, = 1 was smaller. 
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B, there is correlation between alternatives 2 and 3. Such variations in the actual 

structure can, in the absence of an appropriate segmentation, be accommodated in 

a cross-nesting framework, with the variation in structure accounted for primarily 

through variations in the allocation parameters. 

In closing, it should be said again that mixed covariance models should in part 

be seen as an explanatory tool, which, unlike other models, have the power to high-

light the presence of variations in inter-alternative correlation across respondents. 

Oil the basis of such results, the modeller can then attempt to refine the model 

to accommodate some covariance heterogeneity in a deterministic fashion, either 

through a segmentation of the data, or by parameterising the covariance structure, 

as described by Bhat (1997), potentially with additional random covariance hetero-

geneity, as described in Section 7.2.3. If such attempts at a deterministic approach 

fail, it is still desirable, for interpretation as well as forecasting reasons, to try to 

link the variations to socio-demographic information through a posterior analysis^"^. 

However, if this is not possible, then it is clearly preferable to account for the vari-

ation in a random way (in interpretation as well as forecasting), as opposed to 

maintaining the assumption of covariance homogeneity. Either way, the modelling 

approach described in this chapter is thus a valuable tool for the analysis of choice 

behaviour. 

"Here, it should be said that the same reasoning apphes in the case of mixture models looking 
for taste heterogeneity; again, a deterministic treatment is clearly preferable for interpretation as 
well as forecasting reasons, and the mixture model can thus be seen as an explanatory tool. 



Chapter 8 

Modelling air-travel 

choice-behaviour 

8.1 I n t r o d u c t i o n 

As illustrated by the discussions in the theoretical part of this thesis, the area 

of discrete choice modelling has seen a significant increase in activity over recent 

years, with the development of ever more flexible model structures that allow for an 

increasingly realistic representation of complex choice behaviour. As also alluded to 

however, at the same time, a wide gap has opened between the state-of-the-art, i.e. 

the theoretical developments, and the state-of-practice, i.e. the actual applications 

of the model structures to the analysis of real-world problems. 

The applied part of this thesis aims to at least partly bridge this gap in one 

specific area, namely the field of air-transport^, which, from a topical as well as a 

methodological angle, is one of the most interesting domains for analysing travel 

behaviour. Indeed, from a policy point of view, the continuing precarious finan-

cial situation of the air-travel industry, together with the long-term nature of any 

policy-changes, means that reliable forecasts of passenger behaviour are a crucial 

component of transport planning in this area, especially given that important deci-

sions need to be faced in many areas over the coming years, with a view to capacity 

extension, as well as a host of other measures, such as the possible introduction of 

congestion-charging and other noise or air-pollution related surcharges. 

Secondly, the very nature of the behavioural processes, which involve decisions 

along a multitude of dimensions of choice, influenced by a very high number of 

factors, makes air-transport one of the most appealing and challenging areas for 

It should be noted that this work is solely concerned with the field of passenger transport, and 
ignores the separate dimension of air-cargo. Additionally, the work looks only at the choices made 
hy passengers, as opposed to industry-agents, such as airports and airhnes. 

167 
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analysing choice behaviour, and an ideal area for deploying some of the new, highly 

flexible model structures. Additionally, the fact that the nature of air-travel is still 

evolving leads to a constant need for new research. Here, one example of recent 

changes comes in the increase in activity by low-cost carriers in Europe, which 

have opened air-travel to a much wider part of the population, and have led to 

increased use of regional airports (c.f. Barret 2000). To further complicate matters, 

the product offered by standard network carriers is also changing, with ongoing 

consolidation and the shaping of new alliances (c.f. Dennis 2005). Finally, the fact 

that the role of travel agents is increasingly being taken over by internet bookings 

may well lead to changes in behaviour, as the impact of travel agents on the actual 

choices slowly disappears. 

Although some progress has recently been made to address this gap between the 

state-of-the-art and the state-of-practice in air-transport research (as discussed in 

Section 8.3), a lot remains to be done. Indeed, the number of advanced modelhng 

applications is still very hmited when compared to other areas of transport analysis, 

and they almost universally rely on assumptions that often significantly simplify the 

complexity of the choice process. 

In the case-studies presented in this part of the thesis, we look at the modelling 

of one specific choice, namely that of departure airport in multi-airport regions. 

The analysis of the relationship between changes in level-of-service attributes and 

shifts in demand between airports is an important component of long-term transport 

strategies in such areas^. Indeed, changes in demand at the individual airports not 

only have an effect on the commercial viability of the single airports, but can have 

significant effects on the support structure of the airports (auxiliary businesses), 

the local transport network, as well as on seemingly less related businesses (e.g. 

local hotels). One scenario in which forecasts of passenger behaviour can become 

necessary is the expansion of airport-capacity in multi-airport regions^; as any such 

work is a costly and long-term project, it is important to a priori forecast the effects 

of the different schemes under consideration, both on traffic at the airports as well 

as on traffic in the associated ground-level airport. 

The work presented in this thesis recognises the fact that passengers additionally 

make a choice of airline, and access-mode, and the results highlight the importance 

^See de Neufville (1995) for a discussion of the issues involved in the management of multi-
airport systems. 

•'Despite the difficulties faced by the industry, air-travel is predicted to continue its growth 
at average annual rates of around 5% (c.f. Boeing 2004). This rapid increase in the number of 
passengers, flights and routes has not only led to environmental concerns, but has also resulted in 
significant problems with congestion, leading to urgent needs for capacity expansion, partly with 
a view to ensuring the continuing important contribution of aviation to the economy (c.t. OEF 
1099). 
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of modelling these choices jointly. Three separate case-studies of airport choice 

behaviour are presented in this thesis^; the present chapter acts as an introduction 

to the applied part of the thesis, and sets the stage for the detailed discussion of 

these three studies. 

The remainder of this chapter is organised as follows. In Section 8.2, we discuss 

the choice processes undertaken by air-travellers. This is followed by a review of 

previous research using discrete choice models in the field of air transport in Section 

8.3. Section 8.4 presents an overview of the three case-studies conducted in this 

thesis, looking separately at the scope and aims of the studies, the model approach 

that was used, and some of the issues that had to be faced. The chapter closes with 

a brief summary in Section 8.5. 

8.2 Air - t rave l choice-behaviour 

8.2.1 G e n e r a l f r a m e w o r k 

Before discussing the scope of the air-travel research described in this thesis, it is 

worth reconsidering the actual choice behaviour of air-travellers. Broadly speaking, 

outside a mode-specific context, and without aiming to define the order of choices, 

travellers can, for a given trip^, be seen to take decisions along three main upper-level 

dimensions of choice: 

• Destination 

• Timing (time & date) 

• Main mode of travel 

Here, it can be seen that the decisions along the destination dimension and the 

'm.ain m,ode dimension potentially involve a number of sub-choices, especially in the 

case of long-distance travel. As such, the destination dimension can for example 

also encompass choices of sub-destinations for journeys involving travel to more 

than one destination. The division along the main mode dimension is far more 

extensive, containing for example choices of itinerary, and fare-class in the case of 

public transport. Additionally, in the case of a combination of modes, there is a 

choice of the auxiliary modes, for example for the journeys to and from the departure 

and arrival location of the main mode. 

It should also be noted that the above three dimensions are strongly interrelated. 

As such, while trip timing is clearly influenced by outside factors such as work 

•'Chapters 9, 10, and 11. 
''Hence not looking at the frequency of travel, or indeed the decision to travel. 
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commitments, the choice set in terms of possible departure times (and in some cases 

even departure dates) depends on mode-specific attributes for all but self-operated 

modes. The choice of destination can clearly be seen to have a significant impact on 

the other two dimensions of choice, for example by limiting the number of possible 

modes of travel. However, even within this general framework, it can occasionally 

be argued that the choice of destination is not in fact made a priori, but is itself a 

function of other choices. As an example, a traveller who takes a decision to rely 

on pubhc transport will be limited in the number of potential destinations. An 

even stronger example is given by the case of people refusing to travel by air, or by 

sea. Clearly, such factors come into play mainly in the case of leisure travel, where, 

depending on the circumstances, they can play a major role. 

8.2.2 D imens ions of choice in a i r - t ravel 

In the case of air-travel, the situation becomes significantly more complicated. In-

deed, not only are the three main dimensions of choice listed above again strongly 

inter-related, but the choice of air as the main mode of travel leads to a high number 

of sub-choices, potentially more so than with any other mode. Essentially, on top 

of the choice of air as the main-mode, the choices made by an air-traveller can be 

divided into three main subcategories, which we will now look at in turn, before 

touching on the potential inter-dependencies between the various choices. 

The choices are described for the outbound-leg of a return journey. In general, for 

passengers on their return-leg, the majority of journey-factors are pre-determined 

l)y the choices made on the outbound leg, although some factors, such as timing 

and possibly also routing are determined separately®. Finally, for passengers on 

one-way journeys, the choice process is very similar to the one described below for 

the outbound journey of return passengers, though outside factors and personal 

priorities may change significantly. 

Origin-side 

The choices on the origin-side of an air-journey can be divided into two main parts, 

namely the choice of departure-airport, and the choices made for the ground-level 

journey to this departure-airport. 

In many cases, the choice set for the departure airport is very limited, and domi-

nated heavily by the airport closest to the passenger's ground-level origin. However, 

for passengers living near major urban centres, there will often be a choice between 

"Although not central to this part of the discussion, it should be noted that these potential dif-
ferences between residents and visitors call for a separate treatment of the two groups of travellers, 
in addition to any segmentation along the purpose dimension. 
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a number of airports located at similar distances from a given passenger's ground-

level origin. In some rare cases, passengers may even be faced with a choice between 

airports located in separate nearby multi-airport regions, such that there is a choice 

of 

Passengers take multiple decisions along the access-journey dimension, which are 

dominated by the choice of access-mode, or combinations thereof. Depending on the 

mode(s) chosen, there is the additional choice of a route, while, for journeys involving 

car, there is often a choice to be made between self-drive and drop-off, and, in the 

former case, a choice between different parking options. Additionally, passengers do 

make a choice of departure time, which, although dependent on personal preferences, 

is highly influenced by the departure time of the actual air-journey. 

Destination-side 

In many ways, the destination-side choices are the mirror-image of those made at the 

origin-side. Aside from the actual choice of ground-level destination^, these include 

the choice of destination airport®, and ground-level transport between this airport 

and the final destination. 

However, there are some subtle differences. Indeed, from the point of view of 

a passenger on the outbound leg, there is in general an issue of a lower level of 

knowledge than at the origin-side, relating partly to the geographical location of 

the different possible destination airports, but also to choice set formation along 

the egress-journey dimension, in terms of ground-level transport modes, as well as 

routes. Here, another point needs to be taken into account in that, for the majority 

of travellers, private car is not an option at the destination end, but is, for at least 

some of these travellers, replaced by rental car. 

Aside from the above discussion about different choice set formation in the 

ground-level dimension, the point about a lower level of information would sug-

gest a less rational behaviour from an outside perspective^, except for the more 

regular traveller. Additionally however, it should be noted that the set of priorities 

at the destination end may be different from those at the origin end, for example; in 

terms of a higher reluctance to accept long ground-level journeys than might be the 

case for the departure end. 

'Which is a sub-choice of the more general choice of destination in Section 8.2.1. 
* Again, the choice set here depends heavily on the actual destination, where there is, in some 

cases, only one realistic option in terms of destination airport. 
"This does not per se suggest irrational behaviour. It simply means that, had the traveller been 

iu possession of all information, he might have been cxpectcd to behave differently. 
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Air-side 

Except for the questions of origin and destination, and ground-level transport, the 

air-side category contains all remaining choices describing the journey. Aside from 

spontaneous choices made at different stages of the journey (such as what to do while 

at the airport), these choices all relate to the actual travel from the origin airport to 

the destination airport. Apart from the choice of a specific class or travel^°, these 

can in turn be subdivided into three very much interrelated dimensions of choice. 

The first choice is that of an airline operating a route to the chosen destination. 

In most cases, passengers will travel on a single airhne for the duration of their 

journey. However, on some routings, there is the possibility of a combination of 

airlines^ ̂ . The choice of an airline is one of the factors that makes air-travel different 

from other areas of transport analysis, given the importance of the carrier choice 

dimension, which is less prominent with other modes, such as rail. 

The choice of an airline or combination of airlines is strongly related to the 

choice of a routing. The first level along this dimension of choice divides flights 

into direct and connecting flights, with the possibility of a third category, for flights 

involving a stopover without a change of aircraft. The second level applies only to 

connecting flights, and involves the choice between a number of different possible 

routes, which includes a decision on the number of connections, and the choice of 

connecting airports. 

The final dimension of choice for the actual air-journey is that of timing, i.e. 

the choice of a departure time and a departure date, which is again strongly inter-

related with the upper-level choice of timing in Section 8.2.1. For some passengers, 

the most important factor will be the departure time, while for others, it will be the 

arrival time. In practice, this equates to the choice of a specific flight. 

There are ways to consider further subdivisions of choice-dimensions in the air-

side category. However, in general, such factors, which include for example the type 

of aircraft, can in fact be seen as an attribute of a speciflc flight, which is thus 

accounted for by the other dimensions of choice listed above, and as such, can be 

included in models as a simple explanatory variable. 

'°While passengers make a choice between cabin-type, the additional choice of fare-type, in terms 
of restrictions, is in general less important, and depends heavily on availability and hence time of 
booking. 

^^The situation has in recent years increased in complexity, given that a large share of routes 
are now operated under code-share agreements. 
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8.2.3 Choice processes in a i r - t rave l 

The above discussion has illustrated that the process of putting together a trip 

from a ground-level origin to a ground-level destination, with an intermediary air-

journey, is a complicated one, involving decisions along a multitude of dimensions. 

What makes the analysis of such processes even more complicated is the fact that 

there potentially exists a highly complex structure of interdependencies between 

the various dimensions of choice, which is likely to vary across individuals as well as 

across situations. The aim of this section is to briefly look at the main interactions, 

as well as touch on some less-obvious ones^^. 

It should be clear that the upper-level decisions, in terms of destination and trip 

timing, have a strong influence on the air-travel specific decisions, such as the choice 

of departure airport, airhne, and routing, on the basis that not all destinations are 

served from all airports and by all airlines. Additionally, the link between the choice 

of destination and the choice of destination airport needs no further explanation. A 

similar, though less strong reasoning apphes in the case of timing, where the choice 

of a specific departure date or time will have an influence on the choice set in terms 

of departure airports, airhnes, flight-routings, and even destination airport. 

At the same time, it can be seen that the various dimensions of choice at the ac-

tual air-travel level are also strongly inter-related. As such, the choices of departure 

and destination airport, airhne(s) and routing^^ all depend on each other, such that 

the choice of a specific airhne can for example limit the choice set in terms of possible 

departure airports, and vice-versa. Here, it is not immediately obvious which of the 

decisions takes priority, and the order may indeed vary across travellers^^. In the 

context of the description of the dimensions of choice in Section 8.2.2, it can clearly 

also be. seen that the choice of a specific (l(;parture or destination airport can have; 

an infiuence on the choices taken along the ground-level choice-dimensions, where it 

is also possible for these dependencies to act in the other direction^^. On the basis 

of this discussion, it can be seen that the upper-level choices, which have an impact 

on the choice of departure and destination airport, also have an indirect impact on 

the choices along the ground-level dimensions. 

Given the complexity of the choice processes, this description is based on a number of non-
trivial hypotheses, excludes certain possibilities, and should in no way be seen as a definitive 
description of the inter-dependencies between choice-dimensions for air-travellers. 

'-''I.e. direct or connecting, with the additional choice of connecting airport(s). 
^"'Some travellers may be captive to a certain airhne, while others may be captive to a certain 

airport. 
'̂̂ Here an example comes in the case of travellers who rely on public transport for their ground-

level journey, which can, in conjunction with their ground-level origin, eliminate some airports from 
consideration. In fact, it can be suggested that, in some regions, the high allegiance by passengers 
to a given mode of transport, principally car, leads to a higher probability of accepting a change 
of airport or airline than a change of access-mode. 
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The above two paragraphs have described the effect of upper-level choices on 

lower-level choices, and the inter-dependencies between lower-level choices. At this 

point, it is worth noting that there may also be cases where the lower-level choices 

take precedence over the upper-level choices. As such, it is possible that some leisure 

travellers make their choice of destination dependent on their choice of departure 

airport or airline, a principle that can be seen to apply especially in the context of 

regional airports, and low-cost airlines^®. While such upwards effects can be seen to 

apply primarily in the case of leisure-travellers, it can also be argued that they play a 

role for business travellers, for example in the case where the choice of destination for 

a meeting is taken conditional on other factors such as flight availability, especially 

in the context of meetings taking place at airports^^. The detailed exploration of 

such upwards interactions is beyond the scope of this thesis, but is an important 

area for future research. 

8.2.4 Discuss ion 

The above description of the choice processes undertaken by air-travellers has shown 

that such journeys not only involve decisions along a multitude of choice-dimensions, 

l)ut that there exist complex inter-dependencies among choice-dimensions. Given 

that a number of these dependencies potentially act in both dimensions, it is clearly 

inappropriate to attempt to model the decision-making as a sequential choice process, 

but rather, that simultaneous analysis is required in the absence of information on 

the relative level of priorities across travellers^®. 

One final point needs to be addressed. Indeed, the discussion so far could suggest 

that the question of main mode of travel is taken at a separate level. As such, 

travellers would gauge the overall product offered by the various modes, and then 

make a choice of main mode before moving on to mode-specific choices (e.g. airline, 

route, ...). Clearly, for some journeys, a mode choice decision is taken a priori, 

such that the above discussion holds^^. However, there are situations where such 

a straightforward approach does not apply. In the present context, aviation, the 

problems arise in the case of short to medium distances, where the competition 

These operators can be seen to induce new demand, such that some of their passengers would 
not travel at all (or at least not by air), if it wasn't for the presence of the specific airline. 

^"it is interesting to note that airports are diversifying their products, and no longer merely 
transport hubs, they are turning into shopping and business centres. 

i^The use of such information is highly hypothetical in any case, as it is not clear whether there 
are situations in which it is pos.siblc to define a clear sequential choice process involving decisions 
along all of the above listed dimensions. 

'"As in the case of long-haul travel, where the advantages of air as a mode outweigh all other 
factors. 
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from car and especially rail needs to be taken into account^*^. In such cases, it is not 

necessarily clear whether passenger make an a priori mode choice between air and 

rail, before, if applicable, making within-mode decisions in the case of air-travel. 

Rather, it can be imagined that, for at least part of the travelling population, the 

alternative modes, such as high-speed rail, appear on the same level as the various 

air-travel alternatives. As such, the alternatives are evaluated in parallel, with 

all intra-modal considerations taken into account at the same time as the cross-

modal comparison. Although such a parallel analysis does not pose any major 

problems from a methodological point of view (in terms of model structure), it 

does come at the cost of increased data requirements, where it is now necessary to 

obtain detailed data for ground-level modes, in addition to the air-travel data, the 

procurement of which already causes problems on its own, as described in Section 

8.4.4. Additionally, it should be noted that for some routes, the number of possible 

ground-level options (in terms of combinations and routes) is so high that the data 

requirements can become insurmountable. As such, it comes as no surprise that the 

majority of studies make an assumption of an a priori decision to travel by air. While 

this does not per se invalidate the results of the analyses in question, it is important 

to acknowledge the possible shortcomings, at least in the presence of routes where 

there is potentially high inter-mode competition which is not characterised by an 

a priori choice of mode before proceeding to intra-mode decisions. This issue is 

touched upon again in Section 8.4.1. 

8.3 L i t e r a t u r e review 

8.3.1 I n t r o d u c t i o n 

This section presents a comprehensive review of existing research on the modelling 

of air-travel choice behaviour. The review centres on work in the academic do-

main. There is also a large body of work of a less independent nature, conducted or 

commissioned by governmental organisations. Aside from not always being widely 

accessible, such work generally makes use of more basic model structures, albeit 

inside very complex forecasting systems, and is thus of lower interest in the present 

context. The review is divided into several parts, according to the scope (and in 

some cases geographical context) of the different research projects. 

timely case in point is the competition between air and high-speed rail on medium-distance 
travel in Europe, where improved rail services have led to the closure of certain air-routes, such as 
Paris to Brussels (c.f. Kerlouegan & Gelie 2001) and Paris to Grenoble (c.f. Gabret 2004), while 
on other routes, such as Paris to Marseilles, London to Paris and London to Brussels, a veritable 
fare, war has erupted between air and rail, and air has lost a significant part of its market share 
to rail (c.f. Baret 2001). 
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8.3.2 Ai r as a m o d a l a l t e rna t i ve 

A number of discrete choice studies have used air as one of the alternatives in a wider 

mode choice analysis, without looking in detail at elementary air-travel choices (i.e. 

airport, airline, ...). Such work relates to the discussion in Section 8.2.4 with regards 

to the choice of main mode. 

One example of such a study is given by Bhat (1995), who looks at the choice 

of mode for business travellers in the Toronto-Montreal corridor, using the Het-

eroscedastic Extreme Value (HEV) model, which allows for different scale parame-

ters across alternatives. The same dataset was also used by Bhat (1998a) in a study 

looking at variations in tastes across respondents, and by Wen & Koppelman (2001), 

in an application comparing various GEV structures of different nesting complexity. 

Another analysis of mode choice behaviour, where air is one of the available alter-

natives, is conducted by Mandel et al. (1997), who show the advantages of using 

non-linear formulations for travel-attributes with the help of Box-Cox transforms 

ill MNL models, and highlight the significant impacts of the utility specification on 

forecasting in terms of greatly different market shares for the high speed rail alterna-

tive. Finally, Gonzalez-Savignat (2004) estimates a MNL model on SP data for the 

choice between air and a hypothetical high-speed rail alternative in Spain, produc-

ing forecasts which show that, on journeys with train times up to three hours, the 

introduction of high speed rail services can generate a significant shift of travellers 

away from air-travel. 

8.3.3 A i r p o r t choice 

Given the high number of existing studies of airport choice, the discussion of previous 

work is arranged by geographical context, grouping research into three sets; studies 

conducted in the United States (relating to the case-study in Chapter 9), studies 

conducted in the United Kingdom (relating to the case-study in Chapter 10), and 

studies conducted elsewhere. 

Studies of airport choice in the United States 

The number of studies of airport choice in the United States is much larger than 

in other areas; this is at least partly due to the greater availability of appropriate 

passenger-survey data, which is less governed by commercial considerations than in 

other areas. 

One of the first studies of airport choice was conducted by Skinner (1976), who 

uses a MNL model for airport choice in the Baltimore-Washington DC area (3 
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airports). This study reveals significant effects of flight frequency and ground acces-

sibility, with travellers being more sensitive to the latter. Windle & Dresner (1995) 

also us(! a MNL model in this area, and find significant effects for flight frecjucncy 

and airport access time. The results also show a high level of significance for a repet-

itive choice dummy variable; the more often a traveller uses a certain airport in a 

year, the more likely the traveller is to choose the same airport again. A later MNL 

study in this area is conducted by Pathomsiri et al. (2004), with broadly similar 

results. 

Lin (1977) uses a very basic binary choice model in an analysis looking at airport 

choice in a low demand region in the North of New York State, near the border with 

Canada, where passengers have a choice between several small regional airports, but 

are heavily influenced by the presence of Montreal's major airport across the Cana-

dian border. The study finds that the international boundary plays an important 

role in choice behaviour, but that, otherwise, a majority of trip makers are willing 

to travel considerable distances by ground in order to depart from an airport with 

better service, such as for example higher frequency. 

A large number of studies of airport choice (and related aspects) have been 

undertaken in the San Francisco Bay (SF-bay) area. Harvey (1987) uses a MNL 

model for airport choice, and finds that airport access time and flight frequency 

are significant for both leisure and business travellers, with lower values of time for 

leisure travellers, and with all passengers preferring direct flights over connecting 

flights. More recently, Pels et al. (2001) have used a NL model for airport and airline 

choice in the SF-bay area, showing that for both business and leisure travellers, the 

choice of airline should be nested within the choice of airport. Pels et al. (2003) 

model the joint choice of airport and access mode in a NL model, with airport 

choice at the top level and access mode choice at the lower level, showing high 

values of time, especially for business travellers. 

The analysis by Basar & Bhat (2004), who look at airport choice in the SF-bay 

area, difl'ers from other studies in that it uses a two-stage model as proposed by 

Manski (1977); in the first stage, the choice set is generated^^, while in the second 

•stage, a choice of airport is made from this choice set. This study thus acknowledges 

the fact that not all airports are considered by all travellers; as the inclusion of un-

considered alternatives in a choice set can lead to biased results (see for example 

Williams & Ortuzar 1982), the decision to incorporate choice set generation is thus 

certainly warranted. The results obtained with the parameterised choice set consid-

(iratioij model (PCMNL) show that flight frec^uency is th(! most important aspect 

ill choice set composition, surprisingly dominating the also significant access time 

21 With seven possible choice sets, on the basis of the three airports used in the study. 
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factor. In terms of the actual choice of airport, after elimination of non-considered 

airports, access time is the most important factor. 

Studies of airport choice in the United Kingdom 

There have also been a number of studies of airport choice in the United Kingdom; 

the difficulty involved in securing appropriate data has however somewhat limited 

this number in recent times. 

A frequently cited example is that of Ashford & Bencheman (1987), who use a 

MNL model for airport choice at five airports in England (Heathrow, Manchester, 

Birmingham, East Midlands and Luton), and find that access time and flight fre-

quency are significant factors. In addition, air-fares play a role for all domestic 

passengers and for international leisure travellers. 

Ndoh et al. (1990) compare MNL and NL models for passenger route choice 

ill central England and find that the NL model is superior. The modeUing results 

.suggest that it is preferable to nest the choice of route type above the choice of hub 

airport, and the choice of departure airport (see also Caves et al. 1991). 

Thompson & Caves (1993) use a MNL model to forecast the market share for a 

new airport in North England; access time, flight frequency and the number of seats 

on the aircraft^^ are found to be significant, with access time being most important 

for travellers living close to the airport and frequency being more important for 

travellers living further afield. 

Ill another study which includes one of the five London airports (Heathrow), 

Brooke et al. (1994) use MNL models in the analysis of passenger distribution be-

tween airports in an area centring on the Midlands, finding flight frequency to be 

most important attribute, followed by access time. 

Studies of airport choice in other areas 

Ozoka & Ashford (1989) use a MNL model to predict the effect of building a third 

airport in a multi-airport region in Nigeria and find acce.ss time to be significant, 

such that the choice of location plays an important part in the success of a new 

airport, along with the provision of good ground-access facilities. 

Innes & Doucet (1990) use a binary Logit model to predict the choice between 

airports in Canada, and find that the type of aircraft plays a role; travellers have 

a higher desire for jet services than turboprop services, suggesting that the quality 

of service (journey time and comfort) provided is very important. The results also 

show a preference for direct flights over connecting flights. 

'Reflecting comfort, but possibly also capturing visibility and availability effects. 
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Furuiclii & Koppelman (1994) use a NL model for departure airport and desti-

nation choice for passengers on international routes from Japan, and find significant 

effects of access time, access journey cost and flight-frequency. Here, the choice of 

departure airport is nested within the choice of destination, hence also acknowl-

edging the effect of choosing a specific destination on the choice set of departure 

airports. The authors suggest that the use of the NL model is only made possi-

ble by the strong relationship between departure airports and specific international 

destinations in this dataset, and hint at the fact that if this was not the case, CNL 

structures would have to be used. 

Mandel (1998) uses Box-Cox transforms in a MNL framework looking at mod-

elling the competition between airports in Germany, with the specific aim of fore-

casting demand changes at airports following changes in service frequency and fare 

levels, where the modelling framework also takes into account the interaction of 

multi-modal, inter-modal and intra-modal effects. The model is applied to sev-

eral scenarios, including the introduction of new routes, and the development of a 

secondary hub. 

Veldhuis et al. (1999) produce the comprehensive Integrated Airport Competi-

tion Model (lACM), which uses a sequence of NL choice processes that model the 

choice of main mode (e.g. air, train,...), followed by the choice of air route (i.e. 

direct vs indirect), the choice of airport, and finally the choice of access-mode at 

the chosen airport. They apply this model to Amsterdam's Schiphol airport, where 

competition with other airports is allowed for by acknowledging the effects of air-

ports in the wider surrounding area. The model is further used by feeding logsum 

terms from the top of the tree (main mode) into an elasticity based propensity-to-

travel-long-distance model that is destination-specific. The aim of this work is to 

develop a model system that is readily transferable to other airports in Europe, as 

also discussed by Kroes et al. (1994). In other work looking at Schiphol, Ashley 

et al. (1995) develop a tool for forecasting traffic at the airport, which can predict 

the efiects of policy changes on demand at the airport. 

Suzuki et al. (2003) look at the issue of airport leakage, that is, the phenomenon 

of travellers avoiding their local airport, and giving preference to larger airports 

which are further away from their ground-level origin. The analysis calibrates a 

MNL model on survey data collected in Iowa in 2001, showing that leisure travellers 

are more likely to leak to the larger airports, while the utility of an airport seems 

to be related to the quality of service experienced previously by the traveller at 

this airport. However, even in the case of negative experiences, a traveller is still 

more likely to choose the airport than one where he has no experience at all, ceteris 

paribus. 
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8.3.4 Air l ine a n d fare-class choice 

Kanafani & Sadoulet (1977) use a MNL model to model the choice among fare types 

for passengers on long-haul journeys. To counter the independence assumptions of 

the MNL model, the observed utility for alternative i contains attributes of similar 

alternatives, as in a Mother Logit type model. The model is applied to aggregate 

North Atlantic vacation traffic data, with results showing significant impacts of 

relative fares, but also strong seasonal variations. 

Proussaloglou & Koppelman (1995) use a MNL model for the choice of airline 

on travellers' most recent air-trips, where the data were collected through a mail-

in survey. The strongest impact on the utility of an airline was found to be the 

membership in its frequent flier programme, where the effect is even more significant 

for very active members. Other factors that increase the attractiveness of an airline 

include the convenience of the schedule, low fares, on-time reliability, and market 

presence by a carrier. 

Chin (2002) uses binary Logit and Probit choice models in an analysis looking at 

the effects of frequent flier programmes, and finds that they have a positive effect on 

choice probabilities for the associated airline, where this is however not as significant 

as the effect of scheduhng convenience. 

8.3.5 Acces s -mode choice 

Harvey (1986) looks at the choice of access-mode for journeys to the SF-bay area 

airports, and finds that, as expected, journey time and cost are the strongest deter-

minants in this choice process. 

One of the crucial forecasting scenarios in access-mode choice research is the 

introduction of a new mode. This requires special model structures, taking into 

account the likely correlations with existing modes to acknowledge the differential 

substitution effects. Bates et al. (1987) look at this issue in the case of the intro-

duction of a dedicated railway service for London's Heathrow airport, which is now 

operated as the Hea,throw Express. They propose the use of an iterative version 

of the NL model and discuss how this can be applied in the case of airport-access 

modelling. 

Bondzio (1996) uses NL models for the joint choice of access mode and departure 

airport in Germany. Interestingly, the optimal structure for business travellers was 

found to be one nesting access mode choice above departure airport choice, showing 

the importance of the access-mode dimension. This is the opposite of the generally 

used approach. On the other hand, for leisure travellers, the NL models did not 

lead to significant improvements over a MNL structure. 
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Monteiro & Hansen (1997) use MNL and NL models to forecast the impact of the 

now completed expansion of BART^^ to San Francisco International (SFO) airport, 

predicting a slight strengthening in the dominant position of SFO in the SF-bay 

area. 

Psaraki & Abacoumkin (2002) use a MNL model in conjunction with clustering 

analysis to predict ground access modal split at the new Athens airport. The re-

sults show for example that the attributes of parking options at the airport play a 

significant role in the choice of access mode,, 

8.3.6 S P d a t a 

The majority of studies of air-travel choice behaviour rely solely on the use of RP 

data. While this avoids problems with regards to issues of understanding of hypo-

thetical choices, it also means that the results are in many cases affected by rather 

strong assumptions which are required because of the quality of the (level-of-service) 

data, especially in the case where the data comes in the form of survey data collected 

directly from passengers. Fewer issues arise in the case where actual bookings data 

are available, but this is rarely the case. 

Nason (1980) demonstrates how the MNL model can be used to analyse the 

choice between different fare classes, using SP data looking at a binomial choice 

between a full-fare ticket, with a guaranteed seat, and a hypothetical new standby 

ticket. 

Another example of an application using SP data is given by Bradley (1998), 

who uses binary Logit models in the analysis of the choice of departure airport and 

route, with data collected from passengers at Schiphol, Brussels, and Eindhoven 

airports. The most significant impact on choice behaviour is found to be air-fare, 

where a log-transform was used, and where differences exist across different groups 

of travellers. Other factors with significant effects include access time and transfer 

time, in addition to a dummy variable associated with connecting flights. 

Proussaloglou & Koppelman (1999) use a telephone survey resembling a booking 

process, for passengers from whom information about actual trips had previously 

been collected. Respondents then made a choice of carrier, flight and fare class 

for their specific route. The results show negative impacts of fare, especially for 

leisure travellers, as well as for schedule delay, with positive impacts for frequent 

fiier programmes. Similarly, increased market presence of the carrier, and quality of 

Neivicc had positive effects. The results suggest that business travellers are willing 

to pay a. premium of $21 to travel on a,n airline for which they hold a, frequent flier 

23 Bay Area Rapid Transit. 
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account. These values increase in the case of the airhne in whose programme they 

participate most actively, with valuations of $52 for low-frequency travellers and 

$72 for high-frequency travellers. A similar pattern is observed for leisure travellers, 

although the willingness to pay is much lower, at $7, $18 and $26 respectively. 

Algers & Beser (2001) discuss the modeUing of the choice of flight and booking 

class. They acknowledge the hmitations of RP data in this context^, but also stress 

that issues with SP bias need to be borne in mind. As such, they propose to use 

both RP and SP data in the analysis, with the RP data being used to correct the 

scale of the utility function obtained with the SP data. Given that complications 

regularly arise with the use of RP data (c.f. case-studies in Chapters 9 and 10), the 

use of a combination of RP and SP data is indeed an important avenue for future 

research^'', as the estimates obtained on the basis of SP data alone are not reliable. 

Hensher et al. (2001) use SP data for airhne choice between New Zealand and 

Australia, but focus primarily on methodological issues (survey design). Neverthe-

less. they find interesting effects, such as a for example a significant positive infiuence 

of frequent flier programmes. 

The study of Adler et al. (2005) is of special interest, given that they use the same 

SP data used in the case-study discussed in Chapter 11. They show positive effects 

of airline and airport allegiance, and better on-time performance, with negative 

effects for fares, flight time, access time, and connections (see also Section 11.1). 

8.3.7 O t h e r a i r - t rave l app l ica t ions 

Outside the choice of airport, airline and access-mode, choice models have also been 

used in other areas of air-travel behaviour research. 

A very important aspect of air-travel choice behaviour, especially from the air-

lines' point of view, is the rescheduling, standby, and no-show behaviour of passen-

gers, an issue that is discussed in detail by Garrow (2004). The approach is described 

by Garrow & Koppelman (20046,a), where the first publication is limited to MNL 

models, while the follow-up additionally uses NL models, and shows that the exoge-

nous sampling maximum likehhood (ESML) estimator, which is necessary due to 

the weighted nature of the data, can also be used with NL models for choice-based 

samples in conjunction with an adequate transformation of the estimated constants. 

The modelling of route choice in air-travel is a very complex undertaking, mainly 

-''In this context, the issue is not so much one of availability, as the data come in the form of 
bookings data, rather than survey data. However, the study by Algers & Beser (2001) is interested 
in the behaviour of passengers in the case where the desired ticket class is not available; here, SP 
data have an advantage in terms of allowing for insights into changcs in behaviour under different 
hypothetical scenarios. 

"''Independently of whether the RP da ta come in the form of bookings da ta or survey data. 
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for data reasons, meaning that it is often necessary to rely on aggregate level data. 

As such, Coldren et al. (2003) use aggregate Logit models for modelhng the market 

share of different itineraries, finding that, as expected, itineraries with stop-overs 

and connections are less popular than non-stop flights. Other effects include the 

quality of the connections, the type of aircraft, and the time of day. This work 

is later extended by Coldren & Koppelman (2005) to the case of more general 

model structures, including multi-level NL models, and NL approximations to cross-

nesting structures (referred to as Weighted Nested Logit). The results show that 

the nesting structures reject the MNL structure, indicating that correlation (and 

hence heightened competition) exists between itineraries sharing a common carrier 

or with departure times that are close to each other. 

Wei & Hansen (2005) use aggregate NL models for the market share and de-

mand in non-stop duopoly markets. They use 13 separate markets (i.e. routes), 

and estimate the models on quarterly data collected over a period of 10 years. The 

upper level contains the decision to travel, with the lower level containing the choice 

between the two airlines. The authors find that frequency is a better tool for increas-

ing market share than increases in aircraft size, an observation that can possibly be 

explained on the grounds of smaller gaps between adjacent departure times. Addi-

tionally, they find that airline market share is super-proportional to frequency share, 

which can be seen as a reflection of the notion that frequency increases visibility. 

As mentioned repeatedly in this thesis, the absence of information on the avail-

ability of specific fare classes at the time of booking leads to major problems in 

model estimation. In the rare cases where such information is available, it is im-

portant to take it into account. However, this will often only be possible at an 

aggregate level, given further data limitations, as discussed by Battersby (2004), 

who uses concepts of expected utility and finds that expected seat-availability has 

a positive impact on the choice probability of a given flight class. 

8.3.8 S u m m a r y 

The review presented in this section has shown that there exists a large body of work 

on the modelling of airport choice in multiple-airport regions, while there is also a 

substantive number of studies looking at airline choice and access-mode choice. 

The discussion has also highlighted that, while some of the studies have made 

use of the more advanced models that are available, the majority of research has 

relied on fairly basic modelling techniques, with a heavy bias towards the MNL 

model. Additionally, existing research has generally used major simpliflcations of 

the choice process along at least one of the dimensions of choice, making the explicit 
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joint analysis of the three dimensions of airport, airline and access-mode choice an 

important avenue for research. 

In terms of actual substantive results, a rather consistent pattern emerges. Al-

most universally, the studies show that access time and flight frequency play a 

determining role in air-travel choice behaviour. Here, it should be noted that the 

marginal utility of frequency is a very arbitrary concept, as it is not taken into ac-

count per se by travellers^®, but can be seen to capture a variety of factors, including 

a visibility effect, and an approximation to schedule delay (under the considerable 

assumption of a relatively even spread of departure times. 

Only a small subset of the RP studies were able to recover a significant impact of 

air-fares, while no such problems were observed in the SP studies, which generally 

show fare to be one of the strongest determinants of choice (e.g. Bradley 1998). 

Additionally, in such studies, it is often possible to retrieve significant effects of 

factors such as airline allegiance, a treatment of which is again generally not feasible 

in the case of RP data. This observation highlights an important issue with the 

use of RP data^^ in the analysis of air-travel choice-behaviour, which is discussed in 

more detail in Section 8.4.4. 

8.4 Overview of research 

Three separate case-studies are described in this thesis, using data from two RP 

surveys, collected in the SF-bay area (Chapter 9) and Greater London (Chapter 

10), and data from an internet-based SP survey collected in the US (Chapter 11). 

In the discussion that follows, we set the stage for the description of these three 

case-studies. We first look at the scope of the applications (Section 8.4.1), before 

setting out the aims of the research (Section 8.4.2), and discussing the choice of 

model structure (Section 8.4.3). Finally, we highlight a number of issues that had 

to be faced in the modelling analyses (Section 8.4.4). 

8.4.1 Scope of app l ica t ions 

While the overall approach used with the three datasets is very similar, there are 

some differences between the three datasets that change the scope between case-

studies. Detailed description of the three datasets are presented in the respective 

chapters; the aim of the discussion that follows is simply to describe the approach 

taken along the various dimensions of choice with the separate datasets. 

the possible exception of travellers on very flexible tickets, who can just turn up at the 
airport and pick any flight, and as such are interested in headway. 

"'Again, this apphes principally in the case of survey data, as opposed to bookings data. 
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Although the discussions in Sections 8.2.2 and 8.2.3 have highlighted the fact 

that air-travellers take decisions along a multitude of dimensions, with potentially 

important interactions between these various dimensions, in practice, it is generally 

only possible to look at a subset of these choice-dimensions. This is mainly a re-

flection of the formidable requirements in terms of data that would arise in the case 

of a study looking jointly at all the choice-dimensions described in Section 8.2.2. 

However, it should also be noted that, for an adequate analysis of the interactions 

between choice-dimensions, dynamic model structures would almost certainly be 

required, in conjunction with repeated choice data. 

The three case-studies described in this thesis look at the joint choice of airport 

and airline, where the two RP studies additionally look at the choice of access-

mode. While the detailed study and modelling of the interactions between choice-

dimensions is an important avenue for future research, it should be clear that this is a 

learning process, and that, before attempting such an analysis, there is a requirement 

to first look at the joint modelling of even a subset of these choices. As such, the 

work described in this thesis is an initial stepping stone in the development of a 

more accurate framework for analysing air-travel choice behaviour. 

We will now briefly revisit the various dimensions of air-travel choice behaviour, 

and discuss their treatment in the three case-studies. 

Upper-level choice dimensions 

Upper-level choices, such as the decision to travel, the choice of destination, trip 

timing, and the decision to travel by air, are not modelled in any of the three case-

studies. In the SP case-study, these issues do not apply, and as such, any upper-level 

choice-dimensions can be safely ignored. In the RP studies, the assumption was 

made that the decision to travel and the choice of destination are taken a priori, as 

the analysis of these two dimensions would have required the use of a destination 

choice model and a trip generation model respectively, which, aside from causing 

significant problems in terms of data needs, is beyond the scope of the present 

research. Similarly, as respondents have been observed to travel on a given day, 

the choice of travel date cannot be modelled, with a similar reasoning applying 

for timing, where no information is available on desired departure time. The main 

problem arises in the treatment of the choice of main-mode. Here, the inclusion of 

a. number of short-haul and medium-haul destinations^® means that a non-trivial 

number of respondents potentially had the possibility of using ground-level modes 

of transport as an alternative to air-travel, where, for data reasons, this upper-

level choice cannot be modelled in the present context. This in turn leads to the 

28 The inclusion of such destinations was inevitable, given their high weight in the choice data. 
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requirement to work on the notion that any passenger included in the study has 

already taken the decision to travel by air, either a priori, or by comparing the 

air-travel options to those on other modes. In either case, the traveller clearly still 

faces a choice between different air-travel options, and the modelling of this choice 

process is the topic of the present work. For the purpose of the two RP analyses, the 

non-air alternatives can in fact be seen as never having been chosen by any of the 

travellers included in the data, and as such, are excluded from the analysis. Either 

way, the additional analysis of the choice of main-mode, in parallel to the air-travel 

specific choices (or even as an a priori choice), remains an important avenue for 

future research. 

Departure & destination airports 

This research looks at the choice of departure airport on a single leg of an air-journey, 

for passengers departing from multi-airport regions. With the exception of several 

destinations in the SF-bay area study (Section 9.2.1), passengers faced a choice 

between more than one airport only at one end of their journey, and accordingly, 

the choice between airports is modelled only in the main study city, leading to a 

choice between departure airports for the outbound leg of resident passengers, and 

for the return leg of visiting passengers^®. Except for those passengers travelling on 

an open-jaw ticket, the choice of departure airport on the return leg can be seen to 

equate to the choice of destination airport on the outbound leg. 

While it would be desirable to look jointly at the choice of departure and des-

tination airport, this is hampered by the relatively low number of routes where 

passengers have an actual choice of airport in the origin and destination area, and 

where the two choices are independent. Additionally, such a modelling approach 

would lead to significant increases in data requirements. Finally, a major issue 

would arise in terms of deciding whether either of the two choices (departure or des-

tination airport) takes precedence, where the order of preferences potentially varies 

across respondents^^. 

Access & egress journeys 

Ground-level journey related choices are only modelled in the RP case-studies, given 

that this dimension of choice was not represented explicitly in the SP survey. For 

data reasons, only the choice of access-mode to the departure airport on the current 

leg was modelled in the two RP studies. An additional simplification arises in the 

^"Only in the RP studies. 

•"'This complication is also the basis for the attempts to exclude destinations located in multi-
nir))ort regions from the analysis, as discussed in more detail in Section 8.4.4. 
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analysis of the access-journey choices in that the studies look only at the choice 

of main-mode, and ignore the possibility of trip-chaining, as well as the choice of 

(liffcr(;nt routes. The effects of this restriction are very limited in the case of the 

SF-bay area study, given the high market share for car, while in the London study, 

the possibility remains open to re-estimate the models with more detailed level-of-

service data, where issues of route choice however need to be addressed. 

Routing 

In the case of flight routing, an important difference arises again between the two RP 

case-studies and the SP case-study. In the former two, the topic is left untreated, 

and the studies look only at the choice between direct flights, a decision based on 

the low share of connecting passengers in the data, and the lack of detailed data on 

connecting flights. The effects of the ehmination of alternatives with connections 

from the choice set are negligible, given that, for the specific set of destinations used, 

the real-world share for connecting flights was comparatively low (and in some cases 

zero). In the SP dataset, connecting flights are included in the choice set, allowing 

for an analysis of the relative valuations of direct and indirect flights. However, 

the choice of air-routing is not modelled, where, given the complexity of the task, 

and the high data requirements, this process is commonly modelled at an aggregate 

rather than disaggregate level, as for example in the work of Coldren et al. (2003). 

Airline 

Aside from the very first SF-bay area models, the three case-studies all acknowledge 

the fact that passengers make a choice of airline in addition to the choice of airport. 

However, no combinations of airlines are allowed for, given the use of direct flights 

only in the RP studies, while the connecting flights used in the SP survey only 

involved a change of plane, and not airline. 

8.4.2 A i m s of r esea rch 

As alluded to in Section 8.1, the overall aim of the three air-travel case-studies 

conducted in this thesis is to attempt to at last partly bridge the gap between the 

•state-of-the-art in discrete choice modelhng and the state-of-practice in air-travel 

behaviour research. This is achieved through the use of advanced model structures, 

but also through attempts to more adequately represent the true nature of the choice 

processes undertaken by air-travellers. Several major sub-aims can be identified, and 

these are described hereafter. 
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Recognise t h e mul t i -d imens iona l n a t u r e of t h e choice p rocess 

It should be clear from the discussion in Section 8.2.2 that air-travellers take deci-

sions along a multitude of choice-dimensions. As discussed in Section 8.4.1, the three 

case-studies all look at the combined choice of departure airport and airline, where 

the two RP studies additionally look at the choice of access-mode. A main aim 

of this research is to define how these various dimensions of choice can be treated 

in parallel, as opposed to using a sequential approach. This applies especially in 

the case of the two RP studies, where the choice set for each individual is defined 

manually, unlike in the SP study, where it is explicitly defined by the survey de-

sign. As such, the alternatives chosen by respondents in the RP case-studies are 

defined as combined alternatives, where each such alternative is made up of three 

elementary alternatives (airport, airline and access-mode), and where the utility 

function for a combined alternative is made up of joint terms as well as terms spe-

cific to the three elementary alternatives. This approach enables us to model the 

three choices simultaneously as opposed to sequentially, where such a simultaneous 

treatment is preferable in the absence of information on the priorities of the three 

dimensions of choice. In a way, the approach used in combining alternatives thus 

turns a three-dimensional choice process into a single-dimensional one. 

Analysis of va r ia t ions in choice behav iou r 

One of the main aims of this study is the analysis of variations in choice behaviour 

across respondents, in the form of variations in tastes between separate population 

segments, as well as within separate population segments. The main advancement 

of the state-of-practice in this case comes in the exploitation of model structures 

allowing for random variations in tastes across respondents, which are only slowly 

beginning to be applied in the area of air-travel^^. Another innovative method used 

in the analysis of taste variations in the present work^^ is that of continuous inter-

actions between taste coefficients and socio-demographic or trip-related attributes. 

Use advanced s t r u c t u r e s for r ep re sen t ing complex s u b s t i t u -

tion p a t t e r n s 

By understanding the multi-dimensional nature of the choice process, it becomes evi-

dent that some of the combined alternatives share the attributes of other alternatives 

•''Here, the work described in Chapter 9, now pubhshed in Hess & Polak (20056) and Hess 
& Polak (2005 a), provides some of the first applications of the MMNL structure in this area of 
research. 

" S P case-study, Chapter 11. 
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along one or more of the choice dimensions^^. While some of these commonalities 

can be accounted for through the attributes included in the observed part of utility, 

it is almost inevitable that there is also some correlation between unobserved util-

ity terms along these dimensions. Classically, research in the area of air-transport 

has accounted for this correlation with the help of multi-level NL structures. As de-

scribed in Section 8.4.3, it can be seen that with such structures, it is not possible to 

account jointly for the correlation along all 3 dimensions of choice. As such, one of 

the aims and contributions of this work^^ is to make use of cross-nesting structures, 

allowing for the joint analysis of correlation along all three dimensions^^. 

Avoid over -aggrega t ion in level-of-service d a t a 

Another major problem with existing studies has been the use of an insufhcient 

level of disaggregation in the level-of-service data. This is highly correlated with 

the decision in a lot of previous work to use simplifications along a number of 

choice-dimensions; as an example, the use of airport-specific attributes, as opposed 

to airline-specific attributes, leads to high aggregation error in the face of product 

differentiation across airlines. In the two RP case-studies presented in this thesis^®, 

the aim was always to use the highest possible level of disaggregation. As such, the 

only main aggregation used was to group together flights by the same airline on 

the same route (departure airport A to destination airport B). This grouping was 

performed on a daily basis, where the days of week and the time of year were taken 

into account, leading to more detail than in approaches disregarding the day of week 

or time of year. The aggregation was performed across all flight-specific attributes, 

such as fare, flight time and aircraft type^^. This approach prevents an analysis of 

schedule delay sensitivities, but this was in any case not possible, given the lack of 

data on preferred arrival times. On the other hand, the aggregation yields daily 

frequencies, allowing for the use of this variable as a proxy for inter-departure gaps, 

the context of the combined choice of airport, airhne, and access-mode, let K, L and 
M define the number of airports, airhnes and access-modes respectively, and let us assume that 
all combinations of airports, airlines and access-modes are possible, leading to a total of KLM 
(mnhined alternatives. It can then be seen that a given alternative shares the same airport (and 
hence the related attributes) with LPI - 1 alternatives, the same airline with KM - 1 alternatives, 
and the same access-mode with KL - 1 alternatives. Furthermore, an alternative shares the 
same airport and airline with M - 1 alternatives, the same airport and access-mode with L — I 
alternatives, and the same airhne and access-mode with K - 1 alternatives. 

•'•'London case-study, Chapter 10. 
•'''The correlation across dimensions, such as the correlation between different airlines, is not 

explored in this work, but remains an important avenue for future research. 
•'^'This discussion does not apply in the case of the SP study, where exact information on the 

alternatives was available. 
•"Here, the minimum and maximum aircraft size used on a given route by a given airline was 

retained, where there was little variation across flights on the same airhne-route pairing. 
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as well as a visibility effect. 

C o n d u c t a s t u d y of a i r p o r t choice in L o n d o n 

Aside from the more methodological aims, the research also has a topical aim, 

namely that of conducting an analysis of airport choice in the Greater London 

area. The Greater London area is arguably the most competitive multi-airport 

region in the world (c.f. Section 10.1), making it a more appropriate candidate 

for airport choice studies than other regions used previously. Additionally, the 

continuing discussions with regards to how to expand capacity in this area make the 

study very timely. However, although some of the London airports had previously 

been used as alternatives in applications looking at airport choice in the wider 

geographical area (as discussed in Section 8.3), there has thus far not been a public 

domain study of airport choice among the five main London airports^®. 

8.4.3 M o d e l s t r u c t u r e 

One of the most important questions arising in the analysis of air-travel choice be-

haviour is the structure used for the models, and more specifically, for representing 

the commonalities between alternatives. This applies even more so in the case of 

multi-dimensional choice processes, such as those described in the two RP case-

studies (Chapters 9 and 10). In this section, we look specifically at the issue of the 

nesting structure used in the analysis of these three-dimensional choice processes^^. 

Another model-structure question is that of the representation of random taste het-

erogeneity; here, simple MMNL models were used, which need no further exposition 

at this point (c.f. Section 2.9.1). 

It is clearly a major and probably unwarranted assumption to rule out the pres-

ence of heightened correlation in the unobserved utility terms along any of the choice 

dimensions. In order for such an assumption to be valid, any commonalities between 

two alternatives sharing the same airport, airline or access-mode would need to be 

explained in the observed part of u t i l i t y T h i s is clearly not possible in general, 

especially in the case of RP data, which, in aviation, are often characterised by a 

•'®Thcrc have been a number of ojficial studies of airport choice behaviour in the UK (with 
sub-models looking at the South-East), all based on MNL models, aimed at producing systems for 
forecasting passenger levels. The most recent version of the Department for Transport's model, 
SPASM, is described by Scott Wilson Kirkpatrick (2004). It is an extension of the earlier Sec-
ond Passenger Allocation Model (SPAM), developed by NATS (1998), which itself has several 
predecessors, all using MNL structures. 

'^No nesting approaches are used in the SP case-study (Chapter 11), which makes use of binomial 
data. 

•'"The same applies in the case of alternatives differing only along a single dimension. 
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Figure 8.1: Structure of two-level NL model, using nesting along airport dimension 

lack of information on crucial factors such as fares and frequent flier programmes. 

The likely resulting correlation in the unobserved part of utility makes the use of 

the MNL model almost surely inappropriate, especially in forecasting. 

In this thesis, GEV structures were used for the representation of the correlation 

in the unobserved part of utility; while the use of ECL models might have advantages 

in terms of flexibility"'^, the high number of error-components required to represent 

the complex substitution patterns makes the approach inapplicable from a purely 

computational perspective. 

The most basic GEV nesting approach that can be used in the analysis of air-

travel choice behaviour is a simple two-level NL model, where, in the context of 

the present research, three main possibilities arise, using nesting along a single 

dimension of choice (airport, airline or access-mode), with one nest per elementary 

alternative represented in that dimension of choice. As an example, the appropriate 

structure for the NL model using nesting by airport is shown in Figure 8.1, with 

41 For example by allowing for lieteroscedasticity, or additional random taste heterogeneity. 
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Figure 8.2: Structure of three-level NL model, using nesting along airport dimension 
and airline dimension 

K mutually-exclusive nests, one for each airport, and where each nest has its own 

nesting parameter, A ,̂ allowing for different substitution patterns in the different 

nests. Only a subset of the composite nests and of the combined alternatives is 

shown in the graph. The same logic applies in the case of a two-level NL treatment 

of the correlation along the airhne or access-mode dimensions. 

The NL model can be adapted to allow for correlation along more than one 

dimension, by using a multi-level structure. A common example in the case of air-

travel is to nest the choice of airline within the choice of airport. It is important 

to stress that this should not be seen as representing a sequential choice process. 

Rather, it means that there is correlation between two alternatives that share the 

same airport, but that the correlation is larger if they additionally share the same 

airline. The structure of such a model is ihustrated in Figure 8.2, where is the 

nesting parameter associated with airport nest k, and tt; is the nesting parameter 

associated with airhne nest I. Again, only a subset of the composite nests and of 

the combined alternatives is shown. 

By noting that a model nesting airport choice above airline choice is not the 

same as a model nesting airhne choice above airport choice, it can be seen that six 

possible two-level structures arise in the present context. While NL structures can. 
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in this form, thus be used for analysing correlations along two dimensions of choice, 

it should be noted that multi-level NL models have two important shortcomings 

which limit their potential for the analysis of choice processes of the type described 

in this work. 

The main shortcoming in the present context is that the structures can be used 

for the analysis of correlation along at most two dimensions of choice. Indeed, using 

the example shown in Figure 8.2, it can be seen that, by adding in an additional 

level of nesting by access-mode below the airline-level, each access-mode nest would 

contain a single alternative, as the airline nest just above it would contain exactly 

one alternative for each access-mode, such that the structural parameter for the 

access-mode nest would cancel out. The same principle applies in the case of the 

other possible four-level structures, where, in each case, the lower level of nesting 

becomes obsolete. 

While a three-level NL model can be used to analyse the correlation along two 

out of the three dimensions of choice, the second shortcoming of the structure means 

that problems arise even with this task. In fact, it can be seen that the full extent 

of correlation can only be taken into account along one dimension, with a limited 

amount along the second dimension. Indeed, by nesting the alternatives first by 

airport, and then by airhne, the nest for airline I inside the nest for airport k will 

only group together the options on airline I for that airport k (c.f. Figure 8.2). The 

•same reasoning applies for other nests. As such, the model is not able to capture 

correlation between alternatives using airline I at airport ki and alternatives using 

airline I at airport /tg, which is clearly a restriction. This problem also applies in the 

other multi-level nesting approaches. Aside from being a major shortcoming, this is 

also another reflection of the above comment that the order of nesting matters. 

Th(%se deficiencies of multi-level nesting structures are the motivation for the 

efforts made in the London case-study (Chapter 10) to use cross-nesting structures. 

In the present context, a CNL model is specified by defining three groups of nests, 

namely K airport nests, L airline nests and M access-mode nests, and by allowing 

each alternative to belong to exactly one nest in each of these groups. As such, the 

structure addresses both of the shortcomings described above for the three-level NL 

model, by being able to accommodate correlation along all three dimensions, and by 

doing so in a simultaneous fashion. This means for example that the model is able 

to capture the correlation between all alternatives sharing airline /, independently 

of which airport they are associated with. At the same time, the correlation will be 

higher between alternatives that additionally share the same airport. 

An example of such a model is shown in Figure 8.3, where, in addition to the 

previously defined and is used as the structural parameter for access-mode 
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Figure 8.3: Structure of CNL model for the joint treatment of correlation along the 
airport, airline and access-mode dimensions 

nest m. Again, only a subset of the composite nests and of the combined alternatives 

is shown. Additionally, the allocation parameters, governing the proportion by 

which an alternative belongs to each of the three nests, are not shown in Figure 8.3. 

Here, an interesting observation can be made. Indeed, it can be seen from the above 

discussion that the CNL model has an advantage in this case, as it avoids the issue 

of the ordering of nesting levels. This makes the model similar to the PD model 

discussed in Section 2.5.7. In fact, the conceptual similarities between the PD model 

and the cross-nesting approach adopted here are further highhghted by noting that, 

from a structural point of view'̂ ^, each alternative is described by three attributes, 

or principles of differentiation, an airport, an airline, and an access-mode, where 

each attribute can take on a set of different values (e.g. the K airports in the case 

of the SLiTpoit-attribute). 

Two points merit some further attention. The above discussion has looked ex-

clusively at nesting alternatives along one or more of the three choice-dimensions. 

'^Other differences are accommodated in the observed part of utility. 
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It should be noted that an infinite number of other nesting approaches are possible. 

Here, one promising approach is to nest low-cost carriers against network carriers. 

Such an approach was not explored in this thesis, for two main reasons; in the 

SF-bay area study, only a single major low-cost carrier was included, while, in the 

London study, the age of the data (1996) meant that the impact of low-cost carriers 

was rather modest. Here, the use of a more recent version of the London data is 

an important avenue for future research, given the high level of activity by low-cost 

carriers in this region over recent years. 

The other point relates to the use of GEV mixture models. While the SF-bay 

case-study in Chapter 9 makes use of NL as well as MMNL models, the joint analy-

sis of the two phenomena was not explored in this thesis, given the prohibitive cost 

of estimation, where, even with the MMNL models in the SF-bay study, individual 

estimations took several days. Here, it should also be noted that the cost of esti-

mation prevented the use of MMNL models in the London case-study in Chapter 

10. These issues are an illustration of the high cost of estimating mixture models on 

large real-world problems^, a fact that is clearly one of the reasons for the prevail-

ing gap between the state-of-the-art and the state-of-practice. In this context, and 

given the discussion in Chapter 6 about the issue of confounding between simple 

inter-alternative correlation and random inter-agent variations in tastes, it is thus 

important to note that the individual models potentially capture a mixture of both 

phenomena, and as such, may overstate the extent of simple inter-alternative corre-

lation (in the GEV models) or random taste heterogeneity (in the MMNL models). 

Although the present work does not attempt to correct this bias, previous work has, 

seemingly without exception, failed to mention this issue altogether. 

8.4.4 Issues 

Two main issues that had to be addressed in the context of the two RP studies merit 

some further discussion. These relate to the selection of destinations for inclusion in 

these studies, and the approach taken to deal with certain hmitations of the data. 

Selection of dest inations in R P studies 

The selection of destinations to be included in RP studies is heavily influenced by 

the choice data used, and the destinations represented therein'^. As such, only des-

tinations with a sufficient number of observations in the choice data can be included 

"Despi te improvements in estimation efficiency, as discussed in Chapter 3. 
'"'We ignore the case where the modeller himself is responsible for the collection of the choice 

data, and hence in a position to define quotas so as to obtain an adequately sized sample for an a 
priori defined set of destinations. 
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in the analysis. The number of destinations is further decreased by the requirement 

that only destinations that can be reached from at least two airports in the study 

area should be included, for obvious reasons^^. If a decision is taken to include only 

destinations reachable by direct flights, as in the two RP studies conducted in this 

research, then this clearly reduces the number of ehgible destinations further. Fi-

nally, in the absence of an explicit treatment of the choice of destination airport, it 

is desirable to include only destinations that are served by a single airport, to avoid 

biased results in the case where the unmodelled choice of destination airport takes 

precedence over the choice of departure airport. In the London case-study, the large 

sample size allowed for the selection of a set of destinations located exclusively in 

regions served by a single main airport. In the SF-bay study, this was not possible, 

and several destinations located in multi-airport regions had to included. It is in 

this case important to maximise the probability of there being a conscious choice 

of airport in the study area, for residents as well as visitors. This issue is discussed 

in more detail in the context of the selection of destinations for the SF-bay area 

case-study (Section 9.2.1). 

Data issues 

Almost certainly the single biggest issue that needs to be faced in the analysis of 

air-travel behaviour is that of the quality of the available data. This has already 

been alluded to in various places in this chapter, but several points remain to be 

addressed. Issues with data quality in air-travel behaviour research arise especially 

in the case of RP survey data, where several factors, including the design of the 

survey'̂ ® and the compatibility with auxiliary datasets play a role. Here, we look 

specifically at two main issues that affect the RP case-studies presented in this 

thesis. The issues described here apply to a lesser extent in the case of RP bookings 

data, or RP survey data collected by the modeller himself. However, issues with 

regards to attributes of the unchosen alternatives generally remain. 

The first major data problem that needs to be faced in RP studies based on sur-

vey data is the relative lack of information on the unchosen alternatives, in terms 

of attributes as well as availabilities. The main issue is that, in such studies, disag-

gregate choice data is in general used in conjunction with aggregate level-of-service 

data, for at least some of the attributes. While this may be acceptable for some 

characteristics, such as frequency and flight-time, it does create significant problems 

''•''Although it should be noted that the inclusion of destinations served from a single airport still 
lirovides information along the airline and access-mode dimensions. 

" 'Often the datasets used in modelhng air-travel choice behaviour were collected with the aim 
of conducting basic analyses, and as such, are lacking several vital ingredients that would allow 
more assumption-free research to be conducted. 
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111 the treatment of air-fares, and flight availability by extension. Indeed, although 

information on the booked class may be available, it is not generally possible to ob-

tain information on the availability of the different fare-classes on unchosen flights, 

or indeed unchosen fare-classes on the chosen flight. This significantly complicates 

the characterisation of unchosen alternatives. As such, in the absence of availability 

data, or an appropriate probabihstic treatment of availability, this leads to a require-

ment for an assumption that tickets on all other possible flights were available at 

the time of booking, hence almost surely including some alternatives in the choice 

set that were actually unavailable. It should be noted that existing RP studies 

have often failed to discuss this issue. The fact that air-fare information is gener-

ally only available in aggregate form for given airline-route pairings (i.e. making 

no distinction between fare-classes) essentially leads to the additional assumption 

of equal ticket selling speeds across all flights (routes as well as departure times)''', 

which is clearly not necessarily the case. Unfortunately, these assumptions cannot 

be avoided, and it is not clear what effect the inadequate treatment of air-fares has 

on model results. However, it should come as little surprise that, in the majority 

RP studies, it has not been possible to recover a meaningful marginal utility of fare 

changes (c.f. Section 8.3). This can for example be explained by the example of a 

respondent having to choose a more expensive option because the cheap flights have 

all sold out. In the absence of information on flight or fare-class availability, this 

will, from the modeller's perspective, imply cost-prone behaviour. Here, it should 

also be noted that, although less of an issue in the present research, given the age 

of the data, the entrance of low-cost carriers on certain routes has also led to a 

complicated relationship between the fares of low-cost carriers and network carriers 

(c.f. Pels & Rietveld 2004), and the increasingly dynamic nature of air-fares makes 

the use of aggregate fares even less reliable. 

Another complication in RP studies arises with respect to the treatment of airline 

allegiance. It is well known that passengers are influenced in their choice of airline 

by their membership in frequent flier programmes (c.f. Chin 2002, Adler et al. 2005), 

either on a personal basis, or as part of a company-wide scheme"̂ ®. However, infor-

mation on frequent flier memberships is not generally collected in passenger surveys, 

while information on actual benefits is heavily governed by data protection issues. 

As such, this potentially crucial influence on choice behaviour cannot usually be 

taken into account in RP studies. In the case of a dataset including a large number 

of international flights, operated by a variety of airlines, there is however an alter-

"I.e. if a given passenger purchased an APEX ticket for his flight, then we need to work on the 
assumption that APEX tickets wore also available for alternative flights, at the time of booking. 

^*For a discussion of frequent flier programmes, and their relative benefits to different types of 
travellers, see Suzuki (2003). 
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native way of modelling travellers' loyalty behaviour, by analysing their allegiance 

to their national carrier. Results by Bruning & Prentice (2002) suggest that such 

allegiancc! to the national carrier does indeed play a significant role"̂ ®, but that there 

are great variations across nationalities, as well as across the evaluation of airlines 

of different foreign nationalities. 

The two issues described above apply almost exclusively in the case of RP data. 

Indeed, with SP data, detailed information on all alternatives faced by the respon-

dent is available to the modeller, such that availability need not be considered. 

Additionally, data issues relating to air-fares and frequent flier membership'^° no 

longer apply, which is reflected in the much greater success in terms of recovering 

effects of such attributes in the case of SP data, as discussed in Section 8.3.6. Never-

theless, it should also be stressed that the use of SP data does pose some additional 

methodological problems in making inferences about behaviour from responses to 

hypothetical choice situations'^ Additionally, the use of too many alternatives or 

attributes is likely to lead to an overloading of information, while the use of a re-

stricted number of alternatives or attributes will not do justice to the complexity of 

the real-world choice processes. The use of a high number of attributes also leads to 

a high number of combinations of attribute levels, and consequently, a high number 

of choice experiments are required for each individual. This thus again leads to po-

tential problems of complexity®^. Encouragingly however, results by Hensher et al. 

(2001) in the context of airline choice suggest that, even with as many as 32 choice 

sets, fatigue effects were not significant. 

Despite the limitations of SP data, it can be argued that, to some extent, in the 

case of air-travel research, these issues are outweighed by the advantages in terms 

of adequate information relating to the attributes of the unchosen alternatives. As 

mentioned previously, an interesting approach in this context is to combine RP 

and SP data, as discussed by Algers & Beser (2001), hence correcting for the bias 

inherent to models estimated on SP data,^^. The problem in this case however is one 

of obtaining compatible RP and SP datasets. 

8.5 S u m m a r y 

This chapter has acted as an introduction to the apphed part of the thesis, which 

deals with the modelling of air-travel behaviour. 

'̂ "See also Yoo & Ashford (1997) 
""If included in the survey. 
•''See for example Louviere et al. (2000). 
•'-See Cauaaade et al. (2005) for a recent discussion of the effects of survey design on SP estimates. 
'•̂ See also Morikawa (1989). 



8.5. Summary ^ 

The discussion has highhghted the complexity of the choice processes undertaken 

bv air-travellers, and has shown how they differ from behavioural processes in other 

areas of transport research. The discussion in Section 8.4.4 has also highlighted 

some of the issues that need to be faced in such research, notably with regards to 

the quality of the data in RP studies based on survey data. 

Section 8.4.1 has discussed the scope of the three case-studies conducted as part 

of this research, which look at the choice of airport and airline, and, in the case of 

tlu! two RP studies, also the choice of access-mode. This specific modelling context 

has seen a lot of research in the past, yet, as highlighted in the review of the existing 

literature in Section 8.3, much work remains to be done. As such, a number of aims 

for the present research have been identified in Section 8.4.2, which can briefly be 

summarised as follows. 

• Explicitly model the multi-dimensional nature of the choice process 

• Allow for deterministic, random, and continuous variations in choice behaviour 

• Use advanced structures for correlation along all dimensions of choice 

• Avoid over-aggregation in level-of-service data 

• Conduct a study of airport choice in London 

Two omissions in the present research are worth noting, one relating to choice set 

formation, as discussed by Basar & Bhat (2004), and the other relating to an appro-

priate treatment of availability of flights, and flight classes by extension, as discussed 

by Battersby (2004). These were found to be beyond the scope of the present re-

search, but their inclusion within an advanced modelling framework, taking into 

account the various developments described here, is an important area for future 

research. The problem is that, especially for the latter of the two issues, appropriate 

auxiliary datasets are required. 



Chapter 9 

San Francisco Bay area case-study 

9.1 I n t r o d u c t i o n and context 

This chapter describes the case-study conducted in the San Francisco Bay area, 

which is served by three major airports; San Francisco International (SFO), Metropol-

itan Oakland International (OAK), and Mineta San Jose International (SJC). The 

geographical location of the three airports is illustrated in Figure 9.1, which ad-

ditionally shows the main road links serving the Bay area, and, by extension, the 

different airports. The map gives an indication of the strong geographical captivity, 

with each of the three airports being in relatively close proximity to one of the main 

urban centres in the region, something that apphes especially in the case of SJC. 

Air-traffic in the area has grown significantly over the past two and a half decades; 

this is illustrated in Table 9.1, which shows the number of passengers per year 

between 1990 and 2004, and includes connecting passengers^ The values show that, 

although SFO is still by far the largest of the three airports, with more than half the 

total number of passengers, its market share has decreased over time. Additionally, 

while both SFO and SJC suffered reductions in traffic after 2001, this has not been 

the case for OAK. 

Forecasts by MTC (2000) predict significant rises in traffic in the SF-bay area, 

which will increase passenger levels at all three airports, though the relative share of 

SFO can be expected to decrease further. The forecasts for the years 2010 and 2020 

are shown in Table 9.2, together with the year 1998, which was used as a reference 

value, where the differences with the values shown in Table 9.1 are down to a different 

counting approach (the actual predicted growth rates should be unaffected). The 

'There are some discrepancies between available passenger counts, given that passengers on 
Ktop-over flights not involving a change of aircraft are not always included in the counts. Never-
tlieless, the overall scale of the values remains relatively unaffected, given the low share of such 
l)assengers. Wherever possible, passenger counts were obtained directly from the airports. 

200 
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Figure 9.1: Map of the San Francisco Bay area, with main airports and ground-level 
transport network 

forecast show strong increases in traffic levels, with average annual growth rates of 

3.17% between 1998 and 2010, and of 3.05% between 2010 and 2020. While there 

are thus only minor differences between the two periods in terms of overall growth 

rates, the differences for specific airports are more significant. Indeed, for OAK and 

SJC, the growth rate decreases from an annual 5.53% to 3.54%, and from 4.90% to 

3.29%, while, for SFO, it increases from 1.91% to 2.76%. This also means that the 

decrease in the market share for SFO loses in intensity. 

Like in many other major airport systems, demand in the SF-bay area is close 

to capacity. This is especially the case at SFO, where poor weather conditions, 

in conjunction with a close alignment of parallel runways, have meant that full 

runway capacity was only available 62% of the time between 1996 and 1999, with 

only a single runway being in use during 26% of the time (c.f. RAPC 2000). A 
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OAK SFO SJC Total 
Year mppa share mppa share mppa share mppa 
1990 5.512 12.62% 3L060 7L14% 7.090 16.24% 43.662 
1991 &181 13.74% 31.775 70.65% 1^020 15.61% 44.976 
1992 6.610 14.27% 32.610 70.39% 7.109 15.34% 46.329 
1993 7.494 15.85% 32.770 6&32% 7.012 14.83% 47^76 
1994 8.382 16.34% 34^48 67^2% 8.282 16.14% 5L312 
1995 9.835 17.87% 36.263 65.87% 8.953 16.26% 55.051 
1996 9.735 16.50% 39.252 66.53% 10.010 16.97% 5&997 
1997 &145 15.28% 40.494 67.66% 10.214 17.07% 59.853 
1998 9.231 15.43% 40.101 67.01% 10.512 17.57% 59.844 
1999 9.880 15.99% 40.331 65^9% 11.561 18.72% 6L772 
2000 10.621 16.40% 41.049 63.38% 13.097 20.22% 64^^7 
2001 11.417 19.30% 34.643 58.57% 13.091 2^13% 59.151 
2002 12.724 23.01% 3L450 56.88% 11.116 2^10% 55.290 
2003 13.548 25.30% 29.313 54.75% 10.678 19.94% 53.539 
2004 14.098 24.32% 32.835 56.63% 11.047 19.05% 57^80 

Table 9.1: Annual passenger counts for three main SF-bay area airports, 1990 — 2004 
(mppa — million passengers per annum) 

Year OAK SFO SJC Total 

1998 
2010 
2020 

9.159 (16.19%) 
17.472 (21.23%) 
24.740 (22.26%) 

37J^7 (65.59%^ 
46.545 (56.55%) 
61.116 (54.99%) 

10.308 (18.22%) 
18.294 (22.23%) 
25.278 (22.75%) 

56.574 
82.311 
111.134 

Growth OAK SFO SJC Total 
1998-2010 
2010-2020 

+90.76% 
+41.60% 

+25.43% 
+31.31% 

+77.47% 
+38.18% 

45.49% 
35.02% 

Table 9.2: Forecasts of passenger levels in the SF-bay area, reference year 1998, in 
mppa 

similar problem, though less intense, apphes at OAK, while SJC is the only of 

the three airports that has recently embarked on major expansion work, with the 

construction of a new runway. At SFO, capacity will be exceeded by demand during 

good weather after 2010, where today, it is already exceeded during poor weather. 

At OAK, capacity will be exceeded during good and poor weather sometime between 

2010 and 2020, while at SJC, the expansion work has guaranteed sufficient capacity 

for the time being (c.f. RAPC 2000). 

These problems with capacity have led to an investigation into possible ways of 

increasing capacity in the SF-bay area, as described by RAPC (2000). While the 

implementation of new air traffic control measures will ease the situation during poor 

weather at SFO for the time being, new runway construction work at SFO and OAK 
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seems inevitable. Indeed, other measures, such as the construction of a high-speed 

rail system, are not expected to draw sufficient demand away from air-travel, while 

the development of a rapid ground-level or water-level connection system between 

SFO and OAK, which will be more expensive than the construction of new runways, 

cannot be expected to help manage the distribution of passengers more effectively in 

the absence of airline and airfare regulation. In addition, new airport construction 

IS not an option, given the lack of potential sites, and the associated air-traffic 

control complications. Expansion at SFO and OAK is an expensive and complex 

undertaking, almost certainly leading to a requirement to reclaim land from the sea. 

On the basis of the above discussion, the SF-bay area is an ideal candidate for 

a study of airport choice, and air-travel behaviour by extension. Three main aims 

apply in the SF-bay case-study; an analysis of the advantages of accounting for the 

multi-dimensional structure of the choice process, a study of the correlation along 

the three dimensions of choice, and an investigation into the prevalence of random 

taate heterogeneity. 

The remainder of this chapter is organised as follows. The following section 

presents the data used in the analysis. This is followed by a discussion of the study 

looking at the choice of airport in Section 9.3, and a discussion of the study looking 

at the joint analysis of airport, airline and access-mode choice in Section 9.4. Finally, 

Section 9.5 summarises the findings of the case-study. 

9.2 Descr ip t ion of d a t a 

9.2.1 Ai r -passenger su rvey d a t a 

Data on passengers' choice behaviour were obtained from the Airhne Passenger 

Survey conducted by the Metropolitan Transport Commission (MTC) in August and 

October 1995^. This contained information on over 21, 000 departing air-travellers. 

Passenger interviews were conducted at the three main SF-Bay area airports, as 

well as at the minor Sonoma County airport (STS), which was not included in the 

present study. For a detailed description of the survey, see Franz (1996). 

The number of passengers interviewed at the three main airports is not entirely 

representative of the real-world traffic at the airports; indeed, SJC is over-sampled, 

while OAK is under-sampled. This needs to be taken into account in the modelling 

analysis. Aircraft occupancy data was used to calculate the total traffic on the 

different routes used in the analysis, for each of the carriers. From this, relative 

-In the analyses presented in this thesis, a division of the data by collection period was avoided 
on the grounds of the resulting small sample sizes. 
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weights were assigned to each airport-airline pair^. A similar process was used to 

calculate corresponding weights for the sample data used in the present analysis. 

The individual pairs of weights were then used to calculate multiplicative weights 

for use in the estimation (weighted maximum likelihood^), where separate sets of 

weights were calculated for each of the different subsets of the data, as well as for 

the validation sample. 

On the basis of the survey data, and the discussion in Chapter 8, a total of 14 

destinations were included in the study, all of which were served by direct flights 

from all three airports on every day of the week during the study period. All 14 

destinations are located in the continental US, with 5 in California alone, highlight-

ing the high density of traffic in the California corridor. After the selection of the 

destinations, an initial sample of 9,924 respondents was obtained. This contained 

yome 3,246 travellers who indicated that they could not have flown out of a different 

airport. Possible reasons for this include unavailability (at the time of booking) 

on flights from other airports on the chosen flight date and time (especially likely 

for travellers with inflexible timing), misinformation of the traveller, or an a priori 

decision not to consider any of the other airports. A separate analysis showed that 

the inclusion of these travellers produces biased results, leading to the decision to 

exclude these observations from the analysis. In a way, this acts as an approximation 

to a model that incorporates choice set generation. 

From the resulting sample of 6,678 travellers, a further 1,587 passengers were 

excluded during data-cleaning, mainly because of missing socio-demographic in-

formation, but also because of issues along the access-mode dimension®, and the 

difficulties of assigning individuals from minor purpose segments to the main pur-

pose groups'". This led to a final sample of 5,091 observations, with flights to 14 

destinations. 

The data used, are summarised in Table 9.3, which clearly shows the over-

sampling of SJC. The specific choice of destinations had little effect on the dis-

tribution of observations across other dimensions, such as journey purposes and 

'^The access-mode choice dimension, along which the samphng was random, does not need to 
be taken into account in this reweighting process. 

''In the apphcation looking only at the choice of airport (Section 9.3), the weights used were 
ronte-sponific, using summation over airhnes. Unhke the three-dimensional analysis, this applica-
tion uses a full set of constants, such that a correction of the constants could have been used for 
the MNL models. However, the weighting approach was used for reasons of consistency, given the 
ueed for such an approach in the MMNL models. 

''Here, it was necessary to eliminate 111 passengers whose chosen access-mode was a hotel-
courtesy-shuttle, where it was not possible to unambiguously define the availability of this mode 
lor all passengers. 

"Here, 299 respondents travelling for extraordinary evenis were excluded, in addition to 360 
respondents travelling for some other purpose. 
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Table 9.3: Summary of choice data for SF-bay area case-study 

household income. Clearly, the samphng has an effect on the market shares for the 

different airlines; this was taken into account in the calculation of weights, as de-

scribed above. The resulting dataset was split into two parts, a dataset used in the 

actual analysis (4,582 observations), and a 10% sample retained for later validation 

of the models (509 observations). 

As discussed in Chapter 8, special care is required in the case of destinations 

that are themselves located in multi-airport regions. Given the composition of the 

choice data, it was in the present study not possible to rely solely on the use of 

destinations with a single airport, and several airports from multi-airport regions 

had to be included in the study. These can be divided into two groups; airports in 

the wider Los Angeles (LA) area^, and cities that have secondary airports, such as 

Chicago, Dallas, Las Vegas, and Phoenix. 

In the second group of airports, the negligible number of observations in the 

choice data for the secondary airports meant that only the main airport could be 

included. This is clearly a simplification of the actual choice process, and assumes 

that passengers have made an a priori decision to travel to the main airport in 

the destination area. Unfortunately, this assumption could not be avoided, for the 

above reasons. Similarly, the destinations could not be excluded from the analysis, 

given their high representation in the choice data. The bias caused by including 

these destinations should however be acceptably small. Indeed, the share of traffic 

to these secondary airports is so small that the assumption of an a priori choice of 

destination airport can be seen to apply for a large share of the travelling population. 

The situation with the five airports in the wider LA area is slightly more com-

plicated. Again, the decision to include the destinations in the study was imposed 

'Burbank, Los Angeles, Ontario, Orange County and San Diego. 
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Idv the high weight they carry in the choice data. However, unhke in the case of sec-

ondary airports discussed above, these five airports are all served via direct flights 

of relatively high frequency from each of the three SF-bay area airports. In this 

case, it is important to estabhsh whether passengers are likely to make a choice of 

airport in the San Francisco area, besides the choice made in the LA area, especially 

so for passengers whose return journey started in the LA area. Here, the fact that 

frequent daily direct flights were available between each of the three SF-Bay area 

airports and each of the five an ports in the wider LA region can be seen to increase; 

the probability that passengers make a specific choice of airport in the SF-Bay area, 

independently of the choice of airport in the LA area (where this choice may however 

take precedence, especially for visiting passengers). Nevertheless, it is still possible 

that the inclusion of these destinations, without a direct analysis of destination air-

port choice (which was not possible for data reasons), produces biased results. This 

is in this case not avoidable, but it is important to at least acknowledge the potential 

l̂ ias this introduces, something that previous studies have often failed to do. 

9.2.2 Ai r - t r ave l level-of-service d a t a 

For the present analysis, air-travel level-of-service data were obtained from BACK 

Aviation Solutions®, containing daily information for each operator serving the se-

lected routes in August and October 1995. Eight airlines were used in the analysis, 

and these are hereafter referred to as airline A1 to airline AS. Besides the frequen-

cies for the different operators, the dataset contains information on flight times and 

the type of aircraft used. Information on fares is available only in aggregate form 

(for specific airline-route pairings), leading to the problems of unreliable fare data 

discussed in Chapter 8. Finally, the dataset was complemented by information on 

the on-time performance of the different airlines used in the analysis, and the overall 

on-time performance of airlines at the three airports^. 

9.2.3 Ground-acces s level-of-service d a t a 

Ground-access level-of-service information was obtained from the MTC in the form 

of origin-destination (0-D) travel time and cost ma,trices for the 1,099 travel area 

zones (TAZ) used for the SF-Bay area^°. The dataset contains information on 

travel distance, travel time and tolls for car travel, under peak and off-peak condi-

tions. and for varying car-occupancy (which has an effect on tolls). Similarly, the 

^ www. backaviat ion. com 
"Available from the Bureau of Transport Statistics, via www.bts.gov/programs/oai 

'"www.mtc.ca.gov/maps-and_clata/ 

http://www.bts.gov/programs/oai
http://www.mtc.ca.gov/maps-and_clata/
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clataset contains information on access time, wait time, travel time, egress time and 

fares for public transport journeys. Corresponding data for other modes, such as 

taxi, limousine and special airport bus services were calculated separately, based on 

current prices^^ and the changes in the Consumer Price Index for Cahfornia from 

August and October 1995 to September 2003. 

Complication arose with regards to the costs of rental cars, in addition to generic 

car costs. Indeed, attempts to include parking cost, marginal running cost, and 

rental cost in the models led to inconsistent results; it was thus decided to exclude 

these costs from the model, allowing us to merge private car and rental car into 

a generic car mode, where the only cost is that of any toll incurred. This led to 

six remaining access-modes; car, pubhc transport (transit), scheduled airport bus 

services, door-to-door services, taxi and limousine. It was assumed that taxi and 

limousine services are available for each origin, while the availability of door-to-door 

and scheduled services depends on the distance to the airports. The availability of 

public transport was obtained from the MTC 0-D matrices, and, in the absence of 

any information on the availability of the car mode, it had to be assumed that car 

is always available. 

9.3 Choice of a i rpo r t 

We first present the findings of the study looking only at the choice of airport. 

A detailed account of this analysis is pubhshed in Hess & Polak (20056); here, 

only a brief description is presented, with the aim of allowing a comparison to be 

made between the performance of this single-dimensional approach and the multi-

dimensional approach used in the remainder of this chapter. Before proceeding to 

the presentation of the results, it should be noted that, in this application, a slightly 

different final sample size was obtained when compared to the multi-dimensional 

approaches. This is the result of using different criteria in the data cleaning process, 

where factors specific to access-modes and airlines carry less importance than in the 

fully disaggregate case. This way, a final sample of 5, 097 individuals was obtained, 

divided into 1, 268 resident business travellers, 1,500 resident leisure travellers, 1, 269 

visiting business travellers, and 1,060 visiting leisure travellers. In each group, a 

random sub-sample of roughly 10% was retained for later model vahdation. 

11 September 2003. 
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9.3.1 M o d e l speci f ica t ion a n d e s t i m a t i o n 

Two separate groups of models were estimated in this analysis; MNL models looking 

for the optimal specification of the observed utility function, and MMNL models 

exploring the prevalence of random taste heterogeneity. In both cases, Kenneth 

Train's Gauss code was used. 

On the basis of the above division of the population into residents and visitors, 

as well as business and leisure travellers, four separate models were estimated, where 

this was found to be preferable to the use of separate coefficients within the same 

model. During model specification, the influence of a number of attributes was 

explored. These attributes included fare, frequency, access time, access cost, flight 

time, the number of operators serving a route, the type of aircraft used, and the on-

time performance at the different airports. In the context of an analysis looking only 

at the choice of airport, any information is airport-specific, such that combination 

of the level-of-service data across air fines was used, assigning to each passenger the 

industry-level information on frequencies, fares and other airhne-specific attributes 

for flights from each of the three airports to the desired destination on the actual 

date of travel. 

The analysis showed that, of all the attributes included in the initial specification 

search, only fare, frequency and access time were found to have a significant effect. 

Even here, some (qualification is needed. As such, it was not possible to (estimate 

a significant fare coefficient for visiting business travellers, a,nd, wfiile, for both 

groups of leisure travellers, a consistent effect of fare could be identified, this was 

only possible in the lowest of three defined income groups in the case of resident 

business travellers. The problems with retrieving universally significant fare-effects 

could reflect the comparatively low sensitivity to fare for business travellers, but is 

almost surely also partly due to the use of highly aggregate fare information. No 

interactions with income could be identified for the access time coefficient, while, for 

frequency, a difference between income groups could only be retrieved for visiting 

leisure travellers, where a separate coefficient applies in the high income group. 

The analysis also showed clear gains in performance for a specification that allows 

frequency to enter the utihty function in a non-linear fashion, where a log-transform 

was used in the present context. Similar non-linear treatments for the remaining 

two attributes did not lead to any gains in model performance. 

On the basis of this utihty specification, MMNL models were then estimated 

four the four groups. Here, significant random variation was retrieved in each of the 

four sub-models for the access time coefficient, and, except in the model for visiting 
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business travellers, also for the ASC associated with SFO^^. For the marginal utility 

of access time changes, the best results were obtained with the use of a Lognormal 

distribution (in conjunction with a sign change), while, in the absence of an a priori 

sign assumption, a Normal distribution was used for the distribution of the ASC of 

the SFO alternative. The levels of variation observed for the marginal utility of fare 

and frequency, as well as for the ASC of SJC, were not significantly different from 

zero, such that fixed coefficients were used. In fact, it can be seen that this model 

acts as an ECL approximation to a NL model nesting together OAK and SJC. 

The results of the analysis are summarised in Table 9.4, where the full esti-

mates are only shown for the MMNL models, along with the model fit for the MNL 

models^^, and where, for the access time coefficient, the actual mean and standard 

deviation are given in addition to the parameters of the underlying Normal dis-

tribution, using the transformation from equations (3.20) and (3.21), and taking 

into account the sign change of the associated attribute. In each case, the use of 

the MMNL specification led to statistically significant gains in model fit over the 

corresponding MNL structure, with the most significant gain being obtained by the 

model for visiting business travellers, despite the fact that this model has only one 

randomly distributed coefficient. It should be noted that, although the gains in 

model fit obtained by the MMNL models are statistically significant, they are quite 

modest. As such, the differences in prediction performance between the two model 

structures are very low in the present context. 

The main reason for presenting the results for the airport choice study in this 

context is to allow for an illustration of the differences in performance with the multi-

dimensional models used in the remainder of this analysis. As such, the substantive 

results of these single-dimensional models are of little interest; trade-offs calculated 

on the basis of the MNL and MMNL estimates are discussed at great length by Hess 

& Polak (20056), and are not reproduced here. 

9.3.2 M o d e l p red ic t ion p e r f o r m a n c e 

To give an account of the prediction performance of the models estimated above, 

the four MMNL models were applied to the estimation and validation samples^"^. 

From this, probabilities were obtained for each respondent for each of the three al-

ternatives, on the basis of which the average probability of correct prediction was 

calculated. It is important to note that this is different from the unreliable per-

'^The ASC for OAK was normalised to zero. 
'•'The estimates of the MNL models are of Httle interest in the present context; they are discussed 

in detail by Hess & Polak (20056). 
•̂•'Very similar performance was obtained with the MNL models, which was to be expected on 

tlm ba,siR of the small differences in model fit. As such, these results are not reproduced here. 
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Resident Resident Visitor Visitor 
business leisure business leisure 

Parameter est. (t-stat.) est. (t-stat.) est. (t-stat.) est. (t-stat.) 
Fare (common) - -0.0475 (-3.8) - -0.0477 (-3.7) 

Fare (inc. < $21,000) -0.043 (-2.55) - - -

Freq. (common) 1.9469 (5.6) 1.8333 (5.7) 1.8881 (7.7) -

Freq. (inc. < $44,000) - - - 1.9701 (5.2) 
Freq. (inc. > $44,000) - - - 3.0328 (5.2) 

Access time c -1.8571 (-15.5) -1.8916 (-17.1) -1.9706 (-20.6) -1.9669 (-13) 
Access time s 0.6742 (4.3) 0.5102 (3.6) 0.9373 (5.4) 0.6934 (5.5) 
Access time jU -0J96 -0.1718 -0.2163 -0.1779 
Access time a &1487 0.0937 0.2566 &1398 

ASC SFO A! 1.1563 (4.2) 0.9289 (3.9) 0.3632 (2.5) 0.5028 (1.9) 
ASC SFO cr 2.026 (3.6) 1.365 (2.7) - 1.6019 (2.2) 

ASC SJC -0.1045 (-0.5) -0.1515 (-0.8) -0.7767 (-3.7) 0.7784 (2.8) 
Observations 1,140 1̂ W7 1,142 952 
LL (MMNL) -604.03 -659.67 -57^67 -514.62 

adj. f^(0) (MMNL) 0.5121 0.5495 0.5388 0.5003 
LL (MNL) -615.53 -666.22 -592.05 -519.92 

adj. /)^(0) (MNL) 0.5045 0.5464 &5249 0.4972 

Table 9.4: Estimation results for airport choice models in the SF-bay area 

Resident Resident Visitor Visitor 
business leisure business leisure 

Estimation sample 64.3% 68.0% 66.5% 65.9% 
Validation sample 67.6% 66.1% 67.0% 68.3% 

Table 9.5: Prediction performance of MMNL models for airport choice 

centage right measure, which determines imphed choices on the basis of the highest 

choice probabilities, and calculates the percentage of correct predictions. This latter 

measure completely misrepresents the notion of a random utihty model. 

The results of this exercise are summarised in Table 9.5, showing that, except for 

the model for resident leisure travellers, the correct prediction performance on the 

validation sample is actually sUghtly higher than that obtained with the estimation 

sample, suggesting that the models have not been overfitted to the estimation data, 

and are capable of offering good performance on unknown data. This notion is 

also supported by additional results by Hess & Polak (20056) which show good 

performance in the recovery of the market shares in the validation sample. 

9.3.3 S u m m a r y of f indings for a i r p o r t choice s t u d y 

In hne with previous research, the analysis described in this section has shown that 

there exist significant influences on airport choice due to access time and frequency 

of service. Additionally, for some parts of the population, the analysis has retrieved 

a, signilicant effect associated with air-fares. The results also indicate that tliere 
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are differences across travellers in their sensitivity to these factors, and that while 

differences in sensitivity to fare and frequency can be adequately accommodated by 

deterministic market segmentation, the sensitivity to access time additionally varies 

randomly within these market segments. 

9.4 Mul t i -d imens iona l choice process 

In this section, we describe the models fitted during the various analyses using a 

three-dimensional formulation of the choice set. We first discuss the structure of 

th(! choice set in Section 9.4.1, and the base specification of the utility function in 

Section 9.4.2. We then turn our attention to the different models used, namely 

MNL in Section 9.4.3, the different nesting structures in Section 9.4.4, and MMNL 

in Section 9.4.5. The substantive results for the different model structures are 

compared in Section 9.4.6, with model validation carried out in Section 9.4.7. All 

models presented in this section were estimated with the help of ALogit̂ ®, where, in 

the case of the NL models, appropriate "dummy" correction levels were introduced 

to ensure consistency with utility maximisation (c.f. Koppelman & Wen 1998)̂ ®. 

9.4.1 S t r u c t u r e of choice set 

The final sample contains data on 3 departure airports, 8 airlines, and 6 access-

modes, leading to 144 distinct triplets of alternatives. Given the three-dimensional 

choice set, any given alternative shares the attributes of 73 other alternatives along 

a single dimension of choice, and shares the attributes of 14 alternatives along two 

such dimensions. For each observation, data on the attributes and availability of 

the elementary alternatives (i.e. airport, airline and access-mode) were appended 

to the survey data. The attributes and availability of the access-modes depend on 

the ground-level origin of a traveller, while the attributes and availability of the 

different airline options depend on the choice of destination (where not every airline 

operates from each airport to all 14 destinations used). The days of week were taken 

into account in the definition of the attributes and availability of the different flight 

options, as was the season (August or October), while peak and off-peak aspects 

were taken into account for the access-journey attributes. After adding in airport-

specific attributes, the combination into triplets of alternatives was performed via 

the specification of utilities, where the availability of a triplet of alternatives is given 

•""See www.hcg.nl 
'"As an additional check, the models were later re-estimated with BIOGEME, which uses an 

im]ilomontation of the UMNL model. The results obtained with the UMNL specification were 
identical to those obtained with the NNNL specification with additional dummy-levels in ALogit. 

http://www.hcg.nl
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by simple multiplication of individual availabilities. 

9.4.2 B a s e speci f ica t ion of u t i l i ty f u n c t i o n 

The base specification of the utility function was identical across the different model 

structures used, but there are some differences across population segments in terms 

of what attributes had a significant impact on choice behaviour. These differences 

are highlighted in the discussion of the estimation results for the MNL models in 

Section 9.4.3. 

At this point, it should be noted that the multi-dimensional study uses six such 

population segments, instead of the four used in the simple study of airport choice. 

This is based on preliminary results showing differences between respondents on 

holiday-related travel, and those visiting friends or relatives (VFR). As such, three 

purpose-specific segmentations were used (business, holiday, VFR), which, together 

with the division into residents and visitors, led to six separate groups, and by 

extension, models. 

For each model, attempts were made to include coefficients showing travellers' 

sensitivity to various attributes of the airports, airlines and access-modes. Thanks to 

the disaggregation into three-dimensional data, the number of attributes for which 

significant differences existed across alternatives (and which could thus be expected 

to influence choice behaviour) was much higher. The set of potential explanators 

used in the specification search included factors such as flight frequency, flight time 

(block time, which indirectly takes into account airport congestion), fare and air-

craft type (jet vs turboprop), as well as access time (in-vehicle), walk time to access-

mode (e.g. to public transport station), wait time for access-mode and access cost. 

In each case, attributes are specific to individual alternatives (e.g. no aggregation 

across airlines). However, two simplification were used in model specification, com-

ing in the use of generic coefficients along the access-mode dimension, and along 

the airline dimension, such that any characteristics specific to a given access-mode 

or aircraft-type are captured solely by the appropriate constants. The use of sepa-

rate c.oefflcie.nts for different modes along the access-mode dimension and different 

aircraft-types along the air-travel dimension remains an avenue for future research. 

Both linear and various non-linear specifications of the various explanatory vari-

ables were tested. The best results were obtained with the use of a logarithmic 

transform, this however only led to an improvement in model fit when appUed to 

flight frequency, whereas non-linear specifications of flight time, in-vehicle time, 

access walk time, wait time and fare led to unsatisfactory results. Also, some po-

tentially important influences, such as carrier loyalty, could not be explored, due 



9.4. Multi-dimensional choice process 213 

to lack of data (e.g. no information on frequent flyer programmes), while, in the 

presence of national flights only, the notion of allegiance to the national carrier does 

not apply. Similarly, it was not possible to identify a significant direct effect of the 

on-time performance of airlines or airports on the respective choice probabihties. 

Attempts were made to segment the population by income, for example in order 

to show different values of time in different income-classes. Three income groups 

were defined, segmenting the population into low income (< $21,000 per annum), 

medium income (between $21, 000 and $44, 000 per annum) and high income (above 

$44,000 per annum). 

A further specification issue that was explored was the influence of past choices 

on choice behaviour (c.f. Windle & Dresner 1995). In the present analysis, we had 

information on the number of flights a given traveller took from each of the three 

SF-bay airports in the past twelve months. For each one of the three airports, a 

coefficient in the utility function was thus associated with the inertia variable for 

that airport, where, to account for cross-effects, coefficients in a given airport's 

utility function were also associated with the inertia variables of the remaining 

two airports. Clearly, some normalisation is required in this case, so that, aside 

from three airport-specific inertia coefficients, inertia coefficients associated with 

SJC and OAK were included in the utility of SFO, while a coefficient associated 

with SFO was also included in the utility of SJC, and no cross-coefficients were 

included in the utility of OAK-alternatives. The inclusion of these variables did in 

each case, as expected, lead to dramatic improvements in model fit, where the gains 

were even more significant when using a log-transform, such that this approach was 

adopted. It should of course be noted that the inclusion of these coefficients could 

lead to problems with endogeneity, as the values of the past choice indicators may be 

closely correlated with the other explanatory variables and with unobservables. The 

dependence on past choices would also make this approach inapplicable in the case 

where the model was used for forecasting. However, this is not the main purpose of 

the present analysis; furthermore, in each one of the models used, the values of the 

remaining coefficients remained largely unaffected, suggesting that the inclusion of 

these inertia terms did not introduce major bias. 

Finally, it should be noted that a non-standard specification of constants was 

used in these models. With a full set of ASCs, 144 constants would be needed, of 

which 143 could be estimated. This approach however led to severe identification 

problems, which are at least partly caused by the low representation of certain 

triplets of alternatives, in terms of inclusion in the choice sets, and even more so 

in terms of actual choices. It was found that better performance, with notably 

fewer identification problems, was obtained by an alternative approach, which takes 
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Business Holiday VFR(t) 
est. t-stat. est. t-stat. est. t-stat. 

Access cost - - -0.0208 -2.21 -0.0223 -2.29 
Access cost, > $44,000 p.a. -0.0244 -&86 - - - -

Access cost, < $44,000 p.a. -0.0358 -4.17 - - - -

In-vehicle time -0.0522 -12.13 -0.0594 -12.94 -0.0490 -9.43 
Walk time, > $44,000 p.a. -0.1531 -2.97 - - - -

Walk time, < $44,000 p.a. -0.1139 -2.47 - - - -

Fare - - -0.0131 -1.9 -0.0267 -3.03 
Flight time -0.0471 -2.37 - - - -

Flight frequency 1.3183 10.77 1.3235 &35 1.4447 7^7 
Turboprop -2.5296 -&2 -4.2294 -2.7 - -

OAK on OAK 1.9993 9.44 2.1024 5.09 2.2919 5.24 
g SFO on SFO 1.1830 9.62 L1887 7^9 2.0488 8.83 
^ SJC on SJC 1.9641 8.49 2.5909 5.04 3.1690 5.87 
'-g OAK on SFO 0.6620 3.37 0.8328 1.98 0.4413 1.02 
g SJC on SFO 0.7845 3.68 L4302 2.71 0.5574 1.1 
" SFO on SJC 0.1731 1.07 0.1618 0.79 0.0292 0.09 

Observations lfW8 831 641 
Log-likelihood -1551.62 -1384.81 -1050.84 

Adj. /y2(0) 0.5861 0.5112 0.5046 

(0 Visiting friends or relatives 

Table 9.6; MNL estimation results for travellers resident in the SF-bay area 

into account the multi-dimensional nature of the choice set. As such, separate sets 

of ASCs are associated with each of the three dimensions, leading to 3 airport 

constants, 8 airhne constants, and 6 access-mode constants, where, in each group, 

one constant was normalised to a value of zero, leading to 14 estimated ASCs. 

This approach enables identification of the models, but this comes at the cost of a 

violation of the zero-mean assumption for the unobserved part of utility, which is 

however not avoidable. 

9.4.3 M N L mode l s 

111 the following paragraphs, we describe the findings of the analysis fitting MNL 

models to the six separate estimation datasets. The results of the various models 

are summarised in Table 9.6 for residents and Table 9.7 for visitors, where in each 

case, all estimated parameters aside from the ASCs are reproduced. The models 

presented here are the same as those estimated by Hess & Polak (20045). Where 

not mentioned otherwise, the absence of a segmentation by income means that 

differences in the estimated coefficients were not significant across groups, while the 

absence of a specific coefficient means that a significant effect for the associated 

attribute could not be retrieved. 
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Business Holiday VPR(t) 
est. t-stat. est. t-stat. est. t-stat. 

Access cost - - -0.0145 -1.66 - -

Access cost, > $44,000 p.a. -0.0219 -2.55 - - - -

Access cost, < $44,000 p.a. -0.0286 -3.94 - - - -

In-veh. t ime - - -o.onw -13.22 -0.0698 -11.06 
In-veh. time, > $21,000 p.a. -0.0820 -14.43 - - - -

In-veh. time, < $21,000 p.a. -0.0496 -7.18 - - - -

Wait time -0.2507 -3.28 - - - -

Fare, < $21,000 p.a. - - - - -0.0501 -3.55 
Fare, [$21,000, $44,000] p.a. - - - - -0.0267 -1.95 

Flight time -0.0293 -1.39 -0.0908 -&42 -0.1522 -5.12 
Flight frequency 1.3066 11.34 1.0783 7.51 0.7244 4.41 

OAK on OAK 1.1881 6.57 1.2529 2.9 1.3899 2.96 
SFO on SFO 1.9324 9.39 0.7514 3.97 1.0991 3.35 

•S SJC on SJC L3973 6.1 2.0564 4.42 2.2569 4.17 

k 
OAK on SFO -0.7172 -3.36 -0.4741 -0.99 &1887 0.35 

g SJC on SFO 0.0075 0.03 0.8318 1.86 -0.1219 -0.17 
M SFO on SJC &5032 2.38 -0.1084 -&34 0,1809 0.42 

Observations 1,057 534 421 
Log-likelihood -1517.68 -1018.25 -621.81 

Adj. p2(o) 0.4379 0.3725 0.5044 

(T) Visiting friends or relatives 

Table 9.7: MNL estimation results for travellers not resident in the SF-bay area 

MNL model for business trips by residents 

The estimation dataset contains information on 1,098 business trips by residents. 

The estimation process revealed significant effects of walk access time, access cost, 

in-vehicle access time, flight time and frequency. Additionally, a significant negative 

effect could be associated with turboprop flights. No meaningful and significant 

effect of fare could be identified, even after taking into account income. This can 

mainly be explained by the poor quality of the fare data, but could also signal 

indifference to fare increases on the part of business travellers. It was possible to 

segment the sensitivity to walk time and access cost by income, although, given very 

low differences between the estimates in the low and medium income group, only 

two coefficients were retained, one for people earning less than $44,000 per annum, 

and one for the remaining travellers. The results show lower sensitivity to cost for 

people with higher income, along with higher sensitivity to increases in walk time. 

In terms of the airport-inertia variables, the estimates show positive direct effects 

for all three airports, with positive cross-effects of past usage of SJC and OAK on 

the utility of SFO, and a positive (but not significant) cross-effect of past usage of 

SFO on the utility of SJC. 
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MNL model for business trips by visitors 

The estimation dataset contains information on 1,057 business trips by visitors. Just 

as in the case of resident business travellers, no significant impact of fares could be 

identified. In-vehicle access time and access cost are again significant, and negative, 

with increasing sensitivity to in-vehicle access time with higher income (only two 

groups could be used) and lower sensitivity to cost with higher income (two groups 

only). Whereas it was not possible to estimate a significant effect of wait time 

for resident business travellers, a significant negative effect could be identified for 

their non-resident counterparts. However, the estimate for flight time is no longer 

significant at the conventional 95% level, and it was not possible to include an effect 

of equipment type, as flights using turboprop planes were never chosen. Also, with 

this model, no effect could be associated with access walk time, while frequency 

again has a strong positive effect. Finally, unlike in the model for resident business 

travellers, the inertia cross-effect of past flights at OAK has a negative effect on the 

utihty of SFO, while the cross-effect of past flights at SJC on the utility of SFO is 

now no longer signiflcantly different from zero, while there is a positive cross-effect 

of SFO acting on the utihty of SJC. 

MNL model for holiday trips by residents 

The model estimated on the 831 observations for residents' holiday trips suggests a 

lower utihty for flights using turboprop aircraft, negative impacts by access cost and 

in-vehicle time, and a positive effect of flight frequency. All inertia coefficients are 

positive, though the cross-effect of past fiights at SFO on the utihty of SJC is not 

significant. Finally, for this group of tiavellers, a negative effect could be identifi(;d 

for fare (although of lower statistical significance) while no effect could be associated 

with flight time and access walk time. No significant gains could be made through 

segmenting the population by income for any of the coefficients. 

MNL model for holiday trips by visitors 

For the 534 visitors on holiday trips, no significant effect of fare could be identified, 

and the effect of access cost, although of the correct sign, is not significant at the 

95% level. In-vehicle time has a significant negative effect, as has fiight time, while 

increases in frequency lead to increases in utility. The inertia variables show a 

positive cross-effect of past fiights at SJC on the utility of SFO, while the other two 

cross-effect estimates are not significant. Finally, the aircraft-type coefficient had to 

be (excluded from the model (turboprop fiights never chosen), wlnle no effect could 

I'e identified for wait time, and segmentations by income did not lead to any gains 
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in model fit. 

MNL model for V F R trips by residents 

The estimates for the model fitted to the sample of 641 residents on VFR. trips 

show significant negative effects of access cost, in-vehicle time and air-fare, along 

with positive effects of flight frequency. The cross-effect inertia variables are not 

significant, equipment-size could not be included and no effects could be identified 

for walk time, wait time and flight time, while segmentations by income led to a 

loss of information in the model. 

MNL model for V F R trips by visitors 

The final subsample used in the estimation of the MNL models contains information 

on 421 VFR trips by non-residents. The results show negative impacts of fare 

ni the medium and low income classes (with higher sensitivity in the low income 

class), while the effect for high-earners was not significant and was dropped from the 

model, fn-vehicle time and flight time have a negative effect, with a positive effect 

for frequency increases. Again, the cross-effect inertia variables are not statistically 

significant, while no effect could be associated with access walk time, wait time;, and 

access cost, and the turboprop coefficient had to be excluded. 

Summary of MNL results 

The discussion of the MNL results has revealed that there are important differences 

across the six segments in the optimal specification of utility. The common point 

across all segments is that a logarithmic specification is always preferable to a linear 

specification in the case of the frequency and inertia coefficients, and that in-vehicle 

access time and flight frequency are the main factors influencing choice. Significant 

(effects of air-fare! could only be identified for resident holiday and VFR, travellers, 

a,s well as for visiting VFR travellers, where there are also differences across income 

groups in fare-sensitivity. In terms of model fit (on the basis of the adjusted sta-

tistic), the models for residents perform better than those for visitors for business 

and holiday trips, while for VFR trips, there is no significant difference in perfor-

mance. This relates to the; point made in Section 8.2.2 about the greater difficulties 

involved in analysing choice-behaviour by non-residents. 

9.4.4 N e s t i n g s t r u c t u r e s 

We next turn our attention to the estimation of NL models, where the findings de-

scribed in this section are those reported by Hess & Polak (20046). The discussion 
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reports the results of three separate sets of NL models, nesting the alternatives by 

airport, airline and access-mode respectively. The use of the six possible multi-level 

structures (c.f. Section 8.4.3) was also explored, but none of them led to satisfac-

tory results, where in general, the models collapsed back to a two-level structure, 

suggesting that a multi-level structure is not applicable with the current data and 

specification of the choice set^'. As such, the analysis is hmited to the use of two-

level structures, nesting the alternatives either by airport, air hue, or access-mode. 

Ill each case, the specification of the NL model corresponds to that of the associatcnl 

MNL model, although there is an occasional drop in the significance level of the 

estimated parameters, which does suggest some interaction between observed and 

unobserved utility. Given the high number of models and estimated parameters, and 

the fact that the specification corresponds to that of the MNL model, the results 

presented in this section are limited to the findings in terms of nesting structure and 

model performance. The substantive differences between the NL and MNL models 

are illustrated in the comparison of trade-offs in Section 9.4.6, which also allows for 

a comparison with the MMNL results. 

Nesting by airport 

The first set of models nest the alternatives by airport, leading to 48 alternatives 

per nest (8 airlines and 6 access-modes). The results are summarised in Table 9.8 

(using Xk to define the structural parameter of airport nest k), with t-statistics for 

the structural parameters (calculated wrt 1) given in brackets. For comparison, the 

table again gives the final log-likelihood of the corresponding MNL models, and 

the adjusted measure for the MNL and NL models, which takes into account 

the extra cost in terms of estimated parameters. The results show that, for every 

single model, the structural parameter of the nest containing the SFO alternatives 

had to be constrained to a value of 1, as it would otherwise have exceeded this 

value, becoming inconsistent with utility maximisation. This suggests that there 

is no heightened correlation between the different alternatives available from SFO. 

Except for the case of visitors on VFR trips, where the structural parameter for 

OAK had to be constrained to 1, the estimates for the structural parameters of the 

other two airports are always below 1, although there are cases where the difference 

is not statistically significant. 

There are differences across models in the values of the structural parameters. 

'"It should be noted that Pels et al. (2003) succeeded in estimating three-level models on the 
sarno data. This is an indication that the differences that arise between studies in terms of auxiliary 
data and utility specification can have a significant impact in terms of the processes that can be 
included in the observed part of utility, hence also changing the structure in the unobserved part 
of utilitv. 
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Resident Visitor 
Business Holiday VFR(t) Business Holiday VFR(t) 

LL(MNL) -1551.62 -1384.81 -1050.84 -1517.68 -1018.25 -621,81 
LL(NL) -1545.14 -1372.19 -1039.67 -1487.71 -999.51 -621.62 

ad]. / (O) (MNL) 0.5861 0.5112 0.5046 0.4379 0.3725 0.5044 
adj. f f (o) (NL) 0.5873 0.5148 0.5088 0.4481 0.3826 0.5038 

^sfo 1 
0.78 (4.02) 
0.89 (1.64) 

1 
0.76 (4.08) 
0.73 (4.61) 

1 
0.67(5.5) 
0.78 (3) 

1 
0.53 (10.64) 

0.72 (3.7) 

1 
0.44 (8.79) 
0.74 (2.24) 

1 
0.93 (0.63) 

1 

T-statistics wrt 1 

(t) Visiting friends or relatives 

Table 9.8: Estimation results for NL model using nesting by airport on SF-bay area 
data 

and also in the relative values of the structural parameters for the SJC and OAK 

nests (although SJC is generally lower than OAK), suggesting differences between 

the different groups of travellers. In terms of model fit, the use of the NL models 

leads to a significant increase in log-likelihood, except in the case of visitors on VFR 

trips, where the log-likelihood is virtually identical to that of the MNL model, as 

is the NL model itself, given that the structural parameters for SFO and OAK are 

equal to 1, while the structural parameter for SJC is very close to 1. Except for 

VFR trips, the improvements in model fit are more important for visitors than for 

residents, and the lower structural parameters for visitors on business and holiday^® 

trips suggest a lower substitution effect between airports (i.e. higher correlation for 

alternatives sharing an airport) than is the case for residents. 

Nesting by airline 

The lack of information on frequent-flier programme membership and other airline-

specific attributes means that there should be some correlation in the unobserved 

part of utility between different alternatives that refer to the same airline. As such, 

it is of interest to attempt to use a nesting structure that uses a single nest for each 

airline, leading to 8 nests, with 18 alternatives each. The results of this analysis, 

which are summarised in Table 9.9 (using tti to define the structural parameter of 

airline nest /), show that a comparatively high number of structural parameters 

had to be constrained to a value of 1, while many others are not statistically dif-

ferent from 1. Nevertheless, again except for the model for visitor VFR trips, the 

use; of the NL model resulted in a significant improveni(;nt in model fit over tlie 

MNL model. Also, the great variability in the values of the structural parameters 

18 Only for SJC. 
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Resident Visitor 
Business Holiday VFR(+) Business Holiday VFR(t) 

LL(MNL) -1551.62 -1384.81 -1050.84 -1517.68 -1018.25 -621.81 
LL(NL) -1536.66 -1371.21 -1034.07 -1507.62 -1003.93 -620.24 

adj. p^(0) (MNL) 0.5861 0.5112 0.5046 0.4379 0.3725 0.5044 
adj. / (O) (NL) 0.5890 0.5141 0.5105 0J^W4 0.3770 0.5018 

TTAI 0.95 (0.25) &92 (0.32) 1 0.96 (0.14) 0.7 (1.34) 1 
'^a2 0.61 (4.59) &78 (1.05) 0.87 (1.47) 0.98 (0.16) 0.62 (4.62) &86(L17) 

1 1 0.86 (0.43) 0.89 (0.36) 0.77 (1.17) &85(0.61) 
1 1 1 0.65 (2.22) 0.72 (1.07) 0.68 (1.25) 

t^ab 0.74 (3.35) &74(&,66) 0.63 (3.92) &63(&22) 0.39 (4.97) 1 
1 0.9967 (0.03) 1 1 0.68 (2.44) 0.79 (2.13) 

t^a7 1 1 1 1 1 1 

TTAS 0.84 (0.9) 0.72 (3.28) 0.67 (1.35) 0.79 (1.13) 0.53 (7.01) 0.84 (0.71) 

T-statistics wrt 1 

(T) Visiting friends or relatives 

Table 9.9; Estimation results for NL model using nesting by airhne on SF-bay area 
data 

for given airlines across the different models suggests significant differences in the 

cross-elasticities in the different models. It can be observed that airlines A5 and 

.48 on average have lower structural parameters than the other airlines. This could 

at least be partly related to the fact that these two carriers run a low-cost airline 

scheme; the product offered by these airlines is different from that offered by other 

airhnes, which increases the scope for correlation. As suggested in Section 8.4.3, an 

interesting avenue for future research is to explore the correlation between alterna-

tives on different low-cost airlines; here, the scope for such an extension was very 

limited, given the low number of observations for airline A5 relative to v48, and the 

Umited route-overlap of the two airhnes. 

Nesting by access-mode 

The results of the analysis using nesting by access-mode are summarised in Ta-

ble 9.10 (using to define the structural parameter of access-mode nest m). In 

many regards, nesting by access-mode proved to be the most promising approach, 

as, unlike the approaches using nesting by airport and airline, the present nesting 

approach leads to significant increases in model fit across groups, including for VFR 

trips by visitors. Also, in total, only three of the structural parameters had to be 

constrained to a value of 1, although some of the estimated structural parameters 

are not statistically different from 1, while it should also be noted that some of 

the structural parameters are surprisingly close to zero. Except for the model for 

l)usiness trips by visitors (for whom the car and rental car market shares are lower 
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Resident Visitor 
Business Holiday VFR(t) Business Holiday VFR(t) 

LL(MNL) -1551.62 -1384.81 -1050.84 -1517.68 -1018.25 -621.81 
LL(NL) -1520.42 -1351.18 -1007.20 -1508.79 -1004.26 -603.07 

ad]. / ( O ) (MNL) 0.5861 0.5112 0^&# 0JKI79 0.3725 0.5044 
adj. p"(0) (NL) 0.5930 0.5207 0.5224 0JW90 0.3774 0.5149 

^I'car 0.18 (15.6) 0.13 (20.9) 0.13 (21.6) 0.45 (7.4) 0.16 (11.8) 0.09 (22.0) 
^scheduled 0.19 (10.5) 0.18 (8.9) 0.05 (39.9) 0.64 (1.2) 0.15 (7.6) 0.8 (0.3) 

^transit 0.31 (5.3) 0.3 (5.1) 1 0.25 (4.6) 0.33 (2.6) 0.02 (49.1) 
^ d,oor—2~door 0.29 (6.3) 0.18 (12.3) 0.18 (9.2) 0.5 (1.6) 0.16 (11.8) 0.12 (12.6) 

^ taxi 0.13 (19.7) 0.09 (29.3) 0.17 (10.5) 0.38 (7.2) 0.16 (11.8) 0.05 (27.9) 

limousine 1 0.22 (5.6) 0.31 (5.1) 0.36 (4.6) 0.25 (3.9) 1 

T-statistics wrt 1 

('i') Visiting friends or relatives 

Table 9.10: Estimation results for NL model using nesting by access-mode on SF-bay 
area data 

than for other groups), the structural parameter for car is always very low, partly 

reflecting travellers' strong allegiance to car as an access-mode. A comparably con-

stant low structural parameter is observed for the taxi nest, while the structural 

parameter for the scheduled nest especially varies widely across models. Finally, 

it should be noted that, for holiday trips by visitors, the structural parameters of 

the car, door-to-door and taxi nests were constrained to have the same value, given 

that the initial estimates were almost indistinguishable. This led to a drop in the 

log-likelihood by a mere 0.028 points. 

Summary of NL results 

The analysis has shown that some gains in model fit can be obtained by using 

a nesting structure, although these gains are often not as significant as expected. 

This could be due to two very distinct reasons. NL models differ from the MNL 

model in that they accommodate correlation between the unobserved components 

of utility. The first explanation interprets the similarity in the performance of the 

two models as an endorsement of the MNL models, suggesting that the (observed) 

utility specification used in the models captures almost all of the correlation in utility 

across alternatives, reducing the scope for the NL model to capture any correlation 

patterns in the remaining unobserved part of utility. An alternative explanation 

is based on the reasoning that the specific nesting structures used are little better 

that the MNL model in capturing the true structure of the underlying correlations 

in the unobserved component of utility. The same conclusion would extend to the 

multi-level NL structures initially explored. It is not clear from the empirical results 
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alone which of these potential explanations is most appropriate. 

Although the gains in model fit were not as important as expected, several 

conclusions can be drawn from the analysis discussed above. First, there seem to 

be important differences across population groups in the values of the structural 

parameters. This suggests that gains in performance could be made by using a 

modelling structure in which the structural themselves vary across respondents, 

either deterministically, as in the COVNL model of Bhat (1997), or in a random 

fashion, as described in Chapter 7. Secondly, the results indicate, diffcreuc.es in 

performance between the three nesting structures across the six datasets used. As 

such, the models using nesting by access-mode lead to the best performance for the 

three datasets with resident travellers, while for visitors, this is only the case for 

VFR, trips, with nesting by airport leading to the best performance for business and 

holiday trips. This again suggests differences in behaviour between residents and 

visitors. The fact that nesting by airport produces the best results in two out of the 

three models for visitors could for example reflect the presence of additional effects 

linked with access-distance, which could suggest that these travellers often simply 

choose the airport that is closest to their intended ground-level destination (keeping 

in mind that the chosen airport is actually their arrival airport from the outbound 

leg). Finally, nesting by airhne never leads to the best performance. 

Cross-nesting structures 

A final issue that needs to be discussed in the context of nesting models is the 

use of cross-nesting structures for the joint analysis of correlation along the three 

dimensions of choice, as discussed in Section 8.4.3. Given the above results in terms 

of correlation along either of the three dimensions, and the inability to estimate 

multi-level models, the use of cross-nesting structures has a lot of appeal in this 

context. 

However, efforts by Hess (2004) to estimate a CNL model on the present data 

(resident business travellers only) led to inconclusive results, and as such are not 

reproduced here, rather giving preference to the more in-depth discussion of CNL 

structures in the London case-study (Chapter 10). The experiments conducted on 

this data showed that it is almost inevitable to constrain the allocation parameters to 

take on values of such that an alternative belongs in equal parts to one airport, 

one airhne and one access-mode nest^°. Furthermore, while the results indicate 

heightened correlation along each of the three dimensions of choice, hence justifying 

'•'The actual estimation of the allocation parameters not only leads to huge increases in com-
putational cost, but the associated rise in the number of estimated parameters means that any 
improvements in model fit arc not likely to be statistically significant. 
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the use of a cross-nesting approach, the model only offers significant improvements 

in performance over the NL models using nesting by airport or by airline. Indeed, 

the improvements offered over the NL model using nesting by access-mode are not 

statistically significant, when taking into account the higher number of estimated 

parameters, even after constraining the allocation parameters. This result reinforces 

the findings from the NL analysis, in that nesting by access-mode is the most fruitful 

approach. On the other hand, the fact that heightened correlation was found jointly 

along multiple dimensions shows the structural advantages of the CNL model over 

NL models, with which, in the present analysis, it was not possible to retrieve 

correlation along more than a single dimension. 

9.4.5 M i x t u r e s t r u c t u r e s 

The final part of the estimation analysis looks at the use of mixture models, where, 

in the present context, the analysis was limited to the use of MMNL models, and 

where the random structure of the model was used solely for expressing random taste 

heterogeneity across respondents, and not heteroscedasticity or inter-alternative cor-

relation. This analysis is partly based on work by Hess & Polak (2005 a), where that 

study was however hmited to the segment of resident business travellers, and also 

made use of a less detailed specification of the utility function, notably in the form 

of no interactions with income. 

The specification of the MMNL models for the six separate population segments 

was based on the respective MNL specifications. With this approach, two important 

points need to be addressed. Firstly, it can be seen that, with the present specifica-

tion, the use of randomly distributed ASCs would have led to a model approximating 

a nesting structure. This was not the aim of the analysis, such that the ASCs were 

kept fixed, and the same normalisation could continue to be used^°. The second 

point that needs to be addressed is the potential of attributes having a significant 

effect in MMNL models where this was not the case in the MNL models. This can 

be explained on the grounds that the mean effect of an attribute in the population 

might not be significant, while the attribute does however have a significant effect 

for part of the population in such a way that a simple segmentation cannot account 

for it. No such effects were identified in the specification search, such that the utility 

function in the MMNL model is indeed based on the MNL specification, a fact that 

facilitates model comparison. 

The main aim of this analysis is to test for the prevalence of random taste het-

erogeneity, and to demonstrate the applicability of the MMNL model to the joint 

-"In models using a random distribution for some of the ASCs, the normalisation is no longer 
JU'liitrary. 
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analysis of airport, airline and access-mode choice. As such, the policy imphcations 

are of lesser importance, enabling certain simplifying assumptions to be made for 

th(! analysis. The first of these comes in the use of the Normal distribution for 

all parameters that follow a random distribution. This can lead to problems with 

interpretation (c.f. Chapter 4), and these are highlighted at appropriate places in 

the text. In the present context, the advantages of the Normal distribution from a 

computational point of view are very significant, where, in the one-dimensional ap-

plication described in Section 9.3.1, the use of the Lognormal distribution was made 

possible by the much lower number of alternatives (3 compared to 144). Even with 

the use of the Normal distribution, the computational costs were non-trivial'^^, as a 

sufficiently high level of precision for the simulation process had to be guaranteed. 

The second major simplification used in the analysis is an absence of an explicit 

investigation into the correlation between randomly distributed coefficients; again, 

this would be an important component of a more pohcy-oriented analysis. 

In the analysis, attempts were made to identify variations across respondents 

in all estimated parameters except for the ASCs. In practice, only a subset of 

parameters exhibited significant levels of variation. As an example, no variation 

was found in any of the inertia coefficients, across all six models. Higher levels of 

variation would be expected with the use of SP data, partly because of the greater 

quality of the level-of-service data, but also because of the presence of multiple 

olDservations for each respondent (c.f. Chapter 11), where this latter point can also 

apply in the case of "travel-diary" RP data. 

The results of the MMNL analysis are summarised in Table 9.11 for residents, 

and Table 9.12 for non-residents. The findings in terms of specification are dis-

cussed in the remainder of this section, with the substantive conclusions presented 

in conjunction with those for the other models in Section 9.4.6. 

MMNL model for business trips by residents 

hi the MMNL model for resident business travellers, 4 coefficients were found to 

exhibit significant levels of random variation across respondents, namely those as-

sociated with access cost in the high income group, in-vehicle access time, flight 

frequency, and the turboprop dummy variable. With 4 additional parameters, the 

MMNL model offers an improvement in LL by 7.69 units, which, with an associ-

ated xa p-value of 0.004 for the LR-test. is statistically significant, yet far from 

•spectacular. 

Several points deserve some further attention. The first one of these relates 

1,0 the mean coefficient associated with the turboproj) dummy, where the level of 

21 Of the order of several days. 
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Business Holiday VFR(t) 
est. t-stat. est. t-stat. est. t-stat. 

Access cost - - -0.0220 -2.36 -0.0255 -2.62 

Access cost, > $44,000 p.a. ^ 
(7 

-0.0590 
0.0402 

-3.33 
3.38 

- - - -

Access cost, < $44,000 p.a. -0,0441 -4.60 - - - -

Access in-vehicle time ^ 
a 

-0.0600 
0.0328 

-9.33 -0.0691 
0.0355 

-11.19 -0.0637 
0.0510 

-7^8 
5.56 

Walk time, > $44,000 p.a. -&1532 -2^3 - - - -

Walk time, < $44,000 p.a. -&1203 -2.55 - - - -

Fare - - -0.0139 -1.92 -0.0324 -3.19 
Flight time -0.0546 -&57 - - - -

Flight frequency ^ 1.4892 
0.5808 

8.58 
2 J j 

1.3454 9.25 1.5080 7.77 

Turboprop 
f t 

-5^%43 
3.6785 

-L65 
1.84 

-4.4751 -2.79 ; -

OAK on OAK 2.1207 8^3 2.1780 4.99 2.5157 5.11 
SFO on SFO 1.2454 9jW 1.2125 7.80 2.1368 8J^ 
SJC on SJC 2.1619 8IW 2.6980 5.11 3.6434 6.05 

U 
OAK on SFO 0.7037 3jW 0.8982 2IW 0.5855 1.21 

qj 
a SJC on SFO 0.7825 3.47 1.4323 2.65 0.6153 1.14 
1—1 SFO on SJC 0.1063 0.59 0.0870 0.40 -0.1085 -0.29 

Observations 1,098 831 641 
Log-likelihood -1543.93 -1379.36 -1044.11 

Adj. p 2 ( o ) 0.5871 0.5127 0.5073 

('I') Visiting friends or relatives 

Table 9.11: MMNL estimation results for travellers resident in the SF-bay area 

significance has dropped to the 90% level, with the associated standard deviation 

being significant at the 93% level. The significance level of many of the other 

coefficients can in fact be observed to have increased slightly when compared to the 

MNL model. 

The second point relates to the impact of using a Normal distribution for the 

randomly distributed coefficients. The effects in this case are benign, given the 

purely research-oriented nature of the analysis, with, in the worst affected case, 

namely the access cost coefficient in the high income group, a probability of 7% of 

a wrongly-signed coefficient. 

One final point that needs addressing is the effect of using a random distribution 

for the access cost coefficient for only part of the population. Indeed, by comparing 

the r(!sults to the MNL results, it can be seen that the mean vahie of the affectc^d 

coefficient increases substantially (also from a relative point of view). This means 

that the mean cost-sensitivity in the high income group now exceeds the fixed cost-

sensitivity in the low income group, which is not consistent with intuition. Attempts 

to account for heterogeneity in cost-sensitivity in the low income group led to a 

comparable increase in the mean sensitivity, hence redressing the balance. However, 
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Business Holiday VFR(t) 
est. t-stat. est. t-stat. est. t-stat. 

Access cost - - -0.0145 -1.67 - -

Access cost, > $44,000 p .a. -0.0227 -265 - - - -

Access cost, < $44,000 p .a. -0.0302 -4.09 - - - -

Access in-vehicle time 
a 

- - -0.0878 -12.16 -0.0920 
0.0493 

-7^8 
3J9 

Ill-vehicle time, > $21,000 p.a. 1'' 
a 

-0.0997 
0.0437 

-9.21 
&13 

- - - -

In-vehicle time, < $21,000 p.a. 
(T 

-0.0760 
0.0600 

-&28 
3.50 

- - - -

Wait time -0.2722 -3.53 - - - -

Fare, < $21, 000 p.a. 
a 

- - - - -0.0984 
0.0827 

-3.50 
2.37 

Fare, [$21,000, $44,000] p.a. M 
(T 

- - - - -0.0518 
0.0644 

-2.32 
1.81 

Flight time A' 
a 

-0.0362 
0.0838 

-1.50 
2.08 

-0.0980 
0.1869 

-3.09 
4.99 

-0.1844 -4.96 

Flight frequency !'• 
a 

1.3712 10.90 1.0978 7.05 1.1720 
1.2995 

4.46 
3.51 

OAK on OAK 1.2962 6I# 1.4686 2.85 1.7573 3.03 

i SFO on SFO 2.1303 8.61 0.8648 4.07 1.3733 3.34 

.5 SJC on SJC 1.6048 &76 2.3851 4.45 3.0187 4.20 

u OAK on SFO -0.7744 -3.11 -&4359 -0.77 0.3912 0.60 
SJC on SFO -0.0852 -&29 0.8448 1.71 -0.0203 -0.02 

M SFO on SJC 0.4245 L72 -0.0629 -&18 0.2029 0.39 
Observations 1,057 534 421 

Log-likelihood -1512.00 -1010.58 -614.66 
Adj. (0) 0.4389 0.3766 0.5068 

Visiting friends or relatives 

Table 9.12: MMNL estimation results for travellers not resident in the SF-bay area 

the associated dispersion coefficient was not statistically significant at any reasonable 

level of confidence, such that a fixed coefficient was used. This observation thus 

serves as an explanation for the counter-intuitive results. 

MMNL model for business trips by visitors 

In the model for business trips by visitors, significant random heterogeneity could 

bo identified for three coefficients, namely the two coefficients associated with in-

vehicle access time, and the coefficient associated with flight time. At the cost of 

these 3 additional parameters, the model offers improvements in LL over the MNL 

model by 5.68 units, giving a xl p-value of 0.0099 for the associated LR-test. In 

this model, the effects of using the Normal distribution are at their worst, leading 

to a probability of a wrongly-signed coefficient of 33% for the flight time coefficient, 

such that extra caution is again required in the interpretation of the model results. 

Similarly, there is a 10% probability of a wrongly-signed coefficient for the access 
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time coefficient in the low income group. 

MMNL model for holiday trips by residents 

The MMNL model for resident holiday travellers retrieves significant random taste 

heterogeneity for a single coefficient, namely the sensitivity to access time changes. 

The model obtains gains in model fit over the MNL model by 5.45 units, with an 

associated xf p-value of 0.00096 for the LR-test. The effects of using the Normal 

distribution are again benign, with a probability of 3% of a wrongly-signed coeffi-

cient. 

MMNL model for holiday trips by visitors 

In the model for hohday trips by visitors, significant random heterogeneity could 

only be retrieved for a single coefficient, namely that associated with flight time. 

While th(! gains in model fit are again statistically significant, with an increase in 

LL by 7.67 units at the cost of just one parameter, the effects of using a Normal 

distribution are again more severe, with a probability of 30% of a wrongly-signed 

coefficient. 

MMNL model for V F R trips by residents 

The observations in the case of VFR trips by residents are very similar to those for 

resident hohday travellers, with significant amounts of random taste heterogeneity 

identified only for the access time coefficient, and statistically significant gains in 

LL by 6.73 units over the corresponding MNL model. In this model, the effects of 

using the Normal distribution are however more severe, with a probability of 11% 

of a wrongly-signed coefficient, where it is thus important to recognise that this is 

almost surely a simple artefact of the Normal distribution, and does not actually 

reveal the presence of respondents with negative VTTS for the access-journey. 

MMNL model for V F R trips by visitors 

In the final MMNL model, (estimated on the data for VFR, trips by visitors, signif-

icant levels of random taste heterogeneity were retrieved for 4 coefficients, namely 

that associated with access time, the two fare coefficients^^, and the frequency coef-

ficient. This leads to an improvement in LL by 7.15, with an associated x'j p-value 

of 0.0064 for the LR-test. In terms of the effects of using the Normal distribution, 

the probability of a wrongly-signed value for the access time coc^ffic.ient is 3%, with 

--The standard deviation in the middle income group is significant only at the 93% level. 
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corresponding probabilities of 12% and 21% for the fare-coefficients in the low and 

middle income groups. Finally, for the frequency coefficient, the probabihty of a 

negative, value is 18%. Again, these observations should be seen as an effect of 

using the Normal distribution, and would lead to requirements for extra care in 

policy-oriented research. 

Summary of MMNL results 

The presentation of the MMNL results has shown that, in each of the six population 

segments, there is sufScient variation in tastes across respondents to allow the mix-

ture models to obtain statistically better model fit than their MNL counterparts. 

However, it should be said that, just as with the improvements offered by the nesting 

approaches, the gains in model fit are relatively modest. Nevertheless, the models 

provide some further insight into choice behaviour, and reduce the risk of biased 

trade-offs^^. 

The discussion has also shown that the success of the mixture structures varies 

across population segments, with the number of random coefficients ranging from 1 

to 4, where the common point in all models, except for visiting holiday travellers, is 

the prevalence of significant variations in the sensitivity to access time. 

In closing, it should be stressed again that the aim of the present analysis was 

mainly one of exploration, and not one of providing adequate trade-olis for use 

in pohcy analysis. As such, the use of the Normal distribution was warranted, 

given its computational advantages. Nevertheless, it is important in this case not 

to misrepresent the findings in terms of imphed bounds on the coefficients, but to 

acknowledge the potential impacts of the distributional assumptions on these results. 

9.4.6 C o m p a r i s o n of s u b s t a n t i v e r e su l t s 

Even though the differences in model fit between the five structures are relatively 

modest, it is conceivable that the actual substantive results vary more significantly 

across models. To illustrate this, a brief analysis was conducted with the aim of com-

paring a common trade-off across models, as well as across population subgroups. 

The only two coefficients that are included in every single model are frequency and 

in-vehicle time, allowing the computation of the willingness to accept increases in 

access time in return for increases in flight frequency. A trade-off that is of more 

practical interest is the VTTS; however, in the present context, the calculation of 

reliable values for this measure is hampered by the use of different income segmen-

"'̂ Tlii.s i.s not nece,ssarily the case with tlie present specification, as it relies on restrictive distri-
butional assumptions, by making use of the Normal. 
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tations, the absence of an access cost coefficient for visitors on VFR trips, and the 

unreliable access cost information^"^. 

The results of this analysis are summarised in Table 9.13, where, given that 

frequency enters the utility under a log-transform, K is used to represent the inverse 

of the current frequency, and where a sign change has been used to represent the 

willingness to accept increases in access time in return for increases in frequency. 

For the closed form models, the trade-off is simply given by the ratio of the two point-

estimates, multiplied by K. The same applies in the MMNL model for holiday trips 

by visitors, where both frequency and access time were treated as fixed coefficients. 

However, in the remaining five population segments, the variation in the coefficients 

needs to be taken into account, especially for the access time coefficient, which 

forms the denominator of the trade-off. Here, a basic simulation approach was 

used, where the aim was simply to produce an estimate of the mean value for 

the trade-off'. The process is made considerably easier by the fact that correlation 

between random coefficients was not taken into account. However, a major issue 

arises because the use of the Normal distribution, and specifically, the presence of 

significant shares of counter-intuitively signed coefficient values in some segments. 

The incorporation of such values in the simulation process would lead to significant 

biag in the calculated mean trade-offs (due to cancelling out effects). For this reason, 

the following approach was adopted. For each randomly distributed coefficient, a 

sample of 1,000,000 random draws from the appropriate Normal distribution was 

produced. This was then censored to exclude counter-intuitively signed values, with 

the same censoring apphed in the other tail, to guarantee that the symmetry remains 

unaffected. To ensure equally sized vectors for both coefficients involved in a trade-

off', the maximum censoring across the two coefficients was used for both coefficients. 

In most cases, only the upper and lower few percentile points had to be removed, with 

the main exception being the model for VFR trips by visitors, where 18 percentile 

points had to be removed from either side. Given the use of this censoring approach, 

the estimated standard deviation for the trade-off' is unreliable, such that only the 

mean values are presented in Table 9.13. 

Th(; first ol)servation that can be made from Table 9.13 is that, ovc^rall, the resiilts 

show a higher willingness to accept increases in access time for residents than for 

visitors. The differences are especially significant in the case of VFR trips, where the 

relative value of frequency increases is at its highest for residents, while it is at its 

lowest for visitors. In terms of purpose-related differences, the results suggest higher 

relative sensitivity to frequency for business travellers than for leisure travellers in 

is a common problem with RP data in the context of airport-access journeys, a.s ilhistrated 
also in the London case-study in Chapter 10. 
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M N L 
Resident Visitor 

Business Holiday VFR^^^ Business Holiday VFR^^) 

common 
Inc. < $21,000 
Inc. > $21,000 

Nest ing by aii 

25.28A: 22.3K 29.47A: 

port 
Resident 

Business Holiday VFR^^) 

14.01/^ 10.38A: 
26jl2jf 
1&93# 

Visitor 
Business Holiday VFR(^) 

common 
Inc. < $21,000 
Inc. > $21,000 

Nest ing by aii 

24.27A: ig.SlAT 26.51A: 

line 

Resident 

Business Holiday VFR^^^ 

12.74A: 10.25A: 
21.417^ 
1 3 j # j f 

Visitor 
Business Holiday VFR^^) 

common 
Inc. < $21,000 
Inc. > $21,000 

Nest ing by ac 

26.35j^ 23.59jiL 32.98jir 

cess-mode 
Resident 

Business Holiday VFR^^^ 

le.Slii' U.38K 
2 7 ^ 8 # 
16.74jir 

Visitor 
Business Holiday VFR^t) 

common 
Inc. < $21,000 
Inc. > $21,000 

M M N L 

20.08A: 19.05jir 16.52A: 

Resident 

Business Holiday VFR^^) 

12.45A: 7 .7# 
24.69# 
15J&& 

Visitor 
Business Holiday VFR^^) 

common 
Inc. < $21,000 
Inc. > $21,000 

34.13A: 25.037i: 38.78^7 12.5K 13.6K 
2&6&K 
rA63# 

(t) Visiting friends or relatives 

Table 9.13: Trade-offs between flight frequency and access time (min/flight) in mod-
els for combined choice of airport, airline and access-mode {K == 1/ / , with / giving 
current frequency) 

the models for visitors, while for residents, frequency is valued less highly for holiday 

travellers. To some extent, th(\se conclusions are however potentially influenced by 

the quality of the access-journey level-of-service data. 

Given the aims of this study, the more interesting differences arise when com-

paring the results across model structures. Here, it is important to note that no 

major issues with parameter significance arose in any of the models for the coef-

ficients used in the trade-offs, increasing the reliability of the comparisons. The 

results show that, although there is some overall consistency in the trade-offs, there 

are also some differences, for example when looking at the results for MMNL, which 
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overall give greater weight to the frequency coefficient, highlighting the effects of 

accounting for random taste heterogeneity. However, there are also some differences 

between the MNL model and the NL models, and also across NL models, such as 

for example in the case of the model using nesting by access-mode for resident VFR 

travellers. Overall, these findings show that, although the differences between mod-

els in terms of LL may be relatively modest, the actual substantive conclusions are 

quite different. This highlights a relative flatness of the LL function, but also shows 

the impact of model structure on substantive results, making it an important issue 

in policy-oriented research. 

Although this study does not aim to produce reliable trade-offs for use in policy 

analysis, it is worth noting that, at the average observed flight frequency (in the 

data) of 10 flights, the resulting value of K (0.1) leads to very low wilhngness to 

accept access time increases in return for increases in flight frequency. This should 

however be put into context by noting that the average observed access time was 

only around 30 minutes. Finally, the high values for K in the case of routes with 

low frequency (e.g. at / = 2, K = 0.5) imply a wiUingness to accept signiflcant 

increases in access time in return for increases in flight frequency on routes with big 

gaps between individual flight departures^®. 

9.4.7 M o d e l va l ida t ion 

To complete the analysis, the five sets of models were applied to the validation sam-

ple of 519 observations, which was divided into sets of 114, 93 and 74 observations for 

resident business, leisure and VFR travellers respectively, and sets of 119, 54 and 55 

observations for visiting business, leisure and VFR travellers respectively. For each 

of the models, the final coefficient values produced during the estimation process 

were used in the apply runs. On the basis of this, the validation approach produces, 

for every observation, a choice probability for each of the 144 triplets of alternatives; 

this can be used to calculate the average probabihty of correct prediction for the 

actual chosen alternative across respondents. Aside from this probability for the 

choice of the actual triplet of airport, airline and access-mode, it is also of interest 

to look at the probability of correct choice for just the airport, just the airline, and 

just the access-mode. These probabilities can be obtained through summing the 

probabilities of the single elementary alternatives fahing into the given group. 

A separate analysis reported by Hess & Polak (20046) looked at the recovery of 

market shares for the different airports, airlines and access-modes, indicating very 

good performance across all models used. It can be seen that this measure is highly 

Where frequency is again used as a proxy for the gap in departure times between flights. 
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correlated with the performance in terms of correct prediction probability^'^, and as 

STich, these results are not reproduced here. 

The. results of the validation process are summarised in Table 9.14. The, first 

observation that can be made from this table is the surprisingly high probabihty of 

correct prediction of the actual chosen alternative. Indeed, even in the population 

segment with the worst performance (holiday trips by visitors), the probability of 

correct prediction is close to 30%, which is very high when one takes into account 

the extent of the choice set, where, on average (across choice-situations), 31 of the 

144 alternatives were available. 

In terms of the correct prediction of airport choice, the probabihties range from 

68.51% to as high as 85.39%. This performance compares well with the results in 

other studies, and the rates obtained in some of the models in fact exceed those 

obtained in previous studies. As an example, in one of the more recent studies in 

the SF-bay area, Basar & Bhat (2004) obtain an average correct prediction rate of 

72.9% on their validation sample. 

The performance in terms of the choice of access-mode is also very good, al-

though it is significantly lower than the performance along the airport dimension 

for residents on VFR trips, while it is also slightly lower for visiting hohday trav-

ellers. On the other hand, it is marginally better than the performance along the 

airport dimension for visiting VFR travellers. The variation in performance does 

•suggest that the choice process is less deterministic in some segments than in others, 

but could also be an indication that the data problems in terms of the availability 

of the car mode, and the lack of information on parking behaviour, play a bigger 

role in some segments than in others. 

The performance of the models in terms of correctly predicting the choice of 

airline is poorer than that for the choice of airport and access-mode; however the 

values still always exceed 50%, despite the complete absence of a treatment of air-

line allegiance. Again, superior performance could be expected if better data were 

available, notably with regards to fare structures and frequent hyer programmes. 

In terms of differences between population segments, the best average perfor-

mance across all choice dimensions is obtained for resident business travellers, where 

an argument can be made that such travellers behave in a more rational manner 

(from the modeher's point of view), due to better information. The comparatively 

"''The market shares are calculated on the basis of the estimated choice probabihtie,s and the 

weights used to correct for sampling effects. With higher probabihties of correct prediction, the 

•imweighted market shares approach the sample market shares. As such, it can be seen that, after 

leweighting, which uses the weights to relate the actual real-world market shares to the sample 

shares, the market shares in a model with high correct prediction will be less biased than in a 

model with lower correct prediction rates. 
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M N L 
Resident 

Business Holiday 

Visitor 

Business Holiday VFR^ )̂ 

Choice 

Airport 

Access mode 

Airline 

Nest ing by 

47.13% 30.56% 36.58% 
84.04% 69.58% 80.83% 
84.04% 67.72% 66.47% 
60.68% 54.93% 60.26% 

drport 
Resident 

Business Holiday VFR t̂) 

34.33% 27.21% 36.83% 
70.69% 69.53% 73.20% 
70.18% 63.22% 77.08% 
55.39% 53.31% 60.97% 

Visitor 

Business Holiday VFR^ )̂ 

Choice 
Airport 

Access mode 

Airline 

Nest ing by c 

48.02% 31.39% 36.74% 
83.69% 69.16% 80.07% 
85.22% 68.91% 67.50% 
61.06% 55.03% 60.08% 

drline 
Resident 

Business Holiday VFR(̂ ) 

36.19% 28.97% 36.81% 
70.69% 68.51% 73.13% 
72.39% 66.41% 77.25% 
55.90% 54.34% 60.73% 

Visitor 

Business Holiday VFR^̂ ) 

Choice 

Airport 

Access mode 

Airhne 

Nest ing by 

47.90% 31.82% 36.50% 
84.18% 70.24% 80.36% 
84.92% 68.64% 67.26% 
60.30% 54.79% 59.41% 

iccess-mode 
Resident 

Business Holiday VFR^̂ ) 

35.00% 27.78% 36.93% 
71.21% 68.61% 73.26% 
71.08% 64.24% 76.96% 
55.27% 51.60% 60.52% 

Visitor 

Business Holiday VFR^̂ ) 

Choice 
Airport 

Access mode 

Airhne 

M M N L 

48.41% 31.38% 39.60% 
85.39% 70.98% 84.97% 
83.76% 67.29% 66.16% 
61.3396 55.4696 61.3696 

Resident 

Business Holiday VFR^̂ ) 

34.65% 27.78% 37.83% 
71.11% 72.41% 74.46% 
70.25% 62.11% 76.98% 
55.49% 53.49% 61.04% 

Visitor 

Business Holiday VFR^t) 

Choice 

Airport 

Access mode 

Airline 

47.53% 30.89% 37.45% 
84.2196 69.6096 81.599% 
84.09% 67.77% 66.80% 
60.85% 55.07% 60.77% 

34.52% 27.73% 37.59% 
70.71% 68.78% 73.81% 
70.21% 63.18% 77.15% 
55.52% 53.08% 60.69% 

' ' ' Visiting friends or relatives 

Table 9.14: Prediction performance of NL models on SF-bay area validation data 
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poor performance of the models for holiday trips can partly be explained by the fact 

that at least some of the travellers on such trips have purchased a package hohday 

(or special flight deal); for such deals, the choice of departure airport and airline is 

potentially influenced by factors that were not directly measurable and could thus 

not be included in the models. 

Given the relatively modest differences in performance between the five model 

structures in the actual estimation processes, it should not be surprising that there 

arc no systematic differences in prediction performance on the validation sample. 

Even though there are some outliers, such as the performance of the NL model 

using nesting by access-mode in the models for residents on VFR trips^^ (prediction 

of actual choice, and prediction of choice of airport), the average differences in 

performance are too smaU to come to any conclusions in terms of advantages for 

one of the model structures. This is further reinforced by the fact that it is not 

directly clear what measure of error should be associated with these probabilities. 

A final aim of a validation process is to establish whether the models have not 

been overfitted to the estimation data. Tests by Hess & Polak (20046) which in-

volved applying the models to the actual estimation sample produced very similar 

performance to that obtained here with the validation sample, suggesting that the 

models have indeed not been overfitted to the estimation data. 

9.5 S u m m a r y and Conclusions 

This chapter has presented the findings of the case-study conducted in the SF-bay 

area. The study had three main aims, as set out in Section 9.1; an analysis of the 

advantages of accounting for the multi-dimensional structure of the choice process, 

a study of the correlation along the three dimensions of choice, and an investigation 

into the prevalence of random taste heterogeneity. 

In a direct comparison between the results from Section 9.3 and Section 9.4, it 

is important to recognise the bigger sample sizes in the common leisure models in 

the single-dimensional analysis, which will likely lead to more stable analysis. Nev-

ertheless, when looking at the holiday segment, the performance along the airport 

dimension in the multi-dimensional study is comparable to the performance in the 

overall leisure segment in the one-dimensional models, while that in the VFR seg-

ment is better. The biggest indication of the advantage of the more disaggregate 

approach is given when looking at the business segments; here, the multi-dimensional 

models produce rates between 83.69% and 85.39% for residents, with rates between 

70.69% and 71.21% for visitors. While the performance for visitors is comparable 

"For this model, there were also simificant differences in the trade-off in Table 9 . 1 3 . 



9.5. Summary and Conclusions 235 

in the one-dimensional models, at 67.00%, the performance for residents is much 

poorer, at 67.60%. Although the more detailed utility specification used in the dis-

aggregate models (e.g. inclusion of inertia coefficients) can in part account for these 

improvements, the difference in performance is such that it can indeed be suggested 

that important gains can be made by using dimension-specific level-of-service infor-

mation in the modelling of air-travel behaviour (i.e. avoid the use of measures of 

overall service at an airport). It should also be noted that the disaggregate approach 

has advantages in terms of the important insights it provides into choice behaviour 

along the additional dimensions of airline and access-mode choice. Finally, in a 

forecasting application, the multi-dimensional approach has the potential to pro-

duce market shares for specific airlines or access-modes, in addition to combinations 

of alternatives, such as the market share of a given airline at a specific airport. 

The investigation into the use of nesting and mixture structures has shown that 

both approaches can lead to statistically significant gains in model performance. 

Although the gains are very modest, which is refiected in the similarity in validation 

performance across models, the differences in the estimated trade-off's (c.f. Section 

9.4.6) do suggest that there are some significant differences in the substantive results 

across models. Additionally, it should be stressed again that the advanced models 

are more intuitively correct, and as such should be preferred. This is particularly 

important in the context of forecasting applications, where the differences across 

models, especially in the case of nesting structures, can be expected to be quite 

significant. Finally, the more complicated models also provide useful further insights 

into choice-behaviour, in the form of substitution patterns, but also in terms of an 

indication of the differences across respondents in their response to changes in level-

of-service variables. 

In terms of actual substantive; results, the analysis has revealed significant (effects 

of access time and frequency, across all population groups. Here, it is important to 

put the findings in terms of frequency into context by remembering that this co-

efficient potentially captures a host of effects, including visibility and scheduling 

convenience. In common with many previous RP studies of air-travel choice behav-

iour, it was, in the present analysis, not possible to retrieve a significant effect of 

air-fares across all population subgroups. While, in the case of business travellers, 

this could be an indication of actual low fare sensitivity, it is more likely that the 

problems with the data, in terms of availabilities as well as disaggregate air-fare 

information, are the main reason for this result. 



Chapter 10 

Greater London case-study 

10.1 I n t r o d u c t i o n and context 

This chapter describes the case-study conducted in Greater London, an area which 

has by far the highest levels of air traffic in Europe, with, in 2002, some 117.13 

million passengers using the five main airports. The area is dominated by Heathrow 

(LHR), the world's busiest international airport (measured in terms of the number 

of passengers on international routes), and the main hub in Europe. Additionally, a 

large number of routes are offered from Gatwick (LGW), the world's busiest single-

runway airport, while Stansted (STN), Europe's fastest growing major airport, and 

Luton (LTN) act mainly as bases for holiday and low-cost operators. Finally, the 

centrally located London City (LCY) airport caters primarily to business travellers, 

and, due to its short runway, is restricted to short-haul flights operated by turboprop 

planes and small jet aircraft. The geographical location of the five airports, with 

respect to central London, is illustrated in Figure 10.1, which additionally shows the 

main road and rail links serving London, and, by extension, the different airports. 

Table 10.1 shows the annual number of passengers handled^ at the five London 

airports between 1990 and 2004. The figures show that LHR, is easily the busiest of 

the five airports (ahead of LGW), capturing more than half of the total number of 

passengers. At the same time, the passenger counts however also reveal that, while 

still experiencing growth in traffic (with a few exceptions, notably LHR, in 2001, and 

LGW in 2002), the two main airports have seen their share of the market reduced, 

while that of STN has grown dramatically, averaging an annual growth rate of over 

21% between 1997 and 2004^. This is due mainly to increases in activities by low-

^Tlie counts include transit passengers, i.e. passengers who do not change aircraft during 

their stopover at the airport. These can be argued not be handled by the airport, but pla,y an 

insignificant role in the totals in any case, accounting for under 1% of all passengers, 

"The corresponding rate of around 2% at LHE, and LGW is biased downwards by the cffocts of 

September ll"' , which were felt much more heavily at these airports. 
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Figure 10.1: Map of Greater London, with main airports and ground-level transport 
network 

cost airlines at this airport. As such, given the continuing discussion of induced vs 

shifted demand^, it is unclear whether the gain in market share should be seen as a 

draw away of passengers from LHR and LGW, or the development of new demand. 

Given the extent of the increase, it is conceivable that both phenomena apply. 

Even though London, and especially LHR, has always had the largest share of 

air-passengers in the UK, it is still striking to note that the number of passengers 

handled at LHR in 2002 (63.4 milhon) is higher than the total annual number of 

passengers handled at UK airports up to 1985 (61.6 million). The importance of the 

London area is further underlined by the fact that the total number of passengers 

handled at the five London airports in 2004 (128.9 milhon) accounts for 58.8% of 

the total number of passengers handled at all UK airports (219.2 million). 

Like in many other major aviation centres, the effects of September 11^^ and 

the global economic downturn on air-trafhc were also felt in London. However, the 

^Dennis (2004) suggests that around 40% of low-cost traffic is generated by the airlines, with 

the remaining 60% shifted away from network and charter carriers. 
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Year LHR LGW STN LTN LCY Total 

2004 
2003 
2002 
2001 
2000 
1999 
1998 
1997 
1996 
1995 
1994 
1993 
1992 
1991 
1990 

67.343 
63.495 
63.362 
60.765 
64.62 

62.268 
60.684 
58.185 
55.982 
54.407 
51.666 
47.954 
45.305 
40.563 
42.972 

52.24% 
52.70% 
54.09% 
53.40% 
55.54% 
57.159% 
59.37% 
61.27% 
63.46% 
65.37% 
65.899% 
65.7196 
64.88% 
64.01% 
62.89% 

31.453 

30.005 

29.627 
3L182 
32.069 
30.564 
29.173 
26.959 
24.226 
22.510 
2L142 
20.217 
20.008 
18.912 
2L209 

24.40% 
24.90% 
25.2996 
27.40% 
27.56% 
28.05% 
28.54% 
28.39% 
27.46% 
27.05% 
26.96% 
27.70% 
28.66% 
29.85% 
31.04% 

20.911 

18.722 
16.055 

13.665 
11.88 
9/W7 
&863 
5.427 
4.849 
3.913 
3.289 
2̂ TW 
2.362 
1.739 

1.217 

16.22% 
15.54% 
13.71% 
12.01% 
10.21% 
8.67% 
6.71% 
5.71% 
5.50% 
4.70% 
4.1996 
3J0% 
3.38% 
2.74% 
1.7896 

7.536 
6.797 

6XW7 
6.555 
6.191 

5.285 
4.133 

3.239 
2.429 
1.843 
L832 
L865 
L963 
L982 
2.696 

5.85% 
5.64% 
5.54% 
5.76% 
5^2% 
4.85% 
4.04% 
3.41% 
2.75% 
2.21% 
2L34% 
2.56% 
2.81% 
3Jj% 
3.95% 

1.675 
1.471 

L602 
1.619 

1.584 
1.386 
1.36 

1.161 
0.726 
0.554 
&4J8 
&245 
0.186 
0.172 

0.230 

1.309% 
1.229% 
L37% 
1.42% 
1.369% 
1.279% 
L33% 
l^a% 
0.82% 
0.67% 
0.61% 
0.34% 
0.27% 
0.27% 
0.34% 

128.918 
12&49 
117.133 

113.786 
116.343 
108.95 

102.213 
94.971 

88.211 
83.227 
78.407 
72.984 
69.824 
63.367 
68.324 

Table 10.1; Annual passenger counts (including connecting passengers) at London's 
five main airports, 1997-2004 (mppa) 

effects were concentrated in certain subsets of the market, and thanks to the success 

notably of STN, overall traffic decreased by only 2.2% in 2001, and recovered a 

strong growth rate afterwards, reaching 7% in 2004. 

Forecasts show that air-travel in the United Kingdom can be expected to continue 

growing at a very high rate. As an example, forecasts produced by the Department 

for Transport in 1997 predicted almost a doubhng in air passenger numbers by the 

year 2010 (c.f. DfT 1997). This study used 1995 as the base, with 129.6 mppa, and 

predicted figures of 167.2 mppa, 205.3 mppa, 253.1 mppa and 310 mppa for the 

years 2000, 2005, 2010 and 2015 respectively (summed over all UK airports). This 

thus assumes decreasing annual growth rates, ranging from 5.2% between 1995 and 

2000 to 4.1% between 2010 and 2015. Although an upper limit of 180.6 million 

was given for the forecasted passenger numbers for the year 2000, the fact that 

passenger numbers in 2000 actually topped 181 miUion shows that such forecasts 

are likely to underestimate the growth in passenger numbers. A revised version of 

this forecast, produced in 2000, predicts an increase in passenger numbers to 2.5 

times the level observed in 1998, by the year 2020 (c.f DfT 2000). Finally, it has 

])een suggested that, with unconstrained growth, the annual number of passengers 

could rise to around 500 mihion by the year 2030, with around 300 mppa for the 

South East airports (c.f. DfT 2003a). This forecast assumes a declining growth rate, 

especially for the South East, as the market becomes saturated. Even so, the South 

East would still have around 60% of the total number of passengers, with most of 

this distributed across the London airports. 

The forecasts show that, in the case of unconstrained growth, London would 

lie likely to further strengthen its role as one of the world's most important multi-
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airport regions, keeping its position as the prime hub in Europe. However, given the 

limits in capacity, unconstrained growth is clearly a purely hypothetical situation 

and merely reflects the potential in terms of demand. Given that demand at the 

London airports, especially at LHR, already exceeds capacity, concerns have been 

raised that London could lose its status as the main European hub, given the extra 

capacity available in competing regions, such as Paris, Frankfurt and Amsterdam. 

For that reason, a major consultation has taken place to consider different schemes 

for expanding airport capacity in the South East, and especially in the London area 

(c.f. DfT 2003a). 

One major airport expansion scheme is already in progress, with the construction 

of a fifth terminal at LHR, which should increase the airport's capacity to 89 mppa 

]]y 2008. Assuming an annual increase in passenger numbers by 4%, the new capacity 

hmit would however be reached already within 4 years of the opening of the new 

terminal. It should be noted that, given the additional constraints in terms of the 

maximum number of possible take-offs and landings (especially in the absence of 

mixed-mode operations), such growth rates would at some point in the near future 

only be possible with the use of larger aircraft. In any case, both restrictions (runway 

and terminal capacity) lead to a need for further increases in capacity. 

Several options for airport expansion in the Greater London area were considered 

in the consultation. The most popular proposal with airlines was the construction 

of a third (short) runway at LHR, which would increase capacity to 116 mppa (DfT 

2003a); this project is however facing fierce opposition by local residents, who, on 

the basis of the Terminal 5 Inquiry Inspector's report, had understood that no 

further runways would be built. Another possibility, which would not require any 

new building work, is the introduction of mixed mode operations at LHR, allowing 

both runways to be used simultaneously for take-off and landing (wluireas currently 

one runway is used for take-offs and one runway is used for landings). This would 

not only improve runway utilisation and hence capacity, but would also alleviate 

taxi-way congestion, and it is expected that it would allow an increase by 10% in 

the number of take-offs and landings. Public opposition to this scheme is also very 

high, given the added air, and especially noise pollution that would result from such 

a move^. 

A major problem in the search for alternative ways of increasing capacity is the 

agreement signed in 1979 between the British Airports Authority (BAA) and West 

Sussex County Council that a second runway at LGW would not be built before 

^Under the present arrangements, people living at the end of either runway are affected by 

take-off and landing-related noise only during 1)0% of the time. Given that the westerly runways 

are generally in use, landing-related noise is the biggest factor, given the density of housing in the 

areas east of LHR,. 
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2019. While the use of larger planes could increase capacity from a current 40 mppa 

to 46.5 mppa (DfT 2003a), this agreement is a major hindrance. Estimates by DfT 

(2003a) show that capacity could be increased dramatically, were the construction of 

new runways considered. Indeed, the construction of a second (close parallel) runway 

would increase capacity to 62 mppa, while the construction of an additional wide-

spaced runway would increase capacity to 83 mppa. Although initially excluded 

from the consultation, a High Court ruling in November 2002 (in favour of Medway, 

Kent County, and Essex County councils) judged that these options should not be 

excluded from consideration, stiU leaving the door open for expansions of capacity 

at LGW. 

For STN, DfT (2003a) estimate that capacity could be increased to 25 — 35 mppa 

(depending on success of planning applications) without new runway development, 

while capacity could be increased to 82 mppa, 102 mppa and 129 mppa respectively 

with one, two or three additional runways. The capacity of LTN is currently set 

at 10 mppa; DfT (2003 a) estimate that replacing the existing runway by a new 

runway could increase this to 31 mppa. Given its location and layout, no major new 

development can be expected for London City airport, and DfT (2003a) estimate 

that capacity will be reached by 2030. 

DfT (2003 a) also consider other airports, at Norwich and Southampton for exam-

ple; given their size, these are however of little importance for the present research. 

Finally, the government also considered the development of a new four-runway air-

port at Cliffe in North Kent, which could have had a capacity of 113 mppa. However, 

these plans have now been rejected, mainly due to environmental concerns, where 

there were also concerns about the heightened risk of bird-strike related accidents 

given the large bird population in this area (c.f. Bell et al. 2003). 

The main consultation is now closed, and the recent government White paper 

(DfT 20036) has recommended the construction of a single new runway at STN 

by 2012. There are also plans to extend the capacity of LHR between 2015 and 

2020 with the construction of a new (short) runway and possibly a sixth terminal. 

However, new EU limits on pollution will come into effect in 2010, and it is not 

clear whether any further expansion at LHR would be possible without violating 

these constraints. For this reason, the construction of a second runway at LGW, 

after 2019, is still kept open. The options of multiple new runways at STN and 

LGW have been rejected, as has the option of runway replacement at LTN, and, as 

mentioned above, the development of the Cliffe airport. 

The major airlines have expressed their satisfaction at the decision to include a 

new runway at LHR in the plans. However, they also remain fiercely opposed to 

the idea of taxes at LHR being used to cross-subsidise the developments at STN, 
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and have indicated that they have no desire to shift a significant share of their 

traffic from LHR to STN. As such, dehberations are set to continue, and it is thus 

still of interest to gauge the attractiveness of the different airports, and to analyse 

how the attractiveness of airports with additional capacity could be improved (e.g. 

by cutting access time). This makes the London area a prime candidate for a 

study of air-travel choice behaviour in multi-airport regions. The congestion in 

the ground-level network also makes the analysis of airport-access an important 

topic. Furthermore, unlike in many other areas that have been the topic of studies 

of airport choice, there are very high levels of competition between the different 

airports, and lower captivity by specific geographical areas to a given airport, due 

their arrangement at roughly equal distances from the centre of London (aside from 

LCY)^. Finally, unlike in the case of studies in the US, where the market share of 

car can exceed 75% (as in the SF-bay area), the modal split for the access-journey 

is more diverse, increasing interest in the analysis of choices along that dimension. 

Aside from conducting a study of the joint choice of airport, airline and access-

mode in the London area, the main aim of this chapter is to explore the potential of 

cross-nesting structures for the joint analysis of correlation along the three dimen-

sions of choice. The discussion presented in this chapter is limited to closed-form 

models, mainly on the grounds of estimation complexity in the presence of the very 

large sample sizes (and choice sets), but also given the extensive treatment of ran-

dom taste heterogeneity in Chapters 9 and 11. The use of mixture models on the 

London data remains an avenue for future research, including in a GEV mixture 

context, given the conclusions with regards to correlation presented in this chapter. 

The remainder of this chapter is organised as follows. Section 10.2 describes 

the data used in the analysis, Section 10.3 discusses model specification, with the 

estimation results summarised in Section 10.4. The chapter concludes with a model 

validation exercise in Section 10.5, and a presentation of the conclusions in Section 

10.6 . 

10.2 Descr ip t ion of d a t a 

10.2.1 Ai r -passenger survey d a t a 

For the present analysis, data from the 1996 passenger survey® were obtained from 

the Civil Aviation Authority (CAA 1996). Although slightly dated, this is the most 

recent large-size full survey available for this region (containing data collected across 

•''See also Figure 10.1 

''Data collected from departing passengers at the airports. 
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an entire year, as opposed to being limited to a few months). The dataset also has 

the advantage that the effects of September II*''' need not be taken into account. 

On the other hand, the age of the data prevents a detailed analysis of the impact 

of low-cost carriers on air-travel choice behaviour, given that their operations in 

1996 were far more hmited than is the case nowadays. It should also be noted that 

the analysis of the access-mode choice dimension is simplified by the fact that the 

premium Heathrow Express service only started its operations in 1998. The use of 

a more recent version of the dataset is an important avenue for future research. 

The original sample obtained from the CAA contained responses from 47, 831 

passengers, for 31 destinations (reachable by direct flights from at least two of the 

five London airports), and 37 airlines. After data-cleaning (missing data, compati-

bility between datasets), a usable sample of 33,527 passengers was obtained. This 

compares favourably to the sample of 5, 091 available for the SF-bay analysis (c.f. 

Section 9.2.1). For the present analysis, the sample was split into four subsets, divid-

ing the population into residents^ and visitors, and using a purpose split of business 

vs leisure. This led to samples of 7, 059 resident business travellers, 8, 704 resident 

leisure travellers, 7, 587 visiting business travellers and 10,177 visiting leisure trav-

ellers, In each sub-group, a 95% subsample was used for model calibration, with 

the remaining observations retained for model validation. Additional subdivisions 

of the business or leisure groups did not lead to any gains in explanatory power. 

Of the 31 destinations used in the analysis, 5 are in Great Britain (Aberdeen, Ed-

inburgh, Leeds, Manchester and Newcastle), 1 on the Channel Islands (Guernsey), 3 

in Ireland (Cork, Dublin and Shannon), 3 in the Benelux (Amsterdam, Brussels and 

Rotterdam), 3 in Scandinavia and the Nordic countries (Copenhagen, Gothenburg 

and Helsinki), 3 in Germany (Dtisseldorf, Hamburg and Munich), 3 in Austria and 

Switzerland (Geneva, Vienna, Zurich), 1 in France (Nice), 3 in Spain (Barcelona, 

Madrid, Malaga), 2 in the South East of Europe (Athens and Larnaca), 1 in the 

Middle East (Tel Aviv), and 3 in the United States (Boston, Detroit and Miami). 

The most popular destination for business travellers in the sample is Amsterdam, 

ahead of Edinburgh, Dublin and Brussels. For leisure travellers, the most popular 

destination is Dublin, ahead of Amsterdam, Edinburgh and Boston. 

All destinations included in the sample are served by a single main airport, avoid-

ing the problem with multi-airport destination areas described in Section 9.2.1. This 

was one of the main factors used in the selection of appropriate destinations, a luxury 

that was allowed by the large sample size. Nevertheless, some destinations remain 

''Respondents were considered as residents if they reside in the Greater London area and im-

mediately adjacent counties for domestic and short-haul European flights, while respondents on 

medium-chstance European flights and intercontinental flights were considered as residents if they 

reside in Great Britain. 
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where there is competition between air and ground-level transport, namely the 5 

destinations in Great Britain (especially the three in England), and Brussels, where 

there is competition with Eurostar. As described in Section 8.4.1, this competition 

is not taken into account in the present study, where we work on the basis of an a 

priori choice of main mode. 

The dataset is summarised in Table 10.2, giving the number of passengers for each 

destination in the four subsamples (prior to the further division into estimation and 

validation samples). The passenger counts show great variations across destinations, 

along with some variations across the four subgroups. From Table 10.2, it can be 

seen that a sufficient number of observations are included for each destination, with 

the exception of Detroit. The very low number of observations for this destination is 

a direct result of incompatibilities between the survey and level-of-service datasets 

for this destination®, leading to the exclusion of a high number of observations. The 

4 remaining observations were retained in the analysis, to avoid having to restructure 

the choice set. Their inclusion does not lead to any bias in the results, given that 

the actual analysis is not destination-driven®. 

10.2.2 Ai r - t r ave l level-of-service d a t a 

Air-side level-of-service data were again obtained from BACK aviation. The dataset 

contains dahy airline-specific information^" for all routes used in the analysis, in-

cluding information on flight frequencies, departure times, flight times (block times, 

thus taking into account airport congestion), aircraft types used and available seat 

capacity. The main item of information missing from this dataset is that of the fares 

for the different routes and airlines. Such data were compiled from two sources; the 

International Passenger Survey^^ (ONS 1996) and the fare supplement of the Official 

Airways Guide for 1996 (OAG 1996). Information on travel-class as well as ticket 

type (single or return) was taken into account in assembling the data. As was the 

case with the fare data used in the SF-bay study, the resulting dataset is of highly 

aggregate nature^^, leading to similar problems in the estimation of the marginal 

*No such problems were encountered for any of the other destinations. 

•'The choice of destination is not modelled in this analysis. It only plays a role in the generation 

of the choice sets along the other dimensions. 

'"Information on the dates of operation of individual flights was used to compile disaggregate 

information for each single day in the year 1996. 

'^It should be noted that there are potential problems of endogeneity in using data on fares 

actually paid, given the likelihood that passengers choose the cheapest fares. However, in the face 

of incomplete listed fare data, this is not avoidable, and the same problem occurs with information 

from the 10% sample, as generally used in air-travel modelling studies in the US. 

'^The ONS dataset was made available at the individual passenger level for a high number of 

respondents, such that statistics on the distribution of fares could be calculated. However, given 

the lack of such detailed information for national flights and some international destinations, where 
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Resident Visitor 
Business Leisure Business Leisure TOTAL 

Aberdeen 294 218 315 283 1,110 
Amsterdam 1,074 811 1,266 1,253 4/W4 

Athens 120 222 84 246 672 
Barcelona 117 331 75 150 673 

Boston 206 518 176 414 1,314 
Brussels 447 136 453 195 1,231 

Copenhagen 121 122 213 430 886 
Cork 55 326 61 280 722 

Detroit 0 1 1 2 4 
Dublin 714 1,628 819 1,681 4,842 

Diisseldorf 217 160 243 273 893 

Edinburgh 752 542 813 513 2^120 

Geneva 273 319 248 454 1,294 

Gothenburg 57 35 96 128 316 
Guernsey 123 417 119 265 924 

Hamburg 128 100 200 203 631 

Helsinki 68 28 47 71 214 
Larnaca 44 310 39 160 553 

Leeds/Bradford 65 23 93 22 203 

Madrid 237 462 214 412 1 ^ 2 5 

Malaga 51 398 20 61 530 

Manchester 429 80 394 90 993 

Miami 57 242 35 77 411 
Munich 237 191 287 472 1,187 

Newcastle 307 76 219 78 680 

Nice 124 290 80 233 727 

Rotterdam 302 55 391 287 1,035 

Shannon 38 176 52 199 465 

Tel Aviv 56 161 75 231 523 

Vienna 103 99 164 520 886 

Zurich 243 227 295 494 1,259 

TOTAL 7,059 8,704 7,587 10,177 33,527 

Table 10.2: Passenger counts in survey data, by data-subset and destination 

utility of air-fares. Again, no information is available on frequent flier programmes. 

However, unlike in the case of the SF-bay area study, the inclusion of international 

flights allows for an analysis of allegiance to the national carrier. Finally, the dataset 

was completed by adding in information on-time performance, obtained from the 

Civil Aviation Authority^^. 

only aggregate OAG data were available, the decision was taken to use only the mean fares, for 

reasons of consistency, 

•̂̂ www.caa.co.uk 

http://www.caa.co.uk
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10.2.3 Ground-acces s level-of-service d a t a 

For the analysis of the ground-level choice dimension, data from the National Air-

port Access Model (NAAM) were obtained for the base year 1999 (Scott Wilson 

Kirkpatrick 1999). Corresponding cost information for 1996 was produced with the 

help of the retail price index, while assuming that relative travel times have on av-

erage stayed constant. This dataset contains level-of-service information for travel 

between 455 different travel area zones and the five airports. Six different modes are 

considered in the analysis; private car, rental car, public transport (rail, bus, local 

transport), long-distance coach, taxi and minicab (MC). Respondents observed to 

have used hotel shuttles were again excluded from the analysis, for the same reasons 

as given in Section 9.2.1. The use a high level of disaggregation in the non public 

transport modes alongside aggregated public transport information might be criti-

cised given the continuing focus on competition between premium dedicated airport 

rail services and other forms of pubhc transport (e.g. Gatwick Express versus local 

train services, airport coach services versus local bus and Tube). The division used 

in the present analysis reflects the highest common factor between the survey and 

level-of-service datasets, and it is hoped that future work can rely on a higher level 

of disaggregation. The NAAM dataset did not contain information on taxi and 

minicab services; this was produced independently, on the basis of data for the year 

2004, with appropriate transformations to obtain usable data for 1996. In terms of 

availability, taxi and minicab are assumed to be available for all possible ground-

level and airport combinations, while the availability of pubhc transport (PT) and 

long-distance coach (LDC) was determined on the basis of the NAAM data. Fi-

nally, rental car is assumed to be available to all travellers above the age of 18 (in 

the absence of license-holding information), while car is assumed to be available to 

all residents, and those visitors who chose it (in the absence of information on the 

availability of kiss-and-fly options for such travellers). 

No combinations of modes were considered in the present analysis, and the final 

mode indicated in the survey was used as the chosen mode. This is a major simplifi-

cation of the actual choice process, given the high incidence of access-journeys using 

a combination of different modes. However, in the absence of detailed route choice 

information, this simplification was not avoidable. Clearly, there is a risk that this 

approach can lead to biased results, and this needs to be taken into account in the 

interpretation of the findings of the study. 

For each mode, information was included on travel time, wait time, and the 

number of interchanges (where appropriate). For the cost information, a fixed one-

day charge of £35 was used for rental cars (in the absence of cost-bearing party 

information) in addition to marginal running costs (fuel only), while fare informa-
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tion was used for PT, LDC, taxi and minicab. For private car, two specifications 

were retained, one using only the marginal running costs in terms of fuel, with a 

second also including depreciation. Finally, the dataset was completed by adding 

parking cost information for the different airports, for short as well as long-term 

parking, where this was computed on the basis of current parking fees, which were 

transformed to 1996 levels using the change in the retail price index. 

10.3 M o d e l s t r u c t u r e and specif icat ion 

Several important issues relating to model specification deserve some further atten-

tion. These relate to the definition of the choice set, the re-weighting of the sample 

for model estimation, the specification of the constants used in the model, and the 

way attributes enter the utility function. 

10.3.1 Choice set 

With the use of 5 departure airports, 37 airhnes, and 6 access-modes, a total of 1,110 

combinations of airports, airlines and access-modes arise. However, not all airlines 

operate from all airports, and the total number of airport-airline pairs is actually 54 

(instead of 185), which reduces the number of alternatives (airport, airline, access-

mode triplets) to 324, compared to 144 in the SF-bay area study^^. The number of 

available alternatives for specific individuals in the estimation sample ranges from 

6 to 58, with a mean of 31. The approach used in assembling the utilities is the 

same as that described in the SF-bay study (c.f. Section 9.4.1), using combinations 

of sub-utilities for the 54 airport-airline pairings, and the 30 airport-access-mode 

pairings. 

10.3.2 Re-we igh t ing of survey d a t a 

Given that the survey data are choice-based, some form of re-weighting needs to be 

performed in order for the estimation to represent population-level market shares as 

opposed to sample-level shares (infiuenced by survey quotas), thus avoiding biased 

results. In the present analysis, multipficative weights were once again used in the 

specification of the log-likehhood function, where, for a given respondent, the weight 

is proportional to the ratio between the population weight and the sample weight for 

similar simplification (which complicates the coding for automatically generating utility 

functions) of the choice set was not used in the SF-bay study, where the number of alternatives 

was at an acceptably lower level. Furthermore, of the 24 possible airport-airline combinations in 

the SF-study, 20 were actually in use, such that the choice set would only have reduced from 144 

to 120. 
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the corresponding group, and where group allocation was based on a host of criteria, 

dominated by route and airhne choice. In the case of the GEV models discussed in 

this section, the correction can in fact be performed at the level of the ASCs when a 

full set of constants is used (c.f. Bierlaire et al. 2003), but given the unconventional 

specification of constants used in this analysis (c.f. Section 10.3.3), and the aim to 

reuse the models inside later mixture structures, preference was given to a weighting 

approach, in conjunction with the use of robust estimators. 

10.3.3 Speci f ica t ion of cons t an t s 

An important question arises with regards to the specification of the constants in 

the model. In one-dimensional choice processes, a single ASC is associated with each 

alternative, with all but one of the constants being estimated (normalisation ensur-

ing identification). In the case of multi-dimensional choice processes, the situation 

becomes slightly more complicated. In the SF-bay study, a separate set of ASCs 

was used in each of the three choice-dimensions, with one normalised ASC in each 

group. The problem with this approach is that it ignores the potential impact of in-

teractions Ixitween the clioice-diuKuisions. To address this deficiency, an alternative 

specification was attempted in the London study, using a single constant for each 

airport-airline pair. This increases the total number of airport and airhne related 

constants from 42 (37 airlines at 5 airports) to 54, of which 53 are estimated. Sepa-

rate experiments showed that this approach leads to very significant gains in model 

performance, suggesting some interaction between choice dimensions. While it is 

in theory possible to further improve the specification by using a separate constant 

for each airport, airhne and access-mode triplet, the gains from this approach are 

no longer significant, coming at the cost of an increase in the number of constants 

from 60 to 324 (respectively 58 to 323 estimated constants), equating to a full set of 

constants. Furthermore, this approach again led to severe problems with identifica-

tion, for the same reasons given in Section 9.4.2^®. Attempts to use airport-access 

constants in combination with separate constants in the airhne dimension also led 

to gains in model fit, which were however less significant than those obtained with 

the airport-airhne specification, which was thus retained. It can be seen that the 

approach used here thus again leads to a violation of the zero mean assumption for 

the unobserved part of utility, where this was however again not avoidable (c.f. Sec-

tion 9.4.2). Finally, it should be noted that, depending on the population segment, 

the number of estimated constants can be lower than 58, in the case where some 

options are never chosen (or available). 

'̂̂ This relates directly to the issues described by Hess, Polak & Bierlaire (2005) in the case of 

models overloaded with constants. 



10.4. Model estimation 248 

10.3.4 Non- l inear i t i e s 

Tlic final point that deserves some discussion is the way in which explanatory vari-

ables enter the utility function, in terms of the use of non-linear transforms. In 

the present analysis, like in the SF-bay case-study, the log-transform was used for 

this purpose. A prehminary analysis was conducted to determine which attributes 

benefited from the use of a non-linear specification. These experiments showed that 

important gains in model performance could be obtained by using a log-transform 

for flight frequency, flight time, in-vehicle access time (IVT), and access cost, such 

that this approach was adopted. Any remaining attributes were treated in a linear 

fashion. 

10.4 M o d e l e s t ima t ion 

This section discusses the findings of the modelling analysis. It starts with a pre-

liminary analysis of the stated reasons of airport choice in Section 10.4.1, and a 

discussion of the specification of utility in Section 10.4.2. This is followed by a 

presentation of the results for MNL (Section 10.4.3), NL (Section 10.4.4) and CNL 

(Section 10.4.5). The section concludes with a comparison of the substantive results 

across models in Section 10.4.6. All models presented in this chapter were estimated 

with BIOGEME. 

10.4.1 P r e l i m i n a r y d a t a analysis 

Before the actual discrete choice experiments, a brief analysis was conducted to look 

into passengers' stated primary reason for choosing their specific departure airport. 

The results, which are summarised in Table 10.3, show that access-distance (as a 

function of ground-level origin) outranks all other factors. Unsurprisingly, other 

factors that play a strong role are flight availability and timing; given the lack of 

appropriate data, these can however only be included in the form of flight frequency 

information. Just over a tenth of passengers stated that the decision had been taken 

by a third party; a small-scale model fltting exercise excluding these observations led 

to very comparable results, such that these observations were retained to increase 

the overall sample size. This result would suggest that similar choice processes apply 

for self-bookings and third-party bookings. 

Several other points need to be addressed. The first of these is fare, which is 

indicated as the primary reason for airport choice by fewer than one in twenty busi-

ness travellers, and by around one in ten leisure travellers. In fact, for business 

travellers, fare plays the main role for a smaller share of passengers than does a 
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RESIDENT 
Business travellers Leisure travellers 

Near home 41.80% 

Flights available 11.45% 

No answer 11.35% 

Third party decision 11.29% 

Near business 7.96% 

Timing of flights (>.71% 

Prefer airport 3.73% 

Economic / cheaper 2.69% 

No local services 1.55% 

Other 1 . 4 6 % 

Near home 34.87% 

No answer 19.39% 

Flights available 13.48% 

Third party decision 10.58% 

Economic/cheaper 9.72% 

Prefer airport 4.14% 

Other 3.03% 

Timing of flights 2.55% 

Near business 1.19% 

No local services 1.06% 

VISITOR 
Business travellers Leisure travellers 

Near business 36.50% 

Flights available 14.40% 

No answer 11.88% 

Third party decision 11.68% 

Timing of flights 6.71% 

Prefer airport 4.73% 

Economic/cheaper 4.58% 

Other 4.31% 

Near home 3.71% 

Near leisure 1.50% 

No answer 26.38% 

Near leisure 18.84% 

Flights available 14.66% 

Third party decision 13.64% 

Economic/cheaper 10.43% 

Other 4.45% 

Near home 4.41% 

Prefer airport 3.64% 

Timing of flights 2.17% 

Connecting flights 1.37% 

Table 10.3: Stated main reason for choice of airport in London survey data 

personal penchant for the specific airport. The restrictions of an approach asking 

for the main reason for choosing an airport are clear; it is quite likely that fare 

plays a contributing, though not primary role for a much larger share of passengers. 

Nevertheless, the results do suggest that, at the time the data were collected (1996), 

business travellers especially were not too concerned about airfares. Another inter-

pretation is that, at the time of the survey, there was far less variation in the fares 

of flights to business destinations. The increased activity by low cost carriers has 

changed this; if fare differences are large enough, even business travellers become 

sensitive. Another point that deserves some attention is the high number of pas-

sengers providing no answer. While some of these non-responses can be seen as a 

simple refusal to provide a response, they may, in some cases, also indicate a lack 

of choice, or a lack of information. This applies primarily to leisure travellers, and 

(;.si)(',(:ially so in the visiting group. The final point that needs addrc-.ssing is the lack 

of responses relating to airline allegiance, which could suggest that this plays only a 

contributing role in the choice process. However, it is also possible that some effect 

of airline allegiance is reflected in the "Ot/ier" and "No answer" replies. 
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10.4.2 Ut i l i ty specif ica t ion 

A comprehensive set of variables were used in the initial modelling analysis. These 

included attributes relating to the air journey (frequency, fare, flight time, aircraft 

type, seat capacity, on-time performance of the airport and airline) and the access-

journey (access cost, in-vehicle access time, out-of-vehicle access time, wait time, 

number of interchanges, parking cost). Like in the SF-bay study, no treatment 

of the distribution of departure times was used in the present analysis. In the 

absence of frequent flier information, attempts were made to account for airline 

allegiance by including a UK-air hue dummy variable in the models for resident 

travellers, and a foreign-airline dummy variable in the models for visiting travellers. 

No further gains could be made by using separate dummy variables for all different 

foreign nationalities. Unlike in the SF-bay study, no information on past choices was 

available, such that a treatment of "airport allegiance" was not possible. Finally, 

attempts to model further interactions with socio-demographic attributes aside from 

purpose and residency status were not successful. This is characterised notably by 

the absence of an income effect, which can be blamed partly on the discrete nature 

of the income information. This increases the scope for later analyses allowing for 

random variations in tastes within the four groups used in the present study. Also, 

like in the SF-bay study (c.f. Section 9.4,2), taste-coefficients along the access-mode 

dimension and along the air-travel dimension were generic, rather than being linked 

to a specific access-mode or type of aircraft. 

Before proceeding to the actual estimation results, some generic conclusions can 

be presented. Indeed, the actual modelling analysis showed that only a small set of 

the attributes listed above have a statistically significant impact on choice behav-

iour, at least with the pr(;sent sample, and model specification. As such, no e.ffect 

could be identified for parking cost (possibly due to the absence of cost-bearing infor-

mation), seat capacity, out-of-vehicle access time, wait time, on-time performance, 

and the number of ground-level interchanges^®. Furthermore, aircraft size, in the 

form of a dummy variable for turboprop planes, showed no effect; here however, 

tlu! highly correlated flight time attribute; had a significant negative, effect across 

models. Furthermore, a significant effect of air-fare could only be identified for vis-

iting leisure travellers, while allegiance to the national carrier played a role only for 

visiting business travellers. The inability to estimate a consistent fare effect across 

population segments can again be explained mainly on the basis of the low quality 

of the fare data, but should also be put into context by considering the observations 

made from Table 10.3. Finally, the analysis showed that the use of the coml)ined 

^"More detailed ground-access level-of-service information could alleviate these problems, and 

is, as mentioned in Section 10.2.3, an important avenue for future research. 
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Resident Visitor 
Business Leisure Business Leisure 

Observations 6ym6 8,269 9 ,667 

Parameters 55 57 57 58 

Final LL -14945.3 -17627.1 -15278.1 -20553.8 

Adjusted p^(0) 0.3416 0.3529 0.3549 0 .3418 

/^air— 

IJ-
fare 

LN (access cost) 

/'^LN (flight time) 

/ % N (frequency) 

/^LN(IVTt) 

"^national carrier 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 
- - - - - - -0.0026 -1.93 

-1 .2831 -&05 -0 .9083 - 7 ^ 0 -0 .9004 - 7 J 4 -0 .7097 - & 0 4 

-2 .2963 -3.17 -2 .7678 -&18 -2 .1878 -2.01 -4.3711 - 4 ^ 8 

0.5641 2.42 0.9776 4 .73 0 .5070 1.85 0.7024 3.22 

-1.4440 -&21 - L 6 8 9 8 -10.75 -1.6319 -10.67 -1.4025 - 7 ^ 8 

- - - - 0.4653 1.69 - -

I IVT = in-vehicle access time 

Table 10.4: MNL estimation results for London data 

fuel and depreciation cost for car journeys is preferable to the use of fuel cost on its 

own. 

10.4.3 M N L mode l s 

The estimation results for the four MNL models are shown in Table 10.4. The results 

show consistent negative effects of increases in access cost, flight time and in-vehicle 

access time, with positive effects of increases in flight frequency (significant at the 

94% level for visiting business travellers). In each case, a log-transform was used. 

Additionally, there is a negative effect of increases in air fare (linear) for visiting 

leisure travellers, and a positive dummy variable is associated with non-UK carriers 

for visiting business travellers, though this is significant only at the 90% level. 

10.4.4 N L mode l s 

In this section, we look at the three sets of NL models fitted to the four subsamples, 

using nesting by airport, airline and access-mode respectively. The specification 

of utility used in the NL models was the same as in the MNL models. As such, 

this discussion will centre primarily on the conclusions in terms of nesting, with the 

substantive differences between the models discussed in Section 10.4.6. 

NL model using nesting by airport 

The results for the first group of NL models, which use nesting by airport, are 

shown in Table 10.5 (using Xk to define the structural parameter for airport nest k). 
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Resident Visitor 
Business Leisure Business Leisure 

Observations 6,706 8 ^ # 9 7,207 9 ,667 

Parameters 59 60 60 61 
Final LL -14896.1 -17506.4 -15180.4 -20402.5 

Adjusted p^(0) 0.3436 0.3572 0 .3589 0.3465 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 
/^air—fare - - - - - - -0.0021 -1 .73 

/^LN(access cost) -1.1807 -7 .83 -0 .8556 -8 .01 -0 .8370 -8 .48 -0 .7292 -5 .94 

/^LX(fliglit time) -2 .1002 -2.91 -2 .0361 -2 .48 -1.9097 -1 .86 -3 .6898 -3 .90 

/^LN(frequency) 0.5446 2.40 0.9460 4.95 0 .4883 1.86 CL7'335 3.59 

/^LN(IVTt) -1 .4610 -6 .75 - L 5 0 8 1 -10.54 -1 .5896 -11.15 -1.2530 -7 .42 

'^national carrier - - - - 0.4223 1.57 - -

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

^ l c y 0.8730 0 .43 1.00 - 1.00 - 1.00 -

0.8266 1.90 0.7205 0 .8114 1.68 0.6939 4 .28 

A l h r 1.00 - 1.00 - 1.00 - 1.00 -

A l t n 0.5470 2 J ^ 0.7029 1.17 0.7312 2.10 0 . 8 3 ^ 1.36 
A s t n 0.7568 1.27 0.6519 2.82 0.4415 3.64 0 . 6 7 % 1.55 

I IVT = in-vehicle access time 

T-sta,t,i,stjc,s calculated with respect to 0 for taste coefficients, and with respect to 1 for structural 

parameters. 

Table 10.5: NL estimation results for London data, using nesting by airport 

The results show that the four NL models lead to improvements in LL over their 

MNL counterparts by 49.2, 120.7, 97.7 and 151.3 units respectively, at the cost of 

4 additional parameters in the case of resident business travellers, and 3 additional 

parameters in the remaining three models. In each case, the improvement in model 

fit is statistically significant, with p-values of 0 for the associated LR tests. 

Several parameters have experienced a drop in significance when compared to the 

MNL model, notably the fare-coefhcient for visiting leisure travellers, which is now 

only significant at the 91% level. 

In terms of nesting conclusions, a consistent pattern emerges. The nesting para-

meter for LHR needs to be constrained to a value of 1 across all models, indicating 

no heightened correlation in the unobserved utihty terms between alternatives as-

sociated with LHR along the airport dimension. A similar conclusion applies for 

LCY, where, although for resident business travellers, the original value does not 

exceed 1, it is not significantly different from 1. For the remaining three airports, 

the values are consistently below 1, indicating heightened correlation, although, in 
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some cases, the significance level is below the usual 95% hmit. The use of additional 

constraints however led to significant drops in model performance. 

The lowest values for the nesting parameters, and hence the highest levels of 

correlation, are observed for LTN and STN (with the exception of LTN for vis-

iting leisure travellers). These two airports are different from the remaining three 

in terms of their route network, their outlying location, and in terms of being used 

extensively by low-cost airlines (even back in 1996). Some of these characteristics 

are not captured in the observed part of utility, explaining the high levels of corre-

lation between alternatives in the unobserved part of utility. A potential topic for 

further investigation is the analysis of the correlation between alternatives at the 

two airports, given their similarities, especially with more recent data. 

NL mode l using nest ing by airline 

The results for the second group of NL models, which use nesting by airline, are 

shown in Table 10.6 (using tt ; to define the structural parameter for airline nest I). 

The results show that the four NL models lead to improvements in LL over their 

MNL counterparts by 74.6, 183.9, 173.4 and 288.4 units respectively, at the cost 

of 19 additional parameters in the two models for resident travellers, 16 additional 

parameters for visiting business travellers, and 24 parameters for visiting leisure 

travellers. Again, all four improvements are statistically significant, with p-

values of 0 for the associated LR tests. Again, there are some changes in parameter 

significance, with the significance of the fare-coefficient for visiting leisure travellers 

decreasing to the 87% level. 

Of the 37 nesting parameters, 6 had to be constrained to 1 in each of the four 

models, and as such, are not listed in Table 10.6. These relate to airlines AlO, A23, 

A26, A33, A35, and A36. In addition to the six overall constraints, a number of other 

nesting parameters initially took on unacceptable values in some of the population 

segments. As such, out of the 37 possible parameters, 18 had to be constrained in the 

two models for residents, along with 21 in the model for visiting business travellers, 

and 13 in the model for visiting leisure travellers. A large number of the estimated 

structural parameters are not significantly different from a value of 1, but additional 

constraints led to significant drops in model performance. For this group of models, 

it is difficult to infer conclusions about the nesting structure, given the high number 

of nests, and low overall significance of the structural parameters, although it can 

be noted that the structural parameters for nests associated with low-cost airlines 

tend to indicate consistently high levels of correlation, which can be an indication of 

product differentiation, and as such, could help to explain allegiance by passengers 

to such airlines. 
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Resident Visitor 

Business Leisure Business Leisure 

Observations 6J06 8,269 7,207 9,667 
Parameters 74 76 73 82 

Final LL -14870.7 -17443.2 -15104.7 -20265.4 
Adjusted p^(0) 0.3441 0.3590 0.3502 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

/^air —fare - - - - - - -0.0021 -1.53 

/-^LN(access co.st) -1.1331 -7IW -&7850 -6.92 -0.8011 -&12 -0.6316 -4.86 

/ 3 l N (f l ight t i m e ) -2.3415 -3^4 -3.45 -2.1560 -2J4 -4XK#7 -4.93 

/ 3 L N ( f r e q u e n c y ) 0.5716 2.50 0.8593 4.17 0.4707 1.86 0.6014 3.00 

/ 3 L N ( I V T t ) -1.3946 -6.27 -1.4594 -10.04 -1.5659 -11.38 -1.1370 -6.50 

^ n a t i o n a l ca r r i e r - - - - 0.4328 1.52 - -

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

TTAI 0.6113 1.36 0.9511 0.15 0.7126 l^G 0.9222 0.32 
7l'A2 1.0000 - 1.0000 - 1.0000 - 0.8736 0.21 

TTAa 1.0000 - 0.2609 1.92 0.5595 1.45 1.0000 -

0.8940 1.29 0.8333 2J7 1.0000 - 0.8259 1.35 

TTAS 1.0000 - 1.0000 - 0.7268 0.6572 2.15 

TTAG 0.7795 0.44 0.2099 1.52 1.0000 - 1.0000 -

71" A 7 1.0000 - 0.9025 0.36 1.0000 - 0.8585 0.51 

TTAB 0.6339 0.84 0.6199 1.04 0.3981 0.63 0.4927 1.97 
TTAO 1.0000 - 0.4089 3.70 1.0000 - 1.0000 -

TTAII 0.7186 1.46 0.6923 2.38 0.5391 3IW 0.5260 2.34 
7rA12 0.6185 2IW 0.9020 0.43 1.0000 - 0.2869 2.80 
TTAia 1.0000 - 0.6950 1.84 1.0000 - 0.8392 0.63 

0.7758 0.39 1.0000 - 0.4072 2.01 0,7271 0.79 
TTAIS 0.5633 1.48 0.3234 3.57 0.4669 IIW 0.2337 3.09 

" " A i e 1.0000 - 1.0000 - 0.8942 1.33 0.8575 0.93 

•""AIT 0.8992 0.37 0.7721 0.60 0.8096 1.21 1.0000 -

TTAIS 0.6091 0.93 1.0000 - 1.0000 - 1.0000 -

71"A19 0.7654 0.41 0.4931 1.53 0.7494 0.67 0.5711 1.60 
7I'A20 0.4341 &50 1.0000 - 0.8362 0.58 0.8649 0.46 

7rA21 0.4869 1.77 0.5568 1.61 0.1316 2.48 0.4243 2.34 

1"A22 1.0000 - 1.0000 - 1.0000 - 0.7133 0.91 

n A 2 4 1.0000 - 1.0000 - 0.8487 0.58 1.0000 -

7rA25 1.0000 - 1.0000 - 1.0000 - 0.8156 0.62 
7rA27 0.7238 1.15 1.0000 - 1.0000 - 0.8578 0.66 

MA28 0.8700 0J6 1.0000 - 1.0000 - 1.0000 -

7rA29 1.0000 - 1.0000 - 1.0000 - 0.6307 L85 

TTASO 0.3878 &67 0.5162 1.48 1.0000 - 0,7903 1.22 

TTASl 0.6622 1.42 0.5528 2.40 0.4298 3.40 0,5109 3.05 

%A32 0.6874 &97 0.8226 0.67 0.2730 3.14 0,6720 0.78 

%A34 1.0000 - 0.6940 2.28 0.6711 1.50 0.5483 2.30 

# A ^ 0.4280 0.85 0.7507 1.45 1.0000 - 0.8065 0.44 

t IVT = in-vehicle access time 

T-statistics calculated with respect to 0 for taste coefficients, and with respect to 1 for structural 

parameters. 

Table 10.6: NL estimation results for London data, using nesting by airline 
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NL mode l using nest ing by access-mode 

The results for the final group of NL models, which use nesting by access-mode, are 

shown in Table 10.7 (using "i'm to define the structural parameter for access-mode 

nest m). The results show that the four NL models lead to improvements in LL over 

their MNL counterparts by 128.6, 45.3, 163.5 and 131.1 units respectively, at the 

cost of 5 additional parameters in the model for resident business travellers, and 4 

additional parameters in the remaining three models. Again, all four improvements 

are statistically significant, with p-values of 0 for the associated LR tests. 

The common observation across models is that the structural parameter asso-

ciated with the public transport nest needs to be constrained to a value of 1. Al-

though this suggests a lack of correlation between public transport alternatives, the 

low level of disaggregation along the public transport dimension could play a role 

in this (c.f. Section 10.2.3), and more similarities could be expected in subgroups of 

public transport modes. Consistently low values for the structural parameters are 

obtained for car and taxi, showing high correlation within these nests, which can 

reflect mode-allegiance for these alternatives. Again, not all estimated structural 

parameters are significantly different from a value of 1, but additional constraints 

led to significant drops in model performance. 

Discussion 

The presentation of the NL results has shown that each of the three nesting ap-

proaches offers significant improvements in model fit over the corresponding MNL 

model, across the four population groups. 

At the same; time, the analysis has revealed important differences across popu-

lation segments in terms of the optimal two-level nesting structures. As such, using 

the adjusted measure as a means of comparison^^, the model using nesting by 

access-mode leads to the best performance for resident business travellers, while 

the model using nesting by airline leads to the best performance in the two leisure 

groups. For visiting business travellers, the performance of the two models is indis-

tinguishable, with the higher number of parameters for the model using nesting by 

airline nullifying its LL advantage. Finally, it is interesting to note that, for leisure 

travellers, the model using nesting by access-mode gives the poorest performance, 

while, for business travellers, this is the case with the model using nesting by airport. 

'̂'Simple LR-tests cannot be used in this case, given that the models are not nested. While 

non-nested tests could be used for model comparison in this case (c.f. Ben-Akiva & Lerman 1985), 

it was decided that, for the present purpose, the use of the simple measure, which takes into 

account the number of parameters, was sufficient. 
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Resident Visitor 
Business Leisure Business Leisure 

Observations 6,706 7,207 9,667 

Parameters 60 61 61 62 
Final LL -14816.7 -17581.8 -15114.6 -20422.7 

Adjusted /?^(0) 0.3470 0 .3544 0.3616 0.3458 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

/^air—fare - - - - - - -0.0021 -&14 

/^LN(access cost) -1.0197 - 7 ^ 3 -&7841 -&83 -0.8258 -7.61 -0 .6838 -&27 

i^LN (flight time) -1.4941 -&95 -2 .2619 -&87 -1.3507 -1 .72 -3 .4752 -4.15 

/^LN{frequency) 0.3196 1.96 0.8227 4.28 0.3746 1.93 0.5419 2.94 

/?LN(IVTt) -0 .9553 -&27 -1 .5280 -&95 -1 .3575 -&36 -1.1774 -&99 

•^national carrier - - - - 0.3869 1.89 - -

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

# C a r 0.6062 2.56 0.7815 2.62 0 .7553 2.11 0.7145 3.10 

# H i r e 0.3700 2.40 0 .9244 0.21 0.4598 3.66 1.00 -

0.7635 0.69 1.00 - 1.00 - 0.5954 2 .63 

^ M C &5778 2.15 0.9548 0.41 0.5081 4.59 0.7206 1.92 

^I/prp 1.00 - 1.00 - 1.00 - 1.00 -

# T a x i 0.6356 2.53 0.7986 1.77 0.7156 2.44 0 .6467 2.32 

t IVT = ill-vehicle access time 

T-statistics calculated with respect to 0 for taste coefficients, and with respect to 1 for structural 

parameters. 

Table 10.7; NL estimation results for London data, using nesting by access-mode 

10.4.5 C N L mode l s 

We next turn our attention to the estimation of the CNL models, where the base 

specification of utility was again the same as that used for the MNL and NL models. 

In the present context, a total of 48 nests were used in the CNL models (5 

airports, 37 airlines, and 6 access-modes). Aside from leading to the use of 48 

separate nesting parameters (to allow for (Ufferential levels of correlation in different 

nests), this leads, in the presence of a choice set of 324 combined alternatives, to a 

total of 972 allocation parameters (324 along each dimension). As each alternative 

is associated with exactly one airport, one airline, and one access-mode, only one 

allocation parameter along each of the three dimension is not constrained a priori to 

zero for a given alternative. From this, it can also be seen that , given the condition 

that the allocation parameters for each alternative sum to 1, a total of 648 can be 

identified. Although this number is reduced somewhat due to availability conditions, 

this still leads to a very expensive estimation process, and can be seen to result in 
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Resident Visitor 

J 

1-1 % 
O 

Dimension Business Leisure Business Leisure 
airport 1 2 2 2 
airhne 18 18 21 13 

access-mode 1 2 2 2 
airport 1 2 1 2 
airline 9 27 14 16 

access-mode 2 2 1 1 

Table 10.8; Structiiral constraints required in NL and CNL models 

an over-parameterised model, an issue that was already highlighted by Hess (2004) 

in the estimation of a CNL model with the SF-bay area data. 

A preliminary analysis showed that, although the estimation of the allocation 

parameters leads to gains in model fit, these are not statistically significant, given 

the huge cost in terms of the number of parameters. Additionally, the estimation 

of the allocation parameters leads to major issues with parameter identification and 

very significant increases in computational cost. As such, the decision was taken to 

constrain all non-zero allocation parameters to a value of such that an alternative 

is associated in equal parts with an airport, an airline, and an access-mode. With 

the use of fixed allocation parameters, it is not immediately clear how the CNL 

model can reduce to one of the three NL models, although an approximation can 

be obtained when the structural parameters along two dimensions reduce to a value 

of 1. Given this complication, nested LR tests were once again replaced by the 

adjusted statistic. 

The results of the CNL models are summarised in Table 10.9 (main results, 

plus structural parameters for airport and access-mode dimensions) and Table 10.10 

(structural parameters for airline dimension). 

It is of interest to first look at the constraints that are required to yield acceptable 

values for the structural parameters. As such, the number of required constraints, 

along each dimension, is given in Table 10.8 for each of the four models, along 

with the constraints in the corresponding NL models^®. The results show that , 

overall, fewer constraints are required in the CNL models. However, while there is 

a significant reduction in the constraints required in the two business models, there 

is a significant increase in constraints for the model for resident leisure travellers, 

and an increase by two constraints in the corresponding model for visitors. It can 

be seen that the differences arise primarily in the airline dimension. 

In terms of model performance, it can be seen that the four CNL models give 

is woitli pointing out that tlicHc coiLstraint.s icflcct the correlation Htructuru in the data, a.s 

retrieved by the model, and not theoretical identification requirements. 



10.4. Model estimation 258 

Resident Visitor 
Business Leisure Business Leisure 

Observations 6 , 7 0 6 

Parameters 91 
Final LL - 1 4 6 0 3 . 3 

Adjusted / ) ^ ( 0 ) 0 . 3 5 5 1 

est. t-stat. 

8^K9 

7 4 

-17437.6 

0 .3592 

est. t-stat. 

7\2m7 

89 

-14988.2 

0 .3658 

est. t-stat. 

9,667 

87 

-20142.9 

0 .3540 

est. t-stat. 

Ai-ir—fare 

/^LN(access cost) - 0 . 9 9 1 1 - 8 . 0 2 

,^LX(flight time) - 1 - 4 2 0 1 - 3 . 1 6 

/ ^ l n ( f r e q u e n c y ) 0 . 2 4 5 3 1 . 1 0 

^ L N ( l V T t ) - 1 - 0 7 1 8 - 9 . 1 9 

i^national carrier 

est. t-stat. 

-0.7901 -5 .87 

-1 .8270 -2 .50 

0.9027 4.60 

- 1 . 5 5 1 5 - 1 2 . 0 4 

est. t-stat. 

-0 .7975 -8 .62 

-1 .3789 -1 .71 

0 . 5 3 0 6 1 . 6 1 

- 1 . 4 3 6 8 - 1 1 . 1 4 

0 . 4 M 1 1 ^ 5 

est. t-stat. 

- 0 . 0 0 2 0 - 1 . 3 9 

-0 .6708 -6 .92 

-3 .5148 -3 .21 

0 .5523 2.56 

- 1 . 0 5 5 2 - 6 . 6 7 

est. t-stat. 
AiCY 0.5412 1/23 

ALGW 0.6177 2.63 

A l h r 1 - 0 0 0 0 

A l t n 0 . 2 6 2 7 2 . 9 5 

A s t n 0 . 2 6 0 8 2 . 1 8 

est. t-stat. 

1 . 0 0 0 0 

0.1050 0.67 

1 . 0 0 0 0 

0.0961 4 .53 

0 . 5 3 n &04 

est. t-stat. 

0 . 8 & # 0.78 

0 . 1 0 0 0 0 . 6 0 

1 . 0 0 0 0 

0.2&W 2.47 

0.1806 2.28 

est. t-stat. 

1 . 0 0 0 0 

0.0%M &25 

1 . 0 0 0 0 

0.6873 1.74 

O.l&M 0.30 

est. t-stat. 
# 0 ^ 0.&«% 

$Hire 0.3087 1.03 
^ I ' l d c 1 - 0 0 0 0 

0 . 1 4 9 3 2 . 5 8 

^ ' p x 1 . 0 0 0 0 

0.4877 1.13 

j IVT = in-vehicle access time 

0.72!M 0 ^ 8 

&2124 

1.0000 

0 . 7 1 6 5 1 . 1 4 

1 . 0 0 0 0 

0.6&m L 3 2 

0 . 5 7 ^ L 2 0 

0 A & # 0.60 

0 . 7 & # 0 ^ 5 

0.2&M 2.09 

1 . 0 0 0 0 

0.6&W 0 ^ 3 

0.4581 0.40 

0 .6127 1.20 

0 . 2 7 M 2 J 5 

0.451% 1.38 

1 . 0 0 0 0 

0.1109 2.82 

T-statistics calculated with respect to 0 for taste coefficients, and with respect to 1 for structural 

parameters. 

Table 10.9: CNL estimation results for London data, part I 

a better fit to the data (in terms of adjusted p'̂ ) than the MNL model, or any 

of the three NL structures. Again, however, there are some significant differences 

across the four population segments. Indeed, for resident business travellers, the 

improvement in LL offered by the CNL model over the MNL model is 35% bigger 

than the combined improvement offered by the three NL models. In the remaining 

three models, the improvement is smaller than the combined gain in LL by the 

three NL models, but it is in each case still significantly larger than the average 

improvement offered by the three NL models (twice as large in the two models for 

visitors). In fact, it be seen that the only group where the performance of the CNL 

model is not convincing is that for resident leisure travellers. Here, the performance 
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of the model is still better than that of the NL models using nesting by airport and by 

access-mode, but there is little gain in performance to be obtained when compared 

to the model using nesting by airline. This can be seen to be a direct result of 

the higher number of constraints required along the airline dimension for the CNL 

model in this population segment. Again, several parameters experience a drop in 

significance when compared to the MNL model, with the biggest drop occurring 

in the case of the frequency coefficient for resident business travellers, which is 

now only significant at the 73% level, but whose exclusion leads to considerable 

drops in model fit. A number of the estimated structural parameters are again not 

statistically different from 1, while others are very close to zero. Here, it should 

be noted that it was not possible to produce a reliable value for the standard error 

of in the model for resident business travellers, despite the use of a robust 

estimator. This is an indication of the complexity of the model that was estimated 

here. 

In closing, it can be seen that the CNL model does have the potential to offer 

gains in performance when compared to the three two-level NL structures. Further-

more, given the problems with using multi-level NL structures^°, the CNL model has 

clear conceptual advantages. Finally, further gains in performance can be expected 

with the use of a flexible formulation of the allocation parameters, for example with 

a parameterisation as a function of socio-demographics. 

10.4.6 C o m p a r i s o n of s u b s t a n t i v e r e su l t s 

The final step of the analysis, before proceeding to model validation, is concerned 

with a comparison of the actual substantive results across population groups and 

across models. To allow for a consistent comparison, only coefficients estimated 

across all four population subgroups should be involved in these comparisons. In 

the presence of four such coefficients, namely the marginal utilities of changes in (the 

logarithms of) in-vehicle access time, access cost, flight frequency, and flight time, 

three trade-offs were used. These are the willingness to accept increases in access 

cost in return for decreases in access time (i.e. VTTS), the wiUingness to accept 

increases in access time in return for increases in flight frequency, and the willingness 

to accept increases in access time in return for decreases in flight time. 'iYade-ofls 

involving fare and the allegiance to the national carrier would be of interest, but 

given that these two coefficients were each only estimated in one model, and not 

jointly, the calculation of such trade-offs was not possible in the prescnit study, l)ut 

'^The estimated value of ttaio i« arbitrarily close to zero. 

"̂No multi-level NL structures were estimated in this chapter, but the observations made in 

Section 8.4.3 apply. 
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Resident 
Business Leisure 

Visitor 
Business Leisure 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

TTAl 0.1888 1.05 1.0000 - 0.4976 0.84 1.0000 -

7rA2 0.1726 1.88 1.0000 - 0.4936 2.39 0.1367 1.71 

TTAS 1.0000 - 1.0000 - 0.1628 1.68 1.0000 -

7rA4 0.4727 2.01 1.0000 - 1.0000 - 0.7661 0.81 

TTAS 0.1233 1.52 1.0000 - 0.4404 1.47 0.3054 -

TTAG 0.1016 0.14 1.0000 - 0.2101 1.10 0.1271 7.20 

TTAT 1.0000 - 1.0000 - 1.0000 - 0.8871 0.25 

TTAB 0.4773 0.40 0.6816 0.47 0 .3354 0 .33 0.5610 0.89 

TTAg 1.0000 - 1.0000 - 1.0000 - 1.0000 -

TTAIO 0.0752 t 1.0000 - 1.0000 - 1.0000 -

TTAll 0.5512 1.00 0.6829 0.96 0.1196 0.61 0.0613 0.30 

7rA12 0.2936 2.17 1.0000 - &7029 0.30 0.2192 2.52 

n'An 0.9049 0.26 &4500 1.41 0.8986 0.20 0.8286 0.36 

vtau 0.0998 2.96 1.0000 - 0.2796 4.43 0 .2348 3.41 

TTAIS 0.5752 0.82 0.1554 2.06 0 .1083 3 .94 0.1079 1.24 

TTAie 0.4087 1.77 1.0000 - 0.6396 1.70 0.1000 2.03 

ttai? 0.2772 1.75 0 .0584 - &4494 1.32 1.0000 -

TTAIS 0.3386 0.88 1.0000 - 0.9075 0.17 1.0000 -

0.1051 - 0.0502 1.47 0.6685 0.24 0.2115 1.71 

7rA20 0.1012 5.53 1.0000 - 1.0000 - 1.0000 -

V1"A21 0.4790 1.28 0.0949 1.18 0.1072 3 .04 1.0000 -

n'A Î 1.0000 - 1.0000 - 1.0000 - 0.6505 0.37 

1.0000 - 1.0000 - 1.0000 - 1.0000 -

7rA24 0.7482 0.70 1.0000 - 0.6214 0.50 1.0000 -

n'A î 1.0000 - LOOOO - 0.8376 0.22 0 .7344 0.52 

n'A î 1.0000 - 1.0000 - 1.0000 - 1.0000 -

TTAZ? 0.2320 2.21 1.0000 - 1.0000 - 0.8216 0.37 

0.4722 1.78 1.0000 - 1.0000 - 1.0000 -

n'A Î 0.8907 0.20 1.0000 - &4366 - 0.2525 0.99 

ttaso 0.2394 1.29 0.0510 1.39 1.0000 - 0.9219 0.28 

TTASI 0.1197 5.56 0.1835 0.75 0.2278 2.07 0 .5838 1.58 

7rA32 0.5304 2.09 1.0000 - 0.2502 1.25 0.0475 2.85 

0.8717 0.26 1.0000 - 1.0000 - 1.0000 -

1.0000 - 1.0000 - 0.5096 0.81 0 .5889 0.91 
0.0993 5.83 1.0000 - 1.0000 - 1.0000 -

TTASG 1.0000 - 1.0000 - 1.0000 - 1.0000 -

TTAS? 0.1233 0.83 0.8262 0.73 0 .6993 0.68 1.0000 -

t Estimate of standard error not reliable 

T-statistics calculated with respect to 1. 

Table 10.10; CNL estimation results for London data, part II 
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is dealt with extensively in the SP case-study (c.f. Chapter 11). 

Ah four attributes used in the trade-offs enter the utility under a log-transform, 

making the calculation of trade-off's slightly more complicated than in the case of 

linear specifications of utility, where the trade-offs are given by the simple ratio of 

the estimated coefficients. Indeed, the trade-off between two attributes is given by 

the ratio of the partial derivatives of the utility with respect to these attributes. Let 

U = ... + pi\i\ {zi) + j32 In (zg) -1- . . . . The ratio of the partial derivatives of U with 

respect to zi and zg is then given by as opposed to the simple ratio used 

in the case of a linear parameterisation. In the present study, for each trade-off, 

the actual values of Zi and zg for the observed journeys were used to calculate 

and statistics were calculated for the distribution of the appropriate ratios across 

respondents. In the case of the ratio of two coefficients using a log-transform, and 

in the presence of non-perfectly correlated variations in zi and zg, this approach is 

clearly preferable to the commonly adopted use of (with 11 and ^ giving the mean 

values of zi and Zg respectively), as it avoids potentially significant levels of bias in 

the calculation of trade-off's. Furthermore, this approach yields respondent-specific 

trade-offs, allowing the calculation of a set of statistics for the distribution of the 

trade-off's, where it should be noted that these variations are an effect of the varying 

values for the concerned attributes, and do not as such give variations in tastes 

across respondents, but rather give an indication of the varying levels of trade-offs 

under different market conditions. 

The results of the calculation of the trade-offs are summarised in Table 10.11 for 

the VTTS, Table 10.12 for the trade-off between flight time and in-vehicle access 

time and Table 10.13 for the trade-off'between flight frequency and in-vehicle access 

time. In each case, the tables present the mean value of the respective trade-off in 

the diff(;r(;nt population groups, along with the associated standard deviation, and 

show the values across the five different models estimated. 

The first observation that can be made is that there are some variations across 

the five models in the calculated values for the different trade-off's. In the first trade-

off CVTTS), and the third trade-off (frequency vs IVT), the values in the MNL model 

and the two NL models using nesting by airport and by airline are generally roughly 

similar, while those produced with the NL model using nesting by access-mode and 

the CNL model are quite different. The second trade-off, between flight time and in-

vehicle access time, shows a different trend, where the biggest outliers are this time 

generated by the model using nesting by airline, in the two models for residents and 

in the model for visiting leisure travellers, while the observations for visiting business 

travellers in the model using nesting by access-mode and the CNL model need to be 

put into context by noting the lower significance of the flight time coefficient in these 
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Resident Visitor 
Business Leisure Business Leisure 

mean 17.45 24.03 38.66 24.07 
std.dev. 24.83 37.60 45.69 35.93 

mean 19.18 22J7 4&52 20.93 
std.dev. 27.30 35.62 47.88 31.25 

mean 19.08 24.02 4L70 21.93 
std.dev. 27.15 37.57 4&28 3274 

mean 14.52 25T8 35.07 20.97 
std.dev. 20.67 39.38 41.44 31.31 

mean 16J6 25.37 3&44 19.16 
std.dev. 23.86 39.69 4^42 28.60 

MNL 

NL by airport 

NL by airline 

NL by access-mode 

CNL 

Table 10.11; Trade-off between in-vehicle access time and access cost (jC/honr] 

Resident Visitor 
Business Leisure Business Leisure 

mean 1.07 1.14 1.09 2.96 
std.dev. 0.70 0.90 0.98 2.79 

mean 0.97 0.94 0.98 2.80 
std.dev. 0.63 0.74 0.88 2.63 

mean 1.13 134 1.12 3.73 
std.dev. 0.74 1.06 1.01 3.51 

mean 1.06 1.03 0.81 2.81 
std.dev. 0.69 0.81 0.73 2.64 

mean 0.89 0.82 0.78 3.17 
std.dev. 0.58 0.65 &70 2.98 

MNL 

NL by airport 

NL by airline 

NL by access-mode 

CNL 

Table 10.12: Trade-off between flight time and in-vehicle access time 

two models (c.f. Table 10.7 and Table 10.9). The differences in the trade-offs across 

models are possibly more significant than could have be.eu expected on the basis of 

the small differences in model fit, highlighting the flatness of the LL function, but 

also stressing the differences between model structures in terms of implied choice 

behaviour. 

Aside from comparing the calculated trade-offs across the five model structures, 

it is of interest to compare their values across the four population subgroups. Here, 

a major issue arises. Indeed, the calculation of the trade-off between access time 

and access cost produces a counter-intuitive result, suggesting that, for residents, 

the VTTS is higher for leisure travellers than for business travellers, depending on 

the model considerably so (ranging from 19% to 73%). On the other hand, for 

visitors, the results consistently show higher VTTS for business travellers than for 

leisure travellers, with differences ranging from 61% to 101%. 
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Resident Visitor 
Business Leisure Business Leisure 

mean 6.76 19.67 5.83 16.90 
std.dev. 10.02 29.36 8T4 22.64 

mean 6.45 21.32 5.76 19.75 
std.dev. 9.56 31.84 8.05 2&46 

mean 7.10 20.02 5.64 17.84 
std.dev. 10.51 29.88 7.88 23.91 

mean 5.79 18.30 5.17 15.53 
std.dev. 8.58 27.33 7.23 20.81 

mean 3.96 19.78 6.93 17.66 
std.dev. 5.87 29.53 9.68 23.66 

MNL 

NL by airport 

NL by airline 

NL by access-mode 

CNL 

Table 10.13: Trade-off between frequency and in-vehicle access time (min/fiight) 

Clearly, this issue needs to be addressed. There are two possible reasons for 

an underestimated VTTS; an underestimation of the marginal utihty of travel time 

changes, and an over estimation of the marginal utility of access cost changes. In 

the present analysis, it seems likely that both factors play a role. This insight is 

partly gained from a separate analysis carried out to look at the choice-behaviour 

by respondents on the actual observed access-journey^^. This analysis produced two 

main findings: 

• Business travellers are more likely to use premium P T modes for their access-

journey than leisure travellers, with, for example, a lower market share for the 

Tube. 

• On access-journeys using combinations of modes, there is, on the non-final 

stages, a higher market share for taxis in the case of business travellers than 

in the case of leisure travellers, and a much lower market share for the Tube. 

These two findings apply for residents as well as for visitors, but seem to play a 

bigger role in the former group. In combination, these two observations can be used 

to explain the counter-intuitive findings in the calculation of trade-off's. Indeed, it 

should be remembered that, for data reasons, the present study uses highly aggregate 

PT data,, a,rid does not differentiate between standard and premium, modes. At the 

same time, again for data reasons, the chosen mode for a given traveller is defined 

to be the mode used in the final part of the access-journey. As such, it can be 

seen that, with the above two observations, the level-of-service data used in model 

estimation underestimates the access cost for journeys by business travellers, and 

^^For thi.s, the market shares of different access-modes were calculated from the survey data, 
using a higher level of disaggregation than was possible in the actual modelling analysis. 
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also overestimates the access time. This clearly has an effect on the estimated 

coefficients, leading to an underestimation of the access time coefficient, and an 

overestimation of the access cost coefficient. Additionally, it should be remembered 

that the VTTS is in the present case calculated as At the same time as 

the estimates lead to a lower than warranted ratio of , the biased level-of-service 

data leads to an underestimation of the ratio ^ , which further underestimates the 

VTTS. 

To illustrate the differences, the ratio between the access cost and th(; access 

time variables for the actual observed journey was calculated, using the available 

data (i.e. common PT data, and single mode only). This yielded mean values of 

25.84 pence per minute for resident business travellers, with a corresponding value 

of 21.53 pence per minute for resident leisure travellers. Although this does suggest 

a slightly higher spending rate for business travellers, the differences are small. On 

the other hand, for visitors, the corresponding values are 35.56 pence per minute 

for business travellers, and 20.29 pence per minute for leisure travellers. This thus 

shows a much bigger difference between the spending rates for business and leisure 

travellers in the case of visitors. It is conceivable that the spending rate for resident 

business travellers is indeed lower than for visiting business travellers, for example 

due to a lower reliance on taxis (and a higher reliance on cheaper minicabs), but this 

is unlikely to be on the scale indicated by the data. This argument is supported by 

the findings for leisure travellers, where the spending rates for residents and visitors 

are very similar. As such, this brief analysis does indeed suggest some bias in the 

data, which could explain the counter-intuitive findings. 

Clearly, this issue leads to unreliable estimates of the trade-off's, making them 

inapplicable for use in cost-benefit analysis and forecasting. At the same time, it 

is not cleai' what effect, if any, this bias in the access-journey lev(!l-of-service data 

has on the results in terms of model structure. This can only be addressed with the 

reanalysis of the models on more disaggregate access-journey level-of-service data, 

which is an important avenue for future research. It should also be noted that 

the incorporation of ad hoc correction factors, in the form of increased cost and 

decreased time attributes, being an unrehable approach in any case, is hampered by 

the lack of specific route choice information for the access-journeys. 

Attempts were made to estimate models on subsets of the data which were 

less likely to contain biased access time and cost information. One such approach 

consisted of estimating models for those travellers who use only a single mode for 

their entire access-journey. The analysis was restricted to residents only, and made 

use of MNL structures. The results show a mean VTTS of £23.76 per minute for 

resident business travellers, and £26.91 per minute for resident leisure travellers. 
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This shows that the VTTS for resident business travellers increases by 36%, while 

that for resident leisure travellers increases by just 12%. A higher VTTS would 

indeed be expected for travellers using single modes as opposed to combinations of 

modes, but the fact that the gap between the two groups decreases so significantly 

does suggest that part of the bias in the data is indeed caused by the level-of-service 

data for travellers who use multiple modes on their access-journey. Nevertheless, 

some bias clearly remains, such that the requirement for more detailed level-of-

service data persists. 

Another source of potential bias in the access cost attribute (and by extension 

the associated coefficient) is the exclusion of parking cost from the calculation of 

the access cost for car-journeys, where the use of a separate parking cost coefficient 

led to problems with parameter significance while the inclusion of parking cost into 

an overall car cost attribute led to a drop in model performance. An analysis of the 

data showed a higher preference for premium parking options (closer to the airport, 

but more expensive) for business travellers than for leisure travellers. This thus 

again leads to lower access time and higher access cost, with the above-discussed 

effects this has in terms of biased VTTS measures. The likelihood of this issue being 

a prime source of the bias in the results for residents is increased by the fact that 

the treatment of parking cost information has a much bigger impact for residents 

than for visitors. It can also be seen that for business travellers, cost-sensitivity is 

further decreased by the higher incidence of cases where costs are covered by the 

employer. In the present analysis, this could not be accounted for in the models 

in the absence of cost-bearing information, but it can be seen that, in cases where 

such a treatment is possible, it is important to somehow incorporate this into the 

calculation of the VTTS, as a VTTS estimate based solely on costs not covered by 

the employer will be biased. 

To test the likely impact on the VTTS calculation of bias in the access cost 

attribute for car-users, a separate analysis was carried out for travellers using car as 

the access-mode, where again, the sub-analysis was limited to residents, and made 

use of MNL models only. This approach led to significant reductions in the sample-

size, through the exclusion of respondents using access-modes other than car, and 

also led to a different model specification, as the access-journey choice-dimension 

is now obsolete. This approach clearly leads to a loss of information, as the only 

differences between alternatives in terms of access time and access cost are now a 

function of the distance between the ground-level origin and the various airports. 

Furthermore, in the absence of a treatment of parking cost, access cost and access 

time axe now almost perfectly correlated. As expected, these effects lead to much 

lower VTTS than in the models accounting for the presence of different modes, and 



10.4. Model estimation 266 

especially the inclusion of modes with much higher cost/time ratios, such as taxi. 

The two models produce VTTS of £4.65 and £6.90 respectively, which are lower 

than those reported in Table 10.11 by around 75%. More importantly however, the 

ratio between the values for leisure and business travellers increases from 1.38 to 

1.48, which can serve as an indication of the bias caused by the absence of parking 

cost information from the models. 

Despite the above discussion of the likely bias in the estimated trade-offs, several 

interesting observations can nevertheless be made on the basis of Tables 10.11, 10.12 

and 10.13. 

The first observation is that the estimated VTTS, even for leisure travellers 

(where the issue of biased data plays a lesser role), are lower than those reported in 

previous studies of airport choice behaviour, where, as an example. Pels et al. (2003) 

produce VTTS for business travellers between $1.97 and $2.90 per minute in the 

SF-bay area. While there could clearly be differences across regions^^, it seems more 

likely that the use of a non-hnear specification is the main reason for the lower values; 

indeed, much higher values, together with a lower model fit, were obtained when 

using a linear specification. While previous research in airport choice modelling has 

generally made use of a log-transform for flight-frequency, access time and access 

cost have usually been treated in a linear fashion, which could have caused the high 

implied VTTS. 

The second observation relates to the relative sensitivity to access time and flight 

time. Here, the findings for visitors can again be judged to be more reliable, and 

would indicate that, while business travellers are relatively equally sensitive to access 

time and flight time, leisure travellers are far more sensitive to flight time. Here, 

the correlation between flight time and aircraft-type plays an important role, and 

the lower objection to using turboprop flights by business travellers than by leisure 

travellers can help to explain the results^^. Additionally, the average flight time is 

longer for leisure travellers than for business travellers, further reducing the appeal 

of turboprop flights. Here, there is little opportunity for comparing the results to 

those obtained in other studies, where this trade-off is often not available. 

Finally, for the wilhngness to accept increases in access time in return for in-

creases in flight frequency, the values are higher for leisure travellers than for busi-

ness travellers, which is a reflection of lower VTTS for leisure travellers. This find-

ing applies to residents as well as visitors (c.f. Table 10.13), suggesting that the 

main source of bias in the VTTS estimates could be access cost, rather than access 

^^Here, no comparable values for other studies involving the London airports were available. 
There is also possibly a greater opportunity for working during a flight than during the aecess-

journey. 
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time^^. The low value for the trade-off for resident business travellers in the CNL 

model needs to be put into context by noting the high associated standard error 

(c.f. Table 10.9). The actual imphed values equate to between 10% and 30% of the 

average observed access time, and as such, are possibly on the low end of the scale. 

Nevertheless, they are generally higher than the values reported in the SF-bay study 

(c.f. Section 9.4.6), where additionally, in the present study, there are major differ-

ences between the two purpose segments. In the SF-bay study, such differences were 

only observed in the models for visitors, where, in contrast with the London results, 

a higher willingness was observed for business travellers than for leisure travellers. 

10.5 M o d e l val idat ion 

The final part of the analysis is concerned with model validation. For this, the five 

different model structures were applied to the four validation samples^®, with the 

final parameter values produced in estimation. It should be noted that, although 

the differences in LL between the five model structures are significant from a statis-

tical point of view, they are relatively modest, in terms of the difference in LL per 

observation. As such, little differences in performance can be expected between the 

five structures in the validation process, which should rather be seen as a process 

for establishing the overall performance of the models, and for comparing the per-

formance across population groups, as well as for making sure that the models were 

not over fitted to the estimation data. For each observation, the estimation software 

generates a choice probability for each of the 324 elementary alternatives; these can 

be summed up appropriately to obtain the choice probability for the different air-

ports (5), airlines (37) and access-modes (6). From this, the probability of correctly 

predicting a given respondent's choices along each of the three choice dimensions can 

be retrieved straightforwardly, and averaging over observations yields the average 

probability of correct prediction in each of the choice dimensions. 

The results of the vahdation process are summarised in Table 10.14. It should 

first be noted that the low probabilities for the elementary alternatives must be put 

into context by remembering that the total number of such alternatives is 324, with 

an average of 30 available alternatives per individual in the validation sample. As 

expected, the results show little variation between the five model structures, where 

^''This insight is gained by comparing the ratio between the trade-offs for business and leisure 
across residents and visitors, where the comparison is again not entirely reliable due to the potential 
differences between residents and visitors. 

^^The validation samples contained 353 observations for resident business travellers, 434 ob-
servations for resident leisure travellers, 379 observations for visiting business travellers, and 508 
observations for visiting leisure travellers 
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Resident 
Business Leisure 

Visitor 
Business Leisure 

Elementary alternative 
Airline 

Airport 
Access-mode 

16.01% 13.54% 
48.01% 41.87% 
61.47% 52.71% 
39.27% 38.68% 

18.54% 15.63% 
46.56% 40.48% 
60.28% 49.03% 
45.75% 51.44% 

Elementary alternative 
Airline 

Airport 
Access-mode 

16.03% 13.62% 
47.84% 41.57% 
61.19% 51.95% 
39.51% 39.28% 

18.43% 15.87% 
46.25% 40.41% 
59.77% 48.62% 
46.34% 52.00% 

Elementary alternative 
Airline 

Airport 
Access-mode 

16.17% 13.99% 
47.71% 41.39% 
61.34% 52.42% 
39.54% 39.81% 

18.24% 15.86% 
46.18% 40.17% 
60.07% 49.25% 
45.97% 51.99% 

Elementary alternative 
Airline 

Airport 
Access-mode 

16.50% 13.71% 
48.62% 41.98% 
62.88% 53.05% 
38.58% 38.51% 

18.49% 15.83% 
47.10% 40.74% 
61.72% 49.93% 
45.24% 51.32% 

Elementary alternative 
Airline 

Airport 
Access-mode 

16.43% 13.87% 
47.78% 41.82% 
62.47% 52.75% 
39.14% 39.32% 

18.38% 15.99% 
46.56% 40.59% 
60.67% 49.17% 
45.86% 51.80% 

Table 10.14: Average correct prediction performance of London models on validation 
samples 

additionally, it is again not clear a priori what measure of error should be associated 

with these values, such that no inferences on differences between models should be 

drawn on the basis of these results. Even though the differences in performance 

are thus only minor, the more complex models should still be preferred, given their 

greater intuitive correctness. This is reinforced by the more significant differences 

in terms of trade-offs (c.f. Section 10.4.6). 

In terms of differences across population segments, the results suggest better 

performance for the business models than for the leisure models, except for the 

access-mode dimension in the models for visitors. In terms of differences between 

residents and visitors, the performance is very similar, except for the access-mode 

dimension, where better performance is obtained for visitors, despite the fact that 

the modal spht for visitors is more diverse (lower market share for car). 

The average probabilities of correct prediction obtained in the present study 

are well below those obtained in the SF-bay study, where rates of up to 85% were 

obtained for airport choice, with rates of up to 60% for airline choice, and rates of up 

to 85% for access-mode choice. This however needs to be put into context by noting 

that the choice set used in the SF-bay study was considerably smaller (3 airports, 8 
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Resident Visitor 
Business Leisure Business Leisure 

Elementary alternative 17.21% 14.33% 17.08% 16.20% 
Airline 50.27% 44.15% 45.17% 41.16% 

Airport 62.46% 52.82% 58.94% 50.33% 
Access-mode 40.30% 39.38% 44.61% 52.59% 

Table 10.15: Average correct prediction performance of London (MNL) models on 
estimation samples 

airlines and 6 access-modes). Furthermore, the exceedingly high market share for car 

made the analysis of access-mode choice behaviour in the SF-bay area almost trivial. 

Finally, it seems that airport-captivity plays a much bigger role in the SF-bay area 

than in London, where the levels of competition are much higher. This suggests 

that the models estimated in this study yield very satisfactory performance, even 

though they should still only be seen as a first step in the search of an "optimal" 

specification. 

Th(! final point of the analysis consists of ensuring that the models have; not 

been overfitted to the estimation data. For this, the models were applied to the 

estimation data, using the final parameter estimates. Given the small differences in 

performances between the different model structures, this comparison was limited 

to the four MNL models (one for each population subgroup). The results of this 

analysis are summarised in Table 10.15. They show very similar performance to that 

obtained on the validation sample in Table 10.14, with slightly better performance 

on the estimation sample in all groups except for visiting business travellers. The 

differences are too small to indicate any general trend, suggesting that the models 

have indeed not been overfitted on the estimation sample. 

10.6 S u m m a r y and Conclusions 

This chapter has described an analysis of the combined choice of airport, airline and 

access-mode for passengers departing from the London area, using three different 

types of GEV structure; MNL, two-level NL, and CNL. 

in common with most previous studies, the analysis has shown that access time 

is a prime determining factor in travellers' choice of departure airport, while flight 

frequency access cost and flight time also play a role. At this point, it should be 

noted again that the frequency variable can be seen as a proxy for visibility and 

scheduling convenience, while the flight time variable can also be seen as a proxy for 

aircraft-type, and for on-time performance, given that the block-time incorporates 
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taxi time, and hence takes into account congestion. As in many previous studies, it 

was not possible to estimate a consistent significant effect of air-fare^ ,̂ nor of airline-

allegiance^^, a fact that is down to the general low quality of the level-of-service data 

for the associated attributes. 

In terms of model performance, all attempted nesting approaches lead to signif-

icant gains in fit. The use of two-level NL models, which allow for the treatment 

of correlation along a single dimension of choice, lead to improvements in perfor-

mance over the MNL model, and show differences across population groups in tcuins 

of the optimal nesting structure. The theoretical discussions in Section 8.4.3 have 

highlighted the deficiencies of the NL model in the present context, being limited 

to accounting for correlation along at most two dimensions of choice, where only a 

hmited treatment applies along the second dimension. This gives a clear advantage 

to the CNL model, which allows for the simultaneous analysis of correlation along 

all three dimensions of choice. These theoretical advantages of the CNL model are 

reflected in the estimation results, showing gains in model performance and insights 

into choice behaviour, suggesting that this model form can indeed serve as a valuable 

tool in the analysis of air-travel choice behaviour. 

At this point, it must be stressed again that the study did produce a counter-

intuitive result in the models for residents, showing lower VTTS for business trav-

ellers than for leisure travellers. While it was possible to identify the most likely 

source for this bias, the absence of more detailed access-journey level-of-service data 

prevented the estimation of more refined models. As such, it remains to be seen 

what effect, if any, the data problems had on the conclusions in terms of model 

structure. The relatively consistent results across the four population segments in 

terms of the advantages of advanced model structures however somewhat increase 

the confidence in these findings. 

A number of avenues for future research can be identified, not least of which the 

use of more advanced model structures, allowing jointly for cross-nesting, continuous 

deterministic and random taste heterogeneity. Further refinement of the auxiliary 

datasets can also be expected to lead to gains in model performance. Finally, aside 

from accounting for correlation between alternatives sharing a given airport, airline 

or access-mode (or a combination thereof ), it is also of interest to test for correlation 

between alternatives at different, yet comparable airports (e.g. STN & LTN), or 

different airlines and access-modes. 

^^'This was only possible for visiting leisure travellers. 
^^This was only possible for visiting business travellers, in the form of a dummy variable showing 

allegiance to non-UK airlines. 



Chapter 11 

Stated preference case-study of 

airport and airline choice 

11.1 I n t r o d u c t i o n and context 

The two RP case-studies presented in Chapter 9 (SF-bay) and Chapter 10 (Greater 

London) have shown the difficulties that can arise in the absence of detailed level-of-

service information relating to the choices actually faced by respondents^, leading to 

an inability to offer a reliable treatment of factors such as air-fares, flight availability 

and airline allegiance. The issues described in the London study in the context of 

VTTS estimation (Section 10.4.6) have highlighted that data problems can also lead 

to counterintuitive results along the access-mode dimension. The main aim of this 

chapter is to illustrate how SP data can be used to alleviate these problems. 

The biggest advantage of SP data in the present context comes in the avail-

ability of exact data on the alternatives that respondents were actually faced with. 

Similarly, the issue of uncertainty with regards to flight availability does not come 

into play, as it is known exactly what alternatives were open to a given respondent. 

This is also strongly related to the issue of capacity. Even in the presence of an 

adequate weighting strategy when using RP data, the dummy variables associated 

with a given airline; or a given aircraft type do capture (^fleets of flight availability 

as a function of capacity. This problem of biased dummy variables does not arise 

in the case of SP data; a negative estimate for a given airline or aircraft dummy 

does indeed signal a negative effect on utility associated with that specific airline or 

aircraft type^. On the other hand, it should be noted that some of these problems 

^This, of course, ia a problem with all RP data; it is just a bit more exaggerated in the case of 
air-travel. 

^This reasoning is based on the assumption that any SP-design related factors are captured by 
an appropriate set of constants. 

271 
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are, in the case of SP data, simply postponed to the forecasting stage. 

However, another major difference arises between the use of RP and SP data 

in air-travel research. As described in Section 8.3, one of the variables with the 

greatest explanatory power in RP case-studies of air-travel choice behaviour is flight 

frequency. As mentioned previously, it should be noted again that, with the possible 

exception of travellers on very flexible tickets, frequency is not taken into account 

by travellers in the way it is modelled. Rather, it captures a host of other factors, 

most notably visibility, capacity, and schedule delay between the actual and opti-

mal departure time, on the basis of an assumption of a relatively even spread of 

departure times. In the case of SP data, visibility and capacity need not be taken 

into account, as described above. Furthermore, by presenting travellers with a set of 

actual disaggregate flight options, frequency does not play a role in the description 

of the alternatives, but a direct treatment of schedule delay becomes possible. 

The study conducted by Adler et al. (2005) on the same data used here reveals 

significant effects for a range of variables that are generally not well estimated in 

RP studies, such as air-fares, schedule delay and airline and airport allegiance. 

Furthermore, the study shows important differences between business and leisure 

travellers, and the use of a MMNL model on the same data reveals the prevalence of 

significant random variations in tastes across respondents within these two groups. 

Aside from using a further segmentation of the leisure segment into holiday and 

VFR travellers, the study presented in this chapter aims to expand on the work by 

Adler et al. (2005) in two main directions. 

• Firstly, the main estimation work is preceded by a detailed investigation of 

the non-linearities in response to changes in explanatory variables, using a 

preliminary analysis based on Box-Cox transforms. The aim of this analysis is 

to explore the potential for using non-linear transforms for a host of attributes 

that are generally treated in a linear fashion. 

• Secondly, the study aims to explore continuous interactions between taste 

coefficients and socio-demographic variables. This treatment of deterministic 

taste heterogeneity, which has clear conceptual advantages over more arbitrary 

segmentation approaches, does not seem to have found widespread application 

in air-travel research thus far. In fact, it can be argued that this also extends to 

other areas of transport research, where modellers still rely mainly on the use 

of segmentations or simple linear interactions in the analysis of deterministic 

taste heterogeneity. It should also be said that the rise in popularity of mixture 

models has contributed to this situation, with modellers increasingly relying 

purely on a random treatment of taste heterogeneity, despite the advantages 
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of the other methods in terms of interpretation. 

The remainder of this chapter is organised as follows. Section 11.2 presents a descrip-

tion of the SP data used in the analysis, and Section 11.3 discusses the specification 

of the utility functions in the various models. Sections 11.4 and 11.5 present the 

results of the MNL and MMNL models respectively, and Section 11.6 summarises 

the findings of the analysis. 

11.2 Descr ip t ion of d a t a 

The survey data used in this analysis were collected via the internet in 2001 from 

a sample of around 600 individuals who had made a paid domestic air trip within 

the twelve months prior to the interview taking place (Resource Systems Group Inc. 

2003). 

The first stage of the survey was an RP exercise, collecting data on the most 

recent domestic air-trip by a respondent, along with socio-demographic information, 

and information on membership in frequent flier programmes. Besides actual level-

of-service information for the observed trip, the survey also collected qualitative 

data, indicating the level of satisfaction with the observed trip, along the airport as 

well as airline dimension. On the basis of the observed trip, a number of alternative 

flight options, in terms of airports and airlines, were compiled, and the respondents 

were asked to rank them in order of preference. For the airline options, the ranking 

was performed under the assumption of equal fares, while the ranking of airports 

was performed independently of the differences in access time. The rankings of 

airlines and airports thus serve as proxy variables for service quality attributes not 

included directly in the later model specification^. 

The actual SP survey uses a binomial choice set, with ten choice situations per 

individual. In each choice-situation, the respondent is faced with a choice between 

the current observed trip, and an alternative journey option, compiled on the basis 

of the information collected in the RP part of the survey. These two alternatives 

are hereafter referred to as the RP alternative and the SP alternative respectively. 

A fractional factorial experimental design was used in the generation of the choice 

situations, and the airports and airlines used in the choice sets for a given individual 

were selected on the basis of the ranking compiled in the RP survey. 

'̂ It should be noted that, for airlines, there is potential correlation between the ranking of 
airline.s and the membership in frequent flier programmes. 

''The binomial nature of the data prevents the use of nesting structures. On the other hand, 
this reduces problems in terms of respondents being confronted with too much information (too 
many alternatives). 
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Air Travel Study 
2001 

Which would yon choose for a tiip to Jacksonville liitein>itioii>ii, Jacksonville? 

C A R R I E R 

ON-TIME 
PERFORMANCE 
SCHEDULED IN-THE-
A I R TRAVEL T IME 

A R R I V A L T IME 

NUMBER OF 
CONNECTIONS 

A I R C R A F T T Y P E 

DEPARTURE 
A I R P O R T 

Y o u r C u r r e n t Fl ight 

Aiiieiican Aiilines 

This flight was on time 

5 Ins, 45 in ins. 

5:45 PM 

1 

Regional Jet and Standard Jet 

$250 

Manchester Airport. Manchester 
NH 

<" I prefer my current trip 

Alternate Fl ight 

Northwest 

80% of these flights are on-time 

5 hrs. 45 niins. 

7:45 PM 

None 

Standard Jet 

$188 

Rutland State Airport. Rutland VT 

1 prefer the alternate trip 

Question 3 of 10 

Questions or problems? Call 1-888-774-S9SE or email at air@rsfiinc.com 

©2001, Resource Systems Group, Inc. 

Figure 11.1: Example screen-shot for SP survey: third choice-situation 

Aside from the actual airline and airport names^, the attributes used to describe 

the two alternatives in the SP survey include flight time, the number of connections, 

the air-fare, the arrival time®, the aircraft type, and the on-time performance of the 

various flights. Access cost was not included in the surveys (in the absence of an 

actual specification of the mode choice dimension), such that a calculation of the 

VTTS on the access-journey is not possible, although there is the possibility of 

calculating a trade-off between access time and air-fare. No choice is given between 

different travel classes; this can be regarded as an upper-level choice. 

As an illustration. Figures 11.1, 11.2 and 11.3 show screen-shots from the actual 

SP survey, where the third, ninth and tenth choice-situation for a given respondent 

are reproduced here, showing variation in all attributes of the SP alternative across 

observations, while the attributes for the RP alternative are kept constant across 

all the observations for the same respondent. 

The final sample contains data collected from 589 respondents; with 10 choice-

situations per respondent, a sample size of 5,890 observations is obtained, split into 

®Proin which access times can be inferred. 
®From which schedule delays can be calculated, with the help of information on desired arrival 

times. 

mailto:air@rsfiinc.com


11.3. Model specification 275 

Air Travel Sluciy 
2001 

Which would you choose for a trip to Jacksonville liiternational, Jacksonville? 

• N -T IME 
PERFORMANCE 
SCHEDULED IN-THE-
A I R T R A W E L T I M E 

A R R I V A L T I M E 

NUMBER OF 
CONNECTIONS 

A I R C R A F T T Y P E 

DEPARTURE 
A I R P O R T 

Y o u r C u r r e n t Fl ight 

American Airlines 

This flight was on time 

5 his. 45 mins. 

5:45 PM 

1 

Regional Jet and Standard Jet 

$250 

Manchester Airport, Manchester 
NH 

I prefer my current trip 

Alternate Fl ight 

American Airlines 

90% of these flights are on-time 

7 hrs. 15 niins. 

4:45 PM 

1 

Widebody and Propeller 

$125 

Rutland State Airport, Rutland VT 

I prefer the alternate trip 

Question 9 of 10 

Questions or problem^ CWI I -888-774-5381 or email at air@rsilnc.com 

©2001, Resource Systems Group, Inc. 

Figure 11.2: Example screen-shot for SP survey: ninth choice-situation 

1,190 business travellers, 1,840 holiday travellers and 2, 860 VFR travellers. Further 

segmentations, for example by employment status, did not provide additional gains 

in performance. Given the small sample sizes, especially for the business segment, 

and the high number of explanatory variables, the decision was taken to include 

all observations in the estimation process, rather than waste some of them on a 

validation sample. This decision is also partly motivated by the relative lack of 

insight gained from using a validation sample in the two RP case-studies (Chapters 

9 and 10), where the performance in the validation sample was very similar to that 

in the estimation sample, although there is of course a possibility of a different level 

of risk of overfitting when using SP data. 

11.3 M o d e l specif icat ion 

The description of model specification is split into three parts. We first look at 

the explanatory variables that were included in the specification search. We then 

describe the specification of the utility in terms of non-linearities in response rate, 

before turning our attention to the modeUing of continuous interactions between 

explanatory attributes and socio-demographic (and/or trip-specific) characteristics. 

mailto:air@rsilnc.com
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Air Travel Study 
2001 

Which would you choose for a ttip to Jacksonville linemalioual. Jacksonville? 

ON-TIME 
PERFORMANCE 
SCHEDULED IN-THE-
A I R TRAVEL T IME 

A R R I V A L T IME 

NUMBER OF 
CONNECTIONS 

A I R C R A F T T Y P E 

DEPARTURE 
A I R P O R T 

Y o u r C u r r e n t F l ight 

American Airlines 

This flight was on time 

5 his. 45 mins. 

5:45 PM 

1 

Regional Jet and Standard Jet 

$250 

Manchester Airport, Manchester 
NH 

I prefer my current trip 

OXgEgQ 

Alternate Fl ight 

American Airlines 

80% of these flights are on-time 

5 hrs. 45 mins. 

4:45 PM 

2 

Widebody and Propeller 

$125 

Lebanon Municipal Airport, 
Lebanon NH 

i prefer the alternate trip 

Question 10 of 10 
Questions or problems? Call I -S88-774-S98I or email at air@rssinc.com 

©2001, Resource Systems Group, Inc. 

Figure 11.3: Example screen-shot for SP survey: tenth choice-situation 

11.3.1 E x p l a n a t o r y var iables used in speci f ica t ion search 

A high number of variables were included in the initial specification search. These 

are now looked at in turn. 

• Airport dummy variables: On the basis of the ranking of airports provided 

by the respondent, dummy variables were associated with the different ranks. 

The number of airports included in the ranking was limited to four^, and 

the dummy variable for the lowest-ranked airport was normalised to zero. At-

tempts were also made to estimate an additional constant, associated with the 

airport closest to the passenger's ground-level origin, which is not necessarily 

the preferred airport. 

• Airline dummy variables: As was the case for the different airport options, 

four dummy variables were again specified, associated with the three top-

ranked airlines and the lowest-ranked airline, where this final dummy variable 

was normalised to zero. 

• Frequent flier information: Three dummy variables were included in the 

^It should be noted that the set of airports, and the ranking therein, varies across respondents. 

mailto:air@rssinc.com
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base specification, to account for the effects of frequent flier (FF) membership. 

These were associated with standard membership, elite membership, and elite 

plus membership. 

• Air-fare: The fare of a given flight option, in US$. 

Flight time; The time from the departure-gate to the arrival-gate (in minutes), 

also referred to as block time, which includes taxi time. 

• Connections: The number of connections for a given flight, with three possi-

ble levels, (], 1 and 2. Instead of assuming a linear effect, two separate dunnny 

variables were initially estimated, associated with single and double-connecting 

flights. 

• Schedule delay: Separate coefficients were estimated for the penalties asso-

ciated with an earlier than desired arrival time (SDE), and a later than desired 

arrival time (SDL). 

• Aircraft-type: Four different types of aircraft were used in the SP sur-

vey; turboprop, regional jet, single-aisle jet, and wide-body jet. Appropriate 

dummy variables were defined, with single-aisle jet used as the base. 

• On-time performance (OTP): For the RP alternative, information was 

collected on whether the flight was on time or not, while, for the SP alternative, 

five different levels were used, ranging from 50% to 90% probability of being 

on time. The high number of levels (7) of the attribute, in conjunction with 

the low number of observations for some of these levels, led to a decision 

not to use separate dummy variables for the different levels, but to use a 

marginal coefficient, in conjunction with appropriate non-linear transforms 

where applicable (c.f. Section 11.3,2), 

• Access time: The access times for the two alternatives, in minutes, on the 

mode chosen in the RP survey. 

• Inertia variables: Attempts were made to account for respondent inertia 

with the help of a number of variables. Aside from an ASC for the RP al-

ternative (which admittedly also captures other factors), airport and airline 

inertia constants were included in the utility of the SP alternative in the case 

where the RP airport or airhne was reused in the SP alternative. Addition-

ally, attempts were made to account for inertia effects by including a variable 

giving th(! number of flights in the; past twelve months in the utility function 

of the RP alternative. 
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• Qualitative variables: Attempts were also made to include qualitative vari-

ables in the utility of the RP alternative, such as the level of satisfaction 

expressed by the respondent in relation to service. None of these variables 

was found to have a significant effect, such that quality of service factors are 

seemingly all captured in the ASCs. 

There are differences across the three population segments in terms of which of these 

variables have a significant impact. These differences are described in detail in the 

presentation of the MNL results (Section 11.4). 

11.3.2 Non- l inea r i t i e s 

Except for those variables listed in Section 11.3.1 for which a separate coefficient 

was associated with each possible level, there are no a priori grounds for believing 

that a linear specification of utility is appropriate. 

With this in mind, for each of the three population segments, an analysis was 

conducted to test for the presence of non-linear responses. In this analysis, Box-Cox 

transforms® were used for access time, air-fare, flight time, on-time performance, and 

the two schedule delay variables. On the basis of the results of this Box-Cox analysis, 

a choice was then made between a linear and a non-hnear formulation, where, in the 

latter, a log-transform was used in the case of decreasing marginal returns, and a 

power-formulation was used in the case of increasing marginal returns. As such, the 

Box-Cox transforms are used only in an explanatory role, and are replaced by more 

well-behaved transforms in the final model, easing the numerical issues. The drops 

in flexibility resulting from this approach were minimal, with the original estimates 

for A always being relatively close to values of 0 or 1. 

Again, there were differences across the three population groups in terms of the 

optimal specification, and these are described in detail in the presentation of the 

MNL results. It should be noted that the use of different specifications in different 

groups complicates the comparisons across groups, given for example the big impact 

that the use of a log-transform can have on the estimated mean WTP (c.f. Section 

10.4.6). However, it was judged that, on the basis of the differences in performance 

across specifications, the use of a suboptimal specification in some segments with 

the sole aim of facilitating cross-segment comparisons was not warranted. 

• -1 ® With taste coefficient associated with attribute x, the utihty component is given by ^ . 
Values of close to 1 indicate a linear response, while values smaller and larger than 1 indicate 
a concave and convex response respectively, where, with A = 0, the Box-Cox transform is replaced 
by the log-transform. 
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11.3.3 C o n t i n u o u s in t e rac t ions 

While the majority of modelling analyses allow for some interactions between es-

timated parameters and socio-demographic attributes, these generally come in the 

form of a segmentation using separate models, or the use of separate coefficients in 

the same model. The treatment of such interactions in a continuous fashion is rel-

atively rare, with the same applying for interactions between multiple explanatory 

variables. However, it is clear that such continuous treatments of interactions have 

advantages in terms of flexibility when compared to the more assumption-bound 

segmentation approaches. On the other hand, they pose greater demands in terms 

of the quality of auxiliary data as well as computational cost. 

In the SP case-study presented in this chapter, two groups of continuous interac-

tions were included in the final models, after an extensive specification search. The 

first interaction looks at the impact of travel-distance (in the form of flight time 

for the RP alternative) on the marginal utilities of access time, air-fare, on-time 

performance, and early and late arrival. For a given attribute x, the utility was 

specified as 

[ / = . . . -h x + . . . , (11-1) 

where FD gives the RP flight time to the current destination, and serves as a proxy 

for flight-distance, such that the same value of FD is used for the utilities of the RP 

and SP alternative. The division by the mean observed flight time FD ensures that 

Px gives the marginal utility of changes in attribute x at the mean flight-distancc 

in the current population segment®. With negative values for Xfd,x-, the sensitivity 

decreases with increases in F D , with the opposite applying in the case of positive 

values for \fd,x- Finally, the rate of the interaction is determined by the absolute 

value of where a value of 0 indicates a lack of interaction. 

The same approach was used to account for an interaction between income^° and 

the sensitivity to various attributes such as air-fare and access time. As an example, 

in the case of fare sensitivity, we have: 

^in-r-,fare 

U = ... + pfare I j ] fare + ..., (11.2) 

where i gives the household income for the current respondent, with i giving the ®It can be seen that the normahsation is arbitrary in terms of having no effect on the estimate 
of XpD.x, or indeed on the model fit. However, it does have an effect on the estimated value for 
l3x, which gives the marginal utility of changes in attribute x when FD = FD. 

^°In the form of annual household income. 
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mean income in the appropriate population segment. Here, a negative estimate 

would be expected for Xincjare, indicating reduced fare-sensitivity with higher in-

come. A problem with this approach in the present context is caused by the fact 

that income information is presented in the form of a set of separate income-classes, 

as opposed to absolute income information, leading to a requirement for using class-

midpoints, with the obvious averaging error this involves^^. In practice, no signifi-

cant interaction with income was identified for any attribute, except air-fare. 

Interactions with other factors, such as trip duration, or party size, were not 

found to be significant. 

11.4 M N L mode l s 

This section describes the findings of the MNL model fitting analysis^^. It first looks 

at the findings in terms of optimal specification in the three population subgroups, 

before proceeding to a comparison of the actual substantive results across the three 

groups. 

11.4.1 M N L m o d e l for bus iness t rave l le r s 

The findings from the analysis using the 1,190 observations collected from business 

travellers are summarised in Table 11.1. Only parameters estimated in the final 

model are shown here, with any normahsed or excluded parameters not listed ex-

plicitly. The normalisations used for multi-level attributes are those described in 

Section 11.3.1. 

The analysis revealed effects for all the main continuous variables, including 

access time, air-fare, flight time, and early and late arrival. Except for the early 

arrival p e n a l t y t h e analysis showed that the use of a log-transform led to signif-

icant gains in model performance, suggesting decreasing marginal returns for the 

associated attributes. Overall, this conclusion is consistent with intuition, with the 

possible exception of the schedule delay variables, where it is striking that the effect 

for early arrival was found to be hnear, with that for late arrival showing decreasing 

marginal returns. 

The results further show positive effects of improvements in on-time performance. 

Initial results showed a reduced sensitivity to on-time performance on longer flights. 

^^Here, it should be noted that similar averaging errors occur in the case where different income 
classes are grouped together in a segmentation approach, while the use of separate coefficients in 
each group risks leading to problems with parameter significance. 

^^All models presented in this chapter were estimated with BIOGEME. 
i^The coeflncient Psde is only significant at the 89% level. 
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Parameters 
Observations 

Final log-likelihood 
Adjusted p^(0) 

17 
1,190 

-395.14 
(15003 

est. t-stat. 

PLN{access time) -0.3725 -3.20 
PLN{fare) -3.5344 -13.80 

PLN{f light time) -1.6279 -6.27 
Pln(sdl) -0.1390 -2.74 

PsDE -0.0019 -1.61 

PoTP 0.0088 3.66 
^current 0.5979 4.21 

^FF standard 0.4168 2.37 
^FF elite and elite—plus 1.0628 2.60 

^top—ranked airport 0.7062 3.68 
^2"'^—ranked airport 0.2593 1.31 

^connecting flight -0.3747 -2.39 
^wide—body -0.2534 -1.22 

^regional jet -0.6748 -3.49 
^turboprop -0.8227 -3.73 

^distance,S D E -1.5941 -3.09 
^income,LN (fare) -0.1456 -1.61 

Table 11.1: Estimation results for MNL model for business travellers 

but this resulted in problems with significance for the actual on-time performance 

coefficient. Efforts to use a power formulation for on-time performance attribute 

were unsuccessful^'^, as were efforts to use separate coefficients for different levels of 

on-time performance, such that the effect was specified to be linear. 

In terms of other interactions, the estimates additionally suggest a reduced sen-

sitivity to early arrival on longer flights, as well as reduced fare-sensitivity with 

higher income, where the effect is significant at the 89% level. No other interactions 

were found to be significant in this population segment, such as for example the 

relationship between flight-distance or income and the sensitivity to access time. 

The final part of this discussion looks at the findings in terms of dmnmy vari-

ables. Here, a significant positive ASC was found to be associated with the current 

alternative, capturing inertia as well as a host of other effects. The estimation 

further shows a strong effect of frequent flier membership on the utility of an alter-

native. Here, the effect for elite and elite plus membership was so similar that a 

common coefficient was used, where the estimates show this effect to be over twice 

^^This approach would have allowed for a much stronger dislike of very late flights than of flights 
which offer average on-time performance. 
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as large as for standard frequent flier membership. The fact that none of the airline 

dummy variables (linked to ranking) was found to be significant suggests that, for 

business travellers, airline allegiance is primarily influenced by membership in fre-

quent flier programmes. In terms of airport allegiance, where the dummy for the 

lowest-ranked airport was used as the base, a significant effect could only be asso-

ciated with the second and top-ranked airports, where the former one is significant 

only at the 81% level. Nevertheless, the results do suggest some effects of airport 

allegiance, especially for the most preferred airport. 

Interestingly, the estimated dummy variables for flights with one and two connec-

tions were indistinguishable, leading to the use of a common factor, which suggests 

that, for business travellers, flights with multiple connections are not seen as more 

inconvenient than flights with a single connection^®, ceteris paribus. The final set 

of dummy variables, associated with aircraft type, show that single-aisle jets are 

clearly preferred over turboprop planes and regional jets, while the negative effect 

associated with wide-body jets is not statistically significant above the 78% level of 

confidence. 

11.4.2 M N L m o d e l for hol iday t rave l le rs 

The findings from the analysis using the 1,840 observations collected from holiday 

travellers are summarised in Table 11.2, which again only shows parameters included 

in the final model. 

Like in the case of business travellers, the analysis revealed significant effects of 

access time, air-fare and fiight time, where a log-transform was again found to be 

appropriate for all three attributes. The first difference with the business models 

arises in the treatment for schedule delay, where the use of linear effects was found 

to be preferable, and where, given the small differences between the effects for early 

and late arrival, a common coefficient was used (significant at the 88% level). 

The results again show positive effects of improvements in on-time performance, 

where the estimated coefficient is highly significant in this model. The associated 

interaction term suggests that holiday travellers' sensitivity to on-time performance 

increases with flight-distance, although the associated effect is significant only at 

the 91% level. This can be explained for example by the notion that holiday flights 

are often pushed to the edges of the off-peak periods, where sensitivity to on-time 

performance may indeed be larger, and especially so on very long flights. 

Other interactions again show a reduced fare-sensitivity with higher income. 

should be noted that this can be in part be seen as a result of the low incidence of flights 
with double connections in the data, an option that was only made available for destinations more 
than four hours away. 
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Parameters 
Observations 

Final log-likelihood 
Adjusted p^(0) 

21 
1,840 

-532.42 
0.5661 

est. t-stat. 

PlN(access time.) -0.3488 -3.49 
PLN{fare) -5.0039 -19.25 

PLN{flight time) -1.9602 -6.76 
PsD -0.0008 -1.57 

PoTP 0.0122 5.86 
^current 0.9379 6.97 

SpF 0.1983 0.99 
^top—ranked airport 0.9354 4.22 

^2"-'^—ranked airport 0.7179 3.11 

ranked airport 0.3213 1.29 
^top—ranked airline 0.4346 2.51 

—ranked airline 0.3148 1.69 

—ranked airline 0.3482 1.88 
^single connection -0.3398 -2.33 
^double connection -1.0783 -4.18 

^wide—body 0.2330 1.36 
^regional jet 0.0228 0.14 

^turboprop -0.0310 -0.14 

^distance,LN{fare) 0.1431 2.27 
^distance,OT P 0.2631 1.71 

^income,LN {fare) -0.0430 -0.75 

Table 11.2: Estimation results for MNL model for holiday travellers 

though the confidence level of the associated term is very low. The interaction terms 

also show that, for holiday travellers, fare sensitivity increases with flight-distance. 

It is important to put this into context by remembering that a log-transform is also 

used on the fare attribute. As such, the results simply suggest that, at a given fare 

level, increases are valued more negatively in the case of longer flights. A possible 

explanation for this could be the higher secondary costs associated with longer flights 

in the case of holiday travellers; such trips are generally more costly overall (e.g. 

longer duration), leading to a greater desire for savings when it comes to air-fares. 

Like in the model for business travellers, the ASC associated with the RP alter-

native is again positive, and highly significant. However, some important differences 

arise for the remaining dummy variables. The first observation that can be made is 

that, as expected, frequent flier benefits play a much smaller role in this segment of 

the population; as such, it was only possible to estimate a common dummy variable 

for all levels of membership, and this was significant only at the 68% level. On the 
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other hand, a significant positive effect is associated with the top-ranked airline. 

Positive effects are also associated with the second and third-ranked airlines, where 

these are less important and also only significant at lower confidence levels. Further-

more, the difference between these two dummy variables is not significant, although 

the actual estimates would suggest a higher value for the third-ranked airline than 

for the second-ranked airline. Aside from these problems, the findings would sug-

gest that, for holiday travellers, airline preference plays a bigger role in allegiance 

than membership in frequent flier programmes. Additionally, positive effects, of de-

creasing magnitude as well as statistical significance, are associated with the three 

top-ranked airports. 

Unlike for business travellers, the effect associated with flights with two connec-

tions is significantly larger than for flights with a single connection, and the scale of 

the difference (factor of 3) supports the decision not to use a linear effect, but to use 

two separate dummy variables. Finally, for the aircraft-type dummies, the results 

suggest that holiday travellers do not distinguish between single-aisle jets, regional 

jets, and turboprop planes, with the only aircraft dummy with a modestly signifl-

cant value being that for wide-body aircraft, which are seemingly given preference 

over single-aisle jets. 

11.4.3 M N L m o d e l for V F R t rave l le rs 

The flndings from the analysis using the 2, 860 observations collected from VFR 

travellers are summarised in Table 11.3, which again only shows parameters included 

in the final model. 

An important difference arises immediately when comparing the results for VFR 

travellers to those for business and holiday travellers. Indeed, while access time 

and air-fare again enter the utility function under a log-transform, the specification 

search indicated that it is preferable to treat flight time in a linear fashion. Early 

and late arrival penalties are treated separately in this model, and both enter the 

utility in a linear form, where the penalty associated with late arrival is lower, and 

significant only at the lowly 62% level. 

Three non-linear interactions could be retrieved from the data. As in the case 

of hohday travellers, these again show heightened fare sensitivity on longer flights, 

along with reduced fare sensitivity with higher income, where this is however only 

significant at the 82% level. Finally, unlike in the other two models, it was possible 

to retrieve a relationship between flight-distance and access time sensitivity, which 

is significant at the 94% level, and shows lower sensitivity to access time on longer 

flights, which would support a decision to shift long-haul flights to outlying airports, 
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Parameters 
Observations 

Final log-likelihood 
Adjusted p^{0) 

21 
2,860 

-829.732 
0.5709 

est. t-stat. 

PlN{access time) -0.3602 -3.96 
(^LN{fare) -4.7477 -23.84 

Pflight time -0.0086 -8.96 
PsDE -0.0012 -3.25 
PSDL -0.0007 -0.87 
POTP 0.0105 6.09 

^current 0.4345 3.70 
^top—ranked airport 1.0506 4.93 

^2"-'^—ranked airport 1.0299 5.32 

—ranked airport 0.4880 2.39 
^closest to home 0.5281 3.10 

^top—ranked airline 0.3971 3.37 

ranked airline 0.2879 2.17 

ranked airline 0.0900 0.60 
^connecting flight -0.3578 -3.15 

^wide—body 0.5248 3.28 
^regional jet -0.1995 -1.50 

^turboprop -0.3351 -2.03 

^distance,LN{access time) -0.4877 -1.91 

^distance,LN {fare) 0.1915 3.44 
^income,LN {fare) -0.0531 -1.34 

Table 11.3: Estimation results for MNL model for VFR travellers 

where the issue of point-to-point passengers on the required feeder-Eights would 

however need to be addressed separately. 

Like in the two other population segments, the ASC associated with the RP 

alternative is again positive and highly significant. However, in this segment, it 

was not possible to estimate a significant effect associated with frequent flier pro-

grammes, while the dummy variables associated with the two most preferred airlines 

are positive and significant at high levels of confidence. The results also indicate 

that airport allegiance plays a role, where there is however essentially no difference 

between the estimates of the dummies associated with the two top-ranked airports. 

Finally, unlike in the other two population segments, it was also possible to identify 

a significant positive effect associated with the airport closest to the passenger's 

ground-level origin. 

For the same reasons as in the model for business travellers, a common effect was 

used for flights with single and double connections. In terms of aircraft-type, the 
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difference between single-aisle jets and regional jets is significant only at the 87% 

level, while the results further indicate a significant dislike for turboprop flights, and 

a significant preference for wide-body jets over single-aisle jets. 

11.4.4 C o m p a r i s o n of r e su l t s across p o p u l a t i o n segmen t s 

The description of the MNL model fitting exercises has already highlighted a number 

of differences between the specifications used in the three population segments. 

As such, it has been shown that frequent flier benefits matter more to business 

travellers, while simple airline preference plays a bigger role for leisure travellers. 

Other differences arise in the treatment of schedule delays; here, a common non-

hnear (decreasing) effect is used for holiday travellers, while for VFR travellers, 

the effect is linear, but the penalty associated with early arrival is larger than that 

associated with late arrival. For business travellers, SDL is treated in a non-linear 

fashion, while SDE is treated linearly, but the sensitivity to it decreases on longer 

flights. A difference also arises in the case of flight time, which is treated linearly 

for VFR travellers, while a log-transform is used for business and holiday travellers. 

A number of other differences also arise in the treatment of interactions between 

attributes, where the results show higher fare sensitivity on longer flights for hoUday 

and VFR travellers, with no interaction in the case of business travellers. Also, while 

holiday travellers are more sensitive to on-time performance on longer flights, there 

is no distance effect on the sensitivity to on-time performance for business and VFR 

travellers. In all segments, the results suggest reduced fare-sensitivity with higher 

income, although the interaction parameter never attains a high level of statistical 

signiflcance. Finally, the results indicate decreased sensitivity to access time on 

longer flights only in the case of VFR travellers. 

These differences in model specification need to be borne in mind when com-

paring the substantive results across the three population segments. The trade-off 

that is of the greatest interest is the computation of the willingness to pay measures 

for the different attributes. Additionally however, it is of interest to look at trade-

offs involving the sensitivity to access time, for example to gauge the willingness 

to accept increases in access time in return for direct flights, or for flights on the 

preferred airline. 

The calculation of the trade-offs from these models is made considerably more 

complicated than is usually the case, given the high number of non-linear terms in 

the utility functions. Indeed, there is no single case, among those trade-offs that arc 

of interest, where the simple ratio between coefficients can be used. In those trade-

offs involving attributes that enter the utility under a log-transform, the appropriate 
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coefficient needs to be multiplied by the inverse of the associated attribute. In the 

case where both attributes involved in a trade-off enter under a log-transform, bias 

was avoided by using the mean value of the ratio between the two attributes across 

observations as the multiplier, as opposed to the ratio between the mean values of 

the two attributes. 

The situation becomes more complicated again in the case of the fare coefficient, 

which interacts continuously with income. Here, the term in the utility function 

is given by P y (/are), where f {fare) is in the present context al-

ways equal to In ( /are) . Given that the derivative of with respect to 

fare is 0, the partial derivative of the utility with respect to fare is simply given 

by P where, given the use of a log-transform, we have that 

f {fare) = j ^ . The inclusion of in the partial derivative shows that 

the actual value of the trade-off will vary across individuals as a function of income. 

A similar situation arises in the case of attributes where the associated coefficient 

interacts continuously with flight-distance, where, in the trade-offs, the coefficient 

is multiplied by (= )^^^ ' ' ' . Finally, in the case of hohday and VFR travellers, 

where the fare-coefficient interacts with income as well as flight-distance, a double 

multiplier needs to be used. 

A special situation arises in the case of trade-offs involving flight time; here, 

major complications arise, given that the variable used as a proxy for flight-distance 

in the elasticity formulation is in fact the flight time variable collected in the RP 

survey (c.f. Section 11.3.3). As such, it can be seen that this same variable FD, 

which is used in the elasticity specification, also enters the utility function of the 

RP alternative in the SP survey as the flight time attribute, FT. This means that 

any trade-off involving flight time needs to be calculated separately for the two 

alternatives. For the pure SP alternative, the partial derivative with respect to 

flight time is calculated in exactly the same way as for any other attribute, where 

any continuous interactions with income as well as non-linear transforms are taken 

into account separately. 

However, for the RP alternative used inside the SP survey, the situation becomes 

more complicated. The actual term involving the flight time attribute will be treated 

in the same way as in the pure SP alternative. The difficulty arises with regards to 

any attributes whose marginal utility is defined to depend on flight-distance. As an 

example, let: 

f F D \ 
URP = . . . + PFT fpT {FTRP) + Py f = = j fy{yRp) + ( U S) 

The fact that, for the RP alternative in the SP survey, the variables FD and FT 
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are equivalent means that the derivative of (3y fy (ynp) with respect to 

FT is no longer zero, but is given by 

/ F ] J \ / p j j _ FD\ 

where N is the total number of observations, and where the dependency of FD on 

F D is taken into account. The extension of this approach to the case with multiple 

attributes that have an interaction with flight-distance is straightforward. As such, 

it can be seen that a trade-off involving flight time will, for the RP alternative, 

include an additional term for each attribute whose marginal utility has a non-zero 

flight-distance elasticity. The inclusion of this correction term is burdensome, but 

causes no complications otherwise. 

In the present analysis, the comparison was limited to two mains sets of trade-

offs, looking at the willingness to accept increases in fare and access time respectively, 

in return for improvements in other determinants of choice. All attributes were 

included in the calculation of trade-ofFs, with the exception of the flight time variable. 

This is partly motivated by the above discussion, in conjunction with the fact that 

the set of variables where distance elasticity was taken into account varied across 

the three population groups. This would have led to an unreliable comparison of the 

trade-off across models, given the differences in the correction factor^^. Additionally 

however, there is little information to be gained from trade-offs involving flight time, 

when already looking at trade-offs involving the highly correlated connection and 

aircraft-type variables, as well as a separate treatment of on-time performance^^. 

It should also be noted that trade-offs involving aircraft-type were only calculated 

in the case of willingness to pay indicators, where the benefits of looking at the 

willingness to accept access time increases in return for flying on a specific aircraft 

are limited. Finally, in each case, the trade-offs are presented for the average flight-

distance and household income in that population-segment, such that ^ 

and become equal to 1. The effects of changes in flight-distance and 

income on coefficient values, and hence trade-offs, are discussed towards the end of 

this section. 

The results are summarised in Table 11.4 for the willingness to pay indicators, 

and Table 11.5 for the willingness to accept increases in access time. In each case, 

several coefficients used in the trade-offs were not significant at the 95% level, as 

pointed out in Sections 11.4.1, 11.4.2 and 11.4.3, and this is indicated appropriately 

There are additional differences, given the hnear treatment of flight time in the VFR model. 
^^This point relates to the fact that the flight times are block times, which take into account 

taxi time and hence also airport-congestion. 
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Business Holiday VFR(t) 

Reduction in access time (1 hour) 75.40 35.80 3&48 
Reduction in SDE (1 hour) 13.27W 2.61(') 3.68 
Reduction in SDL (1 hour) 11.08 

2.61(') 
2.25(*) 

On-time perf. (+10%) 10.39 7^2 5.57 
FF elite or elite-plus vs none 

FF standard vs none 
12&24 
4&12 

II.44M -

Top airline vs worst - 25.07 21.06 
2"̂  airline vs worst - 18.16(*) 15.27 

airline vs worst - 20.09(*) 4.77(*) 
Top airport vs worst 83.22 53.97 55J3 
2"̂  airport vs worst 30.56(*) 4L42 54.63 
3'"'̂  airport vs worst - I8.54M 25.89 

Airport closest to home - - 28.02 
No connection vs one connection 

441^ 
19.60 

18.98 
No connection vs two connections 

441^ 
62.21 

18.98 

Jet vs wide-body 29.86(*) - -

Jet vs regional jet 7&51 - IO.59W 
Jet vs turboprop 96.94 I.79W 17.77 
Wide-body vs jet - I3.45H 27.84 

Regional jet vs jet - I.31W -

CoeflBcient used in numerator of trade-off not significant at 95% level 

(t) Visiting friends or relatives 

Table 11.4: MNL trade-offs, part 1: willingness to pay ( 

in the presentation of the trade-offs. 

The results show important differences between the three model groups, and 

while there are strong similarities between the two non-business segments for several 

of the trade-offs^®, the use of separate models is justified by the differences in other 

trade-offs, and the differences in the optimal specification, as discussed in Sections 

11.4.2 and 11.4.3. 

Consistent with a priori expectations, the results show a much greater willingness 

to accept higher fares in return for shorter access times for business travellers than 

for holiday or VFR travellers, by a factor of just over 2. Given the use of an air-fare 

coefficient as opposed to an access cost coefficient in the calculation of the ratio, 

this trade-off does not correspond to a standard VTTS measure. Nevertheless, the 

estimates give an indication of the monetary values of reductions in access time. In 

fact, the high values, especially for business travellers, are broadly consistent with 

previous research which actually used an access cost coefficient in the calculation of 

^®Most notably in the willingness to accept increases in air-fare in return for shorter access-
journeys, and vice-versa. 
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the trade-off. For example, Pels et al. (2003) report values of between $1.97/min and 

$2.90/min for business travellers in the SF-bay area. Lower values were reported in 

older studies; for example, Harvey (1986) gives a value of $0.69/min in the SF-bay 

area, while Furuichi & Koppelman (1994) give a value of $1.21/min for air-travellers 

in Japan. These high values, when compared to other contexts, can be explained by 

a variety of factors, including the lower rate of air-trips (as opposed to other travel, 

e.g. commuting), the greater inflexibility in terms of timing, and the severe financial 

penalty incurred by arriving at the airport late, and missing the flight^®. 

The models also indicate a higher willingness by business travellers to pay for 

reductions in schedule delay and for improved on-time performance^^. Interestingly, 

the models suggest that, except for hohday travellers, respondents are more sensitive 

to early than to late arrival, a finding that should however be put into context given 

the small differences, and high associated standard-errors. 

Perhaps the most striking difference between population groups comes in the 

willingness of business travellers to pay $125 to fly on an airline where they hold an 

elite frequent-flier account. Even though this figure decreases to $49 in the case of 

standard membership, the figures are still much higher than for holiday travellers, 

while no such effects could be identified for VFR travellers^^. In these latter two 

groups, the results however show a certain willingness to pay a premium for flying 

on either of the top-ranked airlines. The results also show a willingness to pay 

higher fares for flying out of one of the top-ranked airports, where this willingness 

is especially high for the top-ranked airport in the case of business travellers, while 

VFR travellers are also willing to pay an additional premium of $28 for flying out 

of the airport closest to their home. In terms of paying a premium for direct flights, 

the results again suggest a higher willingness for business travellers, although the 

different treatment in the case of holiday travellers results in a higher value for tlu; 

trade-off in the case of flights with 2 connections in this group. A difference arises 

such, it can be argued that travellers associate a longer access-journey with a higher risk of 
missing their flight. The financial penalty does not apply for all types of passengers, as it depends 
on the ticket type. Nevertheless, the delay resulting from missing a specific flight can still cause 
severe inconvenience. 

^°It should be noted that, across purposes, the findings in relation to sensitivity to on-time 
performance as well as schedule delay are consistent with the observations of Bates et al. (2001), 
who, in the context of rail-travel, argue that, with limited influence on determining the actual 
departure time (when compared to car), travellers care about reliability in addition to schedule 
delay. 

^^The results are broadly consistent (albeit showing slightly higher values) with those of Prous-
saloglou & Koppelman (1999), who show a higher wilhngness to pay such a premium in the case of 
business travellers than in the case of leisure travellers. As such, the premium for standard mem-
bership is $21 in the case of business travellers, compared to $7 in the case of leisure travellers. 
These values increase in the case of the programme in which respondents participate most actively, 
with valuations between $52 and $72 for business travellers, compared to between $18 and $26 for 
leisure travellers. 
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Business Holiday VFR(t) 

Reductions in fare ($1) 2 J 4 /L61 4.57 
Reduction in SDE (1 hour) 17.38(*) 

8.25(*) 12.24 
Reduction in SDL (1 hour) 17.00 

8.25(*) 
7.49W 

On-time perf. (+10%) 13.60 2Z16 18.53 
F F elite or elite-plus vs none 16&97 36.10(*) -

F F standard vs none 64.31 
36.10(*) 

-

Top airline vs worst - 79.11 70.08 
2"'̂  airline vs worst - 57.31(*) 50.81 
3'"'̂  airline vs worst - 63.40(') 15.88(*) 

Top airport vs worst 10&96 17&29 18&43 
2"^ airport vs worst 40.01W 130.69 181.78 
3'"'̂  airport vs worst - 58.49(') 8&14 

No connection vs one connection 
57.81 

61.86 
63T5 

No connection vs two connections 
57.81 

196.29 
63T5 

CoefScient used in numerator of trade-off not significant at 95% level 

(t) Visiting friends or relatives 

Table 11.5: MNL trade-offs, part 2: willingness to accept increases in access time 
(nun) 

between the three population groups in the trade-offs looking at the willingness 

to pay for flying on a specific type of aircraft. Here, the differences in the most-

valued type of aircraft led to a different base-type. The actual results suggest a high 

willingness by business travellers to pay for flying on single-aisle jets, while VFR 

travellers are willing to pay a premium for wide-body jets over single-aisle jets, in 

addition to a premium for avoiding turboprop flights. 

The findings for the trade-offs looking at the willingness to accept increases in 

access time do, overall, show a lower willingness for business travellers than for 

hohday and VFR travellers, which is to be expected. The main exception again 

comes in the case of frequent-flier benefits, where the results suggest that business 

travellers are willing to fiy out of more distant airports in return for flying on an 

airline whose frequent-flier programme they are a member of. Some of the findings, 

especially in the two leisure groups, show very high values for the trade-offs. Here, 

the hmitations of an approach looking at simple ratios between coefficients should 

be kept in mind, while also noting that real-world choice set formation would not 

allow for the inclusion of airports located more than a few hours from a respondent's 

home^^. 

However, one trade-off involving access time is of major interest, especially in 

the context of the increased use by low cost carriers of outlying airports, namely the 

22 The average access time in the RP survey was just under one hour. 
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Distance + 50% 

PsDE PLN(fare) PoTP PLN{access time) 

Business 
Holiday 

V F R 

-47.60% 
5.97% 11.26% 

8.07% -17.94% 

Distance - 50% 

PsDE PLN{fare) PoTP PlN{access time) 

Business 
Holiday 

V F R 

201.91% 
-9.44% -16.67% 

-12.43% 40.22% 

Income + 50% Income - 50% 

PLN[fare) PLN{fare) 

Business -5.73% 10.62% 
Holiday -1.73% 3.02% 

V F R -2.13% 3.75% 

Table 11.6: Effects of interaction terms on coefficient-values in MNL models 

willingness to accept increases in access time in return for reductions in air-fares^^. 

Here the high willingness, especially in the two leisure groups, can help to at least 

partly explain the success of such operators in being able to draw travellers away 

from network carriers and centrally-located airports to more regional bases, with 

often poor ground-level access facihties. 

Here, it should also be noted that some of the trade-offs presented in this section 

are very high, which could potentially be a reflection of the well-established notion 

that in SP studies, there is a tendency for respondents to exaggerate their respon-

siveness to changes in attributes (c.f. Louviere et al. 2000, Ortuzar 2000). As such, 

the findings presented here are potentially vulnerable to such exaggeration. In this 

context, the use of a combined RP/SP approach is of interest. 

The final part of the MNL analysis looks at the findings in terms of interactions 

with socio-demographic and trip-related attributes. For this, the change in the con-

cerned coefficients (with the obvious impact on trade-offs) was calculated in the case 

^^This trade-off shows the importance of using the correct calculation for the multipUer inside 
the trade-off. Indeed, the non-linearities in the ratio between the access time and fare attributes 
mean that the wilhngness to accept increases in fare in return for reductions in access time is in 
this case not the simple counter-part of the willingness to accept increases in access time in return 
for reductions in fare. The use of the ratio of means instead of the mean of ratios in the calculation 
of the multiplier would falsely indicate that the one trade-off is simply the inverse of the other. 
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of increases and decreases by 50% in flight-distance^'^ and in household income, with 

results summarised in Table 11.6. Comparisons between models are only possible 

in two cases. As such, the results show that the effect of changes in flight-distance 

on the sensitivity to on-time performance is more significant for holiday than for 

VFR travellers. More interestingly however, the results show that the relationship 

between income and fare-sensitivity is stronger in the case of business travellers than 

in the two leisure groups, although the lower level of significance for the associated 

elasticity parameter needs to be borne in mind (c.f. Tables 11.1, 11.2 and 11.3). 

11.5 Ex tens ion t o M M N L models 

In this section, we extend the analysis from Section 11.4 to the use of MMNL 

models, with the aim of accommodating any variations in tastes across respondents 

that could not be explained in a deterministic fashion. 

The MMNL models estimated in this section are based on the final MNL specifi-

cations presented in Tables 11.1, 11.2 and 11.3, using the same specification in terms 

of response-rate to changes in the various attributes (linear vs non-linear). A major 

issue arises here due to the non-linear specifications of utility, and specifically, the 

continuous interactions with fiight-distance and income. These interactions lead to 

a more complicated form for the derivatives of the log-likelihood function, and hence 

higher estimation cost̂ ®. While, in the MNL models, this increase in computational 

cost is acceptable, the fact that mixture models require the computation of the 

choice probabilities for a high number of draws at each iteration of the optimisation 

algorithm makes the approach very expensive in the case of MMNL models. Initial 

estimation results (using a low number of draws) showed that the actual values of 

the interaction parameters remained largely unchanged when compared to the MNL 

models, such that, in the final MMNL models, the interaction parameters were kept 

fixed at the MNL estimates^®, allowing for the use of a high number of draws, leading 

to a high level of precision in simulation^"^. The fact that the interaction parameters 

are thus kept fixed in the MMNL models means that nested LR-tests cannot be 

used to compare the performance to that of the MNL models; here, the adjusted 

the form of flight time for the RP alternative. 
^®The estimation software, BIOGEME, uses numerical derivatives for the non-linear part of 

utility functions. The other non-linearities used in the present model, in the form of log-transforms, 
can be apphed at the data-level. 

^®An additional extension, allowing the interaction parameters to vary randomly across individ-
uals, was not explored in this context. In any case, it can be argued that the effects of such a 
variation can also be captured by allowing for variation in the associated taste coefficient. 

^^In this analysis, 10,000 MLHS draws were used per individual and per dimension, ensuring 
very low simulation error. 
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measure can give an indication of the gains in performance obtained by allowing for 

random variations in tastes across respondents. 

The next issue that needs to be addressed is the choice of distribution to be used 

for any coefficients specified to vary randomly across respondents. In the context 

of the discussions in Chapter 4, the use of flexible distributions, such as the % , 

has clear advantages over the commonly used Normal distributions. However, their 

use leads to a very significant increase in computational cost, especially when addi-

tionally allowing for a treatment of the repeated choice nature of the dataset^®. On 

these grounds, the estimation results presented in this section are based on the use 

of the Normal distribution for all randomly distributed coefficients. This leads to 

less reliable results, especially in terms of behaviour in the tails of the population, 

a fact that needs to be borne in mind in model interpretation. Given these limita-

tions, the scope of this analysis focusses less on producing accurate results in terms 

of randomly distributed willingness to pay indicators, but rather aims to give an 

account of the extent of random variations in tastes across air-travellers, in addition 

to the results produced in Section 11.4 in terms of deterministic variations. 

11.5.1 M M N L m o d e l for bus iness t r ave l l e r s 

The estimation results for the MMNL model for business travellers are summarised 

in Table 11.7. The estimation revealed significant levels of random taste hetero-

geneity in three taste coefficients, namely those associated with changes in access 

time^®, fare and on-time performance, as well as in three dummy variables, namely 

those associated with the second-ranked airport, connecting flights, and regional 

jets. With these six randomly distributed parameters, and despite the drop in flexi-

bility resulting from using fixed interaction parameters, the MMNL model offers an 

improvement in the adjusted measure by 12.79%. These results suggest signifi-

cant levels of random variation across respondents in the business group, in addition 

to the deterministic variation accounted for by the two interaction parameters. The 

results however also show the effects of using the Normal distribution. While there 

is no a priori sign assumption for the dummy variable associated with regional jets, 

a positive coefficient would be expected for the dummy variable associated with the 

second-ranked airport (given that the worst-ranked airport is used as the base), with 

a negative effect for the dummy variable associated with connecting flights. How-

ever, with the use of the Normal distribution, probabihties of counter-intuitively 

signed coefficients of 35% and 24% are obtained for the airport and connection 

this study, we accommodate this under the assumption that tastes vary across respondents, 
but not across observations for the same respondent. 

29 Dispersion parameter significant at the 93% level. 
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Parameters: 21 
Observations: 1,190 

Final LL (MMNL): -338.35 
Adjusted p^(0) (MMNL): 0.5643 

Final LL (MNL): -395.14 
Adjusted p^(0) (MNL): 0.5003 

est. t-stat. 

I^LN{access time) (/^) -0.8173 -3.47 
PlN{access time) ('^) 0.6464 1.79 

PLN{fare) (/^) -6.4991 -7.97 

PLN{fare) ('^) 3.0004 4.59 
light time) -2.7906 -5.40 

PsDE -0.0025 -2.21 
Pln{sdl) -0.1507 -1.51 
potp (M) 0.0295 3.29 
potp (c) 0.0316 3.26 

^current 0.7304 1.99 
^FF standard 0.9452 2.45 

^FF elite and elite—plus 1.2312 2.00 
^top—ranked airport 1.6639 4.51 

^2'^'^—ranked airport (/^) 0.5233 1.30 

ranked airport ('^) 1.3649 2.33 
^connecting flight (m) -1.2430 -3.30 
^connecting flight ( ^ ) 1.7559 3.59 

^wide—body -0.5105 -1.12 
^regional jet (m) -0.7415 -2.04 
^regional jet ( c ) 2.0589 3.64 

^turboprop -0.9488 -2.55 
^distance,SDE -1.5941 -

^income,LN {f are) -0.1456 -

Table 11.7; Estimation results for MMNL model for business travellers 

dummies respectively. Similar issues arise in the case of the three randomly dis-

tributed P coefficients, with probabihties of incorrectly signed coefficient-vahies of 

10%, 2% and 18% for the access time, air-fare and on-time performance coefficients 

respectively. Given the discussion in Chapter 4, it is important to stress that these 

results should primarily be seen as an artefact of using the Normal distribution, and 

not as evidence of individuals with non-rational behaviour. 

11.5.2 M M N L m o d e l for hol iday t rave l l e r s 

The estimation results for the MMNL model for holiday travellers are summarised 

in Table 11.8. The analysis revealed significant levels of random taste heterogene-
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Parameters 25 
Observations 1,840 

Final log-likelihood (MMNL) -468.97 
Adjusted ^ (̂O) (MMNL) 0.6127 

Final log-likelihood (MNL) -532.42 
Adjusted p^(0) (MNL) 0.5661 

est. t-stat. 

(^LN{access time) (Z^) -0.7479 -2.61 

(^LN{access time) ('^) 1.3649 3.31 

PLN{fare) (m) -10.1548 -7.22 
PlN{fare) ('^) 4.2677 5.37 

PlN{flight time) (/^) -3.9619 -4.96 
PlN{flight tim.e) ('^) 3.0112 3.11 

PsD -0.0017 -2.20 
PoTP (m) 0.0226 4.05 
(3OTP ( c ) 0.0177 1.90 

^current 1.3714 4.31 
SFF (//) 0.6280 1.32 
SpF (c) 2.4540 3.78 

^top—ranked airline 0.8742 2.43 
^2'^'^—ranked airline 0.8859 2.22 
^3'"^—ranked airline 0.5743 1.57 
^top—ranked airport 2.1411 3.98 

ranked airport 1.6695 3.13 

ranked airport 0.8284 1.64 
^single connection (m) -0.6381 -2.21 

^single connection ( ^ ) 1.1748 2.50 
^double connection -1.7875 -3.76 

^wide—body 0.5024 1.46 

^regional jet 0.3635 1.26 
^turboprop (m) -0.5851 -0.95 
^turboprop ('^) 2.4627 3.28 

^distance,LN{fare) 0.1431 -

^distance,OT P 0.2631 -

^income,LN{fare) -0.0430 -

Table 11.8: Estimation results for MMNL model for holiday travellers 

ity for four marginal utility coefficients, namely those associated with access time, 

air-fare, flight time and on-time performance^^, as well as three dummy variables, 

namely those associated with membership in a frequent-flier programme, flights with 

a single connection, and turboprop flights. With these seven randomly distributed 

parameters, the MMNL model obtains an improvement in the adjusted measure 

^^Dispersion parameter significant at the 94% level. 
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by 8.23% when compared to the MNL model, where the scope for improvement was 

reduced by the higher MNL measure when compared to the model for business 

travellers. While the results suggesting a relatively even spread of people with a 

negative or positive attitude towards turboprop flights (59%-41%) are not a priori 

counter-intuitive, the distributional effects on the sign conclusions need to be borne 

in mind in the interpretation of results showing probabilities of 29% and 9% for 

a wrongly-signed access time and flight time coefficient respectively, along with a 

10% and 40% probability of a wrongly-signed effect for on-time performance and 

frequent-flier membership. Again however, the results do suggest the presence of 

significant levels of random variations in taste across holiday travellers. 

11.5.3 M M N L m o d e l for V F R t rave l le r s 

The estimation results for the MMNL model for VFR travellers are summarised in 

Table 11.9. The analysis revealed significant variations for all [3 coefficients except 

that associated with early departures, where the dispersion parameter for the flight 

time coefficient is additionally only significant at the 92% level. The results also 

show variation in the dummy variables associated with connecting flights^\ and 

regional jets. With these seven random parameters, the MMNL model offers an 

improvement in the adjusted measure by 6% over the MNL model. In this model, 

the use of the Normal distribution again leads to problems of interpretation, with 

probabilities of counter-intuitive values of 27% for the access time coefficient, 38% 

for the SDL coefficient, 17% for the on-time coefficient, and 18% for the dummy 

variable associated with connecting flights. 

11.5.4 Conc lus ions for M M N L analys is 

The three MMNL analyses described in this section have revealed that, in addition 

to the taste heterogeneity accounted for through a segmentation into three separate 

population groups, and the use of continuous interactions with socio-demographic 

variables, there is additional, non-quantiflable variation in a large number of the pa-

rameters used in model specification. This gives the MMNL model a clear advantage 

in terms of flexibility over its closed form counterpart. Here, it should however also 

be noted that part of the reason for the improvements in model flt offered by the 

MMNL models is the treatment of the repeated choice nature of the data, something 

that was not possible in the MNL models. 

The MMNL estimation processes conducted as part of this study were limited 

to the use of the Normal distribution, opening the door to potentially misleading 

3 1 Dispersion parameter significant at the 78% level. 
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Parameters 
Observations 

Final LL (MMNL) 
Adjusted (MMNL) 

Final LL (MNL) 
Adjusted p^(0) (MNL) 

25 
2,860 

-757.57 
0.6052 

-829.732 
0.5709 

est. t-stat. 

i^L'N{access time) (m) -0.7475 -3.92 
PlN[access time) ('^) 1.2134 5.00 

(^LN{fare) (/^) -8.2048 -9.97 
(^LN{fare) ( c ) 3.7696 6.38 

l3flight time lA^) -0.0150 -7.15 

Pflight time (<^) 0.0073 1.77 

PSDE -0.0019 -2.65 
PSDL (y") -0.0026 -1.46 
PsDL (O") 0.0084 2.12 

POTP (M) 0.0221 5.32 
PoTP (c) 0.0230 3.28 

ĉurrent 0.3957 1.92 

^top—ranked airline 0.7192 3.21 

ranked airline 0.6297 2.45 

ranked airline 0.3868 1.52 
^top—ranked airport 1.7623 4.45 

ranked airport 1.8251 5.05 

ranked airport 0.9143 2.50 

^closest to home 0.9847 2.86 
^connecting flight (m) -0.5829 -2.78 
^connecting flight ( ^ ) 0.6266 1.23 

^wide—body 0.8675 2.87 
^regional jet (A') -0.2086 -0.80 
^regional jet (c^) 1.2241 3.67 

^turboprop -0.5571 -1.97 

^distance,LN{access time) -0.4877 -

^distance,LN{fare) 0.1915 -

^income,LN{ fare) -0.0531 -

Table 11.9: Estimation results for MMNL model for VFR travellers 

results in terms of the behaviour in the tails of the population. Although, for what 

is arguably the most important coefficient, namely that associated with air-fare, the 

probability of a counter-intuitively signed coefficient is in the present study always 

negligible, this is not the case for other coefficients, notably that associated with 

access time. Especially in the context of air-travel, it is very difficult to make a ease 

for the presence of individuals with negative valuations of access time reductions, 

such that these results should indeed be seen as an artefact of the distributional 
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assumptions. 

These issues with counter-intuitive signs lead to problems in the computation of 

trade-offs on the basis of simulation. As such, to avoid issues with cancelling out in 

the numerator^^, and problems caused by the inclusion in the denominator of values 

straddling zero, it would again be necessary to remove the upper and lower few 

percentiles of the distribution of some of the coefficients. In cases where the share of 

counter-intuitively signed coefficient-values is large, as with the present estimates, 

the number of percentile points that would need to be removed is however so high 

that the resulting distribution would have a much reduced variance when compared 

to the original distribution. As such, this not only leads to very unreliable results in 

terms of the variation in the trade-offs^^, but in fact leads to an approximation of a 

simple ratio of means approach, which has its own limitations, in terms of producing 

biased trade-offs. 

Given the above discussion, the computation of trade-offs in this chapter is lim-

ited to the case of MNL models, as described in Section 11.4.4. Even though, given 

the results in terms of the extent of random variations in tastes, it is likely that the 

trade-offs from the MNL models are themselves biased, there is no a priori reason for 

believing that this bias is any larger than would be the case with trade-offs based on 

MMNL estimates produced with the help of a Normal distribution, given the issues 

discussed above. The results presented in this section merely serve as an indication 

of the potential of MMNL structures in the analysis of air-travel choice behaviour. 

They also highlight the need for future work, using more appropriate distributional 

assumptions. Here however, additional work is required to provide more powerful 

implementations of flexible distributions such as the Sb, easing the computational 

as well as numerical problems faced when using existing code. 

11.6 S u m m a r y and Conclusions 

This chapter has described a study of air-travel choice behaviour making use of SP 

data collected in the US in 2001. 

In common with the results from the RP studies described in Chapters 9 and 

10, the analysis presented in this chapter has highlighted the important role that 

ground-level distance plays in airport choice behaviour. However, while, in the two 

RP studies, it was not generally possible to retrieve a significant and meaningful 

effect of changes in air-fares, the results from this SP study have shown air-fare 

Caused by the presence of positive as well as negative values. 
^^Here, the bias is now caused by the censoring, as opposed to the issue of counter-intuitively 

signed coefficient-values. 
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to be the variable with the most explanatory power, across the three population 

segments used in the analysis. This result is consistent with intuition, and highlights 

a certain advantage of SP data in this context, given that reliable information is 

available on the choices that respondents were actually faced with. Additionally, 

in the context of SP data, data protection issues do not apply, where, aside from 

air-fares, this also applies in the case of airline allegiance. As such, while no effects 

of airline allegiance could be identified in the RP case-studies^'^, the SP analysis 

presented in this chapter has revealed significant effects in response to membership 

of frequent-flier programmes, as well as general airline-preference. Although these 

results do suggest a certain advantage for SP data in the analysis of air-travel choice 

behaviour, these advantages need to be put into context by remembering the usual 

limitations affecting this type of data. This in turn suggests that an important 

avenue for future research in air-travel comes in the use of a combination of RP and 

SP data, as discussed by Algers & Beser (2001). 

Aside from illustrating the potential advantages of SP data, the study described 

in this chapter has also achieved several other aims. One of the main innovations 

in the context of air-travel is the use of a continuous treatment of the interactions 

between socio-demographic attributes and the sensitivity to travel-attributes. The 

improvements in performance obtained with this approach were significant, and the 

approach has clear theoretical advantages in terms of flexibility over more basic 

methods, such as a simple segmentation into different income-classes. 

Another important topic addressed in this chapter is the way in which attributes 

enter the utility function. Although the use of log-transforms for some of the at-

tributes, such as flight frequency, has now become commonplace, other attributes, 

such as air-fare and access time, are in general still treated in a linear fashion in 

aviation research. The estimation work conducted in this chapter has shown this to 

be inappropriate in many cases, consistent with the results from the London case-

study (Chapter 10). Instead of simply comparing the use of a log-transform to a 

linear approach, the work described in this chapter made use of Box-Cox transforms 

in a preliminary analysis. Although no incidence of such cases was discovered in the 

present analysis^^, the use of this approach can also alert the modeller to the pres-

ence of variables with increasing marginal returns, something that is not possible 

when simply comparing the results of a linear and a log-linear approach. 

Here, it should also be noted that the analysis has revealed important differences 

in the optimal specification across the three population segments, in terms of the 

^"^With the exception of allegiance to the national carrier by visiting business travellers in the 
London study (c.f. Section 10.4.2). 

^^Initial results showing increasing marginal returns for improvements in on-time performance 
came at the cost of a severe drop in significance for the associated taste coefficient. 
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variables included in the utility function, the way these variables enter the utility 

function, and the interaction with socio-demographic and trip-related attributes. 

Finally, the analysis has also highlighted the gains in model performance and in-

sights into travel-behaviour that can be obtained with the help of model structures 

allowing for random variations in tastes, such as MMNL. The gains in the present 

case were larger than those reported in the SF-bay case-study (Chapter 9), which 

can be explained on the grounds of more detailed level-of-service data, as well as the 

presence of repeated observations for the same individual. However, the study has 

also highlighted some of the complications that still limit the widespread applicabil-

ity of mixture models in large-scale modelling analyses. The main issue identified 

in the present context is the requirement, imposed by computational issues, to rely 

on the use of the Normal distribution, leading to counter-intuitive results in terms 

of behaviour in the tails of the population, and an inability to produce adequate 

trade-offs based on random coefficients. Aside from addressing issues of implemen-

tation, an important avenue for future research in this context is the analysis of 

the potential advantages of using a direct specification of such willingness to pay 

indicators (c.f. Fosgerau 2004), as opposed to basing them on ratios of randomly 

distributed coefficients. 



Chapter 12 

Summary, conclusions and 

directions for future research 

This chapter provides a summary of the work described in this thesis, suggests 

avenues for future research, and presents the conclusions of the thesis. 

12.1 S u m m a r y 

Given the layout of the thesis, it makes sense to structure the summary in the same 

way, looking first at the work presented in the theoretical part, before proceeding 

to the findings of the case-studies of air-travel choice behaviour conducted in the 

applied part. 

12.1.1 T h e o r e t i c a l p a r t 

The theoretical part of the thesis can again be divided into three sub-parts, dis-

cussing issues related to the cost of estimation and application of mixture models, 

the specification of random taste heterogeneity, and issues related to the error-

structure of advanced discrete choice models. 

Simulation processes 

The work described in Chapter 3 looks at ways of addressing the cost of estimation 

and application of discrete choice models whose choice probabilities do not have a 

closed form expression, such as MMNL. 

The discussion in this thesis focusses on the use of alternatives to PMC draws in 

the simulation of these choice probabilities, in the form of cleverly-crafted sequences 

of draws which provide a higher uniformity of coverage of the area of integration. 

The review of existing work highlights the major differences between the various 
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available methods, where there is a strong relationship between the performance of a 

method and the cost of implementation and generation of the draws. Here, it can be 

argued that, for the purpose of the estimation and application of advanced discrete 

choice models, the more basic approaches have a certain advantage, allowing for easy 

implementation and generalisation, while still offering significant improvements in 

performance over PMC draws. 

However, as discussed in detail in Chapter 3, important issues arise with the 

commonly used Halton sequences, where problems may in fact occur in relatively 

low-dimensional apphcations, unlike generally assumed in the existing Uterature. 

Additionally, there are also major shortcomings with the adapted versions of the 

Halton sequence. This discussion forms the motivation for the development of the 

Modified Latin Hypercube Sampling (MLHS) approach. Although the results in 

a large-scale, sixteen-dimensional application, are not entirely conclusive, cahing 

for more research, the findings from a less complex four-dimensional application 

show that important reductions in computational cost can be obtained with the 

use of the MLHS approach as an alternative to PMC draws. Additionally, the 

approach has major advantages in terms of implementation when compared to more 

flexible methods, and in terms of generalisation to high-dimensional problems, when 

compared to Halton-based approaches. 

Specification of random taste heterogeneity 

The work presented in Chapters 4 and 5 is concerned with the representation of 

random taste heterogeneity across respondents, a very timely issue in the face of the 

mounting popularity of the MMNL model. 

In the context of continuous distributions (Chapter 4), the discussion highlights 

the important risks of misleading results when relying on the commonly used Nor-

mal distribution. Here, the unbounded nature of the distribution, together with 

its strict symmetry assumption, can lead to results showing non-trivial shares of 

respondents with counter-intuitively signed coefficients, even in the case where such 

coefficient values are not actually revealed by the data. This notion is supported by 

the findings of a case-study that makes use of eleven difi'erent continuous distribu-

tions, in what is one of the most extensive such comparisons to date. The findings 

not only highlight the risk of counterintuitive results when using the Normal distri-

bution^, but also show that more flexible distributions, including some that had not 

previously received widespread exposure in the field of discrete choice modelling, 

such as the Johnson Sb or Su-, are much less likely to produce misleading results. 

Additionally however, the analysis shows that model fit on its own is not the best 

^Or other symmetrical distributions. 
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indicator of performance, especially when interested in behaviour in the tails of the 

population. 

While the use of flexible continuous distributions can reduce the risk of biased 

results, there are situations in which even the most flexible distributions are not able 

to reproduce the distribution of tastes in the population. In this context, chapter 

5 discusses an alternative approach for the analysis of random taste heterogeneity, 

based on using discrete mixtures of an underlying GEV model across a finite set of 

support points. While such approaches have been used previously in the analysis 

of travel behaviour (Gopinath 1995, Dong & Koppelman 2003), they have received 

comparatively limited exposure, despite their appealing characteristics in terms of 

being free from any assumptions in relation to the shape of the distribution. In 

the present context, the discrete mixture approach is used in a novel way, namely 

for accommodating a share of the population that is indifferent to changes in a 

given attribute. The analysis in this chapter shows that the presence of such zero 

valuations, if left untreated, as is commonly the case, can result in significant bias 

in the estimates, as well as leading to lower model fit. The use of a discrete mixture 

approach can help to significantly reduce this risk. 

Error-structure 

Although looking at quite separate issues. Chapters 6 and 7 have a common factor 

in terms of being concerned with the representation of inter-alternative correlation. 

The work in Chapter 6 discusses an important issue of specification and inter-

pretation, related to the potential risk of confounding between random taste het-

erogeneity and substitution patterns between alternatives. The discussion shows 

that, if modellers allow for the effects of only either of the two phenomena, they 

are at risk of producing biased results, with the findings in relation to the modelled 

phenomenon, say random taste heterogeneity, being masked by the effects of the 

unmodelled phenomenon, say correlation between the unobserved part of utility of 

different alternatives. These theoretical claims are supported by results from six 

different case-studies. As such, the advice offered in this chapter is that researchers 

should always strive to jointly allow for random taste heterogeneity and correlated 

error-terms, with the help of a GEV mixture model, or an appropriately specified 

MMNL mo dep. Although some risk of confounding still persists even with such ad-

vanced models, this is much reduced when compared to the more basic approaches. 

The work presented in Chapter 7 discusses the development of a novel struc-

ture, which allows for random variations in the substitution patterns between al-

ternatives across respondents, leading to increased model flexibility. Such a Mixed 

^I.e. using a combination of the RCL and ECL approaches. 
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Covariance model can be specified either with purely random variation or with a 

mixture between random and deterministic variation, for example as an extension 

of the COVNL model of Bhat (1997). Additionally, the model can be based on an 

underlying GEV or ECL structure. Finally, the model can be specified as a con-

tinuous mixture or as a discrete mixture. The discussion in Chapter 7 is mainly 

concerned with the development of the model structure, and there is still a need 

for large-scale testing. Nevertheless, the basic example conducted in Section 7.3 

suggests that the model structure is able to retrieve variations in the error-structure 

across respondents, hence avoiding a source of bias in forecasting applications. 

12.1.2 A p p l i e d p a r t 

The applied part of the thesis discusses the findings of three case-studies of air-

travel choice-behaviour, using RP data collected in the SF-bay area (Chapter 9) 

and Greater London (Chapter 10), and SP data collected in the US (Chapter 11). 

We will now briefly summarise the findings of the three studies, before discussing 

the overall findings of the apphed part of the thesis. 

SF-bay area case-study 

The analysis using the RP survey data collected in the SF-bay area suggests that 

the main attributes affecting choice-behaviour across all population segments are 

access time and flight-frequency. Effects for other variables, such as air-fare, flight 

time, access cost, and aircraft-size could only be retrieved in some of the population 

segments. Additionally however, habit formation seems to play a consistent role 

across population segments, with travellers more likely to fly out a given airport 

again if they have done so in the past. 

In terms of model structure, the findings from this analysis show that all three NL 

models, using nesting by airport, airline or access-mode, lead to increases in model-

fit over the corresponding MNL modeP, with differences in the optimal nesting 

structure across the six population segments used. Additionally, gains in model 

fit are obtained by using a MMNL model, allowing for random variations across 

respondents in the sensitivity to factors such as access time. 

Finally, an important contribution of this chapter is the development of a frame-

work for the simultaneous modelhng of choices by air-travellers along the airport, 

airline and access-mode dimension. Aside from having conceptual advantages, the 

analysis also confirms that this approach leads to better prediction performance. 

^With the exception of the models using nesting by airport and airUne for visiting VFR trav-
ellers. 
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Greater London case-study 

The analysis using the RP survey data collected in Greater London reveals significant 

effects of changes in access time, access cost, flight time and frequency across all 

four population segments, while air-fare is only found to have a significant effect for 

visiting leisure travellers, with visiting business travellers being the only segment of 

the population that shows any effects of airline allegiance, in terms of a preference 

for non-UK carriers. 

In terms of model structure, the results from the London study again show that 

all three two-level NL models lead to improvements in model performance over the 

corresponding MNL models, where there are again differences across population 

segments in the optimal nesting structure. 

The main contribution in this chapter is the use of a CNL structure for the si-

multaneous analysis of correlation along all three dimensions of choice. The analysis 

shows that this approach leads to better model fit than any of the three two-level 

NL structures. Additionally, as discussed in Chapter 8, this approach has important 

advantages by not relying on a specific ordering of the different levels of nesting. 

Prom a topical point of view, this chapter also has the merit of being the first 

study of its type in the London area, making use of advanced discrete choice struc-

tures for the joint analysis of choices by air-travellers along multiple dimensions of 

choice. 

SP case-study 

The results produced by the study using the SP data for airport and airhne choice 

are quite different from those produced in the RP studies. As such, while access 

time is still found to have a major impact on choice-behaviour, the most important 

factor is now air-fare, where it was not possible to estimate a significant effect for 

this attribute across all segments in the two RP studies. Additionally, with the SP 

data, it is now possible to retrieve effects of airline allegiance, schedule delay, and 

on-time performance. 

From a methodological point of view, the SP study again shows an advantage for 

the more flexible model structures, with MMNL obtaining significant improvements 

in model fit over MNL, where these improvements are larger than in the case of the 

SF-bay s tudyAddi t ional ly , in this study, the quality of the data is sufficiently high 

to allow for an analysis of the continuous interactions between taste coefficients and 

socio-demographic attributes, showing, amongst others, a decreasing fare sensitivity 

^It is likely that this is at least partly due to the presence of multiple observations per individual, 
which facilitates the analysis of taste heterogeneity, and allows for correlation across replications. 
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with higher income. Such approaches, despite their obvious benefits in terms of 

fiexibihty as weU as interpretation, have thus far only received very limited exposure, 

especially in the field of air-travel behaviour research. 

Summary 

The results of the three studies are not directly comparable, given the geographical 

differences, the differences in the age of the data^, and the differences in survey 

design as well as data type (RP vs SP). Nevertheless, some conclusions can be 

reached. 

From a model structure point of view, all three case-studies have shown that 

the use of more advanced model structures can lead to improvements in model fit. 

However, although the improvements are statistically significant, they are too small 

to lead to any major differences in model performance. Nevertheless, the advanced 

model structures provide further insights into choice behaviour, and there are also 

differences in the substantive results between the various models. 

The main observation that can be made in the comparison of the results across 

the three studies is the greater ability of the SP models to retrieve significant effects 

for a range of variables that are generally not well estimated in RP studies, such as 

air-fares, schedule delay and airline and airport allegiance. This is an illustration of 

the complications that arise with the use of RP survey data in the analysis of air-

travel choice behaviour, where there are issues of data quality in relation to air-fares 

and availabilities, while information on a number of other attributes, notably the 

membership in frequent fiier programmes, is not generally available in such datasets*^. 

Additionally, it should be noted that problems in RP studies can also arise in terms 

of the measurement of attributes along secondary dimensions of choice, as in the 

case of access cost, where bias in the data led to an underestimation of the VTTS 

for resident business travellers in the London study in Chapter 10. 

The one common observation that can be made from the three case-studies is that 

the results do suggest that access time plays a major role in the choice process, with 

passengers being highly captive to their local airport. As such, the attractiveness 

of outlying airports depends heavily on good access-connections, unless there are 

other incentives, such as low air-fares. This is refiected in the fact that only low-

cost carriers find it relatively easy to attract passengers to outlying airports that are 

not served by convenient and fast ground-level services. It is conceivable that the 

sensitivity to access time decreases with fiight time^, such that moving long-haul 

^Especially when comparing the SP data to the two sets of RP data. 
®This also generally applies in the case of other RP data sources, such as bookings data. 
^As suggested by the results for VFR travellers in Section 11.4.3 
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services to outlying airports would seem wise; this however causes problems as the 

associated (and necessary) short-haul feeder flights will also carry point-to-point 

passengers, who will again have a preference for more centrally-located airports. 

12.2 Di rec t ions for f u t u r e research 

A number of directions for future research can be identified, where these are again 

divided into two parts, relating to the theoretical and applied parts of the thesis 

respectively. 

12.2.1 D i s c r e t e choice t h e o r y 

In the context of the discussions in the theoretical part of the thesis, there is clearly 

some scope for further testing, with the aim of establishing whether the results 

produced in this work extend to other datasets and choice-scenarios. This applies 

especially to the findings in terms of zero VTTS in Chapter 5, and the findings 

in terms of confounding between different components of the error-structure, as 

discussed in Chapter 6. Although more research on the specification of continuous 

taste heterogeneity would also be of interest, this should apply especially to the 

exploration of further alternative distributions, and the development of efficient 

implementations for the estimation of models based on flexible distributions. Finally, 

more testing is necessary both for the Mixed Covariance structure discussed in 

Chapter 7, and the MLHS approach discussed in Chapter 3, where, in the context 

of simulation efficiency, more work is also required in terms of the applicability to 

discrete choice modelling of approaches producing multi-dimensional draws directly, 

as opposed to using combinations of one-dimensional sequences. 

12.2.2 Ai r - t r ave l behav iou r r e sea rch 

A number of important avenues for future research can also be identified in the 

context of the applied part of the research. Given the conclusions in terms of the 

comphcations that arise in the case of RP data, and the risk of bias when relying 

solely on the use of SP data, one example is the combined use of RP and SP data, 

as discussed by Algers & Beser (2001). In this context however, important issues 

need to be addressed in terms of the compatibility between datasets, and it is likely 

that tailor-made surveys need to be used (as opposed to relying on existing RP and 

SP surveys). Here, collaborations between researchers and industry players such as 

airlines and airports are of interest. Additionally, it remains to be seen how fruitful 
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an approach this is in the context of RP survey data, as opposed to RP bookings 

data, given the issues of availabilities arising with the former. 

From a methodological point of view, it is important to further explore the use 

of mixture models, but with the use of more flexible distributions than the Normal. 

Here, important issues of computational cost however need to be addressed. Also, 

the more in-depth exploration of the use of the CNL model remains an important 

avenue for future work. Additionally, as mentioned before, it is of interest to explore 

correlations between the separate choice-dimensions®. Finally, the separate findings 

with regards to taste heterogeneity and complex substitution patterns highlight the 

need for a study using mixture models capable of jointly accommodating these two 

phenomena, especially given the discussion in Chapter 6 in relation to the risk of 

confounding between the two phenomena. Again, important computational issues 

arise in this case. 

12.3 Conclus ions 

The research presented in the theoretical parts of this thesis highlights the prob-

lems of specification and interpretation that arise with the use of advanced model 

structures, for example in terms of assumptions relating to the distribution of taste 

coefficients, and the error-structure of the true model, where significant risks of 

misspecification exist, potentially leading to misinterpretation and misguided policy 

implications. 

In this context, an important point needs to be addressed. Indeed, advanced 

models clearly have the potential to offer improvements in performance and accuracy 

in cases where the assumptions made by less fiexible models, such as MNL and NL, 

cannot be justified. On the other hand, there are evidently also cases in which 

the use of the more basic models is acceptable, and where the additional gains 

in performance obtained with the advanced models is negligible in the face of the 

associated increases in computational cost. However, with the gain in popularity 

of models offering a flexible treatment of the error-structure, modellers are more 

and more relying on such structures to explain processes that could otherwise be 

accommodated in the observed part of utility, which, for interpretation purposes, is 

clearly preferable. This applies especially in the context of the analysis of variations 

in tastes across respondents, where there is a trend for modellers to increasingly rely 

purely on a random treatment. 

The apphed part of the thesis has shown that, in the context of air-travel be-

haviour research, advanced model structures do indeed have the potential to lead 

®As opposed to correlation along individual choice-dimensions. 
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to better performance than the more basic approaches, while also providing further 

insights, and potentially different substantive results. Overall however, the results 

show that the gains in performance are relatively modest, especially when compared 

to the very significant increases in the cost of estimation and application®. In this 

context, issues arise not just with the use of mixture models, but also in the case 

of advanced GEV structures, where, in the London case-study (Chapter 10), major 

numerical complications arose in the estimation of the CNL models. Additionally, 

the use of such models can lead to increases in data requirements, which can further 

reduce their appeal, despite their conceptual advantages. These problems are an 

illustration of the difficulties of moving a theoretical model into the real-world, and 

are at least one reason for the prevailing gap between the state-of-the-art and the 

state-of-practice. 

Additionally, although the theoretical discussions in the first part of this thesis 

show the importance of the assumptions made in model specification, and offer some 

guidelines for good practice, the applied part of the thesis shows that, for practical 

modelling purposes, these guidehnes often need to be violated. This relates mainly 

to the distributional assumptions in the case of random coefficients models, but 

also applies to the recommendation to always jointly allow for the effects of random 

taste heterogeneity across individuals and substitution patterns between alterna-

tives. This is again an illustration of the difficulties involved in using advanced 

model structures in large-scale analyses. 

This discussion calls for greater cooperation between researchers and practition-

ers. More effort needs to go into improving the transferability of model structures 

from theory to practice, and work is also needed to reduce the cost of application 

of such advanced structures in large-scale pohcy-oriented analyses. The people who 

develop the more advanced model structures need to do a better job at selhng their 

advantages to those people that are actually supposed to use them, rather than just 

their peers. This extends particularly to showing that the differences between struc-

tures go beyond model fit^°, in that the use of the advanced approaches leads to a 

reduction in the risk of bias, in willingness to pay indicators as well as substitution 

patterns, two components that are of crucial interest to policy-makers. 

^Which plays a crucial role in practice, given that a high number of forecasting applications 
may be needed in policy analysis. 

Where, as shown in the case-studies presented in this work, the differences may be relatively 
modest. 
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Appendix A 

Confounding between substitution 

patterns and random taste 

heterogeneity: ECL results 

A . l I n t r o d u c t i o n 

This appendix presents a summary of the estimation results obtained with ECL 

models as part of the case-studies described in Chapter 6. Here, we look specifically 

at the models estimated on the three datasets used in the forecasting applications 

presented in Section 6.3, namely the data generated by the two-level NL model, the 

data generated by the RCL model with a randomly distributed travel cost coefficient, 

and the data generated by the NL mixture model. 

A.2 E s t i m a t i o n resul ts 

The estimation results of the three ECL models are summarised in Table A.l. In 

each case, the final ECL model acts as an approximation to a NL mixture structure, 

with a single nest shared by two alternatives. To ensure that, prior to adding in 

random taste heterogeneity, the ECL model structure is homoscedastic (as in the 

case of a GEV model), an additional error-component with equal variance is added 

to the utility of the alternative nested on its own (c.f. Garrow 2004). As such, in the 

case where car and rail are nested together, the three utility functions are specified 

336 
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True model NL RCL NL mixture 
Final LL -900.83 -1321.77 -1142.96 
adj. p^{0) 0.7227 0.5962 0.6493 

est. t-stat. est. t-stat. est. t-stat. 
^car -8.465 -6.04 -4.319 -11.80 -7.679 -9.31 
ŜM -6.682 -6.35 -3.642 -9.42 -5.577 -10.80 

Pre (m) -0.222 -6.47 -0.107 -14.79 -0.197 -&24 
0.024 L54 0.044 14.62 0.072 9.29 

Phw i/j-) -0.046 -6.60 -0.021 -9.12 -0.039 -10.48 
PHW (O-) 0.000 0.35 - - 0.003 0.64 

PxTfiar (m) -0.072 -&40 -0.036 -11.39 -0.060 -9.23 
ptt,car {cf) 0.007 L56 - - 0.006 1.11 
PTT,rail (m) -0.090 -&29 -0.047 -13.39 -0.079 -10.72 
PTT,rail (o") 0.003 0.30 - - 0.000 0.10 
I3tt,sm i f j ) -0.081 -6.48 -0.040 -10.71 -0.073 -&53 
Ar.gM (c) 0.004 0.78 - - 0.005 0.87 
a (rail-SM) 2J76 5.01 - - 2.326 6.58 
a (rail-car) - - 0.804 3.54 - -

CHF/hour CHF/hour CHF/hour 
VTTS (car) (/̂ ) 19.83 24.68 20.85 
VTTS (c&r) (a) 31^ 14.45 9.62 
VTTS (rail) (̂ t) &L69 31 88 27J 
VTTS (rail) (cr) 2.9 18.66 12.41 
VTTS (SM) (//) 22J 27.53 25.38 
VTTS (SM) (a) 2.7 16.12 11.55 

Table A.l: Estimation results for ECL models 

as: 

U(car) = V{car) + cr^i + £i 

U{rail) — V{rail) + cr^i + £2 

[ / (gM) = y(5 'M)+o-^2 + 63, 

(A.l) 

where V{car), V{rail) and V{SM) give the remaining part of utility for car, rail and 

SM respectively, potentially including randomly distributed taste coefficients, and 

£1, £2 and £3 are iid type I extreme value variates. The correlation between the car 

and rail alternatives is accommodated through sharing the same error-component 

^1, which follows a standard Normal distribution. The utility of the SM alternative 

contains an independent error-component 2̂ ~ 7^(0,1), where the multiplication 

by a common a ensures equal variance across alternatives, while still maintaining 

the correlation between the unobserved utility terms for car and rail. Here, the 

correlation between the unobserved utility components for car and rail is given by 
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Representative individual 

Original choice probabilities 

Population-level 

Original market shares 

Car Rail SM Car Rail SM 
True model 

ECL 

Forecast 

46.74% 
49.98% 

,ed choice 

Car 

21.63% 
19.49% 

probabi 

Rail 

31.63% True model 

30.53% ECL 

ities Forecc 

SM 

55.69% 
55.82% 

isted ma 

Car 

23.69% 
23.65% 

rket shar 

Rail 

20.62% 
20.99% 

es 

SM 
True model 

ECL 

Relative che 

50.73% 
53.55% 

inge in cl 

Car 

8.99% 
7.47% 

loice prol 

Rail 

40.28% True model 

38.98% ECL 

)abilities Relative c 

SM 

58.46% 
58.58% 

hange in 

Car 

13.22% 
13.14% 

market 

Rail 

28.32% 
28.76% 

shares 
SM 

True model 

ECL 

8.54% 
7.14% 

-58.45% 
-61.67% 

27.35% True model 

27.69% ECL 
4.97% 
4.95% 

-44.19% 
-44.45% 

37.36% 
37.02% 

Bias in predicted change Bias in predicted change 

Car Rail SM Car Rail SM 
ECL -16.38% +5.51% +1.23% ECL -0.27% +0.60% -0.91% 

Table A.2: Forecasting exercise using data generated by two-level NL model: ECL 
results 

with ~ being the variance of the standard type I extreme value term. The 

use of the above correction-approach ensures that no uncontrolled heteroscedasticity 

acts on the utilities. Controlled heteroscedasticity could in this case be allowed 

by introducing additional error-components, with a new standard deviation ( / a), 

although issues of identification would need to be dealt with in that case (c.f. Walker 

2001). 

We will now look at the estimation results for the three models in turn. The 

ECL model estimated on the data generated by the two-level NL model (c.f. Section 

6.2.1) obtains very similar model fit to the corresponding NL and NL mixture models 

presented in Table 6.1 (—900.2 and —899.15 respectively, compared to -900.83). 

The estimated VTTS measures are also very similar to those reported for the NL 

and NL mixture models, albeit with marginally higher standard deviations (when 

compared to the NL mixture model). Finally, the ECL model shows a correlation of 

0.74 between the unobserved utilities for rail and SM, which is essentially identical 

to that of the true model from Section 6.2.1, where a value of 0.75 was used. 

The ECL model estimated on the data generated by the RCL model with a 

randomly distributed travel cost coefficient (c.f. Section 6.2.4) obtains very similar 

model fit to the corresponding RCL and NL mixture models presented in Table 6.4 

( — 1322.96 and —1320.93 respectively, compared to —1321.77). Again, the mean 

VTTS measures are very similar, although the ECL model again leads to higher 
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Representative individual 

Original choice probabilities 

Population-level 

Original market shares 

Car Rail SM Car Rail SM 
True model 

ECL 

Forecast 

38.64% 
40.15% 

ed choice 

Car 

27.65% 
26.76% 

probabi 

Rail 

33.71% True model 

33.09% ECL 

ities Forec, 

SM 

5&94% 
53.51% 

asted ma 

Car 

23.78% 
24.26% 

rket share 

Rail 

22.28% 
22.23% 

is 

SM 
True model 

ECL 

Relative che 

43.79% 
46.02% 

inge in cl 

Car 

18.32% 
17^y% 

loice pro! 
Rail 

37.89% True model 

3&32% ECL 

)abilities Relative c 

SM 

56.68% 
5&3̂ % 

hange in 

Car 

15.02% 
15.89% 

market s 

Rail 

28.30% 
27.73% 

hares 

SM 
True model 

ECL 

13.31% 
14.62% 

-33.72% 
-33.98% 

12.39% True model 

9.74% ECL 
5.08% 
5.34% 

-36.82% 
-34.49% 

26.99% 
24.78% 

Bias in predicted change Bias in predicted change 

Car Rail SM Car Rail SM 
ECL 4-9.83% +0.76% -21.45% ECL +5.23% -6.33% -8.20% 

Table A.3: Forecasting exercise using data generated by RCL model with randomly 
distributed travel cost coefficient: ECL results 

estimates for the standard deviations. Finally, the ECL model shows a correlation 

of 0.28 between the unobserved utility components for rail and car, compared to 

0.33 in the corresponding NL mixture model. This suggests that, with this data, 

the ECL model, like the NL mixture model, is also vulnerable to confounding, given 

that, in the true model, no explicit correlation was assumed between the unobserved 

utilities for the car and rail alternatives. Again however, the risk of confounding is 

significantly lower than in the closed form NL model. 

With the final dataset, generated by the NL mixture model (c.f. Section 6.2.6), 

the ECL model obtains slightly better model fit than the corresponding NL mixture 

model presented in Table 6.6 (—1142.96 compared to —1147.78). The mean VTTS 

measures are again very similar, but this time, the ECL model leads to a less severe 

over estimation of the standard deviations than the corresponding NL mixture mod-

els. Finally, in terms of correlation, the ECL model shows a level of 0.77 between 

the unobserved utility terms for rail and SM, which is identical to that obtained 

with the NL mixture model. 

A.3 Forecas t ing analysis 

To complete the analysis, we use the three ECL models presented in Table A . l i n 

repeating the forecasting analysis described in Section 6.3. The results of these 
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Representative individual 

Original choice probabilities 

Population-level 

Original market shares 

Car Rail SM Car Rail SM 

True model 

ECL 

Forecast 

46.79% 
46.54% 

.ed choice 

Car 
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19.31% 

probabi 

Rail 

31.84% True model 
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ities ForecE 
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isted ma 
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2&6&% 
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rket sliar 
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SM 
True model 

ECL 

Relative chf 

50.65% 
49.51% 

inge in cl 

Car 

9.49% 
8.70% 

loice pro! 
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39.86% True model 

41.79% ECL 

jabilities Relative c 

SM 

57.82% 
58.42% 

hange in 

Car 

13.45% 
12J5% 
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Rail 

28.73% 
28.83% 

shares 

SM 
True model 

ECL 

8.25% 
6.38% 

-55.58% 
-54.95% 

25.18% True model 

22.3#% ECL 
4.91% 
4.68% 

-43.13% 
-43.79% 

35.31% 
34.05% 

Bias in predicted change Bias in predicted change 

Car Rail SM Car Rail SM 
ECL -22.65% -1.12% -11.09% ECL -4.67% +L54% -3.56% 

Table A.4: Forecasting exercise using data generated by two-level NL mixture model: 
ECL results 

experiments are summarised in Table A.2 for the data generated by the two-level 

NL model, Table A.3 for the data generated by the RCL model, and Table A.4 for 

the data generated by the NL mixture model. In each case, the results are shown 

for the representative individual and at the population-level, and the results for the 

true model are repeated for reference purposes. 

Aside from some slight differences, mostly in the case of the representative in-

dividual, the results are very similar to those obtained with the corresponding NL 

mixture models in Section 6.3, with comparable levels of bias. This suggests that 

ECL models can be used in a similar fashion to non-MMNL GEV mixture models 

in the joint analysis of inter-alternative correlation and random taste heterogeneity, 

with similar performance in terms of avoiding confounding between the two phe-

nomena. The choice of model structure needs to be made on a case-by-case basis, 

as a function of the differences in estimation cost'-, as well as the relative severity of 

the structure-specific issues, such as the identification conditions in the ECL model 

(c.f. Walker 2001). 

^This depends on the complexity of the nesting structure, as discussed in Section 2.9.2 



Appendix B 

Covariance heterogeneity: 

Development of ECL approach 

We now describe how the ECL formulation of the MMNL model can be adapted to 

allow for covariance heterogeneity. We first review the basic theory behind the ECL 

model (Section B.l) and show how it can be used to approximate the COVNL model 

(Section B.2). We then proceed to the case where the covariance heterogeneity 

is purely random (Section B.3), and to the case where part of the variation is 

deterministic with a remaining random part (Section B.4). 

B . l Gene ra l E C L fo rmula t ion 

As described in Section 2.9.1, in the ECL model, correlation across alternatives is 

introduced through the use of error-components that are shared between alternatives 

that are closer substitutes for each other. The error-components take on the form of 

normally distributed random variables with a mean of zero, and a standard deviation 

of a, where the estimate for a is related to the correlation between the alternatives. 

Ignoring for the moment the issues of identification discussed by Walker (2001), 

and the question of homoscedasticity^, the utilities of two alternatives that have 

some correlation in the unobserved part of utility would be written as: 

Uî n — î,n + >̂ i,n + Cl (B.l) 

and 

Uj,n — + £j,n + Cl) (B.2) 

^Basic ECL approximations to GEV models are heteroscedastic, while GEV models are ho-

moscedastic, an issue that can be addressed by cancelling out the heteroscedasticlty in ECL models 

through the use of additional error-components, as shown in Appendix A. 
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where â nd Vĵ n give the observed part of utility for alternatives i and j and 

respondent n, and and Sj^n are iid type I extreme-value terms. The additional 

error-term Ci is distributed N{0,ai). With this, the covariance between the two 

alternatives is given by cr̂ , while the variance for the individual utilities is given by 

a j + ^ , leading to a correlation of: 

Corr {Ui^n, Uj^n) = 2 I (B.3) 
' 6 

It is easy to see that it is possible to rewrite the utility of alternative j as: 

— '^j,n + ^i.n + (B-4) 

where ^ W (0,1), and where the subscript on ^ remains in use to guarantee that 

individual draws are taken for each error-component (with the same draws taken 

for the same error-component across alternatives). 

For the choice probabihties, integration over the N {0,1) draws for the error-

components is required. Let \I/j define the set of error-components included in the 

utility function of alternative j, such that: 

Uj,n ^j,n ~l~ ^j,n ^ ^ '̂ k^k (B.5) 

This notation allows for any structure for the error-components, including ho-

moscedastic as well as heteroscedastic ones. The choice probability for alternative i 

and individual n is now given by: 

Pn ('i I cr) = 
exp {Vi^n + Yhke'i'i &) jQ ^ 

/c=l 

( B 6 ) 

where K gives the total number of error-components used, and 0 () is the standard 

Normal density function. 

B.2 De te rmin i s t i c covariance he te rogene i ty in ECL 

mode l s 

The ECL formulation can be extended straightforwardly to allow for determinis-

tic covariance heterogeneity by parameterising <7̂ , for example by setting Uk = 
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f{6,Zn), where 0 is a vector of parameters, and where is defined as before. 

The only condition applying to / () is that it yields positive values for the standard 

deviations^; equation (B.3) guarantees that the resulting correlation falls between 0 

and 1. 

B.3 P u r e l y r a n d o m covariance he te rogene i ty in 

E C L mode l s 

In the standard ECL formulation of the MMNL model, the choice probabilities 

are obtained by integration over the distribution of the error-components, with ad-

ditional integration over the distribution of random taste-coefficients in the case 

of added random taste heterogeneity. Focussing for now on the case of error-

components for correlation only (as opposed to additional taste heterogeneity), ran-

dom covariance heterogeneity can be introduced by additional integration over the 

distribution of the variances of the error-components. 

The choice probability is in this case given by: 

Pn ('0 = 
' cr 1 ^ o-

k 

dcT/f . . . dcTi, (B.7) Pn{i\cT) (o-fc I 6k 

k=l 

where P„ (z | cr) is the choice probabihty for alternative i, conditional on the vector 

of standard deviations cr, as in equation (B.6), and where g (ai 1 0i) is the density 

function for ai , with parameters given by the vector 6i . Here, an appropriate choice 

of distribution for the standard deviations is of crucial importance, given that they 

need to take on positive values^. An alternative to the use of bounded distributions 

comes in the use of a transform mapping monotonically from the real domain to 

the space of positive numbers. The adaptation of equation (B.7) to this case is 

straightforward. 

^This merits some clarification. Estimation code can deal with negative values for standard 
deviation parameters in the case where they are only used in the form of variances as opposed to 
standard deviations; in fact, in unconstrained estimation, it can often be observed that estimation 
packages produce negative estimates for the standard deviations. The problems arise in the case 
where / () allows for positive as well as negative values for a, leading to an underestimated mean 
level of correlation. 

^Again, this requirement is used solely to avoid an underestimation of the mean level of corre-
lation in the case where the distribution yields positive as well as negative estimates for a. 
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B.4 De te rmin i s t i c and r a n d o m covariance he tero-

genei ty in E C L models 

The extension of the approach described in Section B.3 to the case allowing jointly 

for deterministic and random covariance heterogeneity is straightforward. We reuse 

the formulation from Section B.2, where a = f {6, Zn). This time however, we allow 

some of the elements of 0 to be randomly distributed across individuals. The choice 

probability for alternative i and decision-maker n is now rewritten as: 

Pn (i) = 
'01 J OK 

k 

Pn{'i\(Jk = f (9k, 2ti) V/c) (6)̂  I rifc) 
k=l 

S-Ok • • • d0i; (B.8) 

where 6^ is distributed according to g {6k | 0^) , and where the notation allows for 

correlation between individual elements in 0^- It can easily be seen that this ap-

proach reduces to the purely random formulation in Section B.3 if those parameters 

associated with are zero^, and the purely deterministic formulation in Section 

B.2, in the case where g (0fc | flk) produces only a single (fixed) value for the vector 

&k-

B.5 Discussion 

The discussion presented here has shown how the ECL framework can be adapted 

to allow for deterministic as well as random covariance heterogeneity. In practice, 

it should be said that, due to the additional dimensions of integration, the mixed 

covariance ECL approach is generally more expensive in estimation and application 

than its GEV based counterparts described in Chapter 7, albeit that it has the 

advantage of a simpler form for the integrand (MNL vs more general GEV). An 

additional issue however arises with regards to identification, where appropriate 

conditions for identifiability need to be worked out on a case-by-case basis. 

^I.e., only a constant is estimated, which is distributed randomly across respondents. 



Appendix C 

Frequently Used Acronyms 

CAA: Civil Aviation Authority (UK) 

CNL: Cross-Nested Logit 

COVNL: Covariance Nested Logit 

DfT: Department for Transport (UK) 

ECL; Error-Components Logit 

GEV: Generalised Extreme Value 

GNL; Generalised Nested Logit 

IIA; Independence from Irrelevant Alternatives 

iid: Independently and Identically Distributed 

IVT: In-vehicle time 

LCY: London City airport 

LGW: Gatwick airport (London) 

LHR: Heathrow airport (London) 

LL; Log-likelihood 

LR: Likelihood-ratio 

LTN: Luton airport (London) 

MLHS: Modified Latin Hypercube Sampling 

MMNL: Mixed Multinomial Logit 
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mppa: million passengers per annum 

MNL: Multinomial Logit 

MTC: Metropolitan Transport Commission (California) 

NL: Nested Logit 

NNNL: Non-normalised Nested Logit 

OAK: Metropolitan Oakland International airport (SF-bay) 

pdf: Probability Density Function 

PMC: Pseudo Monte Carlo 

QMC: Quasi Monte Carlo 

RCL: Random Coefficients Logit 

RP: Revealed Preference 

RUM: Random Utility Model 

SF-bay: San Francisco Bay 

SFO: San Francisco International airport 

SJC: Mineta San Jose International airport (SF-bay) 

SM: Swiss-Metro 

SP: Stated Preference 

STN: Stansted airport (London) 

UMNL: Utility Maximising Nested Logit 

VFR: Visiting friends or relatives 

VTTS: Value of travel-time savings 
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