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This work investigates neuroimaging as applied to movement disorders by the 

use of radionuclide imaging techniques.  There are two focuses in this work:  

 The optimisation of the SPECT imaging process including acquisition and 

image reconstruction.  

 The development and optimisation of automated analysis techniques 

The first part has included practical measurements of camera performance using 

a range of phantoms.  Filtered back projection and iterative methods of image 

reconstruction were compared and optimised.  Compensation methods for 

attenuation and scatter are assessed.   

Iterative methods are shown to improve image quality over filtered back 

projection for a range of image quality indexes.  Quantitative improvements are 

shown when attenuation and scatter compensation techniques are applied, but 

at the expense of increased noise.  

The clinical acquisition and processing procedures were adjusted accordingly.  

A large database of clinical studies was used to compare commercially available 

DaTSCAN quantification software programs.   

A novel automatic analysis technique was then developed by combining 

Principal Component Analysis (PCA) and machine learning techniques (including 

Support Vector Machines, and Naive Bayes).  

The accuracy of the various classification methods under different conditions is 

investigated and discussed.  

The thesis concludes that the described method can allow automatic 

classification of clinical images with equal or greater accuracy to that of 

commercially available systems.   
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 Definition 

 123I-FP-β-CIT Radiopharmaceutical used for imaging Dopamine 
 transporters (DAT), replaced 123I-β-CIT

 123I-β-CIT Radiopharmaceutical used for imaging Dopamine 
transporters (DAT), replaced by 123I-FP-β-CIT due to 

 improved imaging characteristics

 AD  Alzheimer's Disease, a common degenerative dementia

 Caudate  Small curved structure near centre of brain, part of Striatum

 CT Computed Tomography, clinical imaging technique which 
utilizes a rotating x-ray source and detectors to acquire 
transmission projection data which can be combined to give 

 transverse slices (see also FBP)

 D2 Dopamine receptor type 2, expressed on post-synaptic 
 neuron

 DA  Dopamine, a neurotransmitter

 DAT  Dopamine Transporter, expressed on pre-synaptic neuron

 DaTSCAN Trade name for kits for the preparation of ioflupane/FP-β-
 CIT

 DDRR  Depth Dependent Resolution Recovery

 DLB  Dementia with Lewy Bodies, a degenerative dementia

 EANM  European Association of Nuclear Medicine

 ET  Essential Tremor, benign movement disorder

 FA Factor Analysis, A range of processing techniques applied to 
 principal components

 FBP Filtered Back Projection, a reconstruction method that 
 creates transverse slices from a series of projection images

 FDG FluoroDeoxyGlucose, glucose analogue used in PET imaging, 
 labelled with 18F  

 FDOPA Fluorodopa, a PET radiopharmaceutical used to image the 
 Dopamine synthesis and storage, labelled with 18F

 FP-β-CIT Ligand used for imaging of Dopamine Transporters (DAT), 
 normally labelled with 123I

 FRR  Fixed Resolution Recovery
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 FT / IFT  Fourier Transform / Inverse Fourier Transform

 FWHM / FWTM Full Width at Half Maximum, Full Width at Tenth Maximum, 
ways of defining the width of a peak, often used in 

 resolution measurement

 IBZM IodoBenZaMide, radiopharmaceutical used in SPECT 
 imaging of the D2 Receptors, labelled with 123I

 ioflupane  Chemical name for 123I-FP-β-CIT

 IPD Idiopathic Parkinson's disease, the most common form of 
 Parkinsonism

 LEHR / VXGP Two collimators designed used for low energy high 
 resolution gamma camera imaging

 MLEM Maximum Likelihood - Expectation Maximisation - an 
iterative reconstruction method that creates transverse 

 slices from a series of projection images

 MRI Magnetic Resonance Imaging, clinical imaging technique 
which utilises the magnetic properties of tissues to form 

 images

 MSA  Multiple System Atrophy

 MSA-P  Parkinsonian variant of MSA

 NEMA  National Electrical Manufacturers Association

 NMSE Normalised Mean Square Error, method of comparing two 
 sets of data

 NPS Non-Parkinsonian Syndrome, classification group used in 
 this work to distinguish from PS

 OSEM Ordered Subset Expectation Maximisation, an accelerated 
 form of ML-EM reconstruction

 PCA  Principal Component Analysis

 PD  Parkinson's Disease, a movement disorder

 PET Positron Emission Tomography, clinical imaging technique 
allowing imaging of positron emitters labelled to various 

 pharmaceuticals/molecules. 

 PS Parkinsonian syndromes, the group of Parkinson's like 
 diseases including IPD, PSP and MSA and others

 PSP  Progressive Supranuclear  Palsy, a Parkinsonian syndrome

 Putamen  Small curved structure near centre of brain, part of Striatum



14 
 

 PVE Partial Volume Effect, image artefact seen in all digital 
 imaging modalities

 rCBF  regional Cerebral Blood Flow

 ROI  Region of Interest, cluster of pixels analysed as a group

 ROR Radius of Rotation, the distance from the gamma camera to 
 the centre of rotation during SPECT acquisition

 SNR  Signal to Noise Ratio

 SPECT Single Photon Emission Computed Tomography, a mode of 
operation for gamma cameras which allows 3D volume data 

 to be acquired

 SPET  See SPECT

 SPM Statistical Parametric Mapping, set of computational 
 algorithms developed for analysis of groups of brain images

 SSM / CSSM Step and Shoot Mode, Continuous Step and Shoot Mode, 
 different gantry motions in SPECT imaging

 Striatum Small structure near centre of brain, formed of the Caudate 
 and Putamen, part of Basal Ganglia

 SVCD  Small Vessel Cerebrovascular Disease

 SVD Singular Value Decomposition, computational technique for 
 calculating eigenvalues, eigenvectors and singular values

 SVM Support Vector Machine, an example of a supervised 
learning technique to classify data points in 2 or more 

 dimensions

 TEW Triple Energy Window, a scatter compensation technique 
 used in gamma camera imaging

 VOI  Volume of Interest, cluster of voxels analysed as a group
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1.  

This work investigates neuroimaging as applied to movement disorders by the 

use of radionuclide imaging techniques.  There are two focuses in this work:  

 The optimisation of the SPECT imaging process 

 The development and optimisation of automated analysis techniques 

Before discussing these ideas, the nature of the clinical conditions being 

investigated will be described.   
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1.1 Parkinsonian syndromes, clinical presentations and 

neurophysiological basis 

Parkinson’s Disease was first described by James Parkinson in 1817 and 

originally named the shaking palsy 7.  It is the second most common neurological 

disorder after Alzheimer’s disease, and the most common movement disorder 8.  

The term Parkinsonian syndromes (PS) encompass a range of related diseases 

including amongst others Parkinson’s Disease, Progressive Supranuclear Palsy 

and Multiple System Atrophy.  Idiopathic Parkinson’s disease (IPD) accounts for 

around 80% of cases.   

1.1.1 IPD – presentation, clinical features, neurophysiological 

basis 

Idiopathic Parkinson’s Disease normally presents in the form of motor effects, 

most commonly a tremor, but also rigidity, involuntary movements, abnormal 

posture and Bradykinesia (slowness of movement) 9.  Non-motor dysfunction is 

also widely seen in Parkinson’s Disease, with a range of Neuropsychiatric 

(depression, anxiety, apathy and cognitive impairment), anosmia, sleep 

dysfunctions (insomnia, limb movement, restless leg syndrome) and autonomic 

symptoms (Urinary Bladder, Nocturia, Sexual dysfunction)10-13.  In advanced 

disease around 80% of patients will display cognitive impairment, e.g. memory 

loss, and almost half will show signs of depression 12.   

Post-mortem investigations find damage and loss of pigmented cells in the 

substantia nigra, including cytoplasmic inclusions, known as Lewy bodies.  The 

cells in the substantia nigra extend to the striatum and supply it with Dopamine 
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(DA).  The overall effect is a depletion of DA in the striatum, globus pallidus and 

substantia nigra.  Within the striatum, the posterior of the putamen is normally 

affected first followed by the caudate.  The loss of DA from the basal ganglia 

causes them to become overactive leading to the clinical motor features 14.   

Diagnosis from clinical examination has around 80% sensitivity, but only 30% 

specificity when compared to post-mortem examination 15.   

1.2 Parkinson’s – Plus syndromes – presentation, clinical 

features and neurophysiological basis 

Within the Parkinsonian syndromes there exists a range of so-called Parkinson’s-

plus syndromes 16.  These typically present with similar motor features to IPD, 

but can vary.    

1.2.1 Progressive Supranuclear Palsy 

This disease shares some of the problems with movement seen in IPD, including 

a shuffling gait and accounts for around 6-10% of movement disorder cases 16,17.  

The main differences that are seen are problems with eye movement.  Typically, 

this begins with impairment of the down gaze and progresses to general 

ophthalmoparesis.  Patients with PSP will tend to have an increased number of 

falls, which can be due to a combination of gait and eye-movement problems.  

However, these effects may not be seen at first presentation.   

As with IPD, post-mortem examination shows damage and loss to the substantia 

nigra 17 that gives rise to the Parkinsonian motor changes.  Neurofibrillary 

tangles are seen in many areas of the brain including the brain stem.  The 

brainstem changes give rise to the eye movement effects.   
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Neurofibrillary tangles are also seen in other diseases, most notably Alzheimer’s 

Disease  (AD).  However, the characteristic amyloid plaques of AD are absent.   

1.2.2 Multiple System Atrophy 

Multiple System Atrophy (MSA) combines three previously separate disorders of 

Shy-Drager syndrome, olivopontocerebellar atrophy and striato-nigral 

degeneration 16,18-20.  Clinically the Parkinsonian symptoms are accompanied by 

autonomic failures.  Two subcategories exist depending on which symptoms 

predominate, MSA-P where the symptoms are predominantly Parkinsonian, and 

MSA-C in the case of cerebellar ataxia.  The former is more common in western 

populations, but considerable overlap between the two groups exist 20.   

The physiological basis is glial cytoplasmic inclusions.  Neuronal loss is seen in 

the basal ganglia along with loss in the cerebellum, pons, inferior olivary nuclei, 

and spinal cord.   

1.2.3 Dementia with Lewy Bodies  

Dementia with Lewy Bodies (DLB) is a specific condition first defined in the late 

1970s 16,21,22.  The main clinical presentation is dementia.   

Lewy bodies are cytoplasmic inclusions common in many neurological 

conditions (including PD and AD) and exist in two forms: Cortical Lewy Bodies, 

and Brain stem Lewy Bodies.  DLB is characterised by the presence of diffuse 

cortical Lewy bodies.  Cortical changes give rise to the neurological symptoms.  

As the disease progresses these bodies may be seen in the substantia nigra.  

Damage and loss of cells here leads to Parkinsonian movement features.  More 
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recently, DLB and the dementia variant of PD (PDD) have been viewed as 

different presentations of the same disease 23,24.   

The three conditions, IPD, MSA and DLB belong to a group of diseases known as 

-synucleinopathies as the characteristic Lewy Bodies are formed from 

aggregated -synuclein.   

1.3 Other neurological disorders 

1.3.1 Alzheimer’s disease 

Alzheimer’s Disease (AD) us the most common neurological disorder and 

accounts for around half of all dementias.  It was originally described as “A 

unique illness involving the cerebral cortex” by Alois Alzheimer 25 who detailed 

the characteristic neurofibrillary tangles and amyloid plaques.   

Clinical symptoms at presentation are mainly related to short-term memory 

problems and other neurological symptoms.  However, differentiating this from 

other dementias such as DLB can be problematic.  Such differentiation is 

important as patients with DLB can be highly sensitive to the neuroleptic (or 

antipsychotic) treatments often given in AD 22.   

1.3.2 Tremors 

The term tremor is associated with many movements of the body, as well as 

diseases and disease groups.  A consensus statement of the movement disorders 

society 26 set out to define and standardise the descriptions of movements so 

that better comparisons could be made between diagnostic and research groups.  

Defining the tremors by frequency, and activation cause (i.e. rest, posture or 

intentional movement), can direct the definition of some of the tremor 
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syndromes.  The following descriptions of tremor groups are based on the 

disease definitions given there.   

1.3.2.1 Essential Tremor  

Essential Tremor (ET) is an involuntary tremor or shaking of the limbs or head 

for which no specific cause can be identified.  It is not linked to any 

neurodegenerative processes such as Lewy bodies.  It is the main differential 

diagnosis with Parkinsonian Syndromes as the disorders of movement can be 

difficult to separate.  ET can have a genetic link as it can occur in families, known 

as Familial Essential Tremor (FET), but will often occur with no obvious familial 

history – known as Sporadic Essential Tremor (SET).   

1.3.2.2 Psychogenic Tremor 

These tremors occur in patients suffering from psychological problems.  The 

physical symptoms do not originate from physiological changes, but are a 

manifestation of the psychological problems.  A common example being a stress 

induced tremor.   

1.3.2.3 Holmes Tremor 

This tremor is generally related to brainstem/cerebellum or thalamic lesions.  It 

presents clinically with a slow frequency tremor in both resting and intention 

movement 27.   

1.3.3 Vascular diseases  

Disturbances in the blood supply to the brain are collectively known as 

cerebrovascular diseases.  The disturbances can be transient or permanent, 
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reductions or occlusions and can vary in size and number.  A number of subtypes 

are recognised including Multi-infarct dementia (MID) and Small Vessel 

Cerebrovascular Disease (SVCD).  The area of brain affected can be permanently 

damaged and treatment is targeted on preventing further problems by limiting 

vascular risk factors.  The area of brain affected will obviously determine the 

clinical manifestation.  Vascular Dementia is the second most common form of 

dementia, and is difficult to distinguish clinically from AD 28.  A related condition 

is Cerebro-Vascular Parkinson’s Syndrome (CVPS) 29 where the vascular disease 

affects the striata producing Parkinsonian features.   

1.3.4 Drug Induced Parkinsonism 

There are a number of prescription drugs that can affect the action of dopamine 

in the brain.  In particular, some neuroleptic drugs, often prescribed to control 

dementia and schizophrenia, can cause severe parkinsonian symptoms.  In 

general, withdrawing these drugs will lead, in time, to a reversal of the 

Parkinsonian symptoms 30.  However, patient specific risk-benefit analyses have 

to be performed to ensure the best clinical outcome.   

1.3.5 Other Neurological conditions 

Because of the nature of neurological symptoms, there exist many overlaps 

between normal variants and the clinical features of many diseases.  Other 

diseases types that can present as movement disorders include, but are not 

limited to, Multiple sclerosis, Huntington’s disease, Fragile-X syndrome and 

Wilson’s disease.   
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1.4 Neurotransmitters 

Neurotransmitters are a group of chemicals utilised in the path of signals 

between neurons in the central nervous system.  Signals pass along neurons as 

waves of polarisation.  The passage of 

these signals across synapses – the 

joins between individual neurons - is 

facilitated by neurotransmitters.   

 

The neurotransmitters are stored 

within a great number of vesicles 

within the terminal of the pre-

synaptic neuron.  When the action 

potential reaches the synapse, these 

vesicles eject their transmitters into 

to the synaptic cleft.  The transmitters 

will bind to and activate some of the 

receptors on the post-synaptic 

neuron.  Activated receptors act as 

open ion channels, changing the 

potential on the post-synaptic 

membrane.  Once sufficiently 

polarised, this produces an action 

potential in the post-synaptic neuron 

and the signal is passed on.   

Figure 1-1. Schematic diagram of synapse 

between two neurons.  Vesicles in pre-

synaptic neuron release a neurotransmitter 

(in this case Dopamine) into the cleft.  
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The transmitters only act on the post-synaptic receptors for a brief time as they 

are quickly broken down by enzymes.  Unbound transmitters in the cleft are 

reabsorbed by transporters in the pre-synaptic neuron.   

1.4.1 Dopamine 

Dopamine (DA) is a neurotransmitter that plays a role in many neurological 

processes including movement, cognition and mood.  It is also important in 

reward and pleasure 14.   

 

Figure 1-2. Synthesis of Dopamine from Tyrosine 

Dopamine is synthesised as part of a series of enzyme mediated actions starting 

with Tyrosine.  This is oxidised by tyrosine hydroxylase to give L-Dopa, which is 

then converted to DA by dopamine B-hydroxylase.  In some cell types, DA is 

further processed to give Norepinephrine and Epinephrine.  Tyrosine and L-

Dopa can pass through the blood-brain-barrier, whereas dopamine cannot.  

Dopamine production occurs within the pre-synaptic neuron where it is stored 

within the vesicles ready for release into the synapse.   

To date, at least five DA receptor subtypes have been identified 31.  They can be 

split into two sub groups, D1-like receptors (D1 and D5) and D2-like receptors 

(D2, D3 and D4).  D1 and D2 dopamine receptors are the more common forms 

and are found in particularly high concentrations in the striatum.  The D2 
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subtype is seen predominantly in the post-synaptic membrane of the nigro-

striatal synapses.  

The DA Transporter (DAT) is the site on the pre-synaptic neurons where DA is 

re-absorbed for storage ready for the next excitation.   

Both the D2 receptor and the DA Transporter are important targets for imaging 

studies of Parkinsonian syndromes.   

1.5 Imaging of movement disorders and associated conditions 

Functional imaging with radiopharmaceuticals for movement disorders can be 

divided into two groups depending on whether they target the pre-synaptic or 

post-synaptic neurons.  Further divisions can be made on process or feature 

being imaged and with which modality it can be imaged, either single Photon 

Emission Computed Tomography (SPECT) or Positron Emission Tomography 

(PET).  An overview of these tracers is given in Table 1-1, which also includes 

some of the main references on their use.   

In general, PET imaging is superior to SPECT imaging in humans due to the 

improved resolution and accuracy of quantification.  As PET involves imaging 

from 360 degrees simultaneously, kinetic measurements can be made on tracers 

with faster biokinetics than for SPECT.  For these reasons PET is normally the 

preferred choice in the research setting.  However, due to cost, availability and 

practical considerations, SPECT imaging is the more widely used clinical 

investigative imaging tool.  An introduction to SPECT imaging is given in section 

1.7.   
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Table 1-1 Summary of radiopharmaceuticals that can be used for imaging the 

dopaminergic pathway 

  SPECT PET 

Pre-synaptic 
imaging 

DA synthesis 
/storage 

 18F-DOPA 23 

    

Pre-synaptic 
imaging 

DA 
Transporter 

123I- -CIT 32-34 35 
11C / 18F - -

CIT 

  
123I-FP- -CIT 34 

36,37 

11C / 18F -FP-
CIT 

  99mTc-TRODAT 38  

  123I-PE2I 39 
11C / 18F -

PE2I 
    

Post-synaptic 
imaging 

D2 receptor 123I-IBZM 40,41 
11C-

raclopride 41 

  123I-Epidepride42 
11C / 18F - 
Fallypride 

 

1.5.1 Imaging Dopamine synthesis and storage 

The design of radiopharmaceuticals for brain imaging is hampered by the blood-

brain barrier (BBB).  This membrane protects the brain by preventing larger 

molecules and objects such as bacteria from entering the brains extracellular 

fluid.  DA cannot cross the BBB and so cannot be used as an imaging tracer.  

However, 18F-DOPA mimics the action of L-DOPA and can cross the blood-brain 

barrier.  Its uptake will reflect the locations of DA production and storage.  The 

uptake of 18F-DOPA will be dependent on a number of factors including the rate 

of transfer across the BBB, the rate of synthesis within the neuron and its 

retention within the neuron 31,43.  

1.5.2 Imaging the Dopamine Transporter 

The radiopharmaceuticals used to image the dopamine transporter (DAT) are 

based on analogues of cocaine.  Cocaine binds to the DAT blocking the re-uptake 
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of DA, subsequently increasing DA levels within the synapses producing the 

‘high’.  The most common pharmaceuticals that have been used to study DAT 

using SPECT are 123I- -CIT 32,33,44 and 123I-FP- -CIT 44-48.  An example transverse 

slice from a 123I-FP- -CIT scan is shown in Figure 1-3.  The image shows high 

uptake in the caudate and putamen.  The corresponding slice from a T2 weighted 

MRI scan is shown for anatomical localisation.  This patient shows normal uptake 

of 123I-FP- -CIT.   

 

Figure 1-3 Example transverse slice from 123I-FP-beta-CIT SPECT scan with corresponding 

slice from T2weighted MRI 

 

The biokinetics of 123I- -CIT in the brain and its binding to the dopamine and 

serotonin transporters was described by Brucke et al. 32.  Further work by Innis 

et al. 33 showed that loss of striatal dopamine transporters could be detected 
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using 123I- -CIT imaging.  They suggested that it could be used for both 

monitoring disease, and distinguishing between idiopathic Parkinson’s and other 

disorders.   

The binding of -CIT based ligands (including 123I- -CIT, 123I-FE- -CIT and 123I-

FP- -CIT) to dopamine, serotonin and norepinephrin transporters were 

compared by Okada 44.  This work and others lead to the use of 123I-FP- -CIT for 

DAT imaging.  

Booij et al. 45 described the bio-kinetics of 123I-FP- -CIT, showing a pronounced 

decrease in uptake in Parkinson’s disease compared to age matched healthy 

volunteers.  The bio-distribution and kinetics have also been described 

elsewhere 47.  The faster kinetics of 123I-FP- -CIT compared to 123I- -CIT, allow 

imaging at 3-6hrs as opposed to 24hrs, with higher specific to non-specific 

binding ratios.  However, the relative changes in uptakes between normal and 

Parkinson’s patients for the two tracers are equivalent 46.   

In retrospective analyses, the use of 123I-FP- -CIT has been shown to have a large 

impact on diagnosis and clinical management in clinically uncertain 

Parkinsonian syndromes 49, dementia and DLB 50.  Another retrospective study 

showed a normal 123I-FP- -CIT image to give a high negative predictive value 51.  

A study of 123I-FP- -CIT and 18F-FDOPA 52 showed that 123I-FP- -CIT gave similar 

accuracy for discrimination between Parkinsonian and non-Parkinson’s patients.  

The authors also described an age dependency of the uptake of 123I-FP- -CIT.   

Comparisons between 18F-FP- -CIT and 11C- FP- -CIT suggest the former is 

superior due to the lower production of metabolites 53.  The increased half-life is 
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also beneficial, as it allows better imaging of the biokinetics.  No direct 

comparisons of 18F and 123I labelled FP- -CIT have been published.   

More recently, 123I labelled PE21 has been proposed as an alternative due to its 

lower affinity with Seratonin Transporters (SERT) 39.   

99mTc TRODAT-1 is a relatively new agent that can be used to image DAT 38.  The 

use of 99mTc as the radioisotope as opposed to the cyclotron-produced 123I may 

allow more widespread use.   

1.5.3 Imaging the Dopamine receptors 

Dopamine receptors are found in both pre- and post-synapse neurons, but the 

vast majority of D2 receptors are seen in the post-synaptic neurons.  Hence, the 

D2 receptor has been used as post-synaptic imaging target.  Most routine clinical 

imaging of D2 has been done with 123I-IBZM 54.  11C -raclopride and 11C / 18F -

fallypride are important PET research probes, but due to cost, availability and 

practicalities they have not found their way to clinical use.   

Koch et al. 55 demonstrated that combining pre- and post- synaptic imaging could 

improve diagnostic power.  Financial and logistical issues have prevented this 

becoming the clinical routine.   

1.5.4 Differentiation of parkinsonian syndromes using SPECT 

1.5.4.1 MSA and PD 

Nocker et al. 56 investigated the progression of MSA-P and IPD.  They found 

significant reductions of DAT in the brainstem of MSA-P patients compared to 

IPD at baseline.  The reduction of uptake was greater in MSA-P patients 

compared to IPD.  The brainstem uptake in the MSA-P patients did not decline 
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further after baseline.  Their work showed distinct differences in the rate of 

progression of disease between MSA-P and IPD.  Their results also suggest 

differences in the pattern of uptake between the two disease groups.  In another 

publication by some of the same authors 57, similar differences between MSA-P 

and IPD were highlighted.  Changes in glucose metabolism in MSA have also been 

shown 58.   

1.5.4.2 PSP and PD 

The clinical differences between PSP and IPD are hard to distinguish at early 

stages of disease. However, some work 59 has suggested that the rapid 

progression of PSP, along with its more symmetrical progression, allows 

differentiation of these diseases using 123I-FP- -CIT imaging.   

1.5.4.3 DLB and PD 

Using both rCBF and DAT images, Rossi et al. 60 showed no statistically 

significant differences between DLB and Parkinson’s Disease -dementia.  Others 

have reported on regional cerebral blood flow differences in PS 61 and DLB 62 

when compared to healthy volunteers.   

1.5.4.4 Holmes Tremor 

In the case of Holmes tremor reported changes in ioflupane imaging have been 

inconsistent with some workers reporting marked dopaminergic loss 63 and 

others minimal changes 64.   
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1.5.4.5 Wilsons disease 

In Wilson’s disease (a copper deposition disorder) effects to both the pre- and 

post- synaptic neurons have been shown using 123I- -CIT and 123I-IBZM 

respectively 65.   

1.6 Imaging with other modalities and non-imaging 

techniques 

CT imaging is widely used to identify areas of vascular disease, trauma and 

malignancies, however its use in movement disorders is limited.  Likewise, MR 

imaging has found little use so far.  Ultrasound, though difficult in the brain due 

to the fact it is enveloped in bone, has been used with some success, however it 

could not be used to define severity of disease 66.   

Due to the early onset of anosmia in many patients, olfactory testing has been 

suggested as a useful adjunct to DAT imaging in early Parkinson’s Disease 67.  

However, the low positive predictive value would rule out its use in population 

screening on its own.   

1.7 SPECT imaging 

Single Photon Emission Computed Tomography (SPECT) imaging utilises 

radiopharmaceuticals to allow visualisation and quantification of physiological 

processes.  After injection, the radiopharmaceutical circulates around the body 

and localises according to its biochemistry.  A gamma camera is then used to 

detect the gamma emissions coming from the radioactive isotope.  To perform 

tomographic imaging, the gamma camera is rotated around the patient acquiring 

images at equidistant projection angles.  These projection images must then be 
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reconstructed to produce the transverse slices that represent the activity 

distribution in the patient.   

In this section, the operation of a gamma camera is described, followed by the 

acquisition and reconstruction of SPECT images.   

 

1.7.1 Gamma camera design and operation 

The basic gamma camera design was first demonstrated by Anger 68 as a method 

of imaging single photon emissions and replaced the rectilinear scanner.  A 

schematic diagram is given in Figure 1-4.   

 

Figure 1-4 Schematic diagram of gamma camera 

Gamma photons emitted from within the patient travelling in the direction of the 

gamma camera first encounter the collimator.  These are normally constructed 

from folded sheets of lead, to form a series of parallel holes or tubes.  They have 

also been made by drilling into blocks and are sometimes made of tungsten 

(Figure 1-5).   
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Figure 1-5 Schematic diagram of collimator 

The walls between these holes, known as septa, absorb photons that are not 

travelling perpendicular to the face of the detector (or within a certain 

acceptance angle).  The ratio of the width (d) and depth (l) of these holes define 

the acceptance angle, the range of angles of photon paths that can still reach the 

detector (Figure 1-5).  A reduced acceptance angle will improve the geometric 

resolution of the collimator, but will also reduce the sensitivity.  Conversely, a 

wider acceptance angle will improve the sensitivity, but degrade the resolution.  

The septa of the collimator will also affect the sensitivity as they cover an area of 

the detector proportional to their thickness.  The required thickness of the septa 

will be related to the range of energy of the photons being imaged.  As the 

number of gamma rays passing through a material falls exponentially with 

thickness, no amount of material would attenuate all the photons; hence, 

collimator designs are defined for energy ranges that allow less than 5% 

transmission.  This situation can be complicated where isotopes have multiple 

higher energy emissions.   

The detector is a scintillation crystal (NaI doped with Tl), coupled with an array 

of Photo-Multiplier Tubes (PMTs).  Gamma rays incident on the crystal will be 

absorbed by photoelectric absorption or undergo Compton scattering.  After a 
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short delay, the energy absorbed by the crystal is re-emitted as a group of visible 

light photons.  The number of photons emitted is proportional to the energy 

deposited in the crystal.   

Some of the emitted photons will hit the photocathodes of the PMTs.  This 

interaction causes the emission of electrons from the photocathode.  The 

electrical potential between the dynodes cause an acceleration of the electrons 

and results in a cascade of electrons along the dynodes, resulting in an electrical 

signal.  The signals from all the PMTs can be combined to give the position of the 

original crystal interaction.  The sum of the signals is relative to the energy 

deposited.  An energy acceptance window (the photopeak window) can then be 

used to discriminate between scattered and non-scattered photons, since 

scattered photons will be of lower energy.  The energy of the scattered photon 

(h ’) is related to the scattering angle ( ) and the initial energy (h ) by the 

constant mec2 (Equation 1-1).   

 

Equation 1-1 

The energy resolution of a modern gamma camera is around 10% (Full Width at 

Half Maximum - FWHM).  Hence, non-scattered photons will be detected at a 

range of energies, and so compromise must be made between widening the 

photopeak window to accept sufficient non-scattered photons, but not to include 

too many scattered photons.  Scatter compensation methods are discussed 

further in Chapter 2.   
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1.7.2 Resolution with distance 

The resolution of a gamma camera is the error in the positioning of an emission.  

It is formed of two components; the first is the intrinsic resolution of the detector 

Ri.  This is positioning error of the interaction within the detector.  It is 

dependent on a number of factors including the crystal thickness, the light 

output of the crystal, and PMT size and arrangement.  The second component, Rc 

is a geometric uncertainty of the origin of the emission relating to the acceptance 

angle of the collimator.   

As the geometric resolution of the collimator is based on an acceptance angle, its 

width will be dependent on the collimator-source distance.  For a circular holed 

collimator, Rc can be approximated as shown in Equation 1-2. 

 

Equation 1-2 

 

Where d is the diameter or width of the hole, b is the distance from the source to 

the collimator and leff the effective length of the holes.  The effective length of the 

holes leff is slightly shorter than the physical holes (l) due to septal penetration.  

The effective length is given by Equation 1-3 69 where  is the linear attenuation 

coefficient for the collimator material at the energy being imaged.   

 

Equation 1-3 

For a hexagonal collimator the resolution will have an angular dependency that 

follows the width of the hole.   
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The intrinsic and collimator resolution effects combine in quadrature to give the 

total system resolution RTot (Equation 1-4).   

 

Equation 1-4 

1.7.3 Septal penetration  

The collimator design is optimised for a particular energy ranges.  Typically, this 

will involve ‘Low’ (<160-180keV), ‘Medium’ (160-280keV) and ‘High’ (>280keV) 

energy ranges.  The isotope of interest here is Iodine-123, which has main 

photon emission at 158.99keV (emission probability 0.9922), which would imply 

low energy collimators.  However, the emission spectrum from 123I is complex 70 

and contains a number of higher energy emissions (see Figure 1-6).  The 

probability of emissions above 159keV is 3%, with emission above 500keV at 2% 

probability.  These higher energy photons will not be attenuated as much by the 

collimator septa.  This septal penetration can lead to reduced contrast and 

increased noise 71.  Some level of septal penetration is always present in gamma 

camera imaging, however, when higher energy emissions are present, as is the 

case for 123-Iodine, a greater level of septal penetration will be present.  Thus, 

the choice of collimators is not straightforward 71.   
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Figure 1-6. Emission probabilities of 123-Iodine.  Principal gamma energy 158.99keV 

omitted for clarity.  Uncertainties in the published data too small to be displayed. 

1.7.4 SPECT mode acquisition 

Single Photon Emission (Computed) Tomography (SPECT or SPET) is an 

acquisition mode in which the gamma camera is rotated around the object, 

acquiring a series of static images from a number of discrete, uniformly spaced 

angles.  To allow quicker scans modern scanners will have multiple detectors 

acquiring at different angles at the same time.  Often this is with two detectors 

but three and four detector systems have also been used.  These static images are 

known as projections or projection images.  The projection images can be 

combined using reconstruction algorithms to produce transverse slices or 3D 

volume data.   

Figure 1-7 and Figure 1-8 show the positioning of a patient for a SPECT brain 

scan using a dual headed gamma camera.  The patients’ head is held in a special 
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cradle to allow the detectors to be positioned as close as possible, avoiding the 

shoulders and couch.  Forehead and chin straps are used to minimise patient 

movement.   

 

 Figure 1-7 A subject positioned ready for a 

brain SPECT acquisition 

 

 Figure 1-8 The patient positioning as seen 

through the gantry 

1.8 Image reconstruction 

The two categories of algorithm are analytical and iterative reconstruction.  A 

brief description of these models is given here, but a more complete description 

can be found in the literature 72,73.   

1.8.1 Analytical reconstruction 

The most common form of analytical reconstruction program, and the one still 

widely used in nuclear medicine, is Filtered Back Projection (FBP).  Here the 

projection data are convolved with a windowed ramp filter.  The ramp filter is 

required to limit the star artefact.  The windowing filter will normally be a low-

pass filter (such as a Butterworth filter).  Such windowing is required to prevent 

the amplification of high frequency data in the images since high frequency data 

is made purely of noise.  Once convolved with a suitable filter, the projection data 

can be back projected across the image space.   
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1.8.2 Iterative reconstruction 

Iterative reconstruction models generally work by estimating the activity 

distribution, calculating the projection data that would arise from this estimate 

and then comparing the estimated projection data with the measured projection 

data.  This comparison then allows the distribution estimate to be updated.  

Thus, there are three main parts of the iterative algorithm: 

 The system model (which is used to calculate the projections from the 

distribution estimate) 

 How the differences between the measured and calculated projections are 

defined 

 How these differences are used to update the distribution estimate 

A common implementation of iterative reconstruction is Maximum likelihood – 

Expectation Maximisation (ML-EM) 74.  

1.9 Image analysis and classification 

When trying to classify a medical image the aim is to combine all the information 

in an image into some meaningful description.  For example the images in this 

work, the starting point is a patients’ scan of around 500,000 voxels, and the 

finish point we hope to reach is a meaningful diagnosis (Parkinson’s disease or 

tremor) or some level of disease progression (early – late disease).  The normal 

process is to first identify the salient features of the image.  The second stage is 

to use these features to classify the image by comparing them to known features 

or patterns.   

This combination of feature extraction followed by classification occurs in all the 

assessment techniques discussed here.   
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1.9.1 Visual assessment 

The main assessment technique used for the majority of medical imaging tasks is 

visual assessment by an experienced reporter.  They look for features in the 

images that are typical of the healthy or diseased states.  Allowances are made 

for known image artefacts and limitations of the modality being used.  The 

evaluation of SPECT images is performed using specialised nuclear medicine 

reporting software that allows some basic manipulation of the images.   

The reporting clinician is presented with images that have been through a series 

of preparatory steps:  

 Image reconstruction (which may include a range of image correction 

factors – see Chapter 3)  

 Image alignment (often performed manually but can also be automatic 

registration to a template) 

 Display colour table windowing – there are three general techniques to 

this, scaling to some predetermined absolute figure (e.g. an SUV of 7 in 

PET imaging), scaling to the highest pixel, or scaling based on the non-

specific binding (e.g. with the maximum being some multiple of the 

background region).  The first two options are the simplest to implement, 

however, the third may be easier to interpret for some image types.   

Each clinician will have their own way of visually analysing the images - the 

consensus involves looking for two properties: firstly, the image quality (was 

there patient movement?  Have the images been re-aligned correctly?).  The 

second stage is to examine the images for signs of disease.  Such steps are 
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obviously pharmaceutical specific.  The normal variants with which they 

compare may be also be age and sex specific.   

 

Figure 1-9 A series of transverse slices from a normal 123I-FP-B-CIT SPECT scan 

Using 123I-FP-β-CIT SPECT imaging as an example, and with reference to the 

example transverse slices shown in Figure 1-9, the following characteristics 

would be looked for:   

 Symmetry – assuming there are no technical problems with the 

acquisition and the images have been aligned properly, non-symmetrical 

images would suggest disease   

 Shape of the uptake – the classic shape of striatal uptake if the ‘dot-and-

comma’.  Disease progression is typically seen as loss of signal from the 

putamen so a change in shape towards a dot rather than commas would 

be suggestive of disease   

 Over-all uptake – a uniformly reduced uptake is suggestive of disease, this 

can be assessed visually by comparing to background/non-specific 
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binding areas, but this is not easy see without some form of quantisation 

or a normalised way of applying the colour table  

 Comparison with previous scans, including previous 123I-FP-β-CIT 

imaging, CT and MR where available   

 Comparison with clinical History.  If symptoms are unilateral, 

concordance with uptake patterns may add confidence to a particular 

report.  However, image and symptomatic concordance is not guaranteed 

5.   

Good sensitivity and specificity have been found when using visual assessment to 

differentiate between groups of subjects with parkinsonism and either essential 

tremor or healthy volunteer 75,76.   

1.9.2 Regions and Volumes of Interest (ROI/VOI) 

Regions and Volumes of Interest are widely used in most imaging modalities.  

The VOI is used to define a group of voxels (and/or partial voxels) and the 

average or total signal within the volume gives some measure of the tissue or 

organ contained within it.  These figures need to be processed further, either by 

comparing to a normal range/cut-off or by combining it with data from another 

volume.   

VOI sizes typically range from individual voxels up to sub-organ or organ sized 

volumes.  The shapes can be defined manually or automatically using some form 

of edge detection/region growing algorithm.  Often standard sized VOIs will be 

defined based on templates or structural images.   
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VOI can be placed manually by an operator or automatically.  Automatic 

positioning can be based on image registration, edge detection or image 

maximums/minimum values.   

One advantage of using VOI data is that (assuming appropriate corrections can 

be applied) the counts/signal in the VOI will often directly represent a clinically 

relevant physical value, or can be used to create such a figure.  For example, the 

counts within a VOI on 123I-FP-β-CIT images will be proportional to the number 

of transporter sites within that volume.   

123I-FP-β-CIT imaging lends itself nicely to quantification techniques as it is 

based on measuring uptake in known structural components rather than trying 

to identify increased or decreased uptake across the whole body, as is often the 

case in tumour imaging.  Overviews and comparisons of various techniques have 

been published 77,78 along with calls for the widespread implementation of semi-

quantitative analysis 79.  The European guidelines for dopamine transporter 

imaging 80 state that semi-quantitative analysis may be useful, and where 

performed should include standardised ROIs and have a normal range preferably 

based on age-matched controls.  They recommend the use of either occipital or 

cerebral regions for count normalisation.   

A number of VOI based methods have been suggested for quantification in 

dopamine receptor and transporter imaging.  These methods can be split into 

two subgroups depending on whether the placement of the VOIs is manual or 

automatic.  Three of the techniques using manually based VOIs have been 

combined into a software package (QuantiPSECT, Mirada solutions / GE-medical 

Oxford UK).   
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1.10 Aims of this work 

The main aim of this work is to investigate the use of classification techniques in 

movement disorders.  However to ensure the best performance of the process 

each step must be optimised and hence there are a number of aims:  

 Investigate the gamma camera performance characteristics when using 

123-Iodine  

 Optimise the acquisition settings taking into account scanner 

performance, patients’ needs and pharmaceutical characteristics 

 Investigate and optimise the image reconstruction and image correction 

techniques for use with 123I-FP- -CIT SPECT imaging 

 Develop an automatic classification technique 

 Compare the new automatic technique with other published techniques  

 Using a database of clinical scans, test the following hypothesis: 

 

“An automatic classification tool based on machine learning techniques will give 

better performance than currently available techniques.”   
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2  

The performance of gamma cameras for imaging 123-Iodine SPECT varies 

greatly and the exact characteristics will affect the quality of the images 

produced, and potentially the likelihood of an accurate diagnosis.  In this chapter, 

a range of scanner performance characteristics will be measured.  These results 

will be used to define image acquisition parameters most suitable for clinical 

dopamine transporter imaging.   

The following parameters will affect the imaging performance: 

 Gamma camera manufacturer / model 

 Collimator 

 Pixel size and Field of view/zoom setting  

 Number of projections 

 Orbit shape (circular/non-circular) 

 Orbit type (continuous / step and shoot) 

 Time per projection 

 Energy window selection 

The original EANM procedure guidelines for imaging of dopamine transporters 

published in 2002 81 were updated following developments and comments and 

were published in updated form in 2010 80.  They were produced by the EANM 

Neuroimaging committee and summarize the recommendations for the imaging 

of Dopamine Transporters using both 123I- -CIT and 123I-FP- -CIT.  As the 
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recommendations are designed to cover a wide range of equipment and 

institutional clinical practices they are necessarily broad.   

The manufacturer of 123I-FP- -CIT (under the tradename ‘DaTSCAN’) has also 

produced basic guidelines covering recommended acquisition and processing 

procedures.  Unlike the EANM guidelines, the manufacturer’s recommendations 

give specific camera settings for individual scanners; the data quoted here refer 

to the gamma cameras used in this research.  The three sets of guidelines are 

summarised in Table 2-1.   

Table 2-1 Published recommendations for acquisition settings 

Parameter EANM 2002 EANM 2010 
123I-FP-β-CIT 

manufacturer (GE) 

Delay to imaging 3-6hours 3-6hours 3-6hours 

Imaging device 
Minimum 2 

detectors 

Minimum 2 

detectors 
2 detectors 

Collimators 
LEHR or LEUHR 

Fan beam preferred 

LEHR or LEUHR 

Fan beam preferred 
VXGP / LEHR 

Orbit style Not stated Not stated Circular 

Orbit mode 

Step and shoot, (but 

continuous may 

reduce time and 

reduce mechanical 

wear) 

Step and shoot, (but 

continuous may 

reduce time and 

reduce mechanical 

wear) 

Not specified 

Radius of rotation Smallest possible Smallest possible 
Smallest possible, 

11-13cm 

Matrix 128*128 128*128 128*128 

Angular sampling 3degrees 3degrees 3degrees 

Pixel size / Zoom 
Between ½ and 1/3 

expected resolution 

Between ½ and 1/3 

expected resolution 
No zoom, 4.6mm 

Total counts >3million >3million >1.5million 

Total time 
40-50mins typical 

for triple headed 

30mins typical for 

triple headed system 

30sec/projection 

(30mins total) 
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2.1 Gamma camera manufacturer/model 

There are currently three main manufactures producing gamma cameras for 

clinical use and a number of smaller companies producing specialist equipment.  

However all the patients used in this work were scanned at one hospital, using 

one of two cameras.  The cameras are identical (Forte, ADAC Laboratories, 

California, USA) except for the collimators used on them.  Due to time 

constraints, and the nature of this project, only these two cameras were 

investigated.   

2.2 Energy windows  

The equipment available in our institution limits the number of energy windows 

that can be acquired simultaneously.  Up to three non-overlapping windows can 

be acquired per detector at the same time.  The width of the photopeak window 

will affect the resolution and sensitivity of the scanner.  Increasing the width of 

the window will mean more counts will be included in the image.  However, the 

wider window will take in a greater proportion of scatted photons.  Scattered 

photons are imaged in erroneous positions, degrading the resolution of the 

image.  The energy resolution of the detector determines its ability to distinguish 

between scattered and non-scattered photons.  The energy resolution is 

dependent on the crystal (material, doping levels, quality and thickness), the 

optical coupling of the crystal to PMTs, and the PMTs and associated electronics.  

The sensitivity-resolution trade off within the collimator will have to be taken 

into account when optimising the photopeak widths.  Detector uniformity and 

energy maps will be affected by the choice of photopeak width and changes to it 

will require further corrections maps.   
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The main photopeak window was fixed at 20% symmetrical window, centred on 

the main photopeak, as per the manufacturers recommended procedure.  This 

was done to ensure the system correction files were appropriate.   

2.2.1  Energy window simulation 

A series of Monte Carlo simulations were performed to investigate the 

contributions of scattering events and collimator interactions.  The SIMIND 

package 82 was configured to model the scanners used in this work.  A range of 

basic phantoms were used and tested against real-life measurements and found 

to match real scanner performance to within experimental error 6.  

Figure 2-1 shows the energy spectra output from a simple head sized cylinder 

(15cm diameter, 20cm length, uniform activity distribution, uniform material) 

for direct photons, and photons that have been scattered when imaging with a 

LEHR collimator on the ADAC forte gamma camera.  Only a single projection was 

simulated.   

The results of the simulation show that a large number of the photons detected 

within the photopeak window will have undergone at least one scattering 

interaction.  A number of scatter correction methods have been proposed, some 

of which use secondary energy windows as estimates of the scatter fraction 

within the photopeak.  Smaller windows, positioned very close to the main 

photopeak are likely to give a better estimate, however, the photon flux away 

from the main peak is much lower, so the use of very thin scatter windows will 

result in noisy estimates.   
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Figure 2-1Results of a Monte Carlo simulation.  Showing the number of detected photons 

as a function of energy 

A number of window widths have been used in published data.  In triple energy 

window corrections both 3%83,84 and 7%85 have been used.  For dual energy 

window corrections, with the scatter window below the photopeak these widths 

may be increased to 20% Dobbeleir et al. 71,86 or 40%87.  A slightly different 

approach was taken by Small et al. 88, who focused on the down scatter from 

higher energy emissions and used a 20% window above the photopeak.   

A very simple test was performed using the spectra output from this Monte Carlo 

model.  Using the energy windows proposed by Iida et al.  85 the number of direct 

(non-scattered) photons, and total photons (scattered, non-scattered, and 

collimator penetration and scatter) were calculated for the three energy 

windows.  These are shown in Figure 2-2 as direct photons, scattered photons, 

and total photons detected.  Three energy windows are also shown representing 
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a 20% photopeak, and two 7% scatter windows.  These counts are shown in 

Table 2-2.   

 

Figure 2-2 The energy acceptance windows compared to the energy of direct and scattered 

photons 

 

Table 2-2 Results of scatter correction using Monte Carlo simulations 

Window 
Direct 

(Non-scattered) 

Total 

(Direct and 

scattered) 

TEW corrected Error 

Low scatter 7 517   

Photopeak 1250 2333 1272 2% 

High scatter 36 168   

 

In this very simple test of the TEW scatter correction, the windows proposed by 

Iida gave very reasonable results, with an error of 2%.  However, the application 

of this technique will need to be further investigated using more realistic data.   

The optimum scatter window width will be dependent on the scatter correction 
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technique used, the scattering conditions of the clinical procedure being 

undertaken, and the scanner design including energy resolution of the detectors 

and scattering properties of the collimators.  Only three energy windows could 

be applied simultaneously using the equipment available in this work, so a 

retrospective analysis of all techniques would not be possible.  A full 

investigation into the optimum widths and positioning of these windows was 

considered to be beyond the scope of this work so a choice was made on based 

on the published data.  The windows were chosen to match those in Iida et al. 85 

with two 7% scatter windows positioned either side of the photopeak.  These 

widths were using the following collimator comparison tests.  Scatter correction 

is discussed further in chapter 3.   

2.3 Comparison of LEHR, VXGP and MEGP Collimators 

The design of collimators is a compromise between resolution and sensitivity, 

with sufficient thickness of septa to prevent excessive penetration.  Their design 

is optimised based on the energy of photon being imaged.  Until recently, 123I was 

not a regularly used isotope, and hence it is rare for collimators to be optimized 

for it.  The main emission energy of 123I is 159keV, but it also emits a number of 

higher energy photons (Figure 1-6).  These factors complicate the choice of 

collimator 71.   

The presence of higher energy photons will degrade the image in two ways.  The 

higher energy photons may not be attenuated by the septa of the collimator.  A 

second effect occurs when higher energy photons undergo Compton scattering.  

The energy loss means they fall within the photopeak acceptance window.  For 

both these effects, the resulting scintillation event in the detector will give 
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erroneous positional information.  They both add a background “fog” to the 

image, increasing the noise, reducing the contrast and affecting the quantisation.   

Macey et al. 89 investigated collimator choice for whole body imaging.  Improved 

resolution was found with the low energy high-resolution collimators, but 

medium energy collimators gave better quantitative accuracy.  They concluded 

that the MEGP collimators were superior for whole body imaging.  However, no 

attempts to correct for the septal penetration or scatter were included in that 

work.   

Gillard et al 90 investigated measurement of size and activity in SPECT when 

using low and medium energy collimators.  As well as the characteristic 

dependency of recovery coefficient on object size, they found that septal 

penetration in low energy collimators could lead to reduced contrast, and image 

artefacts.  The most obvious artefact is activity being positioned outside of the 

emitting body, seen as a hot ring around the reconstructed volume.  This “hot 

ring” artefact was also described by Macey et al. 89.   

More recently, corrections for down scatter and septal penetration have been 

investigated when using LEHR collimators 82,86,88,91.  They have been shown to 

significantly improve the image quality by compensating for the image 

degradation caused by scatter and septal penetration.  Allowing imaging to be 

performed using LEHR collimators taking full advantage of the superior 

resolution.   

An investigation was performed to describe the resolution performance of the 

various collimators available for clinical use.  Three types of collimator are 

available at this institution, two low energy high-resolution collimators (LEHR, 

VXGP) and medium energy general-purpose collimators (MEGP).  The resolution 
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and sensitivity for 123I can be measured directly using techniques described by 

National Electrical Manufacturers Association (NEMA) 92 and can be further 

investigated by changing the source to collimator distances. 

2.3.1 Collimator comparison - Method 

Two capillary tubes were filled with 123I and placed in parallel with 8cm 

separation.  The tubes were suspended between the two camera heads parallel 

to the long axis of the camera.  As the internal diameter of the capillary tubes is 

very small compared the resolution of the camera, the resulting images are good 

approximations to the line spread function of the camera.   

A 256x256 matrix was used with a detector mask of 25.4cm (i.e. 2.19 zoom) to 

produce a pixel size of 1.1mm.  A series images was acquired with a range of 

collimator to source distances ranging from 5cm to 15cm.  The acquisitions were 

performed on each of the three collimator styles available and profiles drawn 

across the images.  The timing was adjusted to ensure a minimum of 1000 counts 

in the highest pixel of the profile.  Repeat measurements were taken over two 

years.   

A second series of images were acquired using Perspex sheets to act as a 

scattering medium.  A total thickness of Perspex of 18cm was placed gently on 

the collimator face.  The capillary tubes were positioned between the Perspex 

sheets at different depths into the Perspex.   

The relative sensitivity of the collimators was measured as a function of distance 

from the collimator.  This was performed using the total counts in-air resolution 

images after correcting for radioactive decay and differences in acquisition 
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length.   

2.3.2 Collimator comparison - Results 

The resolution measured in air are shown in Figure 2-3 and Figure 2-4 as a 

function of collimator to source distance in terms of full width at half maximum 

(FWHM) and Full Width at Tenth Maximum (FWTM) respectively.  The 

manufacturers’ specifications for 99mTc imaging are also shown along with 

distance of interest for SPECT imaging of the striatum.  No specification for 123I 

imaging is quoted by the manufacturer.   

 

Figure 2-3 Resolution as a function of distance from the collimator for three collimators 
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Figure 2-4 FWTM Resolution as a function of distance from the collimator for three 

collimators 

 

 

Figure 2-5 Resolution as a function of distance from collimator in scattering material.  The 

FWHM and FWTM are shown with and without TEW scatter correction. 
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Figure 2-6 Line profiles across line sources at various depths in scattering material 

Figure 2-6 shows the profiles of the line sources acquired in a scattering 

material.  Counts per second per pixel vs x position (mm).  Y-error given as +/- 

square root of counts/pixel. The x-error is +/-half pixel.  The counts per pixel 

have been rescaled according to the length of acquisition.  As the line sources are 

positioned deeper into the material, further away from the detector, the signal is 

spread out and attenuated.   
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Figure 2-7 Relative sensitivity with distance for photopeak window and TEW corrected 

photopeak window 

Figure 2-7 shows the relative sensitivity as a function of distance from the 

collimator.  The data has been decay corrected and then normalised to the 

sensitivity at 25cm with scatter correction.   

In SPECT imaging for average sized patients with no positioning difficulties, the 

striatum occupies a distance of up-to 4.5cm from the centre of rotation.  This 

equates to between 6.5 – 10.5cm from the nearest collimator.  This distance has 

been shown on Figure 2-3 and Figure 2-7.  

All collimator performance measurements were within manufacturers’ 

specifications.   

2.3.3 Collimator comparisons - Discussion: 

As can be clearly seen in these graphs, improved resolution is seen with the two 

low energy collimators compared with the medium energy.  There is a small 



57 
 

improvement in resolution when imaging with LEHR collimators rather than 

VXGP.   

The FWTM results also show an improvement when moving from medium to low 

energy collimators, however, the relative improvement is lower.   

Comparing the resolution results with the distances seen in clinical imaging, the 

expected planar resolution for the organ of interest will range from 6.5mm to 

10mm FWHM.   

Normally the compromise in collimator choice is between resolution and 

sensitivity, however, the sensitivity is increased when using low energy 

collimators than compared to MEGP as less of the camera face is covered with 

lead.  These results show a clear improvement with low energy collimators, with 

little difference between the LEHR and VXGP styles.  A possible problem that has 

shown here is the varying sensitivity with distance that is seen with the two low 

energy collimators (Figure 2-7).  This effect should not be present in parallel-

hole collimators, but appears here because of septal penetration.  Figure 2-7 also 

shows how scatter correction can reduce this effect.  Scatter correction is 

discussed further in chapter 3.  The effect of scatter correction is also seen in 

Figure 2-5 where the FWTM shows a decrease when scatter correction is used.  

This relates to a reduction in the broad tails of the line-spread function and 

suggests improved image contrast.  This is in contrast to some results published 

using a different correction method 88 where the improvement in FWTM was not 

found to be significant.  In that work only a down scatter correction was being 

applied, rather than full scatter correction method shown here.  

The resolution performance defined here can be further used when investigating 
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the reconstruction techniques, where the depth dependence characteristics are 

modelled in the reconstruction.  This will be further discussed in chapter 3.   

2.3.4 Collimator comparisons – Conclusions 

The two low energy collimator designs should give improved image quality in 

terms of reduced blurring.  The LEHR is marginally superior to the VXGP 

collimator but both will be used for clinical imaging.  The measured line spread 

functions can be used in the reconstruction process to try to improve 

reconstructed resolution (see chapter 3).  The expected FWHM for the striatum, 

varying between 6.5mm 10mm can be used to guide the acquisition pixel sizes 

(see section 2.4).   

2.4 Pixel size / Image Matrix  

Sampling theory dictates that the highest spatial frequency data that can be 

defined by an imaging system will be half of the spatial sampling frequency.  In 

the absence of noise considerations, the spatial sampling (i.e. the pixel size) 

should be defined based on the FWHM at either the centre of rotation or the 

depth of interest.  In section 2.3 the limits to the imaging system were defined in 

terms of blurring factors at distances from the collimator.  The EANM guidelines 

80 suggest a pixel size between one third and half of the expected FWHM.   

2.4.1 Pixel and matrix size – Results 

From the resolution measurements, (section 2.3) and from examining typical 

orbits used clinically, the following calculation can be made: 

FWHM at depth of object of interest covers the range 6.5mm to 9.0mm  
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FWHM at centre of rotation = 9mm 

Using the EANM guidelines for the FWHM at the depth of the organ of interest - 

the maximum pixel size should be between 2.1 and 3.2mm.  When the resolution 

at centre of rotation is used the maximum pixel size should be between 3.0 and 

4.5mm.   

The image matrix sizes available for the departmental scanners are limited to 

pre-defined ranges (see Table 2-3).  In SPECT mode only128*128 and 64*64 

matrices are allowed.  Also, the range of zoom settings is restricted to 48, 38, 30 

and 25.4 cm. (zoom factors 1, 1.46, 1.85 and 2.19 respectively).   

Table 2-3 Pixel Sizes for SPECT mode acquisition 

 Field of View 

 48cm 38 cm 30 cm 25.4 cm 

64*64 matrix 9.3mm 6.4mm 5.1mm 4.3mm 

128*128 matrix 4.7mm 3.2mm 2.5mm 2.1mm 

 

2.4.2 Pixel and Matrix size - Discussion 

From the resolution measurements, a pixel size of 2.1mm is suggested.  This 

figure is significantly smaller than the “~4.6mm” recommended by the 

pharmaceutical manufacturer.  This discrepancy can be understood once the 

effects of noise are considered.  By halving the length of a pixels edge, the 

scanning area it represents will decrease to ¼, with a corresponding drop in 

counts to ¼.  The lowered counts may lead to noise problems in the clinical data.  

As a compromise, data could be acquired in 128matrix form, with a zoomed field 

of view.  This will allow the high spatial frequency data to be acquired, but will 
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still allow the pixels to be combined to give 4.3mm voxels.   

2.4.3 Conclusions:  

The recommended matrix size should be 128*128 using a 25.4cm field of view, 

with the option to combine data into 64*64data.  

2.5  SPECT gantry orbits 

A previous section (section 2.3) showed how the distance from the camera 

affects the resolution of the images.  When performing SPECT acquisition, the 

detectors are rotated around the object of interest, maintaining the minimum 

distance to ensure the best resolution.  There are two shapes of orbit, circular 

and non-circular.  A circular orbit uses a fixed radius of rotation for each head, 

which when equal, produce a circular orbit.  When images are acquired using a 

non-circular orbit, the camera heads will change radius of rotation as the gantry 

rotates.  The idea of the non-circular orbit is to allow the camera movement to 

better reflect the shape of the object being scanned.  Theoretically the non-

circular orbit has the potential to give better images, as it should be able to 

maintain a smaller object to camera distance, however there are problems in the 

implementation.  The non-circular orbit is defined by marking the radii to be 

used at 0, 90, 180 and 270 degrees.  The gantry computer then uses these values 

to define the ellipse.  It had been noted anecdotally that the resulting radii were 

significantly bigger than the set values.  This was investigated.   

2.5.1 Gantry Orbit measurements - Method 

To investigate how the camera orbits are defined a series of dummy acquisitions 

were performed.  This entailed setting up the camera for a series of acquisitions, 
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at different starting radii, and then monitoring the radii used in the acquisition.  

The starting radii were chosen based on the starting radii taken from clinical 

acquisitions within the department.  The radii were recorded from the gantry 

display during the acquisition.   

2.5.2 Gantry Orbit measurements - Results 

Figure 2-8 shows the radii of the camera heads whilst acquiring a circular or 

non-circular orbit.  For clarity, only one representative orbit set-up is shown.  

The original gantry definitions were for a 13cmx10cm radii elliptical orbit and 

13cm circular orbit.   

 

Figure 2-8. The radius of rotation as measured for a phantom experiment.  The scaled 

phantom image is also included 

Figure 2-8 shows the gamma camera detector radii as the system rotates around 

the phantom.  A suitably scaled transverse slice from the phantom has been 

added to show the extent of the radius. 
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2.5.3 Gantry Orbit - Discussion 

Figure 2-8 clearly shows a significant increase in radius of rotation when non-

circular orbits are used.  The gantry software automatically adjusts the orbit 

definition to avoid the patient couch, even when the couch is retracted away 

from the detectors, as is the case with brain imaging.  The same phenomenon is 

shown on both scanners.   

The increase in rotation radius when non-circular orbits are used will clearly 

lead to a decrease in image quality, and hence circular orbits should be used for 

all brain imaging until updated software has been provided and tested.   

One advantage of using circular orbits occurs when the data is reconstructed.  

With the software available, a depth dependent resolution recovery calculation 

can be performed.   

The camera manufacturer was contacted regarding this issue.  To date no 

changes to the gantry control software have been made.  

2.6 SPECT Gantry movement 

The gamma camera is capable of acquiring data in two modes, step-and-shoot 

mode (SSM) and continuous step and shoot mode (CSSM).  The first option only 

records counts when the detectors are inline with the predetermined projection 

angles.  At this point, they are held stationary for the full time of the "time-per-

azimuth" setting.  In the second option, CSSM will record the counts during the 

movement between the projection angles together with the counts when the 

detectors are in position.  The advantage of CSSM is a decrease in unused 

imaging time, at the expense of a theoretical blurring effect.   
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The advantages of using CSSM over SSM when fast SPECT acquisitions were 

performed have been described 93.  The increased count statistics within the 

same total imaging time lead to improved image quality.  However, this 

increased imaging time is of reduced importance when the time per azimuth is 

much greater than the gantry rotation time.  The theoretical blurring was shown 

in noiseless images, but was masked in realistic images when 64 views were 

used.  They also note that the blurring effect will decrease further with 

increasing number of azimuths.  The theoretical blurring introduced in CSSM is a 

function of distance from the COR.   

In 123I-FP- -CIT imaging 128 views are used, and the main structure of interest 

lies near the COR, it is unlikely to be significantly affected.  The "deadtime" 

associated with step and shoot acquisition is 1.5% of the imaging time.  Since the 

exact choice was unlikely to have a significant effect on the resulting images, the 

continuous step-and-shoot mode was chosen as it has been suggested that it may 

cause less damage to the gantry.   

2.7 The number of projections 

A parameter related to the gantry movement is the number of projections (or 

azimuths) that are acquired.  When too few azimuths are acquired, some 

artefacts are seen in the reconstructed slices.  The effect gets progressively 

worse as the distance from the COR increases.  A number of different approaches 

have been used to define the ideal number of azimuths94.  The spacing between 

line integrals should be substantially less than the resolution of the final image.  

Values of 0.4 to 0.7 times the resolution have been quoted.  For the geometry 

used here this gives an arc of 0.54cm and hence a minimum of 128 azimuths.   
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The choice of number of projections will also have an effect on reconstruction 

speed, particularly if iterative methods are employed.  An increase in the number 

of azimuths will cause an increase in reconstruction time.  However, most 

reconstruction algorithms, including the ones available for this work, are 

performed using ordered subsets methods that will limit this effect.  A further 

practical implication of the number of azimuths is the associated increase in 

imaging acquisition time.   

2.8 Time per projection 

Noise has a large effect in nuclear medicine imaging.  The random nature of 

radioactive decay, and interactions of photons with matter, coupled with the low 

sensitivity of a gamma camera, means noisy images.  The maximum activity that 

can be used is given in national guidelines 95 so the only way to increase the 

number of counts is to increase the acquisition time.  Unfortunately, it is 

impossible to ensure patients will not move for long periods of time.  Even when 

patients are held still using immobilisation devices such as chin and head straps, 

and leg supports, there is a limit to the length of time they can be expected to be 

scanned for.  This limit is normally set at around 45 minutes.  Movement can be a 

particular problem when a patient has movement disorders and/or dementias.   

2.9 Conclusions 

In our department the imaging is now performed with the following parameters.  

LEHR or VXGP collimators, 128x128 matrix with a 25.4cm field of view.  Circular 

CSSM orbits of 128 azimuths.  Radius of rotation should be set as small as 

possible, and should be less than 13cm.  This measurement should be recorded 
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on the patient notes for use in image reconstruction.  Energy windows should be 

defined as:  Photo-peak - 158 ±10% Low scatter - 137 ±3.5%, High scatter - 178 

±3.5%.  

Table 2-4 Comparisons of local settings with published guidelines 

Parameter Local setting EANM 2010 GE 

Delay to imaging min 3 hours 3-6hours 3-6hours 

Imaging device 2 detectors 
Minimum 2 

detectors 
2 detectors 

Collimators LEHR or VXGP 
LEHR or LEUHR 

Fan beam preferred 
VXGP / LEHR 

Orbit style Circular Not stated Circular 

Orbit mode 
Continuous step and 

shoot 

Step and shoot, (but 

continuous may 

reduce time and 

reduce mechanical 

wear) 

Not specified 

Radius of rotation 
Smallest possible 

<13cm 
Smallest possible 

Smallest possible, 

11-13cm 

Matrix 128*128 128*128 128*128 

Angular sampling 2.8degrees 3degrees 3degrees 

Pixel size / Zoom 2.1mm 
Between ½ and 1/3 

expected resolution 
No zoom, 4.6mm 

Total counts As acquired >3million >1.5million 

Total time 45mins 
30mins typical for 

triple headed system 

30sec/projection 

(30mins total) 

 

Table 2-4 shows a comparison of the new local acquisition settings to published 

recommendations.  These settings are similar to those used elsewhere and in the 

European guidelines 80 but with slightly reduced pixel sizes and the addition of 

scatter correction.  Summing the pixels to give 64*64 matrix data will give 

similar data to the manufacturers guidelines.   
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3  

The previous chapter described the various parameters and options available for 

the acquisition of images from a patient undergoing brain-SPECT imaging.  The 

resulting images are known as projection images.  These projection images 

cannot be analysed in this form and must be combined to produce images that 

are suitable for clinical reporting and analysis.  This process is known as 

tomographic reconstruction, the output of which is a series of transverse slices.  

Reconstruction can be performed using a number of algorithms, most commonly 

Filtered Back Projection (FBP) or some form of iterative algorithm, (e.g. Ordered-

Subset Expectation-Maximization, O.S.E.M.).  For both techniques, corrections 

can be applied for attenuation, scatter and partial volume effect.  Some post 

reconstruction filtering can also be applied to remove excess noise.   

Although acquired as a series of 2D projection images, the reconstruction models 

described below work on smaller groups of this data described using sinograms.  

Sinograms are simply the projection data re-binned into a different form.  Figure 

3-1 shows the projection and sinogram data from a scan of a brain phantom.  The 

images on the left show four projections at (from top to bottom) 270, 180, 90 

and 0 degrees, relating to views from the left, posterior, right and anterior of the 

phantom.  Each projection has the same central row of pixels highlighted.  Each 

projection image is orientated so the horizontal axis is ‘x’ and the vertical axis ‘z’.  

The right hand image shows the sinogram for the row of pixels highlighted in the 

projections.  The sinogram is produced by stacking the same row of pixels from 

each of the projection angles, so the horizontal axis is also ‘x’, but the vertical axis 

is the projection number/angle.  In this example, there are 128 projections of 
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128x60 pixels, which can also be viewed as 60 sinograms each measuring 128 

x128.   
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Figure 3-1 Projection images and sinogram data 

Each transverse slice is therefore described by a single sinogram.  The following 

descriptions of reconstruction models describe how this sinogram data is used to 

produce a transverse slice.   
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3.1 Filtered Back Projection 

All gamma camera systems are capable of using FBP, and as such it is often the 

default reconstruction to use.  Because of its linear form, it should give consistent 

performance with regard to quantitation.   

There are two filters used in the FBP reconstruction process.  The ramp filter is 

required to counteract the smoothing function inherent in the back projection 

process.  For a description of this effect the reader is directed to text books on 

this subject 96 a full proof of this can also be found 72.  The amplification power of 

the ramp filter is proportional to the frequency and hence the ramp filter 

amplifies high frequency data.  In theory, the ramp filter will apply exactly the 

right level of filtering for the reconstruction process.  In practice the high 

frequency data that the ramp filter amplifies the most will mainly be noise.  To 

prevent the amplification of noise the behaviour at higher frequencies needs to 

be modified.  A sharp cut-off in the frequency response will lead to ringing 

artefacts in the image, so a range of filters have been implemented that act as 

low-pass filters with smoothly changing frequency responses.  These filters are 

often known as windowing filters, as their action is described as a modification 

of the normal ramp filter.  In practice, these two filters are normally applied 

separately during the reconstruction process.   

The Butterworth filter is commonly used for clinical SPECT processing.  This 

filter has two variables, the cut-off frequency and the order or power.  The 

equation used to describe this filter has a number of different forms, with slight 

variations between software companies.  The FBP software used in this work 

uses the form shown in Equation 3-1.   



69 
 

 

Equation 3-1 

The cut-off frequency fco defines at which frequency the signal is attenuated to 

50%.  The filter order defines how steeply the filter rolls off with increasing 

frequency.  Figure 3-2 shows the frequency response for four Butterworth filters.  

Three filters are shown with filter order 10, and fco = 0.8, 1.5 and 2.0 cycles/cm.  

A forth filter is shown using fco =1.5cycles/cm and order 5.  The Nyquist 

frequency (2.4cycles/cm) and the frequencies related to 6.5mm and 9.0mm 

features are also shown.   

 

Figure 3-2 Example Butterworth filters 

The Butterworth filter is also used for post-reconstruction smoothing where is 

can be applied to images from both FBP and iterative reconstructions.   
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3.2 Iterative reconstruction 

Iterative reconstruction involves starting with an estimate of the activity 

distribution.  The projection images that would be acquired from such a 

distribution are then calculated.  A comparison of the measured and predicted 

projection data is made, which can be back-projected onto the distribution 

estimate and used to improve the estimate.  Iterative reconstruction has a 

number of features that may give it advantages over filtered back projection.   

The forward projection step, where estimated projections are calculated from 

the activity distribution estimate, allows mathematical models of the imaging 

process to be incorporated into the algorithm (see section 3.3).  In the ML-EM 

iterative model, the measured sinogram is divided by the predicted sinograms to 

give the error estimate.  As the noise in the projection data can be included 

explicitly in the reconstruction algorithm, iterative techniques tend to deal with 

low count data better than FBP.   

As further iterations are performed, the estimate should converge towards the 

measured projection data.  The convergence of the image with the true activity 

distribution is not uniform.  The local convergence will be dependent on size, 

location and surroundings of an object.  In addition, the convergence is towards 

the measured projection data, rather than the true activity distribution.  Large 

numbers of iterations will eventually lead to excessive noise levels in the 

reconstructed image.  Figure 3-3 shows a transverse slice through a phantom, 

reconstructed using a range of numbers of iterations.  In practice, a pre-defined 

number of iterations are performed.  This can be followed by the application of 

some form of post-reconstruction filtering.   
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Figure 3-3. Example central transverse slice reconstructed using OSEM with depth 

dependent resolution recovery and a range of iterations and subsets.  The numbers of 

equivalent iterations (iterations*subsets) are 10, 16, 20, 24, 40, 64, 96, 128 and 200 from 

left to right. 

An accelerated form of ML-EM, known as Ordered Subset Expectation 

Maximisation (OSEM) 97 is used in most commercially available software.  

Instead of calculating all the projections for every iteration, only a subset of the 

projections is calculated.  The next sub-iteration calculates another subset of the 

projections and so forth until all the subsets have been used once.  In this way, 

the convergence of the model is speeded up dramatically.  The increase in speed 

is approximately equal to the number of subsets used.  The number of iterations 

multiplied by the number of subsets gives the number of image refreshes or 

equivalent iterations.  A reconstruction using four iterations and four subsets is 

almost identical to a reconstruction produced using two iterations of eight 

subsets, or 16 iterations of ML-EM72,97.   

For both iterative and FBP reconstructions there are a wide range of parameters 

that will affect the quality of the images produced.  For most of these parameters, 

their effect on the end result will be dependent on other parameter choices.  For 

example, the optimum number of iterations and post reconstruction filter are 

heavily interdependent, and related to the use of resolution modelling.  With this 

in mind, the obvious solution is to compare all combinations of parameters; 

however, this would lead to so many permutations as to be impossible.  As such, 

a step–by-step approach must be made comparing ranges of groups of 

parameters that are known to heavily influence each other.   
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3.3 Image corrections 

A number of physical interactions can occur between the emission of the gamma 

ray and the formation of the image.  These interactions, along with the properties 

of the imaging device, will affect the quality and quantitative accuracy of the 

image produced.  By examining these limitations some corrections can be made 

to compensate for them.   

In general, gamma rays can undergo four types of interaction in tissue, Rayleigh 

Scattering (RS), Compton Scattering (CS), photoelectric absorption (PE) and pair 

production (PP).  Rayleigh scattering is only of importance at energies below 

50keV, and pair production can only occur at energies above the rest mass 

energy of the particle pair (2x511keV).  Hence, for most SPECT imaging including 

that performed with 123-Iodine, the Compton and Photoelectric interactions are 

of most importance.  These interactions are dependent on the energy of the 

photon, the density of the material and the atomic number of the atoms in the 

material.   

 

Figure 3-4 Four possible photon paths 

PE interactions involve the complete absorption of the photon energy and 

creation of a photoelectrons and Auger electrons.  Compton Scattering results in 

a photon being deflected with some of its energy being transferred to a scattered 

electron.  Figure 3-4 shows four example photons paths that can occur.  From left 

to right:  
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 A non-scattered photon hits the detector.  It is imaged in the correct 

position 

 The photon undergoes PE in the body and is not detected 

 The photon undergoes CS inside the body and is scattered out of the 

collimator acceptance angle – the photon is not detected 

 A photon undergoes CS inside the body and is then imaged in the 

incorrect position 

3.3.1 Attenuation 

Attenuation of the signal occurs when photons with the correct trajectory are 

scattered away from normal incidence with the detector or undergo PE 

absorption.  The effect of attenuation is to decrease the number of photons 

reaching the detector.  The effect is non-stationary and depends on the density 

and composition of the material.  In general, the signal from areas deep within 

the body will be attenuated more than the signal from superficial structures.   

The amount of attenuation in different parts of the object, that is the attenuation 

map, can be either measured or estimated.  Measured attenuation maps can be 

acquired using transmission-CT with either x-ray or isotope sources, and a 

suitable detector.  Estimated attenuation maps can be produced by defining the 

object outline and then making assumptions about the attenuation distribution, 

(e.g. uniform attenuation) within this outline 98.   

This attenuation map can be used to correct the reconstructed image either post-

reconstruction, or in some iterative models, as part of the system model in the 

forward projector.   
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For patient data, a separate CT acquisition is rarely performed and even in 

departments that have combined SPECT-CT systems, the extra radiation 

exposure from the CT is generally not justified.  Within this work, even for the 

few patients where CT data has been acquired, the software available does not 

allow the use of CT based attenuation corrections to be included in the 

reconstruction.   

The correction techniques available use a uniform attenuation factor, which can 

be specified by the user.  For FBP based reconstructions a basic uniform 98 

correction is available.  For the OSEM iterative model two implementations of 

the uniform correction is applied.  The first method, (labelled as ‘fast correction’) 

follows the FBP implementation, applying the scaling factor after the 

reconstruction has finished.  The second method uses the uniform attenuation 

map as part of the forward projector within the reconstruction model.   

3.3.2 Scatter 

Compton scattering has the effect of adding misplaced counts into the image.  

This leads to a decrease in contrast and the addition of noise.  The effect is non-

stationary depending on both the density and composition of material in the 

scattering medium.   

In general, the effect of scattering will be to slightly increase the number of 

counts imaged near the centre of the object.  The simplest scatter compensation 

is to use a reduced attenuation coefficient for the attenuation correction.   

Other scatter compensation methods use a measured estimate of the scattered 

photons.  These include Dual and Triple Energy Window techniques (DEW and 

TEW 99,100).  The number of scattered photons being recorded in the photopeak 
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window is estimated using one or two scatter windows adjacent to the 

photopeak window.  The estimated scatter component can then be subtracted 

from the projection data prior to reconstruction, or be introduced within the 

iterative calculation.  The latter is preferable in iterative methods, as the 

subtraction prior to reconstruction will affect the noise properties of the 

projection data and hence the Poisson noise assumption in ML-EM will be 

incorrect.   

DEW and TEW compensations can lead to an increase in the noise of the 

reconstructed data depending on their implementation.   

The software available in this work allows pre-reconstruction scatter correction 

in the form of Dual or Triple Energy Window (DEW or TEW) methods.  In this 

form, the scaled counts in the scatter windows are used to estimate the scatter in 

the photopeak window, which are then subtracted to produce a new set of 

projection data.   

3.3.3 Septal penetration 

Some level of septal penetration is always present in gamma camera imaging, 

however, when higher energy emissions are present, as is the case for 123-

Iodine, a greater level of septal penetration will be present.  Thus, the choice of 

collimators is not straightforward 71.  Estimates of septal penetration can be 

calculated following similar models to the scatter correction estimates.  The TEW 

scatter correction method measures the number of higher energy photons 

reaching the detector, and as such will include some septal penetration within its 

correction.   
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3.3.4 Collimator blurring  

The spatial resolution of a gamma camera image is dependent on the collimator 

properties, and the distance of the object from the collimator.  In section 2.3 

these depth dependent resolution effects were described and measured.  Since 

these effects are known and predictable, it is possible to incorporate a 

description of these blurring effects into the reconstruction program.   

In the software used in this work, the Gaussian curve is described by (Equation 

3-2) where σ is the standard deviation of the curve in direction x.   

 

Equation 3-2 

This blurring effect increases linearly with distance from the crystal surface (z) 

(Equation 3-3).   

 

Equation 3-3 

0 and Z are the Point spread functions at the collimator surface and at distance 

z from the collimator surface respectively.  scale describes the rate at which the 

blurring increases with distance, z.  Default values for these factors are 0 

=1.5mm, and scale =0.015.   

In practical terms, the blurring function is normally described at specific 

distances by the Full Width Half Maximum (FWHM), which is linearly related to σ 

(Equation 3-4).  
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Equation 3-4 

Thus, two or more FWHM measurements can be used to describe the blurring 

effect for the reconstruction program.   

The reconstruction program uses either distance from collimator or crystal 

surface – this has to match the radius of rotation (ROR) measurement given in 

the projection image parameter details, or entered manually during 

reconstruction.   

The FWHM data described in section 2.3 was scaled by 2.35 to convert to  and 

then fitted with a straight line using a least squares fit, to give values for the 

collimator constant and the scale (Table 3-1).  These numbers are all related - the 

offset for with and without collimator is linear, and the conversation from  to 

FWHM is just a scaling factor.   

Table 3-1 Resolution characteristics for reconstruction software 

  FWHM  

Measured from 

crystal 

VXGP 0.0441x+0.9612 0.0187x+0.4082 

LEHR 0.0407x+1.3196 0.0173x+0.5604 

Measured from 

collimator 

VXGP 0.0441x+3.5174 0.0187x+1.4937 

LEHR 0.0407+3.0709 0.0173x+1.3041 

The values for 0 and scale for these collimators are very similar to the 

suggested typical values given in the software manufacturer’s User Manual.   

With a depth dependent resolution model, in the absence of noise and with high 

spatial sampling rates, the resulting images should produce images with uniform 
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resolution.  It is also possible to use a fixed blurring function that is not depth 

dependent.  By using a fixed blurring function, this uniform resolution is not 

ensured.  At a practical level, when noise is included, and discrete sampling is 

used, this compromise may not be important.   

The inclusion of resolution modelling (either fixed or depth dependent), 

introduces a level of smoothing to the reconstructed images.  This smoothing 

causes the reconstructed image slice estimates to converge more slowly, but can 

potentially improve the resulting image quality.   

In both the fixed and depth dependent resolution recovery models, the forward 

projection step from activity distribution estimate to calculated projection 

involves a convolution with a Gaussian blurring profile.  Although a 1D Gaussian 

profile extends infinitely in each direction, for the blurring functions seen in 

medical imaging the bulk of the counts are seen in the first few pixels.  The 

contribution of counts from a central pixel to neighbouring pixels trails off over a 

few voxels and becomes small over a short distance.  It can therefore be 

proposed that including just the first few pixels of a blurring function may give 

similar results to a convolution with the full curve.  In the software used in this 

work, the width to which the blur is calculated is defined in terms of pixels in the 

X and Z-axis, with Z defining the number of transverse slices the blurring 

function extends over.   

3.3.5 Partial Volume Effect 

The Partial Volume Effect (PVE) is present in all discrete imaging modalities, but 

is particularly prominent when the resolution of the imaging system is of a 

similar magnitude to the object being imaged.  Since the imaging process 
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involves a certain level of blurring (the system resolution) the counts from a 

single point source will be spread out over a region.  Thus, a region of interest 

focused on the object will not include some of the counts originating from the 

object as they will have been imaged outside of the object.  This geometric effect 

is dependent on the resolution of the imaging system and the size of the object 

being imaged.  As the size of an object decreases, the apparent activity 

concentration will reduce.   

Since it is a predictable geometric effect, there are corrections that can be 

applied to image data.  Unfortunately, these corrections require an estimate of 

the object size.  Some work has been done using CT and MRI data to correct 

SPECT data, however there is an assumption that the MRI or CT volumes are the 

same as the receptor imaging studies.  In dopamine transporter imaging studies, 

CT and MR data is not generally available.  In cases of Parkinsonsonian 

syndromes, not all of the striatum will actually take up the tracer.  In such 

circumstances, a CT or MR could over estimate the size of the functioning 

volume, and hence under estimate the correction for some patients.   

PVE has been applied in some work to SPECT imaging data, where MRI scans 

were also available.  Soret et al. 84 found that not including PVE could lead to a 

bias in uptake ratios of up to 50%.  MRI based PVE was also used in a study 

comparing AD and DLB patients, along with the application of scatter and 

attenuation correction 101.  Due to the patient group used, perfect separation 

between the two groups was seen both with and without PVE.  A second set of 

data that had been simulated using MRI data did suggest that this form of PVE 

might be of use for diagnostic classification.  However, this modelling was based 
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on the various uptake levels in the simulated data being the same size and 

distribution as the MRI data that was used to correct it.    

A similar implementation of this form of PVE correction was used as part of the 

BasGan software102.  In this work, the patient data is automatically aligned to a 

template.  The PVE correction factor is calculated for this template and the 

applied to the patient data set.  Although such a technique has been shown to 

produce more accurate uptake values when used with phantom data, an 

improvement of clinical diagnostic power was not tested.   

The scale of the PV effect is dependent on size of object and relative count 

density in the two objects.  The relative density of counts will affect how many 

counts “bleed” across the boundary.  For high contrast data the “bleeding” will 

appear more severe, as less counts will be bleeding into the caudate region from 

the background.  However, this effect is a straightforward function of the relative 

ratios, and hence an uptake figure would be multiplied by some factor to give the 

true uptake.  This is just a linear transformation of the results – a universal 

scaling factor.   

For most forms of Parkinsonism, the disease progression shows both a reduction 

in the number of DAT sites as well as a reduction in the volume of brain in which 

these sites are prevalent – relating to the loss of neurons in the putamen prior to 

the caudate loss.  The partial volume effect will actually work to amplify these 

two effects - with a loss in size of active uptake volume resulting in an apparent 

loss of uptake counts.   



81 
 

3.4 Image quality metrics 

What makes a ‘good’ clinical image?  Which parameters should be optimised?  A 

large number of image quality metrics have been used for assessing the quality 

of medical images.  The choice of metric will determine the image characteristic 

that is optimised.  They range in specificity from absolute image qualities, such as 

measurements of pixels values and noise, through to applied measurements such 

as the ability of a particular image group to allow clinical disease differentiation.  

In much of the work in developing reconstruction algorithms, reconstructed 

slices are often assessed for noise, resolution and contrast.  A good algorithm is 

able to reproduce the contrast in the object, by improving resolution, but still 

controlling noise.  In phantom based studies the reconstructed slices can also be 

compared to the known activity distribution.  A number of intermediate end-

points are also commonly used, such as the striatal uptake measurements.  In the 

following descriptions, the image metrics are listed in order of specificity to the 

imaging task.   

3.4.1 Pixel by pixel similarity measurements 

When using phantom data, the exact activity distribution is known, and hence 

the reconstructed images can be compared directly with this distribution.  A 

common measure used in image optimisation is the Normalised Mean Square 

Error (NMSE) 103.  A number of definitions for this metric are used using different 

normalisation factors, but all take the same general form (Equation 3-5).   

 

Equation 3-5 
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The difference between the measured pixel values (Meas) and expected values 

(True) are squared and summed over the range of voxels, N.  The range of voxels 

for which this error is defined can affect this optimisation.  One choice of voxel 

range is to include all voxels within the image.  However, this may lead to the 

optimisation procedure being biased by voxels values outside the body.  A 

common choice is to use all voxels that fall within the body outline, although it 

would be possible to define a subgroup of voxels.  One such method uses just the 

pixels lying along a line profile through the image.  This will bias the optimisation 

towards the exact area contained within the line profile.  Such a bias may be 

desirable, or even be necessary, if the optimisation is to be moved away from 

unimportant features, but must of course be used carefully.   

When comparing reconstruction algorithms, the parameters that produce the 

minimum NMSE are looked for, so the differences between the normalisation 

factors used are unimportant.   

3.4.2 Noise levels 

Noise in reconstructed images has the effect of masking real changes in pixel 

count density.  In general, a lower noise level will mean improved image quality, 

but this cannot be used as a metric in isolation, since noise suppression 

techniques can affect image contrast.  In phantom studies, it is possible to define 

regions/volumes where the true activity concentration is uniform.  In such 

circumstances the coefficient of variation in counts for that region can be used as 

a measure of image noise (Equation 3-6), and will be directly related to the 

image count statistics and reconstruction performance.  For patient studies, this 
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measurement is confounded by variations in the true activity distribution, which 

will increase the measured count variation.   

 

Equation 3-6 

3.4.3 Region of interest measurements 

Moving to larger scales, a calculation in the same form as NMSE can be 

performed on the measured and expected values of groups of voxels, in Volumes 

of Interest (VOI) or, in 2D, regions of interest (ROI).   

This technique has been applied using a variable group sizes 104.  By changing the 

size of the VOI, the image optimisation process can be customised to the imaging 

classification problem being studied.  By definition, this approach involves 

averaging of voxel values, and therefore removes some dependency on noise 

levels within the image.   

The logical progression of this is to apply a VOI which exactly match phantom 

volumes and compare the reconstructed regional counts with known phantom 

regional activities.   

A simplified version of this is to look at the ratio of region count densities rather 

than the absolute values (Equation 3-7).  

 

Equation 3-7 

This comparison of target to background ratios with known target to background 

ratios removes absolute scaling effects and when expressed as a fraction is 

known as the recovery coefficient (Equation 3-8).   
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Equation 3-8 

The recovery coefficient is often used when describing the size dependency of 

partial volume effects in image reconstruction 72.   

These VOI based measurements have often been used in characterising image 

quality in neurotransmitter studies as the activity distributions often follow 

specific anatomical uptake patterns.   

These figures were used as a measure of test-retest variability in 123I-FP- -CIT 

imaging 40.  This paper quotes the variability for different uptake times (injection 

to scan) for 123I-IBZM imaging.  They also measured this variability as a function 

of reconstruction settings to suggest optimized model and parameters.   

3.4.4 Signal to Noise Ratio 

Since noise suppression methods often result in the reduction of image contrast, 

this trade-off is often measured directly as the signal to noise ratio.  The SNR will 

depend on regions of voxels used to define it.  The noise measurement can be 

problematic in clinical images as for a true measure of image noise an area of 

uniform uptake is needed.   

3.4.5 Visual interpretation, scoring and confidence 

In the vast majority of clinical imaging applications, the main image classification 

technique is a visual interpretation.  Human observers are naturally equipped to 

assess and grade clinical images on a range of parameters.  Visual scoring is 

generally performed in a qualitative way giving scores on an arbitrary scale (e.g. 

1-5) or relative in nature (i.e. selecting preferred option from a presented group 
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of images).  These are used either as an overall classification or for a set range of 

image quality parameters, such as noise and contrast, as well as overall indices 

such as image quality.  Further qualitative measures can be gained by recording 

the diagnostic confidence given for an image set.   

In practice such measures often show surprisingly good correlations with more 

quantitative measurements such as signal to noise ratios.   

3.4.6 Correlation of uptake measures with clinical disease 

progression and disease group 

Moving to more task specific measures, correlations between these intermediate 

measurements (e.g. visual scoring, or uptake ratios) and disease progression or 

disease group are sought.  Various clinical disease indices are available which 

can act as surrogates for disease progression, such as the DSM scoring 105.  An 

alternative is to use long-term follow up of patients, and retrospectively analyse 

the images once the clinical diagnosis is defined.  Better correlations between 

these image metrics and disease measurements would imply that the image 

quality is improved.   

The logical conclusion to these progressions is that the images that allow the 

best differentiation between disease groups are the ‘best’ images.  That is, they 

are most fit for purpose.  However, since the optimisation of the images requires 

some diagnostic measurement (e.g. VOI ratios) then it is possible that there will 

be a different optimisation for each particular diagnostic image analysis 

technique.  Image analysis and classification techniques are discussed and 

investigated in chapters 5 and 6.   
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3.5 The choice of images for clinical visual reporting 

All the patient data used in this project was based on clinical work that was 

analysed retrospectively.  It needed to be reported using visual assessment as 

part of the normal clinical process.  To select the preferred reconstructions for 

visual reporting three consultant radiologists with specialist nuclear medicine 

training were asked to score a series of reconstructions.   

3.5.1 The Choice of images for clinical visual reporting- Methods 

Each radiologist was investigated separately with no knowledge of the others 

preferences or results.  The images were presented in groups of three 

representing a broad range of noise/contrast compromises.  The readers were 

asked to select their favourite or joint favourite images, using their own criteria 

for optimum image quality for reporting.  They were given no guidance on what 

they should be optimizing.  Based on their choice a further three images were 

presented covering the range specified.  In this way through a succession of 

levels of choices, their preferred image choice was discovered.   

This sequence was repeated for three patients chosen to be representative of the 

image quality seen clinically.   

Using this process optimum OSEM settings were identified using no attenuation 

or scatter corrections.  The process was repeated for FBP images.  Their 

preferred FBP and OSEM images were then compared. 

Attenuation corrected images were then produced for this preferred setting and 

compared with the non-attenuation corrected images.   
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The process was repeated after the changes were made to the acquisition 

parameters, as described in chapter 2.  With this second set of data a further test 

was applied to assess scatter correction.   

3.5.2 The choice of images for clinical visual reporting - results 

The preferred OSEM settings for are to use between 8-12 iterations (with 8 

subsets), with little preference between them.  A post reconstruction filter with a 

cut-off frequency in the range 1.2-1.5 cycles/cm was judged to be the visually 

preferred setting.  FBP settings were chosen to include a pre reconstruction filter 

of 1.3 cycles/cm.   

The OSEM images were preferred visually to the FBP images.  No preferences 

between with or without attenuation correction.  The scatter correction images 

were deemed too noisy for visual reporting.   

Following these preferences the reconstruction parameters for visual reporting 

involve the iterative settings without scatter correction.  The data for clinical 

reporting was reconstructed using 12 iterations of 8 subsets, and a post-

reconstruction smoothing filter Butterworth order10, cut-off 1.4 cycles/cm.   

3.6 Practical investigations of the properties of reconstruction 

models using phantom data 

This chapter focuses on two groups of experiments; the first uses images of 

phantoms to show the differences between reconstruction models settings and 

corrections techniques.  The second group of experiments investigates the 

application of correction and compensation methods to these reconstructions.   
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A number of acquisitions were performed using an anthropomorphic phantom 

under a range of conditions and settings, chosen to mimic the range of conditions 

seen in clinical imaging.  A large number of reconstructions were then performed 

on this data using different settings, processing options and correction 

techniques.  The resulting reconstructed data were analysed using the range of 

image quality metrics described in section 3.4.  

3.6.1 Methods – Acquisition of phantom data 

An anthropomorphic brain phantom (ECT Striatal phantom, RSD-Alderson, CA, 

USA) containing five fillable volumes (left/right caudate and putamen and brain 

background) was used to simulate clinical dopamine transporter imaging.  All 

data were acquired using the VXGP collimator.  A series of acquisitions at varying 

Radius of Rotation (ROR) were acquired using circular orbits of 13, 14, 16, 20 

and 25cm.  Each series was repeated with different activity concentrations.  The 

time per acquisition was adjusted to achieve total counts close to 2million (Table 

3-2).  

Table 3-2 Summary of phantom filling parameters and acquisition times for 

anthropomorphic phantom investigations 

Phantom 
run 

number 

Ratio 
(target: 

background) 

Activity 
concentrations 

(first 
acquisition) 

(kBq/ml) 

Time per 
azimuth 

Radius of 
rotation 

Total 
counts 

acquired 
(first 

acquisition) 

Run-1 6.9:1 58.6 : 8.5 40s 13,14,16,20 2.25x106 

Run-2 3.91:1 103 : 34.4 15s 13,14,16,20,25 2.47x106 

Run-3 2.6:1 93.4 : 35.9 10s 13,14,16,20,25 2.17x106 

Run-4 1.84:1 87.2 : 47.4 7s 13,14,16,20,25 2.00x106 

Run-5 1.28:1 82.5 : 64.5 5s 13,14,16,20,25 1.91x106 
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In total, the phantom was filled to five clinically appropriate contrasts, each 

scanned at five ROR distances using the clinical acquisition parameters as 

defined in chapter 2 (except the time per projection and ROR).  Phantom 

parameters are detailed in Table 3-2.   

After scanning, 1ml samples were taken from the phantom and counted in a well 

type gamma counter (Wizard 1470 automatic gamma counter, Wallac Oy, Turku 

Finland).  The well counter was calibrated, and normalised using 123I emitters.  

The count results were corrected for dead time using the counter inbuilt 

correction models and manually adjusted for background radiation.  Results of 

the gamma counter measurements were used as the true activity ratios within 

the phantom as shown in Table 3-2. 

At a later date, the phantom was imaging using a CT scanner (Biograph64, 

Siemens Knoxville USA).  For this acquisition the four striatal volumes were left 

empty and the brain background filled with water.  CT data were reconstructed 

with a Bone kernel using a 512*512 matrix and a slice thickness matching the 

SPECT acquisition.   

After reconstruction, the CT data of the phantom was spatially normalised to 

each of the five SPECT reconstruction data sets manually using a rigid body 

transform.   

3.6.2 Methods – Reconstruction parameters investigated 

3.6.2.1 Filtered Back Projection 

The simplest algorithm in clinical use is Filtered Back Projection (FBP), for which 

the algorithms only inherent free parameter is the choice of filter.  Some 

correction factors can also be applied before or after reconstruction but they are 
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separate from the actual reconstruction.  As such, it should be possible to assess 

the majority of the possible range of images that can be produced by FBP by 

reconstructing with a selection of filters.  Published work generally concludes 

that iterative models perform better than FBP once the correct parameters have 

been chosen.  Since the range of free parameters available in iterative 

reconstructions far outnumber those of FBP, the simplest approach will be to 

find an iterative reconstruction that is better than the best FBP image.  If this can 

be found then FBP data need not be considered further.  However, what 

constitutes the best image will depend on the intended use of the image.  For 

example, Figure 3-5 shows that by varying the filter used the reconstructed slices 

can vary from very smooth to very sharp, with corresponding changes in noise, 

contrast and fine detail.  Hence the approach taken here is to define the 

properties of the FBP reconstructions using the methods described in section 

3.6.3 and use them as baseline figures with which to compare the iterative 

models.   

Filtered Back Projection reconstructions were performed using commercial 

reconstruction software (FBP software, version 3.7, Hermes medical, Stockholm, 

Sweden).   

Projection data was convolved with 2D Butterworth smoothing filter, before 

being reconstructed with FBP and a ramp filter.  The Butterworth filter cut-off 

(fco) was varied from 0.5 to 2.0 cycles/cm, with a fixed order of 10.  Figure 3-5 

shows a central transverse slice of the reconstructed data from a phantom 

acquisition with a range of filters.   
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Figure 3-5 A central slice from a number of reconstructions using FBP and a range of 

Butterworth filters of order 10.  From left to right, fco =0.5, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 

2.0 cycles /cm.  Data from Phantom run number 2, at 13cm ROR. 

This range was chosen to extend beyond the range usually used; going from a 

very smooth filter, to one that approaches the Nyquist frequency of the data.  

Image reconstruction for visual reporting of ioflupane SPECT imaging is 

generally performed with fco = 1.2-1.5cycles/cm.  The Nyquist frequency for the 

projection pixel size (0.21cm) is 2.38cycle/cm.   

The manufacturer of ioflupane suggests a filter of 0.6 of the Nyquist frequency 

should be applied, i.e. 1.43 cycles/cm.  However, these suggestions are coupled 

with projection data imaged with pixel size 0.42 cm as opposed to 0.21cm used 

here.   

This set of FBP reconstructions was then used as baselines for comparing the 

various implementations of the OSEM algorithm under different acquisition 

parameters.  

3.6.2.2 OSEM reconstructions – Resolution modelling 

Acquisition data were reconstructed using an implementation of the OSEM 

algorithm (HOSEM, version 3.7, Hermes Medical, Stockholm, Sweden) with 

different resolution recovery techniques.  Baseline results are produced using 

OSEM with no resolution modelling.  A second series of iterative reconstructions 

were produced using a fixed blurring function (PSF= 4.0mm, FWHM = 9.4mm).  
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The third series used a depth dependent blurring function based on resolution 

measurements in section 2.3.    

3.6.2.3 Extent of resolution model in OSEM reconstruction 

The default extent of the resolution model employed for these reconstructions 

was two pixels in x-plane and one in z plane.  For one acquisition data set (run1, 

13cm ROR) the reconstructions were repeated using a range of x and z blurring 

sizes.  Due to differences in the levels of smoothing inherent in these 

reconstructions, the number of equivalent iterations was extended up to 750 

equivalent iterations.   

3.6.3 Methods - Image quality measurements 

3.6.3.1 Specific Uptake Ratio and Noise measurement 

Volumes of interest (VOI) were drawn on the spatially aligned CT data to cover 

the known structures in the phantom.  A VOI was also placed in the posterior 

section of the brain.  These volumes were then applied to the various SPECT 

data.   

Count densities in the target (Strcnts) and background (Bkdcnts) VOIs were used to 

define the Striatal Uptake Ratios (SUR) for the various reconstruction 

parameters using Equation 3-9.   

 

Equation 3-9 

The noise in the image was calculated as the standard deviation of pixel values in 

the background region divided by the mean average counts in the same region.   
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3.6.3.2 Calculating NMSE, Noise and contrast 

To calculate the NMSE of the reconstructed image, the actual activity distribution 

must be known on a pixel-by-pixel basis.  To calculate this distribution the CT 

images of the phantom were used.  

The realigned CT data of the phantom was imported into the MRIcro program 106.  

Automatic VOI drawing tools were used to define the extent of the four striatal 

volumes and the whole brain background.  The whole brain VOI includes the 

regions defined in the striatal volumes.  These VOIs were exported as binary 

image data sets, where voxel values equal to one inside the volume and zero 

elsewhere.  Although the putamen and caudate compartments within the 

phantom are physically separate objects within the phantom, they touch on each 

side.  The walls of these compartments are made of very thin plastic.  When the 

automatic growing tools are used the Caudate and Putamen regions on each side 

are formed as single volumes.  The phantom scans had been performed using 

equal activity concentrations in the four striatal chambers, so the striatal VOIs 

were combined to give one single VOI.  The striatal VOI was subtracted from the 

whole brain VOI to produce a mask that represents the background activity.   

The background mask was scaled to the known activity concentration in the 

phantom and multiplied by a sensitivity factor.  Likewise, the striatal VOI was 

also scaled up, but with an addition scaling factor of the known target to 

background ratio.  The striatal and background activity distributions were 

summed to give the known activity distribution.  Figure 3-6 shows a transverse 

slice through the calculated activity distribution and a corresponding slice from 

one of the test reconstructions.   
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For some phantom acquisitions, the phantom had to be removed and re-fitted 

between scans.  For this data the CT images were re-aligned to the new position 

following the method above.   

All reconstructed phantom data were exported in native format (interfile) 

converted using ImageJ 107 into analyse format and then imported into Matlab.  

The following processing steps were then performed using Matlab functions.   

For each test reconstruction the whole brain VOI was used as a mask to set all 

voxels outside the brain equal to zero.  The known activity distribution and the 

test reconstruction were used to calculate NMSE (as per Equation 3-5).   

A measure of noise was recorded using the brain background VOI following 

Equation 3-6.  The striatal uptake ratio was also measured using the average 

count densities in the striatal and background VOIs (Equation 3-7).   

 

Figure 3-6 Transverse slice through the ideal count distribution (left) and an example 

reconstruction (right) 
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3.6.3.3 Calculating Profile-NMSE, noise and contrast 

A line profile was drawn across the phantom data on a central transverse slice, 

from left to right crossing both putamen tails.  This line profile was applied to 

both the reconstructed SPECT data and the CT data.  Figure 3-7 shows this 

profile drawn across a transverse slice.  These profiles were exported to a 

spreadsheet program for further analysis (Excel 2003, Microsoft).  Changes in 

the CT number (measured in Hounsfield Units) across the profile allowed 

delineation of the separate brain volumes.  The CT numbers were then 

substituted for the expected count value for those regions (defined as per section 

3.6.3.2) to give the expected line profile counts.  The expected and measured line 

profiles were used as inputs for the NMSE measurement (Equation 3-4).   

As the line profile covered both striatum and background regions another 

measure of contrast could be made, using the region boundaries given by the CT 

line profile.   

In this phantom study the central region of the brain between the two putamen 

tails should give a uniform count level.  In practice, the variation in counts in this 

region will be a combination of noise and counts blurring in from the two 

putamen regions on either side.  The coefficient of variation in this region was 

recorded as further image quality metric.   
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Figure 3-7 Two line profiles drawn across a transverse slice with corresponding profile 

chart displaying counts per pixel as a function of pixel number 

3.7 Results:  Phantom experiments with FBP 

3.7.1 Contrast and noise - results 

The first set of results is from the filtered back projection data.  The contrast and 

noise were measured using method described in section 3.6.3.1 using VOIs 

defined on the CT image and transferred to the SPECT data.   

Figure 3-8 shows the contrast measured as a function of fco of the filter used in 

the reconstruction.  The four contrast curves relate to the first four of the 

phantom acquisition runs, all acquired at 14cm Radius of rotation.  For details of 

phantom acquisitions see section 3.6.1.  The data from phantom run five could 

not be reliably aligned with the CT template and was therefore left out of this 

analysis.  No corrections for attenuation or scatter were used.   
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Figure 3-8 Contrast as a function of the cut-off frequency for FBP reconstructed phantom 

data 

The general form of the curves seen in Figure 3-8 is an increase in contrast as fco 

is increased, before levelling off to a plateau.  The same data was rescaled as a 

fraction of the known contrast in the phantom.  This is known as the recovery 

coefficient.  The recovery coefficient is shown as a function of fco in Figure 3-9.  In 

these recovery coefficient graphs, the increase in recovery coefficient with fco is 

more clearly shown for the lower contrast acquisitions.  The highest recovery 

coefficient for all but one of the phantom runs is seen at the highest frequency 

cut-off.  The maximum recovery coefficient for each run, averaged across the four 

runs is 0.58.   

Using the coefficient of variation across the different phantom runs, the recovery 

coefficients are most similar at high frequency cut-offs.   
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Figure 3-9 Recovery coefficient as a function of cut-off frequency.  The variation between 

recovery coefficients is shown on the secondary axis 

Figure 3-10 shows the noise levels recorded in the uniform background region.  

The reconstructions shown are same as those used to create Figure 3-8 and 

Figure 3-9.   

 

Figure 3-10 Noise in the background uniform section of the phantom, as a function of the 

filter cut-off frequency 

The noise- to cut-off relationship is close to linear for the range 0.8 cycles/cm up 

to the maximum frequency.  At low cut-off frequencies (fco <0.8cycls/cm) the 
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noise levels show a weak negative relationship with the cut-off frequency.  Very 

similar noise levels are seen across the different phantom acquisitions.   

The contrast and noise properties are combined in Figure 3-11.  Figure 3-12 

shows the same data but with the contrast rescaled to give recovery coefficient.   

 

Figure 3-11 Contrast as a function of noise for FBP reconstructions 

 

Figure 3-12 Recovery coefficient as a function of noise 
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The same data expressed as Signal-Noise Ratio (SNR) values as a function of fco is 

shown in Figure 3-13.  The peak in SNR relates to the range fco = 0.7-0.8 

cycles/cm.  This frequency is the point of minimum noise in the noise-frequency 

graphs.   

 

Figure 3-13 Signal to noise ratio as a function of cut-off frequency for FBP reconstructed 

data 

3.7.2 Contrast and noise - discussion 

The contrast and noise results from the FBP reconstruction show responses in 

fitting with a visual description of the images.  With reference to the images 

shown in Figure 3-5 and Figure 3-14, the low frequency cut-off is seen to be 

smoothing out some of the detail of the size and shape of the striatal volumes.  

Increasing frequency cut-off allows finer details to be included in the 

reconstruction.  This is seen in the results (Figure 3-8 and Figure 3-9) as a sharp 
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rise in contrast at low cut-off frequencies.  A difference between the visual 

assessment and the VOI contrast measurement is at which point the contrast is 

fully recovered.  In the contrast curves (Figure 3-8 and Figure 3-9) most of the 

contrast has been recovered once the filter is above 1.2 cycles/cm.  A visual 

assessment of the images shows that raising this filter to over 1.6 cycles/cm 

results in better delineation between the caudate and putamen.  This is a result 

of the relatively large VOI used to define the contrast.   

  

Figure 3-14 A central transverse slice reconstruction using FBP and a range of frequency 

cut-offs (from left to right, 0.5, 0.8, 1.2, 1.6 and 2.0 cycles /cm).   

The recovery coefficient is a function of the size and shape of the object as well as 

the resolution of the imaging system.  Since in these tests the size and shape of 

the object are fixed, the point at which the variation in recovery coefficient is 

minimal may be of importance.  This minimum appears at high cut-off 

frequencies.  There is no dependency in these results on the actual contrast seen 

in the phantom.  This is perhaps surprising, as PVE would tend to affect low 

contrast data less than high contrast data.  It is postulated that the differences 

seen in these maximum contrasts is due to the differences in positioning of the 

VOIs between each set of reconstructions.   

The trends in the background noise are interesting as they appear to show a 

drop in noise over these same low frequencies – examining the transverse 

images (left most slice in Figure 3-14) it can be seen that the higher count 
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variation in the 0.5cycles/cm image is not noise but some form of structured 

pattern.  Since the activity concentration is uniform this pattern must be some 

form of interference pattern.   

3.7.3 NMSE - results 

A series of NMSE calculations were performed on the data from the filtered back 

projection reconstructions following the method described in section 3.6.3.2.  

The use of NMSE as an image quality metric relies on the definition of the 

expected pixel counts.  The expected counts were calculated using the known 

activity concentrations and sensitivity of the scanner.  A large discrepancy was 

found between the expected counts and measured counts for all reconstructions 

using FBP.  For example, using phantom run number 2 the background counts 

should average 28.6 counts/voxel.  For the range of filtered back projection 

reconstructions (without attenuation or scatter correction) the average counts in 

the background region covers the range 8.66 to 8.91 counts/voxel depending on 

filter.  When attenuation and scatter correction are applied this range increases 

to between 14.07 to 14.15 counts per voxel.   

It has been reported that different reconstruction models can give different 

scaling factors for the image data 108,109.  The absolute scaling of these images 

cannot therefore be used on its own.  The relatively small range of voxel 

intensities seen in the background regions does suggest that some universal 

scaling factor may be being included in the reconstruction algorithm.   

The NMSE analysis was then performed using a base count concentration equal 

to the background count concentration.  Figure 3-15 shows the NMSE score, 

Signal to Noise Ratio (SNR) and noise for the FBP reconstruction data.   
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Figure 3-15 NMSE, SNR and Noise as a function of filter cut-off frequency for FBP 

reconstructed data 

In these calculations the noise and SNR levels are measured using the whole 

brain volume as the background region.  The noise levels are at a minimum at a 

cut-off frequency of 0.8 cycles/cm.  The minimum NMSE score occurs at 1.1-1.2 

cycles/cm and the maximum SNR occurs between 1.2 and 1.4 cycles/cm.   

3.7.4 NMSE - discussion 

The use of a scaling factor with the NMSE reduces confidence in its use as an 

absolute comparison tool.  By adjusting the scaling factor the optimum 

reconstruction parameters will change.  A second problem can occur with 

application of the NMSE score to the phantom data described here.  The NMSE 

score is similar to standard deviation, but it is the variation from an expected 

value, rather than mean value.  Since the vast majority of voxels in this study are 
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uniform brain background areas (97.7% of active volume), the NMSE score is 

heavily based on noise in background.  This can be seen in Figure 3-15 where the 

curves for NMSE and background noise are highly correlated.  The background in 

the phantom is a uniform volume, so a reconstruction method that optimises this 

feature (i.e. a uniform spread of pixel intensities) may not actually be the most 

appropriate.   

3.7.5 Line profile NMSE  - results 

A line profile was drawn across a series of FBP reconstructions as described in 

section 3.6.3.3.  To overcome the problems with the scaling factors encountered 

in the whole brain NMSE calculations, the expected background count was set to 

match the average background pixel count.   

The line profiles from the reconstruction using Butterworth filters with fco = 0.5 

to 2.0 cycles/cm and order 10, are shown in Figure 3-16.  The expected profile, 

based on the CT data and scaled to average background count, is shown as the 

solid black line.   

As the filter cut-off frequency is increased the counts in the centre part of the 

profile become smaller.  At the same time, the two high count regions increase.  

The positions of the two peaks are also seen to widen slightly with increasing 

cut-off frequency.  The profile for the 2.0 cycles/cm reconstruction shows large 

fluctuations in the central part of the image.  Large fluctuations are also seen 

outside of the brain volume.   
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Figure 3-16 Line profiles of FBP reconstructed data using a range of filter cut-off 

frequencies. 

These line profiles were used to define NMSE, contrast and noise as described in 

section 3.6.3.3.  The noise was measured as the coefficient of variation for the 

central section of the image between the two peaks.   
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Figure 3-17 NMSE calculated for the line profiles as a function of the cut-off frequency 

Figure 3-17 shows the NMSE score as a function of the cut-off frequency for the 

two line profiles.  The NMSE score for the line profile through the putamen 

region shows a sharp drop for filters from 0.5 to 1.0 cycle/cm.  The minimum is 

reached for a filter with fco =1.6 cycles/cm, but it is a board minimum.  The NMSE 

for the profile drawn across the cerebral region shows an increase between 1.2 

and 1.6 cycles/cm.   
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Figure 3-18 Line profile metrics as a function of reconstruction filter 

Figure 3-18 shows the Noise, Signal, SNR and NMSE scores as a function of the 

reconstruction filter.  The contrast is seen as a rapidly rising curve up to 

1cycle/cm, after which it flattens out.  The noise initially decreases as the image 

sharpens – this relates to the steepening of the boundary between the putamen 

and background regions.  The NMSE score is the same data as depicted in Figure 

3-17.   

3.7.6 Line profile NMSE - discussion 

The progression of line profile curves shown in Figure 3-16 shows the two 

related effects of increasing reconstruction filter cut-off frequency.  The low 

frequency reconstructions show smooth transitions from putamen to 

background, with smooth near-uniform background regions.  The curves 

showing the higher frequency data show a much-improved contrast between the 
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putamen and background regions at the expense of increased noise.  The 

expected background region counts were taken from the average counts in this 

region, so the noise measurement is simply a measure of variation from this 

mean.  

Comparing the trends in these figures with those from the whole brain NMSE 

results, similar trends are seen.  The SNR and noise measurements show larger 

variations in the line profile data than in the whole brain data, most likely due to 

the reduced number of voxel samples being used to create the figure, and the 

more complicated interplay between the sharp boundaries and the noise levels.  

The whole brain data on the other hand is dominated by uniform brain 

background noise, with only a small component coming from the striatum-

background boundary regions.  The minimum NMSE score is found at slightly 

higher cut-off frequencies in the line profile data than in the whole brain data. 

The NMSE score for entire image combines the information from the two line 

profiles with many other profiles of similar form.  However, the whole brain 

NMSE behaviour will be heavily weighted towards the cerebellum line.   

3.7.7 Varying Radius of Acquisition - results 

The contrast results were compared for a single phantom run, repeated at 

different acquisition radii of rotation.  The results are shown in Figure 3-19.  
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Figure 3-19 FBP contrast as a function of acquisition radius of rotation 

The graph shows that as the radius of rotation is increased, the image contrast 

goes down.   

3.7.8 Varying Radius of Acquisition - discussion 

The radius of rotation seen clinically is typically 13-15cm.  For patients with 

mobility/flexibility issues this must sometimes be increased to 16 or 17cm.  The 

results show that a similar contrast is seen for the 13-16cm acquisitions.  

However, when the ROR is increased to 20cm or greater then there is a 

significant loss in contrast (30% drop for the fco =2.0cycle/cm).   
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Looking at the scatter free line source resolution measurements described in 

section 2.3 for the collimator source distances of 13,16 and 20cm, the planar 

resolution (as FWHM) is 9.25mm, 10.57mm and 12.34mm respectively.  This 

equates to an increase in blurring width of 14% and 33% when moving from 13 

cm up to 16cm and 20cm.  When the ROR is extended to 25cm, the blurring 

increase is over 57%.   

3.7.9 Conclusions on Filtered back projection images 

Although the results of the various measurements performed on the filtered back 

projection images show a wide range of results in terms of the exact filter that is 

ideal for each test, a broad consensus between these measurements is seen and 

so some conclusions can be drawn.   

The sharpest images, those with the highest cut-off frequencies for the filter, give 

the highest contrast.  These images show the smallest differences in recovery 

coefficient between acquisitions.  These two properties would suggest that it 

could be the best for VOI based analysis programs.  However, these images show 

very high levels of noise, and are visually very hard to interpret.  Automatic 

image registration does not work very well with excessively noisy images, so 

alignment of VOIs may be problematic unless a surrogate image is used for the 

alignment.   

At the other extreme, the very smooth images show low levels of noise, but lack 

the detail in the striatal activity.   

The images preferred for visual reporting are near the centre of the filter ranges 

at 1.2-1.3 cycles /cm.  These images are slightly sharper than those with the 
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highest SNR as defined using the larger VOIs.  They are very close to those with 

the highest SNR as measured using the line profiles.   

Comparing these results with settings used in published data, a wide range of 

settings have been used.  To date no work has been published optimising the 

settings for FBP in DAT imaging, however a number of settings have been used. 

In their work showing the usefulness of a large VOI based analysis package, 

Tossici-bolt et al. 110 used a relatively smooth filter (0.6 cycle/cm order 10).  The 

argument for their specific analysis package was to create a resolution 

independent system, which incorporates large VOIs.  A similar filter was used by 

Badiavas et al. 77 for their implementation of the same uptake measurement.  

Work utilising more tightly defined VOIs have used a range of filters (0.5 

cycles/cm up to 2.2 cycles/cm) 49,111-115.  The use of smoother filters would allow 

visual reporting, but at the expense of some contrast.  Dickson et al. 115 noted that 

although they had suggested the use of very sharply reconstructed images, that 

smoothed options might be required for visual reporting.  A note of caution 

should be taken when comparing the filter settings from different published data 

due to the variation in the definition of the filter (see section 3.1).   

3.8 Results:  Phantom experiments with OSEM 

3.8.1 Contrast and noise for three iterative reconstruction 

models 

The contrast and noise were measured using method described in section 3.6.3.1 

using VOIs defined on the CT image and transferred to the SPECT data as per the 

FBP data in section 3.7.1.  No attenuation or scatter compensation techniques 
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were included in these reconstructions and no post reconstruction smoothing 

was applied.   

 

Figure 3-20 Contrast as a function of image refreshes for different OSEM based 

reconstructions 

Figure 3-20 shows the results from phantom Run 2, using a radius of rotation of 

14cm.  The Gaussian blurring function is extended to +/- 2 pixels in the x-axis 

and +/-1 pixel in the Z-axis.  The FBP data is also shown for comparison, as a 

function of cut-off frequency.  The cut-off frequency (fco) was scaled to allow 

visualisation on the same chart by multiplying by 100.   

Figure 3-20 shows the data from three iterative models, two of which include 

resolution recovery.  The Depth Dependent Resolution Recovery (DDRR-OSEM) 

and Fixed Resolution Recovery (FRR-OSEM) give almost identical results - as 

shown by the overlapping data on the graph.  The basic OSEM model shows 

faster convergence, but lower contrast.  The inherent filtering in the resolution 

recovery based models means they converge more slowly, but result in higher 

image contrast.  This trend is seen in all datasets: the resolution recovery models 
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give increased contrast when compared to OSEM.  The FBP reconstructions are 

seen to give higher contrast in these measurements than those achievable by 

OSEM.   

The noise in this same set of reconstructions was measured using the same 

region as per section 3.7.1.  This noise data was combined with the contrast data 

shown in Figure 3-20 to give Figure 3-21.  The two curves for iterative 

reconstruction are produced by varying the number of iterations/image 

refreshes in the reconstruction.  This variable produces changes in both the noise 

and contrast in the images.   

 

Figure 3-21 Signal as a function of Noise for different Iterative reconstructions 

These signal-noise graphs show that at any specific noise level, the DDRR-OSEM 

will give better contrast than OSEM.  The filtering inherent in the DDRR-OSEM 

and FRR-OSEM mean the noise levels are controlled better.   

Some researchers (e.g. Hutton et al. 116) have suggested that a post-

reconstruction filter can improve noise characteristics.  Due to the inherent 
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smoothing in the resolution recovery models, their improvement with post 

filtering was reported to be smaller.   

 

Figure 3-22 Contrast as a function of noise for different OSEM based reconstructions with 

post-reconstruction filter 

Figure 3-22 shows the effect on noise and contrast when a post-reconstruction 

smoothing filter is applied to the data in Figure 3-21.  Two representative 

reconstructions are shown with post-reconstruction smoothing.  The data from 

an OSEM reconstruction with 20 image refreshes (5 iterations of 4 subsets) was 

smoothed using a range of Butterworth filters.  The same series of Butterworth 

filters was applied to the Depth-Dependent resolution recovery image 

reconstructed using 12 iterations of 8 subsets (96 image refreshes).   

A dramatic reduction in noise is seen in the OSEM data, with contrast loss only 

when very smooth Butterworth filters are applied.  The reduction in noise for the 

DD-RR OSEM data is less pronounced, but higher contrast is still seen for almost 

all noise levels.   
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The shoulder in these graphs, where the smoother filter starts to have a dramatic 

effect on the contrast is seen at filters around 1.4 cycles/cm.   

The ratio of signal to noise (SNR) can also be used to describe this trade off as is 

seen in Figure 3-23.   

 

Figure 3-23 SNR as a function of image refreshes 

The curves for SNR for OSEM, FRR-OSEM and DDRR-OSEM show peaks at 4 and 

16 refreshes.  The SNR curves from FRR-OSEM and DDRR-OSEM are 

superimposed.   

Different levels of post-reconstruction filtering are shown as the vertical lines 

coming up from the SNR curves.  Filtering was applied to specific reconstruction 

data sets:  

 The data that gave Peak SNR in non-filtered data,  

 At a level where 95% of maximum contrast is seen, i.e. at 16 or 20 image 

refreshes for OSEM, and 96 image refreshes for DDRR-OSEM.  
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The peak SNR occurs when relatively smooth post-reconstruction filters are 

applied.  For both sets of OSEM models the peak SNR is at post reconstruction 

filters of 0.8 cycles/cm.   

3.8.2 Contrast and noise for three iterative reconstruction 

models – discussion 

The contrast and noise results for the iterative reconstruction processes show 

complicated dependence on the number of image refreshes and the use of post 

reconstruction smoothing.   

When resolution modelling is included, the images will converge at a slower rate 

than for the basic OSEM reconstruction.  However, if sufficient image refreshes 

are performed, and the post-reconstruction filter is chosen appropriately, the 

DDRR-OSEM can always produce an image data that is either higher contrast for 

the same noise, or lower noise for the same contrast.   

No discernable differences are seen between DDRR and FRR.  The depth-

dependent model calculates the blurring function for the distance between the 

object and the detector.  However, for the contrast measurements here, the range 

of depths of interest is very small, only 6.5 to 10.5 cm.  At these distances the 

calculated blurring function will give a FWHM of 7 to 9.25 mm, which is very 

similar to the fixed filter model of 9mm.   

In two papers investigating the use of OSEM models in DAT SPECT imaging, 

115,117 a depth independent PSF was used with a value of 4.0mm (equating to 

9.4mm FWHM).  This figure was adopted as a compromise setting for data from a 

number of different cameras and collimator types.   
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A post-reconstruction smoothing filter can improve the noise properties of OSEM 

data.  A filter can reduce the noise levels in the image, but if the filter is too 

smooth, the contrast will decrease.  For a range of filters, only very small 

decreases in contrast are seen.  For both OSEM and the resolution recovery 

OSEM models filter cut-off frequencies below 1.4 cycles/cm have an adverse 

effect on image contrast.  However, the peak SNR as measured using this system 

occurs at much smoother filters of 0.8 cycles/cm.   

In a very recent work, Warwick et al. 118 compared resolution recovery with fixed 

or depth dependent resolution model to reconstructions without resolution 

modelling.  They found that post reconstruction smoothing was required when 

no resolution recovery was included.  They also found a small improvement with 

depth dependent resolution model, over fixed blurring.   

3.8.3 Direct comparison of FBP and DDRR-OSEM 

This section compares SUV uptake data for the FBP and DDRR-OSEM 

reconstructions.  Using a specific ROR (13cm), and the four different phantom 

contrasts, data was reconstructed using FBP and DDRR-OSEM using a range of 

filters and iteration numbers respectively.  No post-reconstruction filtering was 

used in these measurements.   
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Figure 3-24 contrast for different phantom runs using FBP and OSEM 

Filter cut-off (in FBP) and number of iterations (in OSEM) affect the contrast and 

noise levels of the resulting images, however they are of course completely 

separate variables so they should not be compared directly.  That is, the contrast 

for a particular filter should not be compared with the contrast from that 

number of iterations.  However, with this proviso, the data from the two groups 

of reconstruction can be shown on the same graph.  The x-axis shows both filter 

cut-off frequency (cycles/cm) and iterations (measured in hundreds of 

iterations).   

This data shows clear dependencies on number of iterations, and filter levels for 

the two groups of reconstructions.   
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When the data is normalised to the actual phantom concentration ratios, i.e. 

measured as recovery coefficients, the variation for low contrast data is more 

clearly seen (Figure 3-25).   

 

Figure 3-25 recovery coefficient as a function of image refreshes or cut-off frequency 

This chart shows mainly smooth variation of contrast with number of iterations 

used.  Only very small changes in image contrast are seen at over 100 iterations.   

The FBP shows abrupt changes in measured contrast for small changes in filter 

settings.  However, these variations are only seen when very smooth filters are 

used.   

The peak contrasts are seen when large numbers of iterations are used, or very 

sharp filters are applied.  For both reconstruction types there is a marked 

dependency on phantom contrast.   



120 
 

Using just the highest contrast data available, the DDRR-OSEM results are on 

average marginally lower than the FBP data.  This result is in fitting with the 

results published by Koch et al. 117.  They used similar software, but fixed the 

iterative reconstruction to 3 iterations of 8 subsets and had a fixed resolution 

function of 4mm.  The extent of the model was not quoted.  Their FBP 

reconstruction used only a ramp filter coupled with a specific post-

reconstruction filter.  They measured an average 5% lower binding ratio with 

OSEM compared to FBP.   

3.8.4 Size of Blurring Function 

In section 3.8.2 the speed at which the contrast in the images converges on the 

final value was found to be dependent on the use of resolution recovery.  The 

extent of this resolution was investigated next.   

The extent of the resolution model is measured in the number of voxels in the x 

and z directions (respectively, across the transverse slice and between slices).   

The software manual suggests a starting point of only a small number of pixels 

(x1,z0,) but does not suggest or put any limits on how far this can be extended.  

Routine clinical practice has been to employ 2x-z1.   

The influence of these settings was investigated using data from Acquisition 1, at 

13cm radius of rotation, with a range of iterations and extent of resolution model 

(x’s and z’s).  The contrast was measured using an ROI based on CT data as per 

section 3.6.3.1.  Results are shown in Figure 3-26.   
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Figure 3-26 Contrast as a function of image refreshes for varying extent of resolution 

model 

The results show that as the Gaussian profile is modelled to a larger size, the 

slower the reconstruction.  The x3,z2 data converges at over 700 image 

refreshes.  An increase in the x-width appears to increase the contrast, whereas 

for this measure of contrast at least, the widening of the z-model slows the 

convergence.   

The dark and light blue lines relate to the normal OSEM (x=z=0) and DDRR-

OSEM (with x=2,z=1) used elsewhere in this work.   
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These contrast curves would appear to recommend the use of wider modelling 

with more and more iterations, however, the visual appearance of these images 

show an unwanted side effect.  Figure 3-27 shows a central transverse slice from 

a reconstruction using a broad collimator model and lots of iterations (x3,z2, 75 

iterations of 8 subsets).  The figure on the right is the same data as the left, but 

with a post-reconstruction Butterworth filter (fco = 1.5cycle/cm, order 10).  

There are obvious non-uniformities in the background regions.  These are 

reduced in the smoothed data, but are still present.  There are also two very low 

count regions in the arch of the two striata – appearing as two black circles 

medial to the putamen and posterior to the caudate heads.  On the non-smoothed 

imaged there are distinct detail along the putamen that is artefactual – they 

appear as two separate sections – although this is removed when filtering is 

applied.  It would appear the images have been over corrected.  A similar affect 

could be achieved using an edge enhancement filter, or a non-uniform smoothing 

filter.   
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Figure 3-27 Central transverse slice from DDRR-OSEM reconstructed volume using wide 

Gaussian modelling (x3z2).  The image on the right has been smoothed post-

reconstruction Butterworth filter 

3.8.5 Size of Blurring function line profile NMSE - results 

To investigate the formation of this structured background, the line profile 

techniques described in section 3.6.3.3 and used in section 3.7.5 were employed.  

Some post reconstruction filtering was also performed to investigate the 

differences between structured and random noise in the images.  A post 

reconstruction filter of 1.5cycls/cm was applied to the reconstructed data.  This 

filter was chosen to be sharper than the point at which contrast is lost, as based 

on the curves in section 3.8.2.   
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Figure 3-28 Line Profile NMSE minimums for a range of iterative reconstructions and FBP 

with and without post-reconstruction filtering (F /NF)  

Figure 3-28 shows the minimum NMSE score for the putamen and background 

regions for a range of OSEM reconstructions using different Gaussian blurring 

widths, with and without filtering.  

The minimum NMSE scores are generally seen for data with a post 

reconstruction filter.  The FBP has the lowest background NMSE score, while the 

wide (x3z2) DDRR-OSEM reconstruction has the lowest putamen region score.  

The wide-Gaussian data is capable of giving both the minimum putamen score, 

and a low cerebellum score.  However, these two minimum values are produced 

from different reconstructions.  Figure 3-29 shows the trends in the x3z2 data 

along with the FBP data for comparison.  The minimum NMSE scores for the 

putamen and background regions occur at 64 and 400 iterations respectively.   
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Figure 3-29 Line profile NMSE scores for OSEM and FBP reconstructions 

In Figure 3-30 the NMSE score as a function of image refreshes is shown for the 

putamen line profile for the various levels of resolution modelling.  The lower 

chart is based on the same reconstructions but utilising a 3D post-reconstruction 

smoothing filter (Butterworth 1.5cycles/cm, order 10).  Using different widths of 

Gaussian resolution model will change the number of iterations needed to make 

NMSE reach a minimum.  Once this minimum is reached, adding further 

iterations will generally increase the NMSE score as more noise is added to the 

image.  Adding a post reconstruction filter removes this extra noise and so the 

NMSE score does not rise with further iterations.   

The curves for the background region are shown in the two charts in Figure 3-31.   
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Figure 3-30 Line NMSE score for the Putamen region for iterative reconstructions using 

different sizes of resolution model.  The lower chart includes a post-reconstruction 

smoothing filter 
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Figure 3-31 Line NMSE score for the background region for iterative reconstructions using 

different sizes of resolution model.  The lower chart includes a post-reconstruction filter 

The background region charts (Figure 3-31) appear to show quite variable 

results.  There is an obvious trend for the data from the larger blurring model to 

give better results at high numbers of iterations.  When a post reconstruction 

filter is added the curves follow the same trend, but are more closely matched.   
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3.8.6 Size of blurring function – discussions 

For both the filtered back-projection and the OSEM NMSE line profile results, 

there are opposing trends going on.  For the putamen region line profile, the best 

results are occurring when higher frequency data is included in the image: That 

is, when either high cut-off frequency filters are used in the FBP reconstruction, 

or large numbers of iterations and wide Gaussian modelling are used within the 

OSEM reconstruction.  The opposite is true for the background regions, where 

the best results are seen with smoother reconstructions.  For all of the images a 

post-reconstruction smoothing filter improves this image quality metric.   

Relating these NMSE scores to the image quality in terms of classification is not 

straightforward.  For the particular imaging task being investigated here, where 

the importance is in the size and intensity of uptake of a particular organ/sub-

organ, the ability of a reconstruction system to give smooth background regions 

is less important than its ability to clearly define the extent of an active region.  

As such, the line NMSE score for the putamen region may be a useful indicator of 

reconstruction performance, whereas the cerebellum region is less important.   

3.8.7 Varying Radius of acquisition – iterative results 

The depth-dependent resolution recovery model is described as using a different 

blurring function depending on the radius of rotation for the acquisition.  It is 

possible that the DDRR-OSEM will outperform FBP when patient positioning 

requires a larger ROR.   

The same projection data used in section 3.7.7 was reconstructed using DDRR-

OSEM using the known Radius of rotation.  Figure 3-32 shows the contrast 

measured for phantom run1 using different acquisition ROR.  The left figure 
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shows the FBP results, and the right DDRR-OSEM model.  Using the variation in 

contrast at the highest contrast setting used, the DDRR-OSEM model shows a 

smaller variation in the measured contrast across the ROR used compared with 

FBP (7% vs. 10%).  However, when just the 13-16cm data is used, the FBP has a 

smaller spread of results (2.4% vs. 3.8%).   

 

 

Figure 3-32 Contrast measurements using different acquisition radii, as a function of cut-

off filter used for FBP (top) and image refreshes for DDRR-OSEM (bottom) 
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3.8.8 Varying Radius of acquisition – discussion 

The depth dependent resolution model appears to make significant 

improvements when the phantoms are imaged over a wide range of ROR.  

However, such wide variations are rarely seen in clinical brain imaging.  When 

the more clinically relevant ROR range is used, the FBP data shows a smaller 

variation.  As such, the results suggest the depth dependent model does not 

reduce the negative effects of increased ROR over the typical range of brain 

imaging distances.  Such a result may be important for SPECT imaging of the 

body.   

3.8.9 The effect of errors in ROR measurement - results 

The use of depth dependent Resolution recovery requires that the ROR be input 

into the reconstruction program.  On the scanners used in this work, this data is 

not stored within the image information file (the header file).  The Radius of 

Rotation (ROR) has to be recorded manually.  If the radius were not recorded 

properly, then an estimate would have to be made.   

A test was performed using the 13cm ROR data, with a range of incorrect radii 

input into the reconstruction program.  The input range was 175mm-205mm 

Centre of rotation-crystal distances, relating to 13-16cm ROR.  The contrast was 

measured using the CT derived ROIs.   
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Figure 3-33 Contrast as a function of image refreshes when different ROR distances are 

used 

Figure 3-33 shows the contrast measured for Run1 data acquired at 13cm, using 

different ROR input data.  The coefficient of variation for the contrast 

measurements at maximum contrast is 0.2%.  The contrast in the reconstructed 

images is not dependent on the ROR used in the program over the range of 

distances that are likely to be used.   

3.8.10 The effect of errors in ROR measurement – discussion 

The collimator blurring function used in this program is a function of distance as 

given by the experiments in chapter 2.  The blurring function sizes are shown in 

Table 3-3.  For this range of radii, there are only minimal differences between the 

blurring function used, and the correct blurring function.   
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Table 3-3 Calculated blurring function at different distances from collimator 

Collimator source 

distance (mm) 
FWHM (mm) 

Percentage change 

from 130mm ROR 

130 9.25 0% 

140 9.69 4.77% 

150 10.13 9.53% 

160 10.57 14.3% 

 

3.9 Compensation methods for attenuation 

The effect of attenuation is to reduce the apparent levels of activity within the 

reconstructed image.  In particular, regions central to the body, i.e. surrounded 

by attenuating material will be affected the most.  The counts in a central region 

of the brain will be reduced by a factor of around 60%.  However, what matters is 

not the size of bias or even the error in the uptake measurements, but the 

relative differences between patients.  The composition of patient’s heads is very 

uniform between patients, regardless of body habitus.  In fact, as is shown here, 

patient head sizes do not vary considerably, and so the range of the attenuation 

effect in the very centre of the brain will typically vary from 58% to 64%.   

Patients with larger than average heads will exhibit increased attenuation effects 

and hence reduced apparent uptake within the brain.  There are however a 

number of factors that will change the absolute level of uptake within the brain, 

and these are accommodated for by scaling the images using a background or 

non-specific binding region (see chapters 5 and 6).  When the attenuation effect 

is combined with this scaling effect, some of the attenuation effects are cancelled 
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out.  What remain are the differences in relative attenuation effect to the target 

and background regions due to the head size.  Depending on the background 

region being used, it is possible for the target region and background region to 

be at the same effective depth and in this specific case the size of the patients 

head will have no bearing on the measured up take in the image.   

This effect can be calculated theoretically for specific regions of the brain and for 

pre-determined head sizes.  This calculation will not give accurate attenuation 

measurements for specific patients, but will give a good estimate of the likely 

magnitude of differences between patients, and hence a good indication of the 

likely variation in uptake measurements due to patient head size.   

Following Chang’s description of an attenuation correction technique 98, and 

using a simple ellipse as the head outline, the attenuation effect at different 

positions can be calculated.   

3.9.1 Attenuation compensation calculations - Methods 

A series of 21 patients attending for PET-CT brain investigations were chosen at 

random.  After appropriate manual realignment to correct for head position, a 

central slice covering the striatum was selected on the CT image volume.  The 

width (left-right) and depth (ant-post) distances were measured manually using 

clinical CT reporting software.   

Various head sizes were modelled using a simple spreadsheet program as an 

ellipse following Equation 3-10.  The ellipse is centred on the coordinate origin, 

and the half lengths (or radii) are ‘a’ and ‘b’.  The coordinates xɵ  and yɵ  are the 

points on the ellipse that are found at angle  from the point of interest X0, Y0.   
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Equation 3-10 

The thickness of tissue (l ) from the point of interest (X0, Y0) for a particular 

projection angle  is given by Equation 3-11.   

 

Equation 3-11 

The attenuation effect at that point is then calculated by averaging the 

attenuation effects over all projection angles (M) (Equation 3-12) (adapted from 

98).   

 

Equation 3-12 

To measure the effect of head size on DAT SPECT imaging, the attenuation effect 

at a series of specific points of interest was calculated.  These points of interest 

are shown in Figure 3-34 and relate to the striatum and two series of 

background non-specific binding areas.  The attenuation effect was calculated for 

each point and averaged for each of five head sizes.   
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Figure 3-34 The position of points of interest within a brain outline used for attenuation 

effect calculations a string of points are shown in the left striatum along with two separate 

regions used for non-specific binding estimates 

3.9.2 Attenuation compensation calculations - Results 

A summary of the head sizes measured for the 21 subjects is shown in Table 3-4.  

The minimum and maximum head depths were not seen on the same patients as 

the minimum and maximum head widths i.e. the ratio of width to depth was not 

constant.  The data in Table 3-4 was used to model the range of head sizes to be 

seen in clinical imaging.  The mean depth and mean width were used to create 

the “average” head size.   

Table 3-4 Head sizes for a test population 

 Depth  

(ant-post) 

Width  

(left-right) 

Ratio 

Depth/Width 

Minimum 17.8cm 14.0cm 0.745 

Mean 

(Standard deviation) 

19.0cm 

(0.8) 

15.3cm 

(0.7) 

0.801 

(0.044) 

Maximum 20.6cm 16.7cm 0.908 
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The maximum and minimum head sizes were calculated using the maximum 

depths and widths recorded.  These do not relate to specific patients and are 

likely to show a larger range than is present in the population.  The 

measurements for the patients with the maximum and minimum depth-width 

ratios were used directly and labelled “maximum ratio” and “minimum ratio”.  

These five head sizes are shown in Figure 3-35.   

 

Figure 3-35 Elliptical outlines based on head size measurements 

In Figure 3-36 a series of three points of interest are evaluated.  The points 

marked on the perimeter of the head show the position of the points for which 

the attenuation depth is measured for a specific point of interest – marked with a 

green triangle.   
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Figure 3-36 Calculation of the attenuation effect at three points 

 

Table 3-5 Calculated attenuation affects in different positions within different sized heads 

 

Mean 

Brain 

size 

Minimu

m brain 

size 

Maximu

m head 

size 

Maximu

m ratio 

Minimu

m ratio 

Min ratio 

from 

mean 

Max ratio 

from 

mean 

Target 

average 
0.410 0.440 0.377 0.396 0.399 -8.0% 7.4% 

Background 

average 1 
0.482 0.522 0.440 0.476 0.462 -8.8% 8.1% 

Background 

average 2 
0.444 0.479 0.407 0.433 0.425 -8.4% 7.8% 

Target –

background 

ratio 1 

1.177 1.185 1.167 1.203 1.157 -1.7% 2.1% 

Target to 

Background 

ratio 2 

1.084 1.087 1.079 1.094 1.065 -1.8% 0.9% 

 

The calculated attenuation effect for the various head sizes and shapes are 

shown in Table 3-5.  The ratios of the attenuation effects between the two 

background regions and the target region is also shown.  The range of 

attenuation effects was calculated using the minimum and maximum values of 

the head size assessed.  This was expressed as a fraction of the mean head size.  

The maximum differences in attenuation effects are seen for background region 
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1, and ranges from -9% + 8%.  However, the ranges for the two ratio calculations 

is much lower at -2% to +2% of the mean value. 

3.9.3 Attenuation compensation calculations – Discussion 

While the bias in absolute activity due to attenuation is a large factor, the effect is 

relatively uniform between different head sizes with less than 10% deviation 

from the average.  When the scaling effects of a non-specific binding region are 

included the differences come down to only +/- 2%.  These results suggest that 

while the inclusion of attenuation correction may have a significant effect on the 

absolute quantitation, it is unlikely to have a large impact on classification 

systems.  This error can be compared with the test-retest variability for this 

pharmaceutical published by Booij et al. 48.  They scanned 6 healthy volunteers, 

and 10 patients with Parkinson’s disease twice each, with repeat scans occurring 

at 3-6 weeks after the first.  With an identical scanner, and acquisition, 

processing and analysis techniques, they showed a test-retest variability of 

7.47% (+/- 6.36%) and 7.36 (+/- 6.16) for the health volunteers and PD groups 

respectively.   

3.10 Compensation methods for scatter - discussion 

In section 2.2 Triple Energy Window scatter corrections were investigated with 

respect to the collimator sensitivity with distance.  In that section in was found 

the TEW could compensate for these septal penetration effects thus creating a 

more stable sensitivity value.  In section 2.3 this same TEW was found to make 

improvements to the FWHM and FWTM resolution measurements.  The former 
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effect is likely to improve quantitation in SPECT calculations, and the second 

effect may improve the reproduction of fine detail in SPECT images.   

For the first of these effects, the improvement is likely to be head size dependent 

scaling factor, which, like the attenuation effects in the last section may not have 

a large effect on quantitation.  The second effect - improvement in resolution - 

may allow improved contrast.   

The main use for TEW corrections is to compensate for scattered photons being 

included within the photopeak window.  The amount of scatter depends in part 

to the size of the head and distribution of activity within it.  The distribution of 

activity in other parts of the body may also be important.  For many patients 

there is significant uptake in the salivary and thyroid glands.  These tend to be on 

the edge of the field of view, or just outside it.  There is also uptake in other 

organs outside the field of view that will be variable between patients.   

Because of these out of field effects, and the variable glandular uptake, modelling 

with phantoms may not provide results representative of real patient data.   

The downside of this form of scatter correction is in the increases in image noise.  

Again, representative measurements of this cannot be made using phantom data 

as it does not truly represent the noise properties of clinical data, so it can only 

really be assessed using clinical patient images.   

Published work 119 has shown that these corrections can improve the accuracy of 

absolute uptake measurements in patients.  No studies have shown 

improvements in diagnostic accuracy when these corrections are included.   

In their work with cross-site camera comparisons using phantom data Dickson et 

al. 115 found problems with OSEM reconstructions in data with low pixel counts.  

They related this to the non-negativity constraint in OSEM.  Such a constraint 
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could be a problem when using TEW corrected projection data due to the low 

background count levels and increased noise.  A related issue when dealing with 

low count statistics is the use of integer values in image formats.  For data with 

low counts the rounding off to the nearest integer value could affect the resultant 

images.   

3.11 Overview of reconstruction results 

Looking at the general results seen across the range of parameters for the noise 

and contrast measurements the OSEM models that include resolution modelling 

perform better than the basic OSEM model.  However, there are no significant 

differences between the fixed and depth dependent methods for the SUR 

measurements used here.   

The DD-RR and fixed-RR OSEM models cannot be separated using the measured 

described here, and it may be that the full advantage of a depth dependent model 

only becomes noticeable over larger distances.  Since there were no drawbacks 

from using the more complex model this system was used.   

The FBP and DDRR-OSEM models can be optimised to give very similar 

performance for the large VOI based uptake measurements.  The size of the VOIs 

used to measure the contrast using striatal uptake ratios are quite large – they 

cover the entire striatum on one side.  It is conceivable that the DDRR-OSEM 

outperforms the FRR-OSEM model and FBP for smaller details.  To measure such 

changes a large range of different sized ROIs and VOIs would have to be 

employed.  The exact choice of these VOIs would affect the outcome of such a 

test, and without a clear anatomical reason for choosing the VOIs such a choice 

may introduce bias.   
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Another way of measuring these fine details is to use the line profile NMSE tests.  

There will of course be some variability in these results based on where exactly 

the line profile is drawn, but there are differences seen between the FBP and 

resolution recovery based OSEM results.  The DDRR-OSEM model can give 

superior results in this measure of fine detail.  The improved score for this 

measure suggests an ability to separate out the edges of the striatum.  This 

difference correlates with the preference of the expert observers based on visual 

assessment.   

The extent of the collimator blurring function was shown to have some 

unpredictable effects on the resultant images.  Although giving better results in 

both the VOI uptake measures and the line-profile NMSE score, the very wide 

models gave significant artefacts within the images.  The middling results of 

(x1z1) and (x2z1) gave a boost in both these metrics without obvious artefacts.   

The number of iterations used in the reconstruction must be sufficient to ensure 

adequate convergence of the images.  After 96 equivalent iterations (12i 

8subsets) 95% of the maximum contrast (as measured at 200 equivalent 

iterations) has been recovered.  This figure agrees well with the phantom work 

done by Dickson et al. 115 who suggested 100 iterations should be performed.   

The levels of noise and contrast are tuneable using different levels of post-

reconstruction smoothing.  For automatic or semi-automatic quantification 

systems that use VOI Ratios, it is likely that reconstruction methods that recover 

high levels of contrast in the images would be beneficial.  The optimum level of 

image smoothing may be dependent on the particular classification process 

being used.  Techniques using large VOIs are unlikely to be sensitive to filtering 

levels, whereas techniques using tightly constrained VOIs may be heavily 
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affected.  The new techniques proposed using machine learning are also likely to 

be dependent on the level of smoothing.   

As discussed in section 3.4 the ultimate test of the quality of an image is that it 

allows the correct diagnosis to be given.  To this end, a set of patient data will be 

reconstructed using a set reconstruction model and a range of post-

reconstruction filters.  Each subjects scan data will be reconstructed using the 

DDRR-OSEM iterative reconstruction algorithm with 12iterations of 8subsets.  

The resolution will be modelled to a width of +/- 2 pixels in the x axis and +/- 

1pixel in the Z axis.  The post-reconstruction filtering will be performed using a 

Butterworth filter with settings ranging from fco=0.5cycles/cm up to 

2.0cycles/cm.  A non-filtered dataset will also be used in the analysis.   
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4  

Clinical procedures for scanning and processing DAT SPECT scans within 

Imperial College Healthcare NHS Trust are as follows.   

Patient preparation involves thyroid blocking using tablets. These are taken 

twice per day for three days starting the morning of the day before the scan.  A 

total of six doses of 60mg of potassium iodide are taken.  The thyroid blocking 

procedures are in place to minimise uptake of free 123Iodine within the thyroid, 

hence minimising the radiation dose to the patient.   

Some medications can affect the way in which 123I-FP-β-CIT is taken up by the 

brain.  Within the drug safety leaflet for 123I-FP-β-CIT a number of such 

medications are listed, however the advice is that the prescribing clinician may 

or may not restrict these medications.  The recommendations are that such 

medication may affect absolute quantification methods, but are unlikely to cause 

changes in visual appearance of the tracer distribution.  In this institution no 

restrictions are placed on these medications.  This choice was made out of 

simplicity for the patients.  In a prospective study this choice may be made 

differently, but for this retrospective analysis the data collection has had to 

follow the clinical routine.  In fact, the purpose of this work is to investigate the 

use of classification methods that can be used in clinical practice and as such 

making restrictions on these drugs may bias the results.   

On the day of the scan the patients is allowed to eat and drink normally.  They 

are requested to stay well hydrated throughout the day and to void their bladder 

as often as necessary – this too reduces the patient’s dose.   
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The patient is injected intravenously with 185MBq 123I-FP-β-CIT.  A delay of 

between 3 and 5 hours is then needed for the tracer to be taken up by the 

dopaminergic system in the brain and reach a dynamic equilibrium with the non-

specific binding.  Immediately prior to the scan the patient is asked to void their 

bladder.  They are then positioned supine on the scanning couch with their head 

positioned in a headrest that extends out of the patient couch.  See figure 1.7, 1.8.  

The patients head is held still using chin and forehead straps.   

The SPECT acquisition is performed using the parameters defined in chapter 2 

using Forte gamma cameras (Forte, ADAC Laboratories, California, USA) and 

LEHR and VXGP collimators.  The acquired data is then reconstructed using the 

processing steps selected for visual reporting.   

All images are then realigned manually to compensate for patient positioning.  

The realigned studies are then reported by experienced clinicians using 

dedicated nuclear medicine reporting software.   

Following approval from the Clinical Governance Department of Charing Cross 

Hospital an anonymised patient database was created for auditing the value of 

123I-FP- -CIT SPECT imaging for the management of movement disorder 

patients.  The database includes salient clinical details and the (clinical) reported 

results of 123I-FP- -CIT SPECT imaging.  Where possible, a definitive diagnosis 

was given for each patient by a consultant neurologist who was responsible for 

his or her care.  This diagnosis was given at a later date using clinical history, 

scan results and long term follow up of the patients.  No specific minimum follow 

up time was used for this definitive diagnosis.   

The audit database included only anonymised data, and all image data was 
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anonymised before being copied into the study database.  The audit database 

only contained data from a single referrer and his registrars.  They referred 

patients from their movement disorders clinic and hence the vast majority of the 

patients in this database have movement based disorders, as opposed to 

dementia type disorders.   

Image data from patients within this database were reconstructed with the range 

of test reconstructions defined in chapter 3 to allow development and testing of 

automatic classification systems.   

Over the course of this work, the details of 299 patients were included onto this 

database.  Two entries were duplicates and were removed from the database.  

Six patients were lost from follow up, did not have a scan or requested to be 

removed from the database, leaving 291 records.   

Patients for whom a definitive diagnosis could not be given were excluded from 

this study. These included patients for whom the clinical symptoms, disease 

progression and scan results were inconclusive at the time of this study.  This 

resulted in 74 patients being excluded from this study.   

Patients whose diagnosis involved both small vessel cerebrovascular disease 

(SVCD) and a non-PS disease were excluded from this study.  SVCD can produce 

localised reduction in DAT that may interfere with the normal presentation of 

these scans.  Patients with a mixture of SVCD and a Parkinsonian syndrome were 

kept within the database.   

Following these exclusions, 194 patients remained in the database including 135 

with a definitive diagnosis of a Parkinsonian Syndrome (PS), and 59 with a non-

Parkinson’s syndrome (Non-PS).  Of the 194, a group of 116 patients were 
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scanned before changes in the acquisition techniques (as described in chapter 2) 

were implemented.  The demographics of these patients are shown in Table 4-1.  

A further 78 were included while the newer acquisition protocols were being 

used.  The demographics for this second group are shown in Table 4-2.  A 

number of patients reported their “handedness” as mixed, or variable.  These 

were included as “other” in the table of demographics.  Statistical analysis of 

these demographics was performed using SPSS software (SPSS statistics, v19.0, 

IBM, USA) using a significance value of P=0.05.   

Table 4-1 Demographics of patients scanned using original parameters 

Diagnosis 
Number 

of 
patients 

Sex 
(M/F) 

Age (years)  

Mean (range) 

Handedness 

(R, L 
mix/other) 

Length of 
follow up 

mean 
(range) 

PS 79 52 /31 
60.2 

(29-85) 
51/28/7 

32.28  

(0-108) 

Non-PS 37 22 / 24 
64.7 

(38-81) 
31/3/3 

24.28 

(0-60) 

 

Table 4-2 Demographics of patients scanned using optimised parameters 

Diagnosis 
Number 

of 
patients 

Sex 
(M/F) 

Age (years)  

Mean (range) 

Handedness 

(R, L 
mix/other) 

Length of 
follow up 

mean 
(range) 

PS 56 43 / 21 
62.89 

(33-84) 

61/2/1 

 

6.63 /13 

(0-60) 

Non-PS 22 15 / 15 
62.73 

(34-83) 

29/1/0 

 

5.1 / 9.3 

(0-36) 

 

These divisions were not significantly different for the two groups.  Ages 

compared using Mann-Whitney U test. Sex and handedness compared using χ2 

test.   
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Table 4-3 Breakdown of the diagnosis subtypes for the two datasets 

 

Diagnosis* 

Using 
Original 

acquisition 
parameters 

Using 
optimised 

acquisition 
parameters 

Total 

Parkinsonian 
syndromes 

Parkinson’s 
Disease 

49 39 88 

PD & CVPS / 
SVCD 

7 3 10 

DLB 4 1 5 
PD and ET 10 4 14 

MSA 2 1 3 
PD & ET & 

SVCD 
1 1 2 

PSP 3 5 8 

PD & MS 1 0 1 

Stroke & 
secondary PD 

1 0 1 

Young onset 
PD 

1 2 3 

     

Non-
Parkinsonian 

syndromes 

ET 20 11 31 
Dystonia 9 4 13 

Drug Induced 4 3 7 
OT 2 2 4 

Psychogenic/ 
stress/ 

Malingering 

 
0 

 
2 

 
2 

FXTAS 1 0 1 
MS 1 0 1 

*For definitions of abbreviations and disease groups please see chapter 1.  

The patient data described in Table 4-1 (using the original acquisition techniques) 

was used in work comparing different automatic classification systems 1.  The 

breakdown for the various subtypes of disease is shown in Table 4-3.  The two 

groups of data were used to test various classification techniques in chapters 5 

and 6.   
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5  

5.1 Feature Extraction and machine learning 

There are a range of matrix transforms that can be used to summarize large data 

sets.  The transforms are simply ways of describing the same data using different 

measures.  One example of a simple transformation is the Fourier Transform 

(FT).  This describes an image as a collection of sine waves, with frequencies and 

amplitudes.  When in this form the data is said to be in frequency space, or ‘k’ 

space.  Examining the data in the frequency domain shows how much of the 

information in the image is coming from different frequency data.  This can be 

useful in image filtering.  FTs and inverse FTs allow the transfer of information 

between real space and frequency space and assuming a sufficient range of sine 

wave frequencies is used, the process is reversible with no loss of data.   

Other transforms can be applied that extract different sorts of information from 

the images.  The transforms take the general form of a series of components and 

weights, analogous to the sine waves and amplitudes in FT.  The different 

transforms optimise different properties of these components.   

When applied to image analysis, the input matrix will typically be multiple 

images from a time series, from repeat scans or from groups of patients.   

Some of the transformations that have been applied to medical imaging tasks are 

described below.   
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5.1.1 Principal Component Analysis and Singular Value 

Decomposition 

Principal Component Analysis (PCA) allows data to be represented by a set of 

orthogonal eigenvectors and corresponding eigenvalues or weightings.  The 

eigenvectors are common for all subjects whilst the weightings are unique to 

each subject.  With reference to FT, the eigenvectors are equivalent to the sine 

waves, and the weights equivalent to the amplitudes.  The weighting factors 

show how much a particular component needs to be scaled by to give that 

subjects image.  PCA finds the uncorrelated components that describe the input 

data in the most economical way.  That is, the variance in the components is 

maximised.  There are a number of computational processes that can be used to 

perform PCA including Singular Value Deconvolution (SVD).   

The main applications for PCA in nuclear medicine imaging have been in 

characterising regional Cerebral Blood Flow (rCBF) studies and as a starting 

point to factor analysis.   

For rCBF studies, Houston 120 defined a brain template using a set of normal 

patient scans.  The range of component weights seen in template data was used 

to limit the allowed weights for subsequent test data.  They calculated the 

residual information: the information in a test patient that could not be 

described by the principal components using weightings up to three standard 

deviations.   

Instead of looking for separate clusters of points, some groups have looked at the 

correlation between the weighting for a particular component with a clinical 

grading.  This technique was applied to the 18F-FluoroDeoxyGlucose (FDG) PET 
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studies performed on patients with idiopathic PD and age-matched controls 121.  

They found two components that correlated to motor dysfunction scores and 

executive process (such as working memory and planning tasks scores).   

Of course, the neuropsychological results can also be included in such an 

analysis.  One example of this approach 122 combined the test results with ROI 

scores from SPECT data.  Their analysis identified specific correlations between 

different groups of test results.   

5.1.2 Factor Analysis 

Factor Analysis (FA) is a group of rotations/transformations that use PCA as a 

starting point.  They will typically employ prior knowledge of the data to 

constrain the components.  One example is the non-negativity constraint that has 

been employed in FA of dynamic nuclear medicine data.  The studies of dynamic 

data have generally involved analysing the components as these can relate to bio 

kinetics of the structures being imaged 123-126. 

Another variation of FA is Non-negative factorisation, which as the name implies, 

applies a transformation that results in purely additive components.  This was 

applied to rCBF data and when coupled with a support vector machine 

classification process, successfully classified groups of AD and non-AD patients 

127.  

5.1.3 Independent component analysis 

Independent component analysis (ICA) is different from PCA in that the 

components are chosen to be independent rather than merely uncorrelated.  ICA 

has been used predominantly in blind source separation problems.  The focus of 
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ICA work is in identifying the components themselves, often as a method for 

removal of extraneous data and noise.   

5.1.4 Logistic Discriminate Analysis 

Logistic discriminate analysis (LDA) performs a transformation that maximises 

the correlation between the classification groups and the components.  When 

applied to the classification of images into two groups, a discriminator is defined 

for each voxel.  The clustering of these discriminating voxels allows a 

simplification of the process using methods related to those in SPM.  This process 

has been applied to DAT imaging with 99mTc-TRODAT1 128.  

5.1.5 Projection to Latent Structures or Partial Least Squares 

The components are chosen to maximise the separation between training groups 

using brain perfusion images to differentiate between AD and frontotemporal 

dementia 129.   

5.2 Machine learning and classification methods 

The transforms described above take groups of patient data and map them into 

some form of feature space.  The exact dimensions of the feature space being 

related to the form of the transform.  The weightings for a set of patient images 

can be plotted as vectors in this p-dimensional ‘feature’ space.  Patients of similar 

disease state should display similar tracer distributions, and hence their 

weighting vectors should cluster in feature space.  A population of patient images 

with known disease state(s) can be used as a training set to define the feature 

space.   
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The image volume from a test patient can then be mapped into this feature space.  

A measure of the proximity of this vector to either the healthy group, or to two or 

more groups representing particular patient disease groups may provide a 

powerful tool for classification of the patient.  What is needed is a way of defining 

the boundaries in this feature space that relate to specific disease groups.   

There are a number of approaches that may be used to define clusters of points 

in one or more dimensions.  To describe these systems some example data was 

created using normally distributed random numbers, defined in two dimensions.   

 

Figure 5-1  Example data for normally distributed population of 100 subjects, with mean 

of 0 and standard deviation of 1 for both axes.  The circles represent 1, 2 and 3 standard 

deviations from the mean. 

For the basic single class classification task, the standard deviation of the 

training set can be used to define the probability that a patient is from that 

group.  This is shown in Figure 5-1 for data defined using two variables.  A test 

patient is shown as a green circle.  A score can be defined in terms of the number 

of standard deviations away from the group centre, which can then be translated 

into a probability.  In this example the test patient would be given a score of 2.3 
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standard deviations, meaning that a patient from the healthy group would have a 

2.1% chance of being at least this far from the cluster centre.  To use this figure 

for binary classification a cut off would need to be defined depending on the 

preferred trade-off between sensitivity and specificity.   

5.2.1 The group prototype method 

Moving on to two-class systems, the task is to define which group the test patient 

is more likely to belong to.  One conceptually simple technique defines a Group 

Prototype (GP) as the centre of each cluster by calculating the average vector for 

each classification group.  The distance from test patient to the Group Prototypes 

can then be calculated and the relative distances compared to give the diagnosis 

3.   

 

Figure 5-2.  Two example data sets are shown along with a test patient in green.  The 

group-prototype method is used here to classify the test patient in the normal (blue) 

group.  The decision line for the Group prototype method is shown and is defined as the 

being equidistant from the two group centres.  
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Figure 5-2 shows the same “healthy” data from Figure 5-1, but with the addition 

of a cluster of non-healthy patients, shown in red.  The “group prototypes” for 

healthy and non-healthy are shown at the centre of each cluster.  The vectors 

from the test patient to the two group prototypes are shown in green. Their 

relative lengths give the classification.  The decision line, is a straight line, and is 

shown in black.  In this example the test patient would be classed as normal.   

In some approaches to transforming data into feature space, the data is rounded 

and centred.  Centring moves the data so that the mean vector is positioned at 

the origin.  The rounding is a rescaling of the axes according to the variation seen 

in that axes.  This second effect could theoretically make a significant difference 

to the above classification.   

5.2.2 The Mahalanobis Distance 

The amount of variation contained within each component may be different for 

different groups of patients.  For example, if one component were to relate to 

disease severity of progression, it would be expected that the normal data set 

would bunch closely together, whilst the diseased state would spread out in a 

continuum from near the non-diseased state through to very advanced disease.  

These differences can be included by scaling the group prototype measurement 

by the variation of that specific group in that specific direction.  This is known as 

the Mahalanobis distance.   

This effect can be described using the same data as in the previous example and 

marking on the extent of the 1st 2nd and 3rd standard deviations for the two 

groups.  See Figure 5-3.   
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Figure 5-3. Two example data sets are shown with dissimilar amount of variation in the 

two components. The concentric ellipses represent the extent of the 1st, 2nd and 3rd 

standard deviations for the two groups. 

5.2.3 The Bayes Classifiers 

These Mahalanobis distances can be used as the probability measurement for a 

Bayesian classification approach.  This is calculated by modelling the 

distributions seen in the training set and combining it with prior knowledge.  

The probability that a test patient belongs to a particular group (Y), based on 

their component weightings (W) is given by    Equation 5-1. 

   Equation 5-1 

The test patient will be assigned to the group with the highest probability.  Since 

P(W) is constant, only the prior probability P(GroupY) and the function 

P(W¦GroupY) need to be defined.  Typically the prior will be neutral or will be 

equal to the ratios of classifications in the training data set.  All patients in each 

training group are used to define the probability functions.  The distributions are 

assumed to be normal distributions (Gaussian), with means and standard 
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deviations calculated for each group and component.  Such an approach was 

used in classifying images of Alzheimer’s Disease following PCA 130. 

With no prior probability, the decision line falls where the Mahalanobis distance 

is equal for the two classification groups.  However, adding a value for the prior 

probability can tune the performance of such a classifier to improve either 

sensitivity or specificity.  Figure 5-4 shows the decision lines (in black) using a 

prior equal to 1/3, ½ (i.e. equal probability) or 2/3.  Note that the example test 

patient will be classified differently when different prior probabilities are used.   

 

Figure 5-4. The decision lines when using different prior probabilities in a Bayesian 

Classifier 

5.2.4 Support Vector Machines 

Support Vector Machines (SVMs) are supervised learning techniques that have 

recently been proposed for classification problems 131.  The aim is to define a 

multi-dimensional plane that best separates the two training groups.  In Figure 

5-5 an example is given using two groups of data in two dimensions.  All three of 
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the dividing planes shown give perfect separation between the two groups, 

however, visually it can be seen that the middle line may be the best separator.   

 

Figure 5-5 Two groups being separated by three straight decision lines 

In SVM, the optimised plane is defined by a subset of the training data, the 

support vectors.  These vectors lie along the boundary between the two classes.  

The plane is defined to maximise the distance between the plane and the support 

vectors on either side.  In Figure 5-6 the central division line from Figure 5-5 is 

shown along with the “fat margins” and the distance B, which is maximised in the 

SVM process.  The plane can then be used to automatically classify other data 

points as they are mapped into the same feature space.  It should be noted that 

the classification does not give a degree of severity, or a probability of disease. 

The result of this classification is binary.   
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Figure 5-6 The optimum decision line as picked by SVM the parallel lines either side show 

the so-called 'fat margin' the width of which is maximised in the SVM process. 

Using a linear decision plane, the computational procedure is to maximise the 

thickness of the fat margins.  The identification of this maximum is found using 

standard programming solutions.  A powerful extension of this process is to map 

the data into further dimensions using non-linear mappings.  The decision plane 

will still be defined using the solutions to the same standard solutions, but the 

affect is to apply non-linear boundaries in the original coordinate system.  This is 

known in programming parlance as the ‘kernal trick’.   

5.3 Image processing and preparation 

It is proposed that an automatic classification tool can be created using a 

combination of PCA and machine learning tools.  Before being used in such a 

system, the reconstructed data in the form of transverse slices must be put 

through a number of processing steps.   
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5.3.1 Image registration / spatial normalisation 

For meaningful comparison of images from different patients, a method of 

identifying equivalent areas on multiple images must be found.  For the manual 

ROI/VOI methods this involves the user marking specific regions of the brains by 

placing ROIs/VOIs on known areas following visual interpretation.  For the 

automatic ROI/VOI options and the methods using direct pixel comparisons, the 

image volumes are spatially aligned to each other.  For further interpretation, it 

is useful if this alignment can be in a standardised space so that assessment can 

be related to known functional areas of the brain.   

Spatial normalisation, involves realigning an image so that the voxel information 

at a particular coordinates on one image refers to the same anatomical region on 

another image.   

There are three parts to any image registration process:   

 The image transformations  

 The measurements of how well the images are aligned   

 The re-sampling of the image data   

There are many options for these three parts and the ideal combinations will 

depend heavily on the images that are to be brought into registration.  The more 

prominent options are discussed below.  Since this work is based on three 

dimensional image volumes, the discussion will be focused on 3D-3D 

registrations.  However, similar methodologies can be applied to higher or lower 

dimensional data.  
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5.3.1.1 Image spatial transformations 

The simplest transformations involve rigid body movements. These 

transformations include moving (translations) in the three dimensions and three 

rotations, thus six degrees of freedom are available.  These transformations are 

often employed when the image data is from the same subject, which has been 

imaged in the same imaging plane and with known pixel sizes.   

Problems can arise when pixel size data is missing or incorrect.  In these 

circumstances three more degrees of freedom are required – to scale along each 

dimension.  Also if the data has been acquired with a gantry tilt, as can be the 

case in CT scans of the head, this tilt must be reflected in the transformation in 

the form of image skew.  Transformations that include translation, rotation, 

scaling and skews are called affine transformations and for 3D data will include 

12 degrees of freedom.   

These transformations should allow for alignment of data from an individual 

subject being repeatedly imaged.  However, some problems arise when either 

the shape of an organ or tissue changes, or multiple patients are included.   

Non-linear warping allows many more degrees of freedom.  In more complex 

warping fields the fields can be non-stationary, with data in different areas being 

moved by different amounts and in different directions. These types of fittings 

have been found to be very useful in MRI based studies, where not only are there 

inter-patient differences which require some warping to allow alignment, but 

also MRI data itself can contain some image warping effects.   

The reason for image registration is to allow the equivalent parts of two or more 

images to be positioned at the same coordinates.   If the warping fields are left 

unconstrained then the alignment may optimise to a position where the tissues 



161 
 

occupying the same location do not correspond to the same structures in the 

various patients.   

In the case of dopamine transporter imaging, the disease progression is often 

seen as a change in shape of the activity distribution.  It is possible for this 

change in shape to be masked if image warping is used, however most of the 

published work 56,57,83,132 using the SPM package has included some degree of 

warping in the spatial normalisation stage.  Others 133 have avoided this warping 

stage.   

5.3.1.2 Image alignment metrics 

The image landmark registration is performed by identifying reference points 

that occur on both images and then applying a transform that minimises these 

distances.  Such reference points are generally not available in DAT and D2 

imaging unless x-ray CT data has also been acquired, or fiducial markers are 

used.   

Count difference (CD) is simply the sum of the absolute differences between the 

source and target images 134.  This is most appropriate when the pixel values are 

of similar magnitude and spatial distribution.   

Mutual information (MI) has been proposed 135 as an alternative to count 

differences as it can be used in applications where pixel values are likely to be 

very different, e.g. in images of different modalities or pharmaceuticals.   

Kas and co-workers 136 investigated the use of different normal templates in SPM 

for 123I-FP- -CIT studies, and found that quantification was insensitive to the 

template used for the spatial normalisation.  They used the SPM implementation 

of the MI algorithm and found minimal errors.   
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Van Laere et al. 137 used data from a range of brain SPECT tracers to investigate 

different automated spatial normalisation techniques, including CD, MI and a 

system called Uniformity index (UI).  They concluded that the addition of CT data 

allowed the best realignment especially for receptor/transporter imaging.  A 

secondary conclusion was that CD was superior to MI.   

Of the commercial image analysis packages designed for DAT SPECT imaging, 

only the BRASS system from Hermes uses automatic image alignment.  Their 

package includes a number of methodologies, but the recommended model is an 

implementation of the normalised mutual information technique.   

5.3.1.3 Re-sampling methods 

Once the alignment metric has been optimised and the best transformation 

identified, the source image must then be transformed to the target location.  The 

transform is highly unlikely to represent movement of an integer number of 

pixels – and so the voxel values in the transformed image will be formed from an 

interpolation of a group of neighbouring pixels.  Since interpolation is being 

applied, there will normally be a small level of smoothing applied to the data.   

The most common form of re-sampling used is based on tri-linear interpolation.  

Tri-linear interpolation takes a weighted average of the eight voxels closest to 

the centre of the new voxel location.   

5.3.2 Count normalisation 

There are many factors that will affect the absolute levels of tracer uptake within 

the brain that are not related to the disease process being studied.  These include 

differences in injected activity, radioactive decay between injection and scan, the 
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distribution volume, the size of the organs, kidney function, and hydration levels 

amongst others.  Hence, the absolute uptake in the regions of the brain is of little 

direct clinical use.  A more useful index is the amount of tracer that binds to the 

organ as a fraction of the amount of tracer that reaches the organ.  A full 

investigation into amount of receptor sites would involve following the tracer 

uptake dynamically over a period of many hours.  As 123I-FP-β-CIT reaches a 

prolonged level of binding equilibrium 138, a simpler definition of the binding 

potential can be employed using a measure of non-specific binding.  The regional 

distribution of dopamine uptake was measured in a post-mortem uptake study 

by De Keyser et al. 139.  They showed that a range of areas in the cerebral cortex, 

including the occipital cortex, displayed no specific dopamine binding.  It is 

therefore appropriate to use either the occipital cortex or the whole cerebellum 

to normalise the pixel intensities within DAT images.   

A volume centred on the occipital cortex was identified and used as an estimate 

of non-specific binding in counts/voxel (Cocc).  The volume was defined on the 

template image using MRIcro and then converted into a binary mask.  This 

volume was then used to scale the counts in each voxel (Cvoi) to give the binding 

potential for that voxel, BPvoi. 

   Equation 5-2 

5.3.3 Image filtering 

ROI/VOI based classifications combine the information held in a large number of 

voxels into just two or four uptake ratios.  In this way the techniques are unlikely 

to be susceptible to pixel level noise as the uptake figure sums across a large 

number of voxels - effectively averaging the data.  The pixel-pixel methods such 
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as SPM and the PCA methods proposed here use the similarities or differences 

between voxels in the scans of multiple patients.  Hence, localised noise will 

increase the patient-to-patient differences and possibly mask any true 

differences between disease states.  As such these measures are likely to be very 

susceptible to pixel noise.  Some inter-patient differences will occur due to 

differences between patients that are unrelated to the disease.  Therefore, some 

level of image smoothing will improve these techniques.  However, the level of 

smoothing applied will have to be optimised for a specific imaging task.  As the 

level of smoothing is altered the classification tool will become less sensitive, but 

more specific to real group-group differences.  The exact level of smoothing will 

be a trade-off that allows removal of the influence of trivial patient-patient 

differences, whilst retaining the salient disease features.  The exact level of 

smoothing will be a function of the inherent patient-patient differences, the 

resolution of the images being used, the size of the real differences between the 

disease states and the number of patients used within the study.   

There is a balance to be achieved for optimum smoothing of datasets prior to 

analysis with SPM.  The filter should smooth/combine data from individual 

structures, allowing for inter-patient and intra-regional variability, but should 

not be so broad as to significantly reduce contrast in real defects/activations.   

These factors are necessarily going to be dependent on the resolution of imaging 

system, the noise levels in the reconstructed images, and the size of the defects 

seen in the study.   

Van-Laere et al. 140 investigated the effect of filtering when using SPM in SPECT 

imaging.  Their phantom based study used a 99mTc based phantom with a range 

of activation foci.  The phantom consisted of a series of 4mm thick plastic sheets, 
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interspaced with paper sheet printed with activity distributions.  They showed 

the trade-off between the numbers of subjects (or study pairs) needed in the 

study design, with the size of the activation effect.  They also investigated the 

ideal levels of smoothing required using Gaussian filters.  In general they found 

that the group comparison gave highest significance when the filter was around 

2*FWHM of the system, but were relatively insensitive over the range 1.5-

2.5FWHM.  They found that the ideal level of smoothing is dependent on the size 

of the activation as well as the position/surroundings of the defect resolution of 

the imaging system.   

In other works using SPM and SPECT imaging a range of filter sizes have been 

implemented.  In perfusion imaging a Gaussian filter with a FWHM of 10mm 83 

has been quoted.  In DAT imaging, researchers from Innsbruck 56 used a 6mm 

Gaussian filter for their work with 123I- -CIT.  For 123I-FP- -CIT imaging both 

8mm 132 and 10mm 133 filters have been used.   

Transferring these ideas of noise levels to PCA based techniques, it should be 

remembered that the PCA transform finds the components that encapsulate the 

largest fraction of the variance in the training data set.  If pixel noise is a large 

component of this variance then the transform will produce components that 

describe the noise, rather than the differences between subject groups.  It is 

apparent then that the level of smoothing within the image data is likely to affect 

the usefulness of PCA as an image classification tool.   

5.3.4 Applying PCA to Groups of SPECT volumes 

The range of feature extraction processes described above (in section 5.1) either 

start with PCA or, another transform which works in an equivalent manner.  As 
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such, the initial stages of a machine-learning model will start with similar data 

processing.  To apply PCA to groups of SPECT images, the volumes of patient data 

would first need to be spatially aligned, and count normalised.   

SPECT image data describe activity distributions in a three dimensional matrix 

ax,y,z.  This can be reshaped into a one-dimensional vector: 

    Equation 5-3 

Where m equals the total number of voxels in the SPECT volume i.e. the volume 

dimensions x*y*z.  Data from a group of n patients can then be combined to form 

a 2 dimensional matrix, A; 

    Equation 5-4 

Where Ai,j is the ith voxel of the jth patient.  Using Singular Value Decomposition 

(SVD), A can be transformed to produce three matrixes U, S and V,  

    Equation 5-5 

U is the left-eigenvectors, defined as the eigenvectors of AAT matrix, S is a 

diagonal matrix, whose main diagonal is populated with the singular values of A 

in decreasing order, VT is the transpose of V and is the right-eigenvectors, 

defined as the eigenvectors of ATA.   

Since the original data was built up from reconstructed volumes, the left 

eigenvectors, U, are referred to as EigenVolumes.  The full transform would 

produce m EigenVolumes of m voxels.  As m>>n, a restricted transform is 

performed to give just n EigenVolumes each containing m data points.  The 

product SVT is the component weights, sometimes referred to as loadings, or 

component weightings W.   

   Equation 5-6 
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It is the contribution of each of the EigenVolumes needed to recreate each 

patient’s image volume.  For the full transformation, SVT is an n*m matrix. Each 

row relates to an individual patient in the original dataset.   

A characteristic of this transform is that the EigenVolumes are ordered in terms 

of their contribution to the variance in the original data.  Most of the original 

image data is contained in the first few EigenVolumes.  The first EigenVolume is 

defined so that combined with its weighting gives the best approximation of the 

original matrix.  The second EigenVolume is the optimal choice to represent the 

data not covered by the first EigenVolume.  In this way, the EigenVolumes are 

defined in order, to give the original matrix in a mathematically economical way.  

We expect only the first few EigenVolumes to have significant weightings.  The 

entire cohort of patients can be defined in terms of p-EigenVolumes (p<<n) 

common to all patients, along with defining weightings individual to each 

patient.   

The SPECT data for an individual patient j, as given by summing the weighted 

components. 

    Equation 5-7 

In Principal Component Analysis (PCA) the significant EigenVolumes are called 

the principal components.  They are the main features seen in the columns of the 

input matrix A.  Although defined here from SVD, principal components were 

originally defined using the covariance matrix of A 141,142.   

By applying this transform to the input matrix A, patterns that are common 

across the columns of A are defined, along with the spread of weightings seen 

across the columns of SVT.  
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It is common to subtract the mean patient image (sometimes referred to as 

Component 0 or PC0) from each patient image prior to performing the SVD.  PC0 

must also be subtracted from test patients prior to analysis.   

5.4 Classification models 

5.4.1 Single, dual and multi-class classification tasks and 

decision trees 

Classification tasks can be defined based on the number of groups that are 

identified.  In a simple one-class problem, a definition of a group/state is given, 

and the task is to state if a test subject belongs to that class or not.  When applied 

to the ioflupane imaging used here, a single-class task would define the 

health/normal state and its ranges, and then calculate if a test image falls within 

these ranges and is therefore normal, or not normal.   

A dual-class model is created by using definitions and ranges of both the 

diseased and non-diseased states.  Further groups or subgroups can be added if 

they can be suitably differentiated.  When three groups are defined, the 

classification tasks become a three-class problem, or it can be split into multiple 

two-class problems.  This hierarchy system is particularly useful where 

subgroups are defined.  In the classification of ioflupane images, this could mean 

first characterising the data as normal or non-normal, and then characterising 

the non-normal data into more specific disease types.  A two-stage approach was 

used by Hamilton et al. 143 to differentiate between different stages of 

Parkinson’s disease and non-Parkinson’s patients using ioflupane imaging.   
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In most of the published work using ioflupane, the classification normally takes 

the form of a single layer, a one-class problem.  A normal range is defined for 

uptake measurement (e.g. VOI uptake as striatum to background ratio or 

putamen to background ratio) and patients whose image data falls outside these 

limits are given the diagnosis of Parkinsonian syndrome.   

There is some evidence to suggest that DAT imaging can be used to distinguish 

between MSA-P and PD types 56.  A similar problem was also described 57 as a 

three-class problem, defined as two two-class problems; the first stage 

discriminating between normal and abnormal, and the second stage 

discriminating between PD and MSA-P.   

The distinction between IPD and atypical Parkinson’s (including MSA, PSP and 

CBD) was shown using visual reporting 144.  In the case of D2 receptor imaging, 

the differences in disease progression between Parkinsons and Parkinsons plus 

have been shown to allow their differentiation.  Kim et al. employed a multi-class 

system with good results 145.  A natural development of these results would be 

combining both pre- and post- synaptic imaging in the diagnostic pathway.  This 

has been investigated 146,147 but these techniques have not crossed into clinical 

routine use.   

5.4.2 The problem of unilateral disease 

For many patients, the onset and progression of PD will be unilateral, with 

symptoms and imaging studies showing clear one sided patterns.  This can make 

visual reporting easier as images that are clearly non-symmetrical are a good 

indicator of disease.  When applied to ROI based approaches, the uptake in either 

hemisphere can give an abnormal classification even if the contra-lateral 
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hemisphere shows no signs of dopaminergic loss.  This unilaterality has been 

allowed for in VOI/ROI based systems by classifying both side individually, and 

then assigning as normal (or non -PS) if both sides are normal, and abnormal (or 

PS) if one or more sides is abnormal.  This is the approach taken in published 

ROI/VOI based work 78,148.   

In SPM based approaches the whole brain is used in a single-class classification 

system.  The variation from a normal template is calculated as a function of the 

normal variance on a voxel-by-voxel basis.  Voxels that are significantly different 

to the normal template are identified and if they form a cluster larger than a pre-

determined size, then a positive diagnosis is given.  In such a method, unilateral 

disease would identify a pathological state when a particular region showed 

disease.  Normal uptake on the contra-lateral side would not affect the diagnosis.   

If a PCA approach is used, and unilateral disease has not been allowed for, the 

best fit will involve an amount of averaging of the two hemispheres.  The normal 

training set would be symmetrical, and if an abnormal training set were defined, 

this would be a combination of one-sided and dual-sided disease and hence 

would also be symmetrical.   

In previous work 1 unilateral disease was accommodated for by realigning the 

brains based on gross striatal uptake.  Image volumes were mirrored along the 

central line so that the hemispheres with the maximum striatal uptake were 

aligned.  This approach replaces the assumption that dopaminergic loss is 

symmetrical, with assumptions about the level of non-symmetry.   

Another approach would be to treat each half brain as a separate example of 

either disease or non-disease.  Both halves of the non-PS patients would give 

examples of non-PS hemispheres.  The PS data would have to be split since it 
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would only be known that at least one half of each PS brain is showing signs of 

disease.  One approach would be to include just the side with more advanced 

disease.  A second approach would be to have some classification that would 

allow one or both sides to be included providing they both show disease.  To 

identify the more diseased hemisphere of the PS patients, a single class 

classification technique will have to be performed.   

Other analysis techniques use the either a basic decision tree, (e.g. in the case of 

ROI based data, the patient is classified as abnormal if either side is below a 

particular threshold) or the classification relies on an abnormal volume of 

interest being identified (as in the SPM analysis).   

The whole brain analysis discussed so far has taken the whole brain as the input 

data, and the analysis identifies disease state by looking at the weighting factors 

for whole brain components.  As such a diseased brain with a one sided 

degeneration will be given weightings that would best approximate to the 

activity distribution i.e. it will identify an average weighting between the 

diseased and non-diseased halves.   

So, how can this be incorporated into the PCA / cluster analysis? As the 

averaging comes from the application of PCA/fitting to the weights, the data 

from the two sides of the brain has to be split before this stage.  The two 

approaches are:  

1. Split the training data, do a left-right mirror of one side and then input all 

the brain halves into the analysis,  

2. Split the data and then apply PCA to both data sets independently. Test 

patients could then be split and fitted separately to the two sets of 

component weights.   
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The first approach has the advantage of using all the available data to define the 

D-Space / feature space.  This should work well for the non-PS group of data as it 

increases the number of data sets.  However, if both sides of the PS patients are 

used to define the PS cluster, this could be contaminated with non-diseased brain 

halves.  The second approach allows the separate classification for the two 

halves of a test patient, but the training sets for the PS data will both contain a 

mix of diseased levels, and hence may restrict the sensitivity of the test.   

5.4.3 The training dataset and feature space: 

The SVD transform aims to describe the variance contained in a dataset.  If the 

training set is formed of data from a single disease group, the variance will relate 

to normal variability in that group.  If the training group contains a mixture of 

two groups of images, then the variance identified will be a combination of the 

inter- and intra-group variance.  Assuming the intra-group variance is the same 

for the two groups, the inter-group variance will be maximised if the training set 

is a 50-50 mixture of the two groups.  In such a situation the variation in the 

weightings between the two groups will be maximised.   

The clearest distinction between the two groups would be given if the two 

groups were extreme cases.  That is, a group of perfectly normal data and 

another containing only advanced stage disease.  However, such a split may not 

provide the best classification system when patients of mild disease are 

presented.  The best solution may in fact be to define the feature space using 

closely grouped extreme data, but to use data from a full spread of disease states 

to training the machine learning classification tool.   
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Such adjustments or biasing of the PCA results would represent a form of factor 

analysis.  Taking this idea further, if the classification groups are known during 

the transformation stage, the components can be adjusted to maximise the 

differences between the two groups.  This is formally done using the PLS 

approach.   

5.5 Confounding features 

A number of features have been shown to affect the uptake of ioflupane.  In 

particular, DAT uptake in healthy volunteers has been shown to reduce with age 

149.  Their large cohort study showed a linear 6.6% per decade decrease in 

striatal DAT availability.  The reduction was similar in both caudate and 

putamen.  The same study described small hemispheric asymmetries, but it was 

shown that these were not related to left- or right-handedness.   

These losses can be compared with the losses shown in Parkinson’s Disease at 

around 8% 37, 5% 56 or 6-7% 112 per year.  These rates show greater variability in 

the literature, which may be explained by the underlying disease progression 

being non-linear.   

A smaller dependence has been shown on gender in healthy patients 150. 

However, this small dependence was not confirmed in a separate study 

investigating the uptake variations due to hormonal changes during menstrual 

cycle, for which no dependency was found 151.   

These changes suggest that inclusion of the subjects’ age, and possibly gender, 

may improve disease classification.   
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5.6 Developing and Testing the PCA based classification 

technique 

In this work, we use SPECT images of patients with known disease state to define 

a feature space using SVD; we then define a number of automatic classification 

techniques. The classification models used include Group Prototype, Support 

Vector Machines and Naïve Bayes.  Other patients of known disease state are 

then mapped to this D-space and their diagnosis determined automatically given 

the classifier.  To allow comparisons with other published data, four 

commercially available classification models are tested using the same patient 

database (see chapter 6).   

A SVD based processing tool was written using the MATLAB toolkit.  After 

prototyping, bug fixing and optimising the code, the system was tested under a 

number of configurations using the clinical data described in chapter 4.   

The two datasets described in chapter 4 were used to train and test variations on 

the SVD and machine learning classification system. The first sets of 

measurements were performed using images acquired using the original clinical 

data format (dataset A).  These results have been previously published 1.  The 

descriptions below include results and some text from that publication with 

permission from the publisher.   

The second set of measurements investigates the use of SVD for the clinical data 

acquired using the optimised clinical settings as defined in chapters 2 and 3 

(clinical dataset B).   
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5.6.1 Testing the SVD/PCA based system using clinical dataset A 

- method 

For this work an image volume created from 18F-FDOPA PET data and aligned to 

the standard Talairach space was used as a template.  All the 123I-FP- -CIT SPECT 

data was spatially normalised to this template using a routine contained in the 

SPM software package (SPM 8, Welcome Trust Centre for Neurology, London, 

UK).  This automatic registration works in two stages; the first is a linear affine 

transformation and is followed by non-linear warping using basis functions.  

After automatic spatial normalisation, the images were checked visually to 

ensure correct alignment.  The following image processing and statistical 

analysis were performed using the MATLAB software package (Mathworks, 

Massachusetts, USA) using a combination of existing and in-house written 

functions.   

A volume centred on the occipital cortex was identified and used as an estimate 

of nonspecific binding in counts/ voxel (Cns).  The volume was defined on the 

template image using MRIcro 106 and was then converted into a binary mask.  

This volume was then used to scale the counts in each voxel (Ci) to give the 

binding potential for that voxel, BPi (Equation 5-8).  

 

Equation 5-8 

Using this system the data from every patient in the training set was rescaled to 

binding potential in each voxel.   

A second mask was defined on the template image marking the external 

boundary of the brain and brain stem.  This second mask, also defined using 
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MRIcro, allowed the counts in the voxels outside the brain and the brain stem to 

be set to zero in the training and test patients.  In this way, variations in the skin 

uptake and counts outside the body are removed to prevent them influencing the 

processing.   

The problem of unilateral disease was assessed in this dataset by mirroring some 

of the patient data so that the highest uptake from each patient is on the same 

side.  This was performed by using two more VOI masks drawn by eye on an MRI 

template.  These masks define the size of the left and right striatum.  The masks 

were used to identify the hemisphere containing the higher uptake (using total 

counts in that VOI).  Image volumes were then mirrored left to right where 

needed to ensure the higher uptake was seen in the right-hand side.  In total, 116 

patient images were used in this analysis.  See chapter 4 for a full description.   

The 116 patient image volumes were used in a leave-one-out cross validation 

procedure.  Each training run uses 115 patient image volumes to define the 

feature space using SVD.  Prior to the SVD transformation being applied, the 

average image volume (PC0) across all 115 patients is calculated and then 

subtracted from each image volume.  A number of automatic classifiers were 

then trained using the known disease classifications of these 115 patients.  The 

average image volume (PC0) is then subtracted from the test patient image 

volume.  This volume is then mapped into the feature space and the classification 

tools used to give a diagnosis.  The process was repeated a further 115 times 

leaving out each patient in turn.   

The number of components used in the classification step was varied between 1 

and 5.  The automatic classification tool measured included a group-prototype 
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model (SVD-GP), and two naive Bayes models (with and without the training 

group ratios as a prior, SVD-NB and SVD-NBP).   

5.6.2 SVD/PCA based system using clinical dataset A-results 

The leave-one out cross validation uses 116 separate training and testing runs to 

give the final results in terms of specificity and sensitivity.   The intermediate 

steps created during this process are described for one of these runs (using 115 

image volumes, and one test volume).    

The feature space is defined using between one and five components – these 

components are in the form of image volumes that can be combined (using 

specific weighting factors) to reproduce (to a certain level of accuracy) any of the 

patient data.  The first four of these image volumes are shown in Figure 5-7.  The 

images show six central slices from these volumes.   

 

Figure 5-7 Six example slices from the first four components 
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The weighting factors for each of the 115 training volumes for these first five 

components are described as vectors in a five dimensional feature space.  These 

vectors are plotted in Figure 5-8.  For simplicity only the first three components 

have been shown.  The 116th patient, the test patient, is also shown mapped into 

this feature space.   

 

Figure 5-8 The component weights for 115 patients for the first three components.  A test 

patient projected into this feature space is also shown.  PS is Parkinsonian syndrome and 

NPS is non-Parkinsonian 

The main result of the classification systems is a binary diagnosis.  This was 

compared with the known diagnosis to give sensitivity, specificity and overall 

accuracy results.   

The accuracy of each system in terms of the Area Under the Curve (AUC) as a 

function of the number of components is shown in Figure 5-9.  The maximum 

accuracy is reached once the first three components have been included in the 

classification.  The Naive Bayes and Group prototype classifications also give the 

relative probabilities for the two test groups, and absolute distance to GP centres 

respectively.  These two variables were used as the input to an ROC analysis 

(Figure 5-10).   
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To visualise the two groups, the average PS and non-PS component weights for 

the first three components were used to scale the component volumes.  The 

average training volume PC0 was then added to each of these image volumes.  

The two image volumes represent the group prototype images for the two 

disease states.  Six central transverse slices of these image volumes are shown in 

Figure 5-11.   

 

Figure 5-9 The Area Under Curve from ROC analysis SVD based classification 
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Figure 5-10 ROC analysis for Naive Bayes and Group prototype classifiers, using 3 

components 

 

Figure 5-11 Six Transverse slices through averaged image volumes of non-PS patients (top 

row) and PS patients (bottom row) 

5.6.3 SVD/PCA based system using clinical dataset A-discussion 

The choice of feature extraction and classification model is not unique and can be 

optimized for the clinical situation involved.  Alternative feature extraction 

systems have been proposed in other imaging investigations; these range in size 

and specificity from the raw voxel counts up to just a few VOI values. In this 

clinical situation, disease progression will generally follow a familiar pattern 
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(starting with the putamen and progressing to the caudate).  Therefore, a feature 

extraction technique was chosen that would identify patterns in uptake across 

different groups of patients.   

Although this technique identifies the most mathematically economical 

components, the first four components show obvious similarities with 

anatomical features (see Figure 5-7).  The components relate to the differences 

between patients and the mean patient image.  The first component shows 

general uptake in the caudate and putamen.  The second component shows some 

asymmetrical changes from the mean image.  This asymmetry can only be seen 

because some of the patient images were flipped left to right.  The third and 

fourth components show changes in the putamen uptake.  However, care should 

be taken when examining the components, as they are defined by the variations 

in the training set rather than by specific classification tasks.   

These results show that a SVD based classification technique can be used as an 

automatic classification tool with a high level of accuracy when compared to the 

gold standard diagnosis.  The performance was shown to be a function of both 

the number of components used and of the type of classification model used.   

5.7 Developing and optimising the SVD/PCA based system 

using clinical dataset B - methods 

Following the changes made to the clinical acquisition protocol (see chapter 2) 

and recommended reconstructions changes (chapter 3) a second clinical data set 

was produced (dataset B).  The full breakdown of this is described in chapter 4.   

This dataset was used to study the characteristics of the SVD based classification 

tool.  As with the reconstruction optimisation work in chapter 3, the 
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characteristics of the classification model rely on a number of variables that must 

all be taken into consideration.  These include: 

 Features of the image quality 

o Including image filtering 

 Pre-processing steps on the image data 

o Spatial registration 

o Count normalisation 

o Masking for extra-cerebellum count data 

o Non-symmetrical uptake effects – left/right alignment of 

maximum hemispheres/ used of half brains 

 Data extraction steps: 

o The number of components used from the transformation 

 Classification options 

o Classification model 

o Trade-off between sensitivity and specificity 

5.7.1 Pre-processing step: spatial registration- methods 

The data for the SVD analysis techniques were exported in DICOM format, and 

then converted to nifti format using imageJ 107.  The SPM spatial normalisation 

procedures were then used to fit the data to a template.  The SPM spatial 

alignment method uses a version of the “count difference” method for alignment 

scoring.  It is therefore important to use a template image of similar intensity and 

distribution.  Spatial alignment was then performed using a 123I-FP- -CIT based 

template.  This template originated in the IBZMtool kit 152.  This template was 



183 
 

used to create a new template based on the local data using non-Parkinsonian 

subjects.  The new local template could then be used for further work.   

The SPM on-line help files suggest using some smoothing for both the template 

(target) and source images, and that the smoothing levels should be similar.  By 

visual assessment the central range of filters (1.0-1.4 cycles/cm) showed similar 

smoothness to the template image.  Since no other modality image data was 

available for these images, the only ways to assess the alignment is to use the 

spatial normalisation metrics, or by visual assessment.  Through trial and error it 

was observed that most of the filtering levels within this central region gave 

visually acceptable results.   

The non-Parkinson’s patient images were first spatially aligned to the 123I-FP- -

CIT template.  This was performed using the data with a post reconstruction 

filter of 1.0 cycles/cm.  Combinations of affine and non-linear warping steps 

were included in this transformation.  The resultant transformation data was 

then applied to the other noise realisation for each patient, including the data to 

which no post-reconstruction filter had been applied.  These non-filtered data 

were then summed together and the resulting template counts divided by 21 to 

give the average non-Parkinson’s patient.   

5.7.1.1 Pre-processing Step: Spatial Registration- Results 

Central slices of this template are shown in Figure 5-12.  Visual checks were then 

made using the MRI template to check the alignment of the local template to the 

standard MNI stereotactic space. Figure 5-13 shows a central transverse slice 

from a T1 weighted MRI template and the local DAT template.   
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Figure 5-12 The central slices of the locally derived 123I-FP-β-CIT template 

 

Figure 5-13 central slice from local template and T1 MR Image 

This new locally defined template was used for further spatial normalisations.  It 

was defined without any post-reconstruction filtering or filtering at the 

combining stage to simplify the use of any further smoothing that may be 

necessary.   

The entire dataset was then spatially normalised to this local template using just 

linear transformations.  No warping effects were included in this process.  There 

is some debate over the use of non-linear warping factors in this alignment 
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process.  In this work, the decision was made to not use warping as this was 

thought to mask changes in underlying shape of uptake.   

During this process both source and target images were smoothed using a 

Gaussian filter with 8mm FWHM.  This filter was applied only for the alignment 

process.  The resulting re-aligned images had their original levels of smoothing.  

For each subject the non-post-filtered data was used to define the re-alignment 

transformation.  This transformation was then applied to all other image files for 

that patient.   

5.7.1.2 Pre-processing Step: Spatial Registration- Discussion 

The use of a local template compiled with the radiopharmaceutical being 

investigated is generally recommended.  However, visual comparisons of the 

spatial normalisation to an 18F-F-DOPA template (as used in the study with 

clinical dataset-A) show that good alignment can be made with either template.  

A full analysis of the preferred template image was not considered.  The use of 

different templates for spatial normalisation was investigated by Kas et al. 136.  

They used four different 123I-FP- -CIT templates to spatially normalise a set of 

123I-FP- -CIT data from a single site.  They found no difference in analysis results 

when the template was changed to that of another centre.  They did not 

investigate the use of template constructed from other radiopharmaceuticals.  

Colloby et al. 133 followed a procedure similar to that described here except that 

the template used to register the 123I-FP- -CIT images was a T1 weighted MR 

volume.  They reported good registration even with this image from a completely 

different image modality.   
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5.7.2 Number of Components Preliminary Investigation - 

Methods 

In the previous section (5.6.2) it was shown that the accuracy of the SVD based 

system is a function of the number of components that are used.  Dataset-B 

contains 78 patients, so the full deconvolution using the whole brains as input 

volumes will produce 78 components.  Performing SVD on the full dataset of 78 

patients (after subtraction of the average volume PC0), produces the three 

matrixes U, S and VT.  S is a diagonal matrix containing the singular values of the 

input matrix in size order.  The values show the amount of variance in the 

original matrix that is described by each component.   

5.7.2.1 Number of Components Preliminary Investigation - Results 

The variance described by each component (as a fraction of the total variance) is 

plotted as a function of component number in Figure 5-14.  The three curves 

have been created for the full dataset of 78 patients volumes following spatial 

normalisation, using the whole image volume (i.e. using both hemispheres 

without any left-right mirroring).  The first curve uses just spatially aligned data. 

The second is created after the data has been rescaled to give binding potential.  

The third is from images where the data has been masked to remove extra-

cerebral activity.  The graph is truncated to show just the results from the first 

20 components.  All three curves follow a very smooth gradual decline in 

fractional variance all the way to 77 components.  The 77th component weighting 

is 0.0035, 0.0040 and 0.0035 for curves 1, 2 and 3 respectively.  The 78th 

component <1x10-9 for all three slopes.   
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Figure 5-14 fraction of total variance described in each component for three types of 

image pre-processing 

5.7.2.2 Number of Components Preliminary Investigation - 

Discussion 

When assessing the variance curves the common approach is to identify a 

‘shoulder’ in the data.  The first two curves appear to show an abrupt change at 2 

components, whereas the third shows a very gradual change with the shoulder 

appearing at between 5 and 10 components.   

The curves only show the fraction of the total variation that is reproduced by 

each component, they do not show if this variance useful for the diagnosis.  The 

first curve shows data that has not been count normalised; the variance in the 

components will therefore have to include this count scaling information, and 

since this is likely to be an image-wide scaling factor, the first component will be 

strongly influenced by this information.   

These curves suggest that for the skull-stripped normalised data at least 5 

components may be necessary.  The classification procedures were repeated 
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with between 1 and 10 components for most of the classification tests.  For one 

image quality (the non-filtered data) the number of components was extended to 

cover the first 20 components.   

5.7.3 Pre-processing steps: Count normalisation and extra-

cerebral data -methods 

There are many variables that can affect the number of counts within the images 

that are not related to the underlying disease status.  The data was assessed with 

and without scaling to binding potential (following Equation 5-8) using the same 

VOI for non-specific binding that was used in section 5.6.   

This rescaled data was assessed with and without the masking of the extra-

cerebral count data.  This was performed using the same volume mask as 5.6.   

5.7.4 Pre-processing steps: Count normalisation and extra-

cerebral data -results 

The classification accuracy for the naïve Bayes classifier using different levels of 

pre-processing is shown in Figure 5-15 as a function of the number of 

components.  This data uses the whole brain data that has not had any post-

reconstruction filtering.  The accuracy is quoted for the naïve Bayes classifier 

with no prior and uses data with no left-right flipping of hemispheres.   
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Figure 5-15 NB classifier accuracy for different levels of pre-processing 

This data shows that the pre-processing steps of count normalisation and skull 

masking can improve the accuracy of this classification system.  Similar results 

are seen for the SVM and GP classifiers.  The accuracy level is 95% and is 

constant with the number of components for this system (except when only the 

first component is used).  These results are broadly similar to the previous 

results (section 5.6).  All further calculations were performed using the count 

normalised and skull masked data.   

5.7.5 Image Quality Effects - Methods 

In chapter 3, the image quality produced by different reconstructions was 

described.  It was postulated that the level of smoothing used in the 

reconstruction would influence the accuracy of any classification model.   

The clinical data was reconstructed using the depth dependent resolution 

recovery model, using a blurring model width of x2-z1 with 12 iterations of 8 

subsets.  The resulting images were saved with varying levels of post-

reconstruction filtering.  All were Butterworth filters of order 10, with a range of 



190 
 

cut-off frequencies (0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 cycles/cm).  A non-

filtered image set was also saved giving a total of 10 different levels of image 

noise.  The data was pre-processed by spatial registration, count normalisation 

and skull masking.   

5.7.6 Image Quality Effects - Results 

The classification accuracy for the naïve Bayes classifier is shown in Figure 5-16 

as a function of image filtering.  The results for 1 to 10 components were 

included.  This data uses the whole brain data that has been count normalised 

and been skull masked, with no left-right flipping of hemispheres.   

 

Figure 5-16 Naive Bayes classifier accuracy as a function of image filtering levels 

The accuracy is seen to be highly variable for the data that has been smoothed 

the most.  Filters with frequencies lower than 1 cycle/cm give the poorest 

results.  The results calculated using just the first component are very poor for all 

levels of image smoothing.  Using data with no post reconstruction filtering will 

give good accuracy results for this classifier.   



191 
 

5.7.7 Image Quality Effects – Discussion 

The apparent non-dependence on image filtering is perhaps surprising when 

considered against the published work on SPM analysis.  However, the approach 

here does not reply on the GLM model to give a statistical basis to the analysis.  

Looking back to the reconstruction work in chapter 3, the data considered here 

have been produced using the OSEM method including resolution modelling.  

This was shown in chapter 3 to impart a certain level of image smoothing in the 

reconstruction process.  A further smoothing factor is the poor resolution of the 

SPECT imaging system itself.  The typical resolution ranges for these images will 

be in the region of 6-10mm FWHM.  Between them all these factors will provide a 

level of image smoothing before any post reconstruction filtering is applied.   

The following tests will all be performed using data that has not had a post 

reconstruction filter applied.   

5.7.8 Testing the Feature Classification Model - Methods 

Four types of classification models were tested for the various combinations of 

data types, pre-processing steps, and feature extraction results described above.   

 The group prototype method uses the distance from the test patient to 

the mean vectors for the two disease groups and as described in section 

5.2.1.  The classification given by the group with the smallest distance.   

 For the single class method using individual hemispheres the 

Mahalanobis distance was used.   

 A support vector machine was tested using a linear decision plane.  

 Two forms of the Naïve Bayes model were used, with and without the 

prior disease split to weight the classifications (see section 5.2.3).  The 
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classification was given by the group with the highest probability.  The 

data was further investigated by using the relative probabilities as the 

input to an ROC analysis – thus allowing a maximisation of the accuracy 

by adjusting the sensitivity and specificity.   

Due to the way these classification models use the feature space vectors to give 

the classification, their dependence on the number of components may be 

variable and so all must be recorded for a range of numbers of components.  The 

image data used in this section has had no post-reconstruction filtering.  No 

allowance for unilateral disease was made at this point.   

5.7.9 Testing the Feature Classification Model - Results 

The total accuracy for each of the classification methods is shown in Figure 5-17 

as a function of the number of components.  The three classification models all 

give good diagnostic accuracy for 2 or more components.  The NB classifier gives 

consistent accuracy of 96% for 2 to 11 components.  The group prototype results 

are not as good, mainly being at 91%.  The SVM classifier gives the best 

performance (97%) but it needs a high number of components to give this 

accuracy.  Of note there is a small improvement in both the SVM and GP 

classifiers when the 13th component is included.   
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Figure 5-17 Accuracy as a function of number of components 

 

5.7.10  Testing of the Feature Classification Model – 

Discussion 

The way in which these classifiers form decisions planes within the feature space 

is quite different.  The Group prototype uses the ‘distances’ in feature space for 

the test subject vector to the average positions in the two classification groups.  

Because of the way the feature space is calculated, the components which 

contribute more of the variance in the training set will be weighted more heavily 

than the lower order components.  Assuming the required data is held in the first 

few components, it would be expected that the accuracy of this classification 

system would peak at low component numbers and then not change much as 

further components are added.  This expected performance is due to the scaling 

factors in the feature space dimension related to S.  For the data discussed here, 

and taking the scree plots in section 5.7.2.1 into consideration, the first few 

components do contain a lot of the information, but the scree slope also shows 
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that most of the other components (above 5) have almost the same contribution 

to S and hence the group prototype can still make small changes in its accuracy 

as the higher order components are added.    

The group prototype takes the entire dataset into consideration as it creates the 

decision boundary.  However it does not take into consideration the spread of 

data within the training groups.   

The Naïve Bayes classifier takes the spread of each group into consideration.  

Like the GP system the NB calculation uses all of the data in the training data to 

define the decision boundary.  An increase in spread of the data for training 

group along a specific components will have the effect of reducing the 

importance of a variation along that component for a test patient.  The NB 

system therefore weights the importance of each component by the spread of 

scores for that components within the training groups.   

Because the GP and NB training system use the entire training sets they are less 

susceptible to problems arising from individual training subjects especially when 

the training group is large.  An incorrectly classified data point within these two 

datasets would be unlikely to have a significant effect on the classifiers 

performance.   

The SVM classifier is very different from the GP and NB systems as it uses a small 

subset of the data to form the decision plane.  The variation of component 

weightings within a training group has little impact on the decision boundary.  

Because the classifier uses just the subset of training points near the decision 

boundary this system is either sensitive or completely insensitive to 

misplacement data point depending on it proximity to the boundary.  A 
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mislabelled data point is likely to have an impact on the decision plane, as it will 

be selected as one of the support vectors.   

The emphasis placed on specific components by SVM depends on the usefulness 

for classification.  Taking the weightings for the support vectors alone in the two 

training groups, if there is no correlation between the component and the 

training group then the boundary will not be dependent on that specific 

component. i.e. the boundary will run normal to that component axis.  If such a 

correlation occurs by chance for a component then the resulting decision plane 

may perform badly.  It is these random correlations skewing the SVM decision 

plane that will lead to the phenomenon known as over fitting.  With any noisy 

training set such correlations will occur and hence the ideal number of 

components is likely to be considerably less than the full range of components 

available for training.  

5.7.11 Non-symmetrical uptake effects -methods 

The simplest approach uses the whole brains for each patient as an input 

function.  This was used for the baseline calculations.   

A second approach is to split each brain into two hemispheres.  The left hand 

hemispheres were mirrored left to right.  The training set was then composed of 

156 hemispheres.  Of these 44 represented Non-PS hemispheres and 112 PS 

hemispheres.  The classification models were then trained using 154 

hemispheres, with the other 2 belonging to the test patient.  Both of the test 

hemispheres were then classified and if both hemispheres were classed as 

normal than the test patient was classed as NPS.  If one or both hemispheres 

were classed as PS then the test patient was classed as PS.   
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A third approach used all the hemispheres to define the feature space.  The NPS 

hemispheres were then used to define a normal group.  This normal group would 

then include either 42 or 44 hemispheres depending on the classification of the 

test patient. Test hemispheres were then classified using the Mahalanobis 

distance from the NPS group.  The test hemisphere with the larger distance is 

assumed to be the least normal and was hence used for the classification.  This 

single class problem was used to test if the presence of unaffected hemispheres 

in the PS group would affect the results.   

A fourth approach was used which re-aligned the brains so that the striata with 

the highest uptake was one the same side.  This was performed using the same 

striatum VOI as used in section 5.6.   

5.7.12 Non-symmetrical uptake effects -results 

The results for the data classified using just the NPS half brains was in the form 

of Mahalanobis distances.  These were used as an input into a ROC analysis to 

give accuracy figures.  The other three systems used the Naive Bayes classifier.  

The input training data was from the Non filtered images and calculations were 

performed for between 1 and 20 components.  The accuracy of each system is 

shown in Figure 5-18 as a function of number of components.   Using this NB 

classifier the base line figures are better than the various non-symmetrical 

classification approaches. The other classifications tools were also assessed with 

the non-symmetrical training sets.  The accuracies for the NB, GP and SVM 

classifiers tested with Maxmimum-hemisphere alignment system are shown in 

Figure 5-19.  A broad maximum accuracy is seen for the SVM classifier.   
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Figure 5-18 Naive Bayes analysis using Non-Symmetrical Classification 

 

 

Figure 5-19 Maximum-Hemisphere aligned data classified using SVM, NB and GP systems 

 

5.8 Overview of the SVD and machine learning systems 

The best accuracy score is given by the measurements that have come from the 

SVM classifier.  The SVM classifier gives an accuracy score of 99% using the 

training data in which the hemispheres with the maximum uptake are aligned 
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and training with between 15 and 20 components.  This relates to just one 

patient being misdiagnosed.  The broad maximum suggests a real classification 

result as opposed to noise in the classifier that can come about through random 

changes.   

The ‘maximum aligned hemisphere’ method of allowing for unilateral disease is 

shown to work better than the various systems analysing half brains 

individually.  This is perhaps surprising as this system makes certain 

assumptions about the disease progressions.  The implied assumption is that for 

similar levels of asymmetry in the PS group, or that any differences in the levels 

of asymmetry can be accounted for within the components.   

The use of confounding features was not investigated here.  It was felt that the 

improvements that might be possible when including age dependencies would 

not have a great impact on what is already an almost perfect classifier.  The use 

of these confounding features is examined further in the next chapter.   

The preferred method that has been shown to give the best results consists of 

the following steps: 

 A training dataset is acquired containing both PS and NPS subjects 

 The scan data is reconstructed and minimal filtering applied 

 The data is spatially registered to a template 

 The full training set is count normalised using a background region as an 

estimate of non-specific binding 

 Counts originating from outside the brain are masked out using a 

template 

 The average counts distribution is subtracted from the dataset 

 Singular Values Decomposition is used to define a feature space in 17 

dimensions 
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 The vectors for the training data within the feature space as used to 

define an SVM classifier 

 Data from test patients are reconstructed using the same settings 

 They are then spatially normalised to the template 

 The counts are normalised using the non-specific binding 

 The extra-cerebral counts are masked out 

 The mean training image volume is subtracted 

 The test patient is mapped into the training feature space and the 

classification given 

 

Although there are many steps in this procedure, only the image reconstruction 

and spatial alignment need any user intervention.  All the other stages can be 

automated as they were in these investigations.  Once the data is reconstructed 

and aligned to a template the entire process is automated and can take a matter 

of seconds for the entire training and classification procedure.   
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6 

 

A number of VOI based methods have been suggested for quantification in 

dopamine receptor and transporter imaging.  These methods can be split into 

two subgroups depending on whether the placement of the VOIs is manual or 

automatic.  Three of the techniques using manually based VOIs have been 

combined into a software package (QuantiSPECT, Mirada solutions) 153-155.  

These will be described before moving on to describe three automatic systems, 

BRASS (Hermes medical, Stockholm) 148, Basgan (University of Genoa) and 

IBZMtool (University of Hamburg) 152.   

   
Figure 6-1 The three VOIs definition used in the QuantiSPECT software 

6.1 Manually placed ROI/VOI techniques 

A number of techniques have been developed that involve the manual placement 

of ROIs and VOIs as a measure of striatal uptake.  Three of these techniques are 

combined in software called QuantiSPECT.  Figure 6-1 shows the ROI placements 

from left to right, the two-box, three-box and crescent methods.   
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6.1.1 The 2-box Method 

The 2-box method 153 (sometimes known as the Southampton method) was 

introduced as a general technique for overcoming the partial volume effect by 

using a VOI large enough to encompass any blurring.  When applied to 123I-FP- -

CIT imaging, 13 transverse slices (fixed thickness 44mm) are summed together 

and the rest of the calculation performed in 2D.  The striatal VOIs are of fixed size 

and are positioned manually.  Their size (61*48mm) was chosen to encompass 

all counts from the striatum, allowing for inter-patient variability and blurring of 

counts.  This should reduce the dependency on equipment and processing 

choices.  The background is defined automatically using a threshold and typically 

encompasses most of the cortex.  A threshold of 50% of non-specific binding 

maximum counts is used to define the boundary on heavily smoothed images.  

This boundary is then brought inwards by 20mm to remove any partial volume 

effects near the exterior of the brain.  The same slices are used for both the 

striatum and background regions.   

In retrospective studies it was found to give good correlation with clinical 

diagnosis 110,156.  The reported sensitivity and specificities varied between these 

studies.  With processing and analysis techniques the same, the differences were 

put down to the referral base.  Comparison with visual reporting has also been 

reported 78.   

Rather than the usual specific uptake ratio, they define a metric known as the 

Specific Uptake Size Index (SUSI).  This is the specific uptake (CS) divided by the 

concentration per unit volume in the background region (mean background 

region counts C NS divided by volume of background region VS) (Equation 6-1).   
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Equation 6-1 

 
SUSI has the units of volume.  It is the volume of non-specific binding that 

contains the same activity as that in the specific biding region.  SUSI can then 

further be converted to a specific binding index (SBI) by dividing by the volume 

of a standard striatum (Vss) (Equation 6-2).   

 
Equation 6-2 

 
The value for VSS is for a standard striatal volume as the true volume of the 

patients’ striatum is generally unknown.  The figure chosen for this is based on 

the volumes of the striatum in their anthropomorphic phantom.  It acts only as a 

scaling factor.  Their simulation studies used a range of imaging resolutions to 

model a known phantom distribution.  The resulting SUSI figures were shown to 

be independent of imaging resolution and VOI size for all but the smallest VOIs 

they applied.  This large VOI approach has the advantage of consistency of 

measurements across different resolution/noise levels.  However, the measure is 

only of gross DAT receptor numbers across the whole striatum and is unlikely to 

discern small changes in DAT distribution.   

6.1.2 The 3-box Method 

Like the 2box method, this method 154,157,158 uses a “slab” of summed transverse 

slices to allow the calculation to be run in 2D.  However, the thickness of this slab 

has to be chosen by the operator.  Fixed size and shape ROIs are then positioned 

over the basal ganglia.  The background region is of variable size and is 

positioned manually.  Like the 2-Box method, the ROI are large compared to the 
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striata, to minimise the affects of image blurring, inter-subject variability and 

image quality parameters.  The result metrics are the Total Binding Potential 

Index (TBPI) for each striatum, and an asymmetry index.  The TBPI is calculated 

from the total counts in the striatum (CS), the volume of the striatum VS and the 

average counts in the background region/ non-specific binding region ( C NS) 

Equation 6-3. 

 
Equation 6-3 

6.1.3 The Crescent Method 

This model 155 uses a fixed thickness slab of 12mm centred on the slice with the 

highest counts.  Unlike the two previous methods, this uses relatively small, and 

anatomically shaped ROIs placed over the striatum and occipital cortex.  The 

regions can be moved and rotated, but not resized.  A further difference from the 

2-and 3- box methods is the splitting of the striatum into caudate and putamen 

regions.   

6.2 Automatically Placed ROI/VOI Techniques 

6.2.1 BRASS 

The Brain Registration and Analysis Software Suite (BRASS, Hermes Medical, 

Stockholm) is a selection of tools that can be used to automatically assess uptake 

in the basal ganglia.  The software includes a template made of the scans of 20 

healthy volunteers that have been spatially registered.  A series of anatomically 

shaped VOIs have been defined based on this template.  An implementation of 
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the mutual information algorithm is used to spatially normalise test patients to 

this template, which then allows the VOIs to be applied.  The uptake is measured 

for left and right caudate and putamen relative to a posterior region, positioned 

over the occipital cortex. Figure 6-2 shows the positioning of these regions on 

one of the test patients.  The figure shows the position of seven regions, four 

relating the striatum, and three non-specific binding regions.  The large posterior 

region shown in dark blue is used to calculate the uptake ratios.  The two other 

background regions (the light blue anterior region and green posterior-inferior 

region) are not used.   

 
Figure 6-2 Positioning and size of the VOIs used in the BRASS analysis package 

The software can be used with a choice of two templates, one produced from FBP 

images; the other from OSEM based images.  The software has been tested in 

comparison with visual reporting 148 and compared for images reconstructed 

with FBP or OSEM 117.   
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Another study 144 showed that for a specific classification task (PS vs. atypical 

PS), visual assessment could be better than semi-quantitative methods.  The 

given explanation was that the VOI based models are unable to identify changes 

in the patterns of uptake.   

6.2.2 BasGan 

The basal ganglia matching tools package (BasGan) 102 was developed by the 

University of Genoa.  They used a standard anatomical atlas 159 on which they 

defined volumes of interest for the caudate and putamen manually.  These 

defined VOIs were then convolved with a smoothing filter (a Gaussian function 

with 10mm FWHM) to produce a template.  Test patients are then automatically 

aligned to this template.  The main difference between this and the BRASS 

package is that once aligned, a partial volume effect correction is applied to the 

images, before caudate and putamen uptakes are given.   

6.2.3 IBZM Tool 

The IBZM tool 152 was originally designed for D2 imaging, but has been extended 

to cover DAT based investigations.  The software is in the form of an add-on set 

of functions to the popular SPM software (see section 6.5).  The overall 

methodology is similar to BRASS, in that it allows spatial normalisation to a 

template followed by VOI based measures of uptake.  The entire brain (minus the 

striata) is used as a background region, and uptake values given for left and right 

striata.   
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6.2.4 Comparison of VOI Techniques 

A comparison of some of these techniques (QuantiSPECT and BRASS) was 

published for a set of 22 patients (11 PS and 11 ET) 78.  Long term follow up for 

these patients was not available, so a visual report of the images was used to 

define the two groups.  The report focussed on the inter- and intra- operator 

variability for the techniques as well as reporting the concordance with visual 

reporting.   

6.3 Size and Shape Analysis 

The property of interest may be the size or shape of an organ.  This is often used 

for classification of CT images (e.g. RECIST criteria 160) where the size of lesion is 

measured along its longest axis.  Other applications have used the volume and/or 

ratios of lengths. Staff et al. 161 applied automatic techniques to delineate the ROI 

describing the striatal activity.  They used the ratio of the length and width of 

this shape as a measure of disease progression.  Using the data from 52 scans 

(including 20 controls and 5 non-PS patients), and long term follow up as their 

gold standard, ROC analysis showed similar performance to the putamen-

background ratio (from the crescent ROI method in QuantiSPECT) and visual 

analysis.   

6.4 Fractal Analysis 

The heterogeneity of a ROI (e.g. the variance of the counts divided by the mean 

counts for a ROI) depends on the ROI size, the object being imaged, and the 

imaging process (e.g. resolution effects, non-uniformities in the scanner).  Fractal 

models measure how image heterogeneity changes with ROI size through a 
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metric called Dispersion.  Kuikka and co-workers 162 used these processes to 

investigate 2D transverse slices from DAT imaging studies.  The phantom data 

matched known values.  One draw back of this approach is that an estimate of 

the system heterogeneity must be made, either by statistical approaches, or by 

dual isotope scanning, and the results are sensitive to this estimate.  This 

technique has yet to be applied as a diagnostic classification method.   

6.5 Voxel-by-voxel Analysis – Statistical Parametric Mapping 

Multivariate approaches have been used in some medial imaging problems.  

These are typically used to show similarities and differences between groups of 

data but have also been applied to classification.   

Statistical Parametric Mapping (SPM) 163 works on a voxel level to define the 

mean and standard deviation for one or more groups of images.  These standard 

deviations are then used to identify voxels that fall outside a particular 

probability level.  Since a brain image will typically be made of around 5x105 

voxels, special precautions must be made in relation to the problem of multiple 

comparisons.  If all the voxels in the image were uncorrelated, a Bonferroni or 

similar correction would be appropriate.  The approach developed by Friston 163 

involves some smoothing of the image data thus ensuring a level of correlation 

between neighbouring voxels.  The general linear model (GLM) can then be used 

to identify statistically relevant differences between groups by identifying 

clusters of significant voxels.  The statistical power of the GLM when two groups 

are defined means SPM is generally used as a method for identifying differences 

between groups of patients, rather than classification.  
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Scherfler et al. 57 investigated differences in 123I- -CIT uptake in patients with 

IPD and MSA-P.  They found that both had reduced uptake in the striata when 

compared with healthy controls.  The MSA-P patients were found to have 

statistically significant reductions in the midbrain compared to IPD.  In similar 

work with 123I-Beta-CIT, Nocker et al 56 found significantly lower uptake in the 

dorsal brainstem of MSA-P.  On follow up scans the MSA-P patients were found to 

have more rapid decline in caudate and putamen uptake compared to PD.   

Cuberas-Borros et al. 132 used SPM to confirm the appropriateness of a VOI based 

technique.  They found only the striatum contained significant differences 

between IPD and controls/drug induced PD.   

In a PET based study, Wang et al. 164 used 18F-FP- -CIT and found significant 

decreases in striatum, and in particular posterior putamen areas.  Their VOI 

measurements showed significant negative correlations between caudate, 

putamen and posterior putamen regions to UPDRS motor scores.   

Colloby 133 and colleagues used SPM to investigate differences between groups of 

patients with DLB, Alzheimer’s, IPD and healthy controls imaged with 123I-FP- -

CIT.  They found significant differences between AD and DLB, and between IDP 

and controls.  No significant differences were seen between DLB and IPD.  They 

used SPM as a classification tool by quantifying differences between a test 

patient, and a template formed from scans of healthy volunteers.   

Others have reported on regional cerebral blood flow differences in PS 61 and 

DLB 43 and glucose metabolism in MSA 58.   
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6.6 The BRASS package  

6.6.1 Testing Methods 

The two clinical datasets described in chapter 4 were used to test the BRASS 

system for DATSCAN quantification.  The images for the 116 patients in dataset-

A were reconstructed with the fixed settings described in chapter 4.  The data for 

the 78 patients in dataset-B were reconstructed with a range of filter settings.  

The data were then imported into the BRASS software.  There are two 123I-FP- -

CIT templates in this software one for FBP data and one for OSEM data.  The 

latter was used for this analysis.  The software runs using predefined settings, 

which cannot be altered.  Each image was analysed individually, using its own 

spatial registration, with the uptake figures being calculated after this 

registration process.  The program does not allow uptake calculations without 

this registration, or using the registration parameters of another image.  A visual 

check was performed for each image at the time of testing to confirm correct 

alignment.   

The uptake figures (for the left and right caudate and putamen) were recorded 

for each filter setting.  The uptake ratios were analysed to give the minimum 

uptake for each subject for both caudate and putamen.  This data was transferred 

into a statistics program (SPSS statistics, v19.0, IBM, USA) for further analysis.  

The uptake score for the two groups of patients were analysed using an unpaired 

t-test with a significance level of 0.05.   

The two uptake ratios were used as predictor variables in ROC analysis using the 

known classification as the outcome.  The Area Under the Curve (AUC) was 

calculated as a function of post-reconstruction filter.   
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6.6.2 Testing the Brass Package - Results 

BRASS Automatic alignment results 

For the 115 patients image volumes in dataset-A, no misalignment errors were 

noted.  Of the 78 patient volumes in dataset-B the number of patients for which 

the spatial alignment was deemed to be unsuccessful (based on visual 

assessment) was seen to be variable and possibly related to the filter settings. 

The whole brain volume as produced by the OSEM reconstruction package was 

used as the input for the BRASS program.  Each image volume was analysed 

individually.  The spatial normalisation step could therefore produce different 

transformations for the various image volumes for a single patient.  It was 

noticed during this process that a number of different spatial alignments were 

produced.  

For some of the alignments produced by the BRASS software the resulting 

positions of the uptake VOIs were obviously incorrect. A summary is shown in 

Table 6-1.  There appears to be general trend in that the smoothest images tend 

to have more misalignment errors.  One patient was badly aligned for all filter 

settings.  The alignment for this patient is shown in Figure 6-3.  A number of 

attempts to aid this realignment were attempted, including manual alignment 

prior to processing and cropping the image boundaries.  These were not 

successful.  Since the background region is outside the brain, the counts in that 

region are too low, and hence the striatal binding measures were very high.  The 

uptake scores for all the miss-aligned data were included as “not-a-number” i.e. 

incorrectly classified, so that these results could be compared with those from 
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other classification models, but would not skew the means and standard 

deviations.   

Table 6-1 Summary of alignment errors for BRASS program 

 Post reconstruction filter (cycles/cm) 
 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.8 2.0 NF 

Correctly 
aligned 

75 76 77 76 77 77 77 77 77 75 

Alignment 
error 

3 2 1 2 1 1 1 1 1 2 

 

 
Figure 6-3 Example misregistration of scan using the BRASS software 

BRASS Uptake Measurement  - Results 

The average caudate and putamen uptake ratios for the two patient groups are 

shown in Figure 6-4 and Figure 6-5 respectively.  The error bars displayed show 

+/- one standard deviation.  The non-filtered data is inserted using a dummy 

filter setting of 2.4 cycles/cm to allow it to be visualised.  
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Figure 6-4 BRASS-Caudate uptake as a function of post reconstruction filter 

 
Figure 6-5 BRASS-Putamen uptake ratio as a function of post-reconstruction filter 

For both caudate and putamen uptake ratios there was a statistically significant 

difference between the PS and Non-PS groups.  The putamen results show better 

separation between PS and Non-PS than the caudate uptake results.   

The Area Under the Curve (AUC) results for both BRASS caudate and putamen 

uptake ratios are shown in Figure 6-6.  The putamen uptake ratio is shown to be 

a better classifier than the caudate uptake ratio for all filter settings.  There is a 

drop in AUC at the two extremes of filter setting.  There is a broad maximum in 
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the AUC for the putamen uptake ratio corresponding to filter settings in the 1-

1.4cycles/cm range.   

 
Figure 6-6 BRASS ROC analysis results as function of post reconstruction filter 

6.6.3 Testing the BRASS system – discussion 

The putamen uptake ratio is shown to give very good accuracy in classifying 

between the two disease states.  This is likely to be due to the normal 

progression of disease.  This will generally start in the posterior section of the 

putamen and extend anteriorly with disease progression.  With such a 

progression the last part of the striatum to be affected is the caudate, which can 

show good uptake even at relatively advanced disease.   

The increase in uptake ratios follows the expected trend with increasing filter 

cut-off frequency.  When wider smoothing filters are applied they have the effect 

of blurring some of the counts within the striatum into the surrounding areas.  

The effect is greater for higher contrast studies, as the blurring of counts occurs 

in both directions – from the striatum in to the background and from the 

background into the striatum.   
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The drop in accuracy with the three smoothest filters can be explained by the 

realignment problems for some patients.  The drop in accuracy with sharper 

filters/no post-reconstruction filter may be in part due to the misregistered 

patients, but this does not explain this entire drop in AUC.  The increased noise 

levels in these images may have lead to changes in accuracy at these points, or 

undetected misregistrations that have altered the uptake.   

6.7 The QuantiSPECT packages  

6.7.1 Testing methods 

The two clinical datasets described in chapter 4 were analysed using the 

QuantiSPECT software.  Although this software contains a module to perform 

FBP reconstruction, it was not used.  Instead the various reconstructed data from 

the Hermes system (as described in Chapter 3) was used.  All three analysis 

packages were used to assess the uptake in the clinical datasets.   

As the uptake ROIs/VOIs were assessed visually there were no perceived errors 

in placement.  However, a number of the studies were considerably harder to 

align.  These were generally the studies where there was very low striatal 

uptake.  An example of one of these problematic image volumes is shown in 

Figure 6-7.   
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Figure 6-7 QuantiSPECT positioning uncertainty 

The three methods produce eleven uptake measurements.  In all but one of these 

measurements lower figures are correlated with PS and higher figures with Non-

PS diseases.  So for these readings the minimum score for each patient was used 

in the analysis.  The symmetry index is the one figure that does not follow this 

pattern as it scales from minus to plus infinity, with zero being normal.  To allow 

for analysis along with the other metrics the absolute of the asymmetry score 

was subtracted from 1000.   

6.7.2 The 2-Box Method - Results 

The mean SBI for the two groups of patients is shown in Figure 6-8 as a function 

of reconstruction post filter.  The error bars show one standard deviation for the 

two groups.  There is good separation for both groups at all filter frequencies.  

There is an obvious increase in the SBI when very smooth filters are used.   
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Figure 6-8 2-Box Striatal Binding Index as a function of the post reconstruction filter 

The results of the ROC analysis in the form of the AUC are shown in Figure 6-9 as 

a function of filter cut-off frequency.  The AUC from the original dataset is also 

shown corresponding to a post-reconstruction filter of 1.2cycels/cm for 

comparison.   

 
Figure 6-9 2-Box ROC analysis as a function of post-reconstruction filter 

6.7.3 The 2-Box Method - Discussion 

The SBI curves for the two groups of patients show very uniform response and 

are nearly independent of image filtering level.  Only at very smooth filters does 
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the SBI for the two groups change.  This uniformity of response is shown in the 

constant AUC results.  One of the goals of the authors originally proposing this 

technique was to create a resolution insensitive system and these results confirm 

this property.   

6.7.4 The 3-Box Method - Results 

The mean minimum TBPI figure for the two groups of patients as a function of 

the post reconstruction filter is shown in Figure 6-10.  The error bars reflect one 

standard deviation in the results.  The mean of the absolute asymmetry indexes 

for the two groups is shown in Figure 6-11 as a function of reconstruction filter.   

 
Figure 6-10 3-Box TBPI as a function of post reconstruction filter setting 
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Figure 6-11 3-Box Asymmetry index as a function of post reconstruction filter 

The results of the ROC analysis in terms of AUC for both the TBPI and the 

asymmetry index are shown in Figure 6-12.   

 
Figure 6-12 3-Box ROC analysis as a function of filter cut-off 

6.7.5 The 3-Box Method - Discussion 

As with the 2-box analysis, the large VOI size of the 3-box analysis gives a very 

uniform response with resolution.  However, the TBPI results show very large 

variation. There is considerable overlap between the two groups when the 

standard deviation is taken into account.  The main difference between this 
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technique and the 2-box system is the placement of the background region.  For 

the 2-box method this is automatically defined and encompasses the vast 

majority of the cerebellum.  In the 3-box system the background region is 

moveable and re-sizable, although in this work the default size was used.  With a 

fixed size and shape, the variations in this region can come from two factors.  

The first factor is blurring of counts from the striatum. The recommended 

placement of this region is posterior to the striatal regions.  In published work 

others have positioned it abutting the striatal regions 78.  Here the placement was 

centrally positioned, posterior to the striatal regions, with a gap of 4 voxels to try 

to limit the level of spill-over from the striatum.   

A second variation comes from the size, shape and position of the ventricles 

relative to the position of this VOI.  The ventricles hold cerebrospinal fluid in a 

central cavity in the middle for the brain and have zero DAT uptake.  The size 

and shape of these vary between patients and can grow in size with age.   

The asymmetry index shows very large variations in magnitude – especially 

when the uptake is low.  It gives poor results as a classifier on its own.  It may be 

possible to include this as a second step of a decision tree classifier.   

6.7.6 The Crescent method - results 

The mean of the minimum striatal uptakes is shown in Figure 6-13 as a function 

of reconstruction filter.  A sharp drop off in measured uptake is seen at the 

smoother filter settings.  The same over all patterns are seen in the putamen 

uptake ratios (Figure 6-14).  Above fco=1.0cycle/cm caudate and putamen uptake 

ratios show no dependency on filter.  Both curves show good separation between 
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the two disease states.  As with the BRASS system, the putamen uptake curves 

give better differentiation.   

 
Figure 6-13 Crescent method striatal uptake as a function of reconstruction filter 

 
Figure 6-14 Crescent method putamen uptake as function of reconstruction filter 

 

The ratio of caudate to putamen counts is shown in Figure 6-15 as a function of 

smoothing filter setting.  The ratio is constant for filters above 1.0cycles/cm.  At 

lower frequencies the ratio approaches 1 as the smoothing filter averages the 

signals from the two regions.   
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Figure 6-15 Putamen to Caudate ratio as a function of reconstruction filter 

 

The usefulness of these metrics as a classifier was tested using ROC analysis.  

Figure 6-16 shows the AUC for these results as a function of filter cut-off 

frequency.   

 
Figure 6-16 ROC results for the crescent method 
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6.7.7 The Crescent method - discussion 

The results from dataset-B show almost perfect AUC scores for the striatum and 

caudate results for all but the smoothest of filter settings.  The putamen uptake 

ratio is particularly good as a classifier.   

The results from dataset-A show lower AUC scores than dataset B.  However only 

the difference is PCR AUC score is statistically significant.   

6.8 Comparison of datasets 

The two datasets are described in chapter 4.  They were acquired with different 

matrix sizes and scan timing.   The composition of known diagnosis is slightly 

different but not statistically significant.  The AUC results were compared for the 

data from dataset-A and the data from dataset-B that had been smoothed with a 

1.2cycles/cm filter.  The comparison was made using the method outlined by 

Hanley and NcNeil 165 using a significance level of p=0.05.   

The two large VOI analysis modes (2box and 3box) both have higher AUC scores 

for the older dataset.  The two methods using the smaller VOIs achieved similar 

results for both datasets, with slightly lower values for the older data set.  

However these differences were not statistically significant.  The one pair of ROC 

curves that were found to be statistically significant were those from the PCR 

method, which had a particularly poor AUC result for dataset A.   

6.9 Reconstruction setting comparisons 

The variation in accuracy with filter setting was investigated using the better 

performing analysis techniques – the crescent and BRASS based uptake ratios 

and the 2-box model.  The AUC is plotted as a function of the smoothing filter 
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setting in Figure 6-17.  The VOI techniques described here show stable 

performance with image filtering.  These 5 methods are very stable for the range 

of filter 1.0-1.4 cycles/cm.   

 
Figure 6-17 AUC as a function of filter setting for a range of analysis techniques 

6.10 Method comparisons - sensitivity and specificity 

For all of the results described above the cut-off value for the various uptake 

metrics has been used as a variable in ROC analyses.  To use these results as a 

classifier, a specific cut-off must be chosen to give the diagnosis.  As shown in the 

ROC curves, a compromise must be made between the sensitivity and specificity 

of the tests.  Where this compromise falls depends on the use of the test, the 

severity of consequence for false negative or false positive results, and on the 

prevalence of the disease in the test population.  In this work we compare the 

maximum accuracy for the test population investigated here.  The maximum 

accuracies achievable with the different VOI classifiers are shown in  
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 for dataset B.  The maximum accuracy for each method is shown as a function of 

filter frequency in Figure 6-18.   

The results for the 2 BRASS methods include between 1 and 3 missed diagnosis 

that were a direct result of misalignment.  The uptake figures for those patients 

were not included, and a null results entered.  Each incorrectly classified subject 

means a drop in accuracy of 1.3%.  If these misaligned patients are not included 

in the analysis, the BRASS- putamen system reaches a peak accuracy of 0.97.   

From Figure 6-18 it can be seen that some of the methods are strongly 

influenced by image filtering, in particular the putamen-caudate ratio and the 

asymmetry index.  The Crescent-Putamen method gives the highest accuracy of 

all the techniques.  It also gives consistent performance across the levels of image 

filtering.  

Table 6-2 Comparison of optimised VOI methods using dataset B 

 Cut-off Sensitivity Specificity Accuracy 
Brass –Caudate 1.77 0.96 0.77 0.91 

Brass –Putamen 1.00 0.95 1.00 0.96 
2-Box 5.14 0.98 0.73 0.91 

3-Box 40 0.96 0.73 0.90 
3-Box AI 11* 0.79 0.86 0.81 

Cr Striatum 1.70 0.96 0.95 0.96 

Cr-PCR 0.84 0.95 0.95 0.95 
Cr-Putamen 1.52 0.98 1.00 0.99 

*All readings below cut-off values give positive diagnosis except for 3-Box-AI which is give 

a negative diagnosis if below the cut-off. 

 



225 
 

 
Figure 6-18 Maximum achievable accuracy for each classification model as a function of 

filter frequency 

 
The maximum accuracy achievable for the datasets A and B (using the optimum 

filter setting for dataset B) is shown in Table 6-3.  The cut-off values in this table 

are different for some of the measurements as the original dataset used 

attenuation correction.   

Table 6-3 Comparison of optimised VOI methods using both datasets 

 Cut-off 
Dataset A 

Accuracy 
Dataset A 

Cut-off 
Dataset B 

Accuracy 
Dataset B 

Brass –Caudate 1.68 0.87 1.77 0.91 
Brass –Putamen 1.19 0.93 1.00 0.96 

2-Box 4.85 0.91 5.14 0.91 

3-Box 44 0.91 40 0.90 
3-Box AI* - - 11 0.81 

Cr Striatum 1.5 0.91 1.70 0.96 
Cr-PCR 0.86 0.81 0.84 0.95 

Cr-Putamen 1.2 0.91 1.52 0.99 
*All readings below cut-off values give positive diagnosis except for 3-Box-AI which is give 

a negative diagnosis if below the cut-off. Asymmetry index not recorded for dataset A 

6.11 Variation with Age 

The uptake scores for the non-PS subjects data used above was used to test the 

use of patient age as a confounding feature.  The data used to give the best 
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classifications (used in Table6-2) was used.  The uptake scores were plotted as a 

function of patients’ age (in years, at time of scan).  A linear regression was 

performed on this data, to show the age dependence of these uptake figures.  A 

summary is shown in Table 6-4.  The average change in uptake values across the 

measurements was 6.6% per decade.   

Table 6-4 Age dependence of uptake figures 

 Slope Intercept r2 % change 
per decade 

Brass –Caudate -0.025 3.52 0.36 -7.1% 

Brass –Putamen -0.027 3.03 0.39 -8.9% 
2-Box -0.07 10.2 0.48 -6.9% 

3-Box -0.52 78.3 0.28 -6.6% 
Cr Striatum -0.017 3.31 0.22 -5.1% 

Cr-Putamen -0.017 3.22 0.24 -5.3% 
 
The data was used to calculate the 95% confidence intervals for the prediction of 

uptake measure, given age.  Due to the low number of subjects in the Non-PS 

grouping, the confidence intervals for this data are correspondingly wide.   

Figure 6-19 shows the PS and NPS data for the 2-Box analysis as a function of 

age.  A regression line has been fitted to the Non-PS data.  The classification cut-

off (defined above, Table6-2)  is shown giving a misclassification of 7 patients.  

The 95% confidence intervals from the regression are also shown.  Although 

there is clearly age dependence in the uptake score, examination of this graph 

shows that a better classification cannot be given using this extra information.   
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Figure 6-19 Age dependence of 2Box striatal binding index 

Figure 6-18 shows the same analysis performed on the crescent method 

putamen uptake ratio.  There is a single misclassified patient when using the 

non-age dependent cut-off (1.52).  Again, the age dependence is seen in the NPS 

subjects, however this extra information does not improve the classification.   

 
Figure 6-20 Age Dependence of Crescent-Putamen uptake ratio 

6.12 Variation with age – discussion 

The regression analysis on non-PS patients shows an age dependency for all 

uptake measures.  The average reduction in DAT uptake measurements of 6.6% 
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compares well with published figures of 4.1%, 150 4-6.7% 166 and 6.5% 167.  The 

caudate-to-putamen ratio does not exhibit an age related change that suggests 

that the age related changes in caudate and putamen are similar.  This age 

dependence should allow an age related cut-off to be used to give better 

classification however this has not been the case for this data.  Part of the reason 

for this is the number of subjects in the training set.  Fewer subjects in the NPS 

group mean quite widely spaced 95% confidence intervals.  The change in 

uptake with age is one of many factors that affect the uptake measurements.  

There is still a wide variation in uptake in the normal population that is not 

accounted for by age.  In the test-retest variability measurements published by 

Booij et al. 48 over 7% variability was seen in the healthy control group.  The non-

PS groups used here is, because of it origin, not a healthy control group.  They are 

patients with movement disorders that are thought to not have any of the 

Parkinsonian syndromes.  It is likely that such a group will have a normal 

variance as great if not greater than the healthy control group used in that work.  

Other factors that may contribute to the variation in uptake in the non-PS group 

could include subject medication history, and possibly scatter and attenuation 

effects.   

6.13 Commercially available methods – discussions 

In this chapter, four methodologies for assessment of DAT images were 

described and assessed under a range of conditions.   

The dependence on smoothing filter in for the crescent method uptake 

measurements is much lower than that of the BRASS methodology.  This 

difference may be down to the size of the VOIs used.  Unfortunately, it was not 
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possible to assess the sizes of the VOIs used in these two techniques.  A 

secondary factor may be in the performance of the image registration program 

used in BRASS.  Some misregistrations were found when analysing the second 

patient group, but it is possible that some other more subtle misregistration 

were not noticed during visual checking.  The large VOI methods showed very 

stable output with filter smoothing.   

The two methods that measure putamen uptake separately, the BRASS-Put and 

Crescent-Put measurements, performed the best across the two patient datasets.   
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7  

In the previous two chapters a wide range of classification techniques have been 

tested using a large dataset of clinical images from a carefully controlled clinical 

audit database.   

7.1 Overall accuracy 

The best performing commercial system was the crescent method using the 

putamen uptake index.  This gave 99% accuracy for training set B.  The novel 

SVD  based system developed in this work gave the same accuracy for the same 

data set.   

7.2 Variation with image smoothness 

Over all the various classification models here showed good stability in 

performance with image filtering levels.  This was despite the wide range of 

image qualities tested.   

There were some patterns in the performance when compared to filtering levels.  

The large VOI system showed the best performance with very smooth images.  

The 2-box method showed good uniformity of accuracy with image filtering.  The 

3-box method did not have this same uniformity most likely because of the 

variation in background VOI placement with respect the ventricles.   

A number of papers have been written discussing the measurement and use of 

cross camera calibration factors.  In them various striatal uptake measurements 

have been made on anthropomorphic phantoms 86,168 and some have been 

applied to ranges of healthy volunteers 80.  The uptake measurements used in 

those works have been included in this project, and found to be insensitive to 
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image smoothing levels.  Further more, these works have used single 

reconstruction software and parameters.  It must be surmised that differences in 

uptake seen across scanners may be linked to the scattering and collimator 

effects that are prevalent in 123-Iodine imaging.   

This could not be tested within this work as all the patients were being scanned 

on a single site and as part of clinical routine.  A further study could be 

performed in which volunteer patients are scanned on multiple scanners from 

single injections.   

7.3 Statistical and clinical significance of these results 

Most of these semi-quantitative methods are capable of providing excellent 

differentiation between the disease states.  The reason these techniques are so 

powerful is to do with the progression of the disease.  In Parkinson’s disease 

clinical symptoms only start to appear once there has been a significant loss 

(>50% change) in dopaminergic cells.  Such significant changes lead to high 

diagnostic performance.   

However, there remain some patients that do not get the correct diagnosis.  One 

group of patients who have been identified are those classed as Symptoms 

Without Evidence of Dopaminergic Deficit.  This group appear to have some form 

of Parkinsonian syndrome, but it does not follow the normal pattern of IPD or 

the other main Parkinson’s-plus syndromes.   

One reason that has been suggested for possible false negative scans when using 

123I-FP- -CIT is the non-specificity of the pharmaceutical.  The ligand is known to 

have an affinity for serotonin transporters (SERT) and well as DAT 39 169.  It has 

been suggested that the early stages of some Parkinsonian syndromes may 
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involve a compensatory up regulation of SERT in response to dopaminergic loss.  

At the time of writing no clear evidence of this effect has been published, but it 

may be a useful area for investigation in the future.   

In this study the gold standard diagnosis was given by a neurologist who was 

personally involved in the subjects care.  Whilst undoubtedly an expert, the 

complex nature of these diseases may allow a misdiagnosis to be given.  Having 

said that, the near perfect classification results given by the different 

classification methods suggests that so such errors have been made.  There are of 

course a number of patients in the original audit database for whom a correct 

diagnosis was not recorded.  By leaving out these patients the overall sensitivity 

and specificity of these tests are greatly exaggerated.  The only true gold 

standard for the measurement of accuracy of these tests is with post-mortem 

evidence and sufficient data for this is unlikely to ever be recorded.   

7.4 Overview and Conclusions 

The aims of this work as set out in chapter 1 and having reviewed the available 

results and data the following points can be made:  

The gamma camera performance characteristics for 123-iodine use were 

measured and used to optimise the clinical acquisition of SPECT imaging of the 

brain.   

The image quality for a wide range of reconstruction techniques were compared 

using a range of image quality metrics.  In the end the exact reconstruction 

settings were shown to have little effect on the ultimate image quality metric- 

their usefulness in giving clinical diagnosis.   
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Four commercially available DAT SPECT analysis programs were tested and 

compared under a range of settings.   

A collection of automatic classification techniques were developed using feature 

extraction and machine learning algorithms.  The a performance of these 

algorithms was compared directly to the commercial systems to test the original 

hypothesis for this thesis: 

 

“An automatic classification tool based on machine learning techniques 

will give better performance than currently available techniques.”   

 

The answer to this hypothesis is negative, but not because of failing in the novel 

technique developed here.  Rather, it is not proven because of the near perfect 

performance of both the novel technique, and one of the commercially available 

methods.   

7.5 Future work: 

The excellent results for the combined feature extraction and machine-learning 

system may be useful in the analysis of other imaging tasks, especially if the task 

involves two distinct image distributions.  One such group of imaging techniques 

is the measurement of amyloid plaque load in Alzheimer’s disease.   

These techniques could be applied to the database of images that are available as 

part of the PPMI project 170.  This project will include a large number of patient 

scans from a range of scanner.  The scan subjects are a mix of healthy volunteers 

and treatment naïve patients with Parkinson’s disease.  With improved statistics 
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of a much larger dataset, better distinction may be drawn between the analysis 

techniques described here.  

Although near perfect classification was reported for these datasets, a recent 

publication by Segovia et al. 171 used the results described here as a benchmark 

with which to compare a new classification procedure.  They utilised a PLS based 

transformation followed by a SVM classifier and showed an improvement over 

the techniques reported here.    
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