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Abstract 

Exposure models need to be developed which can be applied at the continental scale, while still 

reflecting local variations in exposure conditions. Land use regression (LUR) has been widely adopted 

to describe the spatial variations in air pollutants over the longer term but not for short-term time-

variable exposures. This study, therefore, aimed to develop and validate a space-time O3 model 

applicable to epidemiological studies investigating the health effects of short-term (e.g. daily) O3 

exposures at the small-area scale. 

A geographical information system (GIS) was developed, incorporating data from 1211 O3 

monitoring sites across Western Europe and a range of predictors, stored as 100m grids, including 

land cover, roads, topography and meteorology.  The spatial model consisted of a LUR model 

representing the long-term average for years 2001-2007. The monitoring sites were classified, using 

multivariate statistical techniques, into 13 site types based on a set of descriptive indicators, then 13 

temporal models represented by time functions were produced – one for each site type.  These 

were linked to the spatial model using probability of group membership as a weighting factor.   

Finally, local meteorological data were incorporated to produce the full space-time model to predict 

daily concentrations for point locations.   

The spatial and temporal models were individually evaluated based on agreement with 

measurement data from a reserved subset of 20% of the monitoring sites.  The performance of the 

spatial model was similar to other continental LUR models (R2=0.67; RMSE=7.64 µg/m3), while 

performance of the temporal models ranged from 0.3 to 0.5 (R2).  Including local meteorological 

data into the full spatial-temporal model improved correlation with the concentrations measured at 

30 monitoring sites in the Netherlands (R2= 0.42 without; R2=0.53 with meteorology).  

Modelling daily O3 over large areas at a fine spatial scale is possible using this approach.  Overall 

model performance was further improved as the temporal period was aggregated to weekly or 

monthly.  The model was applied to mothers in two birth cohorts in the European Study of Cohorts 

for Air Pollution Effects (ESCAPE) to provide daily O3 exposure estimates, which can be aggregated as 

needed to provide individualised exposures based on date of birth.  
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1 Introduction 

1.1 Rationale 

Ozone (O3) pollution in the lower atmosphere (troposphere) has been an issue of considerable policy 

concern for many years. Early concerns mainly focused on the potential for damage to ecosystems, 

but by the early 20th century risks to human health were also recognized, and in 1992 the European 

Union’s O3 Directive established both guidelines and short-term warning thresholds.  In 2002, 

further action was taken to control the emission of O3 precursors, and the Clean Air for Europe 

(CAFE) programme has led to implementation of a broader and more encompassing policy on air 

quality in Europe under the Sixth Environmental Action Plan1.      

Climate change is also likely to increase O3 levels in the atmosphere over the next century (Meleux 

et al., 2007) because there is a strong relationship between temperature and ambient O3 

concentrations. A statistical analysis in south and central Europe, for example, showed that between 

1993-6 and 2000-4, the number of days in which O3 concentrations exceeded the threshold of 

120µg/m3 increased by 8 days/year, as a consequence of the general temperature trend (EEA, 2008).  

Changes were most evident in urban areas: the same report noted that, while there was no change 

in O3 concentrations in the rural areas from 1990-2007, in urban and trafficked areas there was a 

continuing upward tendency.  Approximately 83% of the monitoring stations in European countries 

reported one or more exceedance of the threshold of 120µg/m3 in summer of 2007.  

The increase in O3 concentrations is of special concern due to its adverse health effects as 

determined through both toxicological studies (Hazucha and Lefohn, 2007, Cotgreave, 1996, 

Mustafa, 1990) and epidemiological studies (Le et al., 2012, Karakatsani et al., 2010, Hathout et al., 

2006, Park et al., 2005, Salam et al., 2005, Brook et al., 2002a, McDonnell et al., 1999).  

Many of these epidemiological studies have used relatively simple measures of exposure.  Most 

time-series studies have assessed exposures on the basis of the measured concentrations at the 

nearest monitoring site.  Given the sparse distribution of the monitoring networks, this has meant 

that large portions of the entire study population may be assigned to a single site. Inevitably this 

causes substantial exposure misclassification, by ignoring intra-urban variations in concentrations  

(Wilhelm et al., 2009).   

                                                           
1
 http://ec.europa.eu/environment/newprg/intro.htm last accessed:20

th
 April2012. 

http://ec.europa.eu/environment/newprg/intro.htm%20last%20accessed:20
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The limitations of the often sparse monitored data highlight the need to develop better techniques 

for modelling O3 concentrations for exposure assessment.  Because of the episodic nature of O3 

pollution, ideally these need to take account of temporal, as well as spatial, variations in 

concentrations.  Because of the growing need to estimate exposures over large study populations 

(either to support large epidemiological studies or for the purpose of risk assessment and 

management), models also need to be applicable at the continental scale – whilst still reflecting local 

variations in exposures. Few studies have yet attempted to map O3 concentrations at this scale and 

spatial resolution (Beelen et al., 2009). This suggests that, using appropriate techniques, it should be 

possible to derive high resolution maps of O3 concentrations to facilitate and increase the 

effectiveness of exposure assessment.   

As this brief introduction shows, and as stated by (Hoek et al., 2008), there is a need to develop air 

pollution exposures for health studies taking account of temporal variations on a fine temporal 

scale. The combination of time with spatial dimensions inevitably greatly increases the statistical 

challenges in the modelling.  On the other hand, exposure estimation is only likely to be reliable if it 

allows for both temporal and spatial variations in concentrations.  By the same token, improving 

exposure assessment in this way should improve the accuracy and sensitivity of studies designed to 

evaluate health risks from exposures to O3.  This will be the focus, and challenge, of this research as 

outlined in the aims below. 

1.2 Aims and objectives 

1.2.1 Aims 

The main aim of this study is to develop a powerful,  GIS-based methodology for modelling spatial 

and temporal O3 concentrations using a combination of land use regression model (LUR) and Fourier 

analysis techniques over a large study area, as a basis for estimating the health impacts in long (i.e. 

weeks, months and  years) and short-terms(i.e. days ) studies.  To optimise its usability, this 

methodology will make use of readily available data (both on ozone concentrations and the factors 

that determine them) and will be applicable at a range of both spatial and temporal scales. 
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1.2.2 Objectives 

The specific objectives of this thesis are as follows: 

1) Explore the spatial and temporal variations in monitored O3 concentrations across western 

European countries, in order to assess the importance of different components of variation, 

including year, season, day of week, hour of day, region/country and ‘site classification’, as a 

basis for devising an appropriate modelling strategy. 

2) Categorise the O3 monitoring sites on the basis of the temporal characteristics of their O3 

concentrations, using a set of indicators representing the main elements of variation 

deduced from objective 1. 

3) Develop an environmentally based zonation of site type that discriminates between these 

different site types, as a basis for extrapolating the measurements across the study area. 

4) Develop and validate a spatial model of long term mean O3 concentrations using GIS (i.e. 

LUR) techniques. 

5) Develop and validate a temporal exposure model, at hourly and daily level, by fitting 

trigonometric functions, to the measured concentration data in each site type. 

6) Combine the LUR and time function models to provide a space-time model of O3 

concentrations, and validate this against monitored concentrations at a reserved set of 

monitoring sites.   

7) Explore the potential to enhance this space-time model by incorporating additional, daily 

information on meteorology. 

1.3 Structure of thesis 

The thesis is organised as follows: 

 Chapter 2 presents a literature review related to: O3 chemistry and production; regulatory 

guidance on O3 concentrations; O3 trends in Europe and the ‘state of the art’ of O3 

monitoring and modelling; health effects of O3 exposure. 
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 Chapter 3 outlines the overall logic of, and steps in, modelling used in the thesis, and details 

the geographic information system (GIS) developed for this study, including description of 

the data sets used to define the variables used for modelling. 

 Chapter 4 focuses on the classification of the O3 monitoring sites, using hierarchical cluster 

analysis (HCA) of a set of indicators created to reflect temporal variations in concentrations, 

followed by determining the relationship between these site types and selected 

environmental variables, using multinomial logistic modelling (MLOR) to estimate the 

probability of membership of all site types at each unmonitored location.  

 Chapter 5 describes the development of the 100m resolution LUR model for Europe, as a 

basis for mapping long term mean O3 concentrations, and validation of the LUR using 

external data.  

 Chapter 6 describes the methodology for creating a time function model (TM), for each site 

type, using trigonometric functions in Fourier analysis and presents and discusses the 

results. 

 Chapter 7 explains the construction of the space-time model, combining the LUR (spatial 

model) with the TMs.  It also presents two case studies in which the model is applied to 

estimate exposures for members of existing cohorts at different spatial scales (local and 

country level). 

 Chapter 8 summarises the key findings of the research and discusses the potential sources of 

uncertainty in developing the space-time O3 model and the lessons learned from this work.  

It also includes discussion about the opportunities presented by this type of model, and 

implications for exposure assessment. 
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2 State of the Art 

2.1 Ground level O3 and health impacts 

Based on the latest European Environment Agency technical report (EEA, 2011), O3 and particulate 

matter (PM) are Europe’s most problematic pollutants in terms of health impacts.   Partly for this 

reason, but partly also because of the potential impacts on vegetation, considerable attention has 

been given to the problem of O3 pollution in recent years. This has helped to improve understanding 

of the mechanisms of O3 production and dissipation, and the need for policies to control O3 

concentrations in the troposphere.  This section outlines the formation of ambient O3 in the 

troposphere, current air quality guidelines for its control, and the potential health impacts from 

exposure to O3. 

2.1.1 O3 production in the troposphere  

Research on O3 chemistry and formation has expanded since the 1950s, partly in response to a major 

pollution problem in Los Angeles in the late of 1940s (Finlayson-Pitts and Pitts Jr, 2000a). This 

problem, which led to extensive incidents of human eye watering and plant death, was noticed 

during periods of sunshine and high outdoor temperature.  Laboratory experiments, involving the 

exposure of plants to a range of hydrocarbons (HC) and nitrogen oxides (NOx) in the presence of 

sunlight replicated these symptoms and pointed towards some interaction between air pollutants 

and sunlight as the cause.   Subsequently, O3 was pinpointed as a major agent in this process (Mills, 

1957). 

O3 is a secondary pollutant formed from a series of photochemical reactions between nitrogen 

oxides and volatile organic carbons (VOC) in the presence of sunlight. NOx, carbon monoxide (CO), 

non-methane volatile organic carbons (NMVOCs) and methane (CH4) contribute to different extents 

to O3 formation, but the most important O3 precursors are NOx and NMVOCs. As Finlayson-Pitts and 

Pitts Jr (2000b) reported, CH4 does not contribute significantly to O3 formation due to it slow 

oxidization in the troposphere; therefore the term VOCs used here refers to volatile organic 

compounds including only NMVOC present in the gaseous phase in the troposphere. VOCs result 

from human activities such as road transport, solvent use, industrial processes, energy production 

and distribution, waste disposal, and agriculture. Natural processes are also responsible for a 
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substantial amount of VOC including emission from plants, trees, animals, and bacterial processes in 

soils (Derwent, 1995). VOC from natural sources - e.g. isoprene from deciduous trees and 

monoterpenes from conifers - are more reactive than the VOC emitted from human activities 

(Derwent, 1995, Sillman, 1999). Figure 2.1 shows that the largest proportion of VOC emissions in 

Europe in year 2009 are from solvent and product use (45%), followed by road transport (15%).  

NOx includes nitrogen dioxide (NO2) and nitric oxide (NO), and both gases are mainly emitted from 

the human activities listed in the table of Figure 2.1 along with natural processes such as lightning, 

forest fires, and bacterial processes in soil. In general, road transport is the most important source 

for NOx in Europe, accounting for 43% of the emissions, followed by energy production and 

distribution (18%). CO is produced from incomplete fuel combustion and also from the natural 

biological processes in soil and plants. Most CO in Europe is emitted from road transport (34%) and 

commercial, institutional, and households (31%). 

In general, human activities such as road transport and highly populated built up areas (with 

industrial, commercial and domestic sources) are expected to contribute to high levels of O3 

precursors. 

 

Figure 2.1 Percent O3-precursor emissions by source in EEA member countries (EU-152) based on 
2009 data3 

For the definition of each source see Appendix A, Section II 

                                                           
2
 Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal,     

Spain, Sweden and the United Kingdom 
3
 http://www.eea.europa.eu/data-and-maps/indicators/emissions-of-O3-precursors-version-2/assessment-1 
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As summarised in Sillman (1999,2003) and Finlayson-Pitts and Pitts Jr (2000a), the interactions of 

these precursors in the formation of O3 involve the following reactions: 

VOC +OH  RO2 +H2O   Equation 2-1      

CO +OH  HO2 +CO2   Equation 2-2       

NO + HO2  NO2+ OH   Equation 2-3   

NO2+ hv  NO + O   Equation 2-4   

O+O2+ M  O3+ M   Equation 2-5   

NO +O3  NO2+O2   Equation 2-6   

    

These processes start with the reaction of VOCs or CO with the OH radical4 (equations 2-1 and 2-2).  

The resulting RO2 or HO2 radicals5 then convert NO to NO2, generating further OH radicals (equation 

2-3).  Through photolysis (hv), NO2 produces atomic oxygen (O) which further combines with O2, in 

the presence of other molecules (M), to form O3 (equations 2-4 and 2-5).   

During the night, in the winter season, and in areas of high NO emission (e.g. transportation 

corridors and power plants), NOx-titration occurs (removal of O3). In these situations equation 2-6 is 

dominant over equations 2-4 and 2-5. In the daytime, however, reaction 2-6 is balanced by the 

former reactions (equations 2-4 and 2-5).  

The above-mentioned reactions show that formation of O3 is controlled by the rate of the initial 

reaction of VOC and OH radicals (equation 2-1) and additionally the rate of NO and NO2 emissions 

(equations 2-4 to 2-6), as well as the presence of sunlight. Therefore, the relationship between O3, 

NOx and VOC is determined by complex photochemistry reactions.  The isopleth in Figure 2.2 shows 

the O3 concentration (in ppb) as a function of NOx and VOC emission rates. The dashed line 

represents the transition from VOC-sensitive to NOx-sensitive conditions and generally follows a line 

of constant VOC:NOx.  

                                                           
4
 Radical is formed mainly from photolysis of O3 followed by photolysis of nitrous acid and hydrogen peroxide. 

5
 Peroxide radicals: Number of organic chain attached to O2 (replacing H the original chain) as when propane (C3H8) react 

with OH to produce C2H7O2. 
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Figure 2.2  Isopleth plot of O3 concentrations in ppb from (Sillman, 2003) 

 

There is no simple “rule of thumb” for distinguishing between these two conditions in NOx-VOC 

chemistry. In general, however, NOx-sensitive conditions occur when there is relatively low NOx and 

high VOC which usually occurs in remote areas.  On the other hand, VOC-sensitive conditions arise 

when there is a relatively high NOx and low VOC concentration, as typically occurs near to power 

plants and transport corridors.  As Figure 2.2 shows, under VOC-sensitive conditions, O3 increases in 

response to an increase in VOC, while in NOx-sensitive conditions, O3 increases as NOx emissions 

rise. 

NOx-VOC chemistry thus varies from location to location and time to time.  Rural areas, for example, 

tend to be more NOx-sensitive than urban ones, but in the autumn may become VOC-sensitive. 

Large urban areas appear to be predominantly VOC-sensitive but NOx-sensitive chemistry may 

develop at locations downwind of major sources. 

In summary, O3 precursor concentration is affected both by the source characteristics and weather 

conditions.  The formation of O3 differs from place to place, and in any particular location may vary 

over time depending on the NOx-VOC-chemistry and conditions. 

2.1.2 Regulatory guidance for the control of O3 in Europe 

As mentioned in Section 2.1.1, the effects of O3 pollution were first recognised in the 1950s in Los 

Angeles. By the 1970s O3 was recognised in Europe as a pollutant of concern (TRS, 2008), and in the 

late 20th century, regulatory guidelines were established to control emissions of O3 precursors.  A 
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number of policies have since been introduced in Europe, aimed at reducing the release of O3 

precursors, and maintaining safe levels of ambient concentrations for human health and vegetation.   

O3 precursor emissions are regulated by a number of directives and standards, for instance the VOC 

Solvent Directive (e.g. 1999/13/EC), the European standards for road vehicles (e.g. Regulation (EC) 

No 715/2007), and a number of international protocols (e.g. Gothenburg Protocol 1999) under the 

United Nations Economic Commission for Europe (UNECE) Convention on Long-range Trans-

boundary Air Pollution (LRTAP convention), designed to cut emissions of O3 precursors6.  

These regulatory guidelines are defined to control the effects of O3 either on vegetation or human 

health, or both.  The most important in terms of health is the European Union Ambient Air Quality 

Directive 2008/50/EC (EC, 2008) which entered into force on 11 June 2008, replacing the 2002 

(2002/3/EC) O3 Directive. The current Directive sets out four O3 indicators for human protection, 

listed in Table 2.1.  These include a long term objective and target value as well as the information 

and alert thresholds.  

Table 2.1 O3 guideline limits as set out in EU Air quality Directive 2008/50/EC 

Objective Level(µg/m³) Averaging time 

Long-term objective  120 Maximum daily 8-hour mean 
within calendar year 

Target value  120, not to be exceeded more than 25 days 
per calendar year averaged over three years 

Maximum daily 8-hour mean 

Information threshold  180 One hour mean 
Alert threshold  240 One hour mean 
 
 

For health protection, a value of 120 μg/m3 for the maximum daily 8-hour mean was set as the 

target value and long term objective.  The target value aims to avoid, prevent or reduce harmful 

effects on human health, and is to be attained where possible over a given period (i.e. daily 8-hour 

mean).  In the O3 Directive, the target value of 120 μg/m3 should not be exceeded more than 25 days 

per year, averaged over a three year period.  The long term objective refers to the level to be 

attained in the long term, again with the aim of providing effective protection of human health.  The 

long term objective is defined as the O3 concentration, according to existing scientific knowledge, 

below which any direct adverse health effects are not expected.  For any given calendar year, mean 

O3 should not exceed 120 μg/m3.  

More recently, the WHO has updated the air quality guideline for O3 based on a review of further 

evidence. It should be noted, however that, unlike the EU Directive, the WHO guideline is not 

                                                           
6
 http://www.unece.org 
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mandatory in Europe. An air quality guideline of 100µg/m³ for a daily maximum 8-hour mean is 

defined as the limit needed to protect the general population. This guideline limit is based on new 

chamber and field studies, which indicate that adverse health effects are liable to occur even if the 

EU target value limit of 120µg/m³ was met (WHO, 2006).   

Additional thresholds have been set in the EU Directive to warn the public of high O3 concentrations.  

The information threshold is defined as the concentration of O3 which constitutes a risk to human 

health, especially the sensitive population (i.e. children, pregnant women, the elderly and people 

with respiratory diseases). Any exceedance of the information threshold (hourly O3 concentration 

above 180 μg/m3) should be reported to the EC by the Member State in which it occurred.  The alert 

threshold is defined as an hourly O3 concentration of 240 μg/m3, and is intended to represent the 

concentration of O3 above which constitutes a risk to human health for the general population. In 

this situation national authorities must warn the public and give advice7.  

2.1.3 O3 trends in Europe 

The extent to which these standards and guidelines are currently met varies considerably, both 

between countries and over time.  Between 1997 and 2009, the percentage of the urban population 

in Europe exposed to O3 concentrations above the 120 µg/m³ level rose from 13% to 61%, with most 

occurrences in Southern Europe.  Also, 95% of the total urban population in Europe was exposed to 

O3 concentrations above 100 µg/m³ between 2006-2008 (EEA, 2011). Extreme concentrations also 

seem to have become more extensive.  The highest one hour mean ambient O3 concentrations 

recorded in 2001, for example, were 360 µg/m³ in Spain and 387µg/m3 in France (EEA, 2001); in 

2008 the maxima reported were 302-399µg/m³ in Italy and 240-300µg/m3 in Belgium, Greece, Italy, 

Spain and Switzerland (EEA, 2009).  Exceedances of the threshold concentration of 120 µg/m³ over a 

two day period were reported at 28% of Europe sites in 2008 compared to 10% in 2001. Moreover, 

exceedance of the Long-term objective value of 120 µg/m³ has been fluctuating somewhat during 

the period 1997 to 2011 as demonstrated in Table 2.2.  These data also clearly show that O3 trends 

are affected by meteorological factors, with the greatest exceedances in both of the recent heat 

episode years, 2003 and 2006.  

 

                                                           
7
http://www.eea.europa.eu/maps/O3/resources/faq/what-is-the-difference-between-information-threshold-and-alert-

threshold 
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Table 2.2  Exceedances of the EU long term O3 objective of 120 µg/m³ for the protection of human 
health during summer in Europe (1997-2011), from (EEA, 2012) 

Summer 
season 

No. of 
stations 

Percentage of 
stations  reporting 

exceedances(a) 

Percentage of 
stations  

reporting 
exceedances(b) 

Maximum observed 8-
hour concentration 

(µg/m³) 

1997 756 92 28 243 
1998 811 91 31 263 
1999 1138 93 30 537 
2000 1206 92 29 242 
2001 1368 92 39 269 
2002 1421 89 30 310 
2003 1510 95 68 296 
2004 1545 91 27 256 
2005 1667 92 34 291 
2006 1764 95 53 399 
2007 1795 87 31 277 
2008 1905 90 22 399 
2009 1921 89 23 244 
2010 2193 85 27 262 
2011 2186 84 24 259 
(a) The number and percentage of stations at which at least one exceedance was observed  
(b) Above 25 days 

 

In principle, the long-term trend in Europe might be expected to be downwards, due to increasing 

controls on the release of O3 precursor gases, under EU policies.  In practice, the picture is much less 

clear. Wilson et al. (2012), for example, analysed O3 trends in Europe from 1996 to 2005 based on 

observations of 158 rural sites and reported an increase in annual mean O3 concentration of 0.16 

ppb each year. Similar findings were reported in the latest EEA report (2011) which says that, despite 

the reduction in the emissions of O3 precursors between 1999 and 2009, no corresponding drop in 

annual mean O3 concentrations (other than a reduction in peak concentration) could be detected.  

This might be due to a number of factors, including uncertainties in the emission data and the 

complex relationship between precursor emissions and O3 concentrations (NOx-VOC chemistry).  An 

earlier report, however, indicates that, during the summer of 2007 and 2008, exceedances of the O3 

threshold in Europe were low compared to 1997 due to a reduction in peak values (EEA, 2008).  

Median concentrations, however, showed an increasing trend, more prominently at traffic and 

urban monitoring sites; and at the most polluted sites, winter concentrations were tending to 

increase, apparently due to a reduction in titration by NOx emissions (Jonson  et al., 2006).  

Comparisons between different years are nevertheless difficult, due to changes in the number and 

location of monitoring stations, and in the reported indicators.   Interpretation of the trends is also 

made difficult by the poor spatial representativeness of the monitoring networks, and the low 
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spatial resolution of the data (Derwent et al., 2005).  As it now stands, therefore, O3 trends in Europe 

are not entirely understood. As these statistics also indicate, ambient O3 concentrations vary 

substantially over time and these fluctuations occur at different amplitudes – e.g. annual, seasonal, 

and daily – in response to changing rates of O3 formation and destruction.   

2.1.4 Health impacts of O3 

Exposure to ambient O3 in the lower atmosphere may lead to harmful consequence on human 

health that may occur either in the long-term or short-term. O3 may be related to different types of 

morbidity, such as respiratory, cardiovascular and adverse birth outcomes, and in severe cases it 

may lead to mortality.  These effects will be detailed below, in sections focusing on short term and 

long term health effects. 

Controlled laboratory studies and studies exploring the effects of exposure to mixtures of air 

pollutants have suggested that the effects of exposure to ambient O3 are independent from those of 

other air pollutants such as PM (UNECE, 2008). Over recent years, a number of epidemiological 

studies have investigated associations between atmospheric O3 and human health, using a variety of 

study designs.  Compared to studies of other regulated pollutants, such as PM and NOx, however, 

research is still relatively sparse.   

2.1.5 Short term health effects 

Most of the epidemiological studies of O3 to date have focused on short-term health effects, and 

have been either cross-sectional or time series in design. According to the Task Force on Health 

(UNECE, 2008), the majority of recent epidemiological studies have reported positive and significant 

associations between short-term exposure to different O3 concentrations and increased morbidity 

and mortality from respiratory diseases.  Inhaling O3, in the short term, can cause a variety of health 

problems, including lung damage, aggravated asthma, and increased susceptibility to respiratory 

tract illnesses such as pneumonia and bronchitis. The most consistent associations have been seen 

with impaired pulmonary function (WHO, 2008); for this outcome, increasing exposures to ozone 

were found to be correlated with increased medication usage (UNECE, 2008). 

A 2005 report by the WHO to update air quality guidelines evaluated all available evidence on the 

health impacts of ozone exposure, and this was further updated in 2008. Most studies considered in 



30 

 

 

the review identified significant positive associations between short term increases in ambient 

ozone and morbidity (WHO 2005). Less conclusive effects were reported, however, for 

cardiovascular disease and the more recent studies reported no association. A number of 

epidemiological studies, for example, found no association between acute exposure to ambient O3 

concentration and hospital admission due to cardiovascular diseases (WHO, 2008, Anderson  et al., 

2005); significant associations were observed in a few studies only.  Nevertheless, results of short-

term effect studies do suggest a link between ozone exposures and adverse cardiovascular events 

such as myocardial infarction (Ruidavets et al., 2005, Mustafid et al., 2012), heart failure  (Hoek et al., 

2001), and life-threatening arrhythmias (Rich et al., 2005).  

O3 is not only a risk factor for increased morbidity but is also estimated to be responsible for ca. 3 

million premature deaths world-wide each year, according to the World Health Organization (WHO, 

2006). It is also estimated that, in the European Union (25 countries), about 21,000 premature 

deaths occur annually after days with high O3 levels (WHO, 2008).  

Four meta-analyses have been undertaken of the relationship between O3 and mortality (UNECE, 

2008).  These suggested significant, independent associations between O3 exposures and different 

causes of mortality.  Impacts on respiratory mortality are strongest; those on cardiovascular 

mortality seem to be weaker.  These effects are not influenced by other air pollutants, weather 

factors (e.g. temperature and humidity), season or modelling strategy (WHO, 2006).  More 

information on individual studies relevant to this research can be found in Appendix A, Section I. 

2.1.6 Long term health effects 

The WHO (2008) report concluded that evidence for the long term effects of ozone has strengthened 

over more recent years and, while still less conclusive than short term effects, new evidence is 

emerging, for example on small airway function and asthma development. Epidemiological evidence 

of chronic effects is less conclusive than animal and autopsy studies, largely due to limitations in 

exposure assessment (WHO, 2008). 

Recent evidence has also suggested that lung diseases in adulthood are linked to conditions 

occurring during development in foetal and childhood life (Narang, 2010).  The foetal origins 

hypothesis postulates that delays in embryo growth and development during pregnancy could 

contribute to morbidity later in life. The effects may not only occur within childhood but can extend 

to adulthood, affecting metabolism, and potentially leading to heart problems or diabetes (Osmond 
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and Barker, 2000).  Recently, therefore, many papers have explored the association between air 

pollution and birth complications, including low birth weight (LBW8), preterm birth (PTB9), small for 

gestational age (SGA10) and congenital anomalies (e.g. heart defects and cleft lip). Overall, there is a 

growing body of evidence suggesting that exposure to O3 during pregnancy is associated with 

adverse birth outcomes (Salam et al, 2005; Hawang and Jaakkola, 2008; Hansen et al, 2009). 

Nevertheless, not all studies have reported significant associations between ambient O3 and adverse 

birth outcomes, and several studies have failed to detect any effect (Lee et al., 2008, Hansen et al., 

2007, Dugandzic et al., 2006). The literature to date is thus inconclusive. WHO (2008) and Derwent 

et al. (2008) accordingly argue that more epidemiological studies based on cohorts of susceptible 

individuals are necessary in order to assess and confirm the results of long-term exposure to O3.  

At least part of the variation in results reported in these studies of adverse birth outcomes might be 

associated with the choice of exposure metric and methodology. As noted most studies rely on data 

from routine monitoring sites. The distance between these and the participants may vary greatly, so 

how well they represent actual exposures, and the levels of uncertainty that might exist, are difficult 

to assess. Different ways of applying these exposure estimates to the study population have also 

been used. For example, one study (Salam et al., 2005) estimated exposure by weighting the data 

from the three nearest monitoring stations, up to a distance of  50 km from the participant’s zip 

code, using an inverse distance squared interpolation.  Exposures were estimated as monthly 

averages of O3 concentrations between 10:00am and 6:00pm, and allowance was made for both 

temperature and elevation; in the event that the nearest monitoring station was located within 5 km 

from the maternal ZIP code, data from that station was used directly, instead of by interpolation. 

Another study restricted participants to those living at zip codes within 4 km of the three monitoring 

stations within the study area (Le et al., 2012).   

These different ways of estimating exposures may have important effects on findings. Hansen et al. 

(2009), for example, reported that, when analysing all births for mothers residing within 12 km of 

the nearest monitoring stations, the association was not significant; however, for births within 6 km 

of the nearest monitoring sites there was a significant association between ambient air pollution and 

risk of heart defects. Notably, in the studies that found no association between ambient O3 

concentrations and birth outcomes, exposures were estimated mainly by using between one and 

                                                           
8
 Birth weight less than 2500g 

9
 Gestational age at birth less than 37 completed weeks 

10
 Birth weight below the 10th percentile of infants born at a given gestational age 
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four monitoring stations, regardless of the distance between the participants’ residential addresses 

and the monitoring stations (Hansen et al., 2007, Lee et al., 2008, Dugandzic et al., 2006). 

In summary comparison between the long-term health studies of O3 is difficult due to differences in: 

1) study type (e.g. retrospective, prospective, etc.); 2) participant characteristics (e.g. children, adult, 

and elderly); 3) exposure estimation (e.g. based directly on measurements from nearest monitoring 

station, interpolation, personal samplers); and 4) differences in symptoms studied. Definitive 

conclusions are hard to derive, although most of the studies tend to suggest an association between 

ambient O3 exposure and respiratory disease.  

2.1.7 Health Impact Assessment 

The estimation of relative risk is a fundamental step in any health impact assessment (HIA); health 

risks are simply a measure of the probability of experiencing health problems in response to a 

defined change in exposure.  The impact of a unit change in exposure on the health of any individual 

nevertheless depends on his/her age, sex and susceptibility. HIA thus involves comparing the health 

burden under different conditions: for example the current level of air pollution compared to some 

alternative (e.g. counterfactual) condition, or under different future conditions (e.g. a business-as-

usual and alternative, policy scenario) for a specified target population. 

As such, HIA requires information on three sets of factors: the air pollution concentration (and, by 

extension, population exposure) under each condition; the background incidence of morbidity or 

mortality; and the concentration-response or exposure-response function (CRF or ERF).  In this way, 

HIA provides a means of determining whether or not current environmental hazards (such as 

ambient O3) pose a problem in terms of public health (diagnostic assessments) or the potential 

health costs and benefits of proposed policies or other interventions (prognostic assessments)  

(Briggs, 2008).  Both types of assessment are a means of informing and supporting risk management.  

Both, also, represent the means by which environmental health sciences (epidemiology and 

toxicology) are translated into environmental health policy and management.   

The most important health outcomes associated with ambient O3 exposure in most epidemiological 

studies are acute responses - in particular in terms of pulmonary function, lung inflammatory 

reactions, respiratory symptoms, increased medication usage, hospital admissions and, in extreme 

cases, death.  In some cases, also, chronic health effects have been seen, notably in long-term 

reduction in lung function growth (Ihorst et al., 2004, Galizia and Kinney, 1999).  Amongst these, 
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death rates are often regarded as providing the most robust and significant indicator on health 

impact, and are recommended by the WHO as the main indicator of effect. This is based on several 

considerations.  First, death is well defined and relatively accurately registered; in contrast, 

uncertainties often occur in the diagnosis and reporting of other health outcomes.  Second the 

burden of death associated with ambient O3 exposure is large, and relatively easily detectable.  

Third, data on background death rates are available for most countries and easy to obtain.  Last but 

not least, death is usually the dominant influence on the overall impact on health, whether in the 

form of disability adjusted life years (DALYs) or economic cost.    

Various estimates of the environmental health burden of O3 pollution have been made.  O3 

concentrations above 70 µg/m3 (as a daily maximum 8-hour average), were associated with 

approximately 21,000 premature deaths/year in the EU-25, and 14,000 additional respiratory 

hospital admissions annually (WHO, 2008). The latter number was expected to increase due to 

population ageing, since people over 65 years of age are most at risk.  Other impacts may be less 

severe, but nevertheless affect the daily health of large populations: for example, limited activity 

days, increased medication usage for respiratory diseases (especially in children), and lower 

respiratory symptoms are estimated to account for a total of 8 to 108 million person-days of 

disability yearly in the EU-25 (Watkiss et al., 2005).  Most recent HIAs (WHO, 2008), however, report 

only short-term health effects at high concentrations, and have tended to neglect effects of short-

term exposures to O3 concentration less than 70μg/m
3, or of long-term exposures. They are 

therefore likely to under-estimate the true burden of disease attributable to O3. 

2.2 Monitoring and modelling O3 

As detailed in Section 2.1.3, ambient O3 concentrations vary both spatially and temporally. It is 

therefore important to consider both the spatial and temporal components in estimating ambient O3 

concentrations. In this section an introduction and illustration of some methods for temporal and 

spatial modelling are discussed. 

2.2.1 O3 measurement 

Measurements of air pollution have been employed to estimate exposure in epidemiological studies 

since the investigations of the London fog in 1952 (Ministry of Health, 1954). Methods for measuring 

ambient O3 range from simple techniques, such as use of passive samplers, to sophisticated and 



34 

 

 

expensive techniques such as those used in many ground-based monitoring systems – though all are 

typically based on some form of absorption spectroscopy.    

Passive samplers are generally used to define the background concentration and observe long term 

trends in average concentrations.  The advantage of these is that they can be deployed in large 

numbers, so can be used to determine spatial variations in O3 concentrations but only for specific 

(and relatively long) averaging times such as week or month.   

Active monitoring sites, on other hand, continuously measure the air pollutant concentration with 

high temporal resolution (e.g. every 5 seconds), and typically operate in a fixed location for a long 

time period (years).  These monitoring systems are usually established both to define air pollution 

distribution and pollution sources, as well as to give an alert system for the general public.   

Studies using these fixed monitors are highly dependent on the spatial distribution and density of 

the monitoring networks.  In the case of O3, this is a serious limitation since many networks were 

established primarily for ecological reasons – to monitor impacts on vegetation and habitats – so 

that they do not necessarily reflect the distribution of human populations well.  This may bias the 

results of epidemiological studies.  Additionally, because of their cost, the networks are inevitably 

too sparse to provide detailed information on spatial variations in O3 exposures.  

The majority of early studies relied on data only from the nearest monitoring site(s), and assigned 

this to everyone in the surrounding area, especially for epidemiological studies with a large spatial 

scale such as those outlined in Section 2.1.4.  Jerrett et al. (2005, 2009) showed that using the 

nearest monitoring station might lead to underestimation of the risks of mortality associated with air 

pollution, and especially with O3.  Assigning the same exposure score to large numbers of people 

may also mean that it is impossible to identify vulnerable participants who are more sensitive to O3, 

masking symptoms that would otherwise be apparent at lower concentrations.  As a result, 

epidemiological studies may be less sensitive than they would otherwise be, and health impact and 

risk assessments may be affected by large uncertainties.   

For detailed assessment of exposures, over both time and space, some form of modelling is 

essential. Of interest here are models to estimate O3 concentrations over both short and long time 

periods which in turn will enable the assessment of health impacts of O3 exposure for different time 

periods. Models should also provide a good basis for understanding the mechanism of O3 

production, thereby helping to identify how exposures might change in response to policies (e.g. for 

risk assessments or HIA) and guiding the establishment of policies to reduce exposures. 
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Use of models to estimate an exposure is nevertheless limited by a number of factors.  One is 

undoubtedly the lack of awareness about the models and their performance amongst 

epidemiologists.  Another is the complexity, and severe data demands, of some of the more 

sophisticated models. It is therefore informative to review some of the different approaches that 

have been developed to model ground-level O3 concentrations, both spatially and temporally. The 

following sections summarize the available methods highlighting their advantages and 

disadvantages.  The spatial models that are discussed are broadly divided into process models, 

interpolation techniques, geostatistical models, and regression methods.  The temporal models 

focus on moving average, autoregressive integrated moving average (ARIMA), and Fourier analysis.  

It should be noted, however, that dispersion models can be used to estimate both spatial and 

temporal variations.  

2.2.2 Spatial modelling 

The aim of spatial modelling is to produce a map (or database) of variation in concentrations across 

the study area.  This may be represented either as discrete points, as a grid (raster) or as some form 

of choropleth map. It is typically constructed on the basis of measured concentrations of O3, 

together with information about O3 precursor emissions and/or the influence of other factors such 

as atmospheric chemistry, transport and dispersion processes.  Depending on the type of model and 

its application, there may be the need for calibration with measured data from O3 monitoring 

stations. Once the relationship is established the model can be used to predict the concentrations at 

unmonitored locations.  The resolution of the spatial model depends on two main factors: the scale 

of O3 variations (e.g. from metres in urban areas to kilometres to tens of kilometres in rural 

environments), and the spatial accuracy of the input data.  The spatial models discussed here have 

been divided, generally, into four main types: process, interpolation, geostatistical, and regression 

models. 

2.2.2.1 Dispersion models  

Dispersion models are mathematical, dynamic models taking account of the key factors that affect 

pollution concentrations within the plume to calculate concentrations at different places. The key 

parameters within the model thus aim to represent the different atmospheric processes such as 

dispersion, chemical reactions and physical processes that control O3 concentrations.   The 
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performance of dispersion model is determined therefore by the accuracy of representation of the 

specific processes included in the dispersion model (Holmes and Morawska, 2006).  

There are different types of dispersion models including box models, Gaussian, Lagrangian, and 

Eulerian models (Holmes and Morawska, 2006).  The box model is the simplest.  It assumes that the 

volume of air can be approximated in a form of a box and uses the assumption that air pollutants are 

homogeneously distributed in the box, thus averaging concentrations inside the box. Though widely 

used for broad-scale modelling, this approach clearly has limited utility for modelling highly localised 

O3 concentrations, as variations in O3 are known to be affected by the local changes in meteorology 

and emission rates of O3 precursors.  

Lagrangian and Eulerian dispersion models are similar to box models in that they also define the 

volume of air with an initial concentration.  Concentrations are subsequently modelled as the box 

moves downwind, using either the coordinate system for Lagrangian models or a fixed three-

dimensional grid in Eulerian models.  The Gaussian approach is especially widely used in atmospheric 

dispersion models, partly because of its relative simplicity. It assumes that the air pollutant has a 

normal probability distribution both horizontally (across the plume) and with height.  It is often used 

for predicting the dispersion of continuous air pollution plumes produced from different sources 

such as industrial stacks or linear sources such as roads. Gaussian models  are considered more 

suitable for considering the local changes in the pollutant environment, as suggested by Colvile and 

Briggs (2000), and are widely used nested within Lagrangian  and Eulerian models (Holmes and 

Morawska,2006).   

The Community Multiscale Air Quality (CMAQ) model simulates the chemical and physical processes 

such as transport, deposition and chemical transformation which influence distribution of O3 

concentration (Daniel and Denise, 2006, Byun and Schere, 2004). This model is one of the recent air 

pollution dispersion models developed for regions with complex terrain and topography. CMAQ 

comprises three modelling components: a meteorological modelling system (e.g Model-3), a 

component for modelling for both the anthropogenic and biogenic emission, and a chemistry-

transport modelling component, as described by Byun and Schere (2004). Sokhi et al. (2006) used 

CMAQ to predict hourly O3 concentrations for July and August 2002 over London city. A model was 

run at a 9km averaging scale, and then refined to a 3 km scale, before finally being targetted at a 

1km level. Model performance was evaluated by comparing the model estimates to observed 

concentrations from nine background urban sites. The correlation was 0.7, with a normalised mean 



37 

 

 

square error (NMSE) equal to 0.43 and 0.40 for 13-17 July and 14-18 August, respectively. Fractional 

Bias (FB) was also computed and indicated over-prediction.  

At the continental scale, Daniel and Denise (2006) have used CMAQ to examine the spatial variability 

of O3 concentrations in July 1996 over continental USA.  A 36 x 36 km grid was used. They reportedly 

best predicted the hourly concentrations for intermediate observed concentrations (40-60 ppbv 

which is ~ 80-160 g/m3) obtained from 1110 monitoring sites. The model tended to over-estimate 

the lower concentrations in rural sites and under-estimate the higher concentration at urban and 

suburban sites, with a mean bias of 12 g/m3; however, when data was averaged over longer period 

the errors decreased. Shi et al. (2012) also used CMAQ to gain further understanding of the 

dispersion processes during events with high O3 in southwest USA. Their model domain covered the 

southwest USA and had a grid cell size of 36 km. Model performance was determined (on the basis 

of independent ground O3 measurements) by the correlation coefficient (R). For the 8-hr maximum 

O3 concentration, for June–July 2006, the correlation was 0.5 between observed and modelled 

concentrations.   

An intensive data collection campaign and simulation was performed by Gariazzo et al. (2007), using 

the Flexible Air quality regional Model (FARM) to predict different air pollutants, including O3, in 

Rome. FARM is a 3-D Eulerian model that deals with multiphase chemistry of air pollutants and 

transport.  A nested approach comprising three domains was adopted: a large domain covering the 

Italian peninsula (16km grid), an intermediate domain for central Italy (14km grid), and a target 

domain including Rome (1km grid). The last of these was used to capture meteorological and 

chemical processes. The performance of this model using observed data from three monitoring sites 

was evaluated on the basis of the FB and NMSE. Results gave 0.3>FB>-0.3 and NMSE<4, implying 

good agreement between modelled and observed concentrations. 

Global dispersion models are also available which attempt to simulate the chemical tropospheric 

processes that determine O3 concentrations at broad scales.  One such model is the global three 

dimensional model (GEOS-CHEM) developed by Bey et al. (2001).  A crucial feature of this model is 

the simulation of O3-NOx-HC chemistry, as a major factor controlling the formation of ground-level 

O3. As inputs, the model requires observations of 20 meteorological factors, and transport rates for 

24 chemical tracers to describe the O3-NOx-HC chemistry, as well as photochemistry data for 80 

pollutant species and more than 300 reactions, emissions (NOx, CO, CO2) and deposition rates.  All 

these data were used to simulate O3 concentrations for the year 1994 on a 4° x 5° grid using the 

Goddard Earth Observing System (GEOS).  Simulations for 1-year gave estimates of O3 
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concentrations within approximately 20µg/m³ of the observed concentrations worldwide.  However, 

the model tended to under-estimate summer season concentrations in northern mid-latitudes.  

Another global dispersion model is the UK Meteorological Office tropospheric 3D chemistry-

transport model (STOCHEM), described by Derwent (2001). This consists of three fields: a chemistry 

field, which includes 70 chemical species involved in 170 chemical and photochemical reactions; an 

emissions field, which includes global datasets of annual emissions of O3 precursors; and a 

meteorology field, which includes data on 50,000 air parcels.  EUROSTOCHEM is a regional-scale 

derivative of this model.  It has been developed to predict ground-level O3 at high temporal 

resolution and for a spatial resolution of 150km x 150km, to give estimates of the maximum hourly 

O3 concentration. The model consists of the same three fields as its parent model STOCHEM, but 

increases the number of air parcels it can handle to 500,000 (Hayman et al., 2002). The 

EUROSTOCHEM model has been shown to reproduce well the maximum hourly O3 concentrations 

observed daily at each site, but to be less successful at simulating the full diurnal behaviour. 

As these global dispersion models clearly show, models of this type are exceedingly complex, and 

require a mass of input data, on atmospheric chemistry, emissions and meteorology. Running them 

also requires specialist expertise. These requirements inevitably limit their utility for many 

applications, including most health studies. Probably for this reason, they have not been widely used 

in epidemiological studies or for HIA.  

In light of this, simpler models of O3 concentrations are needed that can be applied to large study 

populations, at relatively high spatial and temporal resolution, on the basis of readily available data. 

In recent years, also, GIS have been increasingly used to model and map air pollution.  The goal in 

this project is to use of GIS (and associated statistical) methods, as a means of developing a robust 

model of ground-level O3 concentrations, for the purpose of exposure assessment.  

2.2.2.2 Interpolation 

Interpolation methods are perhaps the most well-established and basic method of modeling in GIS.  

They involve estimating conditions at unmonitored locations on the basis of information from 

surrounding, or nearby, locations.  As Briggs (2005) thus shows, they can be used to construct an air 

pollution surface using data from the available monitoring sites. 
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Interpolation methods can be used to develop a spatial model for a set of observations (Y) from any 

number (n) of sites (S) (i.e. Y (Si ), i =1,….,n) distributed spatially over a predefined study area. These 

data are used to predict values for unmonitored locations Y (S0) within the study area.  

Many different methods of interpolation have been developed, including what can be termed global 

and proximal techniques (Burrough and McDonnel, 1998).  The former attempt to fit a single (global) 

model to the complete data set; the latter develop models for each locality only on the basis of 

nearby sites. Trend surface analysis is the most widely used global interpolation method.  In the case 

of air pollution, however, proximal methods are generally likely to be more effective, because they 

are more likely to capture the local variability that typically occurs, especially in urban areas. 

Probably the simplest method of proximal interpolation is Thiessen tessellation. This creates 

polygons around each monitoring station so that each location is assigned to its nearest monitoring 

station.  An advantage of the technique is its ease of use and computational speed, making it 

possible to estimate exposures for large numbers of individuals. It inherently assumes, however, 

that the pollution surface is flat and disjunctive – i.e. it does not vary within the area nearest to any 

site, but then changes abruptly at the boundary with the next monitoring site.   Implicitly, this is 

what is assumed when exposures are assessed by assigning people to their nearest monitoring sites.  

A range of more sophisticated, and realistic, methods of interpolation are available using GIS, each 

based on different underlying assumptions about the spatial structure of the air pollution surface.   

Inverse distance weighting (IDW) is perhaps the most commonly used in air pollution epidemiology 

(Briggs, 2005b). It is based on the principle that nearby data points provide more information about 

conditions at a target location than those further away.  It thus weights the information from the 

different monitoring sites as an inverse function of distance, and then averages the weighted 

concentrations to give an estimated concentration at the target location.  Different inverse distance 

functions may be used: while a linear function (1/d) can sometimes be assumed, in many studies a 

non-linear function (e.g. 1/d2) is preferred.   

Two techniques for applying IDW are triangulated irregular networks and moving window 

techniques.  Both these approaches are easy to apply, but need a dense network of monitoring 

stations to work effectively. They also depend on user decisions regarding both the function of 

distance and the window size and shape. 

Interpolation from monitoring sites located within urban areas will often over-estimate  the 

concentrations, because monitoring sites are often located at places of known or suspected high 
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concentrations (to detect non-compliance with policy standards). Also, interpolation should ideally 

be done only within the range of the measured data, since extrapolation outside this range is 

uncontrolled, and may lead to implausible estimates. In addition, simple interpolation techniques 

take little or no account of the factors that might affect concentrations, and thus warp the shape of 

the pollution surface, between monitoring sites (e.g. local emission sources).  For these reasons, 

interpolation is rarely likely to provide the best estimates of concentrations, and cannot be 

considered reliable for predictions in different areas or time periods. 

2.2.2.3 Geostatistical methods 

1) Kriging 

Kriging is a well-known geostatistical method that relies on a set of monitoring stations within the 

study area to estimate pollutant concentration and standard errors (kriging variation) at 

unmonitored locations (Jerrett et al., 2007). Kriging is comparable to IDW except that the weights 

are based not only on the distance between the measured points and the prediction location but 

also on the total spatial structure of the measured points. The general equation for kriging can be 

expressed as: 

    Equation 2-7 

where: Zs0 = the prediction location, λi = an unknown weight for the measured value at the ith 

location, Z (si) = the measured value at the ith location, and N = the number of measured values.  

The approach is based on the principle of regionalised variables with the assumption of spatial 

homogeneity, which implies three main components of spatial variation: drift, spatially correlated 

random variation and noise. The first of these is usually computed using some form of trend surface 

analysis.  The two latter are modelled by computing the semivariance, representing the association 

between the difference in monitored concentrations and distance apart of each pair of monitoring 

sites.  Once the model is computed, a moving window is passed across the map to estimate 

concentrations at the unmonitored locations within the study area, using the function derived from 

the semivariogram see Figure 2.3. 

A semivariogram typically shows three features: the nugget, sill and range. The nugget represents 

any unresolved variation in measurement within distances less than the minimum separation of the 
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monitoring sites. The sill is the value of the semivariance at the range, which is the distance where 

the modelled semivariance levels out: beyond this distance there is no spatial autocorrelation. 

 

 

  

 

 

 

 

 

Figure 2.3: The components of the semivariogram  

 

There are several kriging methods, of which ordinary kriging and universal kriging are the most 

common. The former is the most general and widely used method, and assumes that the constant 

mean is unknown. The latter method should only be used when there is a trend and a scientific 

justification can be given to describe it. 

The main limitations of kriging are the requirements that monitoring sites should have a reasonably 

homogenous distribution and be dense enough to represent variations in pollutant concentrations at 

the relevant spatial scale (Jerrett et al., 2004). Any violation of this requirement will lead to errors in 

estimation.  

2) Co-Kriging 

To overcome the lack of homogeneity in data distribution, which is the case in this study, one or 

more secondary variables (i.e. covariates) that have a dense spatial distribution, and are correlated 

with the primary variable of interest, can be used in co-kriging. To get precise prediction (i.e. small 

error) the correlation between the secondary (predictor variables) and primary variables (dependent 

variable) has to be high. 
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Many studies have applied co-kriging for air pollution interpolation (Phillips et al., 1997, Singh et al., 

2011, Sargazi et al., 2011). Philips et.al. (1997), for example, assess the impact of ambient O3 on 

forest ecosystems by modelling the O3 concentration from 165 monitoring stations in Loblolly pine in 

southern USA, using four interpolation methods: inverse distance weighting, inverse distance 

squared weighting, ordinary kriging and co-kriging. The covariate used in the last of these was the 

synthetic O3 exposure potential Index which correlated with O3 concentration at R = 0.6. The results 

showed that estimation of O3 concentration was more precise when using co-kriging compared to 

the other three methods. Use of co-kriging is not easy with ArcGIS (the most widely used GIS), 

however, so specialist software has to be used.  This has greatly limited its application in 

epidemiological studies.  Care is also needed in selecting relevant, and well-measured, covariates, 

which must reflect the local variations effectively. 

2.2.2.4 Regression based models 

Land use regression (LUR) is now a popular GIS-based approach for estimating air pollution exposure 

for participants in epidemiological studies. LUR uses geographic attributes to predict the spatial 

distribution of air pollution over a defined area, typically for long-term average concentrations.  

LUR (originally known as regression mapping) was developed in the Small Area Variations in Air 

quality and Health (SAVIAH) study undertaken by Briggs et al. (1997).  LUR uses the monitored 

pollutant concentrations of interest as the dependent (predicted) variable, and variables such as 

traffic, land cover, and other geographic variables of interest (as proxies for air pollution sources) in 

defined distance(s) as the independent (predictor) variables, in a multivariate regression model. 

Pollution concentrations can then be predicted for any location, such as individual homes, using the 

derived parameter estimates from the regression model. 

Over recent years, this approach has become widely used in epidemiological studies (Beelen et al., 

2009, Beelen et al., 2008, Jerrett et al., 2007, Ryan, 2007, Sahsuvaroglu et al., 2006, Ross et al., 

2005). The performance of LUR techniques nevertheless varies depending on the nature of the 

spatial variation and the specific characteristics of the data (Briggs, 2007) and the pollutant being 

modelled. In addition the variables included in LUR models have varied by study, depending on the 

quality and type of data available, as well as the geographic location of the study area. There is some 

evidence from studies that there is correlation between model performance (e.g. the coefficient of 

determination between predicted and observed concentrations) and the number of sample sites, 

but the exact location of the sites and how they reflect the spatial distribution of emissions have a 



43 

 

 

strong impact on the model R2 (Basagaña et al., 2012, Wang et al., 2012). Several studies have shown 

that incorporation of site-specific variables into LUR methods enables detection of small area 

variations more effectively than other methods of interpolation (Gulliver et al., 2011, Gilliland et al., 

2005, Jerrett et al., 2004, Collins, 1998, Briggs et al., 1997). 

Generally, LUR seems to provide good estimates of air pollution, with R2 typically in the order of 0.6-

0.8, and low standard errors (Hoek et al., 2008) . Briggs et al. (2000) and de Hoogh (1999)  found that 

LUR predicted measured concentrations better than dispersion models.  Compared to dispersion 

modelling, LUR is also an easy procedure that is far less demanding in terms of data or computation. 

Jerrett et al. (2004) also showed that LUR was more effective than geostatistical techniques (kriging) 

and dispersion models in predicting localized variation of air pollution. 

Few attempts have been made to apply any of these GIS-based techniques to O3, especially at the 

continental scale.  Nevertheless, the studies carried out to date suggest that spatial modelling of 

long-term O3 concentrations could be achieved using GIS based techniques, especially LUR (Beelen 

et al., 2009, Nikiforov et al., 1998).  Attempts to enhance LUR by incorporating time into these 

modelling techniques have also not been made to date, especially in terms of short-term (daily to 

seasonal) variability.  Potential methods for temporal modelling are described next.  

2.2.3 Temporal modelling 

Like spatial variability, temporal variations in air pollution can be thought of as comprising three 

different elements: a systematic or repeated variation (periodicity) due to the regular effect of 

repeating factors, such as temperature variations between seasons, photochemical variations 

between day and night, or the diurnal variation in traffic volumes; a random, temporally correlated 

component, due to extraneous factors, such as weather; and true random variation, or noise. The 

question in modelling temporal variations is how to describe these three components of variation.  

Modelling the random temporally correlated influences is only feasible if models can be generated 

of the extraneous agents causing these disturbances.  In many cases, therefore, temporal models are 

more concerned with the systematic variations.  In many time series studies, for example, variables 

are incorporated to reflect the seasonal variations that might impact on health.  Time series data 

may, however, include a number of different repetitive patterns, which are partly hidden by noise.  

Detecting these, and determining appropriate models to represent them, is therefore difficult.  

Numerous approaches have been developed. Three possible approaches discussed here include 
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moving average (Cleveland and Devlin, 1988), autoregressive integrated moving average (ARIMA) 

and Fourier analysis model (Piegorsch and Bailer, 2005). 

2.2.3.1 Moving average 

The simplest approach to model a temporal signature is moving averages.  Locally weighted 

regression or LOESS functions are also a robust extension of the moving average approach. Moving 

averaging is used with time series data to smooth the short-term fluctuations and emphasise the 

long-term fluctuations. LOESS was developed by Cleveland and Devlin (1988) for three purposes: to 

derive modelling diagnostics, to provide a nonparametric regression surface and for data 

exploration. This is done by building in a polynomial function using weighted least squares, where 

near points are weighted more than far points based on a scatterplot of the data. This method is 

used to add some flexibility to linear regression by incorporating a non-parametric function which 

then makes the linear effects easily apparent. The LOESS function is defined based on: order of 

polynomial d, weighted function W, number of iterations for a robust fitting t, and the size of the 

smoothing parameter ƒ. The first three items have to be suited to all situations, while the smoothing 

parameter has to suit the data based on the scatterplot (Cleveland, 1979). 

In assessing the geophysical (i.e. solar radiation and geomagnetic activities) effects on incidence of 

suicide, Partonen et al. (2004) analysed data for 27,469 individuals in Finland, who committed 

suicide between the period of 1979 to 1999. In Poisson regression (using LOESS functions) the daily 

number of suicides and the daily mean and maximum levels of geomagnetic activity were modelled 

with the population by region as the denominator.   They found a strong seasonal effect, with the 

greatest occurrence of suicide in the spring. 

In epidemiological studies exploring the impact of air pollution on human health (Schwartz, 2005, 

Schwartz, 1999) likewise used LOESS functions to control the nonlinear dependency of health impact 

with weather and season. For instance, to explore the association between air pollution and daily 

hospital admissions for heart disease since 1993, Schwartz (1999) used Poisson regression including 

nonparametric smoothing functions for the included covariates as expressed in equation 2-8:  

Log [E(Y)] = βо + S1 (Χ1) +………+ Sn(Χn)   Equation 2-8 
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where: E(Y) is the expected value of the daily count of admission, Χ is the covariate, and S is the 

smoothing function.  The result confirmed that the association between PM10 and CO with hospital 

admission was independent of weather and other pollutants (O3 and SO2).    

Moving averages are an effective way of detecting and describing both trends and systematic (e.g. 

seasonal) variation in time series data.  The models they provide, however, are entirely conditioned 

to the data used, and cannot be assumed to represent underlying variations which might be 

applicable more generally.  For this reason, it might be expected that new models need to be 

developed for each data set or each situation (e.g. area, study period or policy context). 

2.2.3.2 ARIMA 

 ARIMA methods are a further statistical extension of the moving average approach.  As developed 

by Box and Jenkins (1976) they identify the hidden pattern in time series data for the purpose of 

generating forecasts. As expressed in equation 2-9, ARIMA uses the past dataset (xt-p) and/or error 

(εt) to model the general dataset (xt), where AR (p) determines the number of steps in the past 

dataset that are needed to forecast the present dataset.  MA (q) represents the white noise up to lag 

(q), while Ф and Ѳ are the autoregressive and moving average coefficients, respectively (Makridakis 

and Hibon, 1997). 

Xt=Ф 1 xt-1  + Ф 2 xt-2+…+ Ф p xt-p+ εt – Ѳ1 εt-1- Ѳ2 εt-1-….- Ѳq εt-q                  Equation 2-9 

 

ARIMA attempts to exploit the autocorrelation for predictive purposes. Analysis, typically, involves 

three stages. First, based on patterns of autocorrelation and partial autocorrelation a primary model 

is developed. Then, parameters of the model are estimated on a temporary basis. The final stage 

assesses to what extent the values of the parameters estimated in the primary model are consistent. 

These three stages are repeated in order to achieve a model consistent with a specified time series 

of data.  

ARIMA has been used in a range of different disciplines: for example, in predicting the number of 

hospital beds during a disease outbreak (Earnest et al., 2005), predicting the daily physical activity of 

950 participants in the Netherlands to promote healthier lifestyle programme (Long et al., 2009), 

and forecasting air pollution (Kumar and Jain, 2010). In the last of these, daily concentrations of O3, 

NO2, NO and CO for one year in India were used to build a forecasting model for daily 
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concentrations. For 20 of the sample forecasts, one day step ahead, RMSE values of 11.4, 10.9, 15.7 

and 239.3 for O3, NO2, NO and CO, respectively were achieved. 

As the above example illustrates, ARIMA models are most effective when the temporal extrapolation 

(i.e. prediction) is short.  Use of ARIMA models to predict over the longer term is likely to be 

unreliable, for there is little guarantee that the patterns identified in the past data represent 

underlying patterns, and will be replicated into the future.  The success of an analysis using ARIMA 

also depends on the level of experience of the researcher (Bails and Peppers (1982).  If used 

incorrectly, there might be a mis-specification of the periodic properties of the predicted data (Tiao 

and Grupe, 1980).  In addition, ARIMA models may be arbitrary and difficult to interpret (El Raey et 

al., 2006). Based on a review of time series extrapolation, Armstrong ( 2001) concludes that models 

work effectively only if: the pattern of the time series results from a straightforward reaction (i.e. it 

is easy to explain the relationship of the series), dataset properties are stationary through the time, 

and unsystematic variation caused by random sources is not important. Unfortunately for the 

researcher, these three conditions rarely occur together.  

2.2.3.3 Fourier analysis  

Fourier analysis attempts to reveal and describe hidden systematic patterns in time series data.  It 

does so in the form of the sum of trigonometric functions (sine and cosine).  Typically, successive 

trigonometric function terms - referred to here as time functions - are added to produce a complex 

curve using regression analysis.  

Fourier analysis is a well-established approach which has been widely used in contexts involving time 

series comprising one or more repeated signals, disturbed by noise.  Much of the development of 

the approach has been done in engineering – especially in relation to signal processing of 

communications data (e.g. radio, telephone).  More recently, however, the approach has found 

favour in other disciplines, including Technology, economics and environmental sciences.  

It is widely used in technological fields that require methods to describe and model time-varying 

phenomena such as digital communications system (Proakis and Salehi, 2002), where the analysis of 

signals in the frequency domain is done through employing Fourier analysis. In the environmental 

field, (Richards and Baker, 2002) explored  the quality of water in four rivers in North-western Ohio 

between 1975 and 1995.  In their analysis, seasonal variation in flow over time was incorporated as a 

covariate in regression analysis in the form of time functions in pairs (2.π.time and 4.π.time). The 
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first pair produces waves with one maximum and minimum while the second pair produces two 

maxima and minima per year.  Another study was conducted to analyse the seasonal and inter-

annual variation in satellite time series imagery for different types of land cover condition using 

Fourier analysis.  Performance was compared against a normalized difference vegetation index, and 

the results confirmed the ability of Fourier analysis to characterise and identify the different type of 

land cover conditions occurring in southwest Kansas, USA  (Jakubauskas et al., 2002). 

In epidemiological studies, time functions have been used for several different purposes.  A study by 

Harlap (1974) exploring the role of environmental factors in the incidence of Down’s syndrome 

presented the monthly rate of Down’s incidences adjusted by maternal age for 42,340 births in 

1964-1970 in terms of time functions for different numbers of maxima and minima during the year 

(1.π.time, 2.π.time, 3.π.time, and 4.π.time).  These functions were then offered in a regression 

analysis, which confirmed the existence of a six-month cycle with maxima in spring and autumn.  

Another study explored the impacts of air pollution on daily mortally from respiratory and 

cardiovascular diseases in Hong Kong from 1995-1998.  This study used a regression model including 

day of the time series, days of the week, meteorological factors, and time functions to represent the 

seasonality variations (Wong et al., 2002). 

Skene et al. (2010) estimated daily NO2 concentrations in Connecticut using variables representing 

traffic volume, land use, population density and altitude with seasonal variation of NO2 included as 

covariates in the regression analysis. Adjustment for seasonality is represented by two approaches: 

1) a spline function (type of moving average) and 2) time functions.  The authors preferred the latter 

approach as it was found to be more generalized and was not tied to the specific time period of the 

data used in the study. 

In a forecasting study, Damsleth and Spjotvoll (1982) developed a model using time functions to 

represent long-term predictions for the sunspot series. In a stepwise approach, a large number of 

time functions were used in series of pairs of sine and cosine with sequence frequencies from 2 to 8 

in Fourier analysis. The analysis was terminated when there were no additional significant time 

functions. They also compared the approach with ARIMA, and reported that the sunspot series was 

predicted better using Fourier analysis. 

As the Fourier analysis model can only present the systematic variation, other covariates 

representing the unsystematic (non-periodic) variation need to be considered in order to reduce the 

white noise (i.e. residual error). Much of this non-systematic variation in O3 concentrations may be 
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expected to be due to meteorological factors (see Section 2.1.1).  These might therefore usefully be 

incorporated into the model, by regression analysis or other techniques. 

In a study by Vingarzan and Taylor (2003), for example, the average daily maximum O3 

concentration, both annually and in summer seasons, was modelled using multiple regression. This 

model included temporal cycles (from 7 days to 5 years) to represent the seasonal trend, along with 

meteorological factors, regressed against the O3 daily maxima for 5 year intervals across the period 

from 1985-2000. Daily meteorological factors (average wind speed, maximum temperature, and sun 

duration hours) were included to adjust for the local variation in O3 or its precursors. Lou Thompson 

et al. (2001), in a review study, reported that meteorological adjustment of O3 has been widely used 

in estimating O3 time trends using regression analysis. They also noted that the most commonly used 

meteorological factors were temperature, wind speed, solar radiation and total precipitation.  

2.3 Rationale of the selected modelling approach  

In recent years, a number of studies have tried to build space–time models for air pollution, typically 

to provide precise exposure measurement for epidemiological studies or health risk assessment.  In 

doing so, they typically consider three key requirements:  

1) they try to cover a large study area in order to ensure significant contrasts in exposure and health 

risks between different countries (or states) as well as to achieve sufficient statistical power for 

detecting infrequent health outcomes;  

2) they try to assess exposures at a local or individual scale to take account of within city variations 

in pollution concentrations; and  

3) they try to allow for temporal, as well as spatial, variations in pollutant concentrations, in order to 

take account of  the different exposure experiences of people at different times (e.g. cohorts of 

children who are born at different times of the year). 

In principle, the most effective means of meeting these requirements is through the use of an 

empirically validated dispersion model.  For this to work, however, not only the model but also all 

the relevant input data needs to exist for the study area and time period of interest.  Both the model 

and the data also have to be at a suitable level of spatial and temporal aggregation.   
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As has been indicated, these conditions are not met in the case of O3: a usable dispersion model, 

able to provide estimates of concentrations at a high spatial resolution (<1km) and temporal 

resolution (ca. daily) over large study areas, with the available data and processing capacity, is not 

available.  Alternative methods have to be sought.   

As Briggs et al. (2000, 2005) suggest, one alternative is to develop temporally varying land use 

regression models.  In principle, this is possible as long as suitable time-varying predictors are 

available.   In some instances, this is feasible – e.g. where dynamic (i.e. regularly updated) emission 

inventories exist that indicate the time-varying patterns of source intensity across the study area.  

Often, however, and especially for short-term variations, such data are not available. In these cases, 

unless process models can be used, different modelling approaches need to be combined to model 

the space-time patterns of pollution.  This is the case here.   

Using a general additive mixed model, Yanosky et al. (2008) modelled the monthly space-time trend 

of PM10 concentration in 13 states in the North-eastern and mid-western USA between 1988-2002. 

Monthly data from 922 monitoring sites were used in a two stage analysis, using both GIS-derived 

vector covariates (constant with time) and local meteorological factors and area-source emissions 

(varying with time). In the first stage, the site-specific term was modelled adjusting for time-varying 

covariates. The second stage modelled the time-invariant site-specific term, using the GIS-derived 

variables.   

Another two stage model was developed by Dadvand et al. (2011) for estimation of weekly 

concentrations of black smoke between 1985-1996 at residential postcodes across northeast 

England.  This model was developed using four libraries of the R statistical package. In this study 

black smoke data were obtained from 56 non-automatic monitoring sites with sparse daily 

concentration measurements.  Meteorological factors (temperature, precipitation and wind speed) 

from a number of monitoring stations across the region and GIS-derived covariates such as traffic, 

land cover classes, and industrial activity were also available.  The first stage modelled the temporal 

trend for the whole region on the basis of the average BS concentration from all monitoring stations 

for each of the 627 weeks, using a dynamic model representing the seasonal variation in BS 

concentration as a function of meteorological factors.  This produced an offset to be used in the 

second stage.  The second stage modelled the spatial variation at all locations using the GIS-derived 

covariates in a linear regression including the first stage result.  Thus, two different models were 

selected, and their results combined, to represent the spatial and temporal components of variation.  
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The same two stage models cannot easily be applied across Europe for a number of reasons. The 

foremost is the size of the data matrix (hourly O3 concentrations multiply by 1211 monitoring station 

distributed over Western Europe).  The second constraint is the limited availability of regional 

meteorological data on an hourly basis, which are key covariates for modelling the temporal 

variability. Kyriakidis and Journel (1999) also argue that a stochastic model cannot explain the 

variations in concentrations produced via physical processes unless a deterministic model is 

included.  Nevertheless, a similar two-stage analysis (one to model the spatial variations and the 

other to model temporal variations) does seem appropriate.  The general model of space-time O3 

data measured at Y(x,t) in continuous time (t) and space (x) can thus be represented as: 

Y(x,t)=  (x,t) + Yi (x,t)         Equation 2-10 

 

In this, the spatial component of the model is denoted by (x,t), where t represents the trend 

(mean) over the whole time period (here, six years), which depends on location (x).  The temporal 

component Yi (x,t) is the fluctuation around this trend in both space and time.  

The spatial component  (x,t) will be calculated here using a stochastic model (LUR).  This was 

selected because, as described in Section 2.2.2.4, it has become one of the most popular GIS-based 

approaches to estimating and mapping pollutant concentrations, and has proved to be both 

practicable and reliable across a range of spatial scales.  

The temporal component Yi (x,t) will be calculated using a semi-deterministic model.  For this 

purpose, Fourier analysis (Section 2.2.3.3) is used, to represent systematic variations in O3 

concentrations over different time periods (hourly, daily and seasonally), and meteorological factors 

(MFs) are then incorporated to explain the non-systematic (weather-related) variations.  This 

approach is defined as semi-deterministic in that the time functions used to describe the systematic 

variations are based on a priori expectations about the shape of the patterns in O3 concentrations 

over the different time periods, but these are then calibrated to the measured data using stochastic 

(regression) methods.  Likewise, regression analysis is used to select and weight the relevant MF. 

This methodology is outlined in Figure 2.6.  As this shows, there are five main phases in the analysis. 

The first phase involves classifying all monitoring sites in the study area into site types, on the basis 

of indicators describing the temporal variations in O3.  The relationship between these site types and 

selected environmental variables (e.g. land cover, topography, climate) is then determined, using 
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MLOR to estimate the probability of membership (P) of all site types across a 100 metre grid.  This 

will be addressed in Chapter 4. 

In the second phase of modelling (Chapter 5), a spatial model was developed to estimate the long 

term mean O3 concentration at all locations across the study area (i.e. for a 100 metre grid).  For this 

purpose, a LUR model was built using environmental variables as the predictors, and measured 

mean O3 concentrations for the training dataset of monitoring sites across Western Europe as the 

dependent variable.   

In the third phase, Fourier analysis was used to develop a model of the systematic temporal 

variability of O3 concentrations in each site type (Chapter 6).  This was done by creating a series of 

basic time (sine and cosine) functions to represent the expected patterns of variation in O3 

concentrations for different time periods (seasonal, weeks, days). These were then used as 

independent variables in a regression analysis against the deviation (offset) from the long-term 

mean O3 concentration, at each monitoring site, to develop a series of TMs – one for each site type. 

The resulting models were then weighted using the probabilities of site-type membership (from 

phase 1) to estimate time-varying concentrations at each location.   

In the fourth phase of modelling (Chapter 7) the spatial and weighted temporal models (WTM) (from 

phases 2 and 3) were combined for each site-type.  This provides what is termed the base model:  

Base space-time Model = LUR + [P1.WTM1+P2.WTM2+P3.WTM3…Pn.TMn].  

The base model was developed and applied across Western Europe. 

Finally, in phase 5, MFs were incorporated to take account of non-systematic temporal variations.  

The full model is thus defined as:  

Full space-time Model = a.*Base model+ + *b1.MF1+b2.MF2…bn.MFn+  

This was developed and applied for two study areas – Rome and the Netherlands. 
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Figure 2.4  The five phases of modelling 
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3 Data collection and pre-processing 

3.1 Study area and period 

O3 and some of its precursors are known to travel long distances.  They thus represent a trans-

boundary issue.  Modelling likewise needs to be done across large areas, not only to reflect these 

trans-boundary impacts on health, but also to enable exposure assessments in epidemiological 

studies covering populations large enough to detect the effects of O3 against the background of 

other risk factors. Likewise, research needs to cover a long enough period to represent average 

conditions within this study area, and to identify and take account of any temporal trends of 

variations that might occur.  At the same time, for research purposes, it is important to ensure that 

all the relevant data are available as readily as possible, and at a suitable quality.  Otherwise, 

unnecessary time is spent trying to source, acquire, check and correct data and/or results of the 

research are made suspect by uncertainties in the data.   

The study area used in this study therefore encompasses the twelve European countries (i.e. 

Western Europe) – namely, Austria, Belgium, Denmark, France, Germany, Luxemburg, Ireland, Italy, 

the Netherlands, Portugal, Spain and the United Kingdom, as shown in Figure 3.1.  These countries 

were chosen for a number of reasons: 

1. They provide a range of contrasting environmental conditions, and O3 concentrations, typical 

of that of much of the temperate world; 

2. They are all subject to common air quality policies, so that policy differences are likely to 

have had only a small effect on O3 concentrations; 

3. They are generally rich in relevant geographic and environmental data, and these are usually 

relatively freely accessible; 

4. As members of the EU, they are obliged to collect and provide many of the data needed in 

this research (notably measurements of O3 concentrations and land use data to consistent 

standards) and in the same form. 

The study period chosen for this research is six years, from 1st March 2001 to February 28th 2007.  

This period was chosen both to provide a sufficiently long time series of data and to cover the period 

when (at the start of the research) data availability was at its optimum.  At the same time, it results 

in data volumes which are manageable given the computing resources available. The study period is 
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variable in terms of is meteorology and O3 concentrations.  It includes years both affected and 

unaffected by major meteorological anomalies (e.g. heat waves), and also a census year in most EU 

countries. This has the added advantage of allowing potential users to link the results with 

cotemporaneous population data for risk assessment purposes. The exact period, from March 2001 

to February 2007, was selected to avoid truncating the main winter and summer seasons, which 

respectively mark the nadir and peak of O3 concentrations.  

 

 

Figure 3.1  Study area: Western Europe shown in yellow  

3.2 GIS development 

As detailed in the previous chapter, O3 is affected by various factors yielding variations of 

concentration both in space and time. The relative proportions of these two sources of variation 

may change markedly, depending on the study area, the spatial scale of analysis, and the time 
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period and level of temporal aggregation. The amounts of variation are therefore not inherent 

properties of the real world, but artefacts of the study design.   

The spatial component of variation can be expected to represent the influence of a number of 

environmental factors, reflecting the sources of precursor emissions, and the effects of physical 

transport (dispersion) and chemical reactions in the atmosphere.  Modelling thus needs to be based 

on data relating to these various contributory factors, and the data needed both to develop the 

models and to run them needs to be gathered and brought together in a consistent form.  Models 

also need to be calibrated and validated against measured observations, if they are to be considered 

reliable.  In this thesis, therefore, data were needed on a wide range of environmental variables, 

that would subsequently act as predictors in the models, and for monitored O3 concentrations at a 

representative range of monitoring sites.  To facilitate data integration, and to provide the tools 

necessary for data processing, all these data were brought together in a GIS, covering the study area.      

3.2.1 Spatial data development 

A GIS provides a computerized analysis and mapping system, comprising all the devices needed to 

capture, display and integrate data in a spatial form, as demonstrated in Figure 3.2.   

 

Figure 3.2 Conceptual diagram of a GIS showing thematic layers of information stored as vector or 
raster data  

The left image from headsonfire.org 
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The GIS thus serves as a platform on which both to model spatial patterns of air pollution and then 

to compare these with measured concentrations in order to validate the models. By adding in, also, 

population data, either at a group or individual level,  GIS also provides a powerful tool for exposure 

assessment (Briggs, 2005a) .    

To enable exposure assessment within a GIS framework, however, all the data need to be defined in 

term of their geographic coordinates (i.e. geo-referenced) (Briggs, 2005b).  Geo-referencing may be 

done in different ways, depending on the nature of the data.  Monitoring sites are usually specified 

by their point locations, in terms of latitude and longitude (or x, y coordinates relative to a national 

grid). Mostly, population and health data are represented either as areas or as point locations (area 

centroids) of polygons representing census or other administrative districts.  Road and traffic data, 

on the other hand, relate to lines, representing the road networks.   

One of the great advantages of GIS is that they enable the rapid and easy inter-conversion and 

linkage of all these different data structures within a consistent framework (Briggs, 2007).  This not 

only facilitates analysis and mapping, but also helps to reveal errors and inconsistencies in the data 

that would otherwise not be noticed. It also helps to avoid topological fallacies in the analysis, due to 

misrepresentation of the spatial relationships between different features.   

To represent a geographic object in GIS (e.g. a building or a tree or a road), a form of data 

representation has first to be established. The two possibilities for representing a geographic object 

in a GIS are raster and vector. Vector systems represent features as polygons, lines, and points; 

raster systems divide the geographic area into regular grid-cells identified by row and column, as 

shown in Figure 3.2.  Thus, a transportation network can be stored as lines, where the length and 

structure is representative of the real world roads, or the roads can be partitioned into grid cells, 

with the length within each segment stored as the attribute for each cell.  

Using raster systems often has the advantage of greatly reducing computation times, though it 

obviously involves some small loss of precision, the amount of which depends on the size of the grid 

cells (granularity).  The size of the grid cell is usually determined according to the accuracy and the 

resolution that is needed – i.e. based on how space needs to be conceptualised within the particular 

study area, and the sorts of analyses that need to be done.  For example, computational modelling is 

generally easier in raster; topological analyses (i.e. to do with adjacency or real distance) are often 

better in vector. Using a raster system also greatly facilitates the combination of data and 

computational analysis.  
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In this particular work, using raster has the added advantage of enabling the efficient analysis of the 

large datasets needed to cover the large area, and the range of different environmental phenomena, 

at an appropriate spatial scale.  For environmental epidemiological studies at European scale, this is 

certainly an attractive attribute. 

From the outset, therefore, it was decided to convert the data into a raster format. All predictor 

variables were computed for 100m regular grid cells to produce a consistent and high resolution GIS 

database matching the fine resolution of the available land cover data. The Lambert Azimuthal Equal 

Area projection (LAEA) was the selected projection for the GIS database as it is the projection of the 

land cover data.  

ArcGIS v10 was used to store, analyse, and manipulate the GIS data required for this study. The data 

were stored as ArcMap grids and exported as comma separated (*.csv) or dbase format (*.dbf) files 

for use in SPSS (v15 & v20) during statistical modelling.  

3.2.2 O3 concentrations data 

Data on O3 concentrations are required both to help develop and calibrate the models, and then to 

test their validity. These data need to be representative of the study area and period, to be 

consistent, and to be as free as possible of measurement error. 

Measured data on O3 concentrations for the study area countries were obtained from the AIRBASE 

database.  This database is maintained on behalf of the EEA, and draws together measurements 

from routine air pollution monitoring carried out by the EU member states, under obligations 

imposed by EU air quality directives. As mentioned in the draft final report about AIRBASE (Spangl et 

al., 2007), the European Topic Centre on Air Quality (ETC_AQ) is responsible for developing and 

maintaining both a European Air Quality Monitoring Network (EUROAIRTNET) and an air quality 

information system (AIRBASE database), in close collaboration with the European countries, to 

provide good information to support the work of the EEA. The purpose of this collaboration is to 

enable and produce air quality assessments on the European scale through adequate information on 

air quality. 
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AIRBASE is developed on the basis of this EUROAIRNET network. AIRBASE has been established, 

improved over time and made available on the Internet under the EC Exchange of information (EoI) 

Decision 97/101/EC11 in compliance with the EU air quality directives.  

The objectives of the monitoring activities of the EU countries, as outlined in (Larsson, 1999), are: 

 Monitoring of Member State compliance with the directives. 

 Representative air quality surveillance monitoring to describe the state of and trends in air 

quality across Europe. 

 To facilitate exposure/damage assessment with regards to health, vegetation, and materials. 

 Public availability of monitoring data on-line, to inform and warn citizens, as well as to 

enable and inform short term abatement actions. 

 Operational monitoring near specific sources to prevent undesirable pollution burdens on 

neighbouring areas. 

 Monitoring programmes to support scientific research. 

The selection criteria defining the specific areas to be monitored are intended to be representative 

either across the whole of Europe, or for separate regions of Europe to provide adequate spatial 

coverage of the air pollution situation. AIRBASE, however, comprises existing monitoring networks 

run at local, regional or national level, and many smaller geographic areas will not necessarily have a 

sufficient number of monitoring networks or sites to contribute.  

Measured data on hourly O3 concentrations for the countries of interest were obtained for the 

whole study period, from March 1st 2001 to February 28th 2007.  Version 4 of the AIRBASE data 

products on the EEA data service website12 was used for this purpose.  

O3 concentrations reported in AIRBASE are continuously monitored using automatic UV absorption 

analysers, and in broad terms can thus be considered consistent in terms of measurement 

technique.  For the 6-year time period time of this study, monitoring was available for a total of 

1,463 sites across the study area. To ensure that data provided a reliable basis for modelling, several 

criteria were used to select from these 1,463 monitoring sites: 

                                                           
11

 http://acm.eionet.europa.eu/databases/airbase/ 

 
12

 http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=1029  
 

http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=1029
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 Sites should be located within the borders of the correct country as indicated by the 

metadata, Figure 3.3. 

 Monitored data should be available for 4 years or more from the study period, and with 

measurements for at least 75% of the time in any monitoring period (daily and seasonally). 

Based on the EU regulations this equates to 18 hours during the day, and for 22 days of each 

month.  For this purpose, two main seasons were defined: season 1 was the three summer 

months and season 2 was the three winter months.   The histogram in Figure 3.4 illustrates 

the number of sites for each country.  For example approximately 210 monitoring sites in 

France and German have six full years of data, while 60 and 40 monitoring sites, 

respectively, have 5 years of full data. 

 The remote islands of Spain and Italy were excluded (e.g. Mallorca, Ibiza, Corsica, and 

Sardinia) because they are geographically far from mainland Europe, and thus affected by 

different meteorological conditions and air mass regimes. 

 

 

                  Figure 3.3 The study monitoring sites (grey dots) and discarded sites (red dots)  
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Figure 3.4 Frequency of sites, by country, with 75% hourly data capture for 4 years and more 

 

The hourly concentration data were cleaned by recoding hourly missing or negative values to 999. 

Sites with less than 75% data capture were also discarded.  Sites meeting the other selection criteria 

were identified and maintained, reducing the overall number of sites to 1,211 as shown in Figure 

3.5.  The full descriptive statistics for these 1,211 sites are shown in Table 3.1.   

 

Table 3.1 Descriptive statistics for the long-term concentration (hourly data from 1st March 2001 to 
28th February 2007) at the 1,211 ozone monitoring sites 
country No of 

sites 

(1211)
 a
 

No. of 
measurement 

(54,685,277)
b
 

Min Max Mean SD 

Austria (AT) 107 5,067,880 0.00 336.20 58.29 36.68 

Belgium (BE) 34 1,477,901 0.00 296.00 43.35 32.44 

Germany (DE) 282 13,396,674 0.00 334.00 48.46 33.78 

Denmark (DK) 6 267,315 0.00 195.10 47.34 26.21 

Spain (ES) 232 10,154,233 0.00 470.00 48.56 32.98 

France (FR) 354 16,210,237 0.00 417.00 50.85 34.31 

Great Britain (GB) 63 27,03,792 0.00 327.00 42.28 26.95 

Ireland (IE) 6 284,068 0.00 207.80 60.24 21.97 

Italy (IT) 72 2,755,753 0.00 451.00 51.62 41.80 

Netherlands (NL) 30 1,373,438 0.00 276.49 40.36 28.91 

Portugal (PT) 25 993,986 0.00 358.00 48.73 30.69 

a,b  the total number 

 

 

0

20

40

60

80

100

120

140

160

180

200

220

AT BE DE DK ES FR GB IE IT NL PT

N
o

 o
f 

M
o

n
it

o
ri

n
g 

si
te

s 

Western Europe study area countries 

4

5

6



61 

 

 

 

Figure 3.5 Station locations in the AIRBASE data set and the mean O3 concentrations (6 year 
average) 

 

These sites are not evenly distributed across the study area, as indicated in Figure 3.5 (map of the 

final selected sites).  This inequality is a problem that must be recognized and addressed in the 

modelling to be carried out in this study, and its implications are discussed in Chapter 8.  

3.2.3 Predictor variables 

The effectiveness of GIS-based analysis relies on the use of relevant and accurate data on variables 

that can help to predict spatial variations in the phenomena under consideration, in this case O3 

concentrations.  Deriving these potential predictor datasets  is often time consuming, for most data 

need to be carefully checked, and subjected to a wide range of corrections and enhancements.  Also, 

for prediction and mapping purposes these data need to be available (continuously) across the 

whole study area, including the unmonitored places (i.e. grid cells). Important predictor variables for 
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O3 were identified a priori and included roads, land cover, topography, meteorological factors, and 

the distance to the sea; data are listed in Table 3.2. 

Storing the data in the raster form makes handling and analysing easier than the vector format when 

the goal is to produce a concentration surface. Rasters typically contain only one single attribute; 

thus numerous rasters are needed to represent all the attributes of interest.  Steps to create each of 

these are described in the subsequent sections.  For some analyses, data need to be obtained for a 

window around a target cell – e.g. to represent the influence of emissions in surrounding areas.  

With vector data, these are usually extracted using buffering techniques. 

 With raster data, the equivalent procedure involves using a circular moving window of appropriate 

radius, along with relevant focal functions (sum, mean, range, and standard deviation). FOCALSUM, 

for example, is a moving window analysis whereby the sum of the values in a specific neighbourhood 

(i.e. window or cells surrounding the focal cell) is computed. The researcher specifies the size and 

shape of window. 

Different window sizes were selected to represent the spatial zone of influence of different predictor 

variables.  To represent local effects, windows ranging from 100 to 1000m were used; to reflect 

regional influences, window sizes of 5000 and 10000m were specified. As demonstrated in Figure 

3.6, FOCALSUM for the 100m window consists of a neighbourhood of five grid cells, for which the 

values are added and the result allocated to the focal (i.e. centre) cell. This neighbourhood is passed, 

cell-by-cell, across the grid and the calculation repeated until the last grid cell of the study area is 

computed. Table 3.3 shows the FOCALSUMs used for each distance band.  

After creating the original 100m grid for each of the relevant predictor variables, Model Builder in 

ArcGIS was used to construct the other window (or neighbourhood) averages and create the 

variables as a grid. These were then "intersected" with the monitoring sites using the equivalent tool 

for rasters, Extract values to points.  As shown in Figure 3.7, the sequence of modelling was thus to 

run FOCALSUM statistics, extract values to points, update fields and export the results to DBF files. 

Figure 3.7 illustrates these steps to obtain land cover data for different window sizes; the same 

models were used to obtain all other GIS predictors simply by changing the references to dataset 

and folders. 
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Table 3.2 Overview of the predictor variables 

Predictor GIS dataset Predictor variable Abbreviation Purpose Unit Source and resolution 

La
n

d
  c

o
ve

r 
va

ri
ab

le
s 

CORINE High density residential land Highdr Scavenge O3 Percentage CORINE land cover 100m grid- Version 
13/2000 (CLC2000) from the EEA/Resolution 
(100m) 

CORINE Low density residential land Lowdr Scavenge O3 Percentage 

CORINE Industrial and commercial 
land 

Ind/Com Source of O3 precursors Percentage 

CORINE Herbaceous land Herb Source of O3 precursors Percentage 

CORINE Agriculture land Agri Source of O3 precursors 
Depletion of O3 

Percentage 

CORINE Forest land Forst Source of O3 precursors 
(BVOC) 

Percentage 

CORINE Open Space Opsp - Percentage 

To
p

o
gr

ap
h

ic
al

 

va
ri

ab
le

s 

CORINE Distance to sea D2S Increase O3 kilometre Derived from the distance between each grid 
and the coast line  

Altitude Altitude (height above  sea 
level) 

Alt Increase O3 metre SRTM 90m Digital Elevation v4.1 produced by 
NASA/Resolution (90m) 

Altitude Topex Topex Decrease or Increase O3 metre Height difference between 100m window 
and the mean of the surrounding 2000m cell 
centroids  

R
o

ad
 le

n
gt

h
 

va
ri

ab
le

s 

road network Motorways MR Scavenge O3 metre Eurostreets version 3.1 is a 1:10,000 digital 
road network 

road network Secondary Roads SR Scavenge O3 metre 

road network Local Roads LR Scavenge O3 metre 

M
e

te
o

ro
lo

gi
ca

l f
ac

to
rs

 

NETCDF Surface solar radiation SSR Increase O3 w/s The European Commission Joint Research 
Centre (JRC)  
ERA Interim, monthly means of daily means 
derived from ECMWF/ resolution (40km) 

NETCDF Total precipitation TP Depletion of O3 Mm 

NETCDF Temperature TMP Increase O3 C
o
 

NETCDF Wind speed WS Decrease or Increase O3 m/s 
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Table 3.3 Window specifications based on grid cells (using FOCALSUM) 

Window size 
(radius in m) 

FOCALSUM “Circle” Distance 

(equivalent radius in cells) 

Total number of grid cells 

within window 

100m 1 5 

300m 3 29 

500m 5 81 

1000m 10 317 

5000m 50 7845 

10000m 100 31417 

 
 

 

Figure 3.6 Different window sizes used in FOCALSUM for a 100m grid 
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Figure 3.7 Model builder to obtain the different land cover data within different window 
sizes 
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The following sections explain the variables that were selected in order to represent and 

enable modelling of the spatial variations in O3 across Europe at 100m resolution.  The 

importance of each variable in modelling O3 concentration is explained, the data source 

cited, and the original resolution noted.  Also, where necessary, any preprocessing (e.g. 

intersection, interpolation) that was applied to create these 100m GIS-variables is explained 

in detail. 

3.2.3.1  Land cover variables 

O3 is a secondary air pollutant, formed by a series of complex chemical reactions, as outlined 

in section 2.1.1. Formation and loss are driven by two critical precursors: NOx and VOCs, in 

the presence of solar radiation (hv). 

In the absence of detailed emissions data, land cover data were thus included in the analysis 

as proxies for emissions to the atmosphere, since they describe differences in source type 

(e.g. industry, residential land, forestry, agriculture) and, to some extent, source intensity 

(e.g. by defining densely populated areas or heavily trafficked zones).   

Land cover nevertheless affects O3 concentrations in two, opposing ways.  Some land cover 

classes are indicators of O3 production, because they represent emission sources for O3 

precursors, or situations where favourable conditions for chemical generation of O3 in the 

atmosphere may occur.  Other land cover types are likely to be associated with reduced O3 

concentrations, because they are related to the release of O3 scavengers, or encourage 

deposition of O3.  In practice, these relationships with land cover are often complex and 

contradictory.  In the case of forestry and agricultural land, for example, both these roles 

may be at work.  On the one hand, vegetation acts as a surface for dry deposition, especially 

during the day when stomata are open (Nowak et al., 2006, Fowler et al., 1998, Massman 

and Grantz 1995).  At night, also, O3 concentrations tend to decline due to deposition on the 

soil surface with no substitution by photochemical production.  On the other hand, forestry 

and agriculture can be important emission sources for biogenic VOCs (isoprene and 

monotorpene), which are more reactive by 2-3 times than anthropogenic VOC (Carter, 

1991).  This leads to increased O3 concentrations (Chameides et al., 1988). 

Land cover data in 100m resolution were derived from the CORINE Land Cover Map 2000.  

The database has been created by semi-automatic interpretation of data collected using 
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satellite-borne sensors and has a spatial resolution of approximately 25 ha. CORINE land 

cover data (CLC2000) were downloaded from the EEA web site13. CLC consists of 44 primary 

classes (Appendix, A section III). These were combined into 7 more general groups, as 

demonstrated in Table 3.4.  This was done by reclassifying the original CLC grid using the 

CON (i.e. conditional) function in ArcMap Spatial Analyst to produce a new raster for each of 

the 7 classes. 

These seven classes were specified on the basis of their influence on O3 formation and 

dispersion. High density residential land represents areas of high population density, 

typically associated with more intense anthropogenic emissions of NOx, which scavenges O3. 

Low density residential land comprises areas with lower population densities, which are 

typically associated with lower NOx emissions. Industrial and commercial land includes a 

range of different areas (e.g. industrial, commercial and construction).  In general these can 

be expected to be sources of emissions of O3 precursors, such as NOx, CO and anthropogenic 

VOC, which will either scavenge O3 or increase formation of O3.  

 

Table 3.4 Definition of the 7 land cover domains derived as a combination of the 44 CLC 
classes  

Abv. Land cover variables Description CLC Classesa 
Highdr 
Lowdr 
Ind/Com 
 
Herb 
 
Agri 
 
Forst 
Opsp 

High density residential land 
Low density residential land 
Industrial/commercial land 
 
Herbaceous land 
 
Agriculture land 
 
Forest land 
Open Space 

Continuous urban fabric 
Discontinuous urban fabric 
Industrial, commercial and 
construction units 
Pastures, natural scrub and 
herbaceous vegetation 
Arable land, crops and 
heterogeneous agriculture 
Forest area 
Beaches, rocks and open space 
with no vegetation 

1 
2 
4-9 
 
10-11,18,26-
29 
12-17,19-22 
 
23-25 
30-34 

a. CLC classes 35 to 44 representing wetland and water bodies were excluded because they do not characterise 
land  

 

Three types of green area, varying in the density and height of the vegetation, have been 

defined: herbaceous land comprises areas of very low vegetation, mainly in the form of 

shrubs or grass, with few trees.  Agriculture includes low, permanent or rotating crops 

                                                           
13

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster/clc-2000-v13-
100m,accessedon March/2010 

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster/clc-2000-v13-100m,accessed
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster/clc-2000-v13-100m,accessed
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(excluding grass).  Forests consist primarily of dense vegetation with tall and continuous tree 

cover (broad-leaved forest, coniferous forest, mixed forest). The three classes of green area 

(herbaceous, agriculture and forest) are the main sources of biogenic VOC, which 

contributes to O3 formation, but may also provide active surfaces for dry deposition. Finally, 

open space comprises areas with no vegetation, such as beaches and rocks.  

The FOCALSUM statistic in ArcMap was then applied to the seven land cover classes to 

produce grid cells for the different window sizes. 

3.2.3.2 Topography 

Topographic characteristics of the land are important because of their relationship with 

meteorological factors that might affect the distribution and transportation of O₃.  For 

instance, O3 concentrations in Europe tend to increase in mountainous areas (Jonson  et al., 

2006). Topographic exposure, such as the openness or lack thereof, may likewise influence 

atmospheric temperatures, and hence photochemical reactions, as well as exposure to 

prevailing winds which may act to accelerate the dispersal, mixing and deposition of O3. 

Topography can therefore be used as a proxy for meteorological factors affecting O3 

concentrations.    

Three different topographic variables were derived for use in this study: altitude (height 

above mean sea level), topex (an index of topographic exposure) and distance to sea. Each 

of these is explained in turn.  

1) Altitude 

Altitude was obtained from the Shuttle Radar Topographic Mission (SRTM) v4.1 produced by 

NASA14, as ASCII files.  The SRTM digital elevation data (DEM) is a high quality elevation data 

set covering over 80% of the globe, and the whole of this study area.  It has a horizontal 

resolution of 90m at the equator, and data are provided in 5° x 5° tiles, in a geographic 

coordinate system (WGS84 datum).  The vertical error of the DEM is stated to be less than 

16m.  Areas where water or heavy shadow prevented the quantification of elevation are 

indicated as "no-data".  

                                                           
14

 available at http://www.cgiar-csi.org/data/elevation/item/45-srtm-90m-digital-elevation-database-v41 last 
accessed: 20 April 2012 in  

http://www.cgiar-csi.org/data/elevation/item/45-srtm-90m-digital-elevation-database-v41last%20access
http://www.cgiar-csi.org/data/elevation/item/45-srtm-90m-digital-elevation-database-v41last%20access
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The ASCII files were converted to integer rasters using the ArcGIS command ASCII TO 

RASTER.  The tiles were then joined into a single raster dataset by using the command 

MOSIAC.  Finally, the raster was re-projected into the chosen based project LAEA.  Bilinear 

interpolation, which is the appropriate algorithm for continuous data, was used with the 

registration point set as (N400000, E200000).  This bilinear interpolation will cause some 

smoothing of data because the output grid value is the weighted average of the nearest four 

cells, as shown in Figure 3.8. 

 

Figure 3.8 Spatial resampling using bilinear interpolation 

 

2) Topex 

Topex refers to topographic exposure.  It is computed by subtracting the mean altitude of 

the surrounding area from the altitude at the target area (sum of altitude values within a 

circular window around the focal cell. The resulting 100m altitude grid (Alt100) was used for 

this purpose.  A distance of 2000m was selected to represent the surrounding area, and was 

calculated using FOCALSUM (Alt2000).   High (positive) Topex values indicate that the target 

area represents a peak in the landscape, and is therefore relatively exposed; negative values 

indicate that it occupies a depression or valley, and is therefore sheltered (Figure 3.9). Topex 

will be zero if the topography is flat. 
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Figure 3.9 Illustrating the positive topex (a) and the negative topex (b) 
The direction of the arrow points toward the higher ground between the 100m window (inner-ring) and 
surrounding neighbourhood (outer-2000m ring) 

 

 

Topex was specifically calculated as follows: 

 Alt100 = Altitude for the surrounding 100m window size, based on the altitude grid  

 Alt2000 = sum of altitude values within a circular window around the focal cell.  This 

window has a radius of 20 cells (a total of 1,257 cells are contained within this 

window) 

 Alt2000-100 = The sum of altitude values in the "outer ring", computed by subtracting 

altitude at 100m window from the previous result (e.g. Alt2000 - ALT100) 

 MAltouter = The mean altitude in the "outer ring", computed by dividing the value of 

the "outer ring" by number of cells (eg. Alt2000-100 /1257) 

 Topex = The difference in altitude between the 100m window and surrounding area 

(e.g. Alt100 – MAltouter) 

3.2.3.3 Distance to sea 

Coastal areas comprise a distinctive O3 environment and are an important source of O3 

precursors as these are areas of high photochemical activity.  In addition to often being 

densely populated areas, there are several factors which act to influence O3 concentrations, 

including short and long range transport, local emissions, meteorological phenomena 

influencing transport, dispersion and recirculation of pollutants, and photochemical activity. 

Recycling and trapping of pollution originates from the generally large heat differences 
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between ocean and land which produce a movement known as sea breeze circulation. Both 

horizontal and vertical coastal recirculation can occur, which can affect the air quality. 

Horizontal recirculation returns the air mass to its source area the next day, whereas the 

vertical recirculation currents return the air a few hundred metres down onto the land 

surface (Hsu, 1988).  These factors increase O3 concentrations in coastal areas, by bringing in 

sea breezes enriched with O3  (Klingberg et al., 2012).  Distance to sea, therefore, provides a 

potential proxy for these effects. Distance is computed as the straight line distance to the 

nearest body of open sea. 

  The following steps were used to create this data set (see appendix A, Section IV for full 

details). 

1. The raster coastline from CORINE2000 (class 523) was converted into a coverage 

using the command CONVERSION.  This was buffered by 20km to represent the 

boundary to the open water. 

2. It is computationally intensive to compute the distance from each 100m cell to the 

coast; therefore centroids for a 1km grid for Europe were used instead.  These were 

stored as coverage.  

3. The NEAR command was used to compute the distance (in metres) from each 1km 

centroid to the nearest open water.   

4. Distance to ocean, based on the 1km centroids, was then interpolated to the 100m 

level using inverse distance weighting and stored as a raster. Values from the 

resulting 100m distance to sea raster were extracted for the O3 monitoring sites 

using Extract values to points.  

5. This method for interpolating distance to sea was validated at the monitoring sites, 

by directly calculating the distance using the command NEAR between sites and 

open water. The correlation was found to be 0.99 at the monitoring sites.  

3.2.3.4 Road length 

Because a large proportion of the NOx emitted in Europe derives from road transport, data 

on road length for different road classes (local, secondary and major roads) were also 

obtained, to give a proxy for scavenging by transport-related NOx.   
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Road data were obtained from Eurostreets version 3.1, which is a 1:10,000 digital road 

network based on the TeleAtlas MultiNet TM.  These data were obtained through the 

European Study of Cohorts for Air Pollution Effects (ESCAPE) project, and were converted 

from vector to a 100m raster by colleagues at Imperial College15.  Eurostreets does not 

include traffic intensity data; however it does include a road classification (FRC code).  To 

simplify the classification, FRC was reclassified into three groups as illustrated in Table 3.5.  

Table 3.5 Selected road classes based on Eurostreets road classes 

FRC Road classes New classes Abbreviation 

0 Motorways Major roads MR 
1 Roads not belonging to main road 

Major importance 
2 Other Major roads 
3 Seconds roads Secondary roads SR 
4 Local connecting roads Local roads LR 
5 Local roads of high importance 
6 Local roads 

 

 

Figure 3.10  Road classes 
Derived from Eurostreets version 3.1 

                                                           
15

 Vienneau and Lee.   
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Figure 3.10 shows the map of the whole study area, depicting only the first class, major road 

(MR); the inset for the city of Rome shows all three road types.  

On obtaining the rasters for each road class (FRC), the following additional steps were 

performed to prepare these data for use in this study: firstly, reproject roads into the LAEA 

projection and create the 100m base polygon (grid) shapefile; secondly intersect road 

vectors with the base polygon; thirdly sum road length by FRC for each 100m polygon area; 

finally convert the polygons to rasters. These were then combined to create three road 

classes, as shown in Table 3.5.  This was done using the PLUS command in ArcGIS. As per 

other variables, the FOCALSUM statistic was then applied to the three resulting road grids to 

produce grids for the different window sizes.  

 

3.2.3.5 Meteorological factors 

Important surface meteorological factors related to O3 concentration are cited as 

temperature, wind speed, solar radiation, and precipitation (Tarasova and Karpetchko, 2003, 

Dueñas et al., 2002, Lou Thompson et al., 2001,  odr  guez and  uerra, 2001, Dabdub et al., 

1999).  All four were used in this study.  

The role of meteorological factors in O3 formation and dispersion can be summarised as 

follows. In general, high O3 concentrations are observed in favourable photochemical 

conditions, characterised by high temperature, high solar radiation (i.e. sunny) and in the 

presence of O3 precursors. In contrast, in overcast or rainy conditions, characterised by high 

total precipitation and low sunlight due to the cloudiness, as well as low temperatures, O3 

concentration is low due to the slow rate of photochemical reactions and to loss of O3 by 

wet deposition (Andersson et al., 2007, Lelieveld and Crutzen, 1991).  

The effect of wind speed on O3 concentrations is more complex, and depends on the specific 

atmospheric conditions. One effect is to reduce O3 concentrations by encouraging dispersion 

away from O3-rich areas.  Downwind of these sources, however, the wind has the reverse 

effect, of bringing in more O3-enriched air.  In the vertical dimension, equally, contrasting 

effects may occur. Where the boundary (i.e. ground) layer acts as a source of O3 due to 

chemical generation, increasing wind speed reduces surface-level O3 concentration by 

generating turbulence and increasing vertical mixing. Conversely, if the O3 chemical budget 
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in the boundary layer is negative (i.e. if O3 concentrations are greater at higher levels in the 

atmosphere), vertical transport transfers O3-rich air from aloft downward (Elampari and 

Chithambarathanu, 2011, Shan et al., 2009, Tarasova and Karpetchko, 2003, Davies et al., 

1992). In addition, scavenging by NO may be reduced under conditions of high wind speed 

(Dueñas et al., 2002,  odr  guez and  uerra, 2001, Dabdub et al., 1999). Surface O3 

concentrations may therefore show either a negative or positive correlate correlation the 

wind speed depending on the distribution of O3 production and of scavenging, both 

horizontally and vertically in the atmosphere, relative to the measurement site.   

Global meteorological data at a spatial resolution of ca. 40 km were downloaded from 

European Centre for Medium-Range Weather Forecast (ECMWF) website16 as a Network 

Common Data Form (NETCDF) files17. These data are produced by the latest ECMWF global 

atmospheric analysis (ERA-Interim) for the period of 1989 to present. The data required for 

this study derived from two main sources:  analyses data contain the monthly means from 

March 2001 to Feb 2007 based on daily means, for wind speed (ws) in m/s and temperature 

(tmp) in °C, while the forecast data contains surface solar radiation (ssr) in W/s and total 

precipitation (tp) in mm. 

In ArcMap, NETCDF files can be opened as a layer using multidimension tools in ArcTool Box.  

These can then be easily exported as dBase files for further processing. In SPSS, the monthly 

data for each variable were used to calculate the annual, summer and winter means for each 

year. Summer covered the months from June to August, while winter covered December to 

February. These were saved as a dBase file to be opened in ArcMap.    

As the global meteorological data were at a 40km resolution, a simple interpolation, using 

the square of the inverse distance, was employed to smooth the data to 100m. First, 

however, the 40km centroids were reprojected into LAEA. Figure 3.11 demonstrates the 

processing in ArcMap. 

Global meteorological data were needed for the spatial model as this predicts the long-term 

mean of O3 cross western Europe.  At a later stage in the research, a space-time model is 

applied at a country or city level.  For this, more local meteorological data were acquired to 

                                                           
16

http://www.ecmwf.int/services/archive/d/edit/personal/temporary/netcdf, accessed on 2/2011 
17

 Type of data format widely used in the atmospheric science and oceanography to sort 

multidimentioned arrays of data 

http://www.ecmwf.int/services/archive/d/edit/personal/temporary/netcdf
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reflect the daily variation (non-systematic variation) which obtained from meteorological 

stations in the country or city of interest. 

 

 

Figure 3.11 Illustration of the steps to convert meteorological data from 40km (point) to 
100m grid (raster) a) the points with 40 km resolution, b) smooth met data using IDW 
interpolation method, and c) save result as a 100m raster 

3.3 Summary of available data 

As described in the previous sections, all the variables needed to develop the spatial model 

were processed and stored as 100m regular grids for the whole study area. The final 

database included all the variables shown in Table 3.2, within windows with a radius of 

100m, 300m, 500m, 1km, 5km, and 10km. The final database also includes a cleaned hourly 

O3 concentration at the 1,211 sites meeting quality criteria and maintained in this study.  

It might be noted that converting all these data into a common 100m raster GIS required 

considerable effort, due to the heavy computational load involved. The effort, however, is 

repaid in the subsequent analysis, which is greatly accelerated by the availability of 

consistent, high resolution, ready-made data sets.  
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4 O3 sites classification  

The aim of this chapter is to classify O3 monitoring sites in west Europe based on their 

temporal pollution signature, as a precursor to temporal modelling of concentrations at O3 

monitoring sites. The relationship between the resulting site types and selected 

environmental variables (e.g. land cover, topography, and climate) is then explored as a 

basis for predicting site type membership of unmonitored locations (i.e. across a 100 metre 

grid).  

4.1 Introduction 

Tropospheric O3 is a complex pollutant influenced not only by emissions, but also by long 

range transport of O3, surface deposition, and photochemical activity.  The complex nature 

of O3 means that the classification of monitoring locations into groups, exhibiting similar 

temporal patterns, is not a straightforward process.  

This is an important element of the research because data are available for a large number 

of O3 monitoring sites (1211), distributed somewhat unevenly across west European 

countries.  A global model of temporal variations in O3 concentrations, fitted to all these 

sites, is unlikely to be equally effective across this study area (e.g. both in rural areas with no 

local emission sources, and in areas close to busy main roads, where pollution is affected by 

the time-varying flow of traffic).  On the other hand, developing a discrete model for each 

station is computationally uneconomic, and in any case does not greatly help in estimating 

concentrations at unmonitored sites (in this case for a 100m grid), since these cannot easily 

be attributed to a specific monitoring site (and therefore a specific time model).  Instead, it 

is clear that modelling is best done for groups of sites, classified according to their specific 

temporal O3 signatures.  

One possible classification is that assigned to the monitoring sites within the European 

network, reported in the AIRBASE database.  Sites within AIRBASE are described on the basis 

of two classifications: one referred to as site type (background, traffic and industrial) and the 

other, site location (urban, suburban, rural and unknown), as shown in Table 4.1.  

Background stations are also divided into subclasses: near city, regional and remote 

background stations. Together, these classifications are intended to define the 
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characteristics of the areas around each site, and which the site is meant to represent. It 

should also be noted that some sites in the AIRBASE dataset are classified as unknown, 

where relevant metadata have not been submitted, making classification impossible.  

The representivity of monitoring sites, and the extent of the areas that they actually 

represent, is difficult to determine.  In principle, pollutant concentrations in the area 

surrounding any given site should not differ by more than a small and specified amount from 

the values measured at that site.  The radius of the area within which this is likely to be true, 

however, may range from a few metres for sites at traffic hot-spots through to tens of 

kilometres for regional background sites. As explained in the report describing the criteria 

for selecting sites for AIRBASE, however, this is rarely assessed (Larssen et al., 1999).  

 

Table 4.1 Characteristics for classifying monitoring stations for AIRBASE (Garber et al., 
2002) 

Type of zone 

 urban Station is located in a city (i.e. continuously built-up area) 

 suburban Largely built-up area (i.e. continuous settlement of detached building mixed with 
non-urbanized area (e.g. agriculture, lake))    

 rural Area does not fulfil the urban or suburban criteria. 

 unknown Metadata have not been submitted 

Type of station based on dominant emission 

 traffic Located near traffic sources  

 industrial Located near single industrial sources or industrial areas with many sources 

 background Level is not determined significantly by any single source or street, but by the 
integrated contribution from all sources upwind of the station. 

 unknown Metadata have not been submitted 

 

To avoid subjectivity, and to be readily reproducible, site classification should ideally be 

based on relevant and available, largely quantitative, information.  The classification should 

also be able to distinguish between areas which differ in terms of their pollution levels.  In 

practice, creating a quantitative and reproducible classification is not possible, due to the 

highly localised nature of variations in pollutant concentrations, especially in urban areas or 

areas close to the sources of O3 precursors. Delimiting representative zones thus requires 

intensive measurements around the monitoring station, and by the very nature of the 

monitoring networks, these do not exist.  Another problem is that different countries or 

agencies may interpret the criteria for classification in slightly different ways, so that the 

classification is not applied entirely consistently. In the case of AIRBASE, the classification 
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was also derived regardless of the type of pollutant.  Different pollutants, however, are likely 

to show different patterns of variation, and different relationships with emission sources.  In 

practice, therefore, different criteria may be needed to classify sites for different pollutants.  

For the aims of this research – i.e. to model space-time variations in air pollution – a further 

limitation exists in the AIRBASE classification.  This is that the classification is essentially 

aimed at distinguishing only geographic variations in air pollution, rather than variations 

over time.   There is no guarantee, therefore, that the sites in any one category will display 

similar temporal pollutant patterns.  This is only likely to be achieved if classification is 

explicitly based on, or calibrated against, time-varying profiles of pollution measured at a 

representative sample of sites. 

To illustrate this, the monitored hourly data from March 2001 to February 2002 from 1253 

sites were analysed as a pilot analysis, to explore the spatial variations in observed 

concentrations using AIRBASE site type classification.  This was done using variance 

components analysis (VCA). VCA is a way to assess the quantity of variation in a dependent 

variable (in this case, ambient O3 concentration) in relation to one or more affects variables. 

The fundamental output is a variance components table which shows the percentage of 

variance attributable to the main effect of the variables.   

Spatial variables were categorised on a hierarchical basis in this analysis.  Site type is based 

on a simple binary classification.  At the highest level (site type A) all sites were classified as 

either background (i.e. in rural or urban background areas, unaffected by local emission 

sources) or other.  At the next level (site type B), the ‘other’ category was further 

subdivided. Finally, Site represents the unique effects of each monitoring site.   This was 

possible only in three countries (Belgium, Portugal and Spain) which have a reasonable 

number of sites (more than 10% of the total number for each site type) in each category of 

site type B (i.e. background, industrial, traffic and unknown).  Results are summarized in 

Table 4.2. 

Table 4.2 Percentages of variation explained by spatial factors. 

countries Site type A Site type B Site Total 

Spain 29 9 62 100 

Portugal 23 14 63 100 

Belgium 41 3 56 100 
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As Table 4.2 shows, Site type A accounts for 23-41% of the spatial variation, suggesting that 

these two categories of site are distinctly different.  Differences in the ‘other’ category (e.g. 

between industrial and traffic sites) have only a small effect, explaining 3-14% of the spatial 

variability. Much of the remaining variation (ca. 60%) was attributable to Site: i.e. 

represented temporal variability within individual sites. These unique differences between 

sites clearly cannot be explained by the AIRBASE site type. All these factors limit the utility of 

the AIRBASE classification as a basis for modelling short term variability. 

A number of previous studies (Joly and Peuch, 2012, Flemming et al., 2005, Snel, 2004, 

McGregor, 1996, Mcgregor and Bamzelis, 1995) have pursued the objective of classifying 

pollutant-specific monitoring sites on the basis of the temporal variations in measured 

concentrations of the monitored pollutant.  Mcgregor and Bamzelis (1995), for example 

applied principal component analysis (PCA) and cluster analysis to derive airmass types 

based on meteorological data. The original dataset consisted of eleven different 

meteorological factors (e.g. wind speed and direction, different elements of temperature, 

cloud cover, solar radiation) for 365 days.  Daily averages were used in PCA in seeking a 

combination of meteorological factors that grouped together at a location for a given time. 

This produced four components, defined as westerly flow, cloud, fog and hygrothermal 

conditions. These components were then subjected to hierarchal cluster analysis (HCA) to 

identify groups of days with similar meteorological conditions. Six site types were identified 

in terms of the air pollution and synoptic situation they represent. In a later study, McGregor 

(1996) used the same approach to determine whether similar air quality patterns existed in 

the urban area of Birmingham. Data from seventeen SO2 monitoring sites were used, 

comprising 571 daily SO2 measurements in the winter of 1979-80.  The PCA reduced these 

data to four components representing the temporal behaviour of SO2. The monitoring sites 

were then grouped by HCA based on these components. As a result, four different site types 

were identified, ranging from heavily polluted to low pollution areas. 

Snel (2004), in a pilot study, used weekly NO:NO2 ratios for summer and winter seasons for 

three years based on hourly data  for 1999, 2000 and 2001, to group 465 O3 monitoring sites 

across Europe.  The NO:NO2 ratios (6 ratios: 2 seasons x 3 years) were then used in K-mean 

cluster analysis to classify all AIRBASE sites into three site types: rural background, urban 

background and traffic, using the available NO and NO2 data. In many of the twenty three 
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countries analysed, more than half of sites classified in this way differed from the registered 

site type in AIRBASE.   

Flemming et al. (2005) classified 650  air quality sites in Germany for four critical air 

pollutants (O3, NO2, SO2, and PM10) on the basis of hourly time series data from 1995 to 2005 

(ca. 2-3000 data points). The procedure for classifying the O3 monitoring sites was, first, to 

scale the time series data using log-medians of the daily average (P50DA) and normalized 

daily variability (P50DV). This was done despite the fact that they were negatively 

correlated. HCA was then run, producing six different O3 site types. The stability of these six 

site types was tested by cross validation, comparing the results with a reference 

classification produced in another study. Flemming et al. (2005) claimed an excellent 

agreement but do not report the actual percentages.   

In the most recent study, conducted by Joly and Peuch (2012), 4956 air quality sites were 

classified across 35 European countries based on hourly time series data over the period 

2002-2009 for different air pollutants (O3, NO2, NO, SO2, and PM10). Time series data for each 

pollutant were described by eight metrics:  

 daily maximum;  

 daily amplitude (daily maximum minus daily minimum) for each month of the year;  

 the annual mean;  

 the summer minus winter mean;  

 the high frequency standard deviation;  

 weekend effect on:  

o the daily mean, 

o daily maximum, 

o Standard deviation.  

Classification was constrained to be consistent with the AIRBASE meta-data. Therefore, to 

distinguish between rural and polluted sites (i.e. traffic and urban), discriminant analysis 

(DA) was employed using the eight metrics to classify monitoring sites to rural and urban 

based on AIRBASE meta-data. The DA results were then arbitrarily stratified using the nine 

percentiles (10 to 90%) as fixed thresholds to produce ten site types. Comparing the ten site 

types with AIRBASE site types showed considerable inconsistency between the two 

classifications. The authors also stated that classifying the air quality sites within Europe is 

not straightforward as the measurements represent different environments. 



81 

 

 

All these studies agree with the notion that classification of sites within any given network 

should be pollutant specific (e.g. classification of sites based on PM may not be the best 

classification with respect to O3).  They also agree that this classification should be based on 

a thorough understanding of measured concentrations over a period of time. On the other 

hand, it is evident from these studies that the AIRBASE does not meet these criteria, due to 

the subjective method followed in the classification, regardless of the type of pollutant. This 

emphasises the need for a more objective approach to classify the O3 sites. 

The main difference between the studies described above was in the choice of the 

parameters used to condense the information from the time series data into a form suitable 

for classification.  This was done either through the use of indicators (e.g. NO:NO2 ratios, 

threshold NO:NO2 ratios, P50DA and P50DV) or by using statistical methods to reduce the 

massive time series data to a number of components which explain most of the information 

in the data (i.e. components derived from PCA).  The studies agree again, however, in using 

cluster analysis to classify the monitoring sites (i.e. to group sites with similar temporal 

behaviour) based on these parameters. 

A further question remains at the end of these studies – namely, how to assign the site type 

to unmonitored location over the study area. As  Flemming et al. (2005) have noted, one 

way of doing this is by cluster analysis, using the ‘centroid approach’, which employs the 

conceptual distance between the group centres as a cluster criterion (Wilks, 1955).  This is 

only possible, however, where the same attributes and data used to set up the initial 

classification (in this case O3 concentration) is also available for the target locations.  In this 

instance, this is clearly not the case, since the target locations are unmonitored, and the only 

available measurements are the environmental data. 

This is a common situation when mapping or modelling environmental phenomena.  It is 

encountered, for example, in soil science (i.e. digital soil mapping), where the aim is often to 

map soil properties, using data that are available for only a subset of sample locations. 

Typically it is done by establishing a relationship between the properties of interest and the 

soil class, then using data on soil class to estimate the relevant soil properties at any location 

(Abdel-Kader, 2011, Debella-Gilo and Etzelmüller, 2009, Kempen et al., 2009).  

One context in which this arises is updating national soil maps.  Field surveys are very costly, 

so some form of predictive method is needed which allows maps to be updated on the basis 
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of a relatively small amount of sample data. For this purpose, Kempen et al. (2009), for 

example, aimed to assign soils to ten major soil classes at unvisited locations across Drenthe 

in the Netherlands. Using multinomial logistic regression (MLOR), the relationship between 

twelve environmental datasets – elevation, ground water classes, historic and recent land 

cover classes, geomorphologic classes, and paleogeography classes - and the soil classes was 

quantified, from surveyed sites. The environmental data were selected based on expert 

knowledge and ten models were built. From these models, the probability of occurrence of 

the ten site classes was estimated and used to assign the unvisited sites, across a 25m grid. 

Results were assessed by estimating the purity of the national soil map (i.e. the percentage 

of sites in each soil map unit that conformed to the designated class as assessed by the 

validation sample): based on this measure 58% of sites were found to be correctly classified. 

Following the same approach, Abdel-Kader (2011) used soil map classes defined by field 

survey to predict the distribution of soil classes in the north coast of Egypt. A set of 

parameters (i.e. information about the soil and terrain) were calculated and then entered 

into MLOR to derive probabilities of soil class membership. The probability models thus 

developed were used to predict the spatial distribution of the soil mapping units at grid 

resolutions of 28.5 m × 28.5 m and 90 m × 90 m in adjacent, unvisited areas at Matrouh and 

Alamin.  

Following the same concept, Beelen et al. (2009) classified urban and rural areas across a 

1km grid for Europe. Classification was done by intersecting the monitoring sites with 

CORINE land cover data, and using DA to generate a discriminant function, distinguishing 

between urban and rural sites. Two environmental variables were developed for each of two 

different window sizes (1km* 1km and 3km*3km) on the basis of land cover data.  The area 

of total built-up land was used to characterise urban areas in each of these windows, and 

the sum of agricultural and forest classes to characterise the rural area.  Using these four 

variables, the overall accuracy of classification was 86% for the urban area and 89% for the 

rural area, compared to the AIRBASE classification. 

These examples of studies suggest that MLOR and DA are appropriate methods to generate 

discriminant function(s) defining the site types in terms of their environmental factors. Both 

methods assume a linear relationship between continuous predictors (selected 

environmental data) and the categorical variable (different site types). 
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4.2 Methodology and results 

In this study, classification of the O3 monitoring sites was done by using the hourly time 

series concentrations from the 1211 sites in the AIRBASE network which met pre-specified 

data quality/capture criteria (section 3.2.2), together with the environmental data 

developed in Section (3.2.3). As illustrated in Figure 4.1, analysis comprised four key stages:  

 

 

 

 

 

Figure 4.1 The procedure for classifying the 1211 monitoring sites and deriving 
discriminant functions 
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1. Creation of the indicators (Section 4.2.1). This involved defining and selecting 

suitable indicators (parameters) which potentially have the ability to discriminate 

between O3 monitoring sites in terms of their temporal patterns, over different time 

periods (diurnal, weekday/weekend and seasonally). 

2. PCA (Section 4.2.2).  The indicators created in step 1 were correlated, so PCA was 

used to produce uncorrelated principal components, explaining most of the 

information in the indicators. 

3. Classification (Section 4.2.3).  HCA was then applied to the principal components to 

classify the 1211 O3 monitoring sites into a smaller number of groups with distinct 

temporal patterns. 

4. Definition of site types in terms of environmental factors (section 4.2.4).  This was 

done by establishing the relationship between selected environmental variables and 

site types using discriminant functions in MLOR. These functions will later be used to 

predict the probabilities of site-type membership for unmonitored locations.  

The site type classification thus generated will enable the development of different temporal 

models for different sites, depending on their probability of site type membership.   

4.2.1 Creation of indicators  

As noted above, classification of monitoring sites should be based on a thorough 

understanding of measured concentrations over a period of time. This purpose can be 

achieved by creating indicators which characterise the temporal variations in the measured 

concentrations.  

The purpose of the indicators in this study, simply, is to provide a means of describing the 

temporal 'signatures' (i.e. repeated patterns) of O3 concentrations that reflect different  

types of O3 behaviour.  For this purpose, the indicators should describe the hourly record (or 

trace) of concentrations at any site in a way that allows it to be compared with that at 

another site. The indicators should thus facilitate grouping of monitoring sites in a way that 

allows specific time models to be derived for each group of sites.  Ideally, also, it should be 

possible to identify and map these groups on the basis of relevant exogenous, 

environmental variables.   
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The indicators must, therefore, be selected to represent the most important systematic 

time-patterns (variations) in the O3 data. These variations include, especially:  

1. Seasonal variations (winter-summer contrasts), due mainly to broad-scale climatic 

and topographic effects (e.g. degree of continentality, or mountain effects);  

2. Weekday/weekend variations, due, for example, to the weekly cycle of emissions 

associated with industrial activity and traffic;  

3. Diurnal variations (morning and evening peaks, and night-time levels) probably 

reflecting the effects of local traffic (especially of NOx), photochemical processes, 

and inter-regional transport of O3.  

Because these temporal variations are themselves due, in part, to the effect of the 

surrounding environment, identifying signatures in this way should reflect differences in site 

type: for example between transport and non-transport; urban, suburban and rural; windy 

and calm; or warm and cool environments - and all the different combinations of these that 

might be expected to occur in the real world.  By the same token, they should also relate to 

measurable environmental characteristics (e.g. topography, meteorology, land cover) that 

can then be used to assign unmonitored locations to the same site types.  

The variations in O3 concentrations to be captured by these indicators can be characterized 

in terms of different statistical metrics.  The most useful metrics are likely to be measures of 

central tendency both overall and periodically (i.e. within specified averaging periods, such 

as seasons, weeks, days), periodic extremes (to show, for example, whether the pollution 

peaks within these periods are especially marked), and periodic variability (to demonstrate 

whether levels remain broadly constant or fluctuate within the specified periods).  For O3 

three key periods (or time scales) are especially relevant: seasonal (summer (SUM) versus 

winter (WINT)), hebdomonal (weekday (WD) versus weekend (WE)), and diurnal (morning 

(AM), afternoon (PM), and night (NI)).   

The methodology used was devised on the basis of a further analysis using VCA analysis, as 

mentioned in Section 4.1. This time a full range of spatial and temporal factors were 

considered to assess the quantity of variation in those factors. Spatial factors were 

represented by site type A (rural and urban background versus other) and Site; as there are 

not enough traffic and industrial sites in all countries, site type B was excluded in this 

analysis.   
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Temporal factors were generated by aggregating the hourly concentrations from the 1253 

sites for the year from March 2001 to February 2002 to the following time intervals: hour of 

the day18, time of day (afternoon versus rest of the day)19, day of the week20, 

weekday/weekend (weekend versus weekdays)21 and season22. These were all defined as 

fixed effect factors for a random sample of monitoring sites; site was therefore regarded as 

a random effect factor. Results are summarized in Table 4.3. These effects variables, it 

should be noted, are hierarchical, in that sites nest within site types, and hours within times 

of day, within day of week, within weekday/weekend, within season.   

 

Table 4.3 Percentage of total variance in ambient O3 concentration attributable to spatial 
and temporal factors 
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Ireland 8.9 9.6 18.5 15.3 0.0 0.1 1.7 0.5 17.6 63.9 100 

United Kingdom 0.7 13.9 14.6 11.8 0.1 0.4 3.4 1.3 17.0 68.4 100 

Denmark 6.2 3.4 9.6 16.8 0.2 0.4 3.5 1.8 22.7 67.7 100 

Portugal 3.9 12.9 16.8 10.1 0.5 0.4 10.6 2.3 23.9 59.2 100 

Spain 8.4 20.1 28.5 13.1 0.3 0.0 9.8 2.8 26.0 45.5 100 

Austria 1.8 18.3 20.1 23.2 0.1 0.1 6.8 2.2 32.4 47.5 100 

Belgium 3.2 4.5 7.7 21.4 0.1 0.1 8.4 2.9 32.9 59.3 100 

The Netherlands 3.5 2.3 5.8 20.8 0.1 0.1 8.3 2.1 31.4 62.8 100 

France 0.1 9.2 9.3 20.7 0.1 0.1 9.2 3.9 34.0 56.8 100 

Germany 1.2 10.0 11.2 22.4 0.2 0.2 9.0 2.3 34.0 54.6 100 

Italy 2.0 12.7 14.7 23.0 0.3 0.0 9.6 3.0 35.9 49.3 100 

On Average% 3.6 10.6 14.2 18.1 0.2 0.2 7.3 2.3 27.9 57.8 100 

 

                                                           
18

 Hour of day: O3 conc. for each hour from 1AM to 12AM (24 hours). 
19

 Time of day: 12PM THRU 19PM= 1, ELSE=2. 
20

 Day of the week: MON=1, TUE=2, WED=3,THU=4,FRI=5,SAT=6 & SAT=7. 
21

 Weekday/weekend: Saturday and Sunday=2, ELSE=1. 
22

 Season: winter: Dec to Feb, spring: Mar to May, summer: June to Aug and autumn: Sep to Nov. 
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Table 4.3 shows that, cross all the eleven countries studied, 14% of the total variability was 

associated with the spatial factor; 28% with temporal factors, and the remaining 58% of the 

variability was unpredictable (i.e. error).   

The proportion of spatial variation ranges from 6-29%.  In general it is weakest in countries 

that are relatively flat and uniform (the Netherlands, Belgium and Denmark).  In these 

countries, too, site tends to account for a relatively small proportion of the spatial variation 

(over half in the Netherlands and Denmark). The largest spatial effects occur in Spain and 

Austria, both topographically diverse countries, and Ireland.  The last of these has a 

relatively small number of sites, split between the larger urban areas (e.g. Dublin) and 

remote rural areas.  In this country, therefore, site type A is again relatively strong.    

Temporal factors account for between 17% of the total variation in the O3 data in Great 

Britain (GB) and 36% in Italy.  Most of the temporal effect is due to season, with a moderate 

proportion also associated with time of day, and a somewhat smaller proportion with hour 

of day.  This indicates that the temporal patterns comprise both a short and long-term cycle 

of variation.  The difference in the proportion of variance explained by temporal factors is 

also of note. GB, for example, shows a lower proportion of temporal variation (17%), 

perhaps reflecting its maritime environment, which experiences little seasonal variation in 

weather conditions and thus probably has relatively uniform O3 concentrations over time. In 

Italy, in contrast, temporal variation accounts for 36% of the observed variability, with a 

strong seasonal component, characteristic of its Mediterranean climate, with much greater 

temperature extremes, both between seasons and at a diurnal scale.  Variations in O3 

concentrations attributable to day of week, on the other hand, are very small: 0.1% in GB, 

and 0.3% of the total variance in Italy.  This suggests that the weekly cycle of work activity 

(and associated emissions) is not a major factor.   

The large amount of unexplained variation in all the eleven countries (58% on average) is 

also notable. This indicates that the hourly O3 data contain a large amount of noise, which 

will be difficult to model without the use of additional information (e.g. on local emissions 

and meteorology).  Likewise, it might be expected that only about a quarter of the overall 

variability will be explainable using temporal (i.e. seasonal, weekday/weekend, and diurnal) 

indicators, as proposed here.  
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Line graphs were also drawn for a random subsample of sites to explore the diurnal pattern 

of variation, and to define the timing of the troughs and peaks that occurred (Appendix A, 

Section V, Figure A.1).  This, therefore, helped to determine how best to specify the ‘time of 

day’ factors and to see whether this varied systematically between sites.  

Results suggested that the afternoon peak typically occurs between ca. 14.00 and 18.00 

hours in both GB and Italy.  In some sites, another, secondary peak occurs at night between 

ca. 2.00 and 5.00 hours. Evidence of the effects of scavenging of O3 by NO is also clear in the 

graphs, for a clear trough in the concentrations typically occurs between ca. 6.00 and 10.00 

hours, coinciding with the morning rush hour. Three critical periods of the day were thus 

defined: afternoon, from 13.00 to 19.00; night, from 22.00 to 05.00; and morning from 

06.00 to 12.00. 

On this basis, it was concluded that indicators were needed to reflect the average, extreme 

and within variability concentrations as follow: 

1. Time of day indicators, to reflect hour-to-hour variations within a day - and based 

on hourly averages.  

2. Day of week indicators to reflect day-to-day variations within a week - and based on 

daily averages.  

3. Seasonal indicators to reflect week-to-week variations within a season - and based 

on weekly averages. 

In order to enable meaningful comparisons between sites, it is essential to normalize the 

indicators; otherwise, the data are likely to be dominated by differences in the overall 

average concentration (i.e. between polluted and less polluted sites) rather than the 

temporal variation at a site. Normalization was therefore done against the long-term mean 

concentration for each site, as illustrated in Table 4.4. This was chosen rather than the 

standard deviation (SD), because sites which do not vary much overall (have a low annual 

SD) might appear to vary hugely within some of these time periods in relative terms 

(because the denominator, the annual SD, will be very small).  In practice, however, the 

mean and SD are usually very closely correlated. 

The diurnal (time of day) indicators are based on hourly averages.  To minimise high 

correlations between each of these indicators, the 24 hours of the day were split into three 

periods, as defined above.  These are meant to be reasonably homogeneous in term of the 
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influences acting on O3 concentration and representative of some sort of repeated cycle in 

the daily pattern of variation. 

The weekday/weekend indicators are constructed at the next level of aggregation, and are 

based on daily averages. A week is taken to be from Monday to Sunday. During the working 

week (Monday to Friday) O3 concentrations vary little from day to day.  Weekday versus 

weekend concentrations, however, tend to vary substantially (Mayer, 1999). For instance, 

during the weekday, emissions from traffic and industrial sectors (basically NO) are likely to 

be higher than at the weekend. In urban sites, especially, concentration variations between 

weekdays and weekends may be expected to be very clear. On the other hand, at any rural 

site far from these emissions, this variation is likely to be limited.  

Day of week indicators are thus created for two periods: weekday and weekend, partly to 

help separate areas unaffected by local pollution sources (rural) from those with a marked 

source effect (traffic and urban sites). 

Table 4.4 Indicator labels and formulae 

Type Indicator Label Formula 

Average SUM_Nmean (SUM_mean-Weekly_mean)/Weekly_mean 
WINT_Nmean (WINT_mean-Weekly_mean)/Weekly_mean 
WD_Nmean (WD_mean-Daily_mean)/Daily_mean 
WE_Nmean (WE_mean-Daily_mean)/Daily_mean 
AM_Nmean (AM_mean-HOURLY_mean)/HOURLY_mean 
PM_Nmean (PM_mean-HOURLY_mean)/HOURLY_mean 
NI_Nmean (NI_mean-HOURLY_mean)/HOURLY_mean 

Within Variability SUM_Nvar SUM_sd / SUM_Mean 
WINT_Nvar WINT_sd / WINT_mean 
WD_Nvar WD_sd/WD_mean 
WE_Nvar WE_sd/WE_mean 
AM_Nvar AM_sd/AM_mean 
PM_Nvar PM_sd/PM_mean 
NI_Nvar NI_sd / NI_Mean 

Extremes SUM_Nmax (SUM_max - SUM_Mean) / SUM_Mean 
WINT_Nmax (WINT_max - WINT_Mean) / WINT_Mean 
WD_Nmax (WD_max - WD_Mean) / WD_Mean 
WE_Nmax (WE_max - WE_Mean) / WE_Mean 
AM_Nmax (AM_max - AM_Mean) / AM_Mean 
PM_Nmax (PM_max - PM_Mean) / PM_Mean 
NI_Nmax (NI_max - NI_Mean) / NI_Mean 

 

The seasonal indicators are based on weekly averages rather than monthly averages for two 

reasons.  Firstly, this provides a consistent link between the three different indicator types 

listed in Table 4.5.  And secondly, weekly averages provide smoother patterns within 

seasons than do monthly averages. 
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Based on this methodology, twenty one indicators were calculated to highlight the most 

important aspects of variability in O3 concentrations during different time periods. Prior to 

further analysis, correlations between the twenty one indicators were examined in order to 

detect any obvious redundancy in the variables.  All variables showed moderate levels of 

correlation, and for some the Pearson correlation exceeded 0.80.   
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Table 4.5 Description of temporal indicators  

 Seasonal Weekday/weekend Diurnal Suggested metric Application 

Average 

 

Normalised mean for: 
SUM 
WINT 

Normalised mean for: 
WD 
WE 

Normalised mean for: 
Am 
PM 
NI 

Normalised mean: 
Meanp-
Meany/Meany 

Distinguishes between sites that have higher or lower 
average concentrations during the specified period 
compared to the average for the year. 

Extreme 

 

Normalised average 
daily max and min for: 
SUM 
WINT 

Normalised average daily 
max and min for: 
WD 
WE 

Normalised average 
daily max and min for: 
Am 
PM 
NI 

Normalised average 
maxima: 
|Max|p-
Meanp/Meanp 
Normalised average 
minima 
|Min|p-
Meanp/Meanp 

Distinguishes between sites that have higher or lower 
extreme concentrations during the specified period, relative 
to the average for the period 
(Note |….| depicts averages of the specified measures) 

Within variability 
(i.e. within each 
period) 

CV for:  
SUM 
WINT 

CV for:  
WD 
WE 

CV for: 
Am 
PM 
NI 

Coefficient of 
variation: 
SDp/Meanp 

Distinguishes between sites with more or less variable 
concentrations during the specified period, relative to the 
average for the period 

Definition of time periods: 
SUM: June to August         WINT: December to February 
WD: Monday to Friday   WE: Saturday and Sunday 
AM: from 06.00 to 12.00    PM: 13.00 to 19.00    NI: 22.00 to 05.00 
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4.2.2 Principal component analysis (PCA) 

As noted previously, the correlations between some of the indicators was found to be high.  Rather 

than taking an arbitrary decision to remove one of each pair of highly correlated indicators, which 

could lead to losing some information, further analysis is required to produce informative but 

uncorrelated components on the basis of the twenty one indicators. 

There are two specific methods to achieve this task: PCA and factor analysis (Jolliffe, 2002). Both 

methods are used as a data reduction method, but the latter has the aim of  revealing any latent 

variables within the observed or measured variables, whereas the former is used to  derive a 

comparatively small number of variables which convey as much of the information in the observed 

or measured variables as possible (Leech et al., 2008). PCA is the preferred analysis here, as the 

purpose is to reduce the number of indicators, and to eliminate the correlations between variables 

used in subsequent analysis. Previous studies aiming to classify air pollution monitoring sites have 

followed the same scheme (i.e. using PCA, followed by cluster analysis). As noted previously, one 

such example is the study by McGregor (1996) which follow the approach of (Yarnal, 1992).   

PCA is a multivariate technique designed to help understand the complex relationships among a set 

of variables, considered simultaneously, by using the correlations amongst them to create a set of 

components. PCA forms uncorrelated linear combinations of the observed variables.  The first 

component explains the most variance, and successive components explain progressively smaller 

portions of the variance, and all are uncorrelated with each other. The method can be used when a 

correlation matrix is singular (Jolliffe, 2002), such as the case with the indicators derived in section 

4.2.1.   

The variables, in this case the indicators, first need to be examined to see if they conform to several 

statistical requirements in order to determine the appropriateness of PCA.  The created indicators 

were therefore screened to test that the correlations between them justified the application of PCA. 

To be considered for PCA, all correlations should exceed 0.3; however, partial correlations (i.e. the 

correlations between indicators taking into account the effect of other indicators) should be small. 

This correlation assessment can be done using the Kaiser-Meyer-Olkin measure of sampling 

adequacy (KMO) tests. The KMO is the ratio of the squared correlation between indicators to the 

squared partial correlation between indicators (Field, 2009). The KMO statistic ranges between 1 

and 0, where 1 indicates that correlations are compact and running the analysis will produce reliable 
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components. There are two values of KMO: one for multiple and the other for individual variables, 

both of which have to be greater than 0.5 (Field, 2009). 

The next step was to determine how to select the appropriate number of principal components (PCs) 

to be extracted.   Three criteria were chosen for this purpose: 

1) Latent root criterion (eigenvalues): the eigenvalue is the variation explained by a 

component; any component with an eigenvalue greater than 1 is considered significant (i.e. 

has a significant amount of variation) (Kaiser, 1960). 

2) Percentage of variance: based on achieving a particular cumulative percentage (e.g. 

established a priori as x percent) of the total variance extracted by consecutive components. 

3) Scree plot: used to identify the optimal number of extracted components before the unique 

variance begins to dominate the common variance. A scree plot is a graph plotting each 

eigenvalue (Y axis) against the associated component (X axis) (Cattell, 1966). The point of 

inflexion of the curve is taken as the cut off point for the optimal number of components. 

Once the PCs have been extracted, they need to be interpreted.  Based on the un-rotated matrix, the 

first component depicts the best summary of the linear relationships between variables (indicators) 

and contains all variables with high loadings. The other components comprise the other variables, 

with lower loadings (Field, 2009). Interpretation of the components can be improved by obtaining 

the rotated matrix which eliminates the combined ambiguities in the un-rotated solutions. In other 

words, it reorganises the variance from early components to later components to achieve a more 

meaningful component model. Therefore, the rotation effectively maximizes the variable loading in 

a single component and minimizes the number of variables with high loadings in each factor. 

Factor rotation means that the reference axes of the components are rotated about the original axis 

until another location has been reached.  An orthogonal rotation is at 90 degrees, while an oblique 

rotation has no constraints and is more flexible, and allows components to be correlated. An 

orthogonal rotation is appropriate if the objective is to obtain a set of uncorrelated components 

needed for prediction techniques; this agrees with the aim, here, as these components will be used 

in a subsequent cluster analysis. 

There are three approaches to rotation (varimax, quarimax and equamax) under orthogonal 

rotation, depending on the type of component desired.  As noted, the objective here is to obtain a 

set of uncorrelated factors that are linear combinations of the initial variables, explaining most of 
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the variation in the data. Varimax is most appropriate in this situation because it maximizes the 

dispersion of loading within components, to produce more interoperable components compared to 

other approaches.  

There is a widely used non-mathematical proposition for determining the significance of the variable 

loadings. As the component loading is the correlation between each variable and the factor, so the 

square of the loading is the variable’s total variance accounted for by that component. By 

convention, loadings of 0.5 or more are considered significant (denoting 25% of the variance 

accounted for by the component); 0.4 is important; and 0.3 is not important since this means that 

the component explains only ca. 10% of the variable’s total variation. Note that the square of the 

component loadings (correlation) reflects the total variation of the variables explained by the 

component; therefore, loadings should exceed 0.7 to account for 50% of the variance (Hair et al., 

1998). Stevens (2002) says that only variables with a loading of more than 0.4 (denoting 16% of the 

variance accounted for by the component) should be considered appropriate for interpretation.  

On examining the variables that load high on each component, a descriptive label or name is then 

assigned describing each respective component. The variables with highest loadings should have the 

most influence on the label of the component. 

To be appropriate for PCA, both KMO measures for the sampling adequacy should be greater than 

0.5.  Here they were 0.9.  This indicates that the twenty one indicators are appropriate to be used in 

PCA. 

The scree plot (Figure 4.2) shows the change in the eigenvalue for each additional component.  The 

point of the inflexion indicates that four components are appropriate, for at this level a stable 

plateau is reached.  

Table 4.6 also shows that the fourth component is the last for which the eigenvalue exceeds 1. These 

four components combined represent 88.4% of the variance of the twenty one indicators. 

Furthermore the communalities in the un-rotated matrix are larger than 0.5, which indicates that a 

large amount of variance in all indicators has been extracted by the component solution.  



95 

 

 

 

Figure 4.2 Scree Test for Component Analysis 

 

 

Table 4.6 Results for the extraction of principal components showing the eigenvalues and the total 
variation explained by principal components 

Extraction sum of squares loading Rotation sum of square loading 

Components Eigenvalue % of variance Cumulative % of Variance % of 
variance 

Cumulative % of 
Variance 

1 13.39 63.76 63.76 25.59 25.59 
2 2.58 12.32 76.08 24.11 49.70 

3 1.41 6.71 82.80 23.21 72.92 

4 1.17 5.59 88.40 15.48 88.40 
5 0.80 3.81 92.21   

6 0.52 2.49 94.71   

7 0.33 1.61 96.32   

8 0.22 1.09 97.41   

9 0.15 0.72 98.14   

10 0.10 0.51 98.65   

11 0.06 0.30 98.96   

12 0.05 0.22 99.19   

13 0.04 0.19 99.38   

14 0.04 0.17 99.56   

15 0.03 0.15 99.71   

16 0.03 0.11 99.83   

17 0.01 0.06 99.89   

18 0.009 0.04 99.94   

19 0.006 0.03 99.97   

20 0.004 0.02 99.99   

21 0.000 0.0004 100   
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The first component accounts for the largest amount of variance, with most indicators loading high 

on this component (63.8% compared to 12.3, 6.7, and 5.6).  This suggests that Interpretation of the 

un-rotated components will not be easy. Therefore, a rotation of the matrix is needed to redistribute 

the variance between the components and make the interpretation more meaningful and simpler. 

After rotation, the first component accounts for only 25.6% of variance (compared to 24.1% 23.2% 

and 15.5% respectively in the other components). 

In an effort to name each component, all components with high loadings from the rotated solution 

were used, bearing in mind that indicators with higher loadings influence the naming of the 

component to a greater extent (i.e. what the component actually represents).  Table 4.7 shows the 

component solution derived from the analysis using the varimax rotation of the twenty one 

indicators of hourly O3 concentrations. The cut-point for interpretation purposes was defined as all 

loadings above 0.4.  

 

Table 4.7 VARIMAX-Rotated Component Analysis 

Indicators 
                         Principal Components 

PC1 PC2 PC3 PC4 

WD_Nmean -0.86    

WE_Nmean 0.86    

PM_Nmax 0.83    

WE_Nmax 0.71   0.48 

WD_Nmax 0.71   0.52 

WINT_Nmean  -0.84 -0.40  

SUM_Nmean  0.84   

AM_Nmean  -0.75   

WE_Nvar  0.72   

WD_Nvar 0.40 0.68 0.41 0.43 

AM_Nvar 0.52 0.61 0.54  

PM_Nvar 0.55 0.55 0.30 0.48 

WINT_Nmax  0.54 0.53  

WINT_Nvar 0.44 0.50 0.45 0.43 

NIGHT_Nmean   -0.97  

PM_Nmean  0.45 0.81  

NIGHT_Nmax 0.53  0.78  

NIGHT_Nvar 0.48 0.37 0.73 0.24 

AM_Nmax 0.50 0.52 0.61  

SUM_Nmax    0.91 

SUM_Nvar    0.89 
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Component 1 (PC1) seems to comprise monitoring sites with a contrast in average concentration 

between weekend and weekday. Also it includes sites with higher maximum concentrations in the 

weekday/weekend and afternoons. This contrast is likely to be produced from differences in 

emission intensity from human activities during the two periods of time.  Variations in traffic density, 

especially, are implied, for this is the major source of NO (O3 scavenger).  PC1 is thus termed as a 

weekday/weekend component.  

Component 2 (PC2) tends to represent sites having a contrast in average concentration between 

summer and winter. These sites also have high variations in concentration during the week and 

during the day. Interpretation of this component needs to be done with care, as the summer/ winter 

contrast is likely to reflect broad geographical influences of climate, which in turn are likely to relate 

to latitude and degree of continentality (coastal versus inland sites). PC2 is thus termed as a 

summer/winter contrast component. 

Component 3 (PC3) captures sites having a contrast in the average concentration between night-

time and afternoon. This is likely to be related mainly to the natural pattern of photochemical 

activity between day and night.  It will thus help to distinguish areas in which there is a strong 

afternoon peak and low concentrations at night (e.g. due to the absence of any inter-regional 

transport of O3).  This PC is termed the afternoon/night contrast component. 

Finally, component 4 (PC4) seems to include sites with high maximum concentrations and variation 

during the summer. This could highlight the effect of seasonal photochemical reactions. For 

example, sites located in warm, inland areas and far from any source of scavenging of O3 will have 

very high O3 concentration, especially during warm, sunny periods of the year. This PC4 is termed 

the high summer variation component. 

As the names given to the PCs implies, each one highlights the importance of a different 

environmental factor on O3 formation and destruction. The four most meaningful components will 

be used to classify the 1211 O3 monitoring sites over Western Europe using hierarchal cluster 

analysis, as described in the following section. 

4.2.3 Hierarchal cluster analysis (HCA) 

The four PCs (based on the twenty one indicators) defined in the previous analysis were used in 

cluster analysis to classify sites into a number of types based on their temporal O3 signature. There 
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are two main approaches: HCA and K-means clustering. The latter approach is mainly appropriate 

where the initial cluster centres (cluster seeds) need to, and can, be defined in advance. The process 

works iteratively, starting with the first seed.  All cases within a pre-specified threshold distance of 

the seed are assigned to the associated cluster. Another cluster seed is then assigned and cases 

assigned in the same way.  These steps continue until all cases are assigned to the predefined 

number of clusters. A major problem with K-means cluster analysis, however, is how to select the 

initial cluster seeds.  The results of the analysis also depend on the order of the cases in the data set. 

Furthermore, the optimum number of clusters is often not known in advance. On the other hand, 

HCA can be run when the number of clusters is undefined and  when the analysis is largely free of K-

mean constraints (Willett, 1988).  It thus provides a more powerful grouping approach and yields 

better quality clusters (Flemming et.al., 2005; McGregore, 1996; McGregor and Bamzelis,1995). 

Therefore, HCA was used in this analysis. 

HCA is a multivariate technique used to group cases based on their shared characteristics, with the 

aim of maximizing variation between the resulting groups and minimising the variation between 

cases within each group. HCA searches for an underlying structure of cases (sites in this context) 

through an interactive process, using either agglomerative methods (the most common approach) or 

divisive methods to assign cases to a cluster, case by case, until all cases have been processed 

(Steinbach et al., 2003).  

Agglomeration starts with all sites in separate clusters, then, based on the selected similarity 

measures, these are progressively joined into fewer, larger clusters, until all sites end in one inclusive 

cluster. Various measures may be used to assign cluster membership, including the correlation 

matrix between variables and distance measures. Correlation measures are rarely used because 

clustering depends on the magnitude of cases, not just the pattern of association between them. A 

distance measure is a measure of dissimilarity across the cases, and is converted to similarity by an 

inverse relationship. Euclidean distance, for example, is often used.  This is the distance between 

two points represented by the length of the hypotenuse of a right angle triangle.  

Various methods for clustering can be used, each based on different ways of defining between and 

within group variation.  Ward’s method is one of the most widely used and, perhaps, most robust 

methods of clustering (Henne et al., 2010, Flemming et al., 2005). This uses the sum of the squared 

distance between two clusters summed over all variables. The centroid method uses the distance 

between the centroid of two clusters.  Both Ward’s and the centroid methods use the squared 



99 

 

 

Euclidean or simple Euclidean distance, which is not affected by outliers.  For this reason, Ward’s 

method was selected in this analysis. 

The agglomeration chart produced during HCA depicts the changes in the coefficient at each stage of 

the clustering process. Small changes in the coefficient indicate that relatively homogenous clusters 

are being merged, whereas large changes occur when two distinctly different clusters are merged.  

This can be used to inform the decision about the number of extracted clusters.  

As already noted, the data used in HCA consisted of the 1211 O3 monitoring sites (as the cases to be 

classified) and the 4 PCs produced from PCA, representing hourly O3 patterns. The squared Euclidean 

distance was chosen as the similarity measure, using Ward’s method.   

Using the four components derived from the PCA in the cluster analysis produced the agglomeration 

schedule and coefficients depicted in Figure 4.3.  From this scree plot, it appears that there are two 

possible cut points, where the curve flattens: at thirteen and seven clusters. Analysis of variance 

(ANOVA) was run for both sets of clusters to explore the extent to which the PCs explained the 

variation between the different site types.  This showed that 67% of the variation between the 

groups was explained by the four PCs at the thirteen cluster step, and only 50% at the seven cluster 

step. Therefore, the cut point at thirteen clusters was selected, giving thirteen different site types for 

further analysis. 

 

 

Figure 4.3 Scree plot for the HCA 

 

Each group was next explored to see how the means of the PC scores vary within different groups.  

Results are shown in Table 4.8. 
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      Table 4.8 PC scores for the 13 site types 

Site  type Weekday/weekend 
contrast 

Summer/winter 
contrast 

Afternoon/night 
contrast 

High Summer 
variation 

1 -1.1 -0.3 -0.9 1.0 
2 -0.4 0 -0.8 -0.8 
3 -0.5 -0.7 0.8 -0.1 
4 0.1 0.1 0 0.2 
5 -0.1 -0.2 0.1 0.2 
6 0.2 -0.3 2.3 -0.6 
7 2.2 0.1 -1.3 -0.5 
8 1.1 -0.8 0.1 0 
9 0.6 0 0.1 1.6 
10 -0.4 0.9 1.3 0.5 
11 0.6 0.6 0.3 -1.7 
12 -1.1 -1.1 -1.1 -0.5 
13 -0.8 3.0 -0.2 0 

 

 

The following points may be adduced: 

 The weekday/weekend contrast distinguishes between site types 7 and 8 (with highest 

positive scores) and site types 1 and 12 (with highest negative scores).  

 The summer/winter contrast distinguishes site types 13 (with very high positive score = 3) 

and other groups with high positive scores (site types 10 and 11) from those with high 

negative scores (site types 12, 8 and 3).  

 The afternoon/night contrast distinguishes between site types 6 and 10 (with high positive 

scores) and site types 1, 7 and 12 (with high negative scores).  

 The high summer variation component distinguishes between site types 1, and 9 (with high 

positive scores) and site types 11 and 2 (with high negative scores). 

To understand whether the site types tend to associate with specific countries or are distributed in 

relation to environmental conditions, the different site types were mapped, as shown in Figures 4.4 

to 4.6.  
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Figure 4.4  The distribution of site type G13 
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Figure 4.5  The distribution of site types G1 to G6 
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Figure 4.6 The distribution of site types G7 to G12 
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All site types are seen to be widely distributed, with the  exception of site types 11 and 13 which are 

located mostly in southern Europe (the former mainly in Spain and the latter in Italy), and site type 9 

which is concentrated in northern Europe. 

Most countries include most of the site types: Spain and France, for example, have all site types 

while German contains all except site types 11 and 13.  A few, however, show a more restricted 

range. The Netherlands has 16 sites of type 9, but none of site type 1, or 10 to 13 as illustrated in 

Table 4.9. Belgium, Denmark, and Ireland have only 4, 3, and 2 site types, respectively. 

 

Table 4.9  Number of sites by site type in each country 

  Site type 

EU 
country 

Location in 
study area 

1 2 3 4 5 6 7 8 9 10 11 12 13 
Tota
l 

AT   Central 2 27 6 25 1 2 1   17  22 4 107 

BE  Central 3  6     3 22     34 

DK  Northern  3     2 1      6 

ES  Southern 3 36 22 7 7 20 29 34 1 2 46 24 1 232 

FR  central and 
southern 

24 40 61 53 59 14 6 18 37 19 4 16 3 354 

GB  Northern 2  2  1  18 22 8   10  63 

GE  Central 
northern and 

30 13 43 27 67 12 8 15 34 19  14  282 

IE  Northern        1    5  6 

IT  Southern  10  3  8  1  6 5 4 35 72 

NL  Northern  1 1 1 8  1 2 16     30 

PT  Southern 3 7 2  6 2  4 1     25 

Total 
No. 

 67 137 143 116 149 58 65 101 119 63 55 95 43 1211 

 

The box plot in Figure 4.7 shows the long term average O3 concentrations for sites in each site type.  

It is clear that site type 12 has the highest O3 concentration, and also shows the highest variation.  

Site type 7 has the lowest mean concentration. The box plot also shows the presence of a large 

range between maximum and minimum concentrations, and a number of outliers in each site type. 

The interquartile range is specially high at site types 11 and 12. Overall, the box plot demonstrates 

that sites do not fall into distinct types in terms of their long-term mean concentration.  
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Figure 4.7 Box plot of the long term mean O3 concentrations for sites in each site type 

  

As noted, the site type classification needs to be assigned to unmonitored locations, as a basis for 

modelling the temporal patterns of O3.  For this to be done, an association needs to be found 

between the site type classification and a set of environmental variables, that can be measured at 

unmonitored locations.  It is also helpful to name the site types, according to their environmental 

characteristics.   Table 4.10 therefore shows the mean values, and 25th and 75th percentiles, by site 

type for a number of environmental variables across all 1211 sites.  Group means were compared 

against the overall mean and percentiles to determine which environmental variables were 

influential, and from this an indicative name was suggested.  This is reflected in the red/green 

colours in Table 4.10: red font highlights group means higher than the overall mean, while the red 

circle highlights variables and site types for which the mean exceeds the 75th percentile for the data 

as a whole. Green font shows cases where the site type mean is less than the 25th percentile of the 

data as a whole. 

The variables used in this comparison relate to:  

 The long term solar radiation, which reflects the intensity of photochemical  processes; solar 

radiation increases from north to south so this is a good indicator of broad site location; 

 Topography – represented in terms of altitude (m), topex (m), and distance to sea (km), all 

of which have impacts on O3 concentration through their influence on temperatures, solar 

radiation, mixing and turbulence, and dispersion.  Indirect associations also tend to exist 
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with the intensity of local emissions of precursor pollutants, since areas of high altitude and 

high relative relief (positive topex values) tend to be less suitable for urbanisation, and thus 

have low road densities and few industrial sources.      

 Extent of urban land cover, specifically in terms of high density residential, low density 

residential and industrial/commercial land within a 1Km window size.  Together, these 

indicate the intensity of urban activities and the density of population in the surrounding 

area. 

 Rural land cover, represented in terms of the area of forest and agriculture within 1Km 

window radius size.  

 Road density, expressed in terms of the total road length in metres within a 300m window 

radius size, which indicates intensity of pollution from road traffic emissions, but also 

provides an indirect indication of urbanisation.  

Based on these variables and consideration of their geographic distribution (Figures 4.4 and 4.6), the 

following indicative names are assigned to the site types: 

 Site type 1 has a high mean area of forested land, is relatively far from sea, has high altitude 

and topex values, and only small amounts of built-up land.  Together these indicate sites 

comprising inland hills with little infrastructure. Taking the most important characteristics, 

the suggested name is ‘Forested hill-lands’. 

 Site type 2 comprises mixed land use areas, with about 47% of the land area under urban 

uses and 34% rural; and with high long levels of term solar radiation.  The suggested name is 

‘Sunny mixed-use’. 

 Site type 3 likewise has mixed land use with about 46% of forest and agriculture, and  39% 

urban area, but topex is low( mean=-12m). This is thus named ‘Mixed use moderately 

sheltered’. 

 Site type 4 has a high road length (mean ca. 1410 metres), with 75% of the area classified as 

urban, and with low topex values (mean = -11m) indicating that the sites are in sheltered 

areas. The distance to sea implies inland areas.  The suggested name is ‘Urban inland 

moderately sheltered’. 

 Site type 5 comprises 62% urban area areas, and the distance to sea implies a somewhat 

inland distribution (though as the map in Figure 4.4 shows, this is not marked). Solar 

radiation is rather low (the second lowest of all site types).  The indicative name given is 

‘Urban inlands’. 



107 

 

 

 Site type 6 is characterised by strongly sheltered locations, as shown by the strongly 

negative topex value (-27m, which >-20m).  Land use is mixed with 43% urban and 44% rural 

areas; sites are centred in southern and central Europe. The suggested name is ‘Sunny mixed 

use strongly sheltered’. 

 Site type 7 comprises flat areas with high densities of urban land (80%) and heavy traffic 

loads (as indicated by the high value for roads within 300m). Thus the indicative name given 

is ‘Heavily trafficked urban’. 

 Site type 8 is broadly similar to site type 7 but the extent of urban area is somewhat lower 

(60%), as are traffic densities. Solar radiation is high, and both altitude and topex values 

relatively low. It also has the lowest value for distance from the sea, implying a maritime 

climate, as is also shown by Figure 4.4.  The suggested name is ‘Maritime urban moderately 

sheltered’. 

 Site type 9, like site type 8, has moderately high urban extent (63%) and low altitudes (the 

lowest of any site type). Sunshine levels are also low, implying that it is located in northern 

Europe. The indicative name is ‘Northern urban’. 

 Site type 10 comprises inland strongly sheltered locations, as shown by the very low topex 

value of -28 metres and the relatively high distance to the open sea (261 km); moderate 

urban densities are indicated by the land cover data, with a substantial area of rural land 

cover. Therefore, the suggested name is ‘Inland populated strongly sheltered’. 

 Site type 11 is located mainly in southern Europe and has a climate characterised by high 

levels of solar radiation (mean = 168 w/s). High density urban areas make up 67% of the land 

area, and road density is relatively high, as is the area of industrial/commercial land; 

agriculture makes up only land 15%. Altitude is moderately high (377 metres). The suggested 

name is ‘Southern urban uplands’. 

 Site type 12 comprises high altitude areas (mean 789 metres), with high relative relief (topex 

= 39m) occupied by forest areas. Thus the suggested name is ‘Forested mountains’ 

 Site type 13 is interpreted as low-relief lowlands (sheltered) located in the south of Europe, 

with moderate urban densities 63%; therefore the suggested name is ‘Southern populated 

strongly sheltered’. 
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Table 4.10 Environmental descriptive classification for site types with suggested name 

Site 
type 

Sun 
radiation 

Altitude Topex Dis2sea Urban 
1000 

TR 
300 

FOREST
1000 

AGR 
1000 

Rural 
1000 

Suggested name 

1 122 424 21 287533 18 484 42 22 64 Forested hill-lands 

2 144 253 3 129219 47 874 9 25 34 sunny mixed use 

3 129 244 -12 216391 39 730 16 30 46 Mixed use moderately sheltered 

4 127 259 -11 262362 75 1410 5 10 15 Urban inland moderately sheltered 

5 121 148 -3 218069 62 977 4 21 25 Urban inland 

6 145 210 -27 159656 43 866 15 29 44 Sunny mixed use strongly sheltered 

7 135 235 0 143488 80 2344 1 4 5 Heavily trafficked urban 

8 133 113 -10 124193
 A

 60 1366 3 15 18 Maritime urban moderately sheltered 

9 114 70 -2 164572 63 1089 4 20 24 Northern urban 

10 124 275 -28 261120 58 1093 9 22 31 Inland populated strongly sheltered 

11 168 377 -2 172935 67 1909 1 15 16 Southern uplands 

12 133 789 39 168817 5 282 41 15 56 Forested mountains 

13 134 228 -20 145449 63 1002 9 20 29 Southern populated strongly sheltered 

Mean 131 264 -3 189766 42 1057 12 20 32  
25% 114 44 -11 68057 0 255 0 0 0  
75% 154 383 6 303725 84 1595 13 31 44  
A an indication of maritime location as it is the lowest value across the thirteen site types 

Red font= value >mean   circle ≥ 75%        Green font= value ≤ 25% 
Sheltered if topex has a negative sign               moderately sheltered when topex ≥ -10m and <-20m                      strongly sheltered when topex > -20m    
Exposed if topex has a positive sign              moderately exposed when topex ≥ 20m                                             strongly exposed when topex > 30m    
Environmental factor: Sun radiation (long term solar radiation), Des2sea (Distance to sea), Urban_1000= High density residential low density residential+ and industrial/commercial lands, 
FOREST_1000 (forest), AGR_1000 (agriculture), RURAL_1000= forest+ agriculture, and TR_300 (total road length). 
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4.2.4 Defining site types in term of Environmental factors 

In the previous section it was shown that the 1211 O3 monitoring sites could be classified into 13 site 

types using temporal indicators (i.e. the four PCs) in a HCA. The purpose of this section is to establish 

a relationship between these predefined site-types and a set of environmental variables for the 

monitored locations by deriving discriminant functions. These functions will later be used to predict 

the probabilities of site-type membership for unmonitored locations.  

4.2.4.1 Selection of environmental predictors 

Classifying unmonitored locations is vital, since the lack of O3 data at these locations means that 

they cannot be assigned to site types using indicators as before. Instead, site type membership has 

to be imputed using exogenous variables, for which known associations can be deduced at sampled 

sites (e.g. relating to emission sources/intensity, dispersion characteristics, atmospheric chemistry 

etc).  

As already stated, site type was originally classified on the basis of a series of indicators of the 

temporal variability of O3 concentrations. The first requirement, therefore, is to find environmental 

predictors that can be shown to correlate with the site types, and thus provide a means of predicting 

membership.  

Predictor variables were selected as proxies for the most important determinants of O3 

concentrations: emissions to the atmosphere (roads type, land cover data), the physical impact of 

landscape (topographic features), and meteorological factors. Relationships between these variables 

and the site types were analysed using MLOR. Table 4.11 lists the rationale of the variables included. 

Multicolinearity has to be considered in MLOR  (Field, 2009, Kempen et al., 2009). A correlation 

matrix was therefore constructed to identify very highly correlated variables (R>0.8). In these cases, 

one variable of each highly correlated pair was omitted.  Choice between the correlated variables 

took account of the radius of the window on which they were based, in order to ensure that the 

variables retained reflected both the local effects (100m to 1000m) and regional effects (5Km and 

10Km).  The retained variables are shown in Table 4.12.  
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Table 4.11 The rationale for variables include in MLOR 

Environmental variable Formation and dispersion 

Road types: 

Major  

Secondary 

Local 

Proxy of traffic impact 

Source of O3 precursors 

Differentiates between traffic sites and other types 

Residential area lands: 

High  

Low 

Proxy of human activities 

Source of O3 precursors 

Differentiate between urban and suburban sites and other types 

Industrial/commercial lands Proxy of human activities 

Source of O3 precursors 

Differentiates between industrial and other types 

Forest land Source of O3 precursors  

Differentiates between remote area and other types 

Green lands: 

Agriculture 

Herbaceous 

 

Source of O3 precursors and dispersion surface 

Differentiates between rural and other types 

Topography: 

 

Distance to sea 

Altitude 

Topex 

Proxy of physical impact of topography in O3 formation and 
transportation. 

Proxy of maritime in O3 by distance to sea. 

Differentiate between places in terms of their topography (absolute 
and relative altitude) 

Meteorological factors: 

 

Temperature 

Wind speed 

Total precipitation 

Reflect the role of metrology in temporal variation of O3 and on all 
above variables. 

Proxy of the active photochemical process of O3 by Temperature. 

Proxy of the transportation of O3 by wind speed. 

Proxy for wet deposition of O3 by total precipitation. 
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Table 4.12 MLOR predictor variables 

Variables Abbreviation Predictor variable Window’s radius size (m) unites 

La
n

d
  c

o
ve

r 

Highdr High density 
residential land 

500,1000, 10000 
Percentage 

Lowdr Low density 
residential land 

1000, 10000 
Percentage 

Ind/Com Industrial/commercial 1000, 10000 Percentage 

Herb Herbaceous land 1000, 5000 Percentage 

Agri Agriculture land 1000, 5000 Percentage 

Forest Forest land 1000, 10000 Percentage 

To
p

o
gr

ap
h

ic
al

 

Dis2Sea Distance to sea  Kilometre 

Altitude Altitude (height 
above  sea level) 

 
Metre 

Topex Topex  Metre 

R
o

ad
 le

n
gt

h
 MR Motorways 

100, 500,10000 

Kilometres 

SR secondary Roads Kilometres 

LR Local Roads Kilometres 

M
et

eo
ro

lo
gi

ca
l 

TP Winter and summer 
average total 
precipitation 

 mm 

TEMP Winter and Summer 
average temperature 

 C
o
 

WS Winter and summer 
average Wind speed 

 m\s 

 

4.2.4.2 Regression analysis 

As mentioned in section 4.1, two main methods can be used for the purpose of classification: MLOR 

and DA. They are used to predict a categorical variable (e.g. class membership) from a set of 

continuous values or/and categorical values (predictor variables). Both methods define the 

relationship between multiple independent variables and the categorical dependent variable by 

forming a combination of the independent variables (Leech et al., 2008). However, differences exist 

in the underlying assumptions.  The statistical assumptions required for DA are as follow: 

 The independent variables have a multivariate normal distribution. 
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 Homogeneity of variance and covariance for all independent variables across all groups. 

Common features of the data used for studies such as this are the existence of strong correlations 

among the independent variables and outliers in the independent variables, which can alter the 

results, and mean that these assumptions are not met.  MLOR, unlike DA, has no such assumptions 

(Menard, 2002, Homer & Lemeshow, 1989 cited in Field 2009), and it performs well compared to DA 

(Morgan et al., 2003); for this reason it is often preferred.  Both methods can also provide estimates 

not only of the most likely class of each unmonitored location, but also the probability of 

membership of the different classes.  As has been clear from the descriptions of the different site 

types, there were no discrete cut points between the different classes, and in reality they overlap 

each other to a considerable degree. For this reason, it was considered more appropriate to take 

account of these probabilities rather than ‘forcing’ every unmonitored site into a single site type.  

This was done by using the probabilities as weights to combine time functions for each site type into 

a ‘best-estimate’ of the time functions at each site. 

MLOR predicts a categorical dependent variable Y using a combination of X predictors (categorical 

and/or continuous) each multiplied by its respective regression coefficient.  MLOR is thus similar to 

linear regression, except that in multiple regressions dependent and independent variables have to 

be continuous.  The MLOR model can thus be represented as in Equation 4-1: 

 Gi = 
  

    
   = β0 +β1 X1+β2 X2+......+βk Xk +ε   Equation 4-1 

 

where Gi is a logarithmic function of the probability of being a member of  site type (Pi) divided by 

the probability that it is not (1-Pi) relative to the reference site type; β0 is the   intercept, and β1 to βk 

are the coefficients of the covariates (predictors), measuring the contribution of X1 to Xk , 

respectively.  K is the number of covariates and ɛ is the difference between the observed and 

predicted value, i.e. error.  

In this study there are twelve equations, one for each of the site types defined by the predictor 

variables, relative to a reference site type. The twelve equations can be used to calculate the 

probability (G) that a site is a member of each of the twelve groups. The value of G for the reference 

site type is equal to zero.   

MLOR predicts the probability of the Gi (categorical) value occurring, on the scale between 0 and 1 

(Field, 2009), so: 
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P (Gi) = 
       

                        
+ε   Equation 4-2 

 

where P(Gi) is the probability of site type i, n is number of site types predicted by dividing the G of 

site type i to the sum of all other site types Gn.  

Therefore, the exponent EXP (β), known as the odds ratio (O ), is the crucial value in interpretation 

of MLOR.  It indicates the proportion by which the odds of the Gi changes when the predictor 

variable is changed by one unit with respect to the reference category (Menard, 2002; Hosmer & 

Lemeshow, 2002, cited in Field 2009).  A value of EXP (β) greater than 1 indicates that the probability 

of occurrence increases due to an increase in the values of the predictor variable. A value of EXP (β) 

less than 1 indicates that the probability of occurrence decreases due to an increase in the value of 

the predictor variable.  

As Field (2009) suggests, model evaluation can be done as follows: 

 Observed and predicted values have to be compared, using the log-likelihood, which is a 

sum of probabilities associated with the predicted and observed outcomes. Therefore, 

comparing log-likelihoods involves comparing the intercept (as baseline) with the log-

likelihood using the combination of predictors. If the log-likelihood decreases, it can be 

assumed that the model is improved by adding more predictors. 

 Cox and Snell (R2
cs) and Nagelkerke’s ( 

2
N), coefficients are used to measure the significance 

of the final model on a scale between 0 and 1, equivalent to R2 in multiple linear regressions. 

A value close to 1 indicates that the model predicts the outcome more-or-less perfectly.  

Two methods for including the predictor variables can be used in MLOR (Field, 2009): enter (i.e. the 

selected predictors are entered individually or as a group, based on the decision of the user) or 

stepwise (i.e. predictors are entered on the basis of specific statistical criteria). The former approach 

is more appropriate for theory testing; the latter is appropriate for exploratory work aiming to find a 

model to fit the available data. 

The stepwise technique can be applied in either a forward or backward mode, as demonstrated by 

Field (2009). In the former method, the most significant (typically P≤0.05) predictors are sequentially 

added to the model until none of the remaining predictors is significant; each predictor is also 

examined at each step to see whether it should be removed, using the likelihood ratio statistic. The 

backward method begins with all the predictors in the model, and then predictors are removed at 

each step, if they do not have a significant effect on the model fit to the data. Using the backward 
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method can produce complex models, while the forward method might miss important and 

potentially significant variables. For this analysis a forward stepwise approach was preferred, since 

this was likely to generate more conservative, and simpler, models.  

As a forward stepwise approach was selected to run the MLOR analysis, a supervised method was 

used, in which the environmental predictors in Table 4.12 were entered in a predefined sequence 

reflecting their order of importance, as shown in Table 4.11.  In each case all the selected window 

radius sizes for that variable were entered at each step. In the first step, major roads were entered 

and a major roads model was built using all buffer sizes that gave significant contributions.  All the 

major roads windows that were not included were then dropped from the analysis. Next, secondary 

roads were entered along with the predictors from the previous step (i.e. the major roads model). A 

major + secondary roads model was thus built.  All the roads variables that were not included in the 

major + secondary roads model were then dropped from the analysis. The same procedure was 

repeated for the remaining land cover predictors, in their order of importance: i.e. local roads, high 

density residential, low density residential, non-residential, forest, agriculture and herbaceous land 

covers. Then the topographic variables were entered in the same way, and finally the meteorological 

factors, in sequence.  

Assessment of multicolinearity was done after each stage using the variance inflation factor (VIF). 

This was performed by running a separate multiple regressions using site type as the dependent 

variable and the predictors as independent variables, since MLOR cannot provide a VIF.  

MLOR was carried out in SPSS v15, using the thirteen site types produced from HCA in Phase1 as the 

dependent variable, and the environmental variables as independent variables. The logistic 

regression (NOMREG) module of the SPSS was chosen since the dependent variable had 13 

categories (site types). Site type 5 was defined as the reference category as it has the greatest 

number of sites.  

In this analysis, the probability of the model chi-square being significant was 0.0000 (P≤ 0.05).  The 

null hypothesis that there was no difference between the model without independent variables and 

the model with independent variables was therefore rejected. Table 4.13 shows that inclusion of the 

significant predictor variables decreases the log-likelihood from 6034 to 3436. The existence of a 

relationship between the independent variables and the dependent variable was therefore 

supported.  R2
cs and R2

N were equal to 0.9, which indicates that the overall accuracy of the model is 

good.  
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The relative significance of the variables in predicting the site type membership broadly reflects their 

importance in determining O3 concentrations. For example, considering the first seven predictors, as 

ordered in Table 4.13, it can be seen that:   

 Local roads (i.e. road density within 10Km window size) are important predictors, and 

indicate the importance of these as sources of O3 precursors.   

 Wind speed, which is seen to be important in discriminating between site types, likewise 

plays an important role in transport and mixing of O3.  

 Altitude reflects how distributions of O3 concentration vary in the vertical dimension. 

 Summer temperature is important because it influences photochemical reaction, and is also 

very highly correlated with solar radiation (R>9.0).  It thus acts to distinguish between sites 

in different regions (northern vs. southern or coastal vs. inland).  

 Distance to sea represents the maritime effect (i.e. transported O3 from sea).   

 Residential land follows in the order of importance, and provides indicators of emissions of 

precursors from human activities.  

 

                           Table 4.13 Summary of the MLOR statistics for final model 

Effect Model Fitting 
Criteria 

Likelihood Ratio Tests 

 -2 Log Likelihood 
of Reduced 
Model 

Chi-Square df Sig. 

Intercept 6034.472    
LR_10000 5555.223 479.248 12 0.00 
WS_win 5089.377 465.846 12 0.00 
Altitude 4753.574 335.803 12 0.00 
TEMP_sum 4439.226 314.349 12 0.00 
Dis2sea 4236.574 202.652 12 0.00 
Lowdr_1000 4101.383 135.191 12 0.00 
Highdr_1000 3991.602 109.781 12 0.00 
TP_win 3890.966 100.636 12 0.00 
Topex 3816.509 74.457 12 0.00 
SR_10000 3750.088 66.421 12 0.00 
Herb_5000 3686.381 63.707 12 0.00 
Forest_10000 3642.255 44.125 12 0.00 
Ind/Com_1000 3607.325 34.93 12 0.00 
Agri_5000 3572.916 34.409 12 0.00 
Highdr_10000 3540.698 32.218 12 0.00 
SR_100 3512.403 28.294 12 0.01 
MR_10000 3486.061 26.343 12 0.01 
Forest_1000 3460.115 25.946 12 0.01 
Lowdr_10000 3436.934 23.181 12 0.03 
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The MLOR model presented in Table 4.14 provides the odds ratio of probabilies of membership of 

each site type, as well as the significance of each predictor to the overall model. This enables the 

effects of a change in the predictor variables to be estimated.  For example, an increase of 1 km in 

local road length within a 10Km window radius size would increase the probability of occurrence of 

site type 4 by 14% (OR=1.14), site type 6 by 21%, site type 7 by 44%, site type 8 by 25%, and site type 

9 by 26%, compared to the reference site type 5.   

Table 4.15 presents a confusion matrix, showing the probability that sites will be placed in the wrong 

site type by the MLOR (relative to their initial classification by the HCA).  About 15% of sites in site 

type 1, for example, will be incorrectly assigned to site type 12 (and thus be allocated a temporal 

model for that site type), while 13% will be assigned to site type 3. Likewise, 26% of type 3 sites will 

be given a site type 5 model, while 15% will be modelled as site type 2. Examination of the matrix 

suggests that, in particular, confusion occurs between site types 1, 3, and 12, between site types 7, 

8, and 9, and between site types 10 and 4. The overall percentage of sites given the same 

classification as in HCA was 52%. 

These errors highlight the fact that the site types overlap and are not distinct, and emphasise the 

importance when modelling of using the probabilities of site type membership to weight the models 

at any specific location. 

4.3 Summary 

This chapter has shown that a single space-time model of O3 concentrations will not be effective 

across Western Europe unless the temporal variations in concentrations are properly characterised. 

Although it is often assumed that pollutant concentrations at different sites vary in harmony (at least 

within a specific geographic area), the results obtained in this study show that sites within Western 

Europe, categorised into thirteen site types, behave somewhat differently, depending on their 

context. 

The thirteen site types are not discrete and site types defined both from HCA, using the temporal 

component indicators, and from MLOR, which aimed to find the relationship between the site type 

and the exogenous environmental variables, have uncertainty. The approach taken in subsequent 

analyses will thus be to apply the site type classification to sites probabilistically.   
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Temporal models will be created for each site type, using data from the monitored sites. The 

probabilities of site type membership will then be estimated at each location, and these used to 

weight and combine the different models to predict temporal variations in O3 concentrations.  This 

will be described and discussed in Chapter 6.  The next chapter explains the spatial modelling that is 

done to estimate the underlying geographic variations in long term average concentrations.         
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Table 4.14 The estimated odds ratios EXP(β) of the final MLOR for O3 site types in Western Europe 

Predictors Site type1 Site type2 Site type3 Site type4 Site type6 Site type7 Site type8 Site type9 Site type10 Site type11 Site type12 Site type13 

Dis2sea 1.001 0.996* 1.001 1.004* 1 0.994* 0.996* 1.001 1.005* 0.993 0.993* 1.017* 

Highdr_10000 1.046 0.912 0.778 0.885 1.069 0.812* 0.829* 0.812* 0.996 0.971 1.484* 0.75 

LR_10000 0.961 1.133 1.034 1.141* 1.211* 1.438* 1.252* 1.259* 1.123 1.204 0.843 1.283 

Agr_5000 1.003 0.972* 1.009 0.992 1.023 0.972 0.988 1.004 0.985 0.996 0.983 0.909* 

Ind/Com_1000 0.951* 0.998 1.001 0.999 1.006 1.016 0.995 0.973* 0.988 1.04* 0.964 0.975 

Highdr_1000 0.991 1.002 1 1.029* 0.997 1.074* 1.034* 1.014 0.963 1.027 0.955 1.034 

TEMP_sum 1.621* 1.333* 1.509* 0.917 1.536* 0.738 0.89 0.694* 0.885 3.382* 1.527* 1.177 

TP_win 4.645* 0.274* 0.656 0.557 1.116 0.125* 0.789 5.015 0.69 0.42 4.882* 0.069* 

Topex 1.005 1.002 0.985* 0.989 0.973* 0.999 0.989 0.997 0.979* 0.994 1.01 1.005 

Altitude 1.005* 1.005 1.002* 0.998 0.999 1.004* 1 0.989* 0.994* 1.008* 1.008* 0.987* 

WS_win 2.709* 1.832 1.695* 0.094* 0.731 1.346 1.128 0.735 0.065* 1.109 2.379* 4.08E-05 

SR_100 0.995 1.004 1.026 1.051* 1.025 1.046* 0.983 1.015 0.972 0.944 1.08* 0.982 

Lowdr_1000 0.966* 0.993 0.985* 1.016* 0.986 1.01 0.987* 0.994 0.999 0.996 0.946* 1.031 

Herb_5000 1.023 0.971* 1.001 0.963* 0.987 1 1.004 0.983 0.91* 0.931* 1.014 0.886* 

MR_10000 1.031 0.847 0.987 1.294* 1.062 1.149 1.059 1.129 1.223 1.054 0.668 1.127 

SLR_10000 1.458* 0.894 1.1 1.422* 1.155 1.364* 1.425* 1.46* 1.124 1.076 0.596* 1.431 

Lowdr_10000 1.458 0.983 0.984 0.947 0.949 0.922* 0.946* 0.994 0.934 1.043 1.042 0.807* 

Forest_10000 1.458 0.964* 1.01 0.991 1.054* 0.98 1.012 1.042* 1.018 0.956 1.002 0.96 

FOREST1000 1.458* 1.025* 1.035* 1.026 1.031* 1.01 0.986 1.015 0.997 1.021 1.032* 1.05 
*Wald statistic is significant at the 0.05 level.  
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Table 4.15 Confusion matrix for site type classification (% of MLOR site types by HCA site type) 

                Site type 
                     HCA 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
11 

 
12 

 
13 

the main areas of 
confusion 

MLOR               

1 51  5 13 3 10   2  2  15  1,3,12 

2 2  46 17 4 8 2 2 2 4 4 2 7 2 3 

3 6  15 34 2 26 3  1 4 4 3 3  2,5 

4   7 3 63 4 2 4 3 2 10 2 1   

5 1  4 11 9 56 1  4 10 1  3  3,9 

6 2  12 26 5 9 26 2 3 5 7 2 2  10 

7   3  3 6 2 49 14 14  9   8,9 

8 1  7 5 7 10 2 8 33 22  4 2  9 

9 1  3 3 3 13  5 3 68 1  1  5 

10   3 8 29 11 3  3 2 29 2  11 4 

11   24  2  6 11    58   2,7 

12 6  6 6  2   4    75   

13   2  2  2 2   2 2  86  
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5 Spatial model  

This chapter describes the spatial model developed for the study region of Western Europe using a 

GIS-based approach (i.e. land use regression, ‘LU ’). The spatial model developed here was 

developed at a fine resolution of 100*100m across Western Europe.  This spatial resolution was used 

for three main reasons: 1) to give a highly localised estimation of ozone concentrations that might 

represent exposure at the semi-individual level; 2) to reflect the inter-urban variation in ozone 

concentrations, which depends primarily on local variations in concentrations of precursors and the 

factors (e.g. emission sources) which produce them; 3) 100m is considered to be the highest 

resolution achievable with the available input data, in which land cover data exerts the main 

limitation on accuracy (since this represents sources of ozone precursors).  

 

Whilst using LUR to model air pollution is not novel, relatively few attempts have been made to 

apply it to ozone.  The approach in this study is also unique in its application to O3 at a fine spatial 

scale across a large study area, such as Western Europe. It is also the first study of this type to 

consider both traffic and background sites. The LUR model provides estimates of the long term mean 

O3 concentration for years 2001-2007 and is constructed using data from 1211 monitoring sites, 

together with a range of land cover and other data.  

5.1 Introduction 

The results of the VCA in Chapter 4 suggested that marked spatial variations in O3 concentrations 

occur across Europe.  These variations also occur at different spatial scales, from the global (or 

hemispheric), reflecting broad-scale climatic patterns, to the local, reflecting proximal effects of 

emission sources. Such variations are also to be expected, because of the influence of geographic 

variations in the factors that determine O3 production and loss – for example, emissions of O3 

precursors and scavengers, atmospheric chemistry and dispersion conditions.  

Monitoring alone will never be adequate to represent this spatial variation and be able to provide 

the predictions of O3 concentrations often required for policy assessment, to analyse pollution 

trends or for exposure assessment at small area or individual level for large epidemiological studies. 

As detailed in Section 2.2.2, some form of spatial modelling is therefore essential to extrapolate 

from these monitoring sites to unmonitored locations, and to map the spatial distribution of 

pollutants.  This modelling needs to be able to deal with the inherent limitations of the available 
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data, as well as the resource and logistical constraints faced by most users (e.g. limited time, 

finances, expertise and computing facilities).    

To create an O3 map, both the spatial and temporal dimensions must be considered.  This chapter 

focuses on the spatial dimension.  There are three key aspects in terms of spatial dimension: the first 

relates to the extent of study area (geographic scale); second is the number of sampling points 

within the study area (measurements scale); and the final aspect is the optimal sampling interval 

between sampling points which reflects the complexity of spatial variation (operational scale) (Pualy 

and Drueke, 1996 cited in Diem, 2003).   

For O3, the operational scale is the most important because this needs to match the scale at which 

the processes controlling the formation and destruction of O3 actually function, and thus the field 

lengths over which variation occurs.  Estimates of this scale for O3 vary.   In a study in the city of 

Badajoz, Spain, Moral García et al. (2008) used a semivariogram to explore the spatial structure in 

138 measurements taken using an automated portable analyser, and reported that the spatial range 

(i.e. the maximum distance over which significant spatial dependence in measured concentrations 

could be observed) was between 302 and 790 m.  More generally, however, it may be expected that 

different operational scales can be defined, representing the influence of different determinants in 

different contexts.  In urban areas, for example, O3 precursors (especially NOx) can be expected to 

vary substantially over distances of a few tens to a few hundreds of metres, and O3 concentrations 

can be expected to follow suit. In flat rural areas, on the other hand, concentrations are controlled 

by more regional factors, such as the meteorology and effects of inter-regional transport of O3.  In 

these situations, significant variation will tend to occur over field lengths of several (of even several 

tens of) kilometres.  This suggests that modelling needs to be able to take account of these different 

scales, depending on context.   

Diem (2003) conducted a review of 50 studies in which spatial O3 models were developed by 

different approaches, including simple interpolation using IDW, kriging (from simple kriging to co-

kriging), and multiple linear regression. He noted that, as a dense network of monitoring sites is not 

available in all study areas, and methods such as IDW and kriging are strongly affected by the 

distribution of sampling points, it may be difficult accurately to reflect the operational scale with 

these methods.  All these approaches assume some degree of spatial autocorrelation  (Griffith and 

Layne., 1999), but if this is over distances less than (or  close to) the interval between monitoring 

sites, the resulting surfaces are liable to be subject to considerable error.  To enable reliable 

estimation, therefore, the density of monitoring sites needs to vary, with higher densities in urban 
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areas, and perhaps in hilly or mountainous zones, where O3 concentrations vary over shorter scales.  

For a large study area, such as the whole of Europe, monitoring networks will rarely be sufficiently 

well designed or developed to achieve this.  Methods such as IDW or simple kriging, which rely solely 

on the monitored data, without making use of additional information in covariates, are thus likely to 

be unreliable.  Thus an alternative approach in which the operational scales are better represented 

is required.  A method using multiple linear regression  is the approach of choice in modelling the 

spatial distribution of O3 in this context (Diem and Comrie, 2002). 

One of the most promising approaches to develop a spatial O3 model is through the use of GIS 

technology, and within this one of the most widely applied methods in recent years has been LUR. 

Indeed, in several studies, LUR has been found to predict measured pollutant concentrations better 

than dispersion models (Gulliver et al., 2011, Cyrys et al., 2005). In many situations LUR is also often 

an attractive and appropriate technique because it is far less demanding in terms of data and 

computation than many other techniques, and can better deal with sparely or un evenly distributed 

monitoring sites.  

It is helpful to recognise three main components of variability in the spatial dimension: trend (or 

drift), random spatially correlated variation, and noise (Burrough and McDonnel, 1998). Trend refers 

to the systematic variation over relatively large (e.g. regional or greater) spatial scales; for example, 

the trend for O3 could occur from north to south across Europe, in response to broad climatic 

differences. The random spatially correlated component is the variation which is random but shows 

some degree of more localised predictability based upon relevant spatial covariates.  Examples 

might include weather and/or emission related variables, representing the physical and chemical 

processes in O3 formation, transportation and dispersion. The noise component is random and not 

predictable through LUR or other statistical techniques.  

To build an effective spatial model, accounting for these sources of variability, attention has to be 

focused on the input data (i.e. predictor variables).  LUR models have mainly been used to model 

primary pollutants such as NOx or fine particles (PM10 or PM2.5) of secondary pollutants such as NO2 

that form quickly and in close spatial association with emission sources.  In these cases, the models 

typically use potential predictors related mainly to emission sources, sometimes along with variables 

representing the physical geography and meteorology (Hoek et al., 2008, Jerrett et al., 2004). The 

key variables, which typically explain most of the variation in the pollutant concentrations, thus 

comprise indicators for traffic such as road length, road intensity, distance to road or traffic volume; 

more general indicators of human activities (e.g. population or housing density); or land use data 
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(e.g. urban, industrial, open space, industry, commercial) (Hoek et al., 2008).  Typically, also, these 

variables are measured at a local scale, since their influence is very localised.  

Like NO2, O3 is also a secondary pollutant.  The chemistry of O3, however, is more complex as it is 

produced from the reaction of precursors, including NOx and VOC, in the presence of sunlight, as 

outlined in Section 2.1.1. Many of the influences are also more regional in scale.  The predictor 

variables used in modelling O3 therefore have to include information about the distribution of 

sources and/or emission rates of relevant precursors, as well as meteorological and other factors 

(e.g. topography) that influence reaction rates and dispersion, often at a broader scale.  

Diem and Comrie (2002), for example, modelled maximum O3 concentrations across a 500m 

resolution grid in Tucson, USA between April and August 1995-1998 during afternoon periods, using 

exogenous variables.  O3 concentration was obtained from seven urban sites surrounding by 

agricultural and mining land and ranging in elevation from 600 to 2800 metres above sea level. The 

estimated emission data for O3 precursors were produced from the total country-wide emission for 

1995 and from other regional inventories.  These were spatially disaggregated to provide region-

wide emissions totals for area sources, and then distributed to various point sources within cells (see 

Diem and Comrie (2001) for more detail).  Meteorological data, population estimates, altitude and 

land cover data, as well as road length, were also used as proxies for O3 transport and exposure. In 

addition, the cell exposed directly to air pollution was defined by using the altitude difference (i.e. 

topex).  

An LUR model was then created by first clustering the days based on emission/meteorological data 

into five clusters, with each cluster representing different months. Secondly, 200 predictor variables, 

developed from the factors outlined above, were reduced to a smaller number of uncorrelated 

components, using principle components analysis. A model was then developed for each cluster of 

days using the deviation from average daily maximum O3 concentration. At the end, the modelled O3 

concentrations were added back to the average maximum concentrations to produce the final 

predicted concentration. Each cluster-specific model involved 5-10 predictors mostly proxy variables 

(from land cover data and road length) and variables relating to the short-long distance transport of 

O3 precursors from their emission source (based on meteorological data). The overall coefficient of 

determination R2 was 0.9, and the RMSE was ~9 g/m3. 

As identified by Diem (2003), the problem with using these types of exogenous variables in 

modelling O3 concentration is often their coarse resolution.  While this may help to pick up their 
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regional effect, it may mask more local influences, and thus smooth out much of the local variability 

in O3 concentrations.  Some type of interpolation is therefore needed to rescale the variables to 

match the modelling resolution.  Emissions data are also often known to be prone to errors (Diem, 

2003). Therefore, if using proxies for emissions as independent variables, attempts should be made 

to use data that are well correlated with O3 concentrations and have relatively low inherent error 

(e.g. fine spatial resolution).  

To date only one other study has used LUR to develop a spatial O3 model in coras resolution (1*1 

Km).  Like the present study, this, too, was for the whole of Europe (Beelen et al., 2009), and it also 

echoed many of the principles put forward by Diem (2003). Predictions were derived by bringing 

together three separate LUR models, one representing the broad regional pattern of variations (a so-

called global model), calibrated using data for remote rural sites; another representing more local 

variation in rural areas; and a third representing variation in urban areas.  Both the predictors and 

buffer sizes were selected to reflect these different scales and contexts.  Meteorological variables, 

altitude and distance to sea were used to model the global variation; land cover and transport 

variables, for relatively broad buffer zones (5 and 21 km diameter), were used to model additional 

variation, over and above the global pattern, in rural areas; and the same variables at higher spatial 

resolution (1km buffer zones) were used to model variation in urban areas. Global and rural models 

were calibrated using only rural background sites.  The urban model was developed using only urban 

background sites.  Models were also built under the constraint that variables entering the regression 

equation had to conform with a priori defined directions of effect, The most significant predictors in 

explaining the variability in O3 were found to be altitude, distance to sea, major roads, high density 

residential land, and variables reflecting particular weather regimes.  Their work thus demonstrated 

that LUR is a promising approach in modelling O3, and it is used as the starting point for modelling 

here.  

5.2 Methodology 

The LUR methodology, used to derive estimates of the long-term average O3 concentration of shown 

in Figure 5.1.   

Multiple linear regression analysis is one of the most widely used methodologies in modelling a 

dependent (predicted) variable on the basis of several independent (predictors) variables. This 
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statistical method assumes that the relationship between the dependent and each independent 

variable is linear.  

Using regression analysis to model O3 requires the construction of an equation which can predict 

variation in O3 concentrations on the basis of the predictor variables.  Multiple regression models for 

the effects of k predictor variables take the general form as follows: 

 Y= ßo + ß1 x1 +ß2 x2 +.......................+ ßk xk    Equation 5-1  

where:  
Y  is the outcome (estimated long-term mean of O3 concentration)  
ß0  is the intercept (the value of Y where x=0) 
ß1 ß2...ßk are regression coefficients of the linear regression equation which explains the     

increase in Y for every increase unit in x 
x1 x2...xk are the environmental (predictors) variables 
 
 

 

 

 

                        

 

 

 

 

 

 

 

 

 

 

 

 

                              

 

Figure 5.1 Methodology steps for spatial model in Phase 3 
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Because of the possibilities of bias in the model, it is important to test the performance of the model 

by validating predictions against an independent set of data.  There are two main ways of doing this.  

One is by a process of cross validation.  In this, a series of LUR models is built, using N-k sites – i.e. by 

dropping a specified number (k) of sites on each occasion, and their value being predicted from the 

model.  The process is repeated N/k times, until each site has been dropped once. Comparison of 

the predictions with the observed values then provides an estimate of model performance.  The 

alternative approach is to split the data into a training and validation set, using the first only for 

model building and the second only for testing of model performance.  

Each approach has advantages and disadvantages.  Cross validation has the advantage of using all 

the data both for model building and for validation, and therefore maximising the amount of 

information gained from the data.  A difficulty arises, however, in specifying the final model, since 

the models built on each occasion are likely to vary slightly, not only in terms of the coefficients 

attached to each variable, but also the variables that were selected by the regression analysis.  It is 

also more time-consuming, because model-building has to be done multiple times.  The split-data 

approach clearly avoids these difficulties, but may result in less robust models and measures of 

performance, because the number of sites used in each case is smaller.  Biases in the splitting of the 

sites into the training and validation data sets will also feed through into the models, and may create 

differences in model performance between the training and validation data sets.   

On this case, the split-sample approach was selected for three reasons.  The first is that this 

approach provides a single, unequivocal model, that can then be validated and used for prediction.  

The second is that the data set is large, so the problems of sample numbers are unlikely to be 

severe.  The third is that similar validation was needed for other parts of the modelling – i.e. the 

time functions and models including meteorological data.  It was considered helpful to build and test 

models for each of these on constant data sets, so that the performance statistics could be directly 

compared, and the improvements in predictions by incorporation of additional sub-models readily 

assessed.  To enable validation of this model and all other modelling in the coming chapters, the 

1211 O3 monitoring sites were divided into a 979 sites as training data set (80% of sites) and a 232 

sites as a validation set (20%). For more details see  B, Section IV 
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5.2.1 Variables and data sources 

Data on the annual average O3 concentrations from the 979 training sites were used as the 

dependent variable in model-building.  Some studies use a transformation (usually logarithm) of 

concentrations in an attempt to better approximate linearity of the relationship, to achieve a normal 

distribution of the residuals, and also to avoid negative predictions.  Untransformed long term mean 

O3 concentrations were used here, as there was no violation of the criterion for normality of the 

distribution. An additional advantage of using untransformed concentration data, as opposed to 

transformed concentrations, is that it is easier to interpret the relationship between concentration 

and the predictor variables because the relationship is directly additive, rather than proportional, as 

with logarithmic transformations. This is supported by theoretical arguments about how O3 

production occurs.   

The environmental variables offered as predictors in the LUR were described in Section 3.2.3. These 

data consist of land cover, road length by type, meteorology, altitude, topographical exposure 

(topex) and distance to sea, measured for different window zones around each of the monitoring 

sites. Table 5.1 includes a description of each predictor, window sizes, and the required direction of 

effect in the final regression model.   As already mentioned meteorological conditions often exert 

the major impact on concentrations. Relevant meteorological factors include solar radiation, 

temperature, precipitation and wind speed, precipitation (Section 3.2.3.5). Temperature and solar 

radiation are important factors in determining rates of photochemical reaction, which increases as 

solar radiation intensifies and as air temperature rises.  Precipitation plays a role in wet dispersion 

and also acts a proxy of cloud cover, both of which reduce O3 concentrations.  Wind speed, on the 

other hand, is more complex.  While it has often been shown to have a negative association with O3 

concentrations, largely perhaps because it encourages dispersion and dilution, in some cases its 

effect is positive.  This mainly appears to be because it brings in O3 from other, enrich areas or by 

promoting turbulence and the vertical mixing of O3 from higher layers in the atmosphere.  

Topography is also an important determinant, both in its own right and through associations with 

meteorology and human activities.  Higher concentrations of O3 tend to occur at higher altitudes 

(Coyle et al., 2002), largely because of the more intense solar radiation, but also because 

mountainous areas tend to contain few emission sources of NO or other scavengers. Topex, or 

topographic exposure, defines the degree of openness of the terrain, in terms of the relative relief. It 

can be expected to have a positive association with O3 concentrations both because it implies 

locations that are higher than the surrounding land, and thus have higher levels of solar radiation, 
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and because these areas are less likely to contain major emission sources.  Areas of negative topex 

(i.e. depressions or valleys), on the other hand, will be more shaded and thus have reduced solar 

radiation, and potentially act as transport corridors and the focus for settlement, thereby increasing 

emissions of NO and other scavengers. Distance to sea is a proxy both for the  likelihood of influx of 

O3 from the ocean (i.e. open sea), where O3 formation is enhanced (Caballero et al., 2007), and for 

the influence of maritime climatic conditions. 

Traffic is the major source of O3 precursors, especially NOx.  It could be represented in a range of 

variables used in LUR such as traffic intensity or counts on the roads.  Due to the difficulty in getting 

these data for the whole of Europe, and following the example of many LUR studies, road length by 

type was used as a proxy for traffic volume.  Several studies have shown that road length is a good 

substitute for traffic, giving similar results in LUR models (Vienneau et al., 2010, Henderson et al., 

2007, Madsen et al., 2007).  

Finally, land cover data are used to account for other sources of O3 precursors, especially from 

anthropogenic and biogenic sources. For example, high density and low density residential lands are 

proxies for emission from domestic activities (e.g. heating). Industrial, commercial, construction, and 

port areas, were combined together in one variable, termed industrial/commercial land to provide a 

proxy for industrial emissions. Forest and agricultural lands can also produce O3 precursors, 

especially VOC. However, their effects may be more complex.  In the growing season, for example, 

some trees and agricultural crops may also act to diminish O3 concentrations by encouraging 

deposition by absorbing O3 through the stomata of vegetation (Coyle et. al., 2002). 

Some LUR studies for other pollutants also used population as a predictor variable  (Skene et al., 

2010).  If the LUR model is to be used in an epidemiological study with an ecological design, or in a 

health impact assessment for the whole population, the use of population as a predictor can cause 

difficulties, for it results in a degree of duplication.  It was thus decided a priori that population 

would not be used in this LUR model for O3.  In any event, good land cover data will usually provide 

an adequate and higher resolution measure of population distribution. 

All of the above mentioned data sets are available across the whole study area.  The regression 

equation thus developed from the LUR model can therefore be used to predict O3 concentrations at 

unmonitored locations (i.e. all 100 metre grid cells) across Western Europe for mapping purposes. A 

summary of the available data is provided in Table 5.1. 
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5.2.2 Model building 

The LUR procedure used here follows that by Hoek et al. (2011), which is also used in the ESCAPE23 

project. ESCAPE is a European Study of Cohorts for Air Pollution Effects, focusing primarily on fine 

particles, particle composition, and nitrogen oxides. As the O3 estimates deriving from this work 

were also to be used in health studies within the ESCAPE project, it was considered important to 

follow the ESCAPE LUR methodology.  The steps described below are largely a reproduction of the 

procedure as set out in the ESCAPE exposure manual. 

As already indicated, measurements of the average concentrations of O3 (long-term mean from 

March 2001 to February 2007) from a set of monitoring sites were used to train the LUR model, and 

the model then validated against data from an independent set of sites.   A supervised, stepwise 

approach was used.  First the bivariate correlation between observed O3 concentration and each 

possible predictor variable was performed and the adjusted R2 recorded.  The predictor giving the 

highest correlation with observed O3 concentration was then selected for entry into a multiple 

regression analysis.  Additional predictors were then added, one at a time, in subsequent steps on 

the basis of a previously defined set of selection criteria. The process was repeated until there were 

no remaining predictors that met the selection criteria, namely:  

 Each predictor has to show a significant marginal correlation with the observed 

concentrations (P≤0.05); 

 The direction of the effect must be as expected according to a priori considerations (Table 

5.1);  

 The significance and direction of effect for the predictors already in the model should not 

change when new predictors are included at each step; 

 The inclusion of the variable into the model must increase the adjusted R2 by at least 0.01. 

 

Because variables are available for many windows, there is the possibility that the same predictor 

variable may be included in the model at different window distances.  If this happens, the difference 

between the larger window and small window is calculated. For example, if high density residential 

land within a 5000m (Highdr_5000) and a 300m (Highdr_300) window are included, in the final 

model the Highdr_5000 will be replaced with the 5000m minus 300m window (e.g. Highdr5000-300). 

However, it has been shown that using complete (nested windows) or disjoint windows (rings 

                                                           
23

 http://www.escapeproject.eu/manuals/ESCAPE_Exposure-manualv9.pdf 
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without gaps) in regression models provides the same results (von Klot, 2011).   The advantage of 

the approach used here is that interpretation can be easier, for example in estimating the 

contribution to O3 concentrations from different window zones. 

   Table 5.1 Predictor variables used in LUR 

 Abbreviation Predictor 
variable 

Window’s radius sizes(m) Direction of effect 

L
an

d
  c

o
v

er
 v

ar
ia

b
le

sa
 

Highdr High density 
residential land 

100,300,500,1000,5000,10000 

Negative 

Lowdr Low density 
residential land 

Negative 

Ind/Com Industrial and 
commercial 
land 

Negative or positive 

Herb Herbaceous 
land 

Negative or positive 

Agri Agricultural 
land 

Negative or positive 

Forst Forest land Positive 

Opsp Open Space - 

T
o

p
o

gr
ap

h
ic

al
 v

ar
ia

b
le

s D2S Distance to sea Kilometre Positive 

Alt Altitude 
(height above  
sea level) 

metre Positive 

Topex topex 
(topographic 
exposure) 

metre Positive  

R
o

ad
 le

n
gt

h
 

v
ar

ia
b

le
sb

 

MR Motorways  

100,300,500,1000,5000,10000 

Negative 

SR Secondary 
roads  

Negative 

LR Local Roads  Negative 

M
et

eo
ro

lo
gi

ca
l f

ac
to

rc
 SSR Surface solar 

radiation 
W/s Positive 

TP Total 
precipitation 

mm Negative 

TMP Temperature C° Positive 

WS Wind speed m/s Negative or positive 

a. in Percentage  

c. in metre  

b. All meteorological factors were calculated for three averaging periods: annual (_ann), summer (_sum), and winter(_win), 
as mentioned in section 3.2.3.5 
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By using a minimum value of change in adjusted R2 as an inclusion criterion, some predictors may 

become non-significant as other variables are included in the model. The final step was thus to 

evaluate the significance of all variables in the model.  Variables with P > 0.05 were sequentially 

removed from the model, starting with the least significant, until all predictor variables in the model 

had a P ≤ 0.05. 

As noted in Section 3.2.3.1, land cover data were obtained from the CORINE data base.  In this, 

residential urban areas are described by two classes.  High density residential areas are classified as 

continuous urban fabric; low density residential areas comprise the discontinuous urban fabric.  

Some discrepancies in the definition of these two classes seem to exist across the EU.  In the 

Netherlands, for example, only discontinuous urban fabric is recognised (Vienneau, et al., 2010). This 

could be because the structure of residential land there is, in fact, different from other countries in 

Europe.  As each country submits their own land cover data to Europe for consolidation into CORINE, 

however, it could also be due to differences in interpretation of the classification methodology.  To 

overcome this problem it was decided, a priori, that the low density residential predictor would be 

forced to enter in the case of the occurrence of high density residential in the final model, at the end 

of supervised stepwise inclusion of significant predictors.  

Once the LUR model had been built, predicted O3 concentrations were mapped by applying the final 

LUR equation to the relevant predictor grids, using ArcMap grid arithmetic commands. The 

estimated O3 concentrations for 100m grid cells over the whole study area were thus produced.  

The model was evaluated by comparing predicted concentrations against the observed 

concentrations for the reserved validation dataset. The full list of validation metrics suggested by Fox 

(1981) and Willmott (1982),and widely used for model testing, were calculated (Table 5.2).      

Linear regression assumes independence of the residuals; thus normality of the residuals was 

assessed by obtaining the histogram.  Moran's I for spatial autocorrelation was also used to check 

whether the residuals exhibited spatial autocorrelation (Jerrett et al., 2007, Ross et al., 2005). 

Moran’s I is a statistical indicator with a range between -1 and +1, where 0 means no correlation 

with nearby sampled locations (i.e. the residuals are not spatially auto-correlated when Moran's I is 

nil). 
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Table 5.2 Model performance quantitative metrics 

Metric explanation Equation Purpose Range 

Summary 
measures

a
 

Observed conc. 
mean (Ō) and 
predicted (P

  
) mean 

       
 

 
∑  

 

   

 

 

To measure centre 
tendency 

No range 

SD Standard deviation 
of observed (SDo) 
and predicted (SDp) 
conc. 
 

  

 
 

   
∑   

 

   

          

To measure the variation No range 

R
2
  Adjusted 

regression 
coefficient squared  

SPSS outputs To measure the 
explanation variability 
explained by model  

No range 

RMSE
b 

Root mean square 
error 

[   ∑    
 
       

2
]

0.5
 

 

To measure the average 
error between predicted 
and observed variables 
and sensitive to extreme. 

Take value from 0 
to infinity 

d
c
 Index of agreement 

  [
∑    
 
       

 

∑      
 
         

 
]  

      

 

a standardized measure of 
the degree of model 
prediction error  

varies between 0 
and 1 
where:  
1 indicates a 
perfect match, 
and 0 indicates 
no agreement 

VIF Variance inflation 
factors 

SPSS outputs Measure the 
multicolinarity 

<5 

a 
N the number of cases and xi is predicted or observed value for I case  

b
Pi predicted value for i case and Oi observed value for i case 

c
P’i = Pi- P

  
 and O’i=Oi- Ō 

 

5.3 Results 

The final prediction model explained 67% of the observed variability in O3 concentrations (adjusted 

R2=0.67) with RMSE=7.59 µg/m3. 

Table 5.3 provides summary statistics for the final model.  The VIFs for each variable are below 2, 

indicating that no multicolinarity between the predictors was observed. The table also includes the 

standardised coefficient (Beta). This shows the impact of a one standard deviation change in the 

predictor variable on the long-term mean of O3 concentrations. It can thus be used to compare the 

relative importance of the predictors, as shown in Figure 5.2. On this basis, it is apparent that spatial 

variations in O3 concentration are characterised mainly by altitude, followed by local road density 

(which is a proxy of NOx emission), and summer temperature. 
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Table 5.3 Summary of LUR model 

Predictor Unstandardised 
Coefficients 

β 

Std. 
Error 

Standardised 
Coefficients 

(Beta) 

P-value 
(Sig) 

Sub 
sequential 

Adj.R
2
 

Collinearity 
Statistics  

(VIF) 

Constant 18.17 3.03  0.00   
Alt 0.02 0.00 0.50 0.00 0.28 1.91 
LR_10000m -2.88E-05 0.00 -0.37 0.00 0.20 1.54 
Topex 0.04 0.01 0.15 0.00 0.04 1.17 
TMP_sum 1.54 0.11 0.31 0.00 0.04 1.43 
WS_ann 2.79 0.35 0.19 0.00 0.03 1.64 
Highdr_1000m -0.15  0.02 -0.22 0.00 0.03 1.60 
Lowdr_1000m -0.02 0.01 -0.03 0.10 0.01 1.62 
Dis2sea -0.01 0.00 -0.12 0.00 0.01 1.36 
Forest_1000m 0.02 0.01 0.09 0.00 0.01 1.82 
IND/COM_5000m -0.23 0.05 -0.12 0.00 0.01 1.58 
Agri_5000m -0.05 0.01 -0.09 0.00 0.01 1.51 
Dependent variable: long-term mean of O3 concentration from March 2001 to February 2007 

 

Figure 5.2 Importance of predictors in long term O3 LUR model 

 

The unstandardized coefficients (β) define the slope of the regression curve, and can be used to 

show how concentrations change with a one unit change in the predictor. An increase of one 

kilometre in altitude, for example, increases the long-term concentrations of O3 by 0.02 * 1000 = 20 

µg/m³. An increase in topex by 50 metre (i.e. as sites become more open and exposed) increases the 

concentrations by 0.04*50= 2 µg/m³. Both variables probably reflect the general tendency for O3 

concentrations to increase under conditions of high solar radiation, and in more remote or exposed 

areas where concentrations of other pollutants are reduced.  In contrast, a one kilometre increase in 

road length within a window radius of 10Km causes an 0.03µg/m³ decrease in O3 concentration. This 

is probably due to the fact that road length is a proxy of NO  emissions, which results in scavenging 

of O3; 90% of NOx emissions derive from transport in the form of NO (Vestreng et al., 2008). It is also 
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notable that, only local roads were included in the model and major roads were not significant 

predictors. This was presumably due to a number of inter-related reasons.  The first is that major 

roads (as defined in the data used here) are relatively scarce, so around the large majority of sites 

are either absent or occur only as short distances; local roads, on the other hand, are far more 

ubiquitous, and probably give a better, general indication of emissions from road sources. A second 

reason is that traffic flow on local roads is slower than on major roads, and are thus likely to produce 

more emissions of O3 scavenging precursors (e.g. NO) per unit of traffic flow than do major roads. 

Thirdly, it may indicate that, in modelling O3, traffic intensity is more important than the road length; 

in the case of local roads, a more direct relationship between length and traffic volume probably 

occurs.  The fourth reason is that local road density is especially variable in urban areas, where these 

roads act as important traffic conduits: the density of roads is thus an especially good indicator of 

traffic density in urban areas, in comparison to major roads which typically reflect only inter-urban 

traffic flows.  

Distance to the sea (Dis2sea) also enters the model, with a negative sign indicating that O3 

concentrations decrease with increasing distance from the open sea, as expected. A 10 kilometre 

increase of distance to sea reduces the long term concentration by 0.1 µg/m³.  The land use 

variables all tend to reduce O3 concentrations, with the exception of forest land. An increase by 10 

percent of forest area within a window of 1Km radius (Forest_1000m) tends to increase O3 

concentrations by 0.2µg/m³.  This is probably for two reasons: most importantly, perhaps, forest 

areas represent areas with little or no local emissions, so scavenging is limited and O3 concentrations 

raised; secondly, trees (e.g. broad-leaved forest and coniferous forest)  can be important sources of 

biogenic VOC (e.g. isoprene and monoterpenes) emissions, which may encourage O3 formation.  On 

the other hand, a 10 % increase in the area of agricultural land within a 5Km window radius 

(Agr_5000m) tends to decrease O3 concentrations by 0.5µg/m³. This is possibly because small plants 

play an important role in dry deposition.  

An increase in the area of industrial and commercial land (as a proxy for NO and VOC emissions) by 

10 percent within a window of 5Km radius, decreases long-term mean O3 concentrations by 2.3 

µg/m³. In addition, every 10 percent increase in high density residential land (Highdr_1000m) and 

low density residential land (Lowdr_1000m) within a 1Km window radius tends to reduce O3 

concentrations by 1.5 and 0.2 µg/m³, respectively. This probably reflects the fact that built up land is 

a source of NOx emissions. Also, Highdr has a greater tendency to decrease O3 concentrations 

compared to Lowdr, as is to be expected given the different levels of emission implied.  
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Meteorological variables have a significant role in increasing O3 concentrations.  For every one 

Celsius increase in summer temperature and one metre per second increase in wind speed, O3 

concentrations are increased by 1.54 and 2.79 µg/m³, respectively. 

O3 concentrations derived from the final LUR model are mapped in Figure 5.3.  This figure shows that 

O3 concentrations across Europe tend to increase towards the south-east, due to generally higher 

temperatures in south-east Europe. Moreover, the maritime effect is more obvious along the north-

west coast (e.g. in Scotland and Ireland), perhaps because of the stronger influence of the Gulf 

Stream which acts to raise temperatures along the coast, and the effect of prevailing south-westerly 

winds that carry O3 inland from North America (Wild and Akimoto, 2001 cited in Monks et al., 2009). 

Stability of the model was evaluated by the application of the model to validation sites.  The model 

was found to perform similarly to the training sites, explaining 65% of the observed variability in O3 

concentrations with RSME=7.7µg/m3 (see Table 5.4).  This suggests that the model is not over-fitted 

to the training data.   According to the index of agreement (d) the match between predicted and 

observed concentrations of O3 is perfect (=1) in both samples training and validation sites. The 

overall distribution of the residuals is shown in Figure 5.4. The standardised residuals exhibit in 

general a normal distribution with a mean concentration of 0 and a standard deviation of 1. Figure 

5.5 shows the scatterplot of the observed against predicted O3 concentrations at all of training 

monitoring sites. There are no notable outliers and the prediction quality is good. No spatial 

autocorrelation in the residuals was found, with a non-significant Moran’s I = 0.2 (z-score of 0.65), 

indicating that the pattern does not appear to depart significantly from random. This emphasises 

that modelling O3 with a finer spatial resolution helps to remove any significant spatial correlation in 

the residual compared to models using a coarser resolution 1*1Km (e.g. Beleen et al, 2009). 

 

Table 5.4 Performance metrics for the spatial model (LUR) 

Metrics 

Training sample Validation sample 

Observed values Model predicted 
values 

Observed values Model predicted 
values 

Mean 49.6 µg/m³ 49.6µg/m³ 49.0 µg/m³ 50.4 µg/m³ 
StD 13.1 µg/m³ 10.7 µg/m³ 12.1 µg/m³ 10.7 µg/m³ 
   
Adjusted R

2
                          0.67                             0.65 

RMSE                       7.5 µg/m³                         7.7 µg/m³ 
d

2
                             1                                1 
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Figure 5.3 EU map of modelled long-term O3 concentrations with 100m grid resolution 
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Figure 5.4 Histogram of standardized residuals (For training dataset) 

 

Figure 5.5 Scatter plots between observed and predicted concentrations 
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5.4 Sensitivity analyses for the global LUR  

5.4.1 Components of variability 

As mentioned, the underlying principle of spatial modelling is to attempt to model the three types of 

variability: global trend, random spatially correlated variation, and noise. These three different 

sources of variability are important in the spatial dimension. The LUR model in the present study 

mainly describes the second of these: the random spatially correlated variation: there are no terms 

for spatial trend (e.g. based on latitude or longitude) and the noise cannot be predicted. An indirect 

indication of spatial trend may, however, be given by the variables for solar radiation and 

temperature, both of which show a general increase from north to south in Europe. However, they 

also pick up a more complex trend, given that both temperature and solar radiation vary at different 

scales: locally (in response to local topography), regionally (in response to broader topographic and 

atmospheric circulation patterns) and at the broad scale (in response to continental-scale effects 

such as global circulation and climate patterns.  To explore whether any global trend remained after 

including these variables in the model, the residuals from the spatial model were therefore 

regressed against latitude and longitude. This resulted in an adjusted R2 equal to 0.013.  This means 

that including latitude and longitude would add a little over 1% to R2 – enough under the criteria 

used here for it to be included in the model.  This demonstrates that meteorology factors explain 

some of the global trend in these data. 

5.4.2 Global versus local models 

A single LUR model was developed here for the whole of the study area, and representing all site 

types, and as Figure 5.3 shows this provides a plausible map of O3 concentrations without any 

marked disjunctions or anomalies.  A single model for the whole of Europe of this type is likely to be 

appropriate for many applications – especially where consistency is the over-riding criterion: for 

example, for continental-scale risk assessments or large epidemiological studies.  For many 

applications, however, interest may focus on smaller areas – for example, on individual countries, or 

specific types of environment (urban, rural etc).   The question thus arises whether this global model 

would still be appropriate, or whether it might lead to biases and uncertainties that could only be 

reduced by developing a use-specific model.  This question was investigated in a series of post hoc 

analysis, where sites were stratified by different criteria and the correlations between observed  
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and predicted concentrations were explored in different site-types; climatic regimes (by latitude); 

physical terrain (by altitude); land use (rural vs. urban), and geographic location (by different 

countries).   

5.4.2.1 Variations by site type 

Site type was shown to be an important determinant of the temporal pattern of O3 concentrations 

and is used as a basis for stratifying sites for modelling temporal variability.  It might thus be 

expected to have significance in terms of the spatial distribution of O3 concentrations.   

Figure 5.7 shows the relationship between modelled and observed concentrations coded by site 

type and Figure 5.8 summarises these data more simply, by presenting the means of the modelled 

and observed concentrations for each site type.  Both indicate that the performance of the model is 

broadly consistent across the different site types, with no obvious bias in the estimates, and with a 

strong correlation between the mean of the modelled and observed concentrations of the thirteen 

site types (R2 = 0.93). 

The distribution of sites, however, is not even either by site type, with the numbers further reduced 

as sites have to be divided into training and validation datasets. This may produce differences in the 

quality of the model in different areas of Europe which will inevitably be weighted towards site types 

that provide more training sites. The global model may therefore be sub-optimal in less well-

represented areas.  
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Figure 5.6 Scatterplot for observed against predicted long term concentrations coded by the 
thirteen site types 

 

Figure 5.7 Averages of the observed and predicted concentrations for the thirteen site types 
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To investigate this issue further, therefore, boxplots of the residuals by site type were drawn (Figure 

5.9). As can be seen, for most site types, residuals are broadly similar, with the large majority of 

residuals between -10 –and +10 g/m3. 

 

 

Figure 5.8 Boxplot of residual by site type 

 

There is, however, a tendency to over-estimate concentrations in some site types, notably 6 and to a 

lesser extent, 7, 9 and 10.  All these are highly urbanised site types, with heavy traffic volumes, as 

indicated by the long road lengths (Table 4.10).  In contrast, the model tends to under-estimate the 

concentrations in site types 2 and 12 which are described as sunny mixed land use and forested 

mountains. They are, therefore, both areas characterised by high levels of photochemical activity. 

The suggestion is thus that the model over-estimates in areas of O3 depletion, characterised by 

abundant sources of NO and other scavengers, but under-estimates in areas of O3 formation. 

Interestingly, the same finding has been observed in the results of dispersion modelling (Daniel and 

Denise, 2006).  

5.4.2.2 Variation by country 

Variations in the performance of the model between different countries might also be expected, not 

only because these comprise different types of environment, but also because there may be 
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differences in the quality and character of the available data, and because of the large differences 

observed in the number of monitoring sites.  

Table 5.5 summarises the performance of the model by each country in the study area. Some 

differences in performance are evident.  The coefficient of determination (R2) ranges between 0.47 

(Portugal) and 0.84 (Ireland), while the RMSE varies from 4.2 g/m3 (Netherlands) to 10.1 g/m3 

(Italy).  

Table 5.5 Performance of the global LUR within different country 

country Density of sites
a
 within 1000Km2 Adj.R 

2
 RMSE 

AT 0.98 .73 9.24 

BE 0.92 .70 4.88 

DE 0.63 .75 5.02 

DK 0.09 .77 7.28 

ES 0.37 .69 8.93 

FR 0.53 .67 5.97 

GB 0.20 .53 8.01 

IE 0.08 .84 4.98 

IT 0.21 .52 10.10 

NL 0.65 .50 4.20 

PT 0.22 .47 7.65 

a.  Training dataset 

 

There is no association between site density and RMSE (R=-0.17) or R2 (R=0.14).  This suggests that 

the variations are not a result of differences in site density, but other instead relates to other 

reasons, such as the specific location of the sites, the inherent complexity of the terrain and land 

use, and different meteorological conditions in different countries.  

5.4.2.3 Variations by latitude 

Latitude may be expected to affect O3 concentrations, and model performance, through its influence 

on meteorological conditions, and factors such as day length.  To investigate effects on model 

performance, sites were divided into northern and southern groups, on the basis of latitude.  One 

third (those with the highest latitude) was classified as northern and one-third (with the lowest 

latitude) was classified as southern.   
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Table 5.6 summarises the performance statistics.  In terms of R2, it is evident that the LUR model 

performs equally well in both regions.  The RMSE, however, is somewhat higher in the southern sites 

(RMSE=8.85 compared to 5.87ug/m3).  This reflects the tendency of both weather conditions and O3 

concentrations to vary more strongly in the south, resulting in an increase in the estimation error. 

Table 5.6 Performance of the global LUR in Northern vs. Southern region 

Sites location No. of sites Adj. R 
2
 RMSE 

Southern 300 0.67 8.85 

Northern 300 0.67 5.87 

 

5.4.2.4 Variation by altitude  

Sites were categorised according to altitude to differentiate between low-lying areas (<200 metres 

above sea level), intermediate (200-600 m) and upland (or mountain) site-types > 600m). 

Table 5.7 shows considerable differences in the performance of the model in these three zones.  In 

the high altitude zone, it explains 80% of O3 variability, though with a relatively high RMSE (9.0 

g/m3).  At sites in the intermediate and lowland category, it explains ~50% of the variability, 

though the RMSE is lower.  One reason for this might be that the O3concentrations are more 

variable in upland areas, where photochemical activity is generally high, but where marked 

variations in altitude may occur over short distances. In lowland areas, in contrast, O3 

concentrations vary much less: the variation is therefore more subtle and difficult to model 

(resulting in a lower R2) but the magnitude of the errors is relatively small (lower RMSE).   

Table 5.7 Performance of the global LUR within different altitude ranges 

Altitude range No. of sites Altitude mean Adj. R 2 RMSE 

<200m 581 70 0.50 7.01 

200-600m 260 353 0.48 7.80 

>= 600m 138 891 0.80 9.01 

 

It should also be noted that these results are similar to those reported in Tucson (Deim and Comrie, 

2002).  Sites there were generally >=600 metres above sea level and the regression model gave 

R2=0.9 and RMSE=9g/m3.  
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5.4.2.5 Variation by land use 

Marked differences may be expected in O3 concentrations, and thus in model performance, 

between urban and rural sites.  Results were therefore compared between urban and rural areas, 

categorised according to the site descriptions in the Airbase database.  A random sample of 150 

sites was selected from each category (i.e. urban and rural). Table 5.8 shows the performance of the 

model in these two categories.   

Table 5.8 Performance of the global LUR by urban vs. rural 

Site category No. of sites R Square RMSE 

Rural 150 0.71 7.80 

Urban 150 0.58 6.10 

 

As can be seen, the model explains a higher percentage of variability in O3 concentrations in the 

rural sites (R2 = 0.71) compared to the urban (R2=0.58), though the RMSE shows a reverse pattern.  

These results are comparable to those from universal co-kriging reported by Beelen at al. (2009), 

which gave R2 = 0.64 for rural sites and 0.59 for urban, with an RMSE of 7.75 and 5.59 g/m3 

respectively. The general improvement in the LUR model in this study is probably due to using higher 

resolution input data and a larger number of monitoring sites.   

5.4.2.6 Conclusions of post hoc studies 

All these post hoc analyses suggest that site-type or area-specific models might well work better in 

some circumstances, though the gain in accuracy on the basis of the results obtained here may not 

be large.   Nevertheless, the limitations of such models need to be recognised.  The number of sites 

is not large, and some site types and areas are only poorly represented in the O3 data, so models 

developed in this case may be poorly calibrated.   The use of area or site-type specific models is also 

likely to lead to marked discontinuities at the boundaries of the areas. On this basis, the final global 

LUR model developed here can be considered to offer a sound foundation on which to build space-

time models of O3 concentrations, for use in exposure assessment.  
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5.5 Summary 

In summary, the underlying principle of spatial modelling is to attempt to model the three elements 

of variability: global trend, random spatially correlated variation, and noise. Most of the spatial 

variation in O3 concentrations is related to the random spatially correlated variation element. 

Altitude, local road length, summer temperature, and high density residential land within a 1 km 

window, windspeed, topex and distance to sea were found to be the most significant predictors in 

the spatial model. These variables were used as proxies for the distribution of emission precursors 

(NOx and VOC).  Meteorological data on solar radiation and temperature were used to represent the 

capacity for photochemical activity.  Topographic data, on altitude and topographic exposure 

(topex), along with wind speed, were used to represent the potential for local or regional-scale 

transport, deposition, and chemical reactions all of which vary in response to meteorological 

conditions and the terrain.  For dispersion processes, both total precipitation and agriculture were 

used as indicators of wet and dry deposition, respectively. Some variables used in the modelling also 

act as proxies for a number of different factors and processes: distance to sea, for example, provides 

a proxy for marine-derived O3, for transport of O3 either on- or off-shore by sea breezes, and for the 

regional-scale effect of the sea on meteorological conditions and photochemical activity.    

The success of the spatial model, evidenced by the external validation, and comparison with the few 

previous attempts modelling the long term concentrations at the continental scale , emphasises that 

LUR is an appropriate technique to a derive high resolution (100m) map of long term O3 

concentrations across Western Europe. The spatial model explained 67% of O3 variation over six 

years, from 2001 to 2007, with an RMSE = 7.6 g/m3.  This spatial model is the first to estimate the 

long term O3 concentrations across Europe at such a fine spatial resolution (i.e.100m), and as such at 

a scale suitable for semi-individual exposure assessment in epidemiological studies and/or HIA. It will 

further be combined with the temporal models produced using Fourier analysis (in chapter 6) to 

produce space–time models for sub-areas within the spatial domain of Western Europe. 
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6 Temporal models 

As mentioned in Section 2.3, the systematic temporal variability in O3 concentrations was modelled 

using Fourier analysis to develop time functions for each site type. This chapter explains how the 

time functions were generated and then combined using regression analysis to produce the 

temporal model for each site type. Each temporal model was subsequently applied to unmonitored 

target locations by weighting them by the probability of occurrence of each site type at that 

location.  Probabilities were produced using MLOR. The overall steps in this procedure are 

summarised in Figure 6.1.    

6.1 Introduction 

As outlined in Chapter 5, spatial variation in phenomena such as pollutant concentrations can be 

characterised as comprising three main components of variation: spatial trend or drift, random 

spatially correlated variation, and random spatially uncorrelated variation or noise. These 

components provide a framework within which geostatistical techniques for spatial modelling (i.e. 

kriging) have been developed and are also an encompassing framework for LUR, as used in this 

research.   

The same categorisation can usefully be extended to temporal variations.  These, likewise, can be 

seen to comprise three components.  The first is systematic variability: i.e. patterns that are 

systematic and repeated over time.  The second can be referred to as random, temporally correlated 

variability.  This comprises variations associated with temporally varying factors which behave non-

systematically.  Finally there is the totally random variation, or noise. In the temporal, as in the 

spatial variation, each of these components of variation may operate at different scales.  In the 

temporal case, these range from the very short-term (e.g. over periods of seconds or minutes) to the 

very long-term (e.g. over decades or centuries).  The scales of most relevant here are the 

intermediate scales – i.e. diurnal patterns (from one hour to another within a day, or from one part 

of the day to another); hebdomonal (across a week); and seasonal. 

In the case of O3, the systematic variation largely reflects the repeated natural variation of chemical 

reactions associated with seasonal or diurnal variations in temperature, solar radiation, wind speed 

and wind direction. Random temporally correlated variability relates to less consistent temporal  
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Figure 6.1 Outline of the procedure to create time function models for site types 
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variations in the factors controlling O3 formation, transport and destruction, such as short-term 

weather events and emission activities. The noise component is due to unpredictable, seemingly 

random effects, such as fluctuations in traffic flows or local wind gusts, or more regional scale 

storms and heat episodes, as well as measurement error.  Some of the apparent noise may also be 

due to inputs of O3 from other areas, as a result of long-range transport. 

In reality, the three overlap and are not wholly distinct.  Some of the systematic variation described 

above, for example, is due to cycles of human activity which, although not wholly predictable, show 

some degree of regularity when averaged. It is useful, however, to model these components of 

variability separately, for they pose different challenges and require different data and methods.  In 

this chapter, the focus is on the systematic variability, which is modelled using Fourier analysis. The 

random temporally correlated variability is covered in Chapter 7 by adding meteorological factors 

into the analysis.  Noise, obviously, cannot be explicitly modelled – though the overall degree of 

noise that exists in any system can be roughly estimated – and will be indicated by the error in the 

modelling.  

6.2 Components of temporal variability in O3 concentrations 

As outlined above, the approach to modelling adopted here is to describe the systematic variations 

in O3 concentrations, using Fourier analysis.  This approach is based on the assumption that O3 

exhibits systematic periodic behaviour, especially over the day and across seasons (Duenas et al., 

2004, Coyle et al., 2002, Nolle et al., 2002, Böhm et al., 1991). This reflects the systematic variation 

in the different factors that control O3 concentration (e.g. photochemical reaction, meteorological 

factors, quantity of precursors).  

6.2.1 Seasonal variation 

As has been implied, the seasonal variability is related largely to meteorological factors 

(temperature, wind speed, sun duration, and total precipitation). They thus provide the background 

onto which shorter term variations are imprinted.  Other studies claim that the annual variation in 

stratosphere-troposphere exchange also contributes to this seasonal pattern (Levy et al., 1985, 

Logan, 1985). Monks (2000), however, claims that there is no seasonal variability in stratosphere-

troposphere exchange.   
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The summer season is characterised by high temperatures and longer duration of sunshine hours, 

which lead to active photochemical production of O3, and high concentrations.  In contrast, in winter 

as temperature and sunshine decline, and precipitation increases (thereby facilitating wet 

deposition), O3 production falls and concentrations are lower. The variation between summer and 

winter increases as the temperature difference rises; it thus implies more marked variation in more 

continental climates, or in Polar Regions where there are strong differences in solar radiation 

between summer and winter.    

In reality, the picture is more complex than this.  The seasonal pattern of O3 variability – 

characterised by a broad spring or spring-summer O3 maximum in the northern hemisphere 

(Fernández-Fernández et al., 2011, Vingarzan and Taylor, 2003, Nolle et al., 2002, Monks, 2000, 

Mayer, 1999) – depends on spatial location. The higher levels of summer solar radiation and 

temperature, and lower wind speeds, seen in southern countries, create circulation patterns linked 

to the diurnal flux of sea breezes, and generate a reservoir for O3 and its precursors.  This leads to 

high photosmog episodes in cities and coastal regions (Nolle et al., 2002). Across Europe, therefore, 

the amplitude of seasonal variation tends to increase in a north-west to south-east direction, and 

also shifts the maximum to late summer in the southern countries (Scheel et al., 1997).  

This seasonal pattern of variability is seen most clearly in remote inland rural sites, unaffected by 

local emission sources. In these, typically, O3 concentrations show a marked seasonal contrast, with 

a clear spring maximum, and little or no daily variability (Tarasova and Karpetchko, 2003, Monks, 

2000). In coastal areas, however, variation is less because the temperature range tends to be 

reduced due to winter warming of the air by the sea, and cooling in summer.  Thus the period of 

maximum O3 concentrations tends to be broader, and extend from spring into summer with the 

spring maximum higher than the summer one (Fernández-Fernández et al., 2011). A similar pattern 

of a broad spring-summer maximum is likely to be shown in urban sites (Fernández-Fernández et al., 

2011, Vingarzan and Taylor, 2003, Wang et al. 1988a cited in Monks, 2000), although in these cases 

it has been observed that the summer maximum tends to be slightly higher than that in spring 

(Mayer, 1999) (Figure 6.2). Wang et al. (1998a) explanied that this pattern is due to two factors: 

firstly that the life time of O3 is longer in winter/spring; secondly active high-level transport of O3 

from remote sites. Simpson (1995), however, related this pattern to enhanced photochemical 

reaction by the accumulated O3 precusors built up during winter. 
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Figure 6.2Average seasonal variation of O3 at Stuttgart-Bad Cannstatt (an urban site) for the period 
1981-1993 (from Mayer 1999) 

6.2.2 Hebdomadal and diurnal variation 

Adding local sources to the pattern generates short term variations, represented by day-of-week 

(hebdomadal) and hour of day (diurnal) effects, both associated with variations in emission intensity.  

Diurnal effects also result from differences in O3 production and decay between day and night. In 

each case, the patterns vary spatially - i.e. between the major types of environment – north vs. 

south, coastal vs. inland and urbanised vs. rural.   

O3 shows a weekly cycle from one day to another, that broadly reflects the pattern of human 

activities over the week.  Concentrations tend to be higher at the weekend, and especially on Sunday 

compared to weekdays (Jenkin et al., 2002, Marr and Harley, 2002, Pont and Fontan, 2001, Wilby 

and Tomlinson, 2000). Smaller variations may also be seen between weekdays.  These cycles are 

produced by variations in the local sources of O3 precursors, especially NOx emitted from traffic and 

industrial activities. For instance, volumes of traffic often rise on Mondays, when people go back to 

work, fall off slightly from then until Thursday and peak again on Friday, then reach a minimum over 

the weekend.  This leads to a stronger weekend contrast in urban sites compared to rural sites, and 

little or no hebdomadal effect in remote sites (Jenkin et al., 2002, Mayer, 1999).    
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A strong diurnal cycle of O3 concentrations can be expected between day and night due to 

differences in the rates of photochemical activity, as outlined earlier Section 2.1.1. During the 

daytime, solar radiation is high, which activates photochemical reactions to form O3 at a more rapid 

rate than its destruction. In contrast, O3 concentrations are reduced at night due to the lack of 

photochemical activity. This pattern will vary, however, depending on the spatial context (e.g. urban, 

rural, industrial, remote area or traffic).  

Superimposed on this pattern is the effect of the rate of supply and destruction of precursor 

pollutants. The ratio of NO:NO2 is especially important in this respect, for while NO acts to destroy 

O3 (by conversion to NO2), NO2 tends to promote O3 production, by dissociating to NO and O. 

NO and NO2 show strong diurnal patterns, largely due to variations in emission from road traffic and 

some industrial sources. NO typically has two peaks within the day: one in the morning and another 

in the evening, associated with periods of heavy traffic  (Sanchez and Sanz, 1994). As a secondary 

pollutant, NO2 concentrations lag behind NO, and often peak later in the morning and evening.  O3 

concentrations can be expected to lag somewhat further behind, peaking when the NO:NO2 ratio is 

lowest and reaching a nadir when this ratio is highest, as shown in Figure 6.3.  These patterns vary, 

however, both with distance from NO source, and, as has been indicated already, with levels of solar 

radiation. 

 

Figure 6.3 Average weekly and diurnal cycle of NO, NO2, O3, and Ox at Stuttgart-Bad Cannstatt (an 
urban site) for the period 1981-1993 (from Mayer 1999) 
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Because of these factors, urban area tend to show high diurnal variability in O3 concentrations 

compared to more remote areas (i.e. rural areas) (Böhm et al., 1991).  In principle, an urban area can 

be expected to exhibit a curve which peaks in the afternoon and decreases at night (Finlayson-Pitts 

and Pitts Jr, 1986). In large and densely populated urban areas with high traffic volumes, the pattern 

will be accentuated, leading to marked differences between morning, afternoon, and night-time 

concentrations. The highest peak occurs when solar radiation is high, during the afternoon times, 

and then declines as the effect of reduced solar radiation and increased traffic emission take effect 

during the early evening (Figure 6.3).  The same occurs, albeit to a lesser extent, during the morning 

cycle. The more intense the road traffic, the deeper the trough in O3 concentrations. If the urban site 

is located downwind, the cycle is shifted later in the day, due to the lag caused by dispersion 

(Finlayson-Pitts and Pitts Jr, 1986). A low maximum concentration in early morning (between 

ca.12.00 – 4.00 am) results from downwind transport of O3 from places with high concentrations; in 

rural this variation is absent (Mayer, 1999), as illustrated in Figure 6.4.  

In remote, rural areas, there are likely to be very few scavengers of any sort, and little input of O3 by 

dispersion from elsewhere, so the pattern is driven simply by photochemical reactions.  Variations 

also occur with altitude, so the amplitude of variation is height-dependent: at high altitudes, 

variations in O3 concentrations are driven mainly by air mass recirculation (Millán et al., 2000). In 

general, coastal and upland sites have similar diurnal patterns of O3 due to the absence of any 

marked reduction at night, as occurs in lowland and urban sites (Sundberg et al., 2006), as shown in 

Figure 6.5.  
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Figure 6.4  Typical diurnal cycles at rural sites, averaged into groups by site altitude (from Coyle et 
al., 2002) 

 

 

 

Figure 6.5 Typical diurnal variation in O3 concentration at three sites: Ostad (rural site located in a 
broad valley), Rao (coastal site), and Femman (urban site) in Sweden during 2004 (from Sundberg 
et al., 2006) 
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6.2.3 Implications for modelling 

From all these considerations, it can be argued that O3 concentrations are likely to show systematic 

cycles over three main time periods: seasonally, weekly (hebdomonally) and diurnally.  Each of these 

varies in its intensity (i.e. the amplitude of the peaks and troughs), duration, timing and frequency 

depending on their geographic (and especially meteorological) context and the associated patterns 

of emission intensity. This systematic temporal behaviour in O3 concentrations can, in principle, be 

described by a set of functions of time. Insofar as the patterns are consistent across any specific type 

of environment (i.e. site type) these functions then provide the means of predicting the temporal 

variability at unmonitored locations. 

The functions themselves can be defined in a number of ways.  One is by decomposing the O3 

concentrations into a set of functions using ARIMA or similar approaches.  This, however, is likely to 

result in complex, possibly over-fitted functions, which are not necessary interpretable or 

transferable to other sites, as discussed in Subsection 2.2.3.2. Fourier analysis provides an 

alternative, and has the advantage of providing semi-deterministic control to the analyst (who can 

define the functions on the basis of a priori knowledge).  It is widely used in technological fields that 

require methods to describe and model time-varying phenomena such as radio-communications.  It 

has also, however, begun to be used in several areas of environmental science, including studies of 

water quality and atmospheric chemistry (Skene et al., 2010, Richards and Baker, 2002, Damsleth 

and Spjotvoll, 1982).  Here, there is scope to use the approach to define the different systematic 

patterns that occur in O3 signatures as a result of determinants such as variations in solar radiation, 

temperature and associated photochemical processes, as well as regular variations in emission 

intensity. 

6.3 Principles of Fourier analysis 

Fourier analysis, as summarised by Piegorsch and Bailer (2005), involves the use of trigonometric  

functions, typically based on sine waves, to model the periodicity of time series data.  

The sine wave angle is measured in radians (), starting from  = 0 where the angle in degrees equals 

0, and ranging up to 2 where the angle equals 360.  

This time function can be built in form of:  
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ƒ =A sin (2(ti-)/p)      Equation 6-1 

where p is period of interest (e.g. 24 hours, 7 days); t represents the target time within that period; 

A is the amplitude of the wave, which is defined by the maximum height of peak or the depth of the 

trough relative to the basal axis; and   is the phase angle that lags the wave either to the right or to 

the left. 

Two simple functions, using 24 hours of day as the period, are shown in Figure 6.6.  These define a 

sine wave, ƒ =Sin *2πt/24+, and a cosine wave, ƒ =Cos *2πt/24+.  Variations of this simple function can 

be created by shifting the wave horizontally, by setting  to a positive or negative value depending 

on the desired direction of lag (H).  For example, setting  to +2 such that ƒ = Sin *2π*t+2+/24+ shifts 

the sine wave in Figure 6.6 two units to the left (Figure 6.7).  Equally the wave can be shifted 

vertically by the inclusion of a constant: ƒ = Sin *2πt/24+ + 0.5 shifts the wave 0.5 units upwards, as 

illustrated in Figure 6.7.   

By using these features to manipulate the waves, it is possible to recreate practically any pattern to 

match the temporal behaviour in the target variable, for different time periods of interest. The goal 

here is to produce the best approximation of O3 concentrations for different time periods (seasonal, 

weekly, diurnal) and for different spatial locations (urban, rural, coastal, remote, etc.), on the basis 

of the principles outlined above.   

By using one time function, a simple model can be built, as shown in Equation 6.2. This, however, 

usually needs to be calibrated to the empirical data using regression analysis (Equation 6.2).  This 

approach assumes that there is no temporal correlation within the error term  and that the period 

is known.  Regression analysis essentially weights the function, and thus increases or reduces the 

amplitude of the effect:  

Yi = a + 1ƒ1 +t     Equation 6-2 

where Yi is the observed time series dataset, a is the height of the wave, 1 the coefficient 

representing the amplitudes of ƒ1, and  is an error term.  

In many cases, time series data cannot adequately be described by a single, simple function.  In this 

case, different functions need to be combined, additively, to represent the different periodicities in 

the data, or asymmetry in the waves.  This is done through a multiple Fourier regression analysis, as 

shown in Equation 6.3. 
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Figure 6.6 Plots of simple time functions: sine and cosine 

 

 

Figure 6.7 Shifted time function 

 



158 

 

 

Yi = a + 1ƒ1 +2 ƒ2...+n ƒn+t    Equation 6-3 

 

where Yi is the observed time series dataset, a is the height of the wave, 1and n the coefficients 

representing the amplitudes of the n waves, and  is an error term.   

As the Fourier analysis model can only represent the systematic variation, other covariates 

representing the unsystematic (non-periodic) variation also need to be considered in order to reduce 

the white noise (i.e. volume of error). As the variation in O3 concentrations is affected by 

meteorology (see Section 3.2.3.5), it is likely that meteorological variables provide the best basis for 

capturing the non-systematic but temporally correlated variability in a temporal model.  This is 

addressed in Chapter 7. 

6.4 Methodology 

Temporal models for each site type were built by first generating time functions to represent the 

pattern of O3 behaviour over different time periods. Linear regression analysis was then used to 

combine the functions into a time model for each site type, using standardised hourly 

concentrations, created by subtracting the site long-term mean concentration from each hourly 

concentration of the site (i.e. deviation from the long-term mean O3 concentration).  Thirteen 

temporal models were thus developed, one for each of the site-types. 

6.4.1 Development of time functions 

Different approaches can be used to develop trigonometric functions to describe a time series of 

data. One approach is to assume that the underlying systematic patterns run uniformly throughout 

the data set, and thus to identify the patterns by examining averaged data (Barnett, 2004).  In this 

case data are averaged across the whole study period for each basal averaging period (e.g. hours of 

the day in order to identify a function describing diurnal patterns).  The averages can then be plotted 

(e.g. for each of the twenty four hours in a day) and examined to identify the shape and timing of 

the underlying patterns.  

An alternative is to proceed deterministically, and create functions which describe the temporal 

signal for a variety of possible scenarios (i.e. signatures), based on theory. In this case, this would 

involve specifying the general patterns of O3 concentrations expected both over different time 
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periods (a day, a week, a year) and for different situations (e.g. more or less urbanised, upland and 

lowland, northern and southern).   

The latter approach was adopted here, as it is more generalized and models are not built for specific 

sites. A series of functions was created to represent fluctuations over daily, weekly and seasonal 

time scales, based on the principles outlined in Section 6.1. Time functions were computed to match 

each of the site types identified in Chapter 4.  

Functions were generated by applying the following steps. 

1. Create a number of simple independent functions for seasonal and daily function peaked 

at different times and for an appropriate basal averaging period.   

2. Create different versions of these by shifting them by 1 increment forward or backward 

in time (i.e. for different time lags). 

3. Enter the resulting functions into a multiple regression analysis, using hourly 

standardised (the deviation from the mean) O3 concentration for all sites within the site 

type, as the dependent variable. 

As an illustration, to model the diurnal variations in O3, the procedure was applied as follows: 

A. Using the hourly data (i.e. with an hour as the basal unit of time), a simple 24-hour day 

function, a ‘starter function’, was defined giving a peak at 13:00 hours, and termed D13 

(D defining it as a day function and the number representing the peak hour). 

B. This was then shifted by one-hour increments to create a family of lagged functions with 

peaks at different times of the day to represent day and night-time cycles. Figure 6.8, 

shows functions for the first five diurnal functions.  

C. A second family of ‘complex’ (i.e. double-peaked) function was created to represent 

more complex patterns during the day.  In this case, the starter function was defined with 

two peaks at 12:00 and 24:00, and then these lagged by one hour to create different 

versions, Figure 6.9.   

In the case of the seasonal pattern, the same approach was applied using daily averages (i.e. with 

the day as the basic time unit).  The starting function was designed to peak at the beginning of May 

(spring season) and this then shifted by 10 days at a time, to create a family of seasonal functions, 

Figure 6.10. 
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Figure 6.8 Simple diurnal time functions showing an afternoon peaked from 13.00 to 17.00  

 

 

Figure 6.9 Complex diurnal time functions with a double-peak in the early morning and 
afternoon 
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         Figure 6.10 Seasonal Time functions for S1 and its sequence versions 

 

In the case of the day of the week, it was felt that a simple function could not easily be constructed, 

because of the disjunct nature of the effect – i.e. weekend days are fundamentally different in terms 

of emissions from working days.  Therefore, day of week was coded as three binary variables 

(Sunday, Saturday, and weekday) and these entered as dummy variables into the regression analysis.  

In this way the regression analysis determined the size of the additive effect for each of these day-

of-week periods. The 32 functions thus created are summarised in Table 6.1.  
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Table 6.1 Description of seasonal and daily generic time functions 

Time period Time Function Description 

Day of Year 
A
 

 

 

S1=Sin(2*3.142*(DoY-60)/365) Seasonal function with one wave peak 
timed in May 

S2=Sin(2*3.142*(DoY-70)/365) Seasonal function with peak shifted by 
10 days from S1 

S3=Sin(2*3.142*(DoY-80)/365) Seasonal function with peak shifted by 
20 days more from S1 

S4=Sin(2*3.142*(DoY-90)/365) Seasonal function with peak shifted by 
30 days from S1 

S5=Sin(2*3.142*(DoY-100)/365)  Seasonal function with peak shifted by 
40 days more from S1 

S6=Sin(2*3.142*(DoY-110)/365)  Seasonal function with peak shifted by 
50 days from S1 

S7=Sin(2*3.142*(DoY-120)/365)  Seasonal function with peak shifted by 
60 days from S1 

S8=Sin(2*3.142*(DoY-130)/365)  Seasonal function with peak shifted by 
70 days more from S1 

S9=Sin(2*3.142*(DoY-140)/365)  Seasonal function with peak shifted by 
80 days from S1 

S10=Sin(2*3.142*(DoY-150)/365) Seasonal function with peak shifted by 
90 days from S1 

S11=Sin(2*3.142*(DoY-160)/365)  Seasonal function with peak shifted by 
100 days from S1 

Hour of Day 
B
 

with 
one Peak 

 

D13=SIN(2*3.142*(HoD-7)/24) Daily function peak:  at 13.00 

D14=SIN(2*3.142*(HoD-8)/24) Daily function peak:  at 14.00 

D15=SIN(2*3.142*(HoD-9)/24) Daily function peak:  at 15.00 

D16=SIN(2*3.142*(HoD-10)/24) Daily function peak:  at 16.00 

D17=SIN(2*3.142*(HoD-11)/24) Daily function peak:  at 17.00 

D22=COS(2*3.142*(HoD+2)/24) Daily function peak:  at 22.00 

D23=COS(2*3.142*(HoD+1)/24) Daily function peak:  at 23.00 

D24=COS(2*3.142*(HoD)/24) Daily function peak:  at 24.00 

D1=COS(2*3.142*(HoD+23)/24) Daily function peak:  at 1.00 

D2=COS(2*3.142*(HoD+22)/24) Daily function peak:  at 2.00 

D3=COS(2*3.142*(HoD+21)/24) Daily function peak:  at 3.00 

D6 =COS(2*3.142*(HoD+6)/24) Daily function: trough at 6.00 

D7 =COS(2*3.142*(HoD+5)/24) Daily function: trough at 7.00 

D8 =COS(2*3.142*(HoD+4)/24) Daily function: trough at 8.00 

D9 =COS(2*3.142*(HoD+3)/24) Daily function: trough at 9.00 

D10 =COS(2*3.142*(HoD+2)/24) Daily function: trough at10 

Hour of Day 
with 

two Peaks and 
trough 

 

D12_24=SIN(4*3.142*(HoD+3)/24) Daily function peak:  12 and 24.00 

D1_13=SIN(4*3.142*(HoD+2)/24) Daily function peak:  13 and 1.00 

D2_14=SIN(4*3.142*(HoD+1)/24) Daily function peak:  14 and 2.00 

D3_15=SIN(4*3.142*(HoD/24) Daily function peak:  15 and 3.00 

D4_16=SIN(4*3.142*(HoD+23)/24) Daily function peak:  16 and 4.00 

A. Day of Year (DOY) to capture the seasonal trend over a year based on daily concentrations with 365 days 
B. Hourly of Day (HOD) to capture the diurnal patterns within 24 hours.  
C. post hoc time functions to represent this variation 
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6.4.2 Regression analysis (Fourier analysis) 

These generic functions have to be fitted to the data by determining the amplitude (the weight of 

each function) in order to create a more complex, additive function that best matches the time 

signature in the data.  Analysis was done using regression analysis in which all the functions were 

entered as potential predictors and the hourly standardised (deviation from the mean) O3 

concentration used as the dependent variable.  Analysis was done for each site type separately, and 

using only the training sites (i.e. excluding the 20% of reserved validation sites). A supervised 

stepwise regression analysis was run as follows: 

1- Seasonal functions were entered first, followed by the three day-of-week variables 

(weekday, Saturday and Sunday). 

2- Variables were excluded if P >0.05, VIF>5, or the increase in the adjusted R2 < 0.01. 

3- Diurnal functions were then offered into the model together with all included variables from 

the preceding step 1, and applying the same rules as in step 2. 

4- Residuals from step 3 were then examined by: 

a) Plotting a boxplot for hour of day, to explore any residual diurnal pattern.  Where 

any systematic diurnal variation was suspected, additional post hoc functions were 

developed in an attempt to describe it.  

b) Scatterplots for daily residual concentrations were generated to explore any 

remaining pattern in the seasonal systematic variation.  Where this seemed 

possible, additional post-hoc functions were developed to describe these systematic 

variations.  

c) Potential post hoc functions were regressed against the residual O3 concentration 

(from step 3) and were retained if conditions in step 2 were achieved. 

5- Once the model was considered to be finalised, measures of the statistical goodness of fit 

(adjusted R2 and RMSE) were estimated by applying the model to the validation dataset for 

each site type. 
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6.5 Results and interpretation 

The first Section 6.5.1 illustrates the nature of the resulting functions using the example of two site 

types: 

 Site type 1 (Forested hill-lands): sites are scattered over the whole study area, though mainly 

at large distances from the sea, and are characterised by rural land cover (especially forest) 

with little infrastructure; mean altitude is relatively high. 

 Site type 7 (Heavily trafficked urban): sites are scattered over the whole study area and 

characterised by flat urban land cover with high road density. 

Subsection 6.5.2 presents the results for the rest of the thirteen sites type. 

6.5.1 Results: site types 1 and 7   

Table 6.2 shows the models for site type 1 and 7 and the regression statistics after the first three 

steps in the analysis, outlined above. All included functions are significant, with P= 0.0005 and each 

one added 1% or more to the adjusted R2.  

Table 6.2 Regression model for site type 1 and site type 7 applying step 1-3 in the methodology 

Site type Model Coefficient(β) Adj.R
2
 RMSE R

2
 change p-value 

Si
te

 t
yp

e
 1

 

(F
o

re
st

e
d

 h
ill

-

la
n

d
s)

 

S2 23.98 .30 26.09 .30 .00 
D16 11.12 .36 24.88 .06 .00 

D2_14 3.78 .37 24.73 .01 .00 
Weekday -1.69 .37 24.70 .00 .00 
Sunday 1.92 .37 24.70 .00 .00 

Si
te

 t
yp

e
 7

  

(H
e

av
ily

 

tr
af

fi
ck

e
d

 

u
rb

an
) 

S2 15.43 .20 21.94 .20 .00 
Weekday -4.05 .21 21.75 .01 .00 
Sunday 4.58 .22 21.71 .01 .00 
D2_14 7.02 .26 21.09 .04 .00 

D16 7.29 .30 20.50 .04 .00 

  

 
Both site type models contain one seasonal function, peaking in the June (S2).  Figures 6.11 and 6.12 

show the values of S2, weighted by its relevant coefficients (23.98 and 15.43 for site types 1 and 7, 

respectively).  The plots show that both site types display a similar pattern of seasonal variation but 

with different amplitudes, reflecting the degree to which the seasonal pattern is affected by 

meteorological conditions. The seasonal variation is notably flatter in site type 7 than in site type 1.  
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Figure 6.11  Modelled seasonal variation in site type 1 across all sites 

 

 

 
 

 

Figure 6.12  Modelled seasonal variation in sit type 7 across all sites 

 

 
To explore whether any systematic variability remained, Figures 6.13 and 6.14 were plotted, 

showing boxplots for the hourly residual in the two site types.  The boxplot (Figure 6.13) for site type 

1 shows that the mean residual does not vary to any significant extent, but the range (variance of 
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the residual) exhibits some variation, reflecting differences between sites and days. Incorporating a 

post-hoc time function will therefore not improve the model.  Site type 7 (Figure 6.14) shows some 

variation in the mean of the residuals, with a slight tendency for under-estimation between 02.00 

and 06.00 hours.  Again, however, between-hour variation is small compared to the variation within 

hours (differences between sites and between days), so it is unlikely that a post hoc function could 

improve the model to any extent.  

 

 

 

       Figure 6.13 Boxplot for hourly residual concentration (g/m3) across site type 1 
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Figure 6.14 Boxplot for hourly residual concentration (g/m3) across site type 7  

 

The residual from the model for site type 1 was also plotted as a scatterplot, showing the daily 

residual over 365 days to identify any remaining seasonal variability (Figure 6.15). In this graph, the 

daily residuals have been averaged across all sites and all years, to facilitate plotting: the x axis 

represents sequential days from January 1st to December 31st. Examination of the graph suggests 

that the residual (predicted minus observed concentrations) varies between different times of the 

year, with a tendency for the model to over-estimate during the spring months (March-May), but to 

under-estimate during summer (June-August). This suggests that the time functions might be 

amplifying the spring maximum, and implies the need for a post hoc function to describe the pattern 

more accurately.  

A polynomial trend was therefore fitted to the graph to summarise the systematic pattern in the 

residual.  The fit of the polynomial increased as the order was increased up to the sixth order.  The 

function shown in Figure 6.15 is a sixth order polynomial.  As with all complex polynomials, this 

double peak polynomial (with maxima in the spring and autumn/early winter) is not easy to 

interpret in terms of underlying processes. In a review by Monks (2000), however, the same pattern 

was reported in unpolluted locations in the northern and southern hemispheres during some 
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periods.  The explanation appears to be that, in remote and unpolluted (low-NOx condition) regions, 

like site type 1, the NOx level is crucial to determination of whether the photochemical state is one 

of O3 destruction or O3 production. In low-NOx conditions, O3 loss by photolysis (i.e. atmospheric 

reaction with peroxy and radicals) and surface deposition is balanced by O3gain via entrainment 

from the lower free troposphere.  There may also be a small additional source in summer from 

photolysis of nitrogen dioxide.  Together, these create a cycle of winter maxima and summer minima 

in O3 concentrations (Ayers et al., 1997, Ayers et al., 1992).  

On this basis, the pattern observed in Figure 6.15 seems to reflect inadequacies in the seasonal time 

function for site type 1, so the model appears to need some adjustment. Thus an additional double-

peak sine function was generated to match the polynomial: Sin [4(DOY-100)/365]. Figure 6.16 

shows the seasonal pattern that results when this is combined with the initial seasonal function for 

site type 1. The predicted seasonal pattern changes from one with a maximum at the end of the 

spring season to a broad maximum across the spring and summer, with a slightly higher 

concentration in summer. When this was incorporated into the model, it improved the adjusted R2 

by 1%.  

 

 

Figure 6.15 Scatterplot for daily residual over 365 days to identify seasonal variability for site 
type1  

 
Residuals from the site type 7 were analysed in the same way. The polynomial function in this case 

suggests a small degree of underestimation in the summer months and overestimation in the winter 
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months (Figure 6.17).  Incorporation of functions to describe this variation, however, did not 

improve R2 by ≥ 1%, so the initial model was retained.  

 

 

Figure 6.16 Modelled seasonal variation in site type 1 across all sites from the final model 
(S2+PHF1)  

 

 

Figure 6.17 Scatterplot of the daily residual from the initial Fourier model over 365 days for site 
type 7 

 

Figures 6.18 and 6.19 show the shapes of the short-term (weekly + diurnal) variation implied by the 

models developed for site types 1 and 7. The two site types have clearly different patterns.  In site 



170 

 

 

type 1, there is a relatively simple cycle, with a peak in the afternoon and no great difference 

between the weekdays and weekend, as expected in remote rural areas. Site type 7 (Heavily 

trafficked urban) on the other hand, shows a distinct secondary peak in the night, and a marked 

increase in concentrations at the weekend.  Both features can be thought of as typical of highly 

urbanised localities.  The weekend effect reflects the relative lack of traffic and associated NO 

emissions on non-work days.  The secondary peak in the night is a reflection of the following 

sequence of events:   

1. During rush hour (from 17.00 hours onwards), NO is emitted by vehicles, which scavenges 

the O3 and results in a trough in O3 concentrations. 

2. As traffic volumes subside, the NO production falls and the existing NO is transported out of 

the area, while NO2 also forms, changing the NO:NO2 ratio.  O3 production therefore 

gradually increases while destruction declines and a peak in concentrations occurs.   

3. By the early morning, production of O3 has fallen (due to lower photochemical activity), and 

traffic flows start to increase, causing a change to scavenging conditions, which reach a 

maximum at rush hour (ca. 08.00).   

4. As traffic flows fall off, and the NO disperses, O3 production increases rapidly, and creates a 

peak concentration in the mid-afternoon  

It might be noted that the secondary night-time peak thus created continues into the weekend.  This 

is largely because the same diurnal pattern has been applied in this model for every day.   These data 

could suggest that improvements in the model might be made by applying different diurnal 

functions for weekdays and weekends. This was explored, by building separate diurnal models for 

weekday and weekend using site type 1, but the same functions were selected by the model (see 

Appendix B, Section VII).   
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Figure 6.18 Weekly and diurnal cycle of modelled O3 in site type 1  

 

 

Figure 6.19 Weekly and diurnal cycle of modelled O3 in site type 7  

 

 

Figure 6.20 shows the relationship between predicted and observed concentrations (using the 

average of all sites in site type 1) for the first 2000 hours of the study period.  In general, predicted 

concentrations track the measured values relatively closely, though there are periods (e.g. between 

hours 1552 and 1654) when the two lines diverge.  The relatively long duration of these periods (a 

week or more) suggests that they may be associated with weather-related events unrelated to the 

systematic variation being modelled here. Some of the modelling error may also relate to short-term 

variations in emissions.  
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Figure 6.20 Predicted (green) and observed (blue) hourly O3 concentrations (deviation from mean, 

g/m3) for the first 2000 hours, averaged across all sites in site type 1  
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  Figure 6.21 Predicted (green) and observed (blue) hourly O3 concentrations (deviation from 

mean, g/m3) for the first 2000 hours averaged across all sites in site type 7 

 

Figure 6.21 shows the hourly concentration (deviation from mean) for predicted and observed 

concentrations (using the average of all sites) for site type 7, for the first 2000 hours of the study 

period.  Again, predicted concentrations track the measured values relatively closely, but at times 

the lines diverge (e.g. between hours 501-552), or the amplitude of variations in the predicted 

concentration is small compared to that of the observed (e.g. between hours 1705-1756 and 1909-
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2000).  Over-estimation occurs, for example, during the March period, especially hours 1-51 (week 

1) and 501-552 (4th week of March), which broadly coincide with the Easter school holiday when 

there is reduced road traffic.    

6.5.2 Results for all site types 

Table 6.3 summarises the temporal models and the measures of goodness of fit to both the training 

and the validation data for each site type. The adjusted R2 ranges from 0.27 to 0.58 and the RMSE 

between 20.5 and 26.8 g/m3. Applying the model to the independent validation data produces 

almost identical results, indicating that the model is stable and not over-fitted to the training data.  

Table 6.4 shows the percentage of the overall temporal variability explained by these functions (i.e. 

that can be defined as systematic), and the proportion of this systematic variability represented by 

the seasonal, hebdomadal and diurnal functions.  

 Systematic variability accounts for 28% to 58% of the temporal variability (mean = 42%). Most of 

this is attributable to seasonal effects, which account for 63% of the systematic variation and 

consistently exceeds that of diurnal or weekly variability.  Diurnal variability, however, is also 

substantial, accounting for 36% of the systematic variation. The weekly effect is small, and only 

accounts for 1.4% of the systematic variability on average.  

6.5.2.1 Seasonal patterns 

Seasonal variability is thus seen as the main source of variation in the data.  This is represented in 

most site types by one seasonal time function that has one wave, peaking between spring and 

summer seasons (Table 6.3). The site types nevertheless differ to some extent both in the exact 

timing of the peak (from May to August) and in their coefficient (i.e. amplitude).  Differences in 

timing seem to reflect differences in the regional environment of the different site types.  In 

maritime areas, for example, the peak tends to be in spring (S1: maximum in May approximately), as 

in site type 8; in both southern and inlands site types, in contrast, the maximum is shifted to the 

summer (S3: maximum at July approximately) as in site types 11 (Southern urban uplands), and 4 

(Urban inland moderately sheltered). Other site types have a prolonged maximum between spring 

and summer, with the peak in June or thereabouts (S2: maximum at June).  



175 

 

 

Several site types (2, 12, and 13) show more complex seasonal patterns, and to model these second 

post hoc seasonal function (PHF) was incorporated.  In the case of site type 12 (Forested mountain) 

the pattern is characterised by a strong and broad spring-summer maximum with the peak in spring 

(Figure 6.22).  Site type 13 represents sheltered lands in southern Europe.  This shows a strong peak 

in summer, probably reflecting the marked differences in solar radiation and temperature between 

summer and winter in these areas, amplified perhaps in this case by effects of the accumulation of 

stagnant air during hot, dry periods of the year. Site type 2, which has a more coastal distribution, 

has a wider and less marked maximum period, between spring and summer, indicating the damping 

effect of the maritime climate.   

Several consistent trends can be seen in the distribution of these seasonal effects, by examining the 

percentage of systematic variation in Table 6.4 and the average environmental characteristics from 

Table 4.10 for each site types (Appendix B, Section IX). The results show that, across the thirteen site 

types, the amount of temporal variability in seasonal O3 concentrations increases significantly with 

increasing altitude (R=0.59) and topex (R=0.72), and with non-agricultural land cover24 (R=-0.57). The 

seasonal variation thus tends to be greater in site types with higher altitude, most notably in site 

types 1 and 12 where altitude is higher than >500m, topex is greater than 20m and non-agricultural 

land typically makes up more than 60% of the land area within 1 km.  In general terms, also, the 

amplitude of the seasonal patterns tends to increase from northern to southern Europe.  These 

findings are in line with findings of other studies, as reported in section 6.1 and imply that the 

models are picking up the general seasonal patterns in O3 concentrations.    

6.5.2.2 Hebdomadal and diurnal variability 

Figures 6.23 - 6.24 show line graphs of the modelled systematic variation in the hourly concentration 

for one full week (from Monday to Sunday).  Several site types (e.g. 3 and 6) show a simple pattern 

with a single, strong afternoon peak.  Site type 12 shows a broadly similar pattern, but with much 

reduced amplitude.  All these site types are rural in character, and lack local emission sources of 

precursors (e.g. from traffic or industry).  These patterns thus seem to represent sites in which there 

is a relatively consistent pattern of O3 production by photochemical reaction during the afternoon, 

followed by dispersion during the night and morning.   

                                                           
24

 100 - (highdr_1000+Lowdr_1000+IND/COM_1000+Agr_1000) 
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In the majority of site types, however, there is evidence for a smaller, secondary peak (or at least, an 

inflexion in the curve) during the night-time (typically at around mid-night).  To explore this, the 

residuals for the night period (between 10:00 pm and 3:00 am) were examined by plotting a 

scatterplot against the observed O3 concentrations, coding the data points by night and day. The 

result showed no difference in the two patterns, indicates that small peak at night represents a real 

feature of the data.  However, this pattern is most marked in more urbanised site-types, such as site 

type 7 (see Figure 6.19), site type 11 (Southern urban upland) and site type 8 (maritime urban 

moderately sheltered).  In urban areas, the physical processes that might generate such a pattern 

are well-established: following a period of dispersion and scavenging after the afternoon peak, O3 

tends to build up again as a result of dispersion from neighbouring rural areas. 

The hebdomonal patterns also differ somewhat from one site type to another.   Site type 7 stands 

out as having the greatest degree of hebdomonal variation, making up 7% of the total systematic 

variation in O3 concentrations.  Across the thirteen site types (Appendix B, Section IX), the 

magnitude of the difference between O3 concentrations on weekdays and those on Sunday increases 

significantly with increasing urban area (R=0.90) and local road density (R=0.81), and with reductions 

in rural land cover (R=-0.84), altitude (R=-0.77), and Topex (R=-0.54).  The weekend increment thus 

tends to be strongest more urbanised site types, with heavy traffic – notably in site types 7 and 9, 

where the weekday to Sunday difference is over 8ug/m3.  The smallest effects are seen in the more 

rural, high altitude and less exposed sites: in site type 12, for example, where urban land typically 

makes up ca. 5% of the land area within 1 km of the monitoring sites, the weekday to Sunday 

difference is less than 1ug/m3.  These differences are in line with theory and suggest that the models 

are picking up genuine hebdomonal patterns in O3 concentrations.   
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Table 6.3 The temporal model for each site type, showing the coefficients and statistics of goodness fit for training and validation datasets 

Si
te

 t
yp

e 

Environmental characteristics Equation 
Training 

(R2,RMSE) 
Validation 
(R2,RMSE) 

1 Forest hill-lands 0.92+(23.98*S2)+(11.12*D16)+(3.78*D2_14)+(-1.69*weekday)+(1.92*Sunday)+(3.65*PHF1) 0.38, 24.4 0.37,23.6 

2 Sunny mixed use 1.17+(22.94*S2)+( 12.87*PM5)+( 5.30* D2_14)+(-2.03*weekday)+(1.77*Sunday)+(3.32*PHF2) 0.41, 23.2 0.44,23.2 

3 Mixed use moderately sheltered 1.04+(22.73*S2)+(-2.00*weekday)+(2.04*Sunday)+(20.68*D15)+(5.61*D2_14) 0.44, 24.9 0.42,24.5 

4 Urban inland moderately sheltered 1.82+(27.19*S3)+(-3.39*weekday)+(3.55*Sunday)+(17.61*D16)+(7.25*D2_14) 0.47, 24.9 0.47, 24.9 

5 Urban inland 1.87+(22.34*S2)+(16.54*D16)+(5.57*D2_14)+(-3.27*weekday)+(2.57*Sunday) 0.42, 23.9 0.40,23.9 

6 Sunny mixed use strongly sheltered 1.67+(22.38*S2)+(25.23*D15)+(6.68*D2_14)+(-2.94*weekday)+(2.62*Sunday) 0.48, 25.6 0.45, 26.3 

7 Heavily trafficked urban  2.26+(15.43*S2)+(-4.05*weekday)+(4.58* Sunday)+(7.29*D16)+(7.02* D2_14) 0.30, 20.5 0.30 ,20.1 

8 Maritime urban moderately sheltered  2.19+(15.93*S1)+(-3.78*weekday)+(3.37*Sunday)+(13.83*D15)+(6.09*D2_14) 0.31, 23.6 0.30,23.6 

9 Northern Urban 2.35+ (20.67*S2) + (-4.29*weekday)+(3.58*Sunday)+(15.43*D16)+(5.49*D2_14) 0.37, 24.6 0.38,25.1 

10 Inland populated strongly sheltered 1.33+(27.11*S2)+(-2.58*weekday)+(2.67*Sunday)+(22.28*D16)+(6.37*D3_15) 0.48, 26.5 0.49,26.5 

11 Southern urban lands 2.317+(23.97*S3)+(-3.73*weekday)+(2.46*Sunday)+(19.62*D16)+(10.07*D2_14) 0.51, 22.9 0.50, 22.6 

12 Forest mountain 0.55+(16.50*S1)+(6.20*D17)+(2.76*PHF3)+(-0.55*weekday)+(0.35*Sunday) 0.27, 21.3 0.27, 22.2 

13 Southern populated strongly sheltered 2.08+(36.69*S3)+(20.41*D17)+(7.69*D4_16)+(5.26*PHF4)+(-2.69*weekday)+(3.16*Sunday) 0.58, 26.8 0.55,26.0 

Post-hoc time Functions: (PHF1=SIN(4*3.142*(DoY-100)/365)); (PHF2=COS(4.5*3.142*(DoY-70)/365));(PHF3=COS(4.5*3.142*(DoY-80)/365));(PHF4=SIN(3.5*3.142*(DoY+60)/365)). 
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Figure 6.22 Modelled seasonal variability in site types 2, 12, and 13 

 

 

 

Table 6.4 Systematic variation as a percentage of total temporal variability in O3 concentration 
explained by time functions for different time periods and the dominant characteristics for each 
site type 

                 Sitetype   
Temporal variation 

1 
 

2 3 4 5 6 7 8 9 10 11 12 13 Average 

Systematic variability 38 41 44 47 42 48 30 31 37 48 51 27 58 42 

Seasonal 
B
 79 71 52 66 61 41 67 52 60 56 53 85 76 63 

Hebdomonal 
B
 0 0 0 2 0.0 0 7 3 3 2 2 0 0 1 

Diurnal 
B
 21 29 48 32 38 58 27 45 38 42 45 15 24 36 

Character of site type 
c
               

Urban (%)  
    

18 47 39 75 62 42 80 60 63 57 67 5 61  

Rural (%) 82 53 61 25 38 58 20 40 37 43 33 95 39  

High (>500 metres) X           X   

Low (<200 metres)     X   X X      

Maritime (<150km)  X     X X     X  

Inland (>250 km)  X   X      X     

North  X      X  X      

South X      X    X  X  
A. Systematic variability as a percentage of the total temporal variability 
B. Percentage of the systematic variability 
C. Most dominant characteristics in the site type 
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Figure 6.23 Line graph of modelled hourly variation during 7 days, from Monday to Sunday, for site 
types 2 – 6 
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Figure 6.24 Line graph of hourly variation during 7 days, from Monday to Sunday, for site types 8-
13 
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6.6 Component of variability 

As stated earlier, the modelling approach adopted here recognises three main components of 

temporal variation: 1) systematic variation; 2) unsystematic, temporally correlated variation; 3) 

random variation (noise).  In this chapter, Fourier analysis has been used to generate time functions 

to simulate the systematic temporal variability of O3 concentrations over different site types across 

Western Europe.  Systematic variability operates over three different time scales: seasonal, 

hebdomadal and diurnal. 

The resulting models show generally similar patterns of pollution across all site types, with a clear 

afternoon peak of concentrations that reflects a more-or-less universal accumulation over the day as 

photochemical activity builds up.  Detailed differences are, however, seen between the site types, 

especially in the amplitude and timing of the afternoon peak, the width of the peak and, in many 

cases in the occurrence of a smaller secondary night-time peak.  

Systematic variability is seen to make up less than half of the total temporal variability in O3 

concentrations – typically about 42%.  The remainder is either random temporally correlated 

variability or noise.  

The relative importance of the three different components of variability (i.e. time scales), broadly 

reflect the characteristics of the site types. Most of the temporal variability is associated with the 

seasonal pattern (winter/summer), which accounts for 41%-85% of the systematic variability (mean 

= 63%). Diurnal patterns account for most of the remainder (15-58%, mean = 36%).  While the 

hebdomadal effect is negligible, accounting for no more than 1% of the total systematic variability, in 

more urbanised sites the weekend increment may amount to 8ug/m3 or more.  Notably, these 

patterns broadly reflect the results found previously (Chapter 4, Table 4.3) using VCA.  This showed 

that temporal variability explained about 28% of overall variability (including spatial) and within this, 

seasonal variability was dominant, accounting for about 65% of the temporal variability and diurnal 

variability about 34%.  This suggests that the Fourier models are successfully capturing the majority 

of the systematic variability in the data. 

The different components of the systematic variation in the Fourier models vary in their importance 

geographically.   As a proportion of overall temporal variability (Appendix B, Section IX), systematic 

variation increases with decreasing topex (R =-0.663 across the 13 site types), implying that in 

topographically exposed areas there is more random variability, probably due to short-term 
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variations in weather conditions and the lack of long periods of O3 accumulation as may occur in 

valleys.  The relative importance of these different components of systematic variation likewise 

varies with topography and, to a lesser degree, with land cover.  Seasonal variation, as a proportion 

of total systematic variability, increases both as topex increases (R = 0.72) and more weakly as 

altitude and the area of non-agricultural rural land increase (R=0.59 and 0.57 respectively).  

Systematic seasonal patterns are thus strongest in upland, exposed rural areas, where the extremes 

of temperature and photochemical activity are most marked.   

The pattern of seasonal variability also differs between different site types. In general, most site 

types show a prolonged maximum between spring and summer seasons. More mountainous and 

maritime sites types, however, are characterised by an earlier peak in the spring, while in the 

forested hill-lands, the seasonal maximum tends to occur in summer.  

Diurnal variability shows a less clear pattern (Appendix B, Section IX), but tends to increase as topex 

and altitude decline (R=-0.71 and -0.56 respectively).  Diurnal variability is thus strongest in lowland, 

valley situations, where stagnant air can accumulate. 

6.7 Summary 

Similar to spatial modelling, the temporal modelling also attempts to model the three elements of 

variability, only in this case in the temporal dimension. The Fourier models developed here were 

generated semi-deterministically – by designing a priori functions to reflect the expected patterns of 

systematic variability in the data. This is justified given that most of the temporal variation in O3 

concentrations is related to systematic variations in temperature and solar radiation and, perhaps to 

a lesser extent,  in human behaviour.   

Using Fourier analysis to generate the systematic variation based on knowledge from previous 

studies and theory has its advantages and disadvantages. An advantage is that it helps to ensure that 

the patterns are consistent with the environment for which the models are built (e.g. for urban or 

rural areas).  This makes the extrapolation of the models to other unmonitored locations with the 

same underlying characteristics safer. By the same token, it is easier to interpret and explain the 

processes behind the patterns observed, and to use such interpretations as a check upon the 

veracity of the models. Modelling the systematic variation statistically (for example using ARIMA 

analysis or polynomial functions – ARIMA) is likely to result in models that better fit the observed 
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data, but without the same assurance that the patterns are both physically plausible and 

generalisable to other study areas (Kumar and Jain, 2010). The major disadvantage of using Fourier 

analysis is that the time functions need to be able to match both the shape of the patterns of O3 

variation, and the timing of the variations. Building these into the models requires a sound 

understanding of O3 processes and the way these change in different environmental contexts.  Even 

with this, surprises may occur and it may be necessary to incorporate additional post hoc functions 

to describe the patterns effectively.  Inevitably judgements have to be made at this point about the 

plausibility of these functions.  As with all such models that take no account of information that 

might be available in other covariates, the Fourier models can only represent the systematic 

variation in O3 concentrations.  Modelling the unsystematic variability with any degree of reliability 

requires the incorporation of additional data on the factors that contribute to such variation. 

Attempts were made to model some of the remaining variation by incorporating additional 

trigonometric functions, but these did not always improve the model.  This suggests that the 

remaining variation is largely non-systematic. Some of this residual variation nevertheless shows 

temporal patterns, often in the form of episodic behaviour – i.e. periods of high or low O3 

concentrations which are under- or over-estimated by the Fourier models.  These might be expected 

to be associated with weather events. Thus, in the next chapter (Chapter 7), attempts are made to 

model this residual variation using time-varying meteorological data by applying the full model at 

two different spatial scales: one within a country and another within a city having a different 

weather regime. 
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 Part3: Model Application 
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7 Space-time O3 model 

Previous chapters have described the development of  the temporal and spatial components of the 

model. Finally, the two models need to be combined to provide a space-time model. This chapter 

explains how the weighted time function models (TM 1 to TM13) were linked to the spatial model, 

to generate the space-time models and its application to sites across Europe and in two case studies 

areas (NL and Rome). 

The space time models were developed in two stages which are referred to as the base space-time 

model and the full space-time model (Figure 7.1). 

 

Figure 7.1 Steps in building the space-time model (Base and Full models) 
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Construction of The base space-time model (Section 7.1) was the first step in combining the spatial 

and temporal models and was achieved in two steps as follows (see also Figure 7.1): 

1. Site type membership probabilities from MLOR analysis were used as weighting factors for 

each time model to estimate the temporal variability in O3 concentrations at each location. 

2. These estimates were then combined with estimates of the long term mean concentration, 

derived from the spatial model, using two approaches: either simple addition or by 

calibration with measured concentrations in a multiple regression analysis. 

This model was used to generate hourly and daily concentration estimates for the monitoring sites 

across Western Europe, and hourly estimates validated using an independent subset (discussed in 

section 7.1). 

 

Subsequently, attempts were made to improve these estimates by including local meteorological 

information to represent the time-varying, non-systematic weather-related influences on O3 

concentrations. This improved model is referred to as the full space-time model. As it was not 

possible to obtain hourly or daily meteorological data for the whole study area, the full space-time 

was applied in only two areas:  

1. The Netherlands (Section 7.2), where the model was used to estimate O3concentrations for 

a 100m grid covering the whole country and validated using two approaches. 

2. The city of Rome (7.3), where the model was used to estimate concentrations for point 

locations representing the homes of cohort participants. 

These areas were selected with the additional aim of providing daily estimates of O3 exposures for 

birth outcome cohorts in the ESCAPE project.  

The performance  of the full space time model is further investigated by completing a short exposure 

assessment study (Section 7.4) for both case study areas. 

7.1 Base space-time model 

As mentioned previously, the spatial model (derived by LUR) gave the long-term mean concentration 

between March 2001 and February 2007, while the weighted time models provided estimates of the 

hourly variation around the long-term mean.  The question, however, arises of how these two 

components of the modelling should be combined: are the two models, for example, simply 
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additive; or is a calibration with the European monitoring sites required to combine the two 

components?  

Both possibilities were explored, to produce two different versions of what is referred to here as the 

base model (i.e. that using only the LUR model and the weighted time functions): 

1- Additive hourly base model, by direct addition:  

Predicted O3 = LUR+WTM hourly 

 

2- Calibrated hourly base model, by calibration: 

  Predicted O3 = constant + (B1*LUR) + (B2*WTM hourly) 

In developing the calibrated hourly model, regression analysis was done using the training 

monitoring sites, and the results validated by the validation dataset. For comparison, the additive 

hourly model was also tested against both data sets. 

For the calibrated model, the following regression equation was derived.  

Hourly predicted O3 (B) = -0.0223 + (1.00*LUR) + (1.017*WTM)    

An almost identical model was obtained when using the daily O3 concentrations:  

Daily predicted O3 = - 0.259+ (1.006*LUR) + (1.003*WTF) 

Information on the goodness of fit for the hourly models is shown in Table 7.1.  

Table 7.1 Summary of the validation results for both additive and calibrated hourly base models 

The model dataset R Adj.R
2
 RMSE 

Additive model 
 

Training dataset 0.69 0.47 25.29 
Validation dataset 0.68 0.46 25.38 

Calibrated model 
 

Training dataset 0.69 0.47 25.30 
Validation dataset 0.68 0.46 25.38 

 

As these results indicate, there is almost no difference either in the form of the calibrated and 

additive hourly models, nor in their performance when compared with the training and validation 

datasets.   
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Descriptive statistics (min, max, and SD) for predicted concentrations from both the additive and 

calibrated models were compared with observed concentrations at the monitoring sites (training 

dataset) (Table 7.2).  

 

Table 7.2 Descriptive statistics for additive and calibrated model and observed concentrations   

Variable Min Max Mean SD 

Hourly observed O3 0 470.00 49.80 32.23 

Hourly predicted O3 
(additive) 

0 137.55 49.60 22.80 

Hourly predicted O3 
(calibrated) 

0 136.84 49.58 23.01 

 

As is to be expected, the results for the two methods are again more-or-less identical.  Based on 

these results, it was therefore decided that the simple additive model could be used for subsequent 

analysis as this represented the more straightforward, and more logical, approach. Predicted hourly 

concentrations using the additive model  were therefore aggregated to three different time periods -  

diurnally, weekly and monthly - and compared with the observed concentrations to explore the 

correlation between predicted and observed at different time scales.  Results are summarised in 

Table 7.3. 

 

Table 7.3 Performance statistics for additive base model: Pearson correlation, R2, and RMSE 
between observed and predicted concentration for different time scales 

                 Variable R Adj.R
2
 RMSE 

Daily O3 concentration 0.73 0.53 18.47 

Weekly O3 concentrations 0.81 0.65 14.28 

Monthly O3 concentrations 0.86 0.74 11.40 

 

These results show that, as is to be expected, aggregating the concentrations to longer periods 

increases the proportion of explained variation in O3 concentrations and reduces the RMSE.   

 The base model predicts only the systematic temporal variation in O3 concentrations, which is 

repeated over the whole time period.  Any non-systematic variation is left unexplained. The model 

thus generally fails to predict extreme values (high or low) which typically occur irregularly on the 

hourly and daily concentrations, as indicated in Figures 6.20 and 6.21.  This is also reflected in the 

relatively high RMSE values in Table 7.3, especially when the averaging times are short.  

These more irregular variations in O3 concentrations are likely to be driven, in part, by episodes 

either in meteorological conditions (e.g. heat-waves, blocking antic-cyclonic conditions causing 
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prolonged inversions) or in emissions (e.g. holiday periods, strikes).  It is important to recognise, 

however, that these two influences do not operate wholly independently; changes in emissions, for 

example, often occur as a direct response to changes in weather conditions (e.g. increased 

combustion for heating during cold-spells, or air-conditioning during heat-waves).  Time-varying data 

on emissions are not readily available, but daily meteorological data do exist for a dense network of 

stations across Europe (although access to these is sometimes limited for different countries).  As 

mentioned, for NL and Rome, the meteorologically-driven effects (both direct and indirect) were 

modelled for two reasons: 

1. First, to illustrate how the full model can be further developed and to determine whether 

adding meteorological factors will represent the non-systematic temporally-correlated 

variability effectively, and provide estimates of the extreme values that the base model 

tends to miss.  

2. Second to estimate the daily concentrations for these study areas in order to provide 

exposure estimates for use in the ESCAPE project.  

The following section explains how this was done, on an exploratory basis, for these two study areas.  

7.2 Full space-time model in the Netherland (case study 1) 

The Netherlands is a small country in North-West Europe and shares its border with Belgium in the 

south and Germany in the east, and is bounded in the west by the North Sea.  There are twelve 

provinces in the country, and the capital is Amsterdam. Geographically the Netherlands covers an 

area of 41,543km2 of which 33,883 km2 is land and the rest water.  It is inhabited by 16,731,092 

people according to the latest estimate of Statistics Netherlands25. As the name (which means "the 

low country") indicates, the topography is relatively flat and low-lying, with 25% of the land below 

sea level, and 50% less than one metre above the sea. The Netherlands is characterized by a 

maritime climate, with a narrow annual range of temperature and precipitation throughout the year.   

There are two prospective birth cohort studies being conducted in the Netherlands: PIAMA 

(Prevention and Incidence of Asthma and Mite Allergy) and ABCD (Amsterdam Born Children and 

their Developments). PIAMA recruited 10,819 pregnant women between March 1996 and May 1997, 

located all over the Netherlands, though clustered in the north, west and centre. One of its aims is to 

                                                           
25

 http://www.cbs.nl/en-GB/menu/themas/bevolking/cijfers/extra/bevolkingsteller.html 
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evaluate the natural history of asthma and allergy in association with many factors, including air 

pollution (Brunekreef et al., 2002). The ABCD cohort is located in Amsterdam and recruited 12,682 

pregnant women between January 2003 and March 2004, to examine the relationship between 

maternal lifestyle and birth outcome (Van Eijsden et al., 2006). Neither study has evaluated the 

association with ambient O3, although both have previously analysed other pollutants (Pereira et al., 

2012, Gehring et al., 2011a, Gehring et al., 2011b).  Both, however, are included in the recently 

funded ESCAPE project and this case study was carried out to provide O3 exposure estimates for the 

two cohorts.   

7.2.1 Methodology   

Selection of meteorological data  

According to the information from the Dutch Royal Meteorological Institute26 there are thirty six 

meteorological stations measuring the required meteorological factors (temperature, wind speed, 

sunshine and precipitation) at a daily level in the Netherlands. These variables are those most 

commonly included as variables for modelling O3, as mentioned in Chapter 3.  

The meteorological data varies very little between stations in the Netherlands, partly because of its 

relatively flat topography and maritime climate. For example, correlations were calculated between 

daily values at pairs of stations in the east of the country (where topography is more variable and 

the climate more continental), using a random sample of 30% of the data.  Between-site correlations 

varied between 0.93 and 0.99 for three of the variables used here; for the fourth (total precipitation) 

the range was between 0.75 and 0.80.  To further assess the possible effects of site-choice on the 

modelled estimates, a sensitivity analysis was also undertaken. In which precipitation data from 

different sites was applied.  Results are presented in section 7.2.2. Based on these results, it was 

considered valid to use only one meteorological station for each area of the country.  For this 

analysis, therefore, meteorological sites were incorporated into the analysis as follows:  

 One meteorological station was selected in each of the north, south, east and west of the 

country.  

 Stations were selected according to the following two criteria: 

                                                           
26

  Available in <www.knmi.nl>  
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o Each meteorology station had to be located in open space;  

o Daily data had to be available during the full study period >75%.  

  The country was then divided into four meteorological zones, centred on these stations, 

using Thiessen-polygons;  

 O3 monitoring sites were attributed to their relevant meteorological zone, and thus 

meteorological site, by point-in-polygon analysis.  

 

Figure 7.2 shows the distribution of the meteorological stations in relation to the O3 monitoring 

sites.  Table 7.4 summarises the meteorological data for each of the four selected stations.  It is 

evident from these data that variations in meteorology between the four stations is small, 

reflecting the small size and simple topography of the country. 

 

Table 7.4 Descriptive statistics for the four meteorological stations in the Netherlands  

Meteorological 
stations 

N
*
 Wind speed 

(m/s) 
Temperature 

( °C) 
Sun duration 

(hour) 
Total precipitation 

(mm) 

Statistical 
measures 

2191 Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

Schiphol 2191 .9 15.5 4.91 -6.1 26.7 10.95 0 15.5 4.81 0 56.7 2.43 

Eelde 2191 .8 13.3 4.17 -9.6 25.5 10.05 0 15.5 4.62 0 51.3 2.34 

Twenthe 2191 .5 10.8 3.45 -10.7 26.5 10.25 0 15.5 4.67 0 45.0 2.15 

Gilze-Rijen 2191 .8 10.7 3.62 -7.9 28.0 10.82 0 15.5 4.71 0 53.6 2.25 

*N: All data measured in the daily basis and available for 2191 days 
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Figure 7.2 Map of the Netherlands showing the locations of the four meteorological stations 
(Eelde, Gilze, Scipho, and Twenthe) and thirty O3 monitoring stations (purple pins) 

 

Constructions of the full space-time model 

The next step was to calculate the daily O3 concentrations for each grid cell in the country.  This was 

done by using the base model, which combines the spatial model (i.e. LUR) and the weighted daily 

time model (daily WTM), together with local meteorological factors, to develop a full space-time 

model. The model was built by simple stepwise multiple regression analysis, with the condition that 

each meteorological variable had to increase R2 by 1% with a VIF<5. Daily observed O3 

concentrations from the thirty monitoring sites from both datasets (training and validation) provided 

the dependent variable. The analysis was done using all sites, because there were an insufficient 

number of sites to retain a separate validation dataset. However, the previous validation of the base 

model (Table 7.1) shows that the model performance was stable and this is not expected to bias the 

results. The LUR estimates, daily weighted time function models estimates, and daily unlogged 

values for the meteorological factors (listed in Table 7.5) were included as the independent variables 
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(predictors).  From the regression analysis, coefficients were thus derived for each of these 

components in the full space-time model: 

 Predicted daily O3= a + β. (Base model) + (β1.MF1+ β2.MF2 + β3.MF3 + β4.MF4) 

where a is the constant, β is the regression coefficient and MF is the meteorological factors. 

Nevertheless, to ensure the stability of the full model and assess the internal consistency of model 

results, it was tested using a leave-one-out cross-validation (LOOCV). This approach involves using a 

single site from the 30 sites as the validation data, and the remaining 29 sites as the training data. 

The validation site is then replaced by a different site, and the analysis repeated.  This is done 30 

times such that each observation in the sample is used once as the validation data. Then the 30 

predicted values were regressed against the observed concentrations measured at the 30 

monitoring sites and the regression statistics calculated (R2 and RMSE).  To provide further validation 

of the model, and the scope to apply it to another area not used in model development, it was also 

applied to 34 monitoring sites in the neighbouring country of Belgium.  For this analysis 

meteorological data were obtained from the meteorological station located at the southern 

boundary of the Netherlands, on the assumption that it will represent more or less the same 

weather condition. Also, if the model works well in Belgium using the NL meteorological station, this 

would indicate that using meteorological data from a station located closer to the monitoring sites 

would improve the performance of the model. 

After obtaining the coefficients for each variable in the regression equation, the probability of site-

type membership at each 100m grid location had to be determined.  This was done by applying the 

MLOR equation (described in section 4.2.4) to each grid centroid, using RASTER/MATH in ArcMap 

(Figure 7.3). Next, the thirteen time function models (TM) were weighted according to the 

probability of group membership for each grid cell, as specified in Figure 7.1, to provide the final 

weighted function time model: 

WTM = P1.TM1 + P2. TM2 +.... + P13.TM13  Equation 7-1 

 

The long-term mean O3 concentration was then extracted from the LUR analysis of the whole study 

area using the EXTRACT VALUE TO POINT in ArcGIS (Figure 7.4). 
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Figure 7.3 Site type membership probability (P1 to P13) for a 100 metre grid across the Netherlands 
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Figure 7.4 Long-term mean O3 concentrations for the Netherlands estimated using the spatial 
model (LUR) 
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To develop a map of modelled concentrations, or to provide data for a dense network of receptors, 

the procedure above may have to be applied to a large number of target locations.  For the 

Netherlands, at a 100 metre resolution, for example, calculations had to be done for 1.4 million grid 

cells.  While this is possible in ArcGIS or a standard statistical package such as SPSS, it is 

computationally intensive, and for the Netherlands would have required two to three weeks of 

continuous processing time.  

In order to speed up this aspect of the processing, therefore, the full model was run using Perl to 

calculate the weighted temporal component and then combine the output from the spatial model 

and weighted meteorological factors. The scripts are short text files and run the temporal 

component of the model in a matter of hours. The scripts were written and run by Margaret 

Douglass in the Department of Epidemiology and Biostatistics at Imperial College using calculation 

formulae provided by the author. As Appendix A, Section VII, shows, the scripts are short text files, 

designed solely to automate the computational procedures.  They are also readily transportable to 

different computer platforms and operating systems. 

7.2.2 Results and discussion 

Results of the stepwise multiple regression analysis using all 30 sites are shown in Table 7.5. The 

meteorological variables each added ≥ 1% to adjusted  2, except total precipitation (TP). This was 

therefore excluded from the final space-time model for the Netherlands. The final model for the 

daily predicted O3 concentrations (C) is thus: 

 

C =-18.4 + (0.77*Base model) + (3.1*WS) + (1.2*Sd) + (0.3*TEMP)      Equation 7-2        

                                                                                                                        

where C is concentration, WS is daily windspeed, Sd is daily sun duration, and TEMP is the daily 

temperature value.  

This model is consistent with expectations in that there are positive associations with all the 

meteorological factors. Using the absolute value of Beta (the standardised coefficient), it is apparent 

that daily O3 concentration is affected greatly by both wind speed and sun duration. This is 

presumed to reflect the climate of the Netherlands. Wind speed, it seems, is acting as a proxy for 

vertical mixing and while the effect of sun duration is slightly weaker, it clearly represents the effect 

of solar radiation on photochemical activity. The contribution of temperature is smaller, partly 
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perhaps because variation is limited in the mild, maritime climate of the Netherlands (the 

correlation of temperature with sun duration is low, R = 0.38). 

 

 

Table 7.5 Incremental statistics for the stepwise multiple regression analysis: summary of the final 
model 

Model predictors R Adj. R
2
 Change in R

2
 Beta RMSE VIF 

Base model 0.65 0.42  0.55 16.59  

Wind speed (WS) 0.70 0.48 0.06 0.29 15.66 1.10 

Sun duration (Sd) 0.72 0.52 0.04 0.22 15.02 1.43 

Temperature (TEMP) 0.73 0.53 0.01 0.10 14.96 1.54 

Total precipitation* 0.73 0.53 0 0.03 14.94 1.18 

                           *not included in the final model as does not contribute to R
2
 by ≥1% 

 

 

As Table 7.5 shows, the base model alone explains only 42% of the overall variability in the O3 

concentrations in the Netherlands sites.  Inclusion of the meteorological variables gives a moderate 

improvement in model performance, with an increase in R2 from 0.42 to 0.53, while RMSE falls 

slightly, from 16.6 to 14.9 g/m3.  The improvement suggests that it is worthwhile including the 

meteorological factors in the model, though the full model still leaves 47% of the variation in O3 

concentrations unexplained.  

 

As noted earlier, a sensitivity analysis was also carried out, to investigate the effects of using 

different meteorological data.  Analysis was done by substituting the other two available stations for 

the eastern meteorological station used in the initial analysis. Performance of the full model did not 

change (R2 and RMSE remained the same) and total precipitation still failed to increase the R2 by 

more than 1% so was excluded from the model. 

 

Table 7.6 Descriptive statistics for O3 concentrations from the base and final models, compared to 
observed concentrations at thirty NL sites 

Variable Minimum Maximum Mean RMSE 

Observed O3 0 144.73 39.97  

Base model 15.41 77.49 47.73 15.76 

Full model -1.83 80.93 39.88 14.94 
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As shown in Table 7.6, the full model predicted some concentrations below zero. This occurred only 

in 0.03% days (22 days with a negative value of the 65,730 in the full data set), all in the winter 

period (November and December).  This might be for a number of reasons.  One possibility is that 

the model is inadequately calibrated to the measured O3 concentrations because the monitoring 

stations do not represent the full range of conditions in the country.  Errors in both the input data 

and the parameterisation of the model are also, of course, inevitable.  The negative values, however, 

might also represent a hidden reality.  Under extreme conditions, the capacity for O3 scavenging 

might exceed the O3 supply in the atmosphere, thus creating potentially negative concentrations 

(though actual concentrations, of course, are bounded to zero). In this case, negative prediction 

values were substituted with zero.   

As explained earlier, validation of the full model was also carried out, by applying a leave-one-out 

cross-validation.  Results are shown in Table 7.7.  

As the results show, the performance of the model varied somewhat across this analysis, with R2 

ranging from 0.44 to 0.65, and RMSE from 12.9 to 16.8 g/m3.  When examined by region, there was 

little difference in the performance statistics.   Sites located in the southern of the country showed a 

range in R2 from 0.44 to 0.65; western sites from 0.46 to 0,61, northern sites from 0.45 to 0.58, and 

eastern sites were constant at 0.62. Overall, these results suggest that the performance of the model 

is stable and performance does not vary geographically.  

For comparison, Table 7.8 summarises the performance of the daily base model and the full model 

at the thirty monitoring sites in the Netherlands, together with the results from the daily estimates 

derived from the LOOCV. It is clear that incorporating the meteorological factors made a moderate 

improvement in the predicted concentrations as R2 increased, while the error decreased, at every 

site.  Performance of the daily full model and the results from the LOOCV estimates were also 

similar, suggesting that there is no significant bias in the full model. 
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Table 7.7 Performance of the full models in the Netherlands sites using LOOCV 

Left out site Prediction Model on N-1 Validation 
Results for 
left out site 

ID of O3 
site 

Location 
of Met 
site in the 
country  

Model parameters: 
 ( Constant (Cons),base model (BM), 
Temperature(TEMP),windspeed(WS), 
sun duration(Sd) and Beta coefficient 
 

R2 RMSE R2 RMSE 

Con BM TEMP WS Sd 

NL00107 south -18.46 0.77 0.24 3.11 1.16 0.53 14.96 .61 14.12 
NL00131 south -18.21 0.77 0.27 3.10 1.16 0.53 15.01 .58 13.51 
NL00133 south -19.06 0.78 0.25 3.12 1.17 0.53 14.99 .55 12.92 
NL00227 south -18.30 0.77 0.26 3.09 1.16 0.53 14.99 .63 13.46 
NL00230 south -18.39 0.77 0.26 3.09 1.16 0.53 15.02 .60 12.73 
NL00235 south -18.18 0.77 0.27 3.06 1.15 0.53 14.98 .56 13.64 
NL00236 south -18.48 0.77 0.26 3.10 1.15 0.53 15.00 .61 13.06 
NL00301 south -18.49 0.76 0.27 3.12 1.20 0.54 14.86 .44 16.57 
NL00318 south -18.60 0.77 0.27 3.10 1.18 0.53 14.93 .48 15.20 
NL00404 west -18.42 0.77 0.26 3.13 1.17 0.53 14.94 .52 15.46 
NL00411 west -18.38 0.77 0.27 3.13 1.17 0.53 14.96 .54 14.94 
NL00433 west -18.19 0.76 0.29 3.16 1.18 0.53 15.00 .55 13.03 
NL00437 south -18.47 0.77 0.29 3.01 1.18 0.53 14.98 .55 13.67 
NL00441 south -18.46 0.77 0.25 3.11 1.15 0.53 14.98 .65 12.96 
NL00444 west -18.35 0.77 0.28 3.09 1.17 0.53 14.86 .45 16.77 
NL00520 west -18.35 0.76 0.29 3.18 1.15 0.53 14.96 .53 14.53 
NL00538 west -18.61 0.77 0.29 3.12 0.17 0.53 14.92 .46 15.28 
NL00620 west -18.36 0.77 0.27 3.15 1.16 0.53 14.95 .61 13.51 
NL00631 west -18.51 0.77 0.28 3.14 1.17 0.53 14.97 .53 14.43 
NL00633 west -18.36 0.77 .27 3.14 1.16 0.53 14.95 .57 14.18 
NL00636 west -18.30 0.76 0.29 3.17 1.17 0.53 14.95 .55 13.75 
NL00639 west -18.13 0.76 0.30 3.16 1.17 0.53 14.98 .58 12.77 
NL00641 west -19.05 0.78 0.27 3.23 1.15 0.55 14.67 .46 13.79 
NL00722 East -18.25 0.77 0.28 3.09 1.14 0.53 15.00 .62 13.24 
NL00738 west -18.29 0.77 0.27 3.13 1.15 0.53 14.98 .59 14.50 
NL00807 East -18.17 0.76 0.28 3.10 1.14 0.53 14.97 .62 14.08 
NL00818 North -18.24 0.76 0.28 3.12 1.16 0.53 14.97 .58 14.39 
NL00918 North -18.18 0.76 0.29 3.12 1.17 0.53 14.94 .55 14.59 
NL00929 North -18.62 0.77 0.29 3.10 1.16 0.53 15.01 .55 12.89 
NL00934 North -18.57 0.76 0.31 3.11 1.17 0.53 14.92 .45 15.22 
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Table 7.8 Performance of the daily base, full models and the validated daily models in the 
Netherlands sites 

 Daily Base model  Daily Full model  Validated daily models 

Monitoring site Adj.R
2
 RMSE Adj.R

2
 RMSE Adj.R

2
 RMSE 

NL00107 .46 16.77 .62 14.03 .61 14.12 

NL00131 .43 15.80 .60 13.41 .58 13.51 

NL00133 .40 14.96 .56 12.88 .55 12.92 

NL00227 .46 16.18 .63 13.45 .63 13.46 

NL00230 .43 15.28 .60 12.74 .60 12.73 

NL00235 .41 15.75 .56 13.68 .56 13.64 

NL00236 .45 15.57 .61 13.15 .61 13.06 

NL00301 .36 17.82 .45 15.50 .44 16.57 

NL00318 .36 16.89 .48 15.19 .48 15.20 

NL00404 .43 16.89 .52 15.42 .52 15.46 

NL00411 .43 16.50 .54 14.93 .54 14.94 

NL00433 .42 14.79 .56 12.99 .55 13.03 

NL00437 .41 15.63 .55 13.65 .55 13.67 

NL00441 .49 15.55 .65 12.91 .65 12.96 

NL00444 .34 17.40 .45 16.77 .45 16.77 

NL00520 .42 16.07 .53 14.52 .53 14.53 

NL00538 .38 16.39 .46 14.87 .46 15.28 

NL00620 .45 15.92 .61 13.42 .61 13.51 

NL00631 .44 15.86 .53 14.43 .53 14.43 

NL00633 .43 16.36 .57 14.15 .57 14.18 

NL00636 .43 15.49 .55 13.80 .55 13.75 

NL00639 .44 14.78 .59 12.73 .58 12.77 

NL00641 .30 15.49 .46 13.69 .45 13.79 

NL00722 .47 15.67 .63 13.13 .62 13.24 

NL00738 .45 16.85 .59 14.54 .59 14.50 

NL00807 .46 16.68 .62 14.01 .62 14.08 

NL00818 .48 15.98 .59 14.33 .58 14.39 

NL00918 .45 15.98 .55 14.55 .55 14.59 

NL00929 .41 14.79 .55 12.95 .55 12.89 

NL00934 .35 16.20 .45 14.80 .45 15.00 

Overall .42 16.59 .53 14.94   

 

As noted earlier, further validation was done by applying both the base model and the full NL model 

to 34 sites in Belgium, not used in model development. Results are summarised in Table 7.9.  As this 

shows, performance statistics are very similar to those obtained in the Netherlands, with R2 for the 

full model ranging from 0.43 to 0.68 (average 0.56) and RMSE from 12.3 to 17.6 g/m3 (mean 

=15.87). Poorest performance tends to be at the western and eastern extremities of the country as 

demonstrated in Figure 7.5: at two coastal sites and two sites in the hillier Ardennes area of Belgium 

Significantly, model performance is strongly correlated with distance from the meteorological site, 

as shown in Figure 7.6. . This indicates that, notwithstanding the results of the sensitivity analysis in 

the Netherlands (where distance to the meteorological site was always less than 99 km), the model 

does benefit from having localised meteorological data.  
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Table 7.9 Performance of NL full model in 34 Belgium O3 monitoring sites 

 Daily Base model  Daily Full model   

Monitoring site R2 RMSE R2 RMSE Distance* 

BETB004 0.55 14.61 0.68 12.28 89.56 

BETB006 0.48 17.36 0.63 14.75 89.43 

BETB011 0.44 17.80 0.61 14.74 90.59 

BETM705 0.40 16.76 0.52 15.03 142.39 

BETN012 0.35 17.83 0.47 16.15 114.37 

BETN016 0.44 19.06 0.62 15.81 40.43 

BETN035 0.44 19.71 0.61 16.45 65.99 

BETN029 0.30 17.83 0.43 16.48 177.87 

BETN040 0.42 18.36 0.58 15.70 101.85 

BETN043 0.47 14.75 0.63 12.44 85.16 

BETN046 0.43 18.16 0.59 15.35 89.59 

BETN051 0.43 17.20 0.59 14.66 110.09 

BETN054 0.42 18.64 0.56 16.21 96.06 

BETN070 0.37 16.13 0.55 13.69 140.60 

BETN066 0.33 19.56 0.49 16.08 128.60 

BETN073 0.38 17.72 0.54 15.23 118.77 

BETN085 0.35 18.52 0.48 16.58 159.67 

BETN093 0.37 18.03 0.51 15.83 145.11 

BETN100 0.38 19.00 0.52 16.76 165.69 

BETN113 0.41 18.89 0.51 17.24 174.57 

BETN121 0.41 18.53 0.53 16.58 189.01 

BETN132 0.42 19.29 0.52 17.55 211.67 

BETR001 0.48 15.42 0.63 13.05 90.04 

BETR012 0.43 18.90 0.60 15.72 94.94 

BETR201 0.43 17.24 0.57 14.99 113.85 

BETR240 0.42 17.49 0.56 15.25 114.14 

BETR502 0.39 17.93 0.54 15.51 131.18 

BETR701 0.50 15.89 0.65 13.39 101.01 

BETR710 0.47 17.09 0.63 14.28 98.39 

BETR740 0.41 15.76 0.56 13.57 90.90 

BETR801 0.49 15.71 0.64 13.33 52.79 

BETR811 0.46 17.98 0.64 14.68 46.76 

BETR831 0.44 15.84 0.59 13.50 47.52 

BETWOL1 0.40 16.16 0.57 13.70 86.23 

Overall 0.45 18.26 0.59 15.87  

 Distance between Belgium sites and NL meteorological station. 

 Correlation between the distance and the R
2
 is -0.73 and with RMSE 0.59 
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Figure 7.5 Map depicting the location of the Belgium sites and the NL meteorological station 
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Figure 7.6 Scatterplot between the full model performance measures in Belgium sites and the 
distance from the meteorological station 

 

The R2 for the full model is quite strongly and negatively correlated with distance (R2=0.56), while 

the RMSE is positively correlated and somewhat more weakly (R2=0.35).  Notably, also, the R2 for the 

base models shows a moderate correlation with distance from the meteorological station (R2=0.37). 

This may suggest that to some extent there are also other effects from different topography and 

emission types – Belgium, tends to become hillier and less intensively developed towards the south 

(i.e. further away from the Netherlands).  

In order to explore these results further in NL, the correlation between the performance of the full 

model (R2 and RMSE) and the location (x,y co-ordinates) and various environmental attributes of the 

1Km area surrounding  each of the monitoring sites was analysed. Table 7.10 summarises the 

results. It is apparent that there is a strong and positive correlation between the percentage of 

explained variation in the full model and distance to sea (R=0.65); and weaker positive associations 

with longitude (X-co) (R=36) and altitude (R=0.36). In contrast, the level of explanation falls with 

latitude (Y-Co) (R=-0.39).  As is to be expected, the reverse patterns are seen with RMSE.  Given the 

geography of the country, these associations are all consistent and suggest improving predictions 

south-eastwards and inland, as shown in Figure 7.7. The reasons for this are not entirely clear.  It is 

possible that the model is not adequately accounting for the effect of O3 produced over the North 

Sea, which affects the coastal areas; equally, the lack of factors representing long-range transport of 

O3 and its precursors may mean that the model is not adequately reflecting the impact of pollutants 

carried eastwards over the Netherlands on prevailing winds from the UK or beyond.  
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Table 7.10 Correlation (R) between performance of the daily full model and different 
environmental attributes of the monitoring sites 

 Daily Full model 

variable Adj R
2
 RMSE 

X-Co 0.36* -0.34 

Y-Co -0.39* 0.32 

Urban % 0.22 -0.25 

Distance to sea 0.65** -0.52** 

Rural % -0.16 0.11 

Altitude 0.36* -0.38* 

                                                                        * Correlation is significant at the 0.05 level (2-tailed). 
                                                                        ** Correlation is significant at the 0.01 level (2-tailed). 

 

 

Figure 7.7 Proportional circles of the residual error (RMSE) at each monitoring sites 
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Table 7.11 shows the effects of aggregating the predicted concentrations to higher temporal scales – 

i.e. weekly and monthly. Performance of both the base model and full model improves with 

aggregation, but the difference between the two shrinks and, at the monthly level, their 

performance is identical, with R2 = 0.88 and RMSE  = 7.62 g/m3. This shows that most of the non-

systematic variation in the data is short-term and that at the monthly scale systematic variation 

dominates.  

 

Table 7.11 Comparison between three time scales for the full model in terms of the correlation 
between observed and predicted concentrations  

Model Aggregation scale R Adj. R
2
 RMSE 

Base model 
Daily  0.65 0.42 16.60 

Weekly  0.77 0.60 11.46 
Monthly  0.88 0.77 7.62 

Final model 
Daily  0.73 0.53 14.94 

Weekly  0.81 0.66 10.54 
Monthly  0.88 0.77 7.62 

 

7.3 Full space-time model in Rome, Italy (case study 2) 

Rome is the capital of Italy, located in the central-western portion of the Italian Peninsula, as shown 

in Figure 7.7. Geographically, Rome covers an area of 1,283km2 and is inhabited by 2,761,47727 

people according to the latest estimate of Statistics Italy (ISTAT)28. Rome is characterized by a 

Mediterranean climate with a dry summer, with the highest temperature during August reaching 

30°C, and a mild, wet winter with rare snowfall. 

The GASPII birth cohort consists of 713 participants who were enrolled between June 2003 and 

October 2004, in two hospitals in the district of a Local Health Unit in the North of Rome, and who 

were followed up until 2007 (Porta and Fantini, 2007). 

                                                           
27

 http://demo.istat.it 
28

 http://www.cbs.nl/en-GB/menu/themas/bevolking/cijfers/extra/bevolkingsteller.html 
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7.3.1 Methodology  

7.3.1.1 Selection of meteorological data  

In Rome, the meteorological station in Ciampino municipality (41.8°, 12.55°) was selected as this was 

located in the vicinity of the five O3 monitoring sites distributed around the city, and the location of 

the GASPII cohort participant, as seen in Figure 7.6. Measured meteorological factors included 

temperature (daily mean °C), wind speed (daily mean m.s-1), total cloud cover (oktas), and total 

precipitation (daily mm) though the last of these had less than 75% data capture so was excluded 

from the analysis.  The descriptive statistics for the meteorological factors available for Rome are 

summarised in Table 7.12.  

 

Table 7.12 Descriptive statistics for the selected meteorological factors 

Meteorological factor Min Max Mean 

Wind speed (m/s)  0 10 2.4 

Temperature (°C) -0.4 30.9 15.8 

Total cloud cover (oktas
1
) 0 8 3.3 

1
 In meteorology, an okta is a unit of measurement used to describe cloud cover. This runs from 1 okta (clear sky) to 8 

oktas (complete cloud cover) 

 

Figure 7.8 Map of Rome showing the locations of the meteorological station, the five O3 
monitoring stations and participants in the GASPII cohort 
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7.3.1.2 Constructions of full space-time model 

To calculate the daily O3 concentrations for each cohort participant in Rome, the base model (i.e. 

LUR + daily WTM) was entered into a regression analysis along with the meteorological data, as for 

the Netherlands.  In this case, data for five O3 monitoring stations were used along with the single, 

selected meteorological station. Rules for model building and variable selection were as for the 

Netherlands (case study 1). The model was applied directly to the locations of each cohort 

participant by using the MLOR equation to calculate the probabilities of site-type membership, and 

then using these as weighting factors to estimate an appropriate time function model at each 

location.  This was added to the long term mean O3 concentration produced from the land use 

regression model. The resulting model prediction and the meteorological factors were weighted and 

summed using the relevant regression coefficients. 

7.3.2 Results and discussion 

Results from the multiple regression analysis are shown in Table 7.13. In this case all the 

meteorological factors added more than 1% to the overall R2.  

 

Table 7.13 Multiple regression analysis summary of the final model 

Model R Adjusted R sq. Change on 
R sq. 

Beta RMSE VIF 

Base model 0.77 0.59  0.64 15.2 1.69 

Wind Speed (WS) 0.79 0.62 0.03 0.23 14.7 1.15 

Total cloud cover (TCC) 0.80 0.64 0.02 -0.15 14.3 1.26 

Temperature (TEMP) 0.81 0.65 0.01 0.15 14.0 1.77 

 

The regression equation (shown in Equation 7-2) for the daily final model is as follows: 

 

C =-4.07 + (0.79.Base model) + (3.9.WS) + (-1.6.TCC) + (0.48.TEMP)    Equation 7-3 

where C is the predicted concentration, WS is the average daily windspeed, TCC is daily total cloud 

cover, and TEMP is the average daily temperature. 

 

 In terms of the full model, there are positive associations with all meteorological factors except for 

total cloud cover which had a negative association as expected: a cloudy day will limit the 



208 

 

 

photochemical reactions occurring due to a reduction in sun radiation. Overall model performance 

was good, with an R2 of 0.65 and RMSE of 14 g/m3, leaving 35% unexplained variation (Table 7.11).   

 

Table 7.14 shows that adding the meteorological improved the prediction of mean concentrations. 

However, predictions included a small number of negative values which were substituted with zero, 

as explained in Subsection 7.2.2.   

 

Model performance was again compared by aggregating the observed and predicted concentrations 

to weekly and monthly averages.  As in the Netherlands, performance improved as the averaging 

time was extended, with R2 rising to 0.77 and the RMSE falling to 9.9 g/m3 at the monthly level 

(Table 7.15).  

 

Table 7.14 Descriptive statistics for O3 concentrations from the daily base model and the full 
model compared to observed concentrations at the five monitoring sites in Rome 

Variable Minimum Maximum Mean SD 

Observed O3 0 129 40.78 23.65 
Base model 3.18 78.77 39.70 18.68 
Full model -3.6 87.88 39.50 19.05 

 Daily Base model Daily Full model 

Monitoring sites Adj R
2
  RMSE Adj R

2
  RMSE 

IT0826A 0.42 13.70 0.66 9.05 
IT0828A 0.64 12.13 0.70 11.75 
IT0952A 0.46 17.30 0.59 14.30 
IT0957A 0.65 13.26 0.75 11.23 
IT1174A 0.68 13.32 0.76 11.35 

                     All concentrations in g/m
3
 

 

Table 7.15 Comparison between three time scales for the full model in terms of the correlation 
between observed and predicted concentrations  

Aggregation scale R Adj R
2
 RMSE 

Daily  0.81 0.65 14.00 

Weekly  0.85 0.73 11.20 

Monthly  0.88 0.77 9.89 

 

 

The model was applied to the locations of each of the 713 cohort participants, using the probabilities 

of site-type membership (derived from the MLOR equation) as weights for the different time 

functions, then adding the resulting daily pollution increments to the long term mean O3 
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concentration from the land use regression model. The full space-time model was applied using 

Equation 7-3 to calculate daily predicted O3 concentrations for each participant from January 2003 – 

March 2007 (as required for the cohort). The range of daily concentrations within the cohort was 

relatively close to the observed daily concentrations at the five monitoring sites, with a mean of 

42.8g/m3 (and a range of 0 to 90 g/m3). 

7.4  Exposure assessment 

As noted above, the three cohorts in the Netherlands and Rome are concerned with birth outcome.  

The exposures of concern thus relate to the period of pregnancy, and, more specifically, to risks that 

may develop during specific trimesters during pregnancy.  Exposure assessment thus needs to be 

both spatially and temporally specific, so that it can take account not only of variations in average 

concentrations between the homes of different participants, but also of the pollution conditions that 

prevailed during these specific periods at those locations.    

In most time series studies, it is assumed that air pollution rises and falls more-or-less uniformly 

across a city, so that, though the average levels of exposure vary from day to day, the shape of the 

exposure distribution remains much the same. If this were true, then detailed modelling of the sort 

done here would not be required, for exposures on any day could be estimated directly from the 

mapped average concentration (e.g. the LUR map) and the daily concentration averaged across the 

routine monitoring sites. To explore whether this was the case, or whether the exposure 

distributions vary over time and space, a sample of 200 participants was randomly chosen from the 

PIAMA cohort (described in section 7.2). These 200 participants are scattered across NL but show 

some degree of concentration in the north, west and central areas of the country (reflecting the 

distribution seen in the original cohort).  For each participant a random set of daily, weekly and 

monthly averages was then selected.  This sampling design thus provides a temporally and spatially 

unbiased cross-section of the data.  

Exposure estimates were then made both from the full model and from the nearest monitoring site.  

Distance between the monitoring sites and participants range from 0.25 to 31.67 km with a mean of 

8.88 km. Computed exposure estimates from the two approaches (full model and nearest site) are 

presented below in different ways for the different time scales:  
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1- as histograms to illustrate the distribution of the exposure estimates (mean, SD, and the 

range) and to show the number of participants in each exposure category  (Figure 7.9). 

2- as scatterplots, showing also the 1:1 line, to depict the correlation between the two 

measurements and show if one approach over- (or under-) estimates compared to the other 

(Figure 7.10).  

As these results show, the two approaches give different exposure estimates for each averaging 

period. At the daily level, the means are approximately the same, as is to be expected because the 

model is calibrated to the measured mean (ca. 49 ug/m3) from the 30 monitoring station across the 

Netherlands. The SD and the range, however, differ (Table 7.16) with results from the full model 

showing a more restricted range, indicating that fewer people get assigned extremely high or low 

exposures. As can be seen from the histogram (Figure 7.9) and the skewness scores (Table 7.16), the 

estimates from the full model are also somewhat less skewed than those from the nearest site.  

The correlation between the two daily estimates is also weak (R2=0.12), showing that they give 

different exposure estimates to the sample of participants, and there is a marked tendency for the 

full model to over-estimate compared to the nearest site at low concentrations and to show relative 

under-estimation at higher concentrations .  These differences arise because, using the nearest site 

approach, concentrations are extrapolated over relatively large areas and all individuals within that 

area; the full model, on the other hand, attempts to show the spatial variation within these areas. In 

general, this acts to redistribute exposure scores within the limits of the monitored concentrations.  
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Figure 7.9 Histograms for the exposure estimate distributions for the 200 participants in NL, for 
different averaging times (daily, weekly and monthly) for the full period of the study using two 
approaches (model prediction from the full model and nearest monitoring site) 
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  Table 7.16 Summary statistics for each averaging period and approach 

Temporal 
scale 

Exposure 
estimation 

Min Max SD Mean Skewness 

Daily Full model 19.96 73.85 10.65 48.31 -0.14 
 Nearest Site 6.06 80.93 16.89 47.69 -0.19 

Weekly Full model 10.22 65.11 13.46 39.54 -0.11 
 Nearest Site 4.90 79.86 17.25 37.68 0.34 

Monthly Full model 10.9 63.70 13.44 38.38 0.00 
 Nearest Site 12.29 72.63 15.09 37.14 0.20 

 

 

 

 

Figure 7.10 Scatterplots (with 1:1 line) of the exposure estimaes from the two approaches (full model 
and nearest site) 
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At the longer averaging times (week and month) the exposure estimates from the two methods are 

much closer. The correlation between the two methods increases to R2=0.56 at the weekly level, and 

R2=0.76 at the monthly level.  This is to be expected, for as has been noted, much of the variation in 

the date occurs over short (daily or hourly) time scales:  variance components analysis of the hourly 

data in the Netherlands, for example, shows that 6% of variation is spatial and 31% is temporal.  As 

the averaging period increase, therefore, much of the variation (from day to day) is removed, and 

the correlation between the two approaches improves. While the means remain close (mean=39.5 

and 37.7 ug/m3 for the weekly estimates and 38.4 and 37.1 ug/m3 for the monthly for the nearest 

site and full model respectively), both the standard deviation and skewness differ.  For both 

averaging periods, the nearest site approach has a higher standard deviation and is more positively 

skewed.  

The patterns seen in these data are not necessarily true for other areas, for O3 concentrations are 

strongly affected by the geographic patterns of emissions and topography, and the temporal 

patterns of meteorology. These factors also affect how the different approaches work: for example, 

in a flat, maritime environment such as the Netherlands, spatial variability in ozone is likely to be 

reduced compared to that in a topographically or climatically varied environment. Here, therefore, 

the nearest site is likely to give valid estimates of the true concentration over somewhat larger 

distances.   

To explore this issue further, estimates of exposures for the 713 participants in the Rome cohort 

were also made using both approaches for different time periods (days, weeks and months).  Figure 

7.11 shows exposure distributions from the full model for three consecutive days in January 2003, 

for three consecutive weeks in the same month, and for three consecutive months in 2003.  Figure 

7.12 shows estimates for one month (March) in three consecutive years.  Figure 7.13 shows 

estimates for the same days, weeks and months in 2003, based on the nearest site); numbers of 

participants and mean distance to the monitoring site are given in Table 7.17. 

Results from both methods show that exposures differ quite markedly over these timescales, not 

only in terms of the absolute level, but also their distribution. In terms of the day-to-day variations, 

this is especially apparent on the third day and the third week in January, when the shape of 

histogram changes from that of the previous two days. Likewise, the week-to-week exposure 

distributions vary considerably over the first three weeks of that month.   

 

 

 



214 

 

 

 

 Figure 7.11 Exposure distributions across the 713 cohort participants are estimated by the full 
model, in Rome, in 2003 
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At the monthly level, also, both the average concentration and the distribution change between 

January and March.  In the case of the year-to-year differences (full model only), the situation is 

slightly different.  Reflecting differences in weather conditions in March between these years, the 

mean exposure rises over these three years. The shapes of the histograms, however, remain broadly 

the same.  The consequence is that the number of participants exposed to concentrations above 50 

g/m3 rises quite sharply – from 8 in 2004 to 34 in 2005 and 84 in 2006.   

Together, these results suggest that the timing of critical exposures (in this case during pregnancy), 

as well as the location of residence, may have an important influence on exposures, and thus on 

health outcome. They thus highlight the importance of considering both temporal and spatial 

variations in concentration when studying health effects for which the critical period of exposure is 

short. 

 

 

Figure 7.12 Exposure distributions for the 713 cohort participants in Rome in March 2004, 2005, 
and 2006  

 

 Table 7.17 Number of participant assigning to nearest sites and distance measures 

Monitoring sites No. of participants Distance average (m)  

IT0826A 130 8277 

IT0828A 198 6497 

IT0952A 382 6979 

IT0957A 1 2964 

IT1174A 2 4451 
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Figure 7.13 Exposure distributions across the 713 cohort participants in Rome, in 2003 by assigning 
participants to the Five nearest monitoring stations 
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It is also apparent, however, that the exposure distributions from the two approaches differ 

considerably.  In particular, the estimates from the nearest site are much more fragmented (with 

gaps between the different exposure scores), simply because the concentration measured at any 

site, for any specific time interval) is assigned unchanged to all the surrounding participants. This is 

also reflected in the standard deviations, which are very large for the nearest site compared to the 

full model.  By the same token, the exposure distributions derived from the nearest site are much 

more variable over time.   

7.5 Summary 

This chapter has described how, for two different study areas, the spatial and temporal models were 

combined - first in a base model, then in a full model which attempted to account for non-systematic 

variation in O3 concentrations. This non-systematic component of the temporal variation may occur 

for a number of reasons. These could include different temporal patterns of emissions, especially in 

urban areas, variable effects of transport of O3 or its precursors from neighbouring areas, differences 

in dispersion efficiency and episodic variations in weather conditions. In order to capture this non-

systematic variation, daily data for four meteorological factors (temperature, windspeed, sun 

duration or cloud cover, and total precipitation), were offered into the base space-time model in 

both the Netherlands and Rome.    

While the daily base model explained on average 44% of the variation across the 35 monitoring sites 

in these two study areas (with RMSE = 16 g/m3), the full model which included these 

meteorological variables explained 57% of the variation on average (with a range from 45-76%), and 

with an average RMSE of 14 g/m3 (ca. 28% of the mean concentration).   Generally, this shows a 

good fit of the full model to the observed data, especially in Rome city, and suggests that the results 

can justifiably be used as a basis for exposure estimation on a daily basis.  

Aggregating the full model to weekly and monthly levels, significantly increased the proportion of 

explained variation (to 77% at monthly level in both areas) and reduced the error in the predictions 

(to <8 ug/m3 in NL and <10 ug/m3 in Rome). The results reflect the fact that weekly, and in particular, 

monthly O3 concentrations are the result primarily of seasonal variations in temperature and solar 

radiation, which are both broader and more systematic in their scale of effect.  

Post hoc analyses were also carried out to compare results from the full model with those from the 

traditional approach of assigning participants to the nearest monitoring site.  These showed that, 
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while the two approaches give similar estimates of mean exposure (as is to be expected because the 

model is calibrated to the measured mean), the shape of the exposure distribution tends to vary and 

the individual exposure estimates vary, especially for short averaging periods.   

It is not possible to determine which method is more accurate from these data. Nevertheless, for 

several reasons it may be inferred that the nearest site approach is liable to give less reliable 

estimates.  Firstly, this is because the approach makes no allowance for the local variation in 

concentrations that is known to occur as a result of the effects of local emission sources, topography 

and meteorology.  Using data on these factors, which are clearly correlated with O3 concentrations,  

is likely to improve exposure estimates. Secondly, the exposure distributions generated by the 

nearest site approach is shown to be much more disjunct: individuals are thus ‘forced’ into discrete 

exposure classes, whereas, in reality, exposures are likely to vary much more smoothly.  Thirdly, 

exposures estimated from the nearest site are shown to be much more variable over time, simply 

because exposures for large numbers of individuals change with the (often discrete) changes at the 

monitoring site.  Timing of measurements (or of the predefined exposure window) may thus have a 

large effect of exposure estimates, and on any observed association with health outcome.   The 

question of which approach is more reliable is considered further in the next chapter. 
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8 Discussion  

8.1 Modelling principles 

Exposure to tropospheric O3 has been identified as a critical public health concern in Europe, and a 

number of policies exist, aimed at limiting the production of O3, largely by controlling the 

concentrations of O3 precursors. Recent EU guidance has also been established to help protect 

human health, as mentioned in Chapter 2 of this thesis. 

Despite these measures, O3 concentrations still exceed the threshold of 120 g/m3 which is 

considered to represent serious risks to health, in many locations and on many occasions through 

the year.  Meanwhile, new epidemiological studies have indicated that significant health impacts 

may arise at concentrations less than the concentrations specified by the current standards. 

Policy makers establish O3 guidelines based on epidemiological studies, which in turn rely on 

methods of exposure assessment to define the concentrations at which detectable health effects 

occur. Many factors confound and complicate the relationships between health and exposures to O3, 

including the duration of exposure, the age of participants, and the medical history of the subjects. 

Individual-level studies are essential to unravel these complexities.  At the individual level, however, 

effects may be subtle and risks may be small.   

Large, longitudinal studies are therefore needed to assess these risks with any degree of reliability.  

Cohort studies, involving participants representing different age groups, locations (i.e. different 

places, cities, and countries) and different exposure histories, who can be followed up for a relatively 

long period of time, offer the most effective study design.  The challenge for exposure assessment is 

to provide the sorts of data that these studies imply. 

Methods for estimating such exposures have generally been lacking.  Traditional, ground-based 

monitoring is expensive, and routine monitoring networks have not been designed to represent 

exposures with this degree of precision.  Satellite-based measurements are beginning to provide the 

capability to map tropospheric O3 concentrations over time, but their spatial resolution (in both the 

horizontal and vertical dimensions) is currently inadequate for the purposes of epidemiological 

analysis.  Methods to model O3 concentrations have been developed, but these are generally too 

demanding in terms of data and processing capacity to be usable for exposure assessment.  While a 

few attempts have been made to model spatial patterns of O3 over the whole of Europe (Beelen 
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et.al, 2009), no-one, to the knowledge of the researcher, has yet developed a space-time model at 

this fine scale (100m*100m) of analysis that meets the requirements for epidemiological studies.  

Those that do exist (e.g. Bruno et.al, 2009, Gariazzo et.al, 2007, Moolgavkar, 2000) tend to be 

specific to individual cities, regions or countries. 

The question of this thesis was therefore whether it is possible to produce a generic and usable GIS-

based methodology for modelling spatial and temporal variations in O3 concentrations over a large 

(pan-European) study area, at a spatial and temporal resolution appropriate for epidemiological 

studies and health risk assessment in support of policy.  The approach taken was to develop a three-

part model, comprising: 

1. A spatial model, based on land use regression, that can predict the long-term average O3 

concentration at a resolution of ca. 100 metres, using readily-available geographic data, 

(Chapter 4). 

2. A set of time-functions, for different site types, that could describe systematic temporal 

variations in O3 concentrations over averaging periods ranging from hours to several 

months (i.e. seasons), (Chapter 6). 

3. A regression-based model to take account of non-systematic temporally correlated 

variations due to changing weather conditions, using readily available meteorological data, 

(Chapter 7). 

The first two of these models were developed and calibrated using data from 1211 O3 monitoring 

sites across Europe (stratified into 80% training and 20% validation subsets).  The third component 

of the modelling was undertaken in two smaller study areas (the Netherlands and the city of Rome), 

both of which contained cohorts feeding into the EU-funded ESCAPE project.  This analysis was done 

both to demonstrate how adding meteorological information might enhance the model, and to 

illustrate the potential for application of the full model as part of an epidemiological/health impact 

study.  This, therefore, provided an opportunity to evaluate the overall approach as a basis for 

exposure assessment in cohort studies.    

All three models were built on a common underpinning theory of spatial and temporal variations in 

pollutant concentrations: namely that variation in both space and time comprises three main 

components: 

 A systematic, and repeated pattern of variation (sometimes known as trend or drift); 
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 A non-systematic variation, associated with measurable, exogenous factors that vary over 

time or space – referred to here as the random, spatially (or temporally) correlated 

variation; 

 A non-systematic, truly random variation that is not correlated with measurable exogenous 

factors, and thus represents noise. 

 

All three elements of the model were designed explicitly to reflect the factors and processes known 

to influence O3 concentrations in the atmosphere. The model thus broadly reflects the main 

components found in standard dispersion models. The goal, however, was to do so in a way which 

allowed the models to be more easily used with readily available data and with limited computer 

power.   

8.2 Categorizing O3 monitoring sites 

Different temporal models were developed for each of categorise of site type. Classification, 

however of sites based on temporal pattern is not a straightforward process and needs to be 

informed by a thorough understanding of the factors that contribute to O3 variation over time. Using 

contextual environmental characteristics to define site types has many advantages due to the 

stability of these factors over time.  This is therefore the approach usually taken to characterise site 

types, as in the AIRBASE classification, for example.  Clear distinction is generally possible between 

major categories of site types defined in this way: rural and urban types can, in particular, be readily 

distinguished on the basis of land cover data (e.g. Beelen et al. 2009).   

For primary pollutants, such as NOx or traffic-related particulates, this approach works successfully, 

and the different site types generally represent situations that differ in terms not only of average 

pollutant concentrations but also their temporal signatures.  This is because the factors used to 

define site types are directly involved in controlling emissions.   For a secondary pollutant such as O3, 

the approach is likely to be less effective, for the association of the stable, environmental 

characteristics with pollutant concentration is far less direct, and more complex.  In the case of O3, 

photochemical reactions play the determining role, and these depend not so much on static 

characteristics of the environment, such as land cover, as time-varying meteorological factors. Data 

on these are rarely if ever available for a dense network of locations, suitable for defining site types, 
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but instead come from a sparse network of measurement stations, or as regional scale variables 

derived wherefrom.   

The approach taken here was thus to characterise site types on the basis of the temporal signatures 

of O3 concentrations, and then to seek ways of predicting site type membership using exogenous, 

environmental characteristics.  Initially, analysis was done to explore the patterns of temporal 

variability in the data, and to select a series of temporal indicators that could characterise this 

variability. These temporal indicators were grouped into the four components, using PCA, and these 

then used to define site types via HCA.  Thirteen site types were thereby identified, varying in terms 

of the patterns of pollution over three main timescales: weekday/weekend; summer/winter; and 

night/afternoon.  

The thirteen site types derived from the HCA cannot be seen as definitive and discrete entities.  

Instead, it is apparent that the different types overlap and merge into each other, and their 

classification involves considerable uncertainty. Nevertheless, classifying site types on the basis of 

the temporal variability is likely to be preferable to basing classification solely on environmental 

factors as Flemming et al. (2005), Joly and Peuch (2012) and Snel (2004) have previously argued. Site 

type membership, however, must be recognised as probabilistic, and is highly dependent on the 

indicators selected for analysis.  For these reasons, great care is needed both in applying the 

classification in the study area, and even more so in extrapolating it to other areas or time periods.  

Testing and validation of the classification is essential.  

In most situations – as here – analysis does not stop with the creation of a classification.  The further 

need usually exists to apply this classification to other, unmonitored sites, in order to model or map 

the behaviour of the pollutant of interest.  It is therefore necessary to find some means of predicting 

site type membership at these unmonitored sites.  The next step in this approach is therefore to 

establish relationships between the site types and other, exogenous environmental variables that 

can be measured at the unsampled locations. This was done here using MLOR analysis with a series 

of variables relating to land cover, roads, meteorology and topography as predictors.  The resulting 

functions have two purposes.  They reveal the environmental variables that are associated with (and 

directly or indirectly act to influence) temporal variations in O3 concentrations; and they provide the 

basis on which to predict site type membership elsewhere.   

The functions established were dominated by four main sets of environmental variables: local roads 

and residential land, which reflect the distribution and intensity of the main precursor pollutants; 

temperature, which determines the efficiency of photochemical reactions; windspeed and topex 
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which act to determine air exchange (and thus the ingress and egress of both precursors and O3) 

between any location and its surrounding area; distance from seas, which reflects the influence of 

marine sources of  O3; and altitude which acts as a complex co-determinant of meteorological 

conditions (e.g. sunshine, temperature, wind speed and turbulence) and tropospheric exchange with 

the stratosphere, as well as a proxy for remoteness from emission sources. 

Again, however, the uncertainties in this analysis need to be recognised.  In this case, only 52% of 

the sites were classified by MLOR (on the basis of environmental variables) to the same category as 

their initial classification using HCA (based on the pollutant signatures).  As Figure 8.1 thus 

demonstrates, the different site types do not exist as distinct entities in multivariate space, but tend 

to cluster; some degree of confusion in the classification is therefore inevitable. 

 

Figure 8.1 Triangular plot for the percentage of urban, agriculture, and other land, and altitude 
(metres), for the thirteen site types 

 

This problem is not unique to the analysis conducted here.  The same problem was noted by Joly and 

Peuch, (2012), who likewise first categorised sites on the basis of temporal indicators, and then 

derived a discriminant function to distinguish between rural and other (urban, suburban, and 



224 

 

 

traffics) sites, as defined in AIRBASE. The result showed only a weak match, with both the rural and 

urban AIRBASE sites broadly dispersed across their ten site types. 

This lack of a clear relationship between the temporal characteristics of air pollution, and the fixed, 

spatial characteristics of the environment is not surprising, but should not be ignored.  On the one 

hand it is not feasible to ignore the temporal variations in air pollution, if interest is in exposure 

assessment.  On the other hand, it should not be assumed that these variations are either consistent 

over space, or are readily predictable on the basis of spatial features.  Instead, the temporal 

behaviour of air pollutants (and especially secondary pollutants such as O3) needs to be recognised 

as a geographically fuzzy process, which needs to be dealt with using appropriate fuzzy analytical 

methods (i.e. probabilistic approach). 

8.3 LUR model for secondary pollutant 

The spatial modal was built across the Western Europe based on the fact that the land cover data 

will explain most of the spatial variation between the different site types.  For example, the 

residential land cover classes will reflect how the O3 concentrations will be in the urban area 

whereas the forest and agriculture will reflect the O3 concentration in rural area.   

As already noted, most previous LUR models have focused on modelling primary (or near-primary) 

pollutants, and these models are driven mainly by the distribution of the emission sources of the 

pollutant of interest.  In modelling O3, LUR is being used to predict the distribution of a secondary 

pollutant which is the product of a more complex set of processes, operating over timescales of 

several hours.  In this case, therefore, the emission sources of interest are one-stage removed: they 

relate to the precursor pollutants that control production and loss of O3. Using LUR in this way is 

likely to be applicable so long as the control provided by these pollutants is reasonably direct and 

explicit (i.e. the chemistry does not depend on a large number of other contingent factors) and data 

on their source distribution and intensity are available.  

The model developed here used several different variables to represent the main processes and 

circumstantial factors expected to control O3 generation and loss. The relationship between these 

variables and the processes they represent, and their collective influence in the model, can be 

summarised as in Figure 8.2. 
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Figure 8.2 The importance the main processes and factors controlling O3 generation in the LUR 
model, as shown by the sum of the standardised Beta coefficients for related variables (in the 
circle) 

 

Based on Figure 8.2 it is clear that the model represents all three of the main processes determining 

O3 concentrations – formation, destruction and transport.  As is to be expected (because the effects 

are local and relatively direct), the model seems to load most highly on processes relating to O3 

formation: i.e. local topography and temperature (all of which are primarily indicators of for 

photochemical activity), and forest area (which is a source of VOCs).  The fact that altitude and topex 

come into the model, rather than solar radiation, is likely to be because altitude is better measured, 

and spatially more precise, than the measures of solar radiation, which are based on broader-scale 

data. Models might thus be improved by having higher resolution metrological data available.    

Destruction and loss are also implied by variables having a negative effect in the models, most of 

which relate to sources of emissions of NO (a major scavenger). Agricultural land is the exception, 

and can be tentatively interpreted as an indicator of O3 removal by dry deposition. Inward transport 

of O3 is indicated by two variables – windspeed and distance to sea – but the effects of both are 

relatively weak.  This is partly, perhaps, because these processes operate over a broader scale and 
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are often transient and circumstantial (e.g. dependent on wind direction).  However, both variables 

are also relatively poorly measured compared with the traffic and land cover variables.  For instance, 

the original data of the meteorological factors were on a 40Km grid, having been previously derived 

through a modelling and estimation procedure from ground-based and satellite observations.  For 

this study they were downscaled to a 100m grid using a simple interpolation procedure (IDW). This 

inevitably involves considerable approximation. At best, therefore, the meteorological data reflect 

regional effects rather than local processes.  None of the variability due to local topography, urban 

area or individual buildings is therefore allowed for.   

The role of wind speed deserves special comment. In general, there might be an expectation that 

windspeed should be negatively associated with O3 concentrations because higher wind speeds 

encourage dispersion and mixing of pollutants (Hubbard and Cobourn, 1998, Bloomfield et al., 

1996). This expectation certainly tends to hold true for primary pollutants or secondary pollutants 

produced from direct simple reactions, but it may be less valid for secondary pollutants produced by 

a number of complex reactions such as O3.  Some other studies have thus found positive associations 

with wind speed (Elampari and Chithambarathanu, 2011, Shan et al., 2009, Tarasova and 

Karpetchko, 2003, Davies et al., 1992). Shan et al. (2009) explained the positive association in two 

ways.  One is that wind transports O3 and precursors from the direction of highly polluted areas of 

the city, so higher wind speeds represent higher rates of input. The second is that higher wind speed 

indicates the long-range transport of air pollutants. Both of these, of course, assume that the 

monitoring site in question lies downwind of the sources – a condition that is unlikely to hold true 

across all sites. Davies et al. (1992) also showed that the effect of windspeed varies across the year.  

In winter, the relationship with O3 concentration became strongly positive, especially in areas more 

influenced by the prevailing wind. In spring and autumn it exhibited either a negative or a positive 

relationship depending on geographical location. They attribute the positive relationship to the 

importance of vertical exchange from the free troposphere to the surface in non-summer months – 

a process which is encouraged under turbulent conditions and high windspeed. 

 Again, therefore, models might be improved by having variables which better represent transport of 

O3 – for example, on the prevailing wind direction relative to major O3 sources, or on O3 

concentrations in upwind directions. Likewise, a potentially important variable that is missing is one 

that represents the potential for the replenishment of surface O3 from higher layers in the 

atmosphere (e.g. the stability class or an indication of the vertical profile of O3).    
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8.4 Comparisons with other studies  

8.4.1 The LUR model  

Most previous studies using LUR to predict air pollutants have been done at the local scale, within 

cities, or within single countries.  These have generally shown that LUR can effectively predict intra-

urban variations in air pollution as described in section 2.2.2.4.  Likewise, most previous applications 

of LUR have been to primary pollutants or pollutants that form quickly and close to the emission 

sources of their precursors, such as particles and NO2. The results presented here demonstrate how 

LUR can be applied at high resolution even across an entire continent.  The R2 value was similar to 

those found in local scale studies (Hoek et.al, 2008), and the few continental scale studies that exist 

(Beelen et al., 2009, Vienneau et al., 2009, Nikiforov et al., 1998).   

Opportunities to directly compare these results with those from other O3 studies are limited because 

only a few previous studies have modelled O3 at a broad (e.g. continental) scale. Nikiforov et al. 

(1998) modelled long-term O3 concentrations (10 year mean) using the average of O3 data measured 

using five different metrics29 from 1112 monitoring sites over the whole of the U.S.A. They also used 

five different interpolation methods: a) simple average from nearby sites; b) inverse distance 

weighted interpolation; c) inverse distance squared weighted interpolation; d) regression analysis; 

and e) ordinary kriging.  Although not directly comparable to LUR, the best results were obtained 

using a regression-based interpolation on the three nearest sites (R2 ~ 0.7and SEE=15.8 µg/m3) based 

on 1- hour maximum concentrations. Note that distances between monitoring station were not 

mentioned in the paper. 

Beelen et al. (2009) modelled and mapped the annual average O3 concentrations at a 1km level for 

Europe using data from 724 monitoring sites, representing measured background concentration  in 

rural and urban environments, by linking models developed at three different scales (i.e. global, rural 

and urban).  Three different methods were tested: a) ordinary kriging; b) universal co-kriging and c) 

land use regression. They found that universal co-kriging (using covariate data based on the LUR 

model) performed better than ordinary kriging and LUR alone.  As per this study, validation was 

done using a separate subset of the O3 data reserved for validation. The final validation results for 

universal co-kriging estimates gave R2 = 0.70 and RMSE = 7.7 µg/m3 while for LUR the results were R2 

= 0.53, 0.62, and 0.06 for global, rural, and urban scales respectively.  Based on universal kriging, the 
                                                           
29

 Average concentrations of  1 hour maximum,8-hour maximum, daily concentration between 10am-10pm,daily average 
between 10am-6pm, and summer hourly average ≥ 120 µg/m

3
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range of predicted concentrations in the final map was from 12µg/m3 to 153µg/m3, with a mean of 

60µg/m3 while the observed concentration in the training dataset was 19-112 µg/m3, with 49 µg/m3 

mean. The kriging model therefore, overestimated the mean.  Results from the present study are 

broadly similar (R² =0.67 and RMSE = 7.5 µg/m³), but this study has included all site types rather than 

just background ones, as in Beelen et al. (2009). The range in the modelled data of this thesis’ study 

was from 7.9µg/m3 to 182.6µg/m3, with a mean predicted concentration of 49.6µg/m3, and the 

observed concentration was 15-111 µg/m3, with 49.6 µg/m3, indicating no bias in predicting the 

mean.  

Eleven significant predictors were found to be important for this global LUR (spatial) model, this 

number of predictor variables reflect the different process contributes to O3 concentration (Figure 

8.2).  As noted, the first seven predictors in terms of importance (Figure 5.2) were altitude, local 

road density within a 10km window, summer temperature, and high density residential land within a 

1 km window, windspeed, topex and distance to sea. These highlight the important role of 

topography and meteorological data in influencing, and thus estimating, O3 concentrations, together 

with local sources of O3 precursors (especially NOx) which scavenge O3 from the surrounding area.  

Similar conclusions were drawn by Beelen et al. (2009).   Altitude, major road density, high density 

residential land within 5 km, distance to sea and meteorological factors were again the main 

predictors in the rural model.  In the urban model (comprising both global and urban models), 

altitude, distance to sea, and meteorological factors (in the global model) and high density 

residential land within 1km (urban model) were the main predictors.  

8.4.2 The space-time models (base and full) 

The space-time model in this thesis was developed at two levels of analysis: as a relatively simple 

‘base model’ and a more sophisticated ‘full model’. The base model comprises the LUR and the 

trigonometric functions, weighted by the site-type probability. This base model only explains the 

systematic variation in O3 concentration, but can therefore be applied more readily because it needs 

no locally-specific time-varying data (e.g. on meteorology).  As the results showed, the model is most 

reliable at averaging times of weeks and greater (see Section 7.1). The full model also includes data 

on meteorology, and explains the systematic and some proportion of the unsystematic variation in 

the data.  Model development and application is more demanding, however, because data are 

required on local meteorological conditions, and the model needs to be calibrated using regression 

analysis against data from local monitoring sites. This full model provides more reliable estimates of 
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exposure than the base model, especially for short averaging times (e.g. days). This section 

addresses the question of how well these-space time models perform with regard to models and 

methods used in other comparable studies. 

 As outlined in section 2.2.3 of this thesis, most previous temporal or space-time models of O3 

concentrations have been based on trying to simulate mathematically the chemical processes 

involved in O3 formation and destruction, and the physical processes involved in dispersion.  

Dispersion models for O3 comprise three main components: 

 A meteorological model (or pre-processed meteorological data) describing the behaviour of 

the atmosphere; 

 A chemistry-transport model, describing formation, destruction and transport processes; 

 An emission model (or pre-processed emission data), describing the release of precursor 

species (including especially NOx and VOCs) from both anthropogenic and natural sources. 

One of the most widely-used dispersion models in recent years is CMAQ (Shi et al., 2012, Chemel et 

al., 2010, Tong and Mauzerall, 2006, Sokhi et al., 2006).  CMAQ is designed to operate at the local, 

regional, and global scales, and can be applied at a resolution as fine as 1 km.  This provides a useful 

benchmark against which to evaluate the performance of any alternative model.  Results from 

applying different versions of CMAQ have indicated some of its limitations.  In particular, it is evident 

that while it can predict average concentrations (i.e. the trend in the data) with some degree of 

reliability, it is not able to predict extremes of either high or low concentrations (Sokhi et al. 2006, 

Tong and Mauzerall, 2006).  In this way, it parallels the results obtained here. 

The optimum way to test model performance is by comparing the model predictions against 

observed concentrations at an independent set of O3 monitoring sites and assessing the accuracy of 

the predictions by using performance measures such as R2, RMSE, and fractional bias.  This is often 

not done, or is carried out in different ways, which makes it difficult to compare the performance of 

different models.  Other studies, in particular dispersion models, often use slightly different 

performance measures, notably the Normalised Mean Square Error (NMSE) and the Fractional bias 

(FB): 

NMSE=
        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

       ̅̅ ̅̅ ̅̅ ̅̅ ̅  
             ; FB= 

    ̅̅ ̅̅    ̅̅ ̅̅   

         ̅̅ ̅̅    ̅̅ ̅̅   
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where        ̅ respectively represent the observed, predicted, and average values for the whole 

dataset.  All these metrics quantify the error in the modelled concentration compered to observed 

concentrations. 

A perfect model (i.e. an exact match between the observed and predicted concentrations) would 

give FB= zero and NMSE=1, therefore, as NMSE becomes greater than 1 it can be concluded that the 

distribution is not normal but is closer to log-normal (e.g., many low values and a few large values), 

(Chang and Hanna, 2004). Hanna and Chang (2012) set the threshold for acceptance of NMSE ≤ 3 

(i.e. the random scatter ≤ 1.7 times the mean) for rural areas; and ≤ 6 (i.e. the random scatter ≤ 2.6 

times the mean) for urban areas. FB=0 indicates no difference between observed and predicted 

concentrations, FB>0 indicates underestimation in predicted concentrations and FB<0 indicates 

overestimation. For the purpose of comparison, these additional performance metrics have been 

calculated for the models developed in this thesis (both base and full models; Table 8.1).  

Table 8.1 Performance of the base and full models evaluated by NMSE and FB metrics 

Model Averaged time NMSE FB 

Base model 

Hourly 0.21 0.004 
Daily 0.12 0.002 
Weekly 0.07 0.005 
Monthly 0.04 0.003 

The Netherlands full model Daily 0.12 0.002 
The Rome full model Daily 0.09 0.03 

 

 

Overall, these statistics reveal a good agreement with the acceptable ranges for the performance 

statistics: a low fractional bias (0.002 – 0.03) and a very close conformity between average predicted 

and observed concentrations (as shown by the range of NMSE). Hour by hour comparisons of 

concentrations in the base mode give a NMSE of 0.21, but this value decreases with the temporal 

aggregation of the concentrations. The predicted concentrations tend to be lower than the observed 

concentrations as result of underestimation in predicted concentrations, indicated by the positive 

value of the FB. Day by day comparisons of prediction and observed concentrations for the full show 

models in the Netherlands and Rome also tend to slightly underestimate the observed 

concentrations. 

Several other studies have applied and tested dispersion models for O3 and thus provide a basis for 

comparison. Sokhi et al. (2006), for example, used the CMAQ dispersion model to predict hourly O3 

concentrations for two periods of five days in July and August 2002 in the City of London at a 1km 
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resolution (described in Subsection 2.2.2.1). Model performance was evaluated at nine independent 

monitoring stations.  Predicted values showed similar trends to the pattern of observed values but 

the model was unable to predict the extremes (Sokhi et al. 2006). For the O3 predictions in August, 

Sokhi et al reported a NMSE of 0.40 and FB of 0.13. In comparison, the base model used here 

(without any local meteorological data), which also predicts on an hourly basis, gave values for 

NMSE and FB of 0.21 and 0.004, respectively, suggesting a relatively good performance (the more so 

because estimates were for several years).  It is also notable that the CMAQ model failed to predict 

the extreme concentrations well, as is the experience here. This implies that the problem is due to 

factors not considered in either of the models, or simply that the noise in the O3 concentration data 

makes it difficult to predict extremes. 

Shi et al (2012) also used an improved version of CMAQ (with additional satellite data to enhance 

the meteorology component of the model) to predict daily O3 concentrations across Southwest USA 

in June and July 2006 for a 36km grid. Model performance statistics was reported as R = 0.62. The 

study area covered by Shi et al is comparable to Western Europe in size but the model in this thesis 

has a much higher resolution and reports a higher R (0.73 for the base model at a daily level of 

aggregation).  At the city level, likewise, the model developed here seems to perform well compared 

to CMAQ.  Shi et al (2012) ran the latter model for the city of Phoenix in Arizona, and reported an R 

of 0.76. The full space-time model was applied in this thesis to the city of Rome, and gave R = 0.81; 

the model developed here thus performs marginally better. 

Gariazzo et al. (2007) used a flexible air quality regional model (FARM) to predict daily O3 and NO2 

concentrations in Rome during three episodes (each five days long) in June and July of 2005 and 

January 2006 at 1km resolution. Performance statistics were reported for each of the three periods 

and gave a range of FB from -0.28 to 0.11 and NMSE from 0.21 to 0.91. For this thesis the FB for the 

model run in Rome was 0.03 and NMSE 0.09.  

While comparisons have been made with some dispersion models, there are few space-time models 

that have studied O3. One methodological study discussed the use of hierarchical Bayesian modelling 

of O3 in three Midwestern states of America (Illinois, Indiana and Ohio). This was carried out to 

predict the daily maximum 8 hour average concentrations of O3 over 150 days between May and 

September in 2006 and used 105 sites for model building and 12 validation sites (DOU et al., 2010). 

The author compared this method to the CMAQ dispersion model and found it to provide more 

accurate predictions of annual highest daily maximum 8 hour average O3 concentrations than did 
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CMAQ(Sahu, 2011) . The approach used, however, requires a considerable computational effort 

(Arima et al., 2012). 

Compared to other, similar space time models of daily O3 concentration, the results in this thesis are 

moderately successful.  Bloomfield et al. (1996), for example, modelled daily concentrations 

between April and October over 1981-1991 in Chicago, USA using a complex high order polynomial 

function, and allowing for interaction between the meteorological factors (producing a model with 

20 terms), obtaining R2= 0.80 and RMSE=16.4 g/m3. Another study, modelling the daily domain 

peak of O3 concentration in Jefferson county, USA, between May and September over the period 

1993 – 1996, using polynomial transformations of meteorological variables, which gave R2= 0.70 and 

a standard error of 24.2g/m3 (Hubbard and Cobourn, 1998).  This suggests that the models might 

be further improved.  In doing so, however, there is a tendency to fit the models more tightly to the 

data, but to lose some degree of generalizability.  Whether this would improve prediction at 

unsampled locations is thus debatable, and without independent validation (i.e. against an unbiased 

sample of locations, not used in model-building), the model performance cannot be determined.   

It is nevertheless clear that even the full model leaves a substantial proportion of day-to-day 

variations in concentrations.  In particular, the model tends to smooth out the predicted 

concentrations and to miss the extreme values.  In part this may be because the model lacks 

information on important influences at this level – most notably day-to-day variations in emissions, 

or the effects of wind direction (which can alter the quantities of precursor pollutants transported 

from other areas). It may also be due to non-linearity in the relationship between O3 concentration 

and the meteorological factors.  These were sought, by using various transformations of the 

meteorological variables, but none of these improved model performance.  

Variations in the performance of the full model are also evident between different monitoring sites.  

In the Netherlands these reflected a general trend in performance from poorer in the north and 

west (and nearer the coast) to better to the south and east, and inland. Reasons for this are not 

clear, though it may reflect inadequacies in the meteorological variables used.  For example, wind 

direction (which may have substantial effects on O3 transport into or out of the area) was not used in 

these models; nor was any account taken of atmospheric stability and the mixing properties of the 

lower boundary layer, which likewise affect O3 removal and build up (Zhang et al., 2012).  

Incorporation of data on these could help to improve the full model.  

Overall, therefore, the model developed here compares well in terms of performance with other, 

dispersion and space-time models.  One advantage of the model developed here is its simplicity in 
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term of data requirements. Use of dispersion models, by comparison, is often limited by their 

demanding input requirements and the computational processing time they require. It is particularly 

important to recognise that a dispersion model requires emission data.  Detailed emission 

inventories are rare, and generalised emissions data (e.g. at regional level) are of little use, for they 

undermine the accuracy of the dispersion modelling.  For this reason, emissions data usually have to 

be modelled, using data on socio-economic activities, traffic movements, energy usage etc.  

Typically, these data are also highly aggregated, so some form of spatial (and temporal) 

disaggregation is required.  Thus, dispersion modelling tends to rely on a series of prior models, with 

the inevitable risk that substantial (and often unseen) error in the input data.  This was clearly 

demonstrated by the work to develop emissions data for the EU, at 1 km level, as part of the 

APMoSPHERE study (http://www.apmosphere.org).  While reasonably good estimates of annual 

average emissions could be obtained for NOx, estimates of other pollutants (including PM) were 

poor, largely because important elements in the emission process were not well quantified (e.g. 

source distribution or intensity). 

     Perhaps for these reasons, dispersion models have rarely been used over both an area and a time 

period comparable to those used here.  On the other hand, the similarities in results between these 

more complex and detailed dispersion models and the approach used here suggests that nothing is 

being lost with the reduced data input.  Conversely, it suggests that significant improvements in O3 

modelling beyond those achieved here will come only from an even more detailed understanding of 

the processes of O3 formation, dispersion and production – and is thus likely to require even more 

detailed and reliable data, and even more powerful computer processing facilities. 

8.5 Sources of variability in O3 concentrations in Europe  

Each of the three components of the full model – the LUR model, the trigonometric functions and 

the meteorological variables – explains a different component of the variation in observed O3 

concentrations.  Results from pilot study (Table 4.3) – based on hourly O3 measurements, for 1253 

monitoring stations across Europe from March 2001 to February 2002 – suggested that ca. 14% of 

the overall variation was spatial and 28% temporal.  Of the temporal component, the majority 

relates to season (18%), while diurnal variation (14%) makes up most of the rest: the hebdomadal 

variation was thus small.  On the basis of these estimates, ca. 58% of the variation is left unexplained 

(error), and thus comprises noise.  
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Subsequent analysis, using six years of data for 1211 monitoring stations in building the space-time 

model, broadly confirmed these proportions, though succeeded in explaining a larger proportion of 

the overall variation. The LUR model explained 67% of the spatial variation in the long-term mean, 

with a standard error of 7.6 g/m3, better than what was suggested in the pilot study (Table 4.2). 

The temporal model, built using the trigonometric functions, explained ca. 42% of the remaining 

variation in the hourly data. Of this, ca. 63% related to seasonal variation and 36% to diurnal 

variation.  In the Dutch and Rome case studies, including the meteorological factors explained about 

10% additional variation, leaving about 47% or the variation unexplained variation in the 

Netherlands and 35% in Rome at the hourly level. The unexplained variation at the end of the 

modelling is thus somewhat less than that suggested by the initial pilot study (63% in the 

Netherlands and 49% in Italy).   

The different components of the time functions vary in their importance with site type 

environmental characteristics.  Systematic variation tends to be lower in topographically exposed 

areas, probably because the vertical distribution of O3 varies more randomly, due to short-term and 

local variations in transport, deposition and chemical reactions. In most site types, however, 

seasonal variation is strong, and is often well specified by the models.  This is largely because 

seasonal differences in O3 concentrations are driven mainly by the seasonal trend in temperature 

and solar radiation, which show a clear systematic pattern.  In contrast, the hebdomadal patterns 

are very weak, and contribute little to overall variability.  Diurnal patterns tend to be relatively clear, 

but vary between different site types and are not well characterised by the models, leaving 

substantial variation unexplained. This appears to be because patterns vary both from day to day 

and from site to site, depending on local, short-term factors such as emissions and weather. 

Incorporating meteorological data improves model performance by providing information on some 

of these short-term variations, but because these data were only available at a daily level, they could 

not be used to model the hour-to-hour variations.  

Overall, these results suggest that obtaining better data on temporal variations in emissions could 

help to reduce the uncertainty in the modelling.  Emissions inventories are widely available in 

Europe, both at a broad, continental scale, and more locally (e.g. for individual countries and cities) 

(Davison et al., 2011), but these rarely provide data for timescales less than a year – and even those 

may be highly generalised.  For the most part, therefore, data are not available at the spatial and 

temporal scale needed, and in any case are subject to their own uncertainties. The best that can 

probably be achieved, therefore, is to estimate the statistical distribution of the variability in 

emissions, in different site types. One way of doing this is by using Bayesian Monte Carlo techniques. 
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Bayesian Monte Carlo techniques are used to improve the estimation of output uncertainty in 

modelling data by adding in an uncertainty distribution that reflects the noise components of the 

data (Wang et al., 2012).  For example, in water quality modelling this approach reduced the 

uncertainty in the model by 72% (Dilks et al., 1992). The main problem with this approach is that it 

needs a good understanding of the technique and suitable computational facilities (Dubus et al., 

2003, Dilks et al., 1992).  

8.6 Uncertainties and limitations 

Any of air pollution models are liable to uncertainties. These typically originate in two main sources 

of error: 

1. in the quality and completeness of the input data (measurement or sampling error); 

2. in the structure and parameterisation of the models (modelling error). 

8.6.1 Measurement or sampling error 

Regarding the quality of the input data, the errors of most importance are those associated with the 

AIRBASE data, since these were fundamental to every step of the modelling, and also provided the 

data used to assess model performance. Measurement errors inevitably occur in the 

instrumentation of air pollution – both in terms of calibration and operation of the instruments.  As a 

consequence, data were often missing, and errors were apparent (e.g. the occurrence of negative 

concentrations in the observed concentration data).  Obvious errors of this type were relatively 

easily spotted and allowed for.  More difficult to deal with were the hidden uncertainties, such as 

false (though plausible) readings, or transcription errors – and even more importantly the sampling 

error in the data. The networks from which the observed concentrations were obtained were both 

unevenly distributed and sparse, meaning that not every area was well-represented. Inevitably, this 

biases the model towards better represented areas and means that prediction error may vary 

geographically.  

Differences also exist in the way the air pollution monitoring networks have been set up in different 

countries, in terms of the distribution and sampling density of sites which may contribute some of 

the uncertainty to the model.   In addition, the distribution of sites within countries may differ. There 

are areas where sites are clustered – for example, in some metropolitan cities such as London 
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(Figure 3.5). Some countries have intensive monitoring networks with a comparatively large number 

of sites, such as Austria, Germany and Spain, while in others they are widely distributed and sparse 

(e.g. Ireland). The model will inevitably be more heavily weighted toward countries that provide a 

larger number of sites, and towards areas where sites are clustered, and may not represent areas 

with less representative monitoring sites as well. This variation in the geographical distribution of 

errors was apparent in the sensitivity analysis for LUR, with errors varying between location, 

topography and urban/rural areas as discussed in Section 5.4.2.5.   

It should also be noted that the site type classification used to select the original AIRBASE sites is not 

specific to individual pollutants, and is not geared to O3.  Even where countries follow the 

classification rigorously, therefore, the networks do not necessarily provide representative sampling 

of O3. Biases in the data are therefore likely, which inevitably affect both the calibration of the model 

and the results of validation.  This highlights the importance of establishing an objective, pollutant-

specific approach in classifying AIRBASE sites across the EU. This would not only help to make the 

network as a whole more representative and consistent, but would also potentially enable countries 

to rationalise their networks and ensure that they were efficient.  

8.6.2 Modelling error 

A further source of uncertainty comes from the structure and parameters defined for the models. 

The limitation of the predictors in representing the processes of interest also has to be recognised.  

One of the main limitations is that all the variables used in the analysis  relate mainly to local factors; 

little explicit account is taken of more distant effects, for example as a result of long-range transport 

of O3 (operating over distances of tens to hundreds of kilometres and timescales of several days). 

Long-range transport of air pollution in general, causes frequent episodic pollution events (Monks et 

al., 2009). Europe is affected by long range transport of O3 from North America (Wild and Akimoto, 

2001 cited in Monks et al., 2009), as well as extensive cross-border transfers between countries. The 

result of this is likely to be in the errors evident in the models – notably in the occurrence of several 

successive days of under-estimation, which probably reflect pollution episodes due to long-range 

transport.  Attempts were made, on an exploratory basis, to model these by adding post-hoc 

functions to the temporal models, but these proved to be of limited value (Section 6.5.1).   

One way of including these regional effects of long range transport in the model might be by 

incorporating satellite data on atmospheric O3.  A number of studies have used information from 

satellite-based monitoring, usually together with modelling, to estimate and map regional and global 
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tropospheric O3 (Ziemke et al., 2006, Martin et al., 2002, Fishman and Balok, 1999, Chance et al., 

1997).  The data provided by satellites includes not only measurements of O3 concentrations in the 

atmospheric column, but also other relevant data such as regional-scale meteorological conditions 

that might lead to pollution episodes (Fishman and Balok, 1999).  The coarse resolution both 

spatially and temporally of satellite data, and the fact that they are restricted to clear, non-cloudy 

days, limits their use.  However, the fact that the data are updated regularly means that they can 

provide valuable information for modelling.   One way of using them, for example, is as regional-

scale data for use in the LUR models.  Another is to use them to recalibrate the LUR models to reflect 

changes in O3 levels and distribution.  In this case they can be seen as a temporally varying canvas on 

which the finer detail of the LUR model is printed.  While the detailed patterns probably vary little 

over time, because they are driven largely by a fixed pattern of local emission sources, the whole 

canvas is warped and changed as regional patterns of O3 vary in response to regional-scale 

meteorology and long-distance transfers of O3.  In this way they might greatly improve the temporal 

models.  

Another limitation inherent in the model is the use of proxies. Land cover data, for example, have 

been used as a proxy for emissions.  As already noted, emission data at the local scale are not 

available and the data that do exist have high levels of uncertainty because of their  level of 

aggregation (Davison et al., 2011).  Many emission inventories are also, themselves, products of 

models that have down-scaled national estimates to a regional or local scale.  The extent to which 

these proxies are able to reflect directly the processes or effects they are intended to (e.g. emission 

sources/intensity) is limited and variable. For instance, for O3 prediction VOCs are one of the most 

important precursors. Biogenic VOCs, for example, have been shown to play an important role in 

controlling O3 formation downwind of power plant plumes (Ryerson et al., 2001).  At a global level, 

VOC emissions are greater from biogenic sources (ca. 1150 Tg C /year) (Guenther et al., 1995) than 

from anthropogenic ( ca.150 Tg C /year) (Müller, 1992). At the regional level, there is more variability 

in the relative emission rates: in Europe the national emissions can be dominated by either source 

(biogenic or anthropogenic), depending on the land use features of different countries (Simpson et 

al., 1999, Simpson et al., 1995). Overall, however, biogenic VOCs are more active by 2-3 times than 

anthropogenic VOCs, as mentioned in Section 3.2.3.1.  Direct data on local VOC emissions are not 

available, so in the LUR model forest land cover classes were used as a proxy, due to the fact that 

active biogenic VOCs (especially isoprene and monoterpenes) are emitted from forest plants.  Forest 

land cover was estimated by combining three land cover classes; broad-leaved forest, coniferous 

forest and mixed forest. Maucha and Büttner (2005) emphasised that these three classes of forest 
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land cover were accurate between 85% and 90% on average at the European level when compared 

with the LUCAS survey (a ground-sampling-based survey in 18 European countries) for 2001 and 

2002. On the one hand, this suggests that the forest land is probably well defined in the land cover 

data, though small changes in the distribution of forest will have occurred between 2001/2, when 

the data were compiled, and the years covered in this thesis study. But more important is the lack of 

thematic detail in these data.   Areas mapped as forest inevitably vary substantially in species 

composition, age, density of the trees and canopy cover, rate of growth and transpiration rates – all 

of which affect VOC emissions conditions (Schurgers et al., 2009).   

Another limitation in using the land cover data as an emission proxy in the spatial model and to 

predict site types is that they are known to suffer from a range of uncertainties. The accuracy and 

classifications for land cover are not wholly consistent between countries and only limited 

assessments of a few habitat types have been carried out to evaluate the data (Boresjo Bronge and 

Naslund-landmark, 2002, Kennedy and Bertolo, 2002, Martin de Santa Olalla Manas et al., 2003cited 

in (Waser and Schwarz, 2006). The land cover data are also to some degree generalised.  All features 

in the original vector database were classified and digitised based on satellite images with 100 m 

positional accuracy, which means that in this study the data are being used at the very limits of their 

detection: at a 100m resolution, therefore, there is a significant risk of misclassification. To some 

extent, this was reduced by aggregating classes, but in doing so, some information was lost, and 

while aggregation improves the class-level consistency (i.e. it reduces the prevalence of areas 

assigned to the wrong class), it increases the within-class uncertainty (because each class represents 

a wider range of land cover types). Nevertheless, CORINE land cover is the most widely used and 

consistent land cover data for Europe and reducing some of the uncertainty resulting from its use is 

beyond the scope of this research. 

Similar uncertainties result from the use of road data (road length by road type) as a transport 

emission proxy. Although the road data were of a high spatial resolution, there were obvious 

differences in the way roads had been classified in different countries.  To reduce these, the initial 

original seven FRC classes were reduced to three classes representing major, secondary and local 

roads.  This inevitably resulted in some loss of information.  Moreover, the relationship between 

road types is inevitably rather weak and variable. The same length of one road type in a rural and 

urban area, for example, might well have different traffic intensities; in the model, both would be 

applied the same coefficient regardless of the real impact on the O3 concentration. This highlights 

that, as scavenging is crucial in determining O3 concentration, it is important to include traffic flow 

rates in O3 models.  Currently, however, data are not available across Europe. 
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The meteorological data used in both the spatial model and the full space–time model could have 

introduced some uncertainty into models. In some cases, this may have altered the way in which the 

meteorological variables operate in the models. As mentioned in Section 5.4.3, the meteorological 

data used in the LUR model had been rescaled using IDW from 40Km resolution to 100m, the data 

were thus capable only of showing broad, regional-scale effects.  

In this study, as has been noted, windspeed was consistently, positively associated with O3 (section 

8.3). Even when the O3 data were analysed by month, using data from the Netherland, the 

correlation remained strongly positive (R=0.60) for most months and showed only marginally 

negative correlations (R=-0.07) for the summer months (June – August). This may indicate that wind 

speed is associated with vertical mixing, so that O3 formed near the ground can be mixed into the 

upper levels during the day, and O3 trapped high up during the night is brought down to the ground 

level the following day.  When vertical mixing is high, O3 may thus be entrained from the O3 rich 

layer in the higher atmosphere (Kim et al., 2007, Rao et al., 2003). This highlights the lack of data on 

either mixing height or atmospheric stability in the models.  Data on wind direction were not 

included and without this, it is impossible to determine the physical relationship between 

monitoring sites and their source areas (either of O3 or of scavengers), and thus to deduce the 

effects of local or regional transport of O3 on concentrations. 

In conclusion, O3 is a complex secondary pollutant and as a result presents a large challenge 

modelling, which thereby leads to the limitations mentioned here.  The inclusion of predictors as a 

proxy for any mechanism in the processes of generating O3 therefore has to be very well 

understood, not only for the predictor itself but also its relationship with other predictors in the 

same model. Despite these various limitations, the space-model developed here was shown to 

perform as well as, and in some cases better than, previous dispersion models (section 8.4.1).  Based 

on these results, the model thus has potential value as a basis for exposure assessment. This is 

discussed with limitations also in consideration, in the following section.  

8.7 Strengths and application 

Exposure to O3 leads to harmful consequence on human health, as addressed in Section 2.1.4, in 

terms of both short and long term risks of respiratory and cardiovascular morbidity and mortality 

(WHO, 2008; UNECE, 2008). There is also growing evidence that exposure to O3 during pregnancy 

might be associated with adverse birth outcomes (Le et al., 2012, Hansen et al., 2009, Salam et al., 
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2005). The key challenge in exposure assessment has been in depicting the spatial and temporal 

variations in air pollution (here O3 concentrations) at an accuracy sufficient to allow detection of 

these effects. 

This space-time model can be used for exposure assessment in a range of different contexts. In 

epidemiology, there is potential to use the approach in a range of different study designs. In this 

section, the potential for applying the models for exposure assessment will be discussed, 

emphasizing the strength and limitations. 

8.7.1 Strengths of the spatial model 

As noted, the major motivation for developing this model of O3 concentrations is as an aid to 

exposure assessment in risk analyses, health impact assessments and epidemiological studies.  

Where these concern the chronic effects of air pollution, the spatial model alone is of potential 

value, for it provides estimates of the annual (or long term) average O3 concentration, at a small area 

resolution (and close to that representing an individual home).  It is therefore instructive to 

determine what level of improvement, if any, is given by this model compared to other, more 

traditional ways of estimating exposures.   

The most common approach for exposure assessment in epidemiology has generally been to 

estimate exposures directly on the basis of the monitored data – by simply attributing each home to 

its nearest monitoring site.  This approach assumes (though rarely states) that the pollution surface 

is slab-like, with flat areas (in terms of pollutant concentration) around each monitoring site, and 

vertical disjunctions between them.  The extent to which this provides an accurate estimate of 

exposures can be assessed by comparing concentrations at each monitoring site with that at its 

nearest neighbour: if the approach is valid, the association should be strong, and the prediction 

error small. To explore this, the correlation was assessed between the long term average (from 

2001-2007) for O3 concentrations at each monitoring site and its nearest neighbour for all sites in 

the AIRBASE data set within the study area. This was done for the training dataset (979 sites) of 

monitoring stations.  Results gave R2=0.14, and RMSE=12.13ug/m3.  The analysis was repeated, 

stratified by country, but this gave no improvement in the results (Appendix B, Section V, Table B.5). 

Figure 8.3 shows the scatterplot between the two estimates and the 1:1 line.  As can be seen below 

while there is a relatively high proportion of estimates cluster around the 1:1 line, there is 

considerable scatter around this cluster.  In general, estimates from the nearest neighbouring site 
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tend to under-estimate actual concentrations at low to moderate levels but to over-estimate them 

at higher concentrations.  

 

 

Figure 8.3 Scatterplot between the observed long term O3 concentrations and the estimated 

concentration from the nearest monitoring sites using the training dataset (979 sites) 

 

 

The results thus suggest that estimating the exposure from the nearest site or by a simple 

interpolation method based on local sites is likely to be misleading, and may not represent 

exposures with any degree of reliability. The alternative, of modelling the pollution surface by taking 

into account the characteristics of surrounding environment, as is done with LUR, is likely to be more 

effective.     

The further assumption is often made that neighbouring sites are more closely correlated than those 

further away. Further exploratory analysis was therefore done by categorising the distance between 

nearest monitoring sites into six categories as shown in Table 8.2, and calculating the correlations 

within each distance class. The relationship showed a variation with distance, the mean difference 

between each pair of monitoring sites increasing, and the overall R2 falling, as distance increases.  
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There is also a suggestion in the data of a threshold distance of less than 1Km (range between 167 m 

to 993 m), within which the differences are small.  This suggests that data can be safely extrapolated 

over a distance of up to 1 Km, but beyond that errors increase and estimates of exposure become 

progressively less reliable. The same finding was reported by Moral García et al. (2008), as 

mentioned in Section 5.1. 

 

                   Table 8.2 Correlation between nearest monitoring sites in different distance 

Distance No. of sites R Adj. R2 RMSE 

<1Km 19 0.83 0.67 6.53 

1 -3Km 122 0.67 0.44 7.12 

3 - 6 Km 149 0.47 0.21 10.18 

6 - 10 Km 145 0.39 0.15 10.54 

10 -20 km 177 0.37 0.14 13.57 

>20 km 367 0.13 0.01 12.86 

 

On the basis of the results presented here, therefore, it can be argued that the LUR model can 

predict the spatial pattern of long term mean O3 concentration across Western Europe at a 100m 

grid resolution to an acceptable level of accuracy. The overall performance of the LUR model is 

comparable to the few previous attempts to model O3 at the continental scale, with R2~0.7 and 

RMSE~7.0g/m3. Performance of the LUR model, however, shows some weakness in representing 

specific types of areas, and performs better for example at rural than it does at urban sites, at higher 

altitude rather than low altitude sites, and in some countries compared to others (Section 5.4.2). It 

also needs to be recognised that the model should not be used outside this study area or time 

period without further validation and calibration. 

8.7.2 Strengths of the space-time model 

The modelling approach developed here might help to overcome the limitations of the traditional 

approaches of exposure assessment (such as use of the nearest monitoring site) discussed in Section 

7.4 Risk assessment, health impact assessment and epidemiological studies, however, involve the 

analysis of a wide variety of exposures, ranging from the population level to the individual.  

Exposures may likewise need to be assessed over averaging periods from a few hours or days, in the 

case of studies of acute health effects (e.g. using time series designs) to years where the health 

effects have long latency times or where accumulated exposures are of interest. The question thus 
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arises: what spatial and temporal precision is required for different types of application, and to what 

extent does the model presented here meet these needs?  

The temporal precision of exposure assessment is important but has several facets.  It relates to 

both the duration of the critical exposures and to the timing both in absolute terms and relative to 

manifestation of the health effect. The current literature demonstrates that there are varying critical 

time windows between O3 exposure and health outcomes, depending on the disease of interest.  

Many epidemiological studies, as well as risk assessments, of O3 have focused on acute effects.  

Examples include not only studies of short-term respiratory reactions amongst susceptible 

individuals such as asthma sufferers (Fusco et al., 2001, Ponce de Leon et al., 1996) but also 

admission to hospital for cardiovascular diseases (Park et al., 2005, Brook et al., 2002b), as discussed 

in Section 2.1.4.2. In these cases, the critical exposure window is usually assumed to be the same 

day or one to three days before manifestation of the disease, and exposures are often measured as 

the average daily, or maximum (e.g. 8-hourly), O3 concentration.  There is, however, some evidence 

that even shorter exposure durations may be important in terms of health.  One study, for example, 

found an association between the one hour lag of maximum O3 concentration with arrhythmia (Rich 

et al., 2005) and another found maximum daily O3 concentrations to be associated with an increased 

risk of death from respiratory diseases (Jerrett et al., 2009).  

Rather less attention has been given to the effects of long-term exposures in relation to disease 

initiation.  In the case of rhinitis, however, effects of exposure to O3 may take a year to develop, 

while for asthma it may take as much as fifteen years (Section 2.1.4.1, Table 2.5). Adverse birth 

outcomes have also been associated with O3 exposure over different time periods ranging from 

weeks to months to trimesters or longer. For instance, an increased risk of heart defects was 

associated with an increase of 10g/m3 in the 8 hour O3 concentration, averaged over weeks 3-8 of 

pregnancy (Hansen et al., 2009). Low birth weight was found to be associated with increases in 

exposure to O3 in pregnancy, measured using 24 hourly averages and the average daytime 

concentration (between 10.00-18.00 hours) over the entire pregnancy (Salam et al., 2005).  

These examples emphasise that the critical time window between O3 exposure and health outcome 

is dependent on the outcome of interest.  They also suggest that it is not only the average 

concentration over an extended period, but also in some cases the peak exposure within a period of 

a day, or even an hour, that might be critical in causing health effects.  It is further evident that in 

many cases the real causal period of exposure is unknown, either because exposure data have not 
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been available for a suitably precisely defined period, or because strong temporal autocorrelation 

between the measurements  makes it difficult to disentangle the effects of one period from another. 

In the case of many time series studies (including some cohort studies) the spatial variability in O3 

concentrations has been addressed by applying monitored concentrations either at one central site 

or by averaging across a number of sites in the study area.  This is a limited approach as large 

numbers of people are assigned the same exposure for any one day, even though they may live in 

areas with very different pollution levels.  Two assumptions are thus made: that the absolute change 

in exposure from one day to another is the same for everyone (e.g. when the monitoring station 

shows a 10ug/ug3 increase in concentrations from the previous day, this is what everyone 

experiences); and that the exposure-response relationship is linear, so that the effect of a 10ug/m3 

change in exposure is the same for everyone, regardless of the underlying concentration.  If either of 

these assumptions is invalid, study sensitivity is likely to be lost due to the dilution of any 

relationship with health by errors in the exposure assessment, and the estimated relationship may in 

some cases be biased. To avoid these dangers, and to provide a basis for detecting more reliably the 

shape and slope of the exposure-response curve, as well as the critical periods of exposure, requires 

exposure data that are more finely resolved, both spatially and temporally.  A good O3 exposure 

model should thus have the temporal precision to estimate individual-level exposures over periods 

of a day or less, and – in the case of peak exposures – for durations of only an hour or so.   The 

results presented here suggest that the models developed in this thesis can provide this level of 

spatial and temporal specificity.   

It has often been argued that temporal correlations between different sites at the daily level are 

high; this is the justification for averaging the data from different sites in time series studies.  So the 

mean concentration at nearby sites might vary, but the concentrations will tend to rise and fall 

together.  If so this would give some justification for the time series approach.  If not, then assessing 

exposures in time series studies would benefit from a different approach.  A number of time series 

studies have explored temporal correlations between O3 monitoring sites and these typically report 

a correlation of R= ca. 0.45 (Ballester et al., 2001, Fusco et al., 2001, Morgan et al., 1998, Medina et 

al., 1997).  To explore this issue, the correlation between the daily averages of the five sites in Rome 

city with their nearest neighbour (where the nearest distance was about 6 Km) were calculated.  The 

average R2 was 0.34 with RMSE= 19.80 g/m3.   

These results can be compared with those from the base model.  As noted this was developed and 

tested for a range of averaging periods, from hourly to monthly.  At the hourly level the performance 
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was only moderate, explaining only on average 37% of the variation and with RMSE = 22 g/m3.  

Even so, this is similar to the daily average for the inter-site correlation in Rome. Moreover, model 

performance improved as the data were aggregated to daily, weekly and monthly level, and from 

the daily level onwards further improvement was possible by including meteorological variables, as 

part of the full model. For the thirty five monitoring sites in the Netherlands and Rome, this gave an 

average R2 of 0.59; in Rome, where the underlying contrasts in daily exposure were higher, the 

average R2 was 0.69.  This is comparable with the levels of accuracy usually achieved by exposure 

models for much longer averaging times – e.g. land use regression models or dispersion models of 

annual average concentrations.  It is also markedly better than is likely to be achieved by using data 

from the nearest monitoring site. 

The real potential of the time-space model developed here, however, is likely to come in its use in 

cohort studies.  By their very nature, these require space-time exposure estimates, because they 

cover a large number of individuals who live in different places and who need to be followed up for 

long periods of time. Crucial exposure periods may vary from a matter of days for many respiratory 

effects through to months for pregnancy outcomes, and to many years for long latency diseases 

such as many cancers. This model allows flexible time- and location-specific exposure estimates to 

be generated for individuals over a wide area. 

The specificity of these estimates has a further advantage.  Characterising and maximising the 

exposure contrast within a cohort or study population is an important issue. If the contrast in 

exposures between individuals is lacking, the impact of the agent (in this study O3 concentration) 

may not be accurately assessed, and may be missed.  Avoiding exposure averaging reduces dilution 

of the relationship with health, and helps to retain study power (Nuckols et al., 2004).  The same 

ability to estimate local variations in concentrations across an area also improves exposure 

estimates in other study designs, such as case-control studies (i.e. where outcomes are often 

compared in high and low exposed groups), or in panel studies where a small group of individuals 

with a known risk need to be followed up. 

In the same way, exposure estimation using the approach developed here may help to separate of 

effects of determinants of health which are otherwise confounded. The 2003 heat wave in Europe, 

for example, involved an almost contemporaneous increase in temperature, O3 and PM (Alebid-

Juretid et al., 2007, Poumadère et al., 2005) and It was associated with substantial increases in 

premature deaths.  Attributing these deaths to the different potential causal factors, however, was 

difficult, because of the spatial and temporal uncertainty of exposure estimates.  Stedman (2004) 
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estimated that, in the UK, there was an excess of 423 premature deaths associated with O3 

exposures, and 769 associated with PM10 exposures. In the Netherlands, Fischer et al. (2004) 

reported 400 excess deaths attributed to O3 exposure and 600 deaths attributed to  PM10. In France, 

however,  Vandentorren et al. (2004) attribute the cause of the majority of deaths to the effects of 

heat and home condition. In situations such as this, therefore, there is a need for a standard way of 

assessing exposures across a large study population, at high spatial and temporal resolution in order 

to separate out the effects of these different potential risk factors, on the basis of subtle differences 

in their timing and geographic distribution. The approach developed here offers such an approach 

for O3 exposures.  

Another potential application relates to the current threshold for O3 (120g/m3 for maximum 8-

hours average and 180g/m3 1-hour average), which has been set largely on the basis of chamber 

studies.  As WHO (2008) reported, no such threshold has been detected at population level in 

epidemiological studies.  In part, this may be because no epidemiological study has so far used a 

sufficiently large population, with individual level exposure data, capable of distinguishing a 

threshold. Monks et al. (2009) argue that if the relationship between the health outcome (response) 

and O3 concentrations (exposure) is linear, then the total annual health impact is relative to the 

annual O3 mean concentrations.  This would imply that O3 concentrations even at or below the 

policy thresholds will continue to have substantial health effects.  

As these examples indicate, epidemiological studies and risk assessments increasingly need better 

methods of exposure estimation, in order to address more subtle and complex research questions, 

for larger study populations as this model potentially provides.  These advances also increasingly 

mean that exposure assessment needs to be done in a space-time framework.   

8.7.3 Application of the models 

Both the spatial and space-time models developed in this thesis been provided and applied to 

number of health studies. The long term estimates from the spatial model were shared with several 

European colleagues investigating health effects of air pollution. In each case, the estimated 

concentrations were extracted for the requested cohort participants (by x,y coordinates) to derive 

exposure estimates on an individual level. This was done for the following studies: 

1. GA2LEN study: Global Allergy and Asthma European Network (http://www.ga2len.net/). The long 

term O3estimates were sent to Prof. Debbie Jarvis at the National Heart and Lung Institute, Imperial 
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College.  They were used to assess the association of a marker of systemic inflammation, the C-

reactive protein (CRP), with long-term exposure to three air pollutants (PM10, NO2, and O3).  The 

study areas included are Amsterdam (NL), Brandenburg and Duisburg (DE), Bromley and 

Southampton (UK), Ghent (BE), Odense (DK), and Palermo, (IT). The result shows that there was no 

evidence of an association between CRP and the long term concentrations (Ramond, 2012).  

2. SETIL study, Italy (Studio sulla Eziologia dei Tumori Infantili Linfoemopoietici): an Italian 

epidemiological study on the aetiology of childhood leukaemia, lymphoma and neuroblastoma. This 

work was led by Dr. Forastiere and Dr. Badaloni at the Department of Epidemiology, Lazio Regional 

Health Service, Rome.  The aim of this work was to assess the impact of air pollutants (PM10, PM2.5, 

NO2, and O3) on childhood leukaemia.  Results showed that there were no associations with these air 

pollutant. A draft publication, of which I am co-author, is ready for submission (Badaloni, et al., in 

prep: Occupational Environmental Medicine).    

3. PELAGIE cohort in Brittany, France is a prospective birth cohort designed to study the role of 

environmental pollutants on intrauterine and child development in three Breton districts (Ille-et-

Vilaine, Côtes d’Armor, and Finistère). The exposure estimation for 4857 women was sent to Jean-

François Vie who is the supervisor of PhD student working on the PELAGIE cohort.  

The daily exposure estimates from the space-time models were also shared with three cohorts 

studies included in the recently funded ESCAPE project but the analysis using the data have not yet 

been completed.  

1. PIAMA in the Netherlands consists of 10,819 pregnant women (as mentioned in section 7.2) 

2. ABCD consists of 12,682 pregnant women in the Netherlands (as mentioned in section 7.2).  

3. The GASPII birth cohort consists of 713 pregnant women in Rome, Italy (as described in 

section 7.3). 

8.8 Future work 

Like any model, that developed has substantial room for improvement.  The purpose of 

improvement might vary – for example, to make its use easier, to make it more readily transportable 

to other areas, or to reduce the errors in its predictions.  It is the last of these which is probably most 
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important here.  The question that has first to be answered, therefore, is what is the cause of these 

errors in the model?   

8.8.1 Enhancing the modelling approach 

The approach of creating the time functions, taken here, was based on the principle of using prior  

knowledge about the factors that were responsible for variations in O3 concentrations over different 

time scales (diurnal, hebdomadal, and seasonal), and in different environmental contexts (urban, 

rural, mountainous, etc). Based on this, a set of time functions was generated of predefined 

periodicity, and then regression analysis used to estimate weights for each of these, to represent 

their amplitude.  In this context, the question is: do the functions generated in this way adequately 

reflect the variability in the data?   

Improvements would certainly seem possible.  Currently, the error (as defined by the RMSE) is ca. 14 

µg/m3 in the daily predicted concentrations. For average concentrations of ca. 50 g/m3, this 

represents an error of ca. 28% - more-or-less at the margins of what would usually be tolerated.  

To reduce these errors, one approach would be to modify the time functions by allowing both the 

periodicity and the amplitude to be defined statistically for different data sets. With large data sets 

such as those used here, this would be time-consuming, because it would involve using a formal 

grid-search technique, in which each variable is adjusted one increment at a time, whilst keeping all 

others constant, until the optimum solution is achieved.  Related to this, there may be scope to gain 

some improvement in model performance by allowing for interactions between the systematic 

patterns at different time-scales – for example, of different diurnal patterns on different days of the 

week, or in different seasons. 

More important, however, might be to improve the assessment of the non-systematic components 

of temporal variation.  Currently, these are modelled only through the use of meteorological 

variables, using linear models. Non-linear models might be pursued more effectively, as illustrated 

by the studies of Hubbard and Cobourn (1998) and Bloomfield et al. (1996).  As has been recognised, 

however, non-systematic variation is not only weather-related but also due to changes in emission 

rate, often in response to weather-related effects.  Incorporating data on hourly or daily emission 

rates of O3 precursors would almost certainly improve the model and help to obtain better 

prediction of the extremes values. 
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The model might also be improved by developing a spatial model for each site type.  It was apparent 

in this analysis that the global model did not perform equally in all site types.  For some, therefore, a 

site-type specific LUR model is likely to provide better results. The reason for not doing it in this 

thesis was primarily recognition that classification of the site types was itself uncertain, both using 

HCA and MLOR. To resolve this issue, the probability of site type membership was used to classify 

unmonitored sites. This would make building specific-site type LUR somewhat complex, for LUR 

predictions from each model would likewise need to be weighted by their probability of site-type 

membership. This weighting procedure certainly has an advantage, in that it would help ensure that 

the resulting modelled surface was not blocky, with major disjunctions between areas of different 

site-type. Further analysis would thus be merited, exploring this possibility. Nevertheless, since the 

assignment of site types to the classification (using MLOR) was based on many of the same 

environmental variables as used in the LUR model, little advantage might actually be achieved. 

8.8.2 Enhancing the data 

As noted earlier, to help reduce the problem of lack of sparse or uneven coverage and 

unrepresentatively of the monitoring sites, satellite data could be used as a source of monitoring 

data. There are now daily maps of O3 concentrations, at a spatial resolution of 10-20 km across 

Europe (Ziemke et al., 2011), produced from satellite observations.  It is thus possible to combine 

satellite with monitoring data in order to provide better representation in areas where the ground 

sites are sparse. In this way, satellite data could be used to reflect the regional variation in the 

concentrations, and then the model applied to add local detail to this on the basis of land cover and 

other data.  The main reason for the limited resolution of the satellite data is that the sensors 

measure the entire atmospheric column O3 rather than surface concentrations.  At present 

therefore, satellite data alone are unable to achieve the spatial resolutions needed for exposure 

assessment.  Harnessed to a space-time model, however, they offer considerable capability. 

Linkage of the space-time model to satellite data might also enhance the modelling of temporal 

variations.  One way of achieving this is to use the satellite data as a basis for data assimilation 

(Vijayaraghavan et al., 2008).  This involves continuously recalibrating the model to new satellite 

data, as they become available.  In this way, the model is trained not only to current conditions, but 

to underlying trends in the data. This helps to improve, also, its ability to predict future 

developments – and thus enhance its scope for forward extrapolation.  For these reasons, research 
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to link space-time modelling and satellite data for the purpose of exposure assessment needs to be a 

major priority. 

8.9 Conclusion 

Key findings in this study are thus as follow: 

1- Categorizing the 1211 O3 monitoring sites across Western Europe produced thirteen site 

types based on the temporal indicators used. This highlights that the temporal variation of 

O3 behaves differently in different site types and this needs to be recognized when exposure 

is to be estimated. 

2- LUR is capable of explaining 67% or more of the spatial variation in long-term average O3 

concentrations across Western Europe, at a very fine resolution (100m) and using readily 

available data. On the other hand, estimates of average annual concentrations at the 731 

training sites from their nearest neighbouring monitoring site gave poor predictions (R2 = 

0.14), and the association declined markedly as the separation distance between the target 

and source site increased beyond 1 km. 

3- Using Fourier analysis to build an hourly temporal model for 13 site types successfully 

explained, on average, 42% of the temporal variation in the data. Hourly and daily O3 

concentration variations, especially, require additional predictors to represent the non-

systematic variation. 

4- The base space-time model (i.e. O3 long term concentration + weighted hourly temporal 

model) explained 46% of daily O3 variation. Aggregating the base model to a monthly 

average increased the percentage of the explained variation to 74%, demonstrating that a 

large proportion of the temporal variation for these longer time scales is systematic, and can 

be modeled with relatively simple Fourier functions. 

5- The full space-time model was able to predict daily O3 concentrations over the applied areas 

(Netherlands and Rome) with a reasonable degree of accuracy, explaining an average of 57% 

of variation in daily O3 concentrations, with only moderate uncertainty (RMSE = 14 g/m3). 
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6- Daily O3 estimates from the spatial and the space-time model of this thesis in comparison 

with estimates from the nearest monitoring sites showed weak correlation (R2=0.14 and 

0.12 respectively).   

7- Space-time modeling, as performed in this thesis, can be used to provide a powerful model, 

with the strong advantages of combining reduced data requirements (compared to 

dispersion models) with reasonable computational processing power and time. 

In conclusion as epidemiological studies and risk assessment are faced with the increasing challenge 

of identifying the impacts of O3 concentrations on human health, against a complex range of 

confounding factors; better methods of exposure assessment are inevitably needed. These methods 

need to provide time-varying estimates of exposure at the individual level for large study 

populations.  The type of model developed in this thesis offers one way to face this challenge. In 

addition it offers a rich field for further research aimed at improving the modeling approach and the 

data on which it applies, and applying it in future studies of the health risks of O3. 
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I. Short-term health impact 

1) Respiratory diseases 

Most of the epidemiological studies of O3 to date have focused on short-term health effects, and 

have been either cross-sectional or time series in design. According to the Task Force on Health 

(UNECE, 2008), the majority of recent epidemiological studies have reported positive and significant 

associations between short-term exposure to different O3 concentrations and increased morbidity 

and mortality from respiratory diseases.  Inhaling O3, in the short term, can cause a variety of health 

problems, including lung damage, aggravated asthma, and increased susceptibility to respiratory 

tract illnesses such as pneumonia and bronchitis. The most consistent associations have been seen 

with impaired pulmonary function, which was found to be correlated with increased medication 

usage. Kassomenos et al. (2008) undertook a study investigating daily effects of exposure to O3 and 

daily hospital admissions due to respiratory and cardiovascular diseases in Athens, Greece 

(population ca. 1.5 million) between 1992-2000. Admission records were obtained for 7,435 

individuals (4,285 males and 3,151 females). This study has shown that a 10µg/m3 increase in O3 

concentration was associated with a 7.2% increase in the number of daily hospital admissions.  

Ponce de Leon et al. (1996) conducted a 4 year study in London (1987 - 1992), and reported an 

increase in daily hospital admissions due to respiratory diseases associated with increased O3 

concentration of 58g/m3 (the 10th - 90th percentile), with a relative risk of 1.05 (95% Cl, 1.02-1.07) 

for all ages except for children (0-14 years). In contrast, Anderson  et al. (2005) found no significant 

association between ambient O3 and respiratory illness for any age group (0-14, 15-65 and >65 

years).  Similar results were obtained in a study of residents in urban Australia and New Zealand by 

Barnett et al. (2005).  No significant effects were detected for any age group, except with respiratory 

admissions among children (1-4 years), for whom the excess risk was 3.5% (95% Cl: 1.8-5.2) for a 

19.23g/m3 increase in daily mean O3 concentration, during warm months only; overall (for the 

whole year), there was no effect. Fusco et al. (2001) conducted a similar study in Rome (study period 

1995-1997).  They found that a 23.9µg/m³ increase in concentration (equivalent to the inter quintile 

range) was associated with an 8.1% (95% Cl: 2.1-7.3) increase in hospital admission due to acute 

respiratory infection among children (0-14 years) only.   

2) Cardiovascular diseases 

Air pollution is recognized as a critical and modifiable determinant of cardiovascular diseases in 

urban populations.  Evidence by Hennekens (1998) also suggested that, when people migrate to a 

new environment, their risk of cardiovascular disease may be affected (i.e. O3 concentrations are 

different from one location to another).  Srebot et al. (2009) reviewed literature on the short-term 



268 

 

 

impacts of O3 exposure on arterial pressure control, vascular tone, autonomic control of serum 

concentration of inflammatory markers and heart rate.   

Several studies have explored the correlation between increased ambient O3 concentration and 

cardiovascular disease.  In an animal study, Perepu et al. (2012) observed normal adult rats exposed 

to 0.8ppm of O3 compared to filtered air for 8 hours/day for 28 to 56 days. They reported that a 

significant reduction in myocardial function could be observed in the more highly exposed rats due 

to increased levels of oxidative stress and inflammation. 

 

Some epidemiological studies, however, have found no association between acute exposure to 

ambient O3 concentration and hospital admission due to cardiovascular diseases (WHO, 2008, 

Anderson  et al., 2005); significant associations were observed in a few studies only.  One of these 

was a study conducted in Boston, Massachusetts by Park et al. (2005). The association between 

reduced heart rate variability (HRV), an indicator of poor cardiac autonomic function, and exposures 

to 4-hr, 24-hr, and 48-hr moving averages of ambient air pollutants in 497 men seen between 

November 2000 and October 2003 was explored. The results showed that HRV was reduced by 

11.5% (95% CI: 0.4-21.3%) per 26g/m3 increment in 4-hr average O3. The effect was also stronger in 

susceptible people (i.e. those suffering from ischemic heart disease (IHD) and hypertension).  

A randomised, double-blinded crossover chamber study including 25 healthy adults reported that 

exposures influenced macrovascular diameter and caused brachial artery narrowing after short-term 

inhalation (2 hour exposure to both 240g/m3 O3  and 150g/m3 PM ) ( (Brook et al., 2002b). A 

similar response is suspected to occur in the coronary diameter: an impact on healthy adults may 

occur with a reduction as little as 0.1mm (Srebot et al., 2009).  Among susceptible individuals, this 

degree of vasoconstriction may promote cardiac ischemia or trigger instability of susceptible plaques 

(Muller et al., 1994). Rich et al. (2006) reported on a case-crossover study conducted in Boston, 

Massachusetts, exploring the association between O3 and paroxysmal atrial fibrillation episodes 

(PAF) using 203 patients with implantable cardioverter defibrillators, followed between 1995 and 

1999 until 2002.  A significant positive association was observed, with an odds ratio of 2.1 (95% CI: 

1.22-3.54) per 43.2g/m3 O3 during the hour before arrhythmia.  The associations were very weak, in 

contrast, for exposures averaged over the previous 24 hours, and no significant risks were associated 

with other air pollutants. On the other hand, results of short-term effect studies suggest a link with 

adverse cardiovascular events such as myocardial infarction (Ruidavets et al., 2005), heart failure  

(Hoek et al., 2001), and life-threatening arrhythmias (Rich et al., 2005) though the evidence remains 

inconclusive. 
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3) Mortality 

O3 is not only a risk factor for increased morbidity but is also estimated to be responsible for ca. 3 

million premature deaths world-wide each year, according to the World Health Organization (WHO, 

2006). It is also estimated that, in the European Union (25 countries), about 21,000 premature 

deaths occur annually after days with high O3 levels (WHO, 2008).  

Four meta-analyses have been undertaken of the relationship between O3 and mortality (UNECE, 

2008).  These suggested significant, independent associations between O3 exposures and different 

causes of mortality.  Impacts on respiratory mortality are strongest; those on cardiovascular 

mortality seem to be weaker.  These effects are not influenced by other air pollutants, weather 

factors (e.g. temperature and humidity), season or modelling strategy (WHO, 2006).  Even so, this 

evidence is not considered sufficient to confirm an association with mortality (UNECE, 2008).  

One of the recent studies was conducted by Jerrett et al. (2009) in 96 metropolitan areas in the 

United States, using health data of 448,850 subjects (and including 118,777 deaths) from the 

American Cancer Society Cancer Prevention Study cohort II.  Associations were sought between daily 

maximum O3 concentrations, for the period from 1977 to 2000, and mortality from cardiopulmonary 

and respiratory diseases.  The results showed that, when adjusted for PM2.5 concentrations, each 20 

µg/m3 increase in O3 concentration was associated with a 4% (95% Cl: 1.0-6.7) increase in risk of 

death from respiratory diseases, primarily due to pneumonia and chronic obstructive pulmonary 

disease. In contrast, O3 had no detectable effects on the risk of death from all causes, 

cardiopulmonary, ischemic heart and cardiovascular diseases when PM2.5 concentration was taken 

into account.  

Another study by Zanobetti and Schwartz (2008) explored effects of O3 on short-term displacement 

of death date (so-called harvesting) in 48 cities in the USA between 1989 and 2000. The results 

indicated that an increase in summer-time O3 concentration of 20 µg/m3, as the 8 hour average, is 

associated with a 0.3% (95% CI: 0.2-0.4) and 0.5% (95% CI: 0.05-0.96) increase in total mortality, for 

time lags of 0 and 0-3 days respectively. This suggests that risk assessments based on exposure on a 

single day are likely to underestimate the health impact of O3.  

A quantitative meta-analysis of peer reviewed studies was conducted by Anderson  et al. (2005) 

using databases of time-series studies from several European cities. A strong, statistically significant 

association between short-term exposure to O3 and mortality was found.  also evaluated 95 

communities in the USA, and found a 0.52% (95% CI: 0.27–0.77%) increase in daily death for a 

20µg/m3 increase in O3 concentration during the last week. A similar result was recorded from a 

large study which assessed the impact of O3 exposure on cause-specific and daily total mortality 
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from 23 European cities . A ca. 10mg/m3 increase in 1-hr O3 concentration was related to a 0.45% 

(95% CI: 0.17-0.52%) increase in the number of deaths due to cardiovascular diseases. 

Mortality in children has not fully been assessed; most effects were detected in elderly people and 

were seen to be strongest in the warm season. The literature to date is thus inconclusive for the 

short-term impact. By the same token, it can be argued that, if these studies are to be convincing, 

they need to be based on more accurate and specific measures of exposure, both in terms of their 

spatial and temporal resolution. 

 

 

II. Emission sources of O3 precursors 

Base data, reported in the UNECE/EMEP Nomenclature for Reporting (NFR) sector format are 

aggregated into the following EEA sector codes to obtain a consistent reporting format across all 

countries and pollutants: 

 Energy production and distribution: emissions from public heat and electricity generation, 

oil refining, production of solid fuels, extraction and distribution of solid fossil fuels and 

geothermal energy; 

 Energy use in industry: emissions from combustion processes used in the manufacturing 

industry including boilers, gas turbines and stationary engines; 

  Industrial processes: emissions derived from non-combustion related processes such as the 

production of minerals, chemicals and metal production; 

  Road transport: light and heavy duty vehicles, passenger cars and motorcycles; 

  Non-road transport: railways, domestic shipping, certain aircraft movements, and non-road 

mobile machinery used in agriculture & forestry; 

  Commercial, institutional and households: emissions principally occurring from fuel 

combustion in the services and household sectors; 

  Solvent and product use: non-combustion related emissions mainly in the services and 

households sectors including activities such as paint application, dry-cleaning and other use 

of solvents; 

  Agriculture: manure management, fertiliser application, field-burning of agricultural wastes 

  Waste: incineration, waste-water management. 
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III.  CLC2000 classes 

 

TableA.1 The full descriptive list of CLC2000 classes  

GRID_CODECLC_CODE LABEL1 LABEL2 LABEL3 new classes

1 111 Artificial surfaces Urban fabric Continuous urban fabric High density residential

2 112 Artificial surfaces Urban fabric Discontinuous urban fabric Low density residential

3 121 Artificial surfaces Industrial, commercial and transport units Industrial or commercial units Industerial

4 122 Artificial surfaces Industrial, commercial and transport units Road and rail networks and associated land Industerial

5 123 Artificial surfaces Industrial, commercial and transport units Port areas Industerial

6 124 Artificial surfaces Industrial, commercial and transport units Airports Industerial

7 131 Artificial surfaces Mine, dump and construction sites Mineral extraction sites Industerial

8 132 Artificial surfaces Mine, dump and construction sites Dump sites Industerial

9 133 Artificial surfaces Mine, dump and construction sites Construction sites Industerial

10 141 Artificial surfaces Artificial, non-agricultural vegetated areas Green urban areas herbaceous

11 142 Artificial surfaces Artificial, non-agricultural vegetated areas Sport and leisure facilities herbaceous

12 211 Agricultural areas Arable land Non-irrigated arable land Agriculture

13 212 Agricultural areas Arable land Permanently irrigated land Agriculture

14 213 Agricultural areas Arable land Rice fields Agriculture

15 221 Agricultural areas Permanent crops Vineyards Agriculture

16 222 Agricultural areas Permanent crops Fruit trees and berry plantations Agriculture

17 223 Agricultural areas Permanent crops Olive groves Agriculture

18 231 Agricultural areas Pastures Pastures herbaceous

19 241 Agricultural areas Heterogeneous agricultural areas Annual crops associated with permanent crops Agriculture

20 242 Agricultural areas Heterogeneous agricultural areas Complex cultivation patterns Agriculture

21 243 Agricultural areas Heterogeneous agricultural areas Land principally occupied by agriculture, with significant areas of natural vegetation Agriculture

22 244 Agricultural areas Heterogeneous agricultural areas Agro-forestry areas Agriculture

23 311 Forest and semi natural areas Forests Broad-leaved forest Forest

24 312 Forest and semi natural areas Forests Coniferous forest Forest

25 313 Forest and semi natural areas Forests Mixed forest Forest

26 321 Forest and semi natural areas Scrub and/or herbaceous vegetation associations Natural grasslands herbaceous

27 322 Forest and semi natural areas Scrub and/or herbaceous vegetation associations Moors and heathland herbaceous

28 323 Forest and semi natural areas Scrub and/or herbaceous vegetation associations Sclerophyllous vegetation herbaceous

29 324 Forest and semi natural areas Scrub and/or herbaceous vegetation associations Transitional woodland-shrub herbaceous

30 331 Forest and semi natural areas Open spaces with little or no vegetation Beaches, dunes, sands open space

31 332 Forest and semi natural areas Open spaces with little or no vegetation Bare rocks open space

32 333 Forest and semi natural areas Open spaces with little or no vegetation Sparsely vegetated areas open space

33 334 Forest and semi natural areas Open spaces with little or no vegetation Burnt areas open space

34 335 Forest and semi natural areas Open spaces with little or no vegetation Glaciers and perpetual snow open space
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IV.  Calculate the distance to sea  

First in ARC/map: 

A. Prepare the coast line: 

1- Add corine 523 attribute, converted from polygon to Line (sea_line.shp). 

2- Buffer 20km around the sea_line save it as sea_20k.shp 

 

 

 

3- Convert the polygon sea_20k.shp to line sea20_line by 

 

4- Clean the buffer line because it was in both side by delete the inside line using customize 

toolbar\Editor\start editing\select the line to make a split using split tool. 
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B. generate and calculate the point distance to sea for each 1km grid: 

1. Using the 1km grid for each country for example I started with IE_1knew points were 
generated from the representative locations of input features (1km grid) saved it as 
IE_1kp.shp 

 

2. To make the 1km grid math the 100mgrid cells the points coordination’s(X,Y) have to be 
shifted by: 

i. Add new fields (type:Double) and calculate (x_corrdinate) and (y_corrdinate). 
ii. Add new field (shift_x) and (shift_y) which =x_cordinate -50 same with  y. 

iii. Then export the table IE_1kps.dbf, and then remove it from workspace. 
iv. Add again the IE_1kps.dbf and display the x, Y coordinates. 
v. It will be add as an event therefore it has to be exported and saved as 

IE_1kpsf.shp 
3. Calculate the distance to sea for each point using NEAR command. 

 

C. To clean the attribute table first keep the field for Fid, Shape and Near_Dist in the chosen 

country which will use it as a centre to append the rest of the countries. 
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1. Use Delete field/field/data management tools command 

2. Use Append/ General/Data management tools command to append all countries 

together. 

  

 

3. Rename the target dataset to E12_SEaDist.shp 

 

D. Interpolation: 

1. From customize select toolbar\geostatistic  analyst\wizard\deterministic 
method\inverse distance weighting\sourcepoint: IE_1kpsf.shp\Data field: near 
field\power:1\max neighbour  4\min neighbour  2\ one sector. 

2.  
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3. Right click on the resulted interpolation file to export data as a raster 

 

4. Extract the sites distance from the sea by using Spatial Analyst 

Tools/Extraction/Extraction values to points 
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For validation the distance to sea for the sites point was calculated and compared with distance to 

sea from the interpolation intersected with resulting raster after interpolation.  

 Correlations 
 

    RASTERVALU 

DTS Pearson Correlation .99(**) 

  Sig. (2-tailed) .000 

  N 1211 

                                          **  Correlation is significant at the 0.01 level (2-tailed). 
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V  Define the critical time period during the day  

FigureA.1: line charts summarizes O3 concentration over Time for a selection of sites 
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VI.  The ratio of sites per 10,000 km2 for different site types in different countries 

Table A.2 Density of sites in each country of study area by the thirteen Site types 

EU country 
Area 
(km

2
) 

1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

AT 83,859 .24 3.22 0.72 2.98 0.12 .24 .12 .00 .00 2.03 .00 2.62 0.48 12.76 

BE 30,518 .98 0.00 1.97 0.00 0.00 .00 .00 .98 7.21 0.00 .00 .00 0.00 11.14 

DK 43,094 .00 0.70 0.00 0.00 0.00 .00 .46 .23 0.00 0.00 .00 .00 0.00 1.39 

ES 504,790 .06 0.71 0.44 0.14 0.14 .40 .57 .67 0.02 0.04 .91 .48 0.02 4.60 

FR 543,965 .44 0.74 1.12 0.97 1.08 .26 .11 .33 0.68 0.35 .07 .29 0.06 6.51 

GB 243,820 .08 0.00 0.08 0.00 0.04 .00 .74 .90 0.33 0.00 .00 .41 0.00 2.58 

GE 357,022 .84 0.36 1.20 0.76 1.88 .34 .22 .42 0.95 0.53 .00 .39 0.00 7.90 

IE 70,723 .00 0.00 0.00 0.00 0.00 .00 .00 .14 0.00 0.00 .00 .71 0.00 0.85 

IT 301,316 .00 0.33 0.00 0.10 0.00 .27 .00 .03 0.00 0.20 .17 .13 1.16 2.39 

NL 41,526 .00 0.24 0.24 0.24 1.93 .00 .24 .48 3.85 0.00 .00 .00 0.00 7.22 

PT 91,906   .33 0.76 0.22 0.00 0.65 .22 .00 .44 0.11 0.00 .00 .00 0.00 2.72 
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VII. Perl scripts 

Compute_Ozone  

#! /usr/local/bin/perl –w #Feb 2012 #create ozone estimates for Fatima, step 2 #LUR_grids.csv: 

Point_ID, LUR #Met_grid.csv: input_FID (1-4), value per day #grid_total.csv:TF estimates by point_id 

and day #tf_fid.csv: Point, FID, TF*0.747 for each day # TF * 0.747 + LUR based on Point_ID + Met 

based on FID and day -23.9 use strict; my $tf_fid = 

"/home/EPH/archive/gds_data/gis/temp/tf_fid.csv"; my $lur = "Lur_grids.csv"; my $met = 

"Met_grid.csv"; my $out_file = "/home/EPH/archive/gds_data/gis/temp/ozone_estimate.csv"; #first 

get Met/FID data into memory open MET, $met or die "Cannot open $met"; my %met_data; my 

$met_cols = <MET>; my @days = split ",", $met_cols; my $num_days = scalar(@days) - 1; if 

($num_days != 2191) { die "Num days $num_days != 2191"; }while (my $line = <MET>) { if ($line !~ 

/Input_FID/) {chomp $line; my @vals = split ",", $line; for (my $i = 1; $i <= $num_days; $i++) { 

$met_data{$vals[0]}[$i-1]=$vals[$i];}  }} close MET; open LUR, $lur or die "Cannot open $lur"; open 

TF, $tf_fid or die "Cannot open $tf_fid"; open OUT, ">$out_file" or die "Cannot open $out_file"; my 

$point = 0; my $linel = <LUR>; while (my $linet = <TF>) {  $linel = <LUR>;  chomp $linet; chomp $linel; 

my @tf_vals = split ",", $linet; my @lur_vals = split ",", $linel; if ($tf_vals[0] != $point) { die "$point != 

TF $tf_vals[0]";  } elsif ($lur_vals[0] != $point) { die "$point != LUR $lur_vals[0]";  } elsif 

(scalar(@tf_vals) != ($num_days + 2)) { die "TF ".scalar(@tf_vals)." != $num_days+2";    print OUT 

"$point"; my $fid = $tf_vals[1]; if ($fid <0 or $fid > 4) { die "Invalid $fid FID for $point";  } for (my 

$i=0; $i < $num_days; $i++) { my $sum = -23.9 + $lur_vals[1] + $met_data{$fid}[$i] + 

$tf_vals[$i+2];printf OUT ",%.2f", $sum; } print OUT "\n";  $point++; } close OUT; close TF; close LUR; 

Extract _point _data 

#! /usr/local/bin/perl –w #Feb 2012 #Fatima has a list of Points she would like to see the data for use 

strict;my$point_file="fatima_Nl_point.txt";my$ozone_file="/home/EPH/archive/margaret_data/ozo

ne_estimate.csv"; my $out_file = "/home/EPH/archive/margaret_data/Nl_points_ozone.csv"; my 

@point_ids; open PT, $point_file or die "Cannot open $point_file"; while (my $line = <PT>) {   if 

($line =~ /(\d+)/) { push @point_ids, $1;  }} close PT; my $day_file = "days.csv";open DAY, $day_file 

or die "Cannot open $day_file"; my $day_line = <DAY>; close DAY; my $p = 0; open OUT, 

">$out_file" or die "Cannot open $out_file"; open OZ, $ozone_file or die "Cannot open $ozone_file"; 

print OUT "Point_id,$day_line"; while (my $line = <OZ>) {   if ($line =~ /^(\d+),/) { my $pid = $1; if 

($pid == $point_ids[$p]) {   print OUT $line;  $p++;}  }} close OZ; close OUT; 
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I ANOVA outcome results of the thirteen site type in study area countries 

 

Table B.1 ANOVA for Classification Sites 

country  Sum of Squares df Mean Square F Sig.  

AT Between Groups 25665.62 9 2851.735 64.346 0 86% 

 Within Groups 4298.919 97 44.319    

 Total 29964.54 106     

BE Between Groups 1814.882 3 604.961 23.084 0 70% 

 Within Groups 786.206 30 26.207    

 Total 2601.087 33     

DE Between Groups 23772.44 10 2377.244 85.489 0 76% 

 Within Groups 7535.877 271 27.808    

 Total 31308.31 281     

DK Between Groups 653.099 2 326.549 43.615 0.006 97% 

 Within Groups 22.461 3 7.487    

 Total 675.56 5     

ES Between Groups 39836.06 12 3319.671 39.74 0 69% 

 Within Groups 18294.19 219 83.535    

 Total 58130.25 231     

FR Between Groups 24098.78 12 2008.231 52.699 0 65% 

 Within Groups 12994.79 341 38.108    

 Total 37093.56 353     

GB Between Groups 5419.738 6 903.29 24.203 0 72% 

 Within Groups 2089.965 56 37.321    

 Total 7509.703 62     

IE Between Groups 310.923 1 310.923 3.949 0.118 50% 

 Within Groups 314.97 4 78.742    

 Total 625.893 5     

IT Between Groups 9199.245 7 1314.178 17.992 0 66% 

 Within Groups 4674.765 64 73.043    

 Total 13874.01 71     

NL Between Groups 589.161 6 98.194 6.542 0 63% 

 Within Groups 345.227 23 15.01    

 Total 934.389 29     

PT Between Groups 1551.963 6 258.661 8.622 0 74% 

 Within Groups 539.998 18 30    

 Total 2091.961 24     
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II  PCA output 

 

Table B.2 depicts the correlation matrix for the 21 indicators. Inspection of the correlation matrix 

reveals that 184 of the 209 correlations (89%) are significant at the .01 level. This provides an 

adequate to proceeding to the next level which is assessing the overall significance of the correlation 

matrix with the Bartlett test. In this analysis the overall correlation are significant at the 0.0001 level, 

also the Measure of sampling adequacy(KMO) equal 0.889, furthermore, each indicators exceed the 

thresholds value (0.5), Table B.3 These measures all indicate that the reduced set of indicators is 

appropriate for factor analysis, and analysis can proceed to the next stages.
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 Table B.2 the correlation matrix between the 21 indicators 

 SUM_
Nmean 

WINT_
Nmean 

WD_N
mean 

WE_N
mean 

AM_N
mean 

PM_N
mean 

NIGHT_
Nmean 

SUM
_Nvar 

WINT
_Nvar 

WD_
Nvar 

WE_
Nvar 

AM_
Nvar 

PM_
Nvar 

NIGHT
_Nvar 

SUM_
Nmax 

WINT_
Nmax 

WD_
Nmax 

WE_
Nma
x 

AM_
Nma
x 

PM_
Nma
x 

SUM_N
mean 

1.00                    

WINT_
Nmean 

-0.93 1.00                   

WD_N
mean 

-0.42 0.40 1.00                  

WE_Nm
ean 

0.42 -0.40 -1.00 1.00                 

AM_Nm
ean 

-0.43 0.47 0.27 -0.27 1.00                

PM_Nm
ean 

0.65 -0.69 -0.46 0.46 -0.44 1.00               

NIGHT_
Nmean 

-0.47 0.47 0.26 -0.26 -0.01 -0.86 1.00              

SUM_N
var 

0.19 -0.14 -0.46 0.46 -0.11 0.21 -0.18 1.00             

WINT_
Nvar 

0.62 -0.64 -0.65 0.65 -0.36 0.68 -0.53 0.52 1.00            

WD_Nv
ar 

0.82 -0.80 -0.68 0.68 -0.46 0.72 -0.52 0.57 0.88 1.00           

WE_Nv
ar 

0.81 -0.81 -0.63 0.63 -0.51 0.71 -0.47 0.53 0.86 0.98 1.00          

AM_Nv
ar 

0.73 -0.77 -0.70 0.70 -0.54 0.85 -0.61 0.42 0.85 0.92 0.92 1.00         

PM_Nv
ar 

0.73 -0.68 -0.78 0.78 -0.34 0.61 -0.42 0.61 0.86 0.95 0.93 0.86 1.00        

NIGHT_
Nvar 

0.62 -0.66 -0.65 0.65 -0.32 0.87 -0.76 0.43 0.81 0.85 0.83 0.92 0.79 1.00       

SUM_N
max 

0.07 0.00 -0.44 0.44 0.03 0.09 -0.13 0.85 0.43 0.43 0.36 0.28 0.51 0.32 1.00      

WINT_
Nmax 

0.66 -0.73 -0.59 0.59 -0.36 0.72 -0.57 0.44 0.91 0.87 0.85 0.87 0.81 0.84 0.35 1.00     

WD_N
max 

0.33 -0.34 -0.78 0.77 -0.23 0.52 -0.40 0.62 0.79 0.76 0.72 0.75 0.82 0.78 0.62 0.72 1.00    

WE_Nm
ax 

0.27 -0.29 -0.71 0.71 -0.26 0.46 -0.32 0.57 0.76 0.71 0.70 0.71 0.77 0.72 0.56 0.68 0.95 1.00   

AM_Nm
ax 

0.63 -0.71 -0.62 0.62 -0.56 0.90 -0.65 0.25 0.72 0.76 0.77 0.94 0.69 0.86 0.12 0.77 0.62 0.59 1.00  

PM_Nm
ax 

0.33 -0.42 -0.73 0.73 -0.10 0.41 -0.24 0.33 0.58 0.58 0.60 0.67 0.69 0.65 0.26 0.58 0.69 0.68 0.64 1.00 
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Table B.3 Assessing the appropriate of PCA by Measure of Sampling Adequacy (KMO) 

Overall KMO: 0.9 

Indicators SUM
_Nm
ean 

WIN
T_N
mea
n 

WD_
Nme
an 

WE_
Nme
an 

AM_
Nme
an 

PM_
Nme
an 

NIG
HT_
Nme
an 

SUM
_Nva
r 

WIN
T_Nv
ar 

WD_
Nvar 

WE_
Nvar 

AM_
Nvar 

PM_
Nvar 

NIG
HT_
Nvar 

SUM
_Nm
ax 

WIN
T_N
max 

WD_
Nma
x 

WE_
Nma
x 

AM_
Nma
x 

PM_
Nma
x 

NIG
HT_
Nma
x 

SUM_Nmean 0.90                     

WINT_Nmean 0.38 0.92                    

WD_Nmean 0.07 0.06 0.88                   

WE_Nmean 0.06 0.06 1.00 0.88                  

AM_Nmean -0.13 0.04 0.04 0.04 0.60                 

PM_Nmean -0.04 0.01 -0.03 -0.04 0.56 0.87                

NIGHT_Nmea
n 

-0.06 0.03 0.03 0.02 0.78 0.79 0.75               

SUM_Nvar 0.40 -0.20 0.03 0.03 -0.06 0.04 0.00 0.82              

WINT_Nvar 0.15 -0.15 -0.01 -0.01 0.04 0.00 0.11 0.11 0.95             

WD_Nvar -0.29 0.32 0.00 -0.01 0.24 0.17 0.26 -0.26 -0.06 0.91            

WE_Nvar -0.07 0.13 -0.01 0.01 0.20 -0.12 -0.11 -0.18 -0.14 -0.23 0.93           

AM_Nvar 0.13 -0.03 -0.08 -0.09 -0.17 0.11 -0.10 0.01 0.00 -0.37 -0.30 0.91          

PM_Nvar -0.27 -0.28 0.03 0.02 -0.21 -0.15 -0.09 -0.04 -0.12 -0.46 -0.25 0.09 0.92         

NIGHT_Nvar 0.02 -0.17 0.04 0.03 -0.18 -0.25 -0.11 0.03 0.10 -0.30 -0.34 0.00 0.44 0.90        

SUM_Nmax -0.17 -0.03 -0.08 -0.08 0.02 0.06 0.05 -0.69 0.03 -0.03 0.10 0.18 -0.01 0.03 0.82       

WINT_Nmax 0.07 0.30 0.08 0.08 -0.13 0.03 -0.09 0.02 -0.64 -0.07 0.05 -0.02 0.10 -0.03 -0.10 0.94      

WD_Nmax 0.24 -0.07 -0.01 -0.02 -0.03 -0.04 -0.06 0.21 0.01 -0.27 0.21 -0.03 -0.07 -0.13 -0.28 -0.03 0.93     

WE_Nmax 0.16 -0.18 0.10 0.11 0.07 0.06 -0.01 0.19 -0.03 0.06 -0.20 -0.07 -0.11 0.08 -0.05 -0.02 -0.60 0.93    

AM_Nmax -0.14 0.05 0.10 0.10 0.32 -0.32 0.06 -0.06 0.01 0.26 0.27 -0.82 0.03 0.11 -0.12 -0.07 0.03 0.04 0.87   

PM_Nmax 0.25 0.23 -0.06 -0.07 -0.58 -0.03 -0.40 0.04 0.04 0.16 -0.29 0.28 -0.30 -0.11 0.05 0.06 -0.05 -0.01 -0.52 0.84  

NIGHT_Nmax -0.04 0.12 -0.01 -0.02 0.25 0.26 0.40 -0.05 0.03 0.31 0.25 -0.15 -0.26 -0.76 0.02 -0.09 0.00 -0.14 -0.02 -0.13 0.89 
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III  MLOR output 

1. Selecting the predictor variables 

Case Processing Summary 

 N Marginal Percentage 

S
i
t
e
 
t
y
p
e
 

1 67 5.5% 

2 137 11.3% 

3 143 11.8% 

4 116 9.6% 

5 149 12.3% 

6 58 4.8% 

7 65 5.4% 

8 101 8.3% 

9 119 9.8% 

10 63 5.2% 

11 55 4.5% 

12 95 7.8% 

13 43 3.6% 

Valid 1211 100.0% 

Missing 0  

Total 1211  

Subpopulation 1211a  

   

 

2. stepwise analysis, in  series of stages 

a. Major road variables 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_100 mr_500 mr_10000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001) 

  /MODEL=| FSTEP=mr_10000 mr_100 mr_500 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 5863.396 409.455 12 .000 

mr_10000 5816.099 362.158 12 .000 

mr_500 5481.016 27.076 12 .008 

 

b. Secondary road variables: 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_500 mr_10000 sr_100 sr_500 sr_10000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001)/MODEL=| FSTEP=mr_10000 mr_500 sr_100 sr_500 sr_10000 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE/PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB. 

 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 5875.450 482.264 12 .000 

mr_10000 5536.383 143.198 12 .000 

mr_500 5425.635 32.449 12 .001 

sr_100 5415.467 22.282 12 .034 

sr_500 5424.553 31.367 12 .002 

sr_10000 5473.754 80.569 12 .000 
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c. Local road variables: 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_500 mr_10000 sr_100 sr_500 sr_10000 lr_100 

lr_500 lr_10000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001) 

  /MODEL=| FSTEP=mr_10000 mr_500 sr_100 sr_500 sr_10000 lr_100 lr_500 lr_10000 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB. 

 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 5759.075 637.091 12 .000 

mr_10000 5216.530 94.546 12 .000 

mr_500 5163.992 42.008 12 .000 

sr_100 5143.645 21.661 12 .042 

sr_500 5166.044 44.060 12 .000 

sr_10000 5169.561 47.577 12 .000 

lr_500 5234.892 112.908 12 .000 

lr_10000 5224.466 102.482 12 .000 

d. High density residential variables 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_500 mr_10000 sr_100 sr_500 sr_10000 lr_500 

lr_10000 highdr_500 highdr_1000 highdr_10000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001) 

  /MODEL=| FSTEP=mr_10000 mr_500 sr_100 sr_500 sr_10000 lr_500 lr_10000 highdr_500 highdr_1000 

highdr_10000 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB. 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 5515.937 561.502 12 .000 

mr_10000 5053.517 99.082 12 .000 

mr_500 4995.413 40.978 12 .000 

sr_100 4975.538 21.103 12 .049 

sr_500 4982.218 27.783 12 .006 

sr_10000 5017.843 63.407 12 .000 

lr_500 5006.130 51.695 12 .000 

lr_10000 5055.183 100.748 12 .000 

highdr_1000 5005.796 51.360 12 .000 

highdr_10000 5046.868 92.433 12 .000 

e. Low density residential variables 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_500 mr_10000 sr_100 sr_500 sr_10000 lr_500 

lr_10000 highdr_1000 highdr_10000 lowdr_1000 lowdr_10000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001)/MODEL=| FSTEP=mr_10000 mr_500 sr_100 sr_500 sr_10000 lr_500 lr_10000 

highdr_1000 highdr_10000 lowdr_1000 lowdr_10000 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE/PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI/SAVE PREDCAT PCPROB 

 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 5288.774 465.957 12 .000 

mr_10000 4877.492 54.675 12 .000 

sr_100 4850.375 27.558 12 .006 

sr_10000 4882.510 59.693 12 .000 

lr_500 4848.227 25.410 12 .013 

lr_10000 4910.042 87.225 12 .000 

highdr_1000 4898.047 75.230 12 .000 

highdr_10000 4875.825 53.008 12 .000 

lowdr_1000 4951.039 128.222 12 .000 

lowdr_10000 4872.513 49.695 12 .000 
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f. Industrial and commercial variables 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_10000 sr_100 sr_10000 lr_500 lr_10000 

highdr_1000 highdr_10000 lowdr_1000 lowdr_10000 Ind/com_1000 Ind/com_10000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001) 

  /MODEL=| FSTEP=mr_10000 sr_100 sr_10000 lr_500 lr_10000 highdr_1000 highdr_10000 lowdr_1000 

lowdr_10000 Ind/com_1000 Ind/com_10000 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB. 

 
Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 5167.492 416.816 12 .000 

mr_10000 4800.034 49.358 12 .000 

sr_100 4779.164 28.488 12 .005 

sr_10000 4808.722 58.046 12 .000 

lr_500 4773.362 22.686 12 .031 

lr_10000 4831.105 80.429 12 .000 

highdr_1000 4820.133 69.457 12 .000 

highdr_10000 4817.010 66.334 12 .000 

lowdr_1000 4871.966 121.290 12 .000 

lowdr_10000 4795.771 45.095 12 .000 

Ind/com_1000 4776.139 25.463 12 .013 

Ind/com_10000 4784.470 33.794 12 .001 

g. Forest variables 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_10000 sr_100 sr_10000 lr_500 lr_10000 

highdr_1000 highdr_10000 lowdr_1000 lowdr_10000 nres_1000 nres_10000 forest_1000 forest_10000 
  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001)/MODEL=| FSTEP=mr_10000 sr_100 sr_10000 lr_500 lr_10000 highdr_1000 

highdr_10000 lowdr_1000 lowdr_10000 nres_1000 nres_10000 forest_1000 forest_10000 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB 

 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 4847.309 276.758 12 .000 

mr_10000 4616.386 45.835 12 .000 

sr_100 4598.696 28.145 12 .005 

sr_10000 4626.559 56.008 12 .000 

lr_500 4591.888 21.337 12 .046 

lr_10000 4651.308 80.757 12 .000 

highdr_1000 4629.845 59.294 12 .000 

highdr_10000 4633.670 63.118 12 .000 

lowdr_1000 4650.757 80.206 12 .000 

lowdr_10000 4617.191 46.640 12 .000 

nres_1000 4593.219 22.668 12 .031 

nres_10000 4598.222 27.671 12 .006 

forest_1000 4609.352 38.801 12 .000 

forest_10000 4679.099 108.548 12 .000 

h. Green area (agriculture and herbs) variables 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_10000 sr_100 sr_10000 lr_500 lr_10000 

highdr_1000 highdr_10000 lowdr_1000 lowdr_10000 nres_1000 nres_10000 forest_1000 forest_10000 

agri_1000 agri_5000 herb_1000 herb_5000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001) 

  /MODEL=| FSTEP=mr_10000 sr_100 sr_10000 lr_500 lr_10000 highdr_1000 highdr_10000 lowdr_1000 

lowdr_10000 nres_1000 nres_10000 forest_1000 forest_10000 agri_1000 herb_1000 herb_5000 

agri_5000/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR)/INTERCEPT=INCLUDE /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB. 
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Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 4548.337 103.545 12 .000 

mr_10000 4481.626 36.834 12 .000 

sr_100 4471.518 26.726 12 .008 

sr_10000 4489.861 45.070 12 .000 

lr_10000 4540.977 96.186 12 .000 

highdr_1000 4529.732 84.940 12 .000 

highdr_10000 4505.549 60.757 12 .000 

lowdr_1000 4523.415 78.624 12 .000 

lowdr_10000 4471.830 27.038 12 .008 

Ids/com_1000 4472.159 27.367 12 .007 

Ind/com_10000 4468.176 23.384 12 .025 

forest_1000 4483.548 38.756 12 .000 

forest_10000 4541.937 97.146 12 .000 

herb_5000 4496.718 51.926 12 .000 

agri_5000 4486.109 41.318 12 .000 

 
I. Topography variables: 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH sr_100 sr_10000 lr_10000 ind/com_10000 highdr_1000 

highdr_10000 lowdr_1000 lowdr_10000 forest_1000 forest_10000 herb_5000 agri_5000 Dis2sea 

Altitude Topex ind/com_1000 mr_10000 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001) 

  /MODEL=| FSTEP=sr_100 sr_10000 lr_10000 ind/com_10000 highdr_1000 highdr_10000 lowdr_1000 

lowdr_10000 forest_1000 forest_10000 agri_5000 herb_5000 Altitude Dis2sea Topex ind/com_1000 

mr_10000 /STEPWISE=PIN(.05) POUT(0.051) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR)/INTERCEPT=INCLUDE /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI/SAVE 

PREDCAT. 

 
Likelihood Ratio Tests 

Effect Model Fitting 

Criteria 

Likelihood Ratio Tests 

-2 Log 

Likelihood of 

Reduced Model 

Chi-Square df Sig. 

Intercept 4186.666 110.627 12 .000 

sr_100 4100.311 24.272 12 .019 

sr_10000 4120.867 44.828 12 .000 

lr_10000 4181.911 105.871 12 .000 

Ind/com_10000 4103.414 27.374 12 .007 

highdr_1000 4151.423 75.384 12 .000 

highdr_10000 4159.364 83.324 12 .000 

lowdr_1000 4125.629 49.589 12 .000 

forest_1000 4101.281 25.241 12 .014 

forest_10000 4163.257 87.217 12 .000 

agri_5000 4118.384 42.345 12 .000 

herb_5000 4146.044 70.004 12 .000 

Altitude 4288.146 212.107 12 .000 

Dis2sea 4159.250 83.210 12 .000 

Topex 4187.977 111.938 12 .000 

Ind/com_1000 4098.724 22.684 12 .031 

mr_10000 4111.491 35.451 12 .000 

 

j. Meteorological factors variables: 

NOMREG CLU13 (BASE=5 ORDER=ASCENDING) WITH mr_10000 sr_100 sr_10000 lr_10000 highdr_1000 

highdr_10000 lowdr_1000 lowdr_10000 ind/com_1000 nres_10000 forest_1000 forest_10000 agri_5000 

herb_5000 Altitude Topex Dis2sea tp_win tem_sum ws_win 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) 

SINGULAR(0.00000001) 

  /MODEL=| FSTEP=mr_10000 sr_100 sr_10000 lr_10000 highdr_1000 highdr_10000 lowdr_1000 

lowdr_10000 ind/com_1000 nres_10000 forest_1000 forest_10000 herb_5000 agri_5000 Topex ws_win 

tp_win Altitude Dis2sea tem_sum 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR) 
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  /INTERCEPT=INCLUDE 

  /PRINT=CLASSTABLE PARAMETER SUMMARY LRT CPS STEP MFI 

  /SAVE PREDCAT PCPROB. 

 

Final Model Fitting Information 

Model Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood Chi-Square df Sig. 

Intercept Only 6034.4 
   

Final 3436.9 2597.5 228 .000 

 

 

Pseudo R-Square 

Cox and Snell .9 

Nagelkerke .9 

McFadden .5 

  

  

 

 

 

Likelihood Ratio Tests 
Effect Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 3577.235 140.302 12 .000 

mr_10000 3463.796 26.862 12 .008 

sr_100 3465.744 28.810 12 .004 

sr_10000 3481.180 44.246 12 .000 

lr_10000 3488.090 51.157 12 .000 

highdr_1000 3497.529 60.595 12 .000 

highdr_10000 3468.235 31.302 12 .002 

lowdr_1000 3483.183 46.249 12 .000 

lowdr_10000 3460.115 23.181 12 .026 

Ind/com_1000 3462.087 25.153 12 .014 

forest_1000 3462.591 25.657 12 .012 

forest_10000 3485.150 48.216 12 .000 

herb_5000 3476.889 39.955 12 .000 

agri_5000 3474.227 37.293 12 .000 

Topex 3510.303 73.370 12 .000 

ws_win 3798.004 361.071 12 .000 

tp_win 3543.831 106.898 12 .000 

Altitude 3662.180 225.246 12 .000 

Dis2sea 3513.051 76.118 12 .000 

tem_sum 3564.733 127.799 12 .000 
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3. Explore the VIF 

Variables VIF 

mr_10000 4.6 

sr_10000 3.6 

lr_10000 3.7 

Ind/com_10000 4.2 

lowdr_1000 1.9 

highdr_1000 1.8 

highdr_10000 4.2 

sr_100 1.0 

lowdr_10000 4.4 

Ind/com_1000 1.3 

herb_5000 2.2 

agri_5000 3.5 

forest_1000 2.3 

forest_10000 3.5 

Dis2sea 1.6 

Altitude 2.2 

Topex 1.2 

ws_win 2.1 

tp_win 1.6 

tem_sum 2.1 

Exclude variable if VIF >5 

 

4. Kappa Indix  

 

Symmetric Measures 

 
Value Asymp. Std. 

Errora 

Approx. Tb Approx. Sig. 

Measure of Agreement 
Kapp

a 
.5 .01 51.4 .000 

N of Valid Cases 1211    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis 
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IV Training and validation datasets 

From the results of ANOVA demonstrate that the means concentration between the two dataset 

was not significantly different, the t-statistic was non-significant p-value=0.5. Leven’s test of equality 

of variance was not significant P-value=0.3, indicating homogeneity of variances of the two data 

sets. The same results in the box plot in Figure B.1 show that the two datasets are similar and also 

the descriptive statistics of 25, 50 and 75 percentile show the similarity as shown in Table B.4. 

 

Figure B.1box plot of training and validation datasets 

 

Table B. 4 Descriptive statistics (25, 50, and 75%) for Training and validation datasets. 

Statistics 1 2 3 4 5 6 7 8 9 10 11 12 13 

No. Of  Training sites  50 111 114 97 124 48 52 80 96 47 45 80 35 

25% 57.4 55.2 47.5 39.6 45.3 35.4 29.5 35.7 35.4 38.5 38.4 66.0 42.9 

50% 61.9 59.3 50.8 44.8 48.4 42.1 33.5 40.2 39.6 42.7 45.1 75.1 46.5 

75% 65.7 65.9 54.8 48.7 51.9 47.9 39.4 46.3 43.5 47.0 54.6 85.0 53.1 

No. Of validation sites 17 26 29 19 25 10 13 21 23 16 10 15 8 

25% 56.4 51.7 44.8 42.4 44.0 37.3 30.6 34.9 38.3 39.4 35.7 69.7 37.5 

50% 59.8 60.4 50.1 47.8 47.1 42.2 34.5 40.1 41.2 42.7 41.9 79.8 43.1 

75% 62.0 65.1 54.4 51.3 51.6 46.4 40.0 46.7 43.0 44.3 59.6 87.3 48.2 
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V Nearest sites stratified by country 

 

 
Table B.5 Correlation between nearest monitoring sites stratified by countries  

VAR00001 R R Square Std. Error of the 

Estimate 

AT .325 .106 16.699 

BE .255 .065 5.609 

DK .260 .068 9.709 

ES .005 .000 15.150 

FR .460 .210 11.749 

GB .470 .221 9.186 

DE .314 .099 11.051 

IE .040 .002 12.499 

IT .087 .008 14.551 

NL .467 .218 5.169 

PT .486 .243 8.579 

 

 

VI Temporal models 

Table B.6 Site type2 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S2 .28 25.42 .28 .000 
D17 .38 23.73 .10 .000 
D2_14 .40 23.43 .02 .000 
weekday .40 23.40 .00 .000 
Sunday .40 23.39 .00 .000 
PHF .41 23.27 .01 .000 

 
Table B.7 Site type3 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S2 .23 29.25 .23 .000 
weekday  .23 29.22 .00 .000 
Sunday .23 29.21 .00 .000 
D2_14 .43 25.29 .19 .000 
 PM3 .44 24.98 .02 .000 

 
Table B.8 Site type4 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S3 .31 28.49 .31 .000 
weekday .32 28.39 .01 .000 
Sunday .32 28.37 .00 .000 
D16 .45 25.48 .13 .000 
D2_14 .47 24.96 .02 .000 
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Table B.9 Site type5 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S2 .26 27.02 .26 .000 
weekday .26 26.94 .00 .000 
Sunday .26 26.93 .00 .000 

D16 .40 24.25 .14 .000 
D2_14 .42 23.92 .02 .000 

 

 
Table B.10 Site type6 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

 S2 .20 31.62 .20 .000 
D15 .46 26.11 .26 .000 
D2_14 .48 25.68 .02 .000 
weekday .48 25.61 .00 .000 
Sunday .48 25.60 .00 .000 

 
Table B.11 Site type7 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S2 .20 21.94 .20 .000 
weekday .21 21.75 .01 .000 
Sunday,  .22 21.71 .01 .000 
D16 .26 21.09 .04 .000 
D2_14 .30 20.50 .04 .000 

 

 
Table B.12 Site type8 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S1 .16 26.12 .16 .000 
weekday .17 26.01 .01 .000 
Sunday .17 25.99 .00 .000 
D15 .29 24.08 .12 .000 
D2_14 .31 23.69 .02 .000 

 

 
Table B.13 Site type9 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S2  .22 27.34883 .22 .000 
D116  .34 25.07085 .12 .000 
D2_14  .36 24.76879 .02 .000 
weekday  .37 24.61568 .01 .000 
Sunday .37 24.59696 .00 .000 

 
 
Table B.14 Site type10 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S2  .27 31.29 .27 .000 
Weekday  .28 31.24 .01 .000 
Sunday  .28 31.23 .00 .000 
D16  .46 26.96 .18 .000 
D3_15 .48 26.59 .02 .000 
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Table B.15 Site type11temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S3  .27 27.85 .27 .000 
weekday, .28 27.76 .01 .000 
Sunday .28 27.75 .00 .000 
D16 .46 24.04 .18 .000 
D2_14 .51 22.96 .05 .000 

 

 

 
TableB.16 Site type12 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S1 .23 21.84 .23 .000 
D17 .26 21.39 .03 .000 
PHF .27 21.31 .01 .000 
weekday .27 21.30 .00 .000 
Sunday .27 21.30 .00 .000 

 

 
Table B.17 Site type13 temporal model summary 

Model R
2 RMSE R

2
 Change P-value 

S3 .43 31.27 .43 .000 
D17 .55 27.73 .12 .000 

 D4_16 .57 27.19 .02 .000 
PHF .58 26.97 .01 .000 
weekday .58 26.91 .00 .000 
Sunday .58 26.89 .00 .000 

 

VIII Separate models for weekday and weekend outputs 
 
Exploring if the tow period weekday and weekend need separate models using data from site group 
1, the results show no difference the same function were included in the two period model. 

 
Table B.18 Model Summary for weekday and weekend period in site  type1 

weekday Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

weekend 

S2 .515 .265 .265 25.42125 

D16 .582 .338 .338 24.12523 

D2_14 .586 .344 .344 24.02640 

D4_16 .586 .344 .344 24.02609 

weekday 

S2 .557 .311 .311 26.29463 

D14 .610 .372 .372 25.10640 

D2_14 .616 .380 .380 24.94150 

D3_15 .616 .380 .380 24.93841 
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Table B.19 Weekday and weekend Models coefficients for site type 1 

period Model B Std. Error Beta P-value 

weekend Constant 1.863 0.03 
 

0.000 

 
S2 21.59 0.042 0.515 0.000 

 
D14 11.318 0.042 0.27 0.000 

 
D2_14 3.084 0.042 0.074 0.000 

weekday Constant -0.783 0.02 
 

0.000 

 
S2 24.934 0.028 0.557 0.000 

 
D14 11.042 0.028 0.247 0.000 

 
D2_14 4.062 0.028 0.091 0.000 

 
Divided the data to night time and day time the data to night (hour= 20-24 and 1-4) 
and daylight (all other hours) also show no differences. 
 
Table B.20 night and day time Models coefficients for site type 1 

 
 
 
 
Night 
time 

 
 
 
Day-time 

                        
Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

B Std. 
Error 

Beta 

 

(Constant) -.416 .056  -7.380 .000 

S2 21.928 .037 .532 585.914 .000 

PM4 8.693 .170 .155 51.052 .000 

PM2NI2AM8 1.884 .121 .047 15.546 .000 

 

(Constant) -.236 .023  -10.063 .000 

S2 25.193 .029 .556 860.810 .000 

PM4 11.305 .036 .247 311.845 .000 

PM2NI2AM8 3.761 .037 .079 100.359 .000 

a. Dependent Variable: O3conc 
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IX  Correlation coefficients matrix 
 
Exploring the correlations between the average environmental characteristics from Table 4.10 for each site 
types and some of the key elements of temporal models from Table 6.4, and the associated statistics. 

 
Table B.21  Correlation coefficients matrix between environmental factors and key elements of  
temporal models 

 
 


