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Abstract

An accurate knowledge of the thermophysical properties and phase behaviour of
fluid mixtures is essential for the reliable design of products and processes across a wide
range of chemical engineering applications, varying from the processing of petroleum
fluids to the manufacturing of pharmaceuticals. Thermodynamic tools and, in the
context of this work, group contribution (GC) methods are predictive approaches
that are expected to play an important role in meeting these industrial needs. The
principal focus of the work presented in this thesis is the development of a novel GC
method based on the statistical associating fluid theory (SAFT): the SAFT-γ Mie
approach. The method is developed based on a detailed molecular model and a real-
istic intermolecular potential, the Mie potential with variable attractive and repulsive
ranges, for the description of interactions at a molecular level. Over the past decade,
an increasing research effort has been devoted to developing formalisms that couple
the accuracy of the SAFT equation of state (EoS) with the predictive capabilities of
group contribution approaches. In the development of such methods one aims to over-
come the limitations inherent to GC approaches based on activity coefficient models,
such as in the well-established universal quasi-chemical functional group activity co-
efficient (UNIFAC) approach. A more recent landmark has been the development of
heteronuclear methods within SAFT. The SAFT-γ EoS based on the square-well (SW)
potential has been shown to describe accurately the phase behaviour of a wide variety
of fluids. In the work presented in this thesis, SAFT-γ SW is applied to the study of
the fluid phase behaviour of aqueous solutions of hydrocarbons. These mixtures are of
high industrial relevance, and the accurate representation of their highly non-ideal na-
ture is very challenging from a theoretical perspective. The SAFT-γ method is shown
to perform comparatively well in predicting the behaviour of the systems examined.
Nonetheless, some challenges are identified, such as the description of thermodynamic
derivative properties and the description of near-critical fluid phase behaviour, where
the performance of the method is shown to be less accurate. These challenges partially
arise from the simplistic intermolecular square-well potential employed within SAFT-γ
SW, which allows for a rigorous theoretical development, but fails to reproduce ac-
curately finer aspects of the thermophysical behaviour of fluids, such as second-order
derivative thermodynamic properties.

These challenges are tackled here with the development of the SAFT-γ Mie GC
approach, based on the versatile Mie intermolecular potential and a third-order treat-
ment of the thermodynamics of the monomer segments. The SAFT-γ Mie method
is applied to the study of the properties of two chemical families, n-alkanes and 2-
ketones, and it is shown that a significant improvement over existing SAFT-based
group contribution approaches can be achieved in the description of the pure com-
ponent phase behaviour of the compounds studied. Moreover, the application of
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a realistic intermolecular potential is shown to allow for an excellent description of
second-order derivative thermodynamic properties, and the accurate treatment of the
intersegment interactions is shown to improve the performance of the method in the
description of the near-critical fluid phase behaviour. The predictive capability of the
method is demonstrated in the description of mixture fluid phase behaviour and excess
thermodynamic properties in a predictive manner. Given the promising performance
of the SAFT-γ Mie EoS, the method is applied to the case study of the solubility
of two active pharmaceutical ingredients in organic solvents. The method is shown
to satisfactorily predict the solubilities of the mixtures considered, based on limited
experimental data for simple systems. Given the complexity of the mixtures studied,
the performance of the SAFT-γ Mie is considered very encouraging and shows that
there is great potential in the application of the method to this challenging field.
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Chapter 1

Introduction

Thermodynamic tools are being continually developed and improved in order to meet the
need for accurate property prediction required common to many sectors of the chemi-
cal industries. Predictive approaches have come to play an important role in the design
of processes and the accuracy of their output can significantly affect process-design deci-
sions [1, 2]. Despite the wide variety of methods that are available, industrial requirements
in property prediction highlight the need for accurate approaches that can be applied in
an ever-expanding range of applications, including, among others, polymer processing,
biotechnology and solvent screening [3]. Aside from design purposes, advances in ther-
modynamic modelling have led to tools that have found novel applications, such as the
integrated design of solvents and processes, where molecular characteristics of solvents
are determined as part of the optimisation of the process [4, 5]. An important aspect in
the development of thermodynamic methodologies is their predictive capability, which is
commonly perceived as the capability to provide predictions of fluid phase behaviour and
other bulk properties without the need for experimental data for the determination of the
molecular model parameters.

One of the first examples that attests the strength of predictive molecular approaches in
the study of fluid phase behaviour is the following quote in which Kammerlingh-Onnes
credits van der Waals for his help in achieving the liquefaction of hydrogen [6]:

“In what I describe to you, your theory has been my guide. The calculations
were performed entirely on the basis of the law of corresponding states. Guided
by the law, I estimated to need 20 litres [of hydrogen]. Had I estimated a few
litres fewer, the experiment would not have succeeded”.

Predictive thermodynamic models are particularly suited for applications in the general
areas of computer-aided molecular design (CAMD) and fluid formulations. In CAMD,
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1. Introduction 3

the desired properties of a given substance are set as an input and computational tools
are used in the task of determining the molecular structure that satisfies the given pre-
requisites. Although this methodology was originally executed by means of heuristics and
costly experimental procedures, the availability of predictive (and more specifically group
contribution) methods allows the formulation of the corresponding task in terms of a more
precise optimisation problem [7–10]. These tools find particular application in the design
of processes in the pharmaceutical industry [11]. A common problem to be addressed
in this sector is the selection of the appropriate solvent or solvent blend as part of the
design of the drug manufacturing process. Despite the development and improvement of
measurement techniques, solvent selection (or solvent screening, as it is commonly referred
to) is difficult to accomplish experimentally as a large number of experiments have to be
conducted to cover a considerable range of solvents, even more so for solvent blends where
different compositions of the blend have to be studied in a discrete way. An additional
limitation to the experimental determination of optimal solvents is posed by the limited
availability of the solute (drug) for laboratory studies, mainly due to the difficulty and
cost of manufacture in the early stages of drug development [12]. These limitations can
be overcome by the application of predictive thermodynamic tools for the selection of the
optimal solvent/solvent blend, that can explore a large design space of compounds and,
in the case of solvent blends, investigate the effects of composition in a continuous way.

A vast body of research has been devoted to the development of a specific class of predictive
methodologies, the so-called group contribution (GC) approaches. Within GC methods,
molecules are decomposed into chemically distinct functional groups, so that a mixture
of components is now regarded as a solution (mixture) of chemical groups. The basic
underlying assumptions of methodologies of this kind are that molecular properties can be
calculated as an appropriate sum of contributions that are attributed to these functional
groups, and the contributions of a given group are the same, regardless of the host molecule
that it appears in. Typically, a set of group-specific parameters that fully characterises a
functional group is obtained by regression to experimental data. Once a set of functional
groups has been fully characterised, these groups can be combined to predict the proper-
ties of compounds and mixtures in a fully predictive manner. The predictive power and
applicability of methodologies of this kind stems from the fact that once a small number
of functional groups have been characterised, the methods can be applied to the study of
the properties for a wide range of mixtures. The concept of solution of groups is empirical;
however, a detailed statistical mechanical analysis of the underlying assumptions of such
an approach within activity coefficient methods can be found in [13]. A critical review
of the broad range of GC methods, spanning from applications for the prediction of pure
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component properties to phase behaviour of mixtures is given in chapter 2.

Perhaps the group contribution methodology which is most widely employed in industrial
applications is the universal quasi-chemical functional group activity coefficient (UNI-
FAC) method [14]. UNIFAC was developed based on the seminal work of Guggenheim
on a quasi-chemical theory [15], where the combinatorial part is calculated based on a
statistical derivation of the free energy of a lattice; the attractions between segments are
described by a Wilson-type expression [16]. The popularity of the UNIFAC approach is
due to the extensive parameter table available, which now covers more than 80 functional
groups and 1200 group interaction parameters [17], and to the very good performance of
the method in the description of fluid phase equilibria. More details of the theoretical basis
of the method, the evolution and development of modifications to the approach, as well
as some limitations are also presented in chapter 2. Despite its popularity, the UNIFAC
method is subject to a number of restrictions, as for example the study of different types of
phase behaviour (vapour-liquid, liquid-liquid), the application to polymer and electrolyte
systems or the consideration of pressure effects (since the theory stems from a lattice-fluid
model). These limitations have given rise to novel group contribution approaches, a very
recent example being the formulation of the GC concept within the scope of the statistical
associating fluid theory (SAFT) [18–20].

The statistical associating fluid theory (SAFT) [21–24] is a general framework for the
development of equations of state based on the statistical thermodynamics of associating
chain molecules. Within SAFT a detailed molecular model is employed and the develop-
ment of the theory is facilitated without the restriction of a lattice. More detail on the
theoretical background of SAFT approaches with a focus on the reformulation of SAFT
within the spirit of a group contribution methodology is given in section 2.4. Despite
the successful application of SAFT-type GC approaches to the modelling of highly non-
ideal and thermodynamically challenging systems [25–28], challenges remain, such as the
description of second-order thermodynamic derivative properties, that require for further
development of the theory. Addressing some of these challenges is one theme of the work
described in this thesis.

The thesis is structured as follows: in chapter 2, a critical literature review of group contri-
bution methodologies is presented, where the broad range of methodologies are discussed
in the context of different applications. The main focus is placed on the popular GC ac-
tivity coefficient method, UNIFAC, and the recent formulation of GC approaches within
the framework of SAFT.



1. Introduction 5

The performance of a promising SAFT GC method, the SAFT-γ equation of state (EoS) [19,
29] based on the square-well intermolecular potential to describe the interactions between
groups, is subsequently examined in chapter 3 in the context of the description of the
fluid phase behaviour of aqueous solutions of hydrocarbons and alcohols. Systems of this
kind are of great industrial interest and the accurate description of the highly non-ideal
phase behaviour they exhibit is a challenge for the majority of common thermodynamic
models. In the course of the application of the SAFT-γ EoS, the issue of group identifi-
cation is also discussed; the effect that this can have on the quality of the predictions of
the theory is examined in some detail. In the study of the performance of the SAFT-γ
approach, several challenges are revealed, mainly associated with the description of the
second-order derivative properties and the performance of the theory in the description of
the near-critical region. The performance of the method in the description of derivative
properties is a direct consequence of the simplified intermolecular potential employed for
the description of intersegment interactions. The square-well potential features a hard
wall of infinite repulsion at contact and a finite attraction range; this simple functional
form allows for the development of a compact theory in a rigorous manner, however it
has proven to be too simplistic to simultaneously describe a wide range of properties of
real fluids. In particular, caloric properties, which are highly relevant to process design,
cannot be predicted accurately based on models that represent the fluid phase behaviour
(vapour-liquid equilibria) well.

The aforementioned challenges are addressed through the development of a theory based
on a more realistic and versatile intermolecular potential, such as the Mie potential, a
generalised Lennard-Jonesium potential of variable attractive and repulsive ranges. The
functional form of the Mie potential makes the development of the theory somewhat more
cumbersome. However, the application of such a potential has been shown to provide an
accurate description of fluid phase behaviour and derivative properties [30, 31]. Further-
more, the use of a Mie potential comes with the added advantage of retaining a direct link
between an analytical theory and molecular simulation; molecular simulation techniques
can be employed for the study of elements of fluids and fluid mixtures difficult to access by
means of analytical theories, such as interfacial properties and structured phases. In the
case of the square-well potential this is difficult to achieve, mainly due to the discontinuity
of the potential form.

The main contribution of this thesis has been the development of a novel group contri-
bution approach, the SAFT-γ Mie method, based on the Mie intermolecular potential.
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Details of the development of the theory are presented in chapter 4, together with an as-
sessment of the performance of the theory in the description of the fluid phase behaviour
and derivative properties of real compounds, and the study of binary mixtures in a predic-
tive manner. A key application of the predictive theory presented is the study of solubility
of complex molecules in solvents and solvent blends. An example of the application of the
SAFT-γ Mie approach to the study of the solubility of complex organic molecules (used
as active pharmaceutical ingredients) in organic solvents is presented in chapter 5.

The work presented in the thesis is summarised in chapter 6, highlighting the contribu-
tions that have been made. Recommendations and directions for future work are briefly
discussed.



Chapter 2

Group Contribution Methods

Group contribution methodologies have a long history. The main applications of GC
methods can be divided in the following three categories:

- the calculation of pure component properties;

- the calculation of the activity coefficients of the liquid phase(s) in mixtures;

- the coupling with equations of state to treat the liquid and vapour phase.

In the next sections, the three different approaches are thoroughly discussed in order to
provide with an understanding of the basic characteristics of each of the aforementioned
categories. Furthermore, a contrast between the different methods is drawn and needs for
improvement in predictive capabilities are identified.

2.1 Pure Component GC Methods

In these methods empirical correlations of pure component experimental properties, such
as the critical temperature Tc, pressure pc, volume Vc, the acentric factor ω, boiling point
Tb, etc., are proposed based on expressions that incorporate information on the chemical
groups forming the molecule. To obtain descriptions of phase behaviour these properties
can be used following the corresponding states principle or equations of state. So-called
first- and higher-order methods have been developed.

2.1.1 First-order pure component methods

The sole input with first-order pure component GC methods are the types and number of
functional groups that appear in a given substance; the position and, more importantly,
the connectivity between the functional groups are neglected. These methods in principle

7
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cannot be used to distinguish between isomers that consist of the same functional groups
or to take into account proximity effects (chemical and physical changes in a group that
may occur due to the proximity of another group leading to substantially different physic-
ochemical properties).

One of the first very successful methods for estimating critical properties was presented
by Lydersen in 1955 [32]. The contributions to the critical properties of 43 different func-
tional groups including ring and non-ring carbon, oxygen, halogen, nitrogen and sulfur
were calculated by regression to experimental data; the quoted average absolute devi-
ations (AADs) for the critical temperature, pressure, and volume were 8.2 K, 3.3 bar,
and 10 cm3 mol−1 respectively for the more than 200 compounds tested for each prop-
erty [33]. This method is mostly preferred for the prediction of the critical properties of
hydrocarbons and more specifically of alkylcycloalkanes, branched alkenes, and alkynes
[34]. Later, a group contribution method for the calculation of critical properties that
demonstrated predictions of higher accuracy than the method of Lydersen was presented
by Ambrose [35, 36]; the average absolute errors reported in this case were 4.3 K for Tc,
1.8 bar for pc, and 8.5 cm3 mol−1 for Vc with a database containing values for over 200
compounds for each property [33]. The main difference between the two methods is that
in the method of Ambrose the Platt number (a measure of the branching in the molecule)
is included.

Joback and Reid [37] reassessed Lydersen’s method, added more functional groups, and
extended the capabilities of group contribution approaches to the calculation of a wide
range of properties, including the normal boiling Tb and freezing temperature Tf , the
enthalpy of vapourisation at the normal boiling point ∆Hvap,b, the room-temperature
(298 K) enthalpy of formation ∆Hf,298, the enthalpy of fusion at the triple point ∆Hfus,
the room-temperature Gibbs free energy of formation ∆Gf,298, the ideal gas heat capacity
c0

p, and the liquid viscosity ηL (the latter two properties given as functions of tempera-
ture). The method leads to significant average absolute errors in the prediction of Tb and
Tf (on average 17.9 K and 24.7 K, respectively) and should be considered as approximate.
Regarding the critical properties, and more specifically the critical temperature, this is
within the method of Joback and Reid a secondary property (following the notation of
Constantinou and Gani [38]), as its value depends on the molecular structure as well as
on the normal boiling point, which in turn is a primary property. When the primary
property (normal boiling point) used in the prediction of the critical temperature is the
one predicted by the method, high deviations are expected (AAD of 25.01 K), whereas
when an experimental value is used the accuracy of the approach is significantly improved
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with an AAD of 6.65 K [39]. The performance of the method as presented by the authors
for the critical properties is comparable to the method of Ambrose [35] with reported
AADs of 4.8 K, 2.1 bar, and 7.5 cm3 mol−1 for Tc, pc, and Vc respectively. However
the GC approach of Joback and Reid is easier to implement and has therefore gained
more popularity than the more cumbersome method of Ambrose. The performance of
the Joback-Reid method in the estimation of the normal boiling point was addressed in a
later study by Devotta and Pendyala [40], where a reevaluation of some functional groups
was presented, and new groups were introduced to improve the prediction of properties of
perhalogenated substances, in particular perfluorinated compounds. The method provides
a higher accuracy in the prediction of normal boiling point and can be used to differentiate
between some isomers accurately. A new GC-based correlation for the calculation of Tb

and Tc based on the assumption that the boiling temperature and critical temperature
reach finite values at very high (infinite) molar mass has recently been presented [41].
Such an approach results in an percentage absolute average deviation (%AAD) for the
boiling temperature Tb of 3.5% over a range of 942 compounds and for two pressures, and
is considered more accurate than the method of Joback and Reid [37], which leads to an
%AAD of 4.7% for the same compounds. The proposed critical temperature correlation
results in a 2.6% AAD from experimental values.

Of particular interest is the work of Jalowka and Daubert [42], who examined whether the
including of nearest-neighbour effects can improve on the predictions of the critical prop-
erties by first-order group contribution approaches. The inclusion of the nearest-neighbour
effects is conducted by following the group definition of the earlier work of Benson and
co-workers [43] for the prediction of the ideal gas heat capacity, where functional groups
are defined starting from the central carbon atom together with a bond that indicates
the ligands the carbon atom is bonded to. Corrections accounting for the structure of
substances are also introduced, such as the correction for the ring formation, a cis cor-
rection for the alkenes and an ortho correction for aromatic compounds. The presented
approach was shown to lead to an improvement in the accuracy of the predictions of the
critical properties for the chemical families of cycloalkanes, alkenes and aromatics over
the method of Ambrose [35]. The parameter table of the method was later extended to
organic compounds containing oxygen, nitrogen, sulfur and halogens [44].

A common feature of the methods discussed thus far is the fact that the calculation of
the critical properties, and specifically the critical temperature Tc, requires a knowledge
of the normal boiling point. In most cases, the use of experimentally determined values
of the boiling point leads to an acceptable prediction of the critical point, whereas when
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Tb is also predicted with the GC approach, the deviations in Tc rise significantly. An
effort to provide a more accurate prediction of the boiling point has been presented by
Stein and Brown [45]. The functional groups originally presented by Joback and Reid
are extended by subdividing or joining existing groups when this appears to result in a
better representation of Tb. For example, Joback and Reid employ a general OH group
for the description of alcohols, whereas within the Stein and Brown approach, different
group parameters are regressed for the OH group of a primary, secondary of tertiary alco-
hol. New functional groups were also examined and the resulting group parameter table
included 85 different groups with an overall AAD of 15.5 K for Tb. The new group contri-
butions were derived from a much larger data set than that used by Joback and Reid [37]
with an average percent error of 3.2%. The predictive capability of the method has been
tested in the prediction of the boiling point for a set of more than 6500 compounds not
included in the regression and results in an AAE of 20.4 K (this translates to a 4.3% AAD).

A fully predictive method for the estimation of the critical temperature of pure components
based solely on the number of occurrences of its functional groups, i.e., without the use
of Tb, has also been presented by Fedors [46], who developed contributions for over 30
different functional groups and reported a mean deviation of 15 K for Tc for around 200
different compounds.

2.1.2 Second-order pure component methods

An important shortcoming of GC approaches which are formulated at the first-order level
is that the actual position of a group in a molecule and its connectivity are not accounted
for. In an effort to overcome these two deficiencies and introduce a group contribution
approach with better accuracy and wider range of application, Constantinou and Gani [38]
presented an approach where the properties of pure compounds are calculated on a two-
level basis according to the following general relation

f(X) =
NG,1∑
i=1

NiCi + W

NG,2∑
j=1

MjDj , (2.1)

where f(X) is a function of property X (e.g., for the critical temperature f(X) =
exp(Tc/181.128)), NG,1 and NG,2 the total number of first- and second-order groups, re-
spectively, Ci is the contribution of a first-order group i with Ni the number of occurrences,
and Dj and Mj the second-order contributions and occurrences of group type j, respec-
tively. The second-order group contribution can be optionally included or discarded for
the property prediction by assigning the corresponding value (i.e., 0 or 1) to the constant
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Table 2.1: First- and second-order group identification of isomeric dimethylhexanes (C8H18)
in the framework of the GC method of Constantinou and Gani [38]

2,3-Dimethylhexane 2,4-Dimethylhexane 2,5-Dimethylhexane

First-Order Groups
CH3 4 4 4
CH2 2 2 2
CH 2 2 2

Second-Order Groups
CH(CH3)CH(CH3) 1 0 0
(CH3)2CH 0 1 2

W .

First-order groups are simple functional groups providing basic information on the molec-
ular structure. The identification of first-order groups in the work of Constantinou and
Gani [38] differs from the one applied in previous pure-component approaches (e.g., Joback
and Reid [37], Ambrose [35]). The procedure followed is instead the one applied for the
estimation of properties of mixtures (as, e.g., in the UNIFAC approach). Second-order
groups are used to provide more information of the molecular structure including the
connectivity. They are constructed using first-order groups as structural units and are
primarily used to increase the accuracy of the method. One can use a second-order formu-
lation to distinguish between isomers and to some extent capture proximity effects. The
difference between first- and second-order groups and how this procedure helps distin-
guishing between isomers can be illustrated by means of the example given in table 2.1, in
which it can be seen that three isomers of dimethylhexane have the same representation in
terms of first-order groups but are characterised by different combinations of second-order
groups.

The second-order groups are identified according to the principle of conjugation [47–49].
The method was initially formulated for the calculation of Tb, Tm, Tc, pc, Vc, the en-
thalpy of vapourisation at 298 K, ∆Hv,298, ∆Hf,298, and ∆Gf,298, and was subsequently
extended to the calculation of the acentric factor ω and the room-temperature molar
volume of the liquid Vl,298 [50]. The consideration of second-order groups improves the
performance of the proposed pure-component predictive method typically resulting in sig-
nificantly improved accuracy when compared to the earlier techniques [32, 35, 37]. More
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specifically, Constantinou and Gani [38] report AADs of 4.85 K for Tc, 0.113 MPa for
pc, 6.00 cm3 mol−1 for Vc, and of about 3 kJ mol−1 for both ∆Hf,298 and ∆Gf,298. The
improvement in the accuracy of the prediction of the normal boiling and freezing points
compared to the method of Joback and Reid [37] is also impressive, going from AADs of
13 K with the method of Joback and Reid to 5.35 K for Tb and from 22.6 K to 14 K
for Tf . An added advantage of the approach of Constantinou and Gani is the ability to
distinguish between isomers and the fact that it leads to a reasonable description in the
limit of very long alkane chains for the critical temperature, pressure, and volume.

Compared to the method of Jalowka and Daubert [42], where Benson-type groups are em-
ployed for the accounting of nearest-neighbour effects, the Constantinou and Gani method
has a less complicated scheme of group identification. Furthermore, all properties are cal-
culated based solely on the contributions of functional groups as primary properties and
do not require other determined properties, as in earlier approaches [35, 37, 42] where,
e.g., the boiling point is required for the prediction of Tc and in some cases, Tc is required
for pc.

2.1.3 Higher-order pure component methods

Following a similar scheme as presented in section 2.1.2, a function of a certain property
f(X) at the third-order level can be described using [51]

f(X) =
NG,1∑
i=1

NiCi + W

NG,2∑
j=1

MjDj + Z

NG,3∑
k=1

NkEk , (2.2)

where the first and second terms on the right-hand side have the same meaning as in
eq. (2.1); Ek is the contribution of a third-order group of type k that appears Ok times
in a compound and Z is a constant that can take the value 1 or 0 depending on whether
third-order contributions are included or not.

At the first-order level a large number of groups are characterised, which can provide an
accurate description of a wide range of simple and monofunctional organic compounds.
However, only a partial treatment of proximity effects is incorporated, and the theory can-
not be used to distinguish between isomers that comprise the same functional groups. The
consideration of second-order contributions allows one to achieve an improved treatment
of more complex molecules, i.e., multifunctional, polar or non-polar molecules with an
average size ranging from 3 to 6 carbon atoms and aromatic or cycloaliphatic compounds
with only one ring. At this level a better description of proximity effects and increased
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differentiation between isomers are possible. In the case of even more complex, hetero-
cyclic (e.g., with fused rings) and large multifunctional acyclic compounds (comprising 7
to 60 carbon atoms) the application of third-order groups is required to allow satisfactory
predictions. For a detailed explanation of the identification of groups of different order,
the reader is directed to the original publication [51].

The properties for which third-order group contributions have been derived to date are:
Tb, Tm, Tc, pc, Vc, ∆Gf,298 , ∆Hf,298, ∆Hf,298 and standard enthalpy of fusion (at the
melting temperature, Tm) ∆Hfus,m. The number of first-order groups identified was 182,
whereas 122 second-order, and 46 third-order groups were used to improve the accuracy
and reliability. The approach has an improved performance when compared to previous
methods with AADs of 5.89 K , 4.87 K, 0.74 bar, and 7.25 cm3 mol−1 for Tb, Tc, pc, and
Vc, respectively, calculated for a range of more than 500 compounds. Note, however, that
the accuracy of the prediction does not show a significant improvement compared to the
second-order method of Constantinou and Gani [38].

2.1.4 Further developments for pure component approaches

In addition to the predictive methods based on the contribution of groups already dis-
cussed, other techniques have been developed in an effort to increase the predictive accu-
racy of property estimation methodologies. Pure compound properties are calculated by
taking into account aspects of the molecular structure in addition to the functional groups
appearing and their number. One such method is the ABC approach [47], where the com-
pounds are regarded as hybrids of different conjugates. Every property is then estimated
by summing the atom and bond contributions of different conjugates. The difficulty in
applying this technique lies in the generation of conjugates, which is far from trivial [52].
A similar approach has been presented by Marrero-Morejón and Pardillo-Fontdevila [53],
where the prediction of pure compound properties is based on the group-interaction con-
tribution (GIC) approach [54]. Here, the contributions of interactions between bonded
groups instead of the contributions of simple groups are taken into consideration. Popular
approaches for the prediction of pure component properties also include those based on
molecular descriptors. These quantitative structure-property relationships (QSPR) apply
quantum mechanical calculations and relate component properties to molecular descrip-
tors (such as the molecular surface and electrostatics), see for example [55]. Connectivity
indices offer an alternative to GC approaches by using graphical theoretical concepts to de-
scribe the topology of molecular structures [56]. In more recent work, Gani et al. [57] have
shown how connectivity-index and GC methods can be used in a complementary fashion
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to develop a more predictive hybrid technique, GC+. The GC+ offers a framework for the
estimation of the contribution of functional groups in a predictive manner, based on the
atoms that the group comprises and how these are bonded. The connectivity indices for
atoms are obtained by regression to a large amount of experimental data; once obtained
they can employed for the prediction of the contributions of functional groups appearing
on molecules for which no experimental data is available. Even in cases where limited
experimental data is available, the GC+ method is expected to lead to group parameters
of statistical significance compared to the parameterisation of the entire group. This is an
important generic development that can significantly increase the predictive capabilities
of group contribution methods.

2.2 Activity Coefficient GC Methods

Activity coefficient methods have proved particularly useful as GC methods for the pre-
diction of the properties of mixtures, usually their fluid phase behaviour. In engineering
applications the solution of phase equilibrium is often formulated by means of the isofu-
gacity criterion of components, i.e., by equating the fugacities (or chemical potential) of
each component i in all the phases at equilibrium at a given temperature T and pressure
p [58]

fa
i (T, p, xa) = f b

i (T, p, xb),

for i = 1, 2, . . . , NC ; a = 1, . . . , NP − 1 ; b = 2, . . . , NP ; b > a , (2.3)

where xa and xb are the compositions of the phases, NC is the number of components, and
NC is the number of phases. In the case of vapour (V) - liquid (L) equilibrium, neglecting
the Poynting correcting factor allows for the equation of the fugacity of pure species i as a
liquid at the specified T and p with its vapour pressure (fL

i (T, p) = pvap
i (T )), so that the

above expression is usually rewritten as

yipϕV
i (T, p, y) = xip

vap
i (T )γi(T, p, x) , i = 1, . . . , NC, (2.4)

where γi is the activity coefficient of component i, ϕV
i its fugacity coefficient, pvap

i (T ) is
the saturated vapour pressure of pure component i at the specified temperature, and x

and y refer to the mole fractions of the liquid and the vapour phase, respectively. Under
the assumption of an ideal gas phase (i.e., ϕV

i = 1) this reduces to the commonly used
expression

yip = xip
vap
i (T )γi(T, p, x) , i = 1, . . . , NC, (2.5)
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which describes the vapour–liquid equilibrium of nonideal fluids, where γi is used to in-
corporate the nonidealities of the liquid phase.

Many different models have been proposed for the prediction of activity coefficients in
multicomponent mixtures. Group contribution approaches find application in this area as
they provide one with the ability to estimate the values of activity coefficients in cases
where no experimental data are available. In accordance with the general proposition of
group contribution approaches the molecules appearing in a mixture are decomposed in
distinct functional groups. Inter- and intra-molecular interactions are then calculated as
weighted averages of interactions between functional groups. The basic assumption here
is that a group exhibits the same behaviour regardless of the molecule in which it appears.
The fundamental advantage of this approach is that the number of different functional
groups that appear in a set of mixtures is far smaller than the combinations of molecules.
As an example, by obtaining the parameters describing the methyl CH3 and methylene
CH2 groups and their group-based interactions one can describe all pure components mix-
tures of saturated linear hydrocarbons.

The two most successful methods for the estimation of activity coefficients within the scope
of a group contribution approach are the analytical solution of groups (ASOG method)
and the universal quasi-chemical functional group activity coefficient (UNIFAC) methods,
mostly due to the size of the parameter table available. These approaches are discussed
in some detail below. Other activity coefficient GC methods include DISQUAC [59],
SUPERFAC [60], effective UNIFAC [61], and SIGMA [62], but we do not discuss these
further as they are closely related to ASOG and UNIFAC. For a more complete discussion
the reader is directed to the comprehensive review by Gmehling [63].

2.2.1 The ASOG method

The analytical solution of groups method was developed by a number of authors in several
stages (see Papadopoulos and Derr [64], Redlich et al. [65], Wilson and Deal [66], and Derr
and Deal [67]). In this approach, the activity coefficients are calculated as consisting of
two parts, by means of the following equation

ln γi = ln γS
i + ln γG

i , for i = 1, . . . , NC , (2.6)

where NC denotes the total number of components in the mixture. The first term (super-
script S for size) is the configurational contribution due to differences in molecular shape
and the second term accounts for nonidealities arising from intermolecular forces. The
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configurational term is calculated following the Flory-Huggins theory [68] as

ln γS
i = 1 − Ri + ln Ri , (2.7)

with

Ri =

NG∑
k=1

νk,i

NC∑
j=1

NG∑
l=1

xjνl,j

, for i = 1, . . . , NC , (2.8)

where νk,i is the number of groups of type k in component i, xi is the mole fraction of com-
ponent i in the system, and NG denotes the number of types of functional groups present
in the system. The contribution to the activity coefficient arising from the intermolecular
forces is calculated as

ln γG
i =

NG∑
k=1

νk,i ln Γk −
NG∑
k=1

νk,i ln Γ∗
k,i , (2.9)

Eq. (2.9) requires a knowledge of the activity coefficients of group k in two different
“states”: the term Γk represents the activity coefficient of group k in the mixture and is
calculated as

ln Γk = − ln
NG∑
l=1

XlAkl +

1 −
NG∑
l=1

XlAlk

NG∑
m=1

XmAlm

 , (2.10)

with Xl the mole fraction of groups of type l in the mixture, given by

Xl =

NC∑
i=1

xiνl,i

NC∑
j=1

xj

NG∑
l=1

νl,j

. (2.11)

The term Γ∗
k,i refers to the value of the activity coefficient of group k in a standard state,

defined as a mixture of groups in which only the groups appearing in substance i are
present. For example, if component i is benzene there is only one kind of group (group
aCH) and then ln Γ∗

aCH,C6H6
is zero. In the case of methanol, however, where two kinds of

groups appear (CH3 and OH), both ln Γ∗
CH3,CH3OH and ln Γ∗

OH,CH3OH have an finite value.
Generally the standard-state coefficients are calculated as

ln Γ∗
k,i = − ln

NG∑
l=1

X∗
l,iAkl

+

1 −
NG∑
l=1

X∗
l,iAlk

NG∑
m=1

X∗
m,iAlm

 . (2.12)
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In this case, the necessary quantity for the calculation is the fraction X∗
k,i of group type

k in component i (as opposed to the mole fraction of group type k in the mixture in
eq. (2.11)). This fraction is calculated as

X∗
k,i = νk,i

NG∑
l=1

νl,i

. (2.13)

The group interactions are accounted for using the so-called Wilson parameters,

Akl = exp
(

mkl + nkl

T

)
, (2.14)

which are based on temperature-independent group interaction parameters mkl and nkl. It
is important to note that the group interaction parameters are non-zero only for unlike in-
teractions between groups (i.e., mCH2−CH2 = 0 and nCH2−CH2 = 0, whereas mCH2−COO , 0
and nCH2−COO , 0). The temperature-dependent Wilson parameters are non-symmetric,
i.e., Akl , Alk, due to the underlying assumption of local compositions [16]. These param-
eters can be obtained by regression to vapour-liquid equilibrium (VLE) experimental data
and infinite dilution activity coefficients [67]. Once they are obtained for a specific group
interaction, they can be used in a predictive manner for any mixture where that specific
interaction appears.

The parameter table of the ASOG method initially comprised 31 groups [69], includ-
ing groups describing (among others) the chemical families of alkanes, alkanols, ketones,
amines, and aromatic hydrocarbons. A distinct group for water was also included. Later
the original parameters were revised and extended to include a total of 43 structural groups
and 341 group pairs [70, 71]. The accuracy of the method for the prediction (AAD) of
VLE is ∆y = 0.0219 for the gas composition, ∆T = 1.63 K for the temperature, and
∆p = 14.56 mmHg (≈ 0.02 atm) for the pressure over a range of about 7000 data sets [72].

2.2.2 The UNIFAC method

The UNIFAC method was initially presented by Fredenslund et al. [14] and has been the
subject of numerous publications since then. It is the most widespread GC method, and is
considered the tool of choice by many academic and industrial groups to predict the phase
behaviour of non-ideal mixtures. An overview of the evolution of UNIFAC is presented
in the reviews of Gmehling [63] and Fredenslund [73, 74]. In a similar way to ASOG, it
incorporates the solution-of-groups assumption for the estimation of activity coefficients in
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mixtures. In UNIFAC activity coefficients are calculated as the sum of two contributions,
given by

ln γi = ln γC
i + ln γR

i , for i = 1, . . . , NC , (2.15)

where NC is again the total number of components in the mixture. The term labelled C
represents the contribution of the combinatorial part, which accounts for the differences in
the size and shape of the molecules, and the term labelled R represents the residual part
which expresses the contribution of intermolecular forces to the nonideality of a mixture.

In contrast with the ASOG method, where the combinatorial contribution is described
by means of the Flory-Huggins athermal equation (eq. (2.7)), in UNIFAC, the universal
quasi-chemical (UNIQUAC) [75] expression based on Guggenheim’s [15] theory is used,
which is given by

ln γC
i = ln Φi

xi
+ z

2
qi ln θi

Φi
+ li − Φi

xi

NC∑
j=1

xjlj , (2.16)

where

li = z

2
(ri − qi) − (ri − 1) . (2.17)

Here xi, Φi, θi are the mole, volume and area fractions of component i, with

Φi = rixi

NC∑
j=1

rjxj

, (2.18)

and

θi = qixi

NC∑
j=1

qjxj

, (2.19)

z is the coordination number of the underlying lattice (which is usually set to 10), and
xj is the mole fraction of component j. In these expressions ri and qi are measures of
the molecular van der Waals volumes and molecular surface areas, respectively. These
are calculated using a weighted sum of the group contributions for the overall molecular
volume and surface as

ri =
NG∑
k=1

νk,iRk , (2.20)
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and

qi =
NG∑
k=1

νk,iQk , (2.21)

where νk,i is the number of occurrences of a group of type k in component i. The group
specific parameters Rk and Qk are obtained using the van der Waals group volumes and
areas [76]. Regarding ri and qi as pure component parameters, the methodology presented
thus far is common in both UNIQUAC and UNIFAC. The only difference lies in the
expression for the calculation of the residual term. In UNIQUAC this term is calculated
from

ln γR
i = qi

1 − ln

NC∑
j=1

θjτji

−
NC∑
j=1

θjτij

NC∑
w=1

θwτwj

 , (2.22)

where

τij = exp
(

−uij − ujj

RT

)
, (2.23)

The parameters τij are measures of the interactions between components i and j. As in
the case of the ASOG method, the interactions are expressed in a way that τij , τji (even
though u12 = u21), since the expression is derived based on local compositions. These
parameters have to be evaluated by regression to experimental data.

In UNIFAC the expression for the residual contribution to the activity coefficient of com-
ponent i is replaced by the solution of groups concept, giving

ln γR
i =

NG∑
k=1

νk,i(ln Γk − ln Γ(i)
k ) , (2.24)

where the summation is for each component over all group types. In eq. (2.24) Γk repre-
sents the residual activity coefficient of group k, and Γ(i)

k is the residual activity coefficient
of the same group in a solution containing only molecules of component i. In a similar
way as for the ASOG approach (cf. eq. (2.10)), the first term is calculated as

ln Γk = Qk

1 − ln

NG∑
l=1

θlΨlk

−
NG∑
l=1

θlΨkl

NG∑
m=1

θmΨml

 , (2.25)
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where θl is in this case the area fraction of group l, as compared to eq. (2.19) where the
area fraction is component based. Hence,

θl = QlXl

NG∑
m=1

QmXm

, (2.26)

and

Xm =

NG∑
i=1

ν(i)
m xi

NC∑
j=1

NG∑
n=1

ν(j)
n xj

. (2.27)

The residual part of the activity coefficient of group k in component i is given in eq. (2.28).
Here, a different expression of the area fraction θ

(i)
m is used, calculated in a similar way as

in eq. (2.26), but based only on the groups appearing in component i rather than on all
the groups present in the mixture:

ln Γ(i)
k = Qk

1 − ln

NG∑
l=1

θ
(i)
l Ψlk

−
NG∑
l=1

θ
(i)
l Ψkl

NG∑
m=1

θ(i)
m Ψml

 , (2.28)

θ
(i)
l =

QlX
(i)
l

NG∑
m=1

QmX(i)
m

, (2.29)

and

X
(i)
l =

ν
(i)
l

NG∑
m=1

νm,i

, (2.30)

where X
(i)
l is the fraction of groups of type l in component i. The group-group interactions

are represented by the term Ψmn which is calculated based on a Wilson-type expression [16]
as

Ψmn = exp
(

−umn − unn

RT

)
= exp

(
−amn

T

)
. (2.31)

As before the parameters amn , anm are temperature independent and groups of the same
type are assumed not to interact, i.e., amm = 0. They are determined by estimation from
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experimental VLE data and are listed in the parameter table of UNIFAC.

In addition to the similarities already highlighted between ASOG and UNIFAC for the
calculation of activity coefficients, the two methods become almost identical as the coor-
dination number of the underlying lattice, z, is increased; for large chain molecules and
more specifically in the limit where qi/ri → 1 the UNIFAC expression for the calculation
of the combinatorial part of the activity coefficient reduces to the athermal Flory-Huggins
equation (eq. (2.7)). Moreover, the residual contributions used in the two methods become
identical when the contribution that a group makes to the molecular area is taken to be
the same for all groups.

In UNIFAC group-group interactions are calculated on the basis of the main groups; sub-
groups are also identified as further distinctions of main groups that are assigned different
values for their contribution to the molecular volume and area. Considering for example
a linear alkane, the molecule is decomposed in the subgroups CH3 and CH2 with different
values of the parameters RCH3 , QCH3 and RCH2 , QCH2 . When it comes to the binary mix-
ture of an alkane with, for example, water (H2O), the group-group interaction parameter
amn has the same value for the interaction H2O - CH3 and H2O - CH2 since the functional
units of the alkane fall into the same main group CHn, which includes the subgroups CH3,
CH2 and CH (note: H2O is modelled as one main group). In the original form of UNIFAC
the parameter table comprised 18 main groups (expanding to a total of 26 subgroups) [14].

As with other group contribution methods, UNIFAC is necessarily approximate since it
is developed under the assumption that the behaviour of a group does not depend on
the environment in which it is found. This approximation can be overcome by selecting
increasingly specific groups, the limit being the representation of each molecule as a single
group. However, as the number of group interactions to be determined increases dramati-
cally, the decomposition into structural groups loses its relevance and advantage. Initially,
the choice of functional groups was based on experience and sometimes trial-and-error, in
the sense that the final decision relied on an assessment of the optimal description for the
given system. As an example of this, Fredenslund et al. [77] point out that the addition
of a CH2 group to a smaller group, such as the OH group, often improves the correlation.
However, such choices can sometimes have a negative effect on the predictive capability
of the method. This is clear in the case of alcohols, where the optimal fit to experimental
data was obtained for a two carbon-atom group (CH2CH2OH), a grouping that can only
be applied to the modelling of primary alcohols with two consecutive CH2 groups next to
the OH group.
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During the procedure of estimating the group parameters, the square of the deviation of
the calculated phase behaviour (typically vapour-liquid equilibria) from the experimental
values is usually used as the objective function to be minimised,

min
Ω

fobj =
NC∑
i=1

NP∑
j=1

∆VLEij , (2.32)

where the summations are over all components (NC) and experimental points (NP) and
Ω is the vector of the estimated parameters [77]. The parameters estimated are only the
ones describing the group-group interactions, i.e., Ω = {amn, amn} for m = 1, . . . , NG

and n = 1, . . . , NG; the volume (Rk) and area (Qk) parameters are obtained from the
van der Waals volume and surface areas given by Bondi [76]. In the original UNIFAC
approach the group group interactions are regressed one pair at a time. In, for example,
the problem of obtaining the interaction parameters in a mixture of a carboxylic acid
and an alcohol, the functional groups for the acid are CH3, CH2 and COOH and the
separate OH group is considered for the alcohol. The interaction of the alkyl groups with
the COOH and OH groups, respectively, would be determined first; then the OH-COOH
interaction is considered. Mathematically, all interactions could, of course, be estimated
simultaneously, and such a procedure may indeed yield a good description of the fluid phase
equilibria of the alcohol+acid mixtures. Such a procedure would restrict the reliability
of transferring the parameters to other mixtures, as the total of the obtained parameters
would be biased to the optimal description of the specific type of mixtures. Furthermore,
the partial revision or extension of the parameter table would be more difficult, as opposed
to determining parameters in a sequential manner.

2.2.2.1 Limitations of the original UNIFAC

Generally UNIFAC is recognised as an accurate predictive method for the calculation of
activity coefficients for a wide variety of mixtures. This has led to its implementation in
many commercial process simulators and its use is widespread in industry. Nevertheless,
the original UNIFAC method suffers from a number of limitations which result from the
following issues [60]:

• Activity coefficient approach

Within UNIFAC the nonideal nature of the liquid phase is accounted by the activity
coefficient. The vapour phase is typically assumed to be ideal (i.e., the fugacity
coefficient ϕV

i = 1). This approach to the solution of vapour-liquid phase equilibria
is commonly referred to as the γ - ϕ approach. The assumption of an ideal vapour
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phase is accurate only for low or moderate pressures, i.e., below 10-15 atm; at
higher pressures the vapour phase has to be treated explicitly by a complementary
thermodynamic model, e.g., a cubic EoS, such as the SRK EoS. This requires the
knowledge of additional molecular pure component parameters. In addition, since
the γ-ϕ approach does not treat the vapour and liquid phases on equal footing, it
cannot be applied to the description of mixtures at conditions where a vapour-liquid
critical point appears. Furthermore, since UNIFAC is based on a local-composition
model, it cannot be readily applied to describe phase equilibria in systems containing
ions, salts, polymers (since density effects are not considered) or non-condensable
gases.

• Solution of groups approach

As has already been mentioned, UNIFAC is based on the solution of groups con-
cept, which assumes that the behaviour of a structural group is independent of its
immediate environment, i.e., the molecule in which it appears. In other words when
describing a certain group one does not take specifically into account the neighbour-
ing groups on the molecule. As a result, the method cannot be used to distinguish
between isomeric forms of compounds that are described by the same groups. The
same basic assumption is the reason why UNIFAC fails to capture proximity effects
(the difference in the behaviour of, for example, two diols where the OH groups
are located further or closer apart). The fact that neighbouring groups can be
distinguished with analytical techniques such as infrared (IR) or nuclear magnetic
resonance (NMR) spectroscopy testifies to the presence of proximity effects due to
polarisation.

• The UNIFAC functional form

The parameters used in UNIFAC are estimated from regression to experimental
VLE data of appropriate mixtures. It is therefore not a surprise that the use of this
parameter table often leads to an inaccurate description of liquid-liquid equilibria
(LLE) [78]. This is a major deficiency of the UNIFAC approach, since different pa-
rameters (based on LLE data) need to be developed; the solution of three phase equi-
libria (VLLE) becomes an important issue as different parameter sets are employed
for the solution of different types of equilibria. Moreover, the use of temperature
independent parameters for the group-group interactions restricts the applicability
of UNIFAC to a temperature range of 275 - 425 K and leads to an erroneous descrip-
tion of the temperature dependence of the activity coefficients. As a consequence
only a qualitative agreement of the predicted excess enthalpies with experimental
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data [79]. Finally, the assumptions inherent in the lattice fluid theory on which
UNIFAC is based, do not allow for the explicit accounting of pressure effects; the
method cannot describe, e.g., the variation of the excess enthalpy of a mixture with
pressure.

• Experimental data

The accuracy of the predictions with the UNIFAC platform depends critically on
the availability and quality of the experimental data used for the determination
of the group parameters. As examples of this, UNIFAC predictions are usually not
very accurate in the prediction of infinite dilution activity coefficients, γ∞

i , and phase
behaviour of asymmetric systems, i.e., where the components are very different in size
(e.g. ethane+n-eicosane), as for such systems scarce experimental data are available.
The availability of experimental data in the regression of the group parameters may
also lead to restrictions of the applicability of UNIFAC in thermodynamic conditions,
as the restriction to the temperature region of 275 - 425 K, mentioned in the previous
point.

2.2.2.2 Modifications of the method

In order to address some these limitations, a number of modifications to UNIFAC have
been proposed. Early improvements of the method were based on the amount and qual-
ity of the experimental data used in the parameter estimation. The theoretical basis of
the method remained unchanged; a series of publications concentrated on revising and
extending the existing parameter table [80–83]. The use of the Dortmund Data Bank of
experimental data, in the UNIFAC parameter estimation and the use of more elaborate
objective functions than the one presented in eq. (2.32) were then introduced [84]. In a
series of publications on the revision of UNIFAC [80–82] new parameters were reported
based on the updated experimental database. The last publication reporting parameter
values for the original UNIFAC was presented by Hansen et al. [83] and Fredenslund and
Sørensen [74] and features 50 main groups (and 108 secondary groups). Among these are
chlorofluorohydrocarbons (Freons) and mixtures of relevance to biotechnology. Today, the
parameter table of UNIFAC contains more than 65 main groups [17]. The reported relative
deviations for the predictions of the approach for 3300 VLE data sets are ∆p = 1.89 kPa
for the pressure, ∆T = 1.25 K for the temperature and ∆y = 1.54% for the composi-
tion. The inadequacies of UNIFAC in predicting liquid-liquid equilibria have also been
studied and a parameter table containing values for 32 main structural groups based on
experimental LLE data has been presented [78]. The original UNIFAC methodology can
be then applied successfully for the prediction of liquid-liquid equilibria. However, the
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inconsistency of having two different parameter tables within a single approach can lead
to complications, as for example in the case of VLLE calculations.

Modifications of UNIFAC have also been presented at the level of the theory. The two
most popular approaches were the modified UNIFAC (Dortmund) [85] and the modified
UNIFAC (Lyngby) [86]. Both methods were modified by introducing an empirical term
in the calculation of the combinatorial contribution to the activity coefficient based on
the improved performance of the method and a modification; the residual part was also
modified within the two aforementioned methods by the addition of two temperature in-
dependent parameters, so that every group-group interaction is characterised by a total
of six adjustable parameters. A comparative study between the Dortmund and Lyngby
modifications of UNIFAC was presented by Gmehling et al. [87], where it was shown that
the modified UNIFAC (Dortmund) performs better in the description of infinite dilution
activity coefficients.

In the modified UNIFAC (Dortmund) the values of the parameters describing the volume
and area contributions (Rk and Qk) were not taken from Bondi [76] as in the original
UNIFAC, but were calculated together with the group-group interaction parameters by
regression to experimental data. The fitting procedure for the determination of the group
parameters within the modified UNIFAC (Dortmund) was undertaken including vapour-
liquid equilibrium data (VLE) at different conditions (p − x data at constant T , T − x

data at constant p, and x − y data at constant T ), as well as data for other properties
such as liquid-liquid equilibrium (LLE), excess enthalpies (hE), and excess heat capacities
(cE

p ). The estimated parameters, aside from the volume and surface contributions of the
groups, include the ones used for the calculation of group-group interactions (anm, bnm,
and cnm) by means of the following relation

Ψnm = exp
(

−anm + bnmT + cnmT 2

T

)
. (2.33)

This simultaneous fitting procedure provides the modified UNIFAC approach with the
capability of predicting, in addition to the VLE of mixtures, excess enthalpies of mixing,
activity coefficients at infinite dilution, liquid-liquid, and solid-liquid equilibria. Since it
was first published [85] the modified UNIFAC (Dortmund) platform has been revised and
its parameter table extended [72, 88–92]. In the most recent revision Jakob et al. [93]
refer to the ability of combining the method with the conductor-like screening model for
real solvents (COSMO-RS); the COSMO-RS approach is used to obtain pseudo experi-
mental data from quantum-mechanical calculations. The modified UNIFAC approach uses
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the resulting data to obtain parameters (by estimation) even in cases where experimental
measurements are unavailable. At present the parameter table of this method contains pa-
rameters for 85 main groups and 1293 parameters describing group-group interactions [17].
The reported accuracy of the method is ∆p = 1.19 kPa, ∆T = 0.93 K, and ∆y = 1.11%.
The improvement of the accuracy of the method is more impressive in the predictions for
activity coefficients at infinite dilution and excess enthalpies.

Extensions to polymeric systems by adding a free-volume term and residual activity co-
efficient terms [94–97], to electrolyte solutions by combination with the Debye-Hückel
theory [98, 99], and to associating mixtures [100] have also been presented. Association
interactions are accounted for by the addition of a term based on Wertheim’s first-order
perturbation theory [101–104] in the combinatorial and residual terms of UNIFAC. Also
of relevance is the extension of UNIFAC to incorporate second-order groups [38, 105, 106],
which are taken into consideration in the calculation of the molecular surface and volume
(eq. (2.20)) and the residual term of the activity coefficient (eq. (2.24)). A further im-
portant development was made by Wu and Sandler [107, 108] who set out a theoretical
basis for group identification, in contrast with the usual selection of groups according to
experience or only on the basis of best fit to experimental data. They proposed group
identification according to two criteria: (1) the geometry of a group should be independent
of the molecule; (2) each atom in a group should have the same charge in all molecules
and the group should be approximately electroneutral. The theory is supported by the
increased accuracy of predictions when the groups used within UNIFAC result from this
methodology. Finally, González et al. [109] presented a method for the extension of the
application range of UNIFAC. The method, referred to as the Connectivity Index UNI-
FAC (CI-UNIFAC), is based on the work of Gani et al. [57] and is used to predict missing
group-group interactions by “re-organising” of the existing UNIFAC groups. As a result,
there is no need for new experimental data and nor for a regression procedure for the
determination of any missing parameters.

2.3 GC methods in equations of state

UNIFAC and its modifications are widely used and considered to be the state-of-the-art
GC tools when it comes to predictions of fluid phase behaviour. However, the limited
range (both in temperature and pressure) of reliable applicability of the methods and the
inconsistency in the description of the critical region by means of the γ - ϕ approach
are important drawbacks. Furthermore, the use of activity coefficient methods is limited
to the calculation of a subset of properties and cannot be used to provide values for
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other properties (such as heat capacities, densities, etc.) which are often required in
process design. In contrast, equations of state approaches are not limited, in principle,
in their range of application, and more importantly can treat liquid and vapour phases
on an equal footing, and, through thermodynamic relations, can be used to calculate
other thermodynamic properties. In general however, equations of state (EoS) are less
predictive as component-based parameters are needed for their successful application; the
calculations of the properties of mixtures invariably require the introduction of combining
rules and adjustable mixture parameters. In an effort to use equations of state in a
predictive manner, they have been combined with group contribution methods. These
developments are reviewed in this section.

2.3.1 EoS-gE methods

Most equations of state require a knowledge of component-specific parameters for accu-
rate calculations. In the case of pure components the parameter estimation problem is
relatively straightforward and the values for each component can be calculated based on
the critical constants, as in the case of simple cubic equations of state [39], or through
parameter estimation based on, e.g., pure component phase behaviour data with the more
sophisticated approaches. In the case of calculations for mixtures, the parameters are
also mixture-specific and have to be calculated based on the pure component and binary
interaction parameters with the use of mixing and combining rules. The simplest form
of mixing rules for use in an equation of state are the seminal expressions presented by
van der Waals [110] which employ quadratic functions of the pure component parameters
and the composition of the mixture; combining rules (such as the Lorentz-Berthelot) are
usually taken as arithmetic for the unlike size and geometric for the unlike energy parame-
ters [111]. The quadratic form of the mixing rule has a theoretical basis in the composition
dependence of the second virial coefficient, but the Lorentz-Berthelot combining rules are
well-known to fail in the case of highly non-ideal mixtures [112].

An interesting approach to bring predictive capabilities to EoSs is the use of the excess
Gibbs energy of mixing, gE , of a system calculated by means of an equation of state
equated to the value obtained by means of a direct (predictive) method such as UNIFAC;
these are the so-called EoS-gE methods. Initially the equation of state is used to obtain
a relation between the excess Gibbs energy and the parameters appearing in the equation
of state. Then, and under specific conditions (these differ according to the method used),
gE is equated to the value obtained by an activity coefficient model either in the limit
of zero (gE

0 ) or infinite (gE
∞) pressure. An expression is then obtained that relates the
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EoS-related parameter(s) to the composition of the mixture; this is typically established
for the parameter that represents the intermolecular interactions within the equation of
state, commonly referred to as, amix. The co-volume parameter, bmix, is typically calcu-
lated by means of simple mixing rules (cf. eq. (2.35)). It is important to note, however,
that only some of the binary interaction parameters required to model a given mixture
can typically be obtained with this approach and that pure component parameters must
be obtained by regression to experimental data by using reliable combining rules, where
appropriate. Huron and Vidal [113] have used this EoS - gE method with the SRK equa-
tion of state [114] combined with two different methods for the calculation of the excess
Gibbs energy (at infinite pressure): the Redlich-Kister expansion [115] and the NRTL
method [116]. The method has proved to be rather successful and various modifications
of the mixing rules presented have followed [117–119]. For a review see [39, 120–122].

Of particular relevance to our discussion are the methods in which the calculation of the
excess Gibbs energy of mixing is performed by means of a GC method. In this case, only
the pure component parameter of the EoS have to be determined for the calculation of
mixture properties; the binary interaction parameters are obtained in a predictive fashion
from the GC method. One of the most widely applied predictive EoS-gE methods is the
predictive Soave-Redlich-Kwong (PSRK) [123]. In such an approach the SRK-EoS [114]
with the modified Huron-Vidal mixing rule of a first-order approximation (MHV1) [118]
is employed. A temperature dependence in the attractive interaction parameter ai is
incorporated and the following expressions are proposed

a = b

gE
0

A1
+

NC∑
i=1

xi
ai

bi
+ RT

A1

NC∑
i=1

xi ln b

bi

 , (2.34)

and

b =
NC∑
i=1

xibi, (2.35)

as mixing rules for the parameters a and b of the EoS. The zero pressure limit used in
the MHV1 mixing rules allows for the calculation of gE from UNIFAC without a recalcu-
lation of the existing parameters. The latter correction is necessary when the matching
of gE

0 is done at the infinite pressure limit, as in, e.g., the original Huron-Vidal mixing
rules [123]. In a later study, it was shown that the PSRK method fails in the description
of highly asymmetric systems [124]. This shortcoming gave rise to a new gE model, the
volume-translated Peng-Robinson (VTPR) EoS [125–127], aiming to replace the PSRK
methodology.
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Another important EoS-gE is the PPR78 EoS of Jaubert and Mutelet [128]. PPR78
(predictive Peng-Robinson, 1978) is based on the Peng-Robinson EoS [129], where the bi-
nary interaction parameters necessary for the modelling of mixtures are calculated based
on contributions of functional groups, in a similar way to the work of Peneloux and co-
workers [130–132]. It is important to mention that, within the PPR78 EoS a van Laar
expression is employed as a gE model; the existing UNIFAC parameter table cannot be
used and the contributions of the functional groups have to be estimated based on ex-
perimental data. The PPR78 has been extensively applied to the study of petroleum
fluids, such as hydrocarbons with carbon dioxide [133], nitrogen [134], and hydrogen sul-
fide [135]. Several other EoS - gE models have been suggested, such as UNIWAALS [136],
MHV2 [117, 137], LCVM [138], and the predictive equations of state of Lermite and Vi-
dal [139] and Orbey et al. [140].

2.3.2 GC methods directly implemented in equations of state

A direct description of the parameters of an equation of state within a GC formalism is also
possible. This idea has been used together with the simplified perturbed hard chain theory
(SPHCT) [141], and in the lattice fluid (LF) approach [142] derived from the Panayiotou
and Vera EoS [143]. Other approaches in this area include the chain-of-rotators group
contribution (CORGC) EoS [144], the work of Coniglio et al. [145, 146] based on the pop-
ular Peng-Robinson (PR) EoS [129], and the GC-EoS based on the lattice fluid theory
presented by Mattedi et al. [147]. More recent examples are the GC approaches of Elvas-
sore et al. [148], and Elliott and Natarajan [149].

One of the most widely applied group contribution EoS models is the GC-EoS [150]. The
method is based on a generalised van der Waals partition function and the group contri-
bution formalism. The attractive contribution is calculated based on a group contribution
NRTL expression [116], while the repulsive hard-sphere residual free energy is calculated
by means of the Carnahan-Starling EoS [151]. The parameters for more than 35 different
chemical groups were presented, and the method was revised and extended in a series of
publications [152–155]. The GC-EoS has been combined with the association term based
on the seminal work of Wertheim [101–104], as is employed within SAFT-type models, in
the development of the GCA-EoS [156]. The GCA-EoS is one of the few examples of cubic
equations of state that explicitly account for associating effects and has been tested in
the description of highly nonideal associating and non-associating systems – for a recent
review of the applications of the GCA-EoS see [157]. Another similar approach gave rise
to the cubic-plus-association (CPA) method [158], where the SRK EoS was combined with
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Wertheim’s association term (in the case of non-associating compounds, the original SRK
description is recovered). Despite the extensive application that the CPA EoS has found
in the study of the phase behaviour (VLE, LLE, SLE) of complex systems [159–162], it
has not be reformulated within the scope of a group contribution approach.

Of significant importance and relevance to this thesis is the application of a group contri-
bution formalism within the framework of the well known SAFT EoS [22–24]. We devote
the next section to a more detailed discussion of these approaches.

2.4 GC approaches within SAFT

The statistical associating fluid theory (SAFT) stems from the first-order thermodynamic
perturbation theory (TPT1) of Wertheim [101–104] for associating and chain fluids, and
the later work of Gubbins and co-workers [21–24] who reformulated it in the form of an en-
gineering equation of state. Two decades after the publication of the first papers on SAFT,
a vast amount of research has been devoted to the development of numerous versions of
the general method and applications. For a comprehensive review see the works of Müller
and Gubbins [25, 163], Economou [26], and the more recent reviews by Tan et al. [164]
and McCabe and Galindo [28].

SAFT provides a framework that allows for the calculation of the bulk properties of mix-
tures of associating chain-like molecules based on the knowledge of a monomeric reference
fluid. Different approaches in the determination of the reference fluid have been presented
that gave rise to different versions of SAFT, varying from semi-empirical approaches, such
as the one employed within the PC-SAFT EoS [165, 166] and the SAFT of Huang and
Radosz [167], to correlation based on molecular simulation data, as employed within the
soft-SAFT EoS [168, 169]. Of particular interest are the SAFT approaches where the
monomer reference fluid is approached in an entirely theoretical way, as for the develop-
ment of the framework for interaction potentials of variable range (SAFT-VR [170, 171]).

In SAFT molecules are modelled as chains of bonded spherical segments interacting via an
attractive potential (within SAFT-VR hard spheres with a van der Waals-type mean-field,
square-well (SW), Yukawa (Y), Sutherland (S), Lennard-Jones (LJ), and Mie potentials
have been considered), with short-range sites placed on the segments to mediate aggregate
formation as occurs in hydrogen bonding or in polar fluids. This is depicted for the spe-
cific case of a square-well attractive potential in figure 2.1. The description of a substance
within the SAFT formalism is undertaken by means of two parameters describing the size
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Figure 2.1: Schematic of the representation of molecules and molecular interactions within
the framework of SAFT-VR with a square-well intermolecular potential. The parameters
describing a molecule are the number of segments m, the segment diameter, σij , and the
energy (well-depth), ϵSW

ij , and range of dispersive interactions, λij . Bonding sites are placed
at a distance rd

ab from the centre of the segment to mediate associating effects (with ϵHB
ab and

rc
ab being the energy and range of association, respectively).

(usually the segment diameter σij in hard potentials or the segment volume υ00
ij in soft

potentials, and the chain length mi), two further parameters accounting for the dispersion
interactions (the potential depth ϵij and range λij , though in most implementations the
potential range is fixed), and the number and type of association sites used to mediate
hydrogen bond or aggregate formation. The sites are located at a distance rd

ab from the
centre of a segment, have an interaction cut-off range rc

ab, and each a − b site-site interac-
tion is further characterised by an attractive energy parameter ϵHB

ab .

The SAFT equation of state is written in terms of the Helmholtz free energy of the system
as a sum of different contributions

A

NkBT
= Aideal

NkBT
+ Amono.

NkBT
+ Achain

NkBT
+ Aassoc.

NkBT
, (2.36)

including an ideal term, Aideal, and terms to account for the interactions between attractive
segments (monomers) forming the molecules, Amono., for the energy change due to the for-
mation of chains of monomers, Achain, and for the effect of association, Aassoc. Here, N is
the total number of molecules in the mixture, T is the absolute temperature, and kB is the
Boltzmann constant. A pictorial representation of the different contributions to the free
energy of a system accounted for within SAFT-type theories is shown in figure 2.2.(b).
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Figure 2.2: Comparison of the treatment of a binary system of n-propane+1-butanol at a
composition of xC3H8 = 0.333: (a) within the scope of 1st order group contribution methods;
and (b) within the framework of SAFT-type methods, where the contributions to the free
energy of the system are represented (1: Ideal Gas, 2: Monomer Term, 3: Chain Term,
4: Association). Here, n-propane is modelled as a homonuclear chain of 3 segments, and
1-butanol as a homonuclear chain of 4 segments featuring 2 association sites.

Apart from the contributions shown in eq. (2.36), the general framework has been ex-
tended to include terms that explicitly account for other type of molecular interactions,
such as dipole-dipole [172–174], quadrupole-quadrupole [175], intramolecular [176, 177]
and ion-ion interactions [178–180]. Due to the explicit consideration of different molecular
contributions SAFT approaches have been shown to provide an accurate representation
of the fluid phase behaviour and thermodynamic properties of numerous pure compounds
and mixtures, from small strongly associating molecules (such as hydrogen fluoride) to
large polymers over wide ranges of conditions and types of systems. We refer to the re-
views mentioned earlier for more details.

It is worth mentioning that the general family of SAFT-type approaches is particularly
suited to the development of group contribution approaches. This is illustrated by means
of a comparison between the treatment of a binary system within the general scope of
group contribution methods and within the framework of SAFT-type approaches, as shown
on figure 2.2. From the figure it can be seen that the decomposition of molecules into
functional groups, as part of the solution of groups (or group contribution) treatment
(figure 2.2.(a)), is very similar to the treatment of a system at the level of monomeric
segments within SAFT (figure 2.2.(b)). This is an intrinsic feature of SAFT-type theories,
which allows for such approaches to be reformulated within a group contribution formalism
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in a very natural way.

2.4.1 Homonuclear approaches

In most implementations of the SAFT formalism molecules are regarded as composed of
homonuclear segments, i.e., segments of the same size and characterised by identical en-
ergetic parameters (see figure 2.1). It is important to note, however, that the theory of
Wertheim for the formation of chain-like fluids is not restricted to homonuclear models
(indeed it is also not restricted to the use of spherical segments [181]). Further extensions
of the fundamental molecular model proposed will be discussed later. Based on the origi-
nal homonuclear model, one of the first attempts to combine a group contribution method
with the SAFT methodology was presented by Lora et al. [182]. Using the parameters of
low-molecular-weight propanoates presented by Huang and Radosz [167], which are ho-
momorphs of the acrylate repeat group, Lora et al. presented calculations for the size and
energy parameters of polyacrylates. Within this pseudo-group contribution methodology,
the chain length (m) and segment volume (υ00) parameters for the polyalkylacrylates were
calculated based on the parameters of the structural groups identified: CH3, CH2, CH,
and the acrylate group ACgr. The method was not applied for the attractive energy of a
segment υ0/k, which was instead calculated from monomer data or fitted directly to cloud
curve data of the polymer solutions.

Following these ideas, Tobaly and co-workers [183, 184] and have presented a predictive
GC implementation of the SAFT EoS. The authors presented two approaches for the
predictive use of the equation of state for substances of the same chemical family, e.g.,
n-alkanes and branched alkanes. In the first approach, the parameters describing the mem-
bers of a chemical family are estimated from experimental data (typically vapour pressure
and saturated liquid density data for each compound are considered) and then relations
are derived between the molecular parameters and molecular properties (e.g., molecular
weight). In this case, each member of the n-alkane family is described by a different
set of molecular parameters. This approach was based on previous findings [167, 185],
where relations between the SAFT parameters and the molecular weight of the n-alkanes
were reported. Paricaud et al. [186] presented how such a methodology can be applied to
characterise linear polyethylene and showed that satisfactory results are obtained for the
study of solubility of light gases in polymers. In the second approach, group parameters
are determined under the assumption that molecules consist of identical segments. In the
case of the n-alkanes, this means that the CH3 and CH2 chemical segments are described
by the same group parameters, so that differences between members of the same chemical
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family depend simply on the assignment of different values of the molecular weight and
hence the chain length, m. The approach has been used to predict the phase behaviour of
pure alkanes (linear and moderately branched), alkenes and ring compounds and mixtures
of these, yielding reasonable results; the reported accuracy in the prediction of the vapour
pressure of the series from n-C9H20 to n-C38H78 is 13.61%. The same approach was later
applied to the chemical family of alcohols [184]. A homonuclear model is used as before,
and the group parameters are transferred from the study of the n-alkanes (i.e., those for
the CH3 and CH2 groups are used to model the back-bone of the molecule), and associa-
tion sites are included to model the hydroxyl hydrogen bond interaction. The parameters
required to characterise the association sites are determined by fitting to experimental
data; these are then attributed to the OH group alone. The predictive capability of this
approach is rather limited, since it is not fully formulated within the scope of contributions
of functional groups, being more of an effort to model the behaviour of substances within
a certain homologous series by transferring parameters as applied in a similar manner in
recent works [187, 188].

A more sophisticated group contribution approach was later introduced by the same
group [18]. In this case, the molecules are decomposed into functional groups and distinct
group contributions are estimated. The authors implemented a group contribution method
within two different versions of SAFT: the original one presented by Chapman et al. [24],
referred to as SAFT0, and the SAFT-VR approach of Gil-Villegas et al. [170, 171] (referred
to as GC-SAFT-VR). While the concept of groups forming the molecules is introduced,
so that group parameter tables are explicitly presented in the work of Tamouza et al. [18],
the underlying molecular model was still homonuclear. Group parameters were combined
to lead to a unique set of parameters characterising identical segments in the homonuclear
model of the molecule of interest. Systems including n-alkanes, α-olefins, 1-alkanols, alkyl-
benzenes and alkyl-cyclohexanes are studied and the predictive capability of the theory is
tested by extrapolating to long-chain molecules of high molecular weight (e.g., n-C32H66)
and later by studying mixtures of nonassociating and associating compounds [189]. In later
work, the group contribution scheme was applied to another SAFT variant, the PC-SAFT
EoS [165, 166]; the resulting methodology is commonly referred to as GC-PC-SAFT. The
parameters for polar groups have since been revised using the empirical polar term of Gub-
bins and Twu [190] combined with the segment approach of Jog and co-workers [172, 173]
and with experimental data of polar mixtures [191, 192]. The quality of the predictions
with the resulting GC-PPC-SAFT compared to the previous approach was seen to be
significantly improved. New parameters have also been obtained for alkyl-esters (R-COO-
R’) and formates (HCOO-R), with HCOO modelled as a separate group. The fluid phase
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behaviour of mixtures of esters with n-alkanes, cyclohexanes, alkylbenzenes, and xylene
has been studied in detail and the performance of the method was found to lie within an
accuracy of a few percent in a fully predictive manner (the binary interaction parameters
were calculated using standard combining rules). In a later study the predictive capability
of the polar GC-SAFT was tested in mixtures of alkanes with methyl benzoate [193]. Both
methods studied (i.e., the GC reformulation of SAFT-VR and the GC-PC-SAFT) were
found to give satisfactory phase behaviour predictions (%AAD < 10 for the bubble-point
pressure).

As a test of the predictive capability of GC-SAFT approaches, mixture properties are
usually examined using the Lorenz-Berthelot combining rules without correcting param-
eters. However, the geometric mean of the intermolecular energy parameters is theoret-
ically sound only in the case of components of identical size (diameter) and ionisation
potential; as discussed in [112], high deviations from the Berthelot combining rule can
be expected otherwise. In this spirit, Thi et al. [194] have presented a study of binary
mixtures of n-alkanes with H2 and CO2 with GC-SAFT where the binary interaction pa-
rameters were also calculated within a group contribution formalism. Molecule-group pa-
rameters were calculated by regression to experimental mixture VLE data and were used to
“build-up” the molecule-molecule interaction parameter. Following the ideas presented by
Haslam et al. [112], Nguyen-Huynh et al. [195] also followed the London theory to develop
an approach to predict the binary interaction parameters based on the pseudo-ionisation
energy of the functional groups of the molecules present in the mixture. Initially the
optimal unlike binary interaction parameter was obtained by regression to mixture data
and the pseudo-ionization energy was then calculated for each functional group in the
molecules. The group parameters obtained could then be transferred to the prediction of
binary interaction parameters of other mixtures where the same functional groups appear.
This method has been successfully tested for mixtures of CO2+n-alkane, CH4+n-alkane,
C2H6+n-alkane [195], and in mixtures of light gases with hydrocarbons [196, 197], where
VLE and LLE regions were satisfactorily predicted. Later work included the application
of the method including the explicit treatment of polar groups (GC-PPC-SAFT) to study
aqueous solutions of hydrocarbons [198], binary systems of methanol+n-alkanes [199], and,
finally, systems of amines [200].

2.4.1.1 GC approaches in PC-SAFT

The formulation of the perturbed-chain SAFT approach (PC-SAFT) [165, 166] is slightly
different to other versions of SAFT in that the free energy of a homonuclear hard chain
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fluid (as opposed to that of the monomer fluid) is first considered, and the dispersion
interactions are then obtained in a perturbation expansion with a hard-chain fluid as a
reference. As such it is, in principle, not the best suited to be reformulated as a GC ap-
proach, but relations between the molecular model parameters and molecular properties
(such as the molecular weight) can be derived so as to identify the contribution that differ-
ent chemical groups make to the properties of molecules. For example, the intermolecular
model parameters for a series of hydrofluoroethers, where experimental data (saturated
liquid densities and vapour pressures) are available, have been determined and then used to
calculate the contribution of each functional group (CH3, CH2, CF3, CF2, and O groups
were considered) [201]. In a later study the chemical family of esters including dipole-
dipole interactions using the perturbation expansion of Gubbins and co-workers [190, 202]
was considered [203]; the fluid phase behaviour of compounds not included in the regres-
sion database were found to compare well with other GC EoS methods, although for high
molecular weight esters, the deviations from the experimental data are rather significant
(e.g., 50% standard deviation was found for C23COO). The same method, with a term rep-
resenting the quadrupole-quadrupole contribution, has also been used for the prediction
of equilibrium properties of polycyclic aromatic hydrocarbons and their mixtures [204].
The vapour pressures of 19 chemical families including hydrocarbons, cyclic and aromatic
hydrocarbons, alcohols, amines, nitriles, esters, ketones, and ethers, amongst others, have
also been considered [205]. The PC-SAFT EoS has been also combined with the Con-
stantinou and Gani [38] GC approach, that incorporates first- and second-order groups,
in an attempt to distinguish between isomers and account for proximity effects [206–208].

At this point it is worth pointing out again that all approaches presented in section 2.4.1
thus far are based on a homonuclear model. Different groups are identified and charac-
terised, each with different intermolecular parameters if necessary, but in treating multi-
functional molecules, an average value for each parameter is obtained using the necessary
groups; the average parameters are then used to characterise all of the identical segments
forming the homonuclear molecule. The concept of group contribution is not applied on
the level of the underlying theory, rather more as a predictive approach to determine
the model parameters for different molecules. A different treatment is possible, where
molecules are modelled comprising segments of different size and/or energy parameters,
and each segment (or group of identical segments) represents a functional group. These
so-called heteronuclear approaches are discussed in the following section.
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2.4.2 Tangential heteronuclear segment models in SAFT

Following the original TPT1 approach of Wertheim heteronuclear models can be proposed,
where the segments in a given model molecule are arbitrarily different (see figure 2.3), al-
though it should be noted that the theory is strictly only appropriate for chains of tangen-
tially bonded segments. The first application of the theory to deal with molecules formed
from tangentially bonded heteronuclear spherical segments was a study of heteronuclear
diatomic molecules [209] later extended to heteronuclear triatomics [210] and arbitrary
polyatomic molecules [211, 212].

Adidharma and Radosz [213, 214] developed a version of the SAFT-1 theory where het-
erosegmented polymers are examined by means of a square-well potential describing the
segment-segment interactions; reasonable predictions of the phase equilibria of small and
large heterosegmented molecules that present no associating effects are obtained with this
approach. McCabe et al. [215] generalised the SAFT-VR [170, 171] equation of state to
treat heteronuclear molecules, where the chain term of the original SAFT-VR equation
was replaced by a bond-term dealing with the formation of molecules from segments that
are different in size and/or energy. The theory was validated by comparison with Monte
Carlo simulation data for isotherms of heteronuclear diatomic models. The same theory
[hetero-SAFT(VR)] was used to study symmetric and asymmetric diblock chains [216] and
semifluorinated alkanes modelled as diblock chains [217].

The original SAFT expressions of Huang and Radosz [167] was also extended to model
heteronuclear molecules with soft intermolecular potentials [218, 219]. This approach was
applied to branched and linear copolymers, and was shown to account successfully for
the effect of short-chain branching on the cloud-point pressures of certain mixtures. One
should also point out that Blas and Vega [169] studied the performance of a heteronuclear

(b)(a)

(c)

Figure 2.3: Heteronuclear models for SAFT-VR: (a) United-atom tangent model; (b) all-
atom tangent model; and (c) united-atom fused model
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soft (LJ)-SAFT in comparison with molecular simulation data for chains of varying length,
and Gross et al. [220] have presented a heteronuclear version of PC-SAFT [165, 166] ap-
plied to co-polymers consisting of polar and non-polar units, where the bonding ratio
between the different segments rather than the sequence of the segments in the chain is
defined.

Based on the agreement of the heteronuclear theory with molecular simulation calculations,
the performance of the heteronuclear SAFT-VR as a framework for a group contribution
approach was examined. Lymperiadis et al. [19] showed that the tangent heteronuclear
model fails to accurately describe the properties of real compounds, based on the results
presented for the n-alkanes, where both an all-atom (figure 2.3.(a)) and a united-atom
(figure 2.3.(b)) model were examined. It was suggested that the application of a fused
heteronuclear molecular model (figure 2.3.(b)) is more appropriate. The application of
such a molecular model gave rise to the development of three different heteronuclear GC
approaches within the framework of SAFT, which are presented in detail in the following
section.

2.4.3 Fused heteronuclear segment models

The SAFT-γ EoS [19, 29] was the first approach that addressed difficulties associated with
tangential models in SAFT. The SAFT-γ approach [19, 29] is based on a generalisation of
the SAFT-VR EoS [170, 171] to model heteronuclear chain molecules composed of fused
segments. As in all other versions of SAFT, the contributions to the free energy due
to the association interaction and irreversible formation of bonds are described following
the first-order thermodynamic perturbation theory of Wertheim [101–104]. In the first pa-
per [19] a detailed account of the inconsistencies arising from a representation of molecules
formed from tangent segments, both in the united-atom (a group of atoms is represented
by one segment - see figure 2.3.(a)) and in the all-atom (each segment represents a single
atom - see figure 2.3.(b)) representations, is presented. It turns out that although the
Wertheim TPT1 description of thermodynamic properties of molecules with tangentially
bonded segments is very accurate (i.e., in comparison with molecular simulation data), a
tangent model is not generally appropriate to model the properties of real molecules.

The introduction of the so-called shape factor, Sk, reflecting the contribution of each group
k to the “overall” molecular properties, allows a for a description of molecules compris-
ing fused segments (cf. figure 2.3.(c)); the different segments are used in the traditional
group contribution manner to represent the different chemical groups. The shape factor
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parameter Sk describes the contribution that a given segment k of diameter σk makes
to the overall molecular geometry through the mean radius of curvature Rm, the surface
area Sm and the volume Vm of the molecule. The physical significance of the shape factor
has been discussed in detail by Lymperiadis et al. [29]. Using ethane as an example, it is
shown that the molecular model proposed would correspond to a value of the bond length
between 1.2 Å and 2.3 Å (compared to the experimental bond length of 1.54 Å). The
exact value is very sensitive to the precise definition of the molecular volume, but the fact
that the calculated and experimental values lie in the same physical range is encouraging.

Within the SAFT-γ treatment of molecules formed from fused square-well segments the
thermodynamic properties attributable to a given group k are fully described by the num-
ber of identical segments that the group comprises, ν∗

k , a shape factor Sk, a segment
diameter σkk, a dispersive energy ϵkk, and range λkk. In the case of associating groups,
the number of associating site types of each group, NSTk

, and the number of sites of each
type, nk,a, are usually determined based on the chemical structure of the group; two ad-
ditional parameters are introduced for each a − b site-site interaction, namely the energy
ϵHB
kkab and range rc

kkab. For the description of the interactions between segments of different
type, ϵkl, ϵHB

klab, rc
klab, and in some cases λkl, need to be determined. In this approach, group

parameters are determined by studying the smaller members of a given homologous series
(n-alkanes, 1-alcohols, etc.) using experimental vapour pressure and saturated liquid den-
sity data usually up to the 10th member of the series. The SAFT-γ approach has been
shown to provide a very accurate description of the fluid phase behaviour for chemical
families containing the CH3, CH2, CH3CH, aCH, aCCH2, CH2=, CH=, OH, COOH, and
C=O groups (where aC denotes aromatic carbons). The overall %AAD for the chemical
families considered so far is 3.34% for the vapour pressure and 0.92% for the saturated
liquid density [19, 29].

The predictive capability of the method has been tested by assessing the description of
the fluid phase behaviour of large molecular weight compounds that were not included
in the determination of the group parameters. The result of this assessment is given in
table 2.2. In this case the overall %AAD was found to be 8.18% for the pressure and 0.75%
for the density, which is even lower than that for the fitted compounds. A key additional
advantage of the SAFT-γ method is that mixtures can be treated in a fully predictive
manner without the need to propose combining rules and adjustable parameters for the
unlike interactions. The unlike interaction parameters necessary for the modelling of mix-
tures can, in some cases, be obtained from pure component data alone. This is a unique
feature of group contribution approaches that employ a heteronuclear molecular model.
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Table 2.2: Average absolute deviations (%AAD) for vapour pressures pvap and saturated
liquid densities ρsat of the SAFT-γ predictions compared to experimental data (where n is the
number of data points) for the components not included in the parameter estimation database.

Compound T range [K] n %AAD pvap T range [K] n %AAD ρsat

n-pentadecane 283-633 76 8.26 283-633 76 0.52
n-octadecane 301-671 75 12.48 301-671 75 2.07
n-tetracosane 293-723 87 19.51 293-723 87 0.42
2-methyltetradecane 403-537 9 3.53 283-598 11 0.36
2-methylhexadecane 428-568 9 4.84 293-643 11 0.38
2-methyloctadecane 451-595 9 8.12 293-653 10 0.39
n-dodecylbenzene 599-663 20 7.97 293-698 10 1.35
n-tridecylbenzene 343-463 13 3.74 - - -
n-tetradecylbenzene 298-627 3 15.31 283-375 10 1.05
1-dodecene 396-487 19 4.34 263-578 11 0.62
1-tetradecene 431-524 10 5.24 253-613 10 1.08
tridecan-2-one 424-546 15 2.94 - - -
dodecanoic acid 403-572 11 7.35 333-573 13 0.97
tetradecanoic acid 385-465 17 12.08 333-573 13 0.77
hexadecanoic acid 440-577 9 18.64 353-573 12 0.62
dodecan-1-amine 354-532 11 5.91 313-573 14 0.67
tetradecan-1-amine 382-564 11 4.14 - - -
hexadecan-1-amine 405-596 11 5.75 333-573 13 0.68
1-dodecanol 425-549 24 5.03 308-549 39 0.65
1-tetradecanol 424-569 12 6.84 313-573 14 0.94
1-octadecanol 435-518 27 15.87 353-573 12 0.74

Average %AAD - - 8.18 - - 0.75

In this context the method has been shown to provide a good description of the fluid
phase behaviour of mixtures including binary mixtures of n-alkanes, alkenes, alkanols, n-
alkane+acids, n-alkanes+amines and even cases with highly non-ideal behaviour [19, 29],
including liquid-liquid equilibrium (LLE) and polymer-solvent systems.

Another GC approach based on the same general theory (SAFT-VR) and the same fused
heteronuclear molecular model as the SAFT-γ EoS, the hetero GC-SAFT-VR method has
also been presented [20]. The hetero GC-SAFT-VR method was formulated based on
previous work on the development of a heteronuclear EoS that employs the square-well
intermolecular potential [215, 216]. Instead of the shape factor, a chain length mk is used,
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which, in common with the shape factor, is group specific. This chain length can take
values less than 1 (as opposed to the chain length m in homonuclear approaches which for
values of less than 1 is of ambiguous physical meaning). It is possible to relate SAFT-γ and
hetero GC-SAFT-VR parameters to highlight the similarities between the two theories.
First, note that

ν∗
kSk = mk , (2.37)

where ν∗
k is the number of identical segments a groups of type k comprises (as in [29]) and

mk is the chain length (as defined in [20]). Second, one can relate the definition of the
fraction of segments of type k in the mixture, xs,k, used in SAFT-γ and the fraction of
segments of type k on a molecule of type i, xs,ki, employed within the hetero GC-SAFT-VR
method

xs,k =
NC∑
i=1

xs,ki , (2.38)

where NC again denotes the number of components in the mixture. It then becomes
clear [28] that the two theories are identical in what relates to the treatment of the ideal
and the monomer terms. The key difference between the two approaches is in the treatment
of the term related to the formation of molecules from the monomeric segments. In
SAFT-γ the formal TPT1 expression is maintained using effective parameters, so that
the contribution to the free energy due to molecule (chain) formation is a function of the
number of segments that appear in the chain and the contact radial distribution function
of an effective chain fluid in the following way:

Achain

NkBT
= −

NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
kSk − 1

 ln gii(σ̄ii) . (2.39)

In eq. (2.39), xi is the mole fraction of component i, νk,i the number of groups of type k

in component i, and gii(σ̄ii) the value of the segment-segment radial distribution function
at contact σ̄ii of an effective chain fluid of component i [19]. In the case of the hetero
GC-SAFT-VR approach, the heterogeneity of the segments is maintained at the level of
the chain molecule formation, at the cost of proposing an empirical relation that involves
contributions of the segments as well as those of the contacts:

Achain

NkBT
= −

NC∑
i=1

xi

NG∑
k=1

[(
νk,i (mk − 1) + 1

2
bik,ik

)
ln gik,ik(σik,ik)

+ 1
2

NG∑
l=1

bik,il ln gik,il(σik,il)

 , (2.40)
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where mk is the equivalent to the shape factor in the SAFT-γ approach (cf. eq. (2.37)),
gik,il(σik,il) is the value of the radial distribution function at contact σik,il and bik,il the
number of bonds between segments of type k and segments of type l on component i [20].
The corresponding effective many-body correlation function of a molecule of type i in the
hetero GC-SAFT-VR approach is approximated with the following empirical relation:

gii(1, . . . , NG) =
NG∏
k=1

[gik,ik(σik,ik)][νk,i(mk−1)+ 1
2 bik,ik]

NG∏
l=1

[gik,il(σik,il)]
1
2 bik,il . (2.41)

This empirical relation allows one to distinguish between isomers within hetero GC-SAFT-
VR, but at the same time appears to lead to a deterioration in the description of the pure
component phase behaviour of real compounds, at least in comparison with the SAFT-γ
methodology. As an example, the reported average %AAD for the linear n-alkanes (from n-
butane to n-decane) with hetero GC-SAFT-VR is 5.95% for the vapour pressure, compared
to 3.99% for SAFT-γ, and 3.07% and 0.51%, respectively, for the saturated liquid den-
sity [19, 20]. The hetero GC-SAFT-VR approach was initially applied to the study of the
phase behaviour of non-associating groups, where the chemical families of the n-alkanes,
unsaturated and branched alkanes, alkylbenzenes and ethers. The average deviations for
all chemical families and compounds considered were 5.46% for the vapour pressure and
2.81% for the saturated liquid density. In later work, the GC-SAFT-VR method was
extended to the study of the phase behaviour in polymer+solvent systems [221] and asso-
ciating compounds [222, 223].

Recently, the PC-SAFT EoS [165, 166] was reformulated within a GC formalism based on
a heteronuclear molecular model [224]. This heterosegmented PC-SAFT was developed
following the concept of the hetero GC-SAFT-VR EoS, so that the connectivity of the
different segments of the molecule is explicitly accounted for in the expressions that deter-
mine the contribution to the free energy due to chain formation. The method was shown
to accurately describe the phase behaviour of the chemical families of n-alkanes, branched
and cyclic alkanes, with average deviations of 1.50% for the vapour pressure and 0.72%
for the saturated liquid density. The predictive capability of the method was examined in
the prediction of the fluid phase behaviour of compounds not included in the regression
of the group parameters, where good agreement with the experimental data was shown
(%AADs of 12% for the vapour pressure and 1.1% for the saturated liquid density).

These are promising approaches developed on a strong theoretical basis around a detailed
molecular model without the dependency of an underlying lattice. In this way they possess
the advantages inherent in the successful UNIFAC approach but overcome the difficulties
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associated with the underlying lattice model of UNIFAC. These SAFT GC approaches
are accurate over large pressure ranges and can be used reliably for liquid and vapour
phases. Their formulation as continuum fluid theories based on a heteronuclear molecular
model allows for the binary interaction parameters to be determined from pure component
data alone. Finally, as the application of the GC formulation is applied to an equation
of state, the presented resulting methodologies can be used for the calculation of all bulk
thermodynamic properties without any limitation, as is the case for activity coefficient
GC approaches.

2.5 Other Predictive Methods

Although these are not strictly GC methods, predictive approaches based on quantum
mechanical techniques such as COSMO-RS [225–227] are also becoming increasingly pop-
ular. The COSMO-RS model combines methods from quantum chemistry with statistical
mechanics so that one is able to predict a priori the thermophysical properties of a sub-
stance or a mixture based solely on its atomic structure, without the need for experimental
data. The methodology is based on the COSMO approach [228] which involves a quan-
tum mechanical calculation used to obtain the energy, geometry, and the screening charge
density on the surface of a solute assuming it is found in an ideal conductor. It is im-
portant to note that this computationally expensive calculation has to be done only once
for a given substance; after each calculation the screening charge profile can be stored
in a database and directly accessed from there. This hypothetical state of a molecule
in a virtual conductor is used as a reference point within the COSMO-RS approach, in
which the interactions in the fluid are then described as pair interactions between “sur-
face segments”. The chemical potential of a solute in a real solvent is then calculated
from the chemical potential of surface segments, based on statistical thermodynamics. In
this context the COSMO-RS model has been used as a gE model (calculating the activ-
ity coefficient of the liquid phase) for the prediction of fluid phase equilibria in various,
including highly nonideal, mixtures [229]. A modification of the original theory in the
spirit of a group contribution approach has been presented as the COSMO-segment ac-
tivity coefficient (SAC) method [230]. Here, molecules are treated as consisting of equally
sized surface segments and the molecular activity coefficients are obtained by summing
the contributions of each segment-based activity coefficient. The accuracy of prediction of
this method has been demonstrated in calculations of vapour-liquid equilibria and infinite
dilution activity coefficients.

Another important predictive method that has been employed primarily for solubility
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calculations is the non-random two-liquid segment activity coefficient model (NRTL-
SAC) [231]. Within the framework of NRTL-SAC molecules are decomposed in segments
mapped into three categories based on surface interactions: hydrophobic segments, hy-
drophilic segments, and polar (polarity and solvation) segments. The parameters that
describe the interaction between the different increments were determined based on a vast
amount of VLE and LLE experimental data for binary solvent+solute mixtures. Having
determined the interaction parameters, a molecule is fully characterised by determining
the measure of each increment, i.e., the segment numbers of hydrophobicity, hyrdophilicity,
polarity, and solvation. This requires a substantial amount of experimental data, typically
solubilities, in at least four different solvents, each with a chemical structure representative
of one type of increment (e.g., hexane for hydrophobicity, acetonitrile for hydrophilicity,
and water for polarity). The extrapolation to other solvents, previously characterised, is
straightforward, as a single set of interaction values is used. This method is used rou-
tinely in the pharmaceutical industry in conjunction with experimental data for solvent
screening. Both the COSMO-RS and NRTL-SAC methods have been used in an effort
to predict the solubility of some commonly used substances in the pharmaceutical indus-
try [232]. The approaches were found to give reasonable predictions, with NRTL-SAC
providing predictions of higher accuracy. However, NRTL-SAC is more of a correlative
approach, as the characterisation of new solvents/solutes requires a substantial amount of
experimental data. On the other hand, the COSMO-RS method, based solely on ab initio
calculations, is fully predictive, but is generally reported to be less accurate than other
techniques, such as the UNIFAC approach [233].

The force fields developed within an all-atom or a united-atom group framework for use
in molecular simulation constitute a final class of predictive methodologies. A force field
typically contains information about the energy and size parameters of structural units of
molecules that can be employed within molecular simulation techniques (Monte Carlo or
molecular dynamics) for property prediction. Given the varying level of detail and compu-
tational cost of molecular simulation, several force fields have been developed for different
applications. The most widely applied include the all-atom OPLS [234] and AMBER [235]
force-fields, the united-atom TraPPE [236], the work of Klein and co-workers [237], and the
recent work of Potoff and Bernard-Brunel [238], where a similar grouping as the one in GC-
EoS models is typically applied, and the more coarse-grained MARTINI force field [239].

The development of the aforementioned force-fields is typically based on brute-force fit-
ting, so that the extension of the parameters to the study of new chemical families is rather
cumbersome and computationally expensive. In an attempt to overcome this shortcoming,
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and of great relevance to the work presented in this thesis, the development of force-fields
in conjunction with analytical equations of state has been presented [240–242]. The key
idea is that assuming a molecular model (e.g., united-atom or coarse-grained represen-
tation), an analytical EoS is employed for the regression to experimental data and the
determined parameters are subsequently used in molecular simulation techniques. In the
work of van Westen et al. [240], the PC-SAFT EoS [165, 166] is employed for the regression
of the parameters to experimental fluid phase behaviour data. The force-field parameters
are developed assuming a Lennard-Jonesium interaction potential and a united-atom rep-
resentation, as in the TraPPE force-field. The presented parameters are shown to provide
better agreement with the experimental values compared to the well-established TraPPE
force-field for the vapour density and heat of vapourisation. However, as the interaction
potential employed within the theory (which was parameterised based on experimental
data for the n-alkanes) does not exactly correspond to the LJ potential used in the sim-
ulations, an iterative procedure has to be followed until convergence of the parameters
is achieved [240]. In the same spirit, Avendaño et al. [241] employed the SAFT-VR Mie
EoS for the parameterisation of the force-field based on experimental data. The great ad-
vantage of this approach is that given the direct link between theory and simulation, the
parameters obtained from the analytical EoS can be employed within molecular simulation
techniques with no further adjustment. Furthermore, as within the SAFT-VR Mie the
parameters define the functional form of the interaction potential of variable attractive
and repulsive range (as opposed to determining the parameters for a potential of fixed
form), the presented approach can be employed for the development of coarse-grained
models. Models of this type are known to require flexible interaction potentials due to
the different grouping of atoms and are particularly attractive from the aspect of compu-
tational efficiency [243]. The SAFT-γ Mie EoS (presented in detail in chapter 4) has also
been employed for the development of heterosegmented simulation models, as presented
by Lafitte et al. [242].

2.6 Conluding Remarks

Group contribution approaches offer great possibilities for the prediction of fluid proper-
ties of pure components and mixtures from a knowledge of the parameters characterising a
comparatively small number of functional groups. Since the early studies, mostly involving
correlations of pure component properties [32], activity coefficient models, UNIFAC [14] in
particular, have been seen as the state-of-the-art GC tools in the prediction of fluid phase
equilibria and solubility. More recently, however, there has been an increasing interest in
reformulating molecular-based equations of state such as SAFT within a GC formalism.
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The advantage of this is that EoSs are based on continuum fluid models treating the liq-
uid and gas phases on an equal footing. Within such approaches one can also naturally
incorporate detailed molecular interactions such as hydrogen bonding, and the approaches
can be easily extended to the study of more complex systems, such as electrolyte solu-
tions and systems of polymers. In contrast to most other theories, the recently developed
heteronuclear group contribution approaches make it possible for the unlike mixture pa-
rameters to be obtained using pure compound data alone, a clear advantage in cases
where there is limited availability of experimental data. In this context the combination
of GC models and quantum mechanical calculations, such as in the COSMO-RS [225] and
COSMO-SAC [230], as well as the development of force-fields in conjuction with equations
of state [240–242], are also of much current interest.

SAFT-based GC methods are particularly well suited for the study of the complex phase
behaviour that highly non-ideal systems exhibit. As an example can be seen the family
of aqueous solutions of hydrocarbons; systems of these kind are of relevance to a wide
variety of industrial applications, from reservoir processing to waste water treatment, and
are at the same time considered highly challenging from a theoretical perspective. The
highly non-ideal phase behaviour of systems of this kind includes heterogeneous azeotropes
and liquid-liquid immiscibility, where the compositions in the two phases differ by several
orders of magnitude. The successful modelling of systems of this kind requires models
that explicitly account for the associating effects that water exhibits, which dominate the
behaviour of aqueous solutions.



Chapter 3

Modelling aqueous solutions with
the SAFT-γ group contribution
approach

In the previous chapter a comprehensive review of predictive group contribution based ap-
proaches and thermodynamic models was presented. Particular focus was given to group
contribution approaches that have been combined with SAFT-type methods, with the
view of developing an accurate predictive methodology for the prediction of thermody-
namic properties of highyl non-ideal systems. In this chapter the application of one of the
these methodologies, the SAFT-γ group contribution approach [19, 29], to the modelling
of aqueous solutions of hydrocarbons is presented.

Aqueous solutions of hydrocarbons are of great interest in many applications ranging
from the petrochemical industry to biological processes and waste water treatment. The
thermodynamic modelling of systems of this type is particularly challenging due to the
highly non-ideal behaviour that they exhibit over a wider range of thermodynamic con-
ditions. Characteristics of the fluid phase equilibrium of these systems include heteroge-
neous azeotropes bounding regions of vapour-liquid and liquid-liquid equilibria, where the
respective solubilities in the two liquid phases can differ by many orders of magnitude.
The extreme nature of the fluid phase behaviour exhibited by these systems is a direct
consequence of the dominant hydrogen bonding interactions between the water molecules.
It is therefore clear that the key to a successful description of aqueous solutions requires
the application of a thermodynamic treatment that accounts explicitly for the effects of
association. Examples of such approaches include the statistical association fluid theory
(SAFT) [23, 24] and the cubic plus association (CPA) [158] equations of state (EoSs),

47
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both of which have been used to describe the fluid phase equilibria in water+hydrocarbon
mixtures [244–256]. For a more complete review the reader is directed to the book of Kon-
togeorgis and Folas [162].

The fluid phase equilibria of aqueous solutions of hydrocarbons has been studied with
various group contribution approaches. The performance of the group contribution-
associating-equation of state (GCA-EoS) [156] in the prediction of the phase behaviour
of these systems has been presented in [257, 258]. The method was shown to provide an
accurate description of the fluid phase behaviour of water+hydrocarbon mixtures, how-
ever, based on the GC formulation of the NRTL expressions for the dispersive interactions,
a considerable amount of group interaction parameters is necessary. The determination
of the group interaction parameters requires a substantial amount of experimental data
for binary mixtures. Group contribution methods formulated within the framework of
SAFT have not yet been assessed in the description of the fluid phase behaviour of wa-
ter+hydrocarbon mixtures. A predictive study of this type presented in the literature is
based on the sPC-SAFT [259] approach where generalised parameters were used to repre-
sent the family of 1-alkanols, and the performance of the method in predicting the phase
behaviour of aqueous solutions of 1-alkanols was discussed [260]. The method was shown
to provide a satisfactory description of the phase behaviour (VLE, LLE and SLE) of se-
lected water+1-alkanol mixtures, however, the binary interaction parameters between the
components of the mixture were obtained on a molecular basis, which limits the predictive
capability of the method.

Here, the performance of the SAFT-γ group contribution approach in the prediction of
the fluid phase behaviour of aqueous solutions including hydrocarbons is assessed. The
ability of the method to describe accurately the extreme phase behaviour that these sys-
tems exhibit over a wide range of thermodynamic conditions is examined in detail. The
predictive capability of the method lies mainly in the fact that the predictions of the ther-
modynamic properties of mixtures are based on pure component experimental data alone.
Although such an approach is possible for a broad class of systems, it is not appropriate
in the case of molecules that are described as single functional groups. Since the most
appropriate model for water is as a single functional group, the extension of the method to
aqueous solutions requires the determination of unlike group parameters between the wa-
ter molecule and the other groups making up the solute molecule. The group contribution
concept allows for the estimation of the unlike group parameters to be undertaken based
on a minimal set of experimental data; a single set of transferable interaction parameters
can then be used in the modelling of a wide range of systems.
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3.1 The SAFT-γ GC Approach

The SAFT-γ method [19, 29] was developed as a generalisation of the SAFT-VR EoS [170,
171] to treat molecules formed of fused heteronuclear segments. The fused heteronuclear
molecular model was found to provide the best description of the macroscopic properties of
real compounds, while tangent molecular models (united-atom and all-atom) were found
to be unsuitable for the task. Although in the current version of the theory the segment
interactions are of the square-well form, the SAFT-VR treatment is general and can easily
be extended to treat Lennard-Jones [261], Yukawa [262] or Mie [30, 263] segments. A
square-well functional group k and its self-interaction is fully described by the number of
identical segments in the group ν∗

k , and the segment parameters such as its shape factor
Sk, the segment diameter σkk, the dispersive energy ϵkk and range λkk. In the case of
associating groups, additional parameters are introduced, namely the number of types of
associating sites of a group k, NSTk

, the number of sites of each type, nk,a, and the energy
ϵHB
kkab and range rc

kkab of the interaction for each pair of site types; in this particular case
we assume that sites are positioned half-way between the centre of the segment and the
surface [21]. The unlike group parameters σkl and λkl can be calculated by means of size-
related combining rules [σkl = (σkk +σll)/2 and λkl = (λkkσkk +λllσll)/(σkk +σll)], whereas
for the dispersive and associative unlike group interactions the additional parameters (ϵkl,
ϵHB
klab and rc

klab) are typically determined from experimental data. Within the SAFT-
γ formalism, the total Helmholtz free energy of the system is represented as a sum of
different contributions, as follows:

A

NkBT
= Aideal

NkBT
+ Amono.

NkBT
+ Achain

NkBT
+ Aassoc.

NkBT
, (3.1)

where N is the total number of particles of the system, T the absolute temperature and
kB the Boltzmann constant. The contributions accounted for are the ideal Helmholtz free
energy of the molecules, Aideal, and the Helmholtz free energy contributions resulting from
the interactions between monomeric functional groups, Amono., the formation of molecules
from the functional groups, Achain, and the effect of association, Aassoc..

The contribution of the ideal Helmholtz free energy is calculated as [264]

Aideal

NkBT
=

NC∑
i=1

xi ln
(
ρiΛ3

i

)− 1 , (3.2)

where xi is the mole fraction, ρi the number density (ρi = Ni/V ), Ni the number of
molecules of component i, and V the volume of the system. Λi denotes the de Broglie
wavelength of each molecule of component i, which incorporates the translational and
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rotational kinetic contributions to the ideal Helmholtz free energy and does not need to
be defined precisely in studies of phase equilibria.

The contribution of the group-group interactions to the Helmholtz free energy of the
system is calculated by means of a sum of a reference term for a system of hard spheres
(purely repulsive), and a dispersive (attractive) term expressed as a second-order high-
temperature perturbation expansion (terms A1 and A2) over the reference term [265]

Amono.

NkBT
= AHS

NkBT
+ A1

NkBT
+ A2

NkBT
. (3.3)

The hard-sphere Helmholtz free energy AHS is obtained from the expression of Boubĺık
[266] and [267] et al.. The mean-attractive energy per molecule [170, 171] is expressed as

A1
NkBT

= 1
kBT

NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
kSk

 (a1) , (3.4)

where NC is the number of components, NG the number of groups, νk,i the number of
groups of type k on component i, ν∗

k the number of identical segments that a group of
type k comprises, and a1 the sum of the pairwise attractive contribution between segments
of groups. The pairwise attractive contribution is obtained by using the mean-value theo-
rem and a mapping to the contact value of the pair distribution function of a hypothetical
pure hard-sphere fluid at an effective packing fraction expressed in the Carnahan and Star-
ling [151, 264] form, i.e., gHS

0,kl = gHS
0,kl(σx, ζeff

kl ), as in the SAFT-VR approach [170, 171].
The final expression for the mean attractive energy is given by

A1
NkBT

= − ρ

kBT

NC∑
i=1

NC∑
j=1

xixj

NG∑
k=1

NG∑
l=1

νk,iνl,jν∗
kν∗

l SkSlα
vdw
kl gHS

0,kl . (3.5)

The second-order (fluctuation) term accounting for the dispersive interactions in the
Helmholtz free energy per molecule is obtained from

A2
NkBT

=
( 1

kBT

)2
NC∑

i=1
xi

NG∑
k=1

νk,iν
∗
kSk

 (a2) , (3.6)

where the fluctuation term per segment a2 is given as a sum of the pair contributions
between the segments of the groups. This fluctuation is described using the local com-
pressibility approximation (LCA) [268, 269]. Using the Carnahan and Starling [151, 264]
expression for the isothermal compressibility of the reference hard-sphere mixture, KHS,
leads to the final expression for the second-order perturbation term:
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A2
NkBT

= −KHSρ

2

( 1
kBT

)2 NC∑
i=1

NC∑
j=1

xixj

NG∑
k=1

NG∑
l=1

νk,iνl,jν∗
kν∗

l SkSlϵklα
vdw
kl

×
(

gHS
0,kl + ζ3

∂gHS
0,kl

∂ζeff
kl

∂ζeff
kl

∂ζ3

)
. (3.7)

From expressions (3.5) and (3.7) it is clear that the Helmholtz free energy contribution is
expressed in an explicit group contribution form as a sum over molecular components and
over the molecule’s constituent groups. In these expressions the term αvdw

kl is the van der
Waals attractive parameter, which for square-well segments is simply

αvdw
kl = 2π

3
ϵklσ

3
kl(λ3

kl − 1) , k = 1, ..., NG, l = 1, ..., NG. (3.8)

where ϵkl is the well-depth of the dispersive interaction between segments k and l. It is
the explicit inclusion of this unlike group interaction term in the expressions for the con-
tribution of monomers to the Helmholtz free energy of the system that enables one to use
the method to predict the thermodynamic properties of the appropriate mixtures based
on pure component data alone, in cases where the parameters for all of the functional
groups of the system are found in pure components. Examples include binary systems
of n-alkanes with 1-alkanols, which are examined in detail in a later section. During the
estimation of the parameters for the functional group of the 1-alkanols (e.g., the CH2OH
functional group) values for the interactions between a given group and the other functional
groups of the molecules (i.e., the hydroxyl and the methyl and methylene, ϵCH2OH−CH3

and ϵCH2OH−CH2) are determined. The calculation of the thermodynamic properties of
mixtures of n-alkanes with 1-alkanols then follows in a predictive manner, as all of the
necessary parameters are determined from the regression to the data of the pure n-alkanes
and 1-alkanols, without the need of considering mixture-specific experimental data.

For the calculation of the contribution to the Helmholtz free energy of the system due
to the formation of molecules from the monomeric group segments, some mixing rules
are introduced, namely for the diameter σ̄ii, square-well energy ϵ̄ii and range λ̄ii [19].
The Helmholtz free energy due to chain molecule formation is expressed in terms of the
number of different segments making up the molecular species based on the first-order
thermodynamic perturbation theory (TPT1) of Wertheim [22, 270] by means of these
parameters:

Achain

NkBT
= −

NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
kSk − 1

 ln gSW
ii (σ̄ii; ζ3) . (3.9)
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In the case of the contribution to the Helmholtz free energy due to the association between
the various sites on the groups comprising the molecules, one can write the expression in
the standard form [21],

Aassoc.

NkBT
=

NC∑
i=1

xi

NG∑
k=1

νk,i

NSTk∑
a=1

nka

(
ln Xika + 1 − Xika

2

)
, (3.10)

which corresponds to sums over the numbers of components NC, group types NG, and sites
types NSTk

on the segments of a group of type k. Xika represents the fraction of component
i not bonded at the site of type a which is located on the segments of a group of type k. The
fractions of a group not bonded at a given site Xika are obtained from an iterative solution
of the corresponding mass action relations [21]. This represents the standard treatment of
association employed in SAFT approaches where one can describe dimerisation between
molecules, and the formation of chain and network-like structures. The methodology of
Wertheim can also be extended to deal with the formation of ring-like molecular struc-
tures [271–273], double bonding between given sites [274], and bond-cooperativity [275].
More details of the theory can be found in the original publications [19, 29].

As has been outlined, within the SAFT-γ formalism a heteronuclear model is retained
explicitly in the monomer term, while for the treatment of the molecular chain and asso-
ciation terms, a van der Waals like mixing rule is used to approximate the contact value
of the heteronuclear molecule. Thus in these terms, each segment is characterised by a set
of effective molecular parameters [29]. It is in the treatment of the chain and association
terms that SAFT-γ can be distinguished from hetero GC-SAFT-VR [20]. In the treatment
of the monomer contribution, as well as in the limit of molecules that are modelled as com-
prising a single group, e.g., ethane, water, carbon dioxide, the two theories are essentially
identical [28]. In the hetero GC-SAFT-VR description, an approximation is used for the
contribution of the chain formation to the free energy which has the advantage of retaining
the connectivity in the description of the molecules; the same approach is followed in the
recent development of the hs-PC-SAFT [224]. Thus within the hetero GC-SAFT-VR and
the hs-PC-SAFT formulation, the discrimination between isomers of a given molecule is
possible, while in SAFT-γ this discrimination is possible only for those isomers that are
built from different functional groups.

3.1.1 Estimation of group parameters from pure component data

The parameter estimation procedure is at the very heart of the group contribution method-
ology, where in most cases the group parameters are obtained by regression to experimental
data. Within the SAFT-γ framework, the like and unlike group interaction parameters
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are obtained by estimating pure component data for a series of compounds of the same
chemical family. The number of identical segments of each group k, ν⋆

k , as well as the
number of associating site types (and the sites of each type) of each group k, NSTk and
nka, are determined by comparing the quality of fit obtained for discrete choices of these
parameters. The values tested are chosen to be consistent with a physical representation
of the groups, e.g., the number of associating sites is determined so as to correspond to
the number of lone pairs of electrons and hydrogen atoms. As has already been empha-
sised an estimation based on pure component data allows for the determination of like
and unlike group parameters for all the pairs of groups present in the molecules used in
the estimation. For example, when estimating the parameters for the functional groups of
the n-alkanes (CH3 and CH2) the value of the unlike dispersive energy (ϵCH3−CH2) is also
obtained.

Group parameters are determined from pure component vapour-liquid equilibrium experi-
mental data, i.e., saturated liquid densities and vapour pressures, for a series of compounds
belonging to the same chemical family. The temperature range of the data included in the
estimation is from 0.3 T exp

c to 0.9 T exp
c , T exp

c being the experimental value of the critical
temperature of each component. The region close to the critical point is not included in
the estimation procedure, due to the inability of equations of state of this type to repre-
sent the critical and subcritical regions satisfactorily with a single set of parameters. The
objective function of the parameter estimation is a least-squares function of the generic
properties R expressed as

min
Ω

fobj =
NC∑
i=1

NVi∑
j=1

NPij∑
k=1

[
ln
(
σ2

ijk

) (Rexp
ijk − Rcalc

ijk )2

σ2
ijk

]
, (3.11)

where Ω is the vector of the estimated parameters and the three sums are over all com-
ponents (NC, index i), over all properties (NVi , index j), and over all experimental data
points (NPij , index k). The uncertainty of the experimental data used in the estimations
is accounted for through the variance of the kth measurement of property j for component
i, σijk. For the experimental data used in the work presented here, a constant relative
variance of 1% was used, which corresponds to a 1% relative experimental error (i.e.,
σ2

ijk = (0.01 · Rexp
ijk )2). The estimations were performed using numerical solvers provided

by the commercial software package gPROMS c⃝ [276].

The deviation of the theoretical description from the experimental data is expressed in
terms of the percentage absolute average deviation (%AAD) for each property Rij of
molecule i as follows:
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%AADRij = 1
NPij

NPij∑
k=1

∣∣∣∣∣R
exp
ijk − Rcalc

ijk

Rexp
ijk

∣∣∣∣∣× 100 . (3.12)

The procedure for the determination of the group parameters is initiated with the family
of n-alkanes. The parameters for the functional groups CH3 and CH2, as well as the
interaction between these two groups, are estimated by providing the optimal description
of the pure component experimental data from ethane to n-decane. A total of 7 param-
eters are estimated simultaneously (the group diameter σkk, interaction energy ϵkk and
range λkk for both groups, as well as the unlike interaction ϵkl between the two functional
groups) from the available experimental data [277]. The values of the shape factor Sk for
the CH3 and the CH2 groups are fixed to 2/3 and 1/3 respectively (where both groups are
composed of one segment only, ν⋆

CH3
= 1 and ν⋆

CH2
= 1) , following an analogous strategy

to that within the framework of the SAFT-VR EoS, where the chain length m is related
to the number of the carbon atoms of an alkane (m = 1/3(C − 1) + 1) [215, 245]. The
description of the pure component vapour-liquid equilibria of the correlated n-alkanes is
shown in figures 3.1, for the coexistence densities, and 3.2 for the vapour pressures. It
can be seen that the SAFT-γ method can accurately describe the phase behaviour of the
correlated compounds, with the average error for all compounds included in the regression
being 3.98% for the vapour pressure, pvap, and 0.57% for the saturated liquid density,
ρsat [19].

The optimised parameters are then transferred to the study of other chemical families for
the determination of the group parameters of additional functional groups in a sequential
manner. The current parameter table of the method contains the parameters for 11 func-
tional groups, including parameters for the families of n-alkanes, n-alkylbenzenes, mono-
and di-unsaturated hydrocarbons as well as associating compounds such as the 1-alkanols,
primary amines, and carboxylic acids [19, 29]. The average deviations over all compounds
of each chemical family studied in previous work for the two properties considered are
summarised in table 3.1. The average %AADs over all chemical families are 3.34% for
the vapour pressure and 0.92% for the saturated liquid density [19, 29], where it is worth
noting that the smallest deviations are observed for the families comprising the OH and
NH2 associating groups (the primary alkanols and amines) possibly due to the dominant
nature of the hydrogen bond on the thermophysical properties.

The predictive capability of the method was initially tested in predicting the pure com-
ponent fluid phase equilibria of high molecular weight compounds that were not included
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Figure 3.1: Description of the coexistence densities as a function of temperature for the linear
alkanes (n-ethane to n-decane from bottom to top) included in the estimation of the CH3 and
CH2 group parameters within the framework of the SAFT-γ group contribution approach. The
symbols represent correlated experimental data from NIST [277] and the continuous curves the
calculations with the theory.

Table 3.1: Overall average absolute deviations (%AAD) of the vapour pressures pvap and
saturated liquid densities ρsat within the SAFT-γ framework compared to experiment for all
of the chemical families included in the database.

Chemical family Number of Compounds %AAD pvap %AAD ρsat

n-alkanes 9 3.98 0.57
branched alkanes 10 2.92 0.39
n-alkylbenzenes 9 4.12 1.49
alkenes 19 4.78 0.74
2-ketones 8 3.47 1.14
carboxylic acids 8 3.60 1.42
primary amines 9 1.64 0.53
1-alkanols 9 2.19 1.09

Average %AAD - 3.34 0.92

in the parameter estimation procedure. The overall deviations for these predictions are
8.18% for pvap and 0.75% for ρsat [19, 29]; the larger deviations observed in the vapour
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Figure 3.2: Description of the vapour pressure for the linear alkanes (n-ethane to n-decane
from left to right) included in the estimation of the CH3 and CH2 group parameters within
the framework of the SAFT-γ group contribution approach. The symbols represent correlated
experimental data from NIST [277] and the continuous curves the calculations with the theory.
The pressure is plotted in logarithmic scale to highlight both the high- and low-temperature
regions.

pressure can be attributed to the extremely small values of the vapour pressures for the
bigger compounds for the temperature range of the predictions.

3.2 Parameters Studied

The performance of the SAFT-γ method in the description of the fluid phase behaviour
of aqueous solutions of hydrocarbons, and more specifically of n-alkanes and alkanols, is
the subject of the current work. In order to perform such a study the necessary group
parameters and unlike group-group interactions have to be determined from experimental
data. This procedure is discussed in detail in the following sections.

3.2.1 Pure component parameters: water

The model for water used in the study of aqueous solutions with the SAFT-γ approach was
the one developed by Clark et al. [278]. The model was originally formulated within the
SAFT-VR approach, however the equivalence of the two approaches for molecules com-
prising a single spherical group allows for its use in SAFT-γ without further modifications.
The shape factor, SH2O, was set to the value of the chain length of the original model,
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which for the case of spherical groups in the SAFT-VR description is SH2O = mH2O = 1.
In order to tackle the degeneracy of the molecular parameters when developing a model for
water, a detailed examination of the parameter space was carried out as discussed in [278].
Regarding the association scheme, Clark et al. [278] proposed a model with 4 association
sites, with two sites for the lone electron pair and two for the hydrogen atom, where associ-
ation is allowed only between sites of different type. The specific values of the parameters
for water are reported in table 3.2. The proposed model is found to correlate accurately
the available data [277], as shown in figure 3.3, with corresponding %AADs of 0.99% for
the vapour pressure and 1.28% for the saturated liquid densities for temperatures up to
0.9 T exp

c .
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Figure 3.3: Comparison between the description of water with the model of Clark et al. [278]
and the correlated experimental data from NIST [277] for (a) the coexisting liquid and vapour
densities, and (b) the vapour pressure as a function of temperature.

3.2.2 Pure component parameters: 1-alkanols

A preliminary analysis of the existing treatment of the description used in the modelling
of the chemical family of 1-alkanols is carried out first. The family of 1-alkanols was ini-
tially modelled by means of an OH functional group, as presented in [19]. The OH group
employed by Lymperiadis et al. resulted to an accurate description of the pure component
VLE of the 1-alkanols studied, with %AADs of 2.19% for the vapour pressure and 1.09%
for the saturated liquid density. However, the accuracy of the representation of the fluid
phase behaviour of binary mixtures of n-alkanes+1-alkanols was not found to be as good
as one would have hoped. This is illustrated here by comparing the predictions of the
theory and the experimental data for the vapour-liquid equilibria of the binary system of
n-heptane+1-pentanol, as shown in figure 3.4. From the figure it can be seen that although
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the theory reproduces the experimental composition of the vapour phase, the liquid side
of the phase envelope and the location of the azeotrope exhibited by the mixture are not
very well described.
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Figure 3.4: Prediction of the phase behaviour of the binary system n-heptane+1-pentanol
as pressure-composition isotherms at two different temperatures. Circles represent the exper-
imental data at 368.15 K and the triangles at 348.15 K [279], where the continuous curves are
the predictions of the SAFT-γ EoS with the 1-alkanols modelled with an OH functional group.

In an attempt to improve the predictive capability of the method in the description of
binary systems, the modelling of the chemical family of 1-alkanols was revisited. One has
to bear in mind that the identification of groups is in most cases based on heuristics and
basic chemical experience, with the final choice being usually the combination of groups
that results in the best representation of the experimental data. The combination of atoms
chosen to represent the functional groups identified on a molecule is chosen based on a
balance between the predictive capability of the method and the number of parameters
(mainly unlike group parameters) to be estimated; the use of large functional groups often
increases the accuracy of the method but at the same time the number of cross interac-
tion parameters to be determined would also increase. The OH functional group may be
a common choice in modelling 1-alkanols, but there is no firm theoretical consideration
dictating this option.

Wu and Sandler [107, 108] have presented a methodology for the identification of functional
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Table 3.2: SAFT-γ square-well potential parameters for the functional groups of the n-
alkanes, 1-alkanols and water. The CH2OH group features 2 association sites of type a and 1
of type b, whereas the H2O group has 2 sites of each type.

Group k ν∗
k Sk λk σk [Å] ϵk/kB [K] nk,a nk,b ϵHB

kkab/kB [K] rc
kkab [Å]

CH3 1 0.667 1.413 3.810 252.601 - - - -
CH2 1 0.333 1.661 4.027 240.482 - - - -
CH2OH 1 0.566 1.652 4.317 399.959 2 1 2555.721 2.359
H2O 1 1.000 1.789 3.034 250.000 2 2 1400.000 2.1082

groups based on the requirement that a group should have the same net charge regardless
of the molecule in which it appears. They have suggested that a CH2OH group is more
appropriate than independent adjacent CH2 and OH groups in representing the primary
alcohols. From a chemical perspective the use of a CH2OH group to model 1-alkanols is
more physically sound than the use of an OH group, particularly when one considers the
polarisation effect of the OH on the neighbouring carbon group. The presence of the OH
functional group affects the neighbouring group of the alkyl chain in a way that the CHn

group exhibits different characteristics than the rest of the groups on the alkyl chain of
the alkanol. This is the underlying concept for the choice of a CH2OH functional group
(in the case of primary alkanols), where the effects of association, related to the hydrogen
bonding between the lone electron pairs of the oxygen and the hydrogen atom, and polari-
sation effects are incorporated in a single group. The choice of a CH2OH functional group
is also in line with the theoretical analysis of the solutions of groups concept of Currier
and O’Connell [13], where based on a statistical mechanical analysis it is concluded that
the inherent approximations of the theory dictate the grouping of molecules to be such
that the dominant electronic and electrostatic effects are completely localised in the groups.

In revisiting the parameters for the family of 1-alkanols the modelling strategy proposed
by Wu and Sandler [107] is followed and the modelling of 1-alkanols is done by means
of a CH2OH functional group. The CH2OH group is represented as one segment (i.e.,
ν∗

CH2OH = 1) featuring 3 association sites (two to represent the two lone pairs on the oxy-
gen atom and one for the hydrogen atom), following the 3B associating scheme proposed
by Huang and Radosz [167]. The parameters obtained for the CH2OH functional group,
based on pure component vapour-liquid equilibrium data, are summarised in table 3.2,
together with these for the alkyl groups and water.

The regression to experimental vapour pressure (pvap) and saturated liquid density (ρsat)
data for the series of 1-alkanols (from ethanol to 1-decanol) results in an average %AAD
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Table 3.3: Percentage average absolute deviations (%AAD) of the vapour pressures pvap

and saturated liquid densities ρsat obtained with the SAFT-γ framework compared to experi-
ment [280] (where n is the number of data points) for the 1-alkanols using a CH2OH functional
group.

Compound T range [K] n %AAD pvap T range [K] n %AAD ρsat

C2H5OH 231-463 30 3.77 159-463 39 1.32
C3H7OH 280-483 25 3.81 169-483 38 0.68
C4H9OH 295-506 26 1.92 186-506 39 0.61
C5H11OH 278-508 30 1.82 278-508 29 0.54
C6H13OH 310-428 17 0.76 273-547 38 0.85
C7H15OH 343-445 14 0.72 273-563 38 1.01
C8H17OH 296-549 31 1.99 263-583 39 1.14
C9H19OH 366-481 15 1.39 293-596 38 1.43
C10H21OH 301-526 27 3.61 293-613 38 1.92

Average - - 2.20 - - 1.06
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Figure 3.5: Description of the coexistence densities as a function of temperature for the
family of 1-alkanols (ethanol to 1-decanol from bottom to top) included in the estimation
of the CH2OH group parameters within the framework of the SAFT-γ group contribution
approach. The symbols represent correlated experimental data from [280] and the continuous
curves the calculations with the theory.

of 2.20% for pvap and 1.06% for ρsat. The deviations per compound as well as the tempera-
ture ranges of the experimental data used are shown in detail in table 3.3. The description
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Figure 3.6: Description of the vapour pressure as a function of temperature (Clausius-
Clapeyron representation) for the family of 1-alkanols (ethanol to 1-decanol from top to bot-
tom) included in the estimation of the CH2OH group parameters within the framework of the
SAFT-γ group contribution approach. The symbols represent correlated experimental data
from [280] and the continuous curves the calculations with the theory. The pressure is plotted
in logarithmic scale to highlight both the high- and low-temperature regions.

of the pure component fluid phase behaviour of the correlated 1-alkanols is presented on
figure 3.5 for the coexistence densities and figure 3.6 for the vapour pressure. The aver-
age deviations observed are essentially the same as the ones found when applying an OH
functional group (%AADs of 2.19% and 1.09%, respectively [19]). From this comparison
it is evident that the use of a CH2OH functional group for the modelling of 1-alkanols
does not result in a significantly improved description of the vapour-liquid equilibria of
the pure components. Moreover, the application of such a functional group is limited
only to primary alkanols; other functional groups such as CHOH and COH would have
to be used to describe secondary and tertiary alkanols. Importantly, however, the use
of this different group allows for a more accurate representation for the phase behaviour
of binary mixtures containing 1-alkanols as will be demonstrated for binary mixtures of
1-alkanols+n-alkanes in a later section. This provides a strong motivation for introducing
the CH2OH functional group.
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3.2.3 Binary interaction parameters: water-alkyl groups

An advantage of the SAFT-γ group contribution approach lies in its predictive capability
for the fluid phase behaviour and thermodynamic properties of mixtures based on pure
component data alone, as long as the necessary information pertaining to the groups of
the mixture can be gleaned from the pure components. Unfortunately, this is not the
case for aqueous solutions, as water has to be treated as a single functional group. As a
consequence, the unlike interaction parameters between water and other functional groups
have to be determined based on available experimental data for the appropriate mixtures.

The study of mixtures containing water requires the determination of the unlike group
interaction energy parameters for the unlike dispersion interactions and the unlike asso-
ciation, in cases when water is mixed with associating molecules. All other unlike group
parameters (i.e., σkl, λkl, and rc

klab where applicable) are calculated by means of standard
combining rules [19]. The advantage of using a so-called solution-of-groups approach is
that the unlike group interaction parameters are transferable, so that a minimal amount
of experimental data is required. The parameters can be determined by regression to
the experimental data for the fluid phase behaviour of a single mixture, and can then be
transferred to the study of a series of mixtures comprising molecules formed from these
groups. For the study presented here, the unlike group dispersion energies ϵCH3−H2O and
ϵCH2−H2O are obtained by estimating the available experimental data for the vapour-liquid
and liquid-liquid phase equilibria of the binary mixture of water+n-hexane [281–283]. This
specific system was selected based on the chain length of hexane; a medium sized chain
allows for the study of the transferability of the parameters for systems comprising both
shorter and longer alkanes. This choice was also supported by the extensive experimental
data available for the fluid phase behaviour of the system.

The VLE and LLE phase equilibria of the system are calculated by means of a (p, T ) flash
algorithm based on the work by [284], and every point is therefore calculated at a given
temperature and pressure corresponding to the experimental data. The algorithm used
for the estimation of the unlike group interactions is based on sequential quadratic pro-
gramming with a numerical evaluation of the derivatives of the objective function [285].
The objective function used for the regression is a least-squares function characterising
the absolute deviation of the predicted compositions of each phase from the experimental
data for the system as:



3. Modelling aqueous solutions with the SAFT-γ approach 63

min
Ω

fobj =

NP∑
i=1

{
(xexp

i,H2O − xcalc
i,H2O)2 + (yexp

i,H2O − ycalc
i,H2O)2

} . (3.13)

In the estimation procedure, the available experimental compositions for water are used,
both in the VLE and the LLE region of the phase envelope. It has to be noted that the
very small values of the solubility of n-hexane in water are not included in the estimation.
The aim of this study is to provide a generic model that describes the properties of the
aqueous solutions of the entire homologous series of the n-alkanes. Previous studies of
aqueous solutions of alkanes with the SAFT-VR EoS lead to the conclusion that the use
of the same binary interaction parameters for all phases does not allow for a simultaneous
description of the solubility of water in the alkane-rich phase and the solubility of alkanes
in the water-rich phase [112]. However, SAFT as a general method has been shown to
describe accurately the low solubilities encountered in water+n-alkane systems, when this
feature is under specific investigation [112, 256]. The accurate description of the solubility
of alkanes in the water-rich phase can also lead to satisfactory results in other challenging
aspects such as the water-octanol partition coefficients of alkanes, which have been studied
previously with group contribution methods [286], but this is not the aim of the current
work.

The resulting SAFT-γ description of the fluid-phase behaviour for the water+n-hexane
mixture is depicted in figure 3.7. It is evident that the estimated unlike group interaction
parameters allow for an accurate description of both the vapour-liquid equilibria and
the solubility of water in the alkane-rich phase (i.e., liquid-liquid equilibria) over a wide
range of pressures (∼2 to 80 MPa). The calculated three-phase (vapour-liquid-liquid
coexistence) line is in excellent agreement with the experimental data. As mentioned
previously, the simultaneous accurate description of both the VLE and the LLE of a
system remains a significant challenge for group contribution approaches. The optimal
unlike group dispersion energy interaction parameters are found to be ϵCH3−H2O/kB =
190.761 K and ϵCH2−H2O/kB = 174.481 K (see table 3.4). The quality of the representation
of the experimental data for the water+n-hexane mixture is included in table 3.5 where
the %AADs in pressure and temperature are calculated as in eq. (3.12) and the absolute
error in composition is defined as:

∆z = 1
n

n∑
i=1

∣∣∣zexp.
i − zcalc.

i

∣∣∣× 100 , (3.14)

where zi is the composition of component i in the phase of interest (i.e., xi for the liquid
phase and yi for the vapour phase) and n is the number of data points for the mixture of
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interest. The transferability of group parameters to the study of other aqueous solutions
of alkanes of varying length is discussed in section 3.3.3.

3.2.4 Binary interaction parameters: water-hydroxymethyl group

The same approach as presented in section 3.2.3 for water+n-alkane mixtures is followed
for the determination of the unlike group interaction parameters between H2O and the
CH2OH group of the 1-alkanols homologous series. For the study of aqueous solutions
of 1-alkanols, the parameters between water and the CH3 and CH2 functional groups of
the alkanes are transferred from the previous study of aqueous alkanes, while the missing
interaction parameters, i.e., the cross dispersion energy ϵCH2OH−H2O and association energy
ϵHB
CH2OH−H2O, are obtained by estimation to a small set of experimental data. The bonding

volume between water and the alkanol is calculated by means of the following combining
rule [171]:

Kijklab =

K
1/3
iikkab + K

1/3
jjllab

2

3

, (3.15)

where the volume available for bonding between sites a and b on groups k and l of com-
ponents i and j is calculated from
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Figure 3.7: Isothermal pressure-composition phase diagram for the mixture water+n-hexane
at 473.15 K used for the determination of the cross interaction parameters of water with the
functional groups of the n-alkanes. The continuous curves represent the SAFT-γ calculations,
the triangles the experimental VLE data [281], and the circles the experimental LLE data [282,
283]. The vapour-liquid phase envelope and the three phase region can be clearly seen in the
inset image, where the dashed line denotes the three-phase vapour-liquid-liquid coexistence
line.
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Table 3.4: Unlike energetic group parameters for the dispersion and association interactions
between functional groups. The parameters denoted with a are estimated from pure component
data, whereas the parameters with b are obtained by regression to experimental data for the
phase behaviour of mixtures. Any parameter not shown takes a value of zero (e.g., ϵHB

klab/kB =
0).

ϵkl/kB [K] CH3 CH2 CH2OH H2O
CH3 252.60a 261.520 279.939 190.761
CH2 261.520a 240.482a 283.702 174.481
CH2OH 279.939a 283.702a 399.959a 431.345
H2O 190.761b 174.481b 431.345b 250.000a

ϵHB
klab/kB [K] CH3 CH2 CH2OH H2O

CH3 - - - -
CH2 - - - -
CH2OH - - 2555.721a 1988.154b

H2O - - 1988.154b 1400.000a

Kijklab =
4πσ̄2

ij

72r2
d

[
ln
(

rc
klab + 2rd

σ̄ij

)(
6rc3

klab + 18rdrc2
klab − 24r3

d

)
+ (rc

klab + 2rd − σ̄ij)
(
22r2

d − 5rdrc
klab − 7rdσ̄ij − 8rc2

klab

+rc
klabσ̄ij + σ̄2

ij

)]
. (3.16)

In eq. 3.16, rd is the distance of the association site from the centre of the effective sphere
of interaction and has a fixed value (rd/σ̄ij = 0.25).

The regression is made based on the available VLE [287] and LLE [288] data for the binary
mixture water+1-pentanol which are shown in figure 3.8. As in section 3.2.3, the solution
of an alkanol of medium size for which sufficient experimental mixture data is available is
selected for the estimation of the interactions between water and the CH2OH functional
group. The objective function used in the regression is given by eq. (3.13), where the
experimental values of the composition of water in all studied phases are used. Given
the increased solubility of alkanols in water (compared to the water+n-alkane mixtures),
experimental data for both sides of the liquid-liquid equilibria of water+1-pentanol are
included in the regression of the interaction parameters.

The values of the new estimated parameters are ϵCH2OH−H2O/kB = 431.345 K for the
unlike dispersion energy and ϵHB

CH2OH−H2O/kB = 1988.154 K for the unlike energy of the
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Figure 3.8: Isobaric temperature-composition phase diagram for the mixture water+1-
pentanol at 101.3 kPa used for the determination of the cross interaction parameters of water
with the CH2OH group of the 1-alkanols. The continuous curves represent the SAFT-γ cal-
culations, the triangles the experimental VLE data [287], the circles the experimental LLE
data [288], and the dashed line denotes the three-phase vapour-liquid-liquid coexistence line.

association (cf. table 3.4). The resulting high value of the dispersive interaction between
the CH2OH functional group and water is justified as it also includes in an effective way
the effect of the strong dipole-dipole interactions between these two groups and compen-
sates for the weak attractive interaction between water and the alkyl part of the alkanol,
as shown in section 3.2.3. The resulting group-averaged molecular dispersive interaction
ϵ̄ij [19] between water and the alkanol lies close to the geometric mean of the like interac-
tions, a finding consistent with previous studies of aqueous solutions of methanol [278] and
ethanol within the SAFT-VR framework [187], as well as of aqueous solutions of longer
alkanols with the CPA EoS [260]. The quality of the regression in terms of the deviation
from the experimental data is summarised in table 3.5. From figure 3.8 one can see that
the set of group parameters allows for a good description of the fluid phase behaviour of
the system. The compositions of both phases are well described both in the VLE and LLE
regions of the phase envelope, and the position and the compositions of the three-phase
line are in good agreement with the experimental data. The performance of the method
in the prediction of the fluid phase behaviour of aqueous systems of 1-alkanols of varying
molecular weight is discussed in the following section.
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Table 3.5: Results of the regression to the experimental data for the vapour-liquid and
liquid-liquid equilibria of mixtures to obtain the SAFT-γ unlike group interactions between
water and the functional groups of the n-alkanes and 1-alkanols. The values of the %AAD
are obtained from eq. (3.12) and ∆x, ∆y from eq. (3.14). The values in brackets represent
the %AAD for the coexisting compositions.

Mixture Data Ref. T or p %AAD(p or T ) ∆(y or xI) a ∆ (x or xII) b

H2O + C6H14 VLE [281] 473.15 K 3.53 3.34 (20.39) -
H2O + C6H14 LLE [282, 283] 473.15 K - 0.45 (7.24) 0.30 (99.99)
H2O + C5H13OH VLE [287] 101.3 kPa 1.25 3.56 (57.87) -
H2O + C5H13OH LLE [288] 101.3 kPa - 2.63 (6.39) 0.41 (90.34)

a For LLE, refers to the solubility of water in the alkane/alkanol-rich phase
b For LLE, refers to the solubility of the alkane/alkanol in the water-rich phase

3.3 Predictions

3.3.1 Pure Components: 1-alkanols

A preliminary step in the validation of the parameters obtained for the functional groups
is the examination of the performance of SAFT-γ in predictions of the VLE of pure com-
pounds that were not included in the regression procedure. In the case of pure 1-alkanols
the adequacy of the parameters obtained for the CH2OH functional group is tested by ex-
amining long-chain 1-alkanols. The predictions for the pure component VLE of C12H25OH,
C14H29OH, and C18H37OH are depicted in figures 3.9(a) and 3.9(b). From the figures it
can be seen that one is able to predict accurately the phase behaviour of the longer com-
pounds of the chemical family of 1-alkanols. The %AADs characterising the predictive
capability for the VLE of these compounds are 9.33% for the vapour pressure and 0.73%
for the saturated liquid density; the larger deviations in pressure can be attributed to the
fact that for compounds of higher molecular weight the values of the vapour pressures are
extremely low over the temperature range studied, so that small absolute errors lead to
large relative errors. The deviations in the prediction of the fluid phase behaviour of long
compounds are similar to the description with an OH functional group (cf. %AADs or
9.25% for the vapour pressure and 0.78% for the saturated liquid density [19]). It is evi-
dent that the consideration of an CH2OH functional group does not improve significantly
the predictions of the fluid phase equilibria for pure 1-alkanols of high molecular weight
not included in the parameter estimation data set. The advantage of using the CH2OH
functional group is mainly supported by the improved performance of the methodology
for mixtures, as will become clear in the following section.
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Figure 3.9: SAFT-γ predictions of the pure component vapour-liquid equilibria for 1-alkanols
not included in the estimation procedure compared with experimental data: (a) temperature -
coexistence density envelope; and (b) vapour-pressure curves shown in a logarithmic represen-
tation. The circles represent the experimental data for 1-dodecanol [289, 290], the triangles for
1-tetradecanol [291, 292], and the squares for 1-octadecanol [292, 293]. The continuous curves
are the corresponding predictions.

3.3.2 Binary Mixtures: n-alkanes+1-alkanols

The predictive capability of the SAFT-γ GC method can be extended to the study of
the phase behaviour and thermodynamic properties of multicomponent mixtures, as in
some cases these can be predicted based on parameters obtained from pure component
data alone. For the n-alkane+1-alkanol binary mixtures, all the necessary parameters
can be obtained from pure component data of the two homologous series as all of the
like and unlike group interactions under consideration in the mixtures are also present in
the pure components. This is a very important advantageous feature of the method that
distinguishes the SAFT-γ approach from other group contribution techniques. Activity
coefficient models (such as UNIFAC and ASOG) are developed from a large database con-
taining mixture-specific experimental data, and this tight dependency on the existing data
is therefore inherent into EoS-gE models that use such methods. One should also add that
group contribution approaches developed within SAFT that are based on homonuclear
molecular models offer a predictive capability for mixtures only when the values of the
binary interaction parameters are estimated by means of approximate combining rules. It
is important to note that within the SAFT-γ framework, the values of the unlike group
interactions are not obtained with combining rules but are estimated from the pure com-
ponent experimental VLE data. This is a common feature of the SAFT-γ [19, 29] and the
hetero GC-SAFT-VR [20, 221] and hs-PC-SAFT [224] methods resulting from the explicit
heteronuclear model that is employed within the aforementioned theories.
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An example of the quality of the SAFT-γ predictions for the fluid phase behaviour for
the systems in question can be seen in figure 3.10 for the n-heptane+1-pentanol binary
mixture. A comparison of the prediction for the two modelling strategies of the hydroxyl
group of 1-alkanols, namely the use of an OH or a CH2OH functional group, is shown in
the figure. It can be seen that the incorporation of a CH2OH functional group provides
a significant improvement in the prediction of the fluid phase behaviour of the mixture,
especially for the liquid phase, and a more accurate representation of the minimum boil-
ing azeotrope that the mixture exhibits at high concentrations of the hydrocarbon. The
improved performance of the method in the prediction of binary mixtures, together with
the physicochemical considerations of the molecule, lend strong support to the use of the
CH2OH functional group when modelling 1-alkanols. The SAFT-γ method is shown to
compare well with the predictions of the original UNIFAC approach, shown on figure 3.10
as dashed-dotted curves. The UNIFAC calculations are based on the published parameters
of Hansen et al. [83] for the calculation of the activity coefficients, whereas the gas phase
is assumed to be ideal (i.e., ϕV = 1). It is important to highlight that the predictions of
the SAFT-γ method are based on parameters from pure component data alone, while the
UNIFAC parameters have been obtained by regression to binary mixture data.

One of the most important advantages of the formulation of a GC approach within an
equation of state is that the methodology can be applied to a wide range of thermody-
namic conditions. The range of applicability can be a serious limitation for methodologies
like UNIFAC as discussed in section 2.2.2.1, where the performance of the method de-
pends highly on the range of the experimental data used for the parameterisation of the
model. This is illustrated in figure 3.11, where the predictions of the SAFT-γ approach
are compared with calculations using the original UNIFAC approach for the fluid phase
behaviour of the binary system of n-hexane+ethanol. The two isotherms shown (473.15 K
and 483.15 K) are at temperatures close to the critical points of both components of the
system (T exp

c;C6H14
≃ 507 K and T exp

c;C2H5OH ≃ 514 K). From the figure it can be seen that
the predictions with SAFT-γ are in better agreement with the experimental data for the
composition of the dew curve of the phase envelope compared to the predictions with
the original UNIFAC (parameters from [83] and ideal gas phase assumed). Significant
deviations from the experimental data are seen on the right-hand side of the plot with
both methodologies, corresponding to the pure component vapour pressure of ethanol at
the presented temperatures. In the case of SAFT-γ this is due to the fact that the pure
component data close to the critical point are not included in the estimation of the group
parameters, whereas for UNIFAC the deviations arise from the coefficients of the Antoine
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Figure 3.10: Prediction of the vapour-liquid phase behaviour of the binary mixture n-
heptane+1-pentanol as pressure-composition isotherms at two different temperatures. The
circles represent the experimental data at 348.15 K, and the triangles at 368.15 K [279]. The
continuous curves are the SAFT-γ predictions modelling 1-alkanols with a CH2OH functional
group, the dashed lines are the predictions using an OH group, and the dashed-dotted lines
are the UNIFAC predictions with parameters from Hansen et al. [83].

equations that are used to determine the pure component vapour pressure. This exam-
ple attests to the physical robustness of the SAFT-γ approach to provide an accurate
description of the mixtures of n-alkane+1-alkanols, over a wide range of thermodynamic
conditions.

The performance of the SAFT-γ approach is also examined for other binary mixtures of
n-alkanes and 1-alkanols. Such systems have also been studied with other group contribu-
tion approaches based on SAFT, namely the GC-SAFT-VR and GC-SAFT-0 formulations
of Tamouza et al. [189] and the simplified PC-SAFT (sPC-SAFT) treatment with gener-
alised parameters as presented by Grenner et al. [260]. It is important to note that in
both of these methods, a homonuclear molecular model is used. Grenner et al. have used
a generalised parameter approach for all of the parameters apart from the dispersion en-
ergy; the latter is obtained by estimation to experimental VLE data for each substance.
Within both approaches, the unlike interaction parameters are approximated by means of
combining rules (Lorentz-Berthelot) without subsequent correction. A comparison of the
%AADs for the pressure and for the composition of the vapour phase (in cases where data
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Figure 3.11: Prediction of the vapour-liquid phase behaviour of the binary mixture n-
hexane+1-ethanol as pressure-composition isotherms at two different temperatures. The tri-
angles represent the experimental data at 473.15 K, and the circles at 483.15 K [294]. The
continuous curves are the SAFT-γ predictions modelling 1-alkanols with a CH2OH functional
group and the dashed curves are the predictions with the original UNIFAC approach using
parameters from Hansen et al. [83].

for the latter are available) for a selection of the systems studied by Tamouza et al. and
Grenner et al. is made in table 3.6. From the work of Tamouza et al. [189] only the perfor-
mance of the GC-SAFT-VR is examined, since the comparisons are best suited to methods
that are based on the same intermolecular potential. It is clear from the table that the
overall predictive capability of the SAFT-γ method for these mixtures and range of con-
ditions is very good and that in all cases the phase behaviour is predicted with deviations
within a few percent. Moreover, the method is found to perform on average marginally
better than the methods of Tamouza et al. [189] and Grenner et al. [260] for these systems.

Of further interest is the performance of the method for mixtures where at least one of
the components was not included in the regression procedure for the determination of the
parameters of the functional groups (recalling that in these cases the estimation is carried
out with pure component VLE data alone). A few examples are presented in figures 3.12-
3.14, where it can be seen that one is able to predict accurately the fluid phase behaviour
of these binary mixtures. Apart from the vapour-liquid equilibria that has already been



3. Modelling aqueous solutions with the SAFT-γ approach 72

presented for the binary mixtures of n-alkane+1-alkanol, the same parameter set can be
used for the prediction of the liquid-liquid equilibria exhibited by highly asymmetric mix-
tures of this kind, i.e., mixtures where the components are very different in size. As an
example, the predictions of the theory are compared with the liquid-liquid equilibrium
data for the system of n-hexadecane+ethanol in figure 3.15. From the plot it can be
seen that apart from the overprediction of the upper critical solution temperature, as is
always the case for analytical classical approaches, the predictions of the theory are in
good agreement with the experimentally determined phase behaviour of the system. It
is important to stress that the same parameter set is used for the prediction of both the
vapour-liquid and the liquid-liquid equilibria of these systems. In some cases, as for the
original UNIFAC, different parameter tables have to be developed for the different types
of fluid phase equilibrium [78].

The deviations of the predicted phase behaviour from the experimental data are sum-
marised in table 3.7. The performance of the SAFT-γ method is compared with that
of the GC-SAFT-VR approach of Tamouza et al. [189] and in the majority of the cases
SAFT-γ is found to be slightly less accurate. A complete comparison cannot be estab-
lished as the deviations of the GC-SAFT-VR method for the prediction of the composition
of the vapour phase were not reported in [189].

Table 3.6: Comparison of the prediction of the vapour-liquid phase behaviour of mixtures
of n-alkanes+1-alkanols with SAFT-γ and the predictive approaches of Tamouza et al. [189]
and of Grenner et al. [260]. The values of the %AAD are obtained from eq. 3.12 and ∆y from
eq. 3.14.

GC-SAFT-VR pred. sPC-SAFT SAFT-γ
Mixture Ref. T [K] n p [Pa] %AAD p ∆y %AAD p ∆y %AAD p ∆y

C4H9OH+ (8.0x103)–
C7H16 [295] 333.15 24 (3.1x104) 7.33 0.97 7.9 1.7 4.29 2.26
C6H13OH+ (6.5x102)–
C6H14 [296] 323.15 23 (5.5x104) 5.58 - 5.6 - 4.08 -
C8H17OH+ (2.5x103)–
C8H18 [297] 373.15 14 (4.7x104) 5.78 - 6.7 - 5.26 -
C10H21OH+ (1.3x104)–
C6H14 [298] 323.15 10 (5.3x104) 6.15 - 3.9 - 5.95 -
C16H33OH+ (7.9x105)–
C6H14 [299] 572.40 10 (4.3x106) 7.13 2.37 7.3 1.16 6.66 1.40
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3.3.3 Binary Mixtures: water+n-alkanes

Once the unlike group interaction parameters between H2O and the CH3 and CH2 func-
tional groups of the n-alkanes have been determined (as described in section 3.2.3), the
transferability of the parameters can be assessed by predicting the fluid phase behaviour
for a set of binary mixtures of n-alkanes and water. This includes systems of n-alkanes
with a range of chain lengths, spanning from n-butane to n-hexadecane (n-C4H10 to n-
C16H34), over a wide range of conditions. The results of the predictions for the fluid phase
equilibria of the selected mixtures are presented in figures 3.16-3.19, and the deviations
from the experimental data are summarised in table 3.8. It is very gratifying that one is
able to predict accurately Type III phase behaviour, according to the classification of van
Konynenburg and Scott [303], as seen experimentally for the aqueous mixtures of alka-
nes. In general, the predictions are very good for both the VLE and the LLE regions of
the systems examined as can be seen in figures 3.16-3.19; furthermore the position of the
three phase line is accurately reproduced. Specific features of the phase behaviour shown
in figures 3.16 and 3.19 are of particular interest. The first example is the p−x slice of the
phase diagram of the binary mixture water+n-butane at a temperature above the critical
temperature of n-C4H10 (cf. figure 3.16). The ability of the method to describe accurately
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Figure 3.12: Prediction of the vapour-liquid phase behaviour of the binary mixture n-
hexane+1-hexadecanol as pressure-composition isotherms at two different temperatures. The
circles represent the experimental data at 472.1 K, and the triangles at 572.4 K [299].
The continuous curves are the SAFT-γ predictions modelling 1-alkanols with a CH2OH
functional group. The higher temperature is above the critical temperature of n-hexane
(T exp

c,C6H14
=507.82 K [277]), where an overprediction of the critical point of the mixture is

noticeable.



3. Modelling aqueous solutions with the SAFT-γ approach 74

0

5

10

15

20

25

30

35

40

0.0 0.2 0.4 0.6 0.8 1.0

p / kPa

xC10H22
, yC10H22

Figure 3.13: Prediction of the vapour-liquid phase behaviour of the binary mixture n-
decane+1-dodecanol as pressure-compositions isotherms at two different temperatures. The
circles represent the experimental data at 393.15 K, and the triangles at 413.15 K [300]. The
continuous curves are the SAFT-γ predictions modelling 1-alkanols with a CH2OH functional
group.

the high-pressure fluid phase behaviour of the system demonstrates the wide range of re-
liable applicability in temperature and pressure of the SAFT-γ EoS compared to other
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Figure 3.14: Prediction of the vapour-liquid phase behaviour of the binary mixture n-
undecane+1-tetradecanol as pressure-composition isotherms at two different temperatures.
The circles represent the experimental data at 393.15 K, and the triangles at 413.15 K [300].
The continuous curves are the SAFT-γ predictions.
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predictive approaches, such as activity coefficient methods. Another feature of particular
note is the water+n-hexadecane binary mixture depicted in figure 3.19; one should recall
that n-C16H34 was not included in the regression procedure for the parameter estimation
of the functional groups of the alkane series (the compounds considered were from C2H6

to n-C10H22 [19]). Nevertheless, the SAFT-γ GC method is still seen to describe the fluid
phase behaviour of this mixture with great accuracy. This supports our previous assertion
that the SAFT-γ EoS can be applied in a predictive manner to the calculation of the
phase behaviour of mixtures when the unlike group interaction parameters are obtained
from limited experimental data.

The models developed in this work are shown to provide with a very good description
of the phase behaviour of a range of water+n-alkane binary mixtures over an extensive
range of thermodynamic conditions. The performance of the theory so far has been as-
sessed in the description of the vapour-liquid equilibria and the hydrocarbon-rich phase
of the liquid-liquid equilibria that these systems exhibit. An example of the performance
of the theory in the description of the compositions of the water-rich phase of the LLE
region is shown in the inset image in figure 3.16. From the figure it can be seen that
the predictions of the theory deviate from the experimental data by almost three orders
of magnitude. This is a natural consequence of a modelling approach where both phases
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Figure 3.15: Prediction of the liquid-liquid phase behaviour of the binary mixture n-
hexadecane+1-dodecanol as temperature-composition isobar at p = 0.1013 MPa. The circles
represent the experimental data [301] and the continuous curves are the SAFT-γ predictions.



3. Modelling aqueous solutions with the SAFT-γ approach 76

Table 3.7: Comparison of the prediction of the vapour-liquid phase behaviour of n-alkanes+1-
alkanols binary mixtures with SAFT-γ and the GC approach of Tamouza et al.[189], where
at least one of the compounds was not included in the parameter estimation procedure. The
values of the %AAD are obtained from eq. 3.12 and ∆y from eq. 3.14.

GC-SAFT-VR SAFT-γ
Mixture Ref. T [K] n p [Pa] %AAD p ∆y %AAD p ∆y

C12H25OH+
C10H22 [302] 393.15 20 (4.3x103)–(1.9x104) 1.84 - 2.50 0.74
C12H25OH+
C10H22 [302] 393.15 25 (4.1x103)–(3.3x104) 3.25 - 3.51 0.68
C12H25OH+
C14H30 [302] 453.15 8 (8.6x103)–(1.4x104) 2.63 - 7.82 -
C12H25OH+
C14H30 [302] 473.15 8 (1.7x104)–(2.6x104) 2.45 - 7.06 -
C14H29OH+
C11H24 [300] 393.15 14 (3.9x103)–(9.4x103) 3.86 - 6.58 0.85
C14H29OH+
C11H24 [300] 413.15 15 (4.7x103)–(1.9x104) 2.45 - 4.38 0.86
C16H33OH+
C6H14 [299] 472.10 8 (6.1x105)–(1.8x106) 2.75 0.06 4.77 0.09

in coexistence (i.e., the water-rich and the hydrocarbon-rich phases) are treated with the
same set of interaction parameters, despite their very different nature. This limitation can
be overcome by employing different values of the interaction parameters for each phase,
as shown by Haslam et al. [112].

As mentioned in the introduction, aqueous solutions of hydrocarbons have been stud-
ied previously by Soria et al. [258] with the GCA-EoS. The difference between the two
approaches is that Soria et al. obtained the unlike group parameters for the mixture
by correlating the experimental data for two mixtures of water with hydrocarbons (wa-
ter+methane and water+ethane), while with SAFT-γ the unlike parameters are obtained
from the data for a single mixure, namely water+n-hexane. The predictions of the two
methods for the liquid-liquid equilibria of several binary mixtures of water and alkanes
are compared in table 3.9. From the comparison it can be seen that both methods provide
a comparable accuracy in the description of the fluid phase behaviour of these systems,
with SAFT-γ performing slightly better.
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Figure 3.16: Prediction of the fluid phase behaviour of the binary mixture water+n-
butane as a pressure-composition isotherm at 477 K, above the critical point of n-butane
(Tc,C4H10=425.125 K [277]). The triangles represent the experimental data [304], and the con-
tinuous curves the corresponding SAFT-γ predictions. The predictions of the theory for the
compositions of the water-rich phase can be seen in the inset image.
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Figure 3.17: Prediction of the vapour-liquid and liquid-liquid phase behaviour of the binary
mixture water+n-octane as a temperature-composition isobar at 101.3 kPa. The triangles
represent the experimental VLE data [305], and the circles LLE data [304]. The continuous
curves are the SAFT-γ predictions, and the dashed line denotes three-phase vapour-liquid-
liquid coexistence line.



3. Modelling aqueous solutions with the SAFT-γ approach 78

30

40

50

60

70

80

p / MPa

0

1

2

3

4

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

x
C
10
H
22
, y
C
10
H
22

0

0.00 0.25 0.50 0.75 1.00

Figure 3.18: Prediction of the vapour-liquid and liquid-liquid phase behaviour of the binary
mixture water+n-decane as a pressure-composition isotherm at 498.15 K. The triangles repre-
sent the experimental VLE data [281], and the circles LLE data [282]. The continuous curves
are the SAFT-γ predictions, and the dashed line denotes the three-phase vapour-liquid-liquid
coexistence line. A close-up of the vapour-liquid phase envelope and the three-phase region is
shown in the inset image.

Table 3.8: SAFT-γ prediction of vapour-liquid and liquid liquid equilibria for binary water+n-
alkane mixtures based on the transferable group interactions parameters estimated from the
water+n-hexane binary mixture (cf. figure 3.7). ∆x, ∆y are calculated from eq. 3.14.

System Data Ref. T or p %AAD (p or T ) ∆( y or xI) ∆ (x or xII)
H2O + C6H14 VLE [281] 493.15 K 6.62 4.13 -
H2O + C6H14 LLE [282, 283] 493.15 K - 0.42 0.46
H2O + C8H18 VLE [305] 101.3 kPa 0.048 0.91 -
H2O + C8H18 LLE [305] 101.3 kPa - 0.12 3.18× 10−5

H2O + C8H18 VLE [282] 513.15 K 4.47 1.71 -
H2O + C8H18 LLE [282] 513.15 K - 1.08 -
H2O + C10H22 VLE [281] 498.15 K 6.77 - -
H2O + C10H22 LLE [282] 498.15 K - 4.41 -
H2O + C16H34 VLE [306] 523.15 K 24.51 1.16 -
H2O + C16H34 LLE [282] 523.15 K - 1.89 -
H2O + C16H34 VLE [306] 598.15 K 21.16 1.94 -
H2O + C16H34 LLE [282] 598.15 K - 7.67 -
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Figure 3.19: Prediction of the vapour-liquid and liquid-liquid phase behaviour of the binary
mixture water+n-hexadecane as a pressure-composition isotherm at 523.15 K. The triangles
represent the experimental VLE data [306], and the circles LLE data [282].The continuous
curves are the SAFT-γ predictions, and the dashed line denotes the three-phase vapour-liquid-
liquid coexistence line. A close-up of the vapour-liquid phase envelope and the three-phase
region is shown in the inset image.
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Table 3.9: SAFT-γ prediction of vapour-liquid and liquid liquid equilibria for binary water+n-
alkane mixtures based on the transferable group interactions parameters compared to the
corresponding results of Soria et al. [258] using the GCA-EoS. ∆x and ∆y are calculated from
eq. 3.14.

GCA-EoS [258] SAFT-γ
System Ref. T [K] p [kPa] ∆xI ∆xII ∆xI ∆xII

H2O + C3H8 [307, 308] 288-370 567-4398 6.00 × 10−2 5.00 × 10−1 3.06 × 10−2 9.49 × 10−1

H2O + C4H10 [308, 309] 298-353 531-1059 1.60 × 10−2 2.40 5.85 × 10−2 1.00
H2O + C5H12 [308, 310] 273-343 101-508 2.50 × 10−3 5.00 × 10−2 1.10 × 10−3 3.38 × 10−3

H2O + C6H14 [308, 311, 312] 273-423 101-1255 1.60 × 10−3 1.70 3.02 × 10−2 1.14 × 10−1

H2O + C8H18 [313] 311-539 10-7410 5.00 × 10−3 6.00 9.83 × 10−3 5.07

3.3.4 Binary Mixtures: water+1-alkanols

The unlike interaction parameters between the CH3 and CH2 functional groups of the n-
alkanes and water developed as described in section 3.2.3 can be transferred to the study
of aqueous solutions of 1-alkanols. These systems pose an interesting challenge as they ex-
hibit features in the fluid phase behaviour which are determined by the relative magnitudes
of the unlike dispersion energy and hydrogen-bonding interactions. In a similar manner
to the water+n-alkanes family, the aqueous alkanol systems feature both vapour-liquid
and liquid-liquid equilibria, and heterogeneous azeotropy. The simultaneous description
of these systems using a unique parameter set constitutes a stringent test.

The performance of SAFT-γ, using the cross interaction parameters obtained as described
section 3.2.4, is assessed for the water+1-butanol and water+1-hexanol mixtures (fig-
ures 3.20 and 3.21). It can be seen that the predictions of SAFT-γ are in good agreement
with the experimental fluid phase behaviour of these systems. Both the VLE and the LLE
regions of the phase envelope are predicted well, together with the position of the three-
phase vapour-liquid-liquid coexistence line. This is achieved while using a unique set of
transferable interaction parameters for the water+n-alkane and water+1-alkanol systems.
The overall accuracy of the SAFT-γ approach in describing the experimental fluid phase
equilibria of the aqueous solutions of 1-alkanols is summarised in table 3.10 and is clearly
seen to be good. The limited experimental data available for systems of this type does not
allow for an extensive study of long-chain alkanols, as in the study of aqueous solutions
of the alkanes.
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Figure 3.20: Prediction of the vapour-liquid and liquid-liquid phase behaviour of the binary
mixture water+1-hexanol as a temperature-composition isobar at 101.3 kPa. The triangles
represent the experimental VLE data [314], and the circles the LLE data [315]. The continuous
curves are the SAFT-γ predictions, and the dashed line denotes the three-phase vapour-liquid-
liquid coexistence line.

Table 3.10: SAFT-γ predictions of vapour-liquid and liquid-liquid equilibria for binary
water+1-alkanol mixtures based on the transferable group interactions parameters. ∆x, ∆y

are calculated from eq. 3.14.

System Data type Ref. p %AAD T ∆y or ∆xI ∆x or ∆xII

H2O + C4H9OH VLE [316] 101.3 kPa 1.50 9.018 -
H2O + C4H9OH LLE [317] 101.3 kPa - 2.131 0.735
H2O + C6H13OH VLE [314] 101.3 kPa 1.31 4.633 -
H2O + C6H13OH LLE [315] 101.3 kPa - 5.777 0.104
H2O + C7H15OH LLE [315] 101.3 kPa - 8.732 0.049
H2O + C8H17OH LLE [315] 101.3 kPa - 15.201 0.016
H2O + C9H19OH LLE [315] 101.3 kPa - 12.483 0.002
H2O + C10H21OH LLE [315] 101.3 kPa - 14.064 4×10−4

H2O + C11H23OH LLE [315] 101.3 kPa - 14.165 -
H2O + C12H25OH LLE [315] 101.3 kPa - 13.718 1×10−5

At this point, we should mention that the parameters developed here for the family of 1-
alkanols can be generally applied to the prediction of pure component properties and mix-
tures containing 1-alkanols for the range studied (ethanol to 1-decanol) and extrapolated
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Figure 3.21: Prediction of the vapour-liquid and liquid-liquid phase behaviour of the binary
mixture water+1-butanol as a temperature-composition isobar at 101.3 kPa. The triangles
represent the experimental VLE data [316], and the circles LLE data [317]. The continuous
curves are the SAFT-γ predictions, and the dashed line denotes the three-phase vapour-liquid-
liquid coexistence line.

to longer compounds. It is important to note, however, that when it comes to modelling
aqueous solutions of the shorter 1-alkanols (i.e., methanol, ethanol, and 1-propanol), the
parameters presented here can lead to large deviations from the experimental data. The
singular physicochemical features of these smaller molecules, such as pronounced polaris-
ability effects lead to full miscibility in water, and must therefore be studied individually.
The global fluid phase equilibria of generic model mixtures of water+1-alkanols has been
studied with a mean-field version of the SAFT approach (SAFT-HS), where a detailed
examination of the effect of the strength of the hydrogen-bonding interactions and chain
length on the specific type of fluid phase behaviour that is observed was made [318, 319].
It is clear from the findings of this study that one cannot simultaneous reproduce the fluid
phase behaviour of aqueous solutions of the shorter (VLE) and longer (VLE and LLE)
with a single set of transferable intermolecular parameters [319].

3.3.5 Ternary Mixtures: water+n-alkane+1-alkanol

The SAFT-γ GC EoS can be used to describe ternary systems once all of the pair group
interactions of the mixture have been determined. The SAFT-γ prediction of the fluid
phase behaviour of two water+n-alkane+1-alkanol ternaries are shown in figures 3.22 and
figure 3.23. In both cases reasonable agreement with the experimental data is observed. In
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Figure 3.22: Prediction of the fluid phase behaviour of the ternary mixture water+1-
heptane+1-hexanol at 101.3 kPa and 298.2 K. The circles represent the experimental data
on the coexistence curve, the squares compositions of the conjugate solutions, and the dashed
lines the experimental tie lines [320]. The continuous lines are the SAFT-γ predictions of
the tie-lines, the triangles are the predicted compositions, and the dashed-dotted curve is the
predicted coexistence curve.

the case of the water+n-hexane+1-octanol ternary mixture (figure 3.23) the deviation in
the prediction of the boundary of the two-phase region is slightly more pronounced. This
is due to the higher deviation observed in the prediction of the liquid-liquid equilibria
for the water+1-octanol binary mixture at these conditions. Further improvement of the
description of the LLE in this particular binary mixture is needed in order to provide a
predictive capability for the determination of the water-octanol partition coefficient which
is of particular practical importance.

3.4 Challenges

Based on the results presented thus far, the performance of the SAFT-γ methodology in
the prediction of the phase behaviour of a wide range of systems, including the challenges
presented by aqueous solutions of hydrocarbons, can be deemed very satisfactory. How-
ever, there are certain features that are not very accurately reproduced. A first issue is
the description of fluid phase behaviour in the vicinity of the critical point. An example
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Figure 3.23: Prediction of the fluid phase behaviour of the ternary mixture water+1-
hexane+1-octanol at 101.3 kPa and 293.15 K. The squares represent the compositions of the
conjugate solutions, and the dashed lines the experimental tie lines [321]. The continuous lines
are SAFT-γ predictions of the tie-lines, the triangles are the predicted compositions, and the
dashed-dotted curve is the predicted coexistence curve.

of the performance of the SAFT-γ method obtained in the description of fluid phase be-
haviour for near-critical conditions and critical points of mixtures is shown on figure 3.24,
where the predictions of the theory are compared to the experimentally determined phase
behaviour of the binary n-butane+n-decane mixture for three isotherms, two of which
are above the critical temperature of n-butane (T exp

c,C4H10
≈ 425 K). It is apparent that

whereas for the lowest isotherm (T = 377.59 K) the theory describes the vapour-liquid
phase behaviour of the system very accurately, for the isotherms at higher temperatures,
the overprediction of the critical point of the mixture at high concentrations on n-butane
is significant. The same applies for the case of liquid-liquid equilibria critical points, as
shown for the case of the binary system of n-hexadecane+ethanol in figure 3.15.

An accurate representation of the near critical region is a known limitation of classical EoS
of this type requiring the application of a crossover treatment in order to account for the
energetic, density and compositional fluctuations that arise. Such treatments have been
applied previously to a wide range of thermodynamic approaches, from cubic equations
of state to SAFT-type theories; the most relevant to the current study is the work of Mc-
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Figure 3.24: Pressure-composition (p−x) representation of the vapour-liquid phase behaviour
of a binary mixture of n-butane + n-decane. The continuous curves represent the predictions of
the SAFT-γ approach, and the symbols the experimental data at 377.59 K (triangles), 477.59
K (circles) and 510.93 K (squares) [322].

Cabe and Kiselev [323] and Forte et al. [324, 325] where a crossover treatment is applied
to SAFT type equations with interaction potentials of variable range. Nevertheless, the
improvement of the existing description of the near-critical phase behaviour of fluids and
fluid mixtures whilst retaining an analytical theory still remains very challenging.

Another challenge is revealed when examining the performance of the SAFT-γ method-
ology in the prediction of single-phase thermodynamic properties other than the phase
behaviour, e.g., the speed of sound and the heat capacities (isobaric and isochoric). The
accurate representation of such properties, generally referred to as second-order thermody-
namic derivative properties as they are obtained as second derivatives of the free energy, is
a stringent test for most thermodynamic approaches, including sophisticated SAFT-type
equations of state. An example of the performance of the SAFT-γ approach based on the
square-well potential in the prediction of derivative properties is presented on figure 3.25,
where the theoretical description is compared with the experimental data for the isother-
mal compressibility, kT , and the speed of sound, u, for two linear alkanes, n-eicosane and
n-pentadecane. It can be seen that, especially in the case of long-chain molecules, high
errors are to be expected in the description of derivative properties, with parameters ob-
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Figure 3.25: Predictions of the SAFT-γ approach compared with the experimental data
for thermodynamic derivative properties of long-chain n-alkanes as a function of pressure at
different temperatures: (a) Isothermal compressibility of n-eicosane [326]; and (b) speed of
sound of n-pentadecane [327].

tained from data for the fluid phase behaviour.

The description of derivative properties with equations of state is a subject that has been
attracting attention in recent years as attested by the number of topical publications on
this subject, e.g., see references [30, 263, 328–332]. Focusing on the description of derivative
properties by means of SAFT-type EoSs, Lafitte et al. [30, 263] have compared various
approaches and highlighted the importance of using generic intermolecular potentials, such
as the Mie potential (generalised Lennard-Jonesium potential of variable attractive and
repulsive range), in accurately describing phase behaviour and derivative properties.
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3.5 Concluding Remarks

In this chapter the extension of the SAFT-γ GC approach based on the square-well group-
group interactions to the study of aqueous solutions of hyrdocabrons and 1-alkanols is
presented. The functional group for the modelling of the chemical family of 1-alkanols is
revisited following the ideas of Wu and Sandler [107], where a CH2OH functional group
is considered. The application of the CH2OH group is shown to give a description of
the pure-component fluid phase equilibria of the same quality as the previously employed
OH group [19], but leads to a significantly improved description of the phase behaviour
of binary mixtures of n-alkanes+1-alkanols. The robustness of the SAFT-γ approach is
demonstrated in predictions of vapour-liquid and liquid-liquid equilibria for selected binary
mixtures of n-alkanes+1-alkanols over wide ranges of thermodynamic conditions, with pa-
rameters obtained from pure component data alone. The level of accuracy of SAFT-γ is
shown to be comparable to the well-established UNIFAC method.

Subsequently, the SAFT-γ EoS is applied in the description of the fluid phase equilibria of
aqueous solutions, where the necessary interaction parameters are estimated from limited
experimental data. The method is shown to accurately describe the highly non-ideal fluid
phase behaviour that is exhibited by systems of this kind, including extensive regions of
liquid-liquid immiscibility over wide pressure ranges and heterogeneous azeotropes (three-
phase equilibria) at lower pressures. The accurate description of the phase behaviour for
aqueous systems of this kind is a challenge for most thermodynamic methodologies, as the
complex phase behaviour encountered is related to the strong association interactions (hy-
drogen bonding) in water. Regarding the predictive capability of the SAFT-γ approach,
it is shown that a unique set of group interaction parameters can be successfully applied
to the study of the fluid phase behaviour of binary mixtures of water+n-alkane for a
broad range of chain lengths. In the case of water+1-alkanols, the deviations from the
experimental fluid phase behaviour is the highest of the mixtures studied. The physical
robustness of the estimated parameters is examined by studying the liquid-liquid equilib-
ria of ternary mixtures of water+n-alkane+1-alkanol, where SAFT-γ is shown to provide
a satisfactory performance for the systems considered.

Despite the impressive overall performance of the SAFT-γ approach in describing aqueous
mixtures, two main challenges are identified, namely the improvement of the theory in
the representation of the near-critical region within the scope of an analytical theory,
and the improvement in the prediction of thermodynamic derivative properties. The
performance of SAFT-γ (as implemented in this chapter) in the description of derivative
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properties is a result of the simplified intermolecular potential (square-well) employed
within the theory. The challenges highlighted here call for the development of a new theory
employing a more realistic intermolecular potential for the description of the repulsive and
attractive interactions between monomeric segments. The development of this new theory
is presented in detail in the next chapter.



Chapter 4

SAFT-γ group contribution
methodology for heteronuclear
molecular models based on Mie
(generalised Lennard-Jones)
segments

Until recently the focus of a thermodynamic treatment has been mainly on the descrip-
tion of a limited range of properties, and specifically fluid phase behaviour. Over the
past decade there has been an increasing number of publications on the performance of
thermodynamic methods in the description of second-order derivative properties, e.g., the
speed of sound, heat capacity, or isothermal compressibility. Derivative properties are
properties of interest from a practical perspective; a known example is the importance of
the Joule-Thomson inversion curve in the Linde technique as a standard process in the
petrochemical industry. A precise description of such properties is however highly chal-
lenging from a theoretical perspective [333]. The performance of traditional cubic EoSs in
the description of derivative properties has been shown to be relatively poor [333, 334], as
these approaches fail to reproduce a number of the singularities that derivative properties
exhibit, such as the density extrema in isothermal variations of the isochoric heat capacity.

An accurate representation of derivative properties is a stringent test even for a sophisti-
cated thermodynamic treatment, such as the SAFT-type EoSs. One of the first detailed
studies of the performance of SAFT-type methods in the description of such properties,
is the work of Colina et al. [328]. The authors examined the Joule-Thomson inversion

89



4. SAFT-γ group contribution methodology based on Mie segments 90

curve as calculated with the soft-SAFT EoS [169, 335] and found that in the majority
of cases only quantitative agreement is achieved. In a later study the description with
several SAFT-variants (soft-SAFT [169, 335], SAFT-VR [170, 171], PC-SAFT [166]) were
compared, and deviations of up to 20% from the experimental values were found in the
description of the Joule-Thomson inversion curve [336]. Llovell et al. [337] have presented
a detailed analysis on the performance of the soft-SAFT EoS for the derivative properties
of pure components and mixtures [337] concluding that the accuracy of the description
can range from 1 to 20% depending on the compound and the property studied, with
the highest deviations typically obtained for the speed of sound of long chain n-alkanes.
Another variant of SAFT that has been applied to the prediction of thermodynamic deriva-
tive properties is the SAFT-BACK EoS [338]. Manghari and co-workers [339, 340] have
shown that the SAFT-BACK EoS can be used to represent the derivative properties of
pure n-alkanes and mixtures of these with an accuracy of less than 5%; however, this
is accomplished at the cost of introducing an empirical temperature dependence of the
dispersion energy by means of a compound-specific constant. In more recent work, Dia-
mantonis and Economou [330] have compared the PC-SAFT EoS [166] and the SAFT EoS
of Huang and Radosz [167] in the description of the derivative properties for a number
of carefully selected compounds, showing that PC-SAFT performs systematically better,
with an accuracy within 10%. A comprehensive comparative study of the performance of
SAFT-VR SW [170, 171], PC-SAFT [166] and SAFT-VR LJC [261] EoSs has also been
presented and compared to the results obtained with the SAFT-VR Mie EoS developed
in 2006 [30, 263]. In their study, Lafitte and co-workers [30, 263] showed that the versa-
tility of the Mie (generalised Lennard-Jones) potential, on which the SAFT-VR Mie EoS
is based, allows for a significant improvement in the description of derivative properties
when compared to the other SAFT variants and popular cubic EoSs.

Lafitte et al. [31] have recently presented a new version of the SAFT-VR Mie EoS, where
several approximations inherent in the underlying theory of the EoS presented in 2006 [30,
263] were revisited and improved. The new theory, which was validated by comparison
with molecular simulations, was shown to constitute a very accurate methodology for
the simultaneous description of the fluid phase behaviour and thermodynamic derivative
properties of pure substances and mixtures. In view of the success of the latest SAFT-VR
Mie EoS in describing the thermodynamic properties of real systems, the main focus of
the work presented in this thesis is the reformulation of the SAFT-VR Mie EoS as a group
contribution approach; SAFT-γ Mie.
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4.1 Molecular model and intermolecular potential

In the SAFT-γ Mie group contribution approach, molecules are represented as fused het-
eronuclear models formed from Mie segments. Originally, the SAFT-γ method was de-
veloped for molecules formed from square-well (SW) segments [19, 29], as discussed in
chapter 3 (see also figure 4.1.(a)). A description of the segment-segment interactions with
a potential of the Mie form has been used for homonuclear models within the SAFT-VR
framework by Davies et al. [261], as well as in the development of the SAFT-VR Mie EoS
by Laffite et al. [30, 263]. The main difference between these approaches is in the treat-
ment of the radial distribution function (RDF) of the Mie fluid, which in the approach
of Davies et al. is approximated as the RDF of the Sutherland-6 potential. The accuracy
of the representation of the RDF of the monomer reference system is of great importance
in the development of EoSs based on the first-order thermodynamic perturbation theory
of Wertheim (TPT1) [101–104], as the correlation functions are employed in the deter-
mination of the free energy of the formation of chain molecules and the treatment of the
contribution due to association.

(a) (b)

Figure 4.1: Pictorial representation of: (a) the fused heteronuclear molecular model; and (b)
the intermolecular potential employed within the framework of the SAFT-γ Mie approach.

The Mie intermolecular potential [341], depicted on figure 4.1.(b), is a generalised Lennard-
Jonnesium potential [342–344], where the attractive and the repulsive exponents which
characterise the softness/hardness and the range of the interaction are allowed to vary
freely. The pair interaction energy between segments k and l as a function of the intere-
segment distance rkl is given by

ΦMie
kl (rkl) = Cklϵkl

[(
σkl

rkl

)λr
kl

−
(

σkl

r

)λa
kl

]
, (4.1)

where σkl is the segment diameter, ϵkl is the depth of the potential well, and λr
kl and λa

kl

the repulsive and attractive exponents of the unlike interactions. The prefactor Ckl is a
function of the exponents of the potential and ensures that the minimum of the interaction
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is −ϵkl:

Ckl = λr
kl

λr
kl − λa

kl

(
λr

kl

λa
kl

) λa
kl

λr
kl

−λa
kl

. (4.2)

In common with other SAFT approaches, additional short range association sites can be
placed on the molecular segments to mimic the association (hydrogen bonding) interac-
tions present in some polar compounds. More specifically the association interactions are
modelled by means of square-well sites, so that the interaction between a site of type a

placed on a segment of type k and a site of type b placed on a segment of type l is given
by

ΦHB
kl,ab(rkl,ab) =

−ϵHB
kl,ab if rkl,ab ≤ rc

kl,ab ,

0 if rkl,ab > rc
kl,ab ,

(4.3)

where rkl,ab is the centre-centre distance between sites a and b, −ϵHB
kl,ab is the association

energy, and rc
kl,ab the cut-off range of the interaction between sites a and b.

Within the SAFT-γ Mie group contribution approach molecular properties are obtained by
subdividing the molecules into distinct functional groups chosen to represent the chemical
structure of a molecule, with appropriate summations over the contributions of all of the
functional groups. A functional group can comprise one or multiple identical Mie segments
described by the same set of group parameters, as in the case of the SAFT-γ approach
based on SW segments [29]. The parameters that fully describe a functional group k are
the number ν∗

k of identical segments that the group comprises, the segment diameter σkk

of the segments of the group, the energy of interaction ϵkk between the segments of the
group, and the values λr

kk and λa
kk of the repulsive and attractive exponents, respectively,

that determine the form of the interaction potential. The extent to which the segments of
a given group k contribute to the overall molecular properties is characterised with a key
parameter of the methodology: the shape factor Sk. In the case of associating groups, the
number NSTk of the different site types, the number of sites of each type, e.g., nk,a, nk,b,
. . ., nk,NST, together with the position rd

kl,ab of the site, and the energy ϵHB
kl,ab and range

rc
kl,ab of the association between different sites have to be determined.

4.2 SAFT-γ Mie

In the SAFT-γ Mie EoS the total Helmholtz free energy A of a mixture of heteronuclear
associating molecules formed from Mie segments is written as the sum of four separate
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contributions

A

NkBT
= Aideal

NkBT
+ Amono.

NkBT
+ Achain

NkBT
+ Aassoc.

NkBT
, (4.4)

where Aideal is the free energy of the ideal gas, Amono. is the term accounting for interactions
between monomeric Mie segments, Achain is the contribution to the free energy for the
formation of molecules from Mie segments, Aassoc. is the term accounting for the association
interactions, N is the total number of molecules, kB the Boltzmann constant, and T the
absolute temperature. In the following sections, the separate contributions to the free
energy will be discussed in detail.

4.2.1 Ideal Term

The ideal contribution to the free energy of the mixture is described by means of the
following expression [264]:

Aideal

NkBT
=

NC∑
i=1

xi ln
(
ρiΛ3

i

)− 1 , (4.5)

where xi is the mole fraction of component i in the mixture, ρi = Ni/V is the number
density of component i, Ni being the number of molecules of component i. The summation
in eq. (4.5) is over all of the components NC present in the mixture. The ideal free energy
incorporates the effects of the translational, rotational and vibrational contributions to
the kinetic energy implicitly in the thermal de Broglie volume, Λ3

i .

4.2.2 Monomer Term

The monomer term Amono. describes the contribution of the reference monomeric Mie
segments to the total Helmholtz free energy of the system. This contribution is obtained
by applying the Barker and Henderson high-temperature perturbation theory [265] to
third order. The intermolecular potential of eq. (4.1) is first decomposed into the sum
of a reference repulsive contribution Φ0(rkl), and a perturbation attractive contribution
Φ1(rkl):

ΦMie
kl (rkl) = Φ0(rkl) + Φ1(rkl) , (4.6)

where

Φ0(rkl) =

ΦMie
kl (rkl) if rkl < σkl ,

0 if rkl ≥ σkl ,
(4.7)
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and

Φ1(rkl) =

0 if rkl ≤ σkl ,

ΦMie
kl (rkl) if rkl > σkl .

(4.8)

Barker and Henderson [269] have shown that the free energy of the system can then be
obtained as a perturbation expansion in the inverse temperature relative to the reference
system. In the case of soft core potentials, such as the Mie potential, the reference system
can be approximated as that of an equivalent system of hard spheres with an effective
diameter dkk, since the properties of the reference system described by the potential in
eq. (4.7) are not generally known. Following the application of the Barker and Henderson
perturbation theory as employed within the recent SAFT-VR Mie EoS [31], the monomer
term of the Helmholtz free energy is expressed as a third-order expansion. Having estab-
lished the hard-sphere system as the reference system, the high-temperature perturbation
expansion can be expressed as

Amono.

NkBT
= AHS

NkBT
+ A1

NkBT
+ A2

NkBT
+ A3

NkBT
, (4.9)

where AHS is the free energy of the hard-sphere reference system of diameter dkk. For a
given group k, the effective hard-sphere diameter is obtained from [269]

dkk =
∫ σkk

0

[
1 − exp

{
−ΦMie

kk (rkk)
kBT

}]
dr . (4.10)

The integral of eq. (4.10) is obtained by means of the Gauss-Legendre quadrature, a tech-
nique previously employed by Paricaud [345] who showed that a 5-point Gauss-Legendre
procedure is adequate for an accurate representation of the effective hard-sphere diameter
dkk.

The hard-sphere Helmholtz free energy of the mixture is given by [19]

AHS

NkBT
=

NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
kSk

 aHS , (4.11)

where aHS is the dimensionless contribution to the hard-sphere free energy per segment,
obtained using the expression of Boubĺık [266] and Mansoori et al. [267],

aHS = 6
πρs

[(
ζ3

2
ζ2

3
− ζ0

)
ln(1 − ζ3) + 3 ζ1ζ2

1 − ζ3
+ ζ3

2
ζ3(1 − ζ3)2

]
. (4.12)
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In eq. (4.12), ρs is the segment number density which is related to the molecular density
ρ through

ρs = ρ

NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
kSk

 , (4.13)

and the reduced densities ζm are expressed as

ζm = πρs

6

NG∑
k=1

xs,kdm
kk , m = 0, 1, 2, 3 , (4.14)

where the effective hard-sphere diameter dkk of the reference fluid (cf. eq. (4.10)) is used.
The summation of eq. (4.14) is expressed in terms of the fraction xs,k of segments of a
group of type k in the mixture, which is defined as

xs,k =

NC∑
i=1

xiνk,iν
∗
kSk

NC∑
i=1

xi

NG∑
l=1

νl,iν
∗
l Sl

. (4.15)

After substituting the expression of the group fraction xs,k (eq. (4.15)) in the definition of
the reduced densities (eq. (4.14)) and expressing the reference hard-sphere energy per seg-
ment as a function of the molecular density, one obtains the following compact expression
for the hard-sphere Helmholtz free energy per molecule:

AHS

NkBT
= 6

πρ

[(
ζ3

2
ζ2

3
− ζ0

)
ln(1 − ζ3) + 3 ζ1ζ2

1 − ζ3
+ ζ3

2
ζ3(1 − ζ3)2

]
, (4.16)

which is identical to the form of the Helmholtz free energy of a hard-sphere mixture.
The first-order term A1 of the perturbation expansion corresponds to the mean-attractive
energy, and as for the hard-sphere term it is obtained as a summation of the contributions
to the mean-attractive energy per segment a1:

A1
NkBT

= 1
kBT

NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
kSk

 a1 . (4.17)

The mean-attractive energy per segment is obtained by summing the pairwise interactions
a1,kl between groups k and l over all functional groups present in the system,

a1 =
NG∑
k=1

NG∑
l=1

xs,kxs,la1,kl , (4.18)

where it can be shown [31] that
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a1,kl = Ckl

[
x

λa
kl

0,kl

(
as

1,kl(ρs; λa
kl) + Bkl(ρs; λa

kl)
)

(4.19)

− x
λr

kl
0,kl

(
as

1,kl(ρs; λr
kl) + Bkl(ρs; λr

kl)
)]

.

Here, Ckl is the pre-factor of the potential (cf. eq. (4.2)), x0,kl is defined as x0,kl = σkl/dkl,
and Bkl is given by

Bkl(ρs; λkl) = 2πρsdklϵkl

( 1 − ζx/2
(1 − ζx)3 I(λkl) − 9ζx(1 + ζx)

2(1 − ζx)3 J(λkl)
)

. (4.20)

The range λkl is a generalised notation which indicates that the expression can be evaluated
for both the repulsive λr

kl and the attractive λa
kl exponents. In expression (4.20) ζx is the

density of a hypothetical pure fluid, obtained based on the segment density ρs of the
system by applying the van der Waals (vdW) one-fluid mixing rule:

ζx = πρs

6

NG∑
k=1

NG∑
l=1

xs,kxs,ld
3
kl . (4.21)

The unlike effective hard-sphere diameter dkl is obtained with an appropriate combining
rule (cf. section 4.2.5). The quantities I(λkl) and J(λkl) are introduced in order to
simplify the integration of the potential that leads to analytical expressions for the first-
order perturbation term as discussed in detail in [31]. Both I(λkl) and J(λkl) are functions
of the parameters of the intermolecular interaction potential alone and are calculated (for
either λr

kl or λa
kl) as [31]

I(λkl) =
∫ x0

1

x2

xλkl
dx = 1 − (x0)(3−λkl)

(λkl − 3)
, (4.22)

and

J(λkl) =
∫ x0

1

x3 − x2

xλkl
dx = 1 − (x0)(4−λkl)(λkl − 3) − (x0)(3−λkl)(λkl − 4)

(λkl − 3)(λkl − 4)
. (4.23)

The free energy as
1,kl(ρs; λkl) appearing in eq. (4.19) corresponds to the first-order pertur-

bation term of a Sutherland fluid characterised by a hard-core diameter dkl, an interaction
range exponent of λkl, and energy well-depth of ϵkl. The exact evaluation of this term
requires a knowledge of the radial distribution function of the hard-sphere system over a
range of separations. In order to derive an analytical expression in the same spirit as in
the original SAFT-VR approach [170, 171], the mean-value theorem is applied in order to
integrate over the radial distribution function by mapping it to its value at contact dkl at
an effective packing fraction ζeff.

x [31]. This procedure is shown to provide a description
which is in excellent agreement with the evaluation of the as

1,kl(ρs; λkl) by full quadrature
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using an integral equation theory for the radial distribution function [31]. The as
1;kl(ρs; λkl)

term is then evaluated by means of the following compact expression:

as
1,kl(ρs; λkl) = −2πρs

(
ϵkld

3
kl

λkl − 3

)
1 − ζeff.

x /2
(1 − ζeff.

x )3 . (4.24)

The effective packing fraction was parametrised [31] for ranges of the exponents of 5 <

λkl ≤ 100 and can be expressed as a function of the one-fluid packing fraction ζx as

ζeff.
kl = c1,klζx + c2,klζ

2
x + c3,klζ

3
x + c4,klζ

4
x , (4.25)

where the coefficients, c1,kl, c2,kl, c3,kl, c4,kl, are obtained as functions of the generic expo-
nent λkl as


c1,kl

c2,kl

c3,kl

c4,kl

 =


0.81096 1.7888 −37.578 92.284
1.0205 −19.341 151.26 −463.50

−1.9057 22.845 −228.14 973.92
1.0885 −6.1962 106.98 −677.64




1

1/λkl

1/λ2
kl

1/λ3
kl

 . (4.26)

The second-order perturbation term in the high-temperature expansion (cf. eq. (4.9))
represents the fluctuation of the attractive energy in the system and is obtained as the
following sum:

A2
NkBT

=
( 1

kBT

)2
NC∑

i=1
xi

NG∑
k=1

νk,iν
∗
kSk

 a2 , (4.27)

where the fluctuation term per segment a2 is obtained from the appropriate sum of the
contributions of the pairwise interactions a2,kl between groups k and l as

a2 =
NG∑
k=1

NG∑
l=1

xs,kxs,la2,kl . (4.28)

The expression for a2 is obtained based on an improved macroscopic compressibility ap-
proximation (MCA) proposed by Zhang et al. [346] combined with a correction in the
same spirit as that proposed by Paricaud [345] for soft potentials. The final expression for
a2;kl is expressed as

a2,kl = 1
2

KHS(1 + χkl)ϵklC2
kl

[
x

(2λa
kl)

0,kl

(
as

1,kl(ρs; 2λa
kl) + Bkl(ρs; 2λa

kl)
)

(4.29)

−2x
(λa

kl+λr
kl)

0,kl

(
as

1,kl(ρs; λa
kl + λr

kl) + Bkl(ρs; λa
kl + λr

kl)
)

+x
(2λr

kl)
0,kl

(
as

1,kl(ρs; 2λr
kl) + Bkl(ρs; 2λr

kl)
) ]

,
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where KHS is the isothermal compressibility of the hypothetical vdW one-fluid system (cf.
eq. (4.21)) and is obtained based on the Carnahan and Starling expression [151] as

KHS = (1 − ζx)4

1 + 4ζx + 4ζ2
x − 4ζ3

x + ζ4
x

. (4.30)

The correction factor χkl is obtained from [31]

χkl = f1(αkl)ζxx3
0,kl + f2(αkl)(ζxx3

0,kl)5 + f3(αkl)(ζxx3
0,kl)8 , (4.31)

where the quantities fm, for m = 1, 2, 3, are functions of αkl, a dimensionless form of the
integrated van der Waals energy of the Mie potential:

αkl = 1
ϵklσ

3
kl

∫ ∞

σ
ΦMie

kl (r)r2dr = Ckl

(
1

λa
kl − 3

− 1
λr

kl − 3

)
. (4.32)

The third-order perturbation term is obtained as a sum over the contribution per segment
a3 as:

A3
NkBT

=
( 1

kBT

)3
NC∑

i=1
xi

NG∑
k=1

νk,iν
∗
kSk

 a3 , (4.33)

where a3 is obtained by summing the pairwise segment-segment contributions a3,kl on
groups k and l as previously for the a1 and a2 terms:

a3 =
NG∑
k=1

NG∑
l=1

xs,kxs,la3,kl . (4.34)

The contribution a3,kl, is obtained using the following empirical expression [31]

a3;kl = −ϵ3
klf4(αkl)ζxx3

0,klexp
(
f5(αkl)ζxx3

0,kl + f6(αkl)(ζxx3
0,kl)2

)
. (4.35)

This functional form was chosen to restrict the dependence to only the values of the re-
pulsive and attractive exponents, the well-depth of the potential, and the density of the
mixture. A temperature dependence is avoided by expressing the a3,kl term as a function
of the product ζxx3

0,kl, as opposed to the packing fraction ζx which has an implicit tem-
perature dependence through the effective diameter dkl.

The functions fm for (m = 1, . . . , 6) appearing in eqs. (4.31) and (4.35) are calculated by
means of the following compact expression [31]:

fm(αkl) =

3∑
n=0

ϕm,nαn
kl

1 +
6∑

n=4
ϕm,nαn−3

kl

, for m = 1, . . . , 6 . (4.36)
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The values of the coefficients ϕm,n are listed in table 4.1. The coefficients that appear
in the modified MCA for the a2,kl term, i.e., fm for m = 1, 2, 3, are obtained by analysis
of the corresponding Monte Carlo simulation data for the fluctuation term and selected
pure component vapour-liquid equilibrium data for selected Mie fluids (λr,λa). The coef-
ficients employed for the calculation of the a3,kl term were obtained by comparison with
simulation data for vapour-liquid equilibrium and critical points of several Mie (λr,λa)
fluids as explained in [31]. It is important to note, that as the coefficients included in the
calculation of the a3,kl are obtained from simulation data of the fluid phase behaviour of
monomers, the final expression for the free energy accounts for several higher-order terms
of the perturbation expansion of Barker and Henderson [269] (in fact, for the complete
series), rather than just the third-order term. A retrospective analysis of the third-order
pertubation term showed that the calculations using the empirical expression of eq. (4.35)
are in good agreement with evaluations of the equivalent term using molecular simulation.

4.2.3 Chain Term

In the SAFT-γ formalism the treatment of the contribution to the free energy due to
the formation of molecules from fused Mie segments (the so-called “chain” contribution
in SAFT approaches) requires a knowledge of the contact value of the radial distribution
function of the fluid at an effective diameter [19, 29]. In order to evaluate this, a number of
average molecular parameters for each molecular species i in the mixture are introduced.
The averaging of the molecular size and energy parameters, namely σ̄ii, d̄ii, ϵ̄ii and λ̄ii,
is independent of the composition of the mixture and makes use of the fraction zk,i of a
given group k on a molecule i:

zk,i = νk,iν
∗
kSk

NG∑
l=1

νl,iν
∗
l Sl

. (4.37)

The quantity zk,i is not to be confused with the fraction xs,k of a given group k in the
mixture, which is composition dependent (cf. eq. (4.15)). The average molecular segment
size σ̄ii and the effective hard-sphere diameter d̄ii are defined as

σ̄3
ii =

NG∑
k=1

NG∑
l=1

zk,izl,iσ
3
kl , (4.38)

and

d̄3
ii =

NG∑
k=1

NG∑
l=1

zk,izl,id
3
kl . (4.39)
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The averaging rule for the effective hard-sphere diameter d̄ii is chosen such that the value
of the one-fluid density of a mixture of heteronuclear monomeric segments as calculated
in eq. (4.21), is the same when calculated for monomeric segments of average molecular size
d̄ii, i.e., ζx = πρs

6
∑NG

k=1
∑NG

l=1 xs,kxs,ld
3
kl = πρs

6
∑NC

i=1
∑NC

j=1 xi(
∑NG

k=1 ν∗
kνk,iSk)xj(

∑NG
k=1 ν∗

kνk,jSk)d̄3
ij .

Other effective molecular parameters are obtained in the same way, so that the average
interaction energy ϵ̄ii and exponents which characterise the range of the potential λ̄ii are
again obtained as

ϵ̄ii =
NG∑
k=1

NG∑
l=1

zk,izl,iϵkl , (4.40)

and

λ̄ii =
NG∑
k=1

NG∑
l=1

zk,izl,iλkl . (4.41)

Relation (4.41), holds for both the repulsive, λ̄r
ii, and the attractive, λ̄a

ii, exponents.

The contribution to the free energy of the mixture due to the formation of the “chain”
molecules is based on the thermodynamic perturbation theory of first order (TPT1) of
Wertheim [22, 101–104] but using the effective molecular parameters:

Achain

NkBT
= −

NC∑
i=1

xi

NG∑
k=1

(νk,iν
∗
kSk − 1) lngMie

ii (σ̄ii; ζx) , (4.42)

where gMie
ii (σ̄ii; ζx) is the value of the radial distribution function (RDF) of the hypothetical

one-fluid Mie system at a density ζx evaluated for the effective diameter σ̄ii. An accurate
estimate of the contact value of the RDF for a Mie fluid can be obtained by means of a
second-order expanion [31]

gMie
ii (σ̄ii; ζx) = gHS

d (σ̄ii)exp[βϵ̄iig1(σ̄ii)/gHS
d (σ̄ii) + (βϵ̄ii)2g2(σ̄ii)/gHS

d (σ̄ii)] . (4.43)

The zeroth-order term of the expansion, gHS
d (σ̄ii), is the radial distribution function of a

system of hard spheres of diameter d̄ii evaluated at the distance σ̄ii and density ζx. As
shown in [31], a compact relation for this function can be obtained using the expression
of Boubĺık [347],

gHS
d (σ̄ii) = gHS

d (x̄0,ii) = exp(k0 + k1x̄0,ii + k2x̄2
0,ii + k3x̄3

0,ii) , (4.44)
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which is valid for 1 < x̄0,ii <
√

2 (with x̄0,ii = σ̄ii/d̄ii). In this expression, the coefficients
km are obtained as functions of the one-fluid density ζx (cf. eq. (4.21)) of the hypothetical
pure fluid as

k0 = −ln(1 − ζx) + 42ζx − 39ζ2
x + 9ζ3

x − 2ζ4
x

6(1 − ζx)3 , (4.45)

k1 = ζ4
x + 6ζ2

x − 12ζx

2(1 − ζx)3 , (4.46)

k2 = −3ζ2
x

8(1 − ζx)2 , (4.47)

and

k3 = −ζ4
x + 3ζ2

x + 3ζx

6(1 − ζx)3 . (4.48)

The first-order term g1(σ̄ii) of the expansion for the contact value of the RDF (eq. (4.43))
is approximated by its value at contact d̄ii, obtained by means of a self-consistent method
for the calculation of pressure from the virial and the free energy routes [31, 170, 171]

g1(σ̄ii) ≈ g1(d̄ii) = 1
2πε̄iid̄3

ii

[
3∂ā1,ii

∂ρs
− C̄iiλ̄

a
iix̄

λ̄a
ii

0,ii

ās
1,ii(ρs; λ̄a

ii) + B̄ii(ρs; λ̄a
ii)

ρs
(4.49)

+C̄iiλ̄
r
iix̄

λ̄r
ii

0,ii

ās
1,ii(ρs; λ̄r

ii) + B̄ii(ρs; λ̄r
ii)

ρs

]
.

In this expression C̄ii is the prefactor of the effective molecular interaction potential of
component i (cf. eq. (4.2)) using the values of the average molecular repulsive and at-

tractive exponents (λ̄r
ii and λ̄a

ii), i.e. C̄ii
λ̄r

ii

λ̄r
ii−λ̄a

ii

(
λ̄r

ii

λ̄a
ii

) λ̄a
ii

λ̄r
ii

−λ̄a
ii . The quantity B̄ii(ρs; λ̄ii) is

obtained using eq. (4.20) as

B̄ii(ρs; λ̄ii) = 2πρsd̄iiϵ̄ii

( 1 − ζx/2
(1 − ζx)3 Ī(λ̄ii) − 9ζx(1 + ζx)

2(1 − ζx)3 J̄(λ̄ii)
)

, (4.50)

but with Ī(λ̄ii) and J̄(λ̄ii) (cf. eq. (4.22) and (4.23)), now based on the effective exponents
λ̄r

ii and λ̄a
ii and the ratio x̄0,ii = σ̄ii/d̄ii.

The first-order term of the radial distribution function further depends on the density
derivative of the effective first-order perturbation term ā1,ii for the contribution of the
monomeric interactions to the free energy per segment, which is calculated following ex-
pression (4.19) as
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ā1,ii = C̄ii

[
x̄

λ̄a
ii

0,ii

(
ās

1,ii(ρs; λ̄a
ii) + B̄ii(ρs; λ̄a

ii)
)

(4.51)

− x̄
λ̄r

ii
0,ii

(
ās

1,ii(ρs; λ̄r
ii) + B̄ii(ρs; λ̄r

ii)
)]

.

The integrated energy of the Sutherland fluid ās
1;ii(ρs; λ̄ii) calculated for the effective molec-

ular parameters, is obtained as

ās
1,ii(ρs; λ̄ii) = −2πρs

(
ϵ̄iid̄

3
ii

λ̄ii − 3

)
1 − ζ̄eff.

ii /2
(1 − ζ̄eff.

ii )3 , (4.52)

where the effective packing fraction ζ̄eff.
ii used for the mapping of the radial distribution

function at contact, is now calculated as

ζ̄eff.
ii = c̄1,iiζx + c̄2,iiζ

2
x + c̄3,klζ

3
x + c̄4,iiζ

4
x . (4.53)

The coefficients of eq. (4.53) are obtained based on the effective values of the exponents
of the potential (λ̄ii):


c̄1,ii

c̄2,ii

c̄3,ii

c̄4,ii

 =


0.81096 1.7888 −37.578 92.284
1.0205 −19.341 151.26 −463.50

−1.9057 22.845 −228.14 973.92
1.0885 −6.1962 106.98 −677.64




1

1/λ̄ii

1/λ̄2
ii

1/λ̄3
ii

 . (4.54)

The second-order term g2(σ̄ii) of eq. (4.43) is also approximated by its value at the effective
distance d̄ii. It is obtained based on the expression of the macroscopic compressibility
approximation and an empirical correction [31],

g2(σ̄ii) ≈ g2(d̄ii) = (1 + γc,ii)gMCA
2 (d̄ii) , (4.55)

where γc,ii is given as a function of temperature, density and the effective values of the
exponents of the potential as

γc,ii = ϕ7,0 − tanh {[ϕ7,1(ϕ7,2 − ᾱii)] − 1} ζxθexp(ϕ7,3ζx + ϕ7,4ζ2
x) , (4.56)

where θ = exp(βϵ̄ii) − 1, the values of the coefficients ϕ7,0, . . . , ϕ7,4 are given in table 4.1,
and ᾱii is obtained based on the effective exponents of the potential (cf. eq. 4.32), as

ᾱii = C̄ii

(
1

λ̄a
ii − 3

− 1
λ̄r

ii − 3

)
. (4.57)
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Table 4.1: Coefficients ϕm,n for the empirical corrections to the a2,kl term (eq. (4.31)), the
a3,kl term (eq. (4.35)) and the correction γc,ii of the g2 term (eq. (4.55)). N/A denotes non-
applicable values

n ϕ1,n ϕ2,n ϕ3,n ϕ4,n ϕ5,n ϕ6,n ϕ7,n

0 7.5365557 -359.44 1550.9 -1.19932 -1911.28 9236.9 10
1 -37.60463 1825.6 -5070.1 9.063632 21390.175 -129430 10
2 71.745953 -3168.0 6534.6 -17.9482 -51320.7 357230 0.57
3 -46.83552 1884.2 -3288.7 11.34027 37064.54 -315530 -6.7
4 -2.467982 -0.82376 -2.7171 20.52142 1103.742 1390.2 -8
5 -0.50272 -3.1935 2.0883 -56.6377 -3264.61 -4518.2 N/A
6 8.0956883 3.7090 0 40.53683 2556.181 4241.6 N/A

The second-order term from the macroscopic compressibility approximation gMCA
2 (d̄ii) of

eq. (4.55) is obtained based on the fluctuation term of the Sutherland potential as

gMCA
2 (d̄ii) = 1

2πϵ̄2
i d̄3

ii

[
3 ∂

∂ρs

(
ā2,ii

1 + χ̄ii

)
(4.58)

− ϵ̄iiK
HSC̄2

iiλ̄
r
iix̄

2λ̄r
ii

0,ii

ās
1,ii(ρs; 2λ̄r

ii) + B̄(ρs; 2λ̄r
ii)

ρs

+ ϵ̄iiK
HSC̄2

ii(λ̄r
ii + λ̄a

ii)x̄
(λ̄r

ii+λ̄a
ii)

0,ii

ās
1,ii(ρs; λ̄r

ii + λ̄a
ii) + B̄(ρs; λ̄r

ii + λ̄a
ii)

ρs

− ϵ̄iiK
HSC̄2

iiλ̄
a
iix̄

2λ̄a
ii

0,ii

ās
1,ii(ρs; 2λ̄a

ii) + B̄(ρs; 2λ̄a
ii)

ρs

]
.

where all parameters and free energy terms are again evaluated using the effective molec-
ular parameters. Note that the empirical correction to the MCA expression is based on
the effective parameters as

χ̄ii = f1(ᾱii)ζxx̄3
0,ii + f2(ᾱii)(ζxx̄3

0,ii)5 + f3(ᾱii)(ζxx̄3
0,ii)8 , (4.59)

where the coefficients f1, f2, f3 are obtained based on eq. (4.36) by using ᾱii instead of
αkl.

4.2.4 Association Term

The contribution to the Helmhotz free energy arising from the association of molecules
through the sites is obtained as [21, 22, 101–104]

Aassoc.

NkBT
=

NC∑
i=1

xi

NG∑
k=1

νk,i

NSTk∑
a=1

nk,a

(
lnXi,k,a + 1 − Xi,k,a

2

)
, (4.60)
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where NSTk
is the total number of site types on a given group k, and nk,a the number

of sites of type a on group k. Xi,k,a is the fraction of sites of type a on group k of
component i that are not bonded. It is obtained from the solution of the mass action
equation as [19, 21, 104]

Xi,k,a = 1

1 +
NC∑
j=1

NG∑
l=1

NSTl∑
b=1

ρxjnl,bXj,l,b∆ij,kl,ab

. (4.61)

Here, ∆ij,kl,ab is the association strength between a site of type a on a group of type k of
component i and a site of type b on a group of type l of component j, and is given by

∆ij,kl,ab =
∫

gMie(r)fkl,ab(r)dr , (4.62)

where fkl,ab = exp(−βΦSW
kl,ab) − 1, is the Mayer-f function of the association potential (cf.

eq. (4.3)). By introducing the square-well bonding potential into eq. (4.62) and carrying
out the angle average, the association strength can be expressed as

∆ij,kl,ab = σ̄3
ijFkl,abIkl,ab , (4.63)

where Fkl,ab = exp(βϵHB
kl,ab) − 1, and Ikl,ab is a dimensionless integral defined as [31]

Ikl,ab = π

6σ̄3
ijrd

kl,ab
2

∫ (2rd
kl,ab−rc

kl,ab)

(2rd
kl,ab

−rc
kl,ab

)
gMie(r)(rc

kl,ab+2rd
kl,ab−r)2(2rc

kl,ab−2rd
kl,ab)rdr . (4.64)

The determination of the integral in eq. (4.64) requires a knowledge of the RDF of the
reference Mie fluid over a range of distances. For a detailed discussion of the various
options on how this can be calculated, see [31]. In the current work the value of the RDF
is approximated based on a Barker-Henderson zeroth-order perturbation approach, so that
gMie(r) ≃ gHS

d (r). After assuming that r2gHS
d (r) ≃ d2gHS

d (d), an analytical form for the
association contribution can be obtained, where the integral of eq. (4.64) is given by

Ikl,ab = gHS
d (d̄ij)Kij,kl,ab , (4.65)

and the bonding volume, Kij,kl,ab is obtained from [31]

Kij,kl,ab =
πd̄2

ij

6σ̄3
ijr

d
kl,ab

2

[
− 8

3
rc

kl,ab
3 − 7rc

kl,ab
2rd

kl,ab + 4rc
kl,abr

d
kl,ab

2 + 44
3

rd
kl,ab

3 (4.66)

+ 2ln(rc
kl,ab + 2rd

kl,ab)rc
kl,ab

3 + 6ln(rc
kl,ab + 2rd

kl,ab)rc
kl,ab

2rd
kl,ab

− 8ln(rc
kl,ab + 2rd

kl,ab)rd
kl,ab

3 − 1
3

d̄3
ij + 3rd

kl,abd̄
2
ij + 3rc

kl,ab
2d̄2

ij + 3rc
kl,ab

2d̄ij

− 12rd
kl,ab

2
d̄ij − 2ln(d̄ij)rc

kl,ab
3 − 6ln(d̄ij)rc

kl,ab
2rd

kl,ab + 8ln(d̄ij)rd
kl,ab

3
]
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4.2.5 Combining Rules

Combining rules are commonly employed within equations of state to facilitate the study
of binary and multicomponent systems. In the specific case of the methodology presented
in the current work, the interactions between groups of different kind also contribute to the
description of pure components represented with a heteronuclear molecular model. The
unlike segment diameter is obtained from a simple arithmetic mean (Lorentz rule [111])
as

σkl = σkk + σll

2
, (4.67)

and the combining rule is applied for the calculation of the unlike effective hard-sphere
diameter, so that dkl is calculated as

dkl = dkk + dll

2
. (4.68)

Bearing in mind the definition of the Barker and Henderson hard-sphere diameter (cf.
eq. (4.10)), a more rigorous way to obtain dkl would be to integrate the potential of the
unlike interaction between groups k and l as

dkl =
∫ σkl

0

[
1 − exp

{
−βuMie

kl (r)
}]

dr . (4.69)

However, such an approach would require extensive numerical calculations. Moreover, in
agreement with earlier findings [31], the approximation of dkl as an arithmetic mean is
found to have minimal impact on the performance of the method, as judged by the quality
of the description of properties of real compounds.

The unlike dispersion energy ϵkl between groups k and l, can be obtained by the application
of an augmented geometric mean, to account for the asymmetry in size:

ϵkl =

√
σ3

kkσ3
ll

σ3
kl

√
ϵkkϵll . (4.70)

The combining rule for the repulsive λr
kl and the attractive λa

kl exponents of the unlike
interaction is obtained by applying the geometric mean for the integrated van der Waals
energy of a Sutherland fluid,

αs
vdW ;kl = 2πϵklσ

3
kl

( 1
λkl − 3

)
, (4.71)

and by imposing the Berthelot condition αs
vdW ;kl =

√
αs

vdW ;kkαs
vdW ;ll [111], which results

in

λkl = 3 +
√

(λkk − 3)(λll − 3) . (4.72)
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The combining rule of equation (4.70) provides a first estimate of the value of the unlike
dispersion energy. It is known however that real systems often exhibit large deviations
from simple or augmented combining rules, especially when the molecules comprise chem-
ically different components and groups. As will be discussed in the following sections, the
unlike dispersion energy ϵkl is in most cases treated as an adjustable parameter.

In the case of associating compounds, the unlike value of the association energy can be
obtained by means of a simple geometric mean, as follows

ϵHB
kl,ab =

√
ϵHB
kk,aaϵHB

ll,bb , (4.73)

while the unlike range of the association site-site interaction is obtained as

rc
kl,ab =

rc
kk,aa + rc

ll,bb

2
. (4.74)

A number of combining rules for the average molecular parameters required for the cal-
culation of the chain and association contributions to the free energy also need to be
considered. The unlike values for the effective segment size, σ̄ij and d̄ij , dispersion energy,
ϵ̄ij , and repulsive and attractive exponents of the potential, λ̄ij , are obtained from

σ̄ij = σ̄ii + σ̄jj

2
, (4.75)

d̄ij = d̄ii + d̄jj

2
, (4.76)

ϵ̄ij =

√
σ̄3

iiσ̄
3
jj

σ̄3
ij

√
ϵ̄iiϵ̄jj , (4.77)

and

λ̄ij = 3 +
√

(λ̄ii − 3)(λ̄jj − 3) . (4.78)

4.3 Estimation of group parameters

Within group contribution methods, the parameters that describe the contribution of
each functional group to the molecular properties are typically estimated from appropri-
ate experimental data. In the SAFT-γ Mie EoS, the contribution of a given group k

is fully described by the number ν∗
k of identical segments it comprises and a set of five

segment-specific parameters: the shape factor Sk; the segment diameter σkk; the energy
of dispersion ϵkk; and the repulsive λr

kk and attractive λa
kk exponents of the interaction

potential. In the case of associating compounds, a further two parameters (for each pair
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of associating sites) have to be determined: the energy ϵHB
kk,ab and the range rc

kk,ab of the
association interactions between sites of type a and b on group k. This can include inter-
actions between sites of the same type, i.e. ϵHB

kk,aa rc
kk,ab. The complete description of an

associating functional group requires the knowledge of the number NSTk
of site types as

well as the number of sites of each type that a group comprises, nk,a for a = 1, . . . , NSTk
,

which are allowed to take only integer values. These parameters, together with ν∗
k are

chosen a priori based on the chemical nature of each group (for the associating sites), by
examining the different realistic possibilities with a trial-and-error approach.

As discussed in the previous section, the unlike segment diameter, σkl, and the values of
the exponents of the unlike interaction potential, λr

kl and λa
kl, are calculated by means

of the combining rules shown in eqs. (4.67) and (4.72), respectively. The value of the
unlike dispersion energy, ϵkl, is typically treated as an adjustable parameter and is there-
fore obtained by regression to experimental data. In many cases, the value of the unlike
interaction energy can be estimated from pure component data, a unique characteristic of
heteronuclear models, as will be shown in the following section; this can allow for accurate
predictions for properties of mixtures from pure component data alone. Mixture data is
used where necessary to estimate the unlike energy, as demonstrated in previous work [348].

The group parameters are estimated simultaneously from experimental data for a series
of pure substances belonging to a given chemical family. In most group contribution ap-
proaches, the parameter estimation procedure is started with the n-alkanes series, where
the parameters for the CH3 and the CH2 groups are obtained. Once the parameters for
these groups have been determined, they are transferred to the study of additional func-
tional groups based on experimental data for a subsequent homologous series, e.g., the
2-ketones for the CH3CO group. The parameters that describe each functional group
within the SAFT-γ Mie EoS are obtained by regression to pure component vapour-liquid
equilibrium data (i.e., vapour pressures pvap and saturated liquid densities ρsat), includ-
ing single-phase densities ρliq(T, p) at given temperature and pressure. The temperature
range commonly used for vapour-liquid equilibrium data is between the triple point and
0.9 T exp

c , with T exp
c the experimental critical temperature of the substance under study.

Experimental data closer than 0.9 T exp
c are not included in the parameter estimation in

the current work, despite the improved description of the near-critical region with the
presented methodology. Since the equation of state is a classical theory it is characterised
by mean-field critical exponents, and does not allow one to reproduce the density fluc-
tuations in the critical region; including data closer to the critical point would bias the
parameters towards a more accurate representation of the critical point and a sub-optimal
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description of the sub-critical region. For the single phase density, experimental data
in the high-temperature and pressure liquid and supercritical region are typically used.
These data are included when available as they provide information of the compressibility
for the fluid and can help towards the accurate prediction of derivative thermodynamic
properties. The objective function used in the parameter estimations is given by

min
Ω

fobj = w1
Npvap

Npvap∑
i=1

[
pexp

vap(Ti) − pcalc
vap (Ti; Ω)

pexp
vap(Ti)

]2

(4.79)

+ w2
Nρsat

Nρsat∑
j=1

[
ρexp

sat (Tj) − ρcalc
sat (Tj ; Ω)

ρexp
sat (Tj)

]2

+ w3
Nρliq

Nρliq∑
k=1

[
ρexp

liq (Tk, pk) − ρcalc
liq (Tk, pk; Ω)

ρexp
liq (Tk, pk)

]2

,

where Ω denotes the vector of the parameters to be estimated, the indices i, j and k

allow for the summation over all experimental points for each property, denoted as Npvap ,
Nρsat and Nρliq for the vapour pressure, saturated liquid density, and single-phase density,
respectively. The desired level of accuracy for each property can be adjusted by means of
a weighting factor, w1 for pvap, w2 for ρsat and w3 for ρliq. The estimations were performed
using numerical solvers provided by the commercial software package gPROMS c⃝ [276].

4.4 Results and discussion

4.4.1 SAFT-γ Mie group parameters

In the first instance models for the characterisation of the functional groups of two chemical
families within the framework of SAFT-γ Mie are developed, and more specifically for the
n-alkanes and the 2-ketones. In the following sections, the definitions of the functional
groups for each chemical family, together with the detailed results of the regression to the
experimental data are be presented. The metric used in this work to quantify the accuracy
of the description of the experimental data for a property of a given compound Ri is the
percentage average abolute deviation (% AAD) defined as:

%AAD = 1
NRexp.

NRexp.∑
i=1

∣∣∣∣∣R
exp.
i − Rcalc.

i

Rexp.
i

∣∣∣∣∣ . (4.80)

where NRexp. is the number of data points of a property, Rexp.
i the experimental value and

Rcalc.
i the calculated value for the same property.
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Table 4.2: Group parameters for the functional groups for the n-alkanes (CH3 and CH2) and
for the 2-ketones (CH3CO) within the SAFT-γ Mie framework.

Functional Group k ν∗
k Sk [-] λr

kk [-] λa
kk [-] σkk [Å] (ϵkk/kB) [K]

CH3 1 0.5725 15.05 6 4.077 256.766
CH2 1 0.2293 19.871 6 4.88 473.389
CH3CO 2 0.628 17.508 6 3.748 463.412

Table 4.3: Unlike dispersion interaction energies ϵkl/kB for the functional groups for the
n-alkanes (CH3 and CH2) and for the 2-ketones (CH3CO) within the SAFT-γ Mie framework.

ϵkl/kB [T] CH3 CH2 CH3CO

CH3 256.766 350.772 334.437
CH2 350.772 473.389 405.882
CH3CO 334.437 405.882 463.412

4.4.1.1 n-Alkanes

The chemical family of the n-alkanes is considered in order to obtain the intermolecu-
lar model parameters that describe the ubiquitous methyl (CH3) and methylene (CH2)
functional groups. The parameters estimated for these functional groups, summarised in
tables 4.2 and 4.3, are obtained by regression to experimental data for the vapour pres-
sure, saturated liquid density, and single-phase density of linear alkanes from ethane to
n-decane. The number of data points and the temperature range (and pressure range, for
the single phase density) for each compound and property considered are given in tables 4.4
and 4.5. For the vapour pressure and the saturated liquid density correlated experimental
data from NIST [277] are used, which are provided from multiparametric Helmholtz en-
ergy equations fitted to critically assessed and properly weighted experimental data. Given
the availability of correlated data for the family of n-alkanes, the use of such data of high
accuracy is preferred over actual experimental data of unknown uncertainty and/or quality.

The quality of the description of the pure component vapour-liquid equilibria of the n-
alkanes included in the regression is depicted for the coexistence densities in figure 4.2 and
for the vapour pressure in figure 4.3. From the figures, it can be seen that the SAFT-γ Mie
group contribution approach allows for an excellent description of the phase behaviour of
the correlated compounds, from ethane to n-decane. The deviations (%AAD) from the
experimental data for the vapour pressure and saturated liquid density are summarised in
table 4.4. The average deviation for all correlated compounds was found to be 1.55% for
pvap and 0.59% for ρsat and shows a significant improvement when compared to the results
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Table 4.4: Percentage average absolute deviations (%AAD) of vapour pressures pvap(T ) and
saturated liquid densities ρsat(T ) for the n-alkanes obtained with the SAFT-γ Mie framework
for the correlated experimental data from NIST [277], where n is the number of data points.

Compound T range (K) n %AAD pvap(T ) T range (K) n %AAD ρsat(T )

C2H6 125-275 31 2.24 125-275 31 1.48
C3H8 147-332 38 2.22 147-332 38 0.74
C4H10 170-385 44 1.27 170-385 44 0.37
C5H12 187- 422 48 1.90 187- 422 48 0.36
C6H14 201-456 52 1.68 201-456 52 0.27
C7H16 216-486 55 1.01 216-486 55 0.46
C8H18 227-512 58 1.22 227-512 58 0.54
C9H20 237-532 60 0.69 237-532 60 0.59
C10H22 245-555 63 1.75 245-555 63 0.52

Average - - 1.55 - - 0.59

obtained by Lymperiadis et al. [19] for models based on the square-well potential (3.98%
for pvap and 0.57% for ρsat), especially for the vapour pressure. The level of accuracy of
the SAFT-γ Mie approach constitutes a clear improvement in the description of the pure
component phase behaviour of the n-alkanes with a Mie potential when compared to other
group contribution approaches within SAFT. Tamouza et al. [18] have reported average
deviations of 2.63% for the vapour pressure and 2.29% for the saturated liquid density
with their homonuclear GC approach based on the SAFT-0 [167] and 1.66% and 2.23%
with that based on SAFT-VR SW, while for the hetero GC-SAFT-VR of Peng et al. [20]
deviations of 5.95% and 3.07% are found for the vapour pressure and saturated liquid den-
sity, respectively. It should be noted however, that though a comparison of the deviations
of different methods provide a measure of the accuracy of each approach, they are based
on different experimental data and temperature ranges, as well as, in some cases, different
sets of compounds.
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Figure 4.2: SAFT-γ Mie description of the coexistence densities as a function of temperature
for the linear alkanes (n-ethane to n-decane from bottom to top) included in the estimation
of the CH3 and CH2 group parameters presented in this work. The symbols represent the
experimental data from NIST [277] and the continuous curves the calculations with the theory.
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Figure 4.3: SAFT-γ Mie description of the vapour pressures for the linear alkanes (n-ethane
to n-decane from left to right) included in the estimation of the CH3 and CH2 group parameters
presented in this work. The symbols represent the experimental data from NIST [277], with
the last point being the critical point for each compound, and the continuous curves the
calculations with the theory.

It is also important to note that the deviations reported here are based on data within
a temperature range up to 0.9 T exp

crit and as such fail to express the improved perfor-
mance of the SAFT-γ Mie approach in the description of the near-critical region of pure
substances. This can be seen when comparing graphically the vapour-liquid equilibria
of selected n-alkanes obtained with our SAFT-γ Mie approach and the SAFT-γ SW of
Lymperiadis et al. (cf. figure 4.4). From the comparison, it can be clearly seen that the
SAFT-γ Mie EoS provides a significantly improved description of the near-critical region
of systems of varying chain length, decreasing the overshoot of the critical point whilst
retaining a highly accurate description of the fluid phase behaviour at temperatures far
from the critical point. We reiterate that the approach, being an analytical mean-field
type theory, fails to reproduce the critical scaling observed experimentally. An accurate
representation of these cirtical properties would require the application of a renormalisa-
tion group treatment, e.g., as applied to the SAFT-VR EoS by McCabe et al. [323] and
by Forte et al. [324, 325].

The description of the single phase densities ρliq summarised in table 4.5, is also excellent,
with an average deviation for all compounds of 0.59%. When examining each compound
it can be seen that the highest deviations are observed for ethane, as was the case for the
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Figure 4.4: Comparison of the description of SAFT-γ SW [19] (dashed curves) and SAFT-γ
Mie (solid curves) for the pure component vapour-liquid equilibria of n-butane, n-hexane and
n-octane. (a) Coexistence densities (from bottom to top) and (b) vapour pressures (from left
to right). The symbols represent the experimental data from NIST [277].

SAFT-γ square-well approach [19]. One may argue that ethane should not be included
in the parameter estimation procedure, since ethane does not contain a CH3-CH2 inter-
action, while all longer n-alkanes do. Furthermore, group contribution techniques are not
generally best suited to the study of small molecules as proximity effects are neglected.
With this in mind the procedure was repeated omitting the data for ethane and the inclu-
sion of experimental data for ethane was not found to bias the parameters of the groups
in a way that would result in a sub-optimal description of the higher n-alkanes. When
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Table 4.5: Percentage average absolute deviations (%AAD) of single-phase densities
ρliq(T, P ), speed of sound u(T, P ), and isobaric heat capacity cp(T, P ) for the n-alkanes ob-
tained with the SAFT-γ Mie framework from the experimental data from NIST [277], where
n is the number of data points.

Compound T [K] p [MPa] n %AAD ρliq(T, p) %AAD u(T, p) %AAD cp(T, p)

C2H6 150-550 10-50 123 0.96 3.04 3.59
C3H8 150-500 10-50 108 0.49 1.65 2.19
C4H10 150-550 10-50 123 0.50 0.79 2.04
C5H12 150-550 10-50 120 0.60 1.08 1.76
C6H14 188-548 10-50 108 0.52 0.88 1.21
C7H16 193-553 10-50 108 0.62 1.42 0.99
C8H18 226-546 10-50 95 0.64 0.77 0.61
C9H20 230-550 10-50 95 0.50 2.12 0.48
C10H22 253-553 10-50 89 0.47 2.30 0.41

Average - - - 0.59 1.56 1.48

a more accurate model is needed ethane can be described by a separate functional group
(as would be the case for, e.g., water, methanol, etc.). This strategy is followed within the
hetero GC-SAFT-VR of Peng et al. [20] and the GC-SAFT of Tamouza et al. [18] where
n-propane was the first molecule considered for the regression of the parameters for the
n-alkane series.

As has already been mentioned, a particular advantage of the Mie potential is that the
form of the pair interactions between segments can be carried out by adjusting the values of
the repulsive and attractive exponents. This allows one to capture the finer features of the
interaction which are important in providing an accurate description of the thermodynamic
derivative properties. Regarding the parameters that determine the form of the interaction
potential between the CH3 and CH2 functional groups, the value of the attractive exponent
is fixed to λa = 6 for both groups. This is based on the chemical nature of the groups,
which given their non-polar nature are expected to interact via London dispersion forces
which are characterised by an attractive exponent of six [112, 349]. The values of the
repulsive exponents estimated from the experimental data for the n-alkanes are found to
be λr

CH3
= 15.050 and λr

CH2
= 19.871. Potoff and Bernard-Brunel [238] have developed a

force-field for the methyl and methylene groups based on the Mie potential for molecular
simulation of the fluid phase behaviour of n-alkanes, finding that a good description can
be obtained with values of the repulsive exponent of 16 for both groups. The values
of the shape factors for the CH3 and CH2 groups are also obtained from the parameter
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estimation procedure. The optimal values obtained are SCH3 = 0.5725 and SCH2 = 0.2293,
which are found to be quite different from those used in previous work with the square-
well potential [19]. In the previous work, the shape factors for the CH3 and CH2 groups
were fixed to 1/3 and 2/3, respectively, as these yield a realistic molecular aspect ratio for
the n-alkanes in a homonuclear model [27]. The segment size for the CH3 is found to be
smaller than the size of the CH2 group (4.077 Å compared to 4.880 Å). Comparing the
values of the segment diameters to the ones obtained by Lymperiadis et al. [19], one finds
a significant increase; this will be discussed in more detail when examining the predictions
of the theory for longer n-alkanes and the polyethylene polymer limit in section 4.4.2.1.

4.4.1.2 2-Ketones

Having determined the parameters for the CH3 and CH2 functional groups, these are trans-
ferred for the study of other homologous series of compounds to determine the parameters
of additional functional groups. In the current work we develop parameters for the CH3CO
group based on experimental data for the 2-ketones. The chemical family of the terminal
ketones (or 2-ketones) is modelled by defining the CH3CO functional group, in accordance
with the approach employed within UNIFAC [78]. Given the fact that this large functional
group comprises the first neighbouring methyl group, we choose to model CH3CO as com-
prising two identical segments (ν∗

CH3CO = 2), and treat it as non-associating as ketones
are not expected to self-associate. It is important to note however, that associating sites
will have to be included in order to capture the unlike association in some polar mixture
of ketones, including, e.g., water or alkanols (see the work of Kleiner and Sadowski [350]).
The value of the attractive exponent is again fixed to the value of λa

CH3CO = 6, as for the
groups of the n-alkanes, and the remaining parameters are estimated based on regression
to a compilation of pure component and mixture experimental data. The pure compo-
nent data used include experimental data for the saturated liquid density, vapour pressure
and single phase liquid density for 2-propanone (acetone) to 2-nonanone. The specifics of
the temperature and pressure range, the number of points for each property, as well as
the deviations for each property and each compound are given in tables 4.6 and 4.7, and
the estimated parameters are presented in table 4.2. In addition to the pure component
data, we have included in the regression experimental data for the heats of mixing of
three binary n-alkane+2-ketone mixtures: n-propane+acetone, n-hexane+acetone and n-
octane+2-butanone. These experimental data are included in the estimation procedure so
as to have a more complete characterisation of the unlike interactions between functional
groups and to ensure an accurate description of the highly non-ideal phase behaviour that
these mixtures exhibit. An advantage of the SAFT-γ heteronuclear approach is that in-
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Table 4.6: Percentage average absolute deviations (%AAD) of vapour pressures pvap(T ) and
saturated liquid densities ρsat(T ) for the 2-ketones obtained with the SAFT-γ Mie framework
for the experimental data, where n is the number of data points.

Compound T [K] n %AAD pvap Ref. T [K] n %AAD ρsat Ref.

CH3COCH3 259-453 46 0.85 [293, 351] 183-453 15 2.21 [352, 353]
CH3CH2COCH3 253-483 34 0.5 [354, 355] 213-483 11 1.01 [352]
CH3(CH2)2COCH3 263-505 43 5.37 [355, 356] 233-503 11 0.81 [352]
CH3(CH2)3COCH3 307-427 30 0.97 [354] 250-520 28 0.99 [357]
CH3(CH2)4COCH3 273-452 57 1.9 [354, 355] 250-550 31 0.89 [357]
CH3(CH2)5COCH3 263-461 30 2.96 [355] 260-570 32 0.96 [357]
CH3(CH2)6COCH3 283-466 20 2.51 [358] 270-590 33 1.66 [357]

Average - - 2.15 - - - 1.22 -

Table 4.7: Percentage average absolute deviations (%AAD) of single-phase densities ρliq(T, p)
for the 2-ketones obtained with the SAFT-γ Mie framework for the experimental data, where
n is the number of data points. No data for 2-nonanone were available.

Compound T [K] p [MPa] n Ref. %AAD ρliq(T, p)

CH3COCH3 323-423 1.6-65.5 56 [359] 0.97
CH3CH2COCH3 293-473 0.1-160 16 [360] 1.80
CH3(CH2)2COCH3 273-473 0.1-78 38 [361] 2.22
CH3(CH2)3COCH3 292-304 0.1 11 [362] 0.79
CH3(CH2)4COCH3 293-360 0.1 6 [363] 0.94
CH3(CH2)5COCH3 273-566 0.1-79 46 [364] 1.26

Average - - - - 1.33

formation on the unlike interactions can be provided from pure component data alone, as
has been successfully demonstrated in the past [19, 20, 29, 222, 348]. This is particularly
useful in situations where data availability is an issue. However, in the current work we
have chosen to include some experimental data for selected mixtures in order to increase
the statistical significance of the interaction parameters.

A comparison between the SAFT-γ Mie description and the experimental data for the
saturated liquid densities and vapour pressures of the 2-ketones is given in figures 4.5
and 4.6. The vapour pressures are shown in a logarithmic representation that highlights
both the low- and the high-temperature region. The overall deviations (%AAD) for the
correlated compounds (cf. table 4.6) are 2.15% for pvap and 1.22% for ρsat. Regarding
the reported deviations for the vapour pressures listed in table 4.6, a rather high value
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is seen for the case of 2-pentanone; similar findings were reported with the SAFT-γ SW
method [29], where for an average error in pressure over all correlated compounds of
3.47% the reported deviation for 2-pentanone was 7.44%. The experimental data used for
2-pentanone were assessed for consistency with an Antoine equation and parameters from
reference [39], where a deviation of 1.64% is seen. This suggests that the experimental
data used for 2-pentanone in the parameter estimation procedure are consistent.

A comparison of the SAFT-γ Mie description of the family of 2-ketones with the devi-
ations reported by Lymperiadis et al. [29] suggests a clear improvement for the vapour
pressure (%AADs of 3.37% for pvap and 1.13% for ρsat). The difference in the descrip-
tion of the saturated liquid densities can be attributed to the different experimental data
and temperature ranges used in the estimation; when comparing the predictions of the
theory to the experimental data used by Lymperiadis et al. [29] a similar accuracy is
found. Regarding the performance of other GC SAFT approaches for the family of ke-
tones, Nguyen-Huyhn et al. [365] have applied three versions of SAFT (the SAFT-0 [167],
SAFT-VR [170, 171] and PC-SAFT [166]) combined with a polar term and the deviations
reported for the correlated compounds (acetone to 2-octanone) were, respectively, 3.50%,
3.13% and 3.00% for pvap and 1.45%, 1.49% and 2.15% for ρsat. Although a precise com-
parison with the other methods is difficult due to the differences in the experimental data
used, the average error for our SAFT-γ Mie approach based on the same compounds, are
of 2.09 % and 1.14 % for pvap and ρsat, respectively, which suggests a slight improvement.
A comparison with the hetero GC-SAFT-VR [20] approach is somewhat more difficult,
as the parameters for the C=O group of the ketones of Peng et al. are obtained based on
intermediate ketones, as opposed to the terminal ketones employed in our current work.
The accuracy in the description of the pure component fluid phase behaviour of the ke-
tones is reported as of 5.75 % for pvap and 1.57 % for ρsat.

The description of the single-phase densities of the 2-ketones used in the parameter estima-
tion is found to be of high accuracy, with an average %AAD for all compounds considered
of 1.33%. On analysing the deviations per compound, it can be seen that the highest
deviations from the experimental data are found for the first member of the 2-ketones
series, i.e., acetone, especially for the saturated liquid densities. An optimal description
for acetone can be obtained by defining it as a single group (as would be the case for wa-
ter, methanol, etc.). However, the fact that a satisfactory agreement can still be achieved
within the group contribution approach and taking into account the importance of acetone
as a solvent, we chose to include it in the regression procedure.
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The limited mixture data included in the regression are also well correlated with SAFT-γ
Mie, as shown in figure 4.7. The average deviation (%AAD) of the excess enthalpies for
the three binary systems included in the estimation was found to be 14.37% (12.93% for n-
propane+acetone, 17.41% for n-hexane+acetone, and 12.78% for n-octane+2-butanone),
and the level of agreement was deemed satisfactory based on the sensitivity of the selected
properties to the unlike interaction parameters between the functional groups and the
small values of the excess enthalpies that the systems exhibit (∼ 0.5-2 kJ/mol). In order
to assess the level of accuracy, the description of the SAFT-γ Mie approach was compared
with the description obtained with the modified UNIFAC (Dortmund) [85], within which
group parameters are obtained by regression to data for different mixture properties in-
cluding phase equilibria and excess enthalpies. From the comparison shown in figure 4.7, it
is clear that the two methodologies provide an equivalent description of the experimental
data. The modified UNIFAC gives a better description of the composition dependence
of the excess enthalpies but it appears to underestimate the data in all cases, while the
SAFT-γ Mie is seen to provide a better description of the magnitude of the excess en-
thalpies and the relative difference in the excess enthalpies of the mixtures examined.

The resulting form of the interaction potential of the CH3CO group is described by an
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Figure 4.5: SAFT-γ Mie description of the coexistence densities as a function of temperature
for the 2-ketones (2-propanone to 2-nonanone from bottom to top) included in the estimation
of the CH3CO group parameters. The symbols represent experimental data and the solid
curves the calculations with the theory.
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Figure 4.6: SAFT-γ Mie description of the vapour pressures for the 2-ketones (2-propanone
to 2-nonanone from top to bottom) included in the estimation of the CH3CO group parameters.
The symbols represent experimental data, and the solid curves the calculations with the theory.

optimal value of the repulsive exponent of λr
CH3CO = 17.508, while the attractive exponent

is fixed to λa
CH3CO = 6. No explicit treatment of the polarity of the ketone is included

in the model developed within the current work; a term accounting for polar interactions
has been considered in other modelling approaches for the ketones [365]. We should note
however that in the case of the interaction of the CH3CO group with other polar groups,
such as the OH, NH2, or H2O groups, the strong electrostatic interactions are represented
with additional site-site association contributions. The value of the segment size of the
CH3CO group obtained from the regression is σCH3CO = 3.748 Å, which is slightly smaller
than the size of the CH3 group; bearing in mind that the CH3CO group is modelled as two
identical segments and the similar value of the shape factor of the CH3CO group, it would
appear that the CH3CO group is roughly twice as big as the CH3 group, which is in line
with previous findings [20, 189, 365] where the segment size of the C=O group is found
to be very similar to that of the CH3 group. The energy of interaction characterising the
CH3CO group is found to be rather high, ϵCH3CO/kB = 463.412, which is again consistent
with previously reported values on this interaction within the SAFT-γ SW [29] and the
hetero GC-SAFT-VR [20] frameworks.
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Figure 4.7: Excess enthalpies as a function of the composition of the 2-ketone of the binary
systems included in the regression of the parameters of the CH3CO group. The triangles are
experimental data for the system of n-propane+acetone at 223.15 K [366], the squares for n-
octane+2-butanone at 298.15 K [367], and the circles for n-hexane+acetone at 308.15 K [368].
The continuous curves are the calculations of the SAFT-γ Mie EoS and the dashed curves are
the corresponding calculations of the modified UNIFAC (Dortmund) [85].
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4.4.2 Predictions

4.4.2.1 Pure Components

An assessment of the adequacy of the parameters obtained for the CH3 and CH2 functional
groups can be made by examining the performance of the theory in describing thermo-
dynamic properties of compounds not included in the parameter estimation procedure.
The application of the Mie intermolecular potential was previously shown to allow for
an accurate simultaneous description of fluid phase equilibria and thermodynamic deriva-
tive properties [30, 31]. The prediction of derivative properties is a stringent test in any
thermodynamic description, and high deviations are to be expected with most equations
of state, be it with traditional cubic EoSs or the various SAFT variants [30, 31]. Here,
we examine the performance of the SAFT-γ Mie approach in the description of thermo-
dynamic derivative properties of representative n-alkanes. We compare the predictions
obtained with our current approach to the correlated experimental data of NIST [277] for
the speed of sound u(T, p) and isobaric heat capacity cp(T, p), of the compounds included
in the parameter estimation procedure (cf. table 4.5). The reported average deviations,
1.56% for u(T, p) and 1.48% for cp(T, p) for the n-alkane homologous series from ethane to
n-decane provide a good indication of the capability of the SAFT-γ Mie EoS to describe
thermodynamic derivative properties whilst retaining an excellent description of the pure
component fluid phase behaviour. The performance of SAFT-γ Mie in the prediction of
thermodynamic derivative properties of selected n-alkanes is also depicted in figure 4.8,
where in addition to the speed of sound and the isobaric heat capacity, the SAFT-γ Mie
predictions for the isothermal compressibility kT (T, p) and the Joule-Thomson coefficient
µJT(T, p) are compared to correlated experimental data [369].

A key advantage of a group contribution formulation lies in the transferability of the group
parameters. In order to demonstrate this, the parameters for the CH3 and the CH2 func-
tional groups are applied to the prediction of pure component properties of systems not
used to estimate the group parameters. Predictions with the SAFT-γ Mie EoS of the fluid
phase behaviour for some heavier n-alkanes (n-C15H32, n-C20H42, n-C25H52 and n-C30H62)
are compared with the experimental data in figure 4.9, and the corresponding deviations
are summarised in table 4.8. From this analysis it is clear that the methyl and methylene
group parameters can be successfully transferred to the prediction of the pure component
phase behaviour of longer n-alkanes; the description of the saturated liquid density re-
mains good, whereas higher deviations are seen in the vapour pressure. The latter could
be related to the high uncertainty and low absolute values of the experimental data of the
saturation pressure of long compounds at low temperatures. Furthermore apart from the
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Figure 4.8: Prediction of thermodynamic derivative properties of selected n-alkanes with the
SAFT-γ Mie approach: (a) speed of sound of n-pentane; (b) isothermal compressibility of n-
butane; (c) isobaric heat capacity of n-decane; and (d) Joule-Thomson coefficient of n-octane,
where the symbols are correlated experimental data from REFPROP [369] and the continuous
curves the theoretical predictions.

phase behaviour, the CH3 and CH2 group parameters result in a satisfactory description
of derivative properties of long n-alkanes, as shown in figure 4.10, for the the speed of
sound of n-C15H32 [327] and the isothermal compressibility of n-C20H42 [326].

The formulation of a SAFT-type approach within a group contribution concept combined
the wide range of applicability of EoSs and the predictive nature of GC methods. This can
be illustrated in the description of the properties of polymers. The SAFT EoS has been
successfully applied as a general methodology to the study of polymeric systems (e.g.,
see [186, 370, 371]), where the theory is particularly suited to polymers due to the ex-
plicit consideration of chain formation. Within the scope of the current work, and taking
advantage of the group contribution formulation, the properties of polyethylene polymers
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Figure 4.9: Comparison of the predictions of the SAFT-γ Mie approach and the experimental
data for the pure component vapour-liquid equilibria of long-chain n-alkanes not included
in the estimation of the group parameters. (a) Saturated liquid densities and (b) vapour
pressures of n-pentadecane (n-C15H32), n-eicosane (n-C20H42), n-pentacosane (n-C25H52), and
n-triacontane (n-C30H62).

care predicted, using the parameters estimated for the methyl and methylene groups from
the lower n-alkanes (cf. section 4.4.1.1). The predictions of the SAFT-γ Mie approach
are compared with the experimental single-phase densities of linear polyethylene [372] in
figure 4.11. The parameters for the methyl and (predominantly) for the methylene group
are seen to allow for an accurate description of linear polyethylene with a molecular weight
of 126,000 g/mol over a wide range of temperatures and pressures. The level of agree-
ment with the experimental data is particularly pleasing, especially when one recalls that
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Figure 4.10: Comparison of the predictions of the SAFT-γ Mie approach and the experi-
mental data for thermodynamic derivative properties of long-chain n-alkanes not included in
the regression of the group parameters: (a) speed of sound of n-pentadecane at 313.15 K (cir-
cles), 333.15 K (triangles), 353.15 K (squares), 373.15 K (diamonds) [327]; and (b) isothermal
compressibility of n-eicosane at 333.15 K (circles), 353.15 K (triangles), 373.15 K (squares)
and 393.15 K (diamonds) [326].

the parameters for the CH3 and CH2 groups are obtained based on the properties of the
much shorter n-alkanes, ranging from ethane to n-decane. The description obtained with
the SAFT-γ SW method using published parameters [19] are also plotted in figure 4.11.
From the comparison it is apparent that the description of the polymer with Mie seg-
ments provides a marked improvement to that obtained with square-well segments, and
lends physical relevance to the values of the parameters for the CH3 and CH2 groups (cf.
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table 4.2).
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Figure 4.11: Comparison of the predictions of the SAFT-γ Mie approach (solid lines) and
the SAFT-γ SW models (dashed lines) with the experimental data of the single phase densities
of linear polyethylene [372] (MW = 126,000 g/mol).

A similar assessment is performed for the chemical family of the 2-ketones, where the
performance of the methodology in the prediction of derivative properties is examined.
In accordance with the findings reported in section 4.4.1.2 for the fluid phase equilibria,
high deviations are expected for the case of acetone in the description of thermodynamic
derivative properties. A high-fidelity model that accurately reproduces a wide range of
properties of acetone has to be developed on a molecular-group basis. The predictions of
the SAFT-γ Mie EoS are compared with the experimental data for the speed of sound of
2-butanone, and with the isothermal compressibility of 2-octanone in figure 4.12. From
figure 4.12.(a) it can be seen that for 2-butanone the predictions of the theory are in
qualitative agreement with the experimental data, however the level of accuracy is not
as satisfactory as for the n-alkanes (cf. table 4.5 and figure 4.8). For increasingly long
2-ketones, the effect of the polar CH3CO group decreases in importance, and as a conse-
quence a very accurate representation of thermodynamic properties is recovered, as shown
for the isothermal compressibility of 2-octanone, shown in figure 4.12.(b).

An assessment of the SAFT-γ Mie EoS in the prediction of the pure component phase be-
haviour for longer compounds not included in the parameter estimation procedure has been
performed for 2-ketones. The parameters for the CH3, CH2 and CH3CO group have been
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combined to predict the phase behaviour of two high molecular weight 2-ketones, namely
2-undecanone and 2-tridecanone, and the deviations from the experimental data [354],
available for the vapour pressure only, are summarised in table 4.8. It is apparent that the
obtained group parameters can be successfully extrapolated to the accurate prediction of
the pure component VLE of these longer compounds.
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Figure 4.12: Prediction of thermodynamic derivative properties of selected 2-ketones with
the SAFT-γ Mie approach: (a) speed of sound of 2-butanone at 293.15 K (circles), 373.15 K
(triangles), and 473.15 K (squares) [373]; and (b) isothermal compressibility of 2-octanone at
333.15 K (circles), 433.15 K (triangles), 533.15 K (squares), and 633.15 K (diamonds) [374].
The continuous curves are the predictions with the SAFT-γ Mie approach.



4. SAFT-γ group contribution methodology based on Mie segments 127

Table 4.8: Percentage average absolute deviations (%AAD) of vapour pressures pvap(T ) and
saturated liquid densities ρsat(T ) for the predictions of SAFT-γ Mie EoS from the experimental
data (where n is the number of data points) for long-chain n-alkanes and 2-ketones not included
in the estimation of the group parameters.

Compound T [K] n %AAD pvap(T ) Ref. T [K] n %AAD ρsat(T ) Ref.

C15H32 293-576 35 6.67 [375],[376] 273-633 11 0.70 [352]
C20H42 388-625 29 16.98 [377] 293-683 11 0.98 [352]
C25H52 381-461 13 29.85 [378] 293-695 11 3.10 [352]
C30H62 432-452 5 36.56 [378] 293-727 11 4.01 [352]
CH3(CH2)8COCH3 393-538 27 2.26 [354] - - -
CH3(CH2)10COCH3 424-546 15 2.18 [354] - - -

Average - - 15.75 - - - 2.20 -

4.4.2.2 Binary Systems

The ability to obtain information about the nature of the unlike dispersion interaction
between segments belonging to the same molecule is an inherent advantageous feature of
the SAFT-γ approach. For the specific case of the chemical families considered in this
work, this means that the values of the unlike dispersion energies between the CH3 and
CH2 groups are obtained by pure component data alone (see table 4.3). This allows for
calculations of phase behaviour and other properties of mixtures of n-alkanes in a purely
predictive manner.

An example of the predictive capabilities of the SAFT-γ Mie approach is shown in fig-
ure 4.13, where the theoretical description is compared to experimental data for the phase
behaviour of the binary system n-butane+n-decane at different temperatures [322]. It is
clear that the SAFT-γ Mie predictions are in very good agreement with the experimental
data for the vapour-liquid equilibria of the mixture. The improvement in the description
of the near-critical fluid phase behaviour within the SAFT-γ Mie approach allows for an
accurate representation of the system over a wide range of conditions, including the high-
pressure critical region for isotherms at temperatures above the critical point of n-butane.
The overshoot of the critical points of the phase envelopes of the binary system is signifi-
cantly reduced in comparison to the results obtained with the SAFT-γ SW approach [19].

The same parameter set can be applied to the prediction of the fluid phase behaviour
of binary mixtures of compounds not included in the regression of the group parame-
ters. An example of this is shown in figure 4.14, where the theoretical predictions are
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Figure 4.13: Pressure-composition (p−x) representation of the fluid phase behaviour (vapour-
liquid equilibria) of the n-butane+n-decane binary mixture. The continuous curves represent
the predictions with the SAFT-γ Mie approach, the dashed curves the corresponding predic-
tions with SAFT-γ SW, and the symbols the experimental data at different temperatures [322].
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compared with the available experimental data [379] for the liquid-liquid equilibria of the
propane+n-hexacontane mixture for three different temperatures. This system was cho-
sen as a representative example of the type of fluid phase equilibria that polymer+solvent
mixtures exhibit [380]. n-C60H122 is the highest molecular weight monodisperse n-alkane
commercially available, so the mixture can be modelled without the need to account for
polydispersity [379]. Polydispersity has to be generally considered in representing poly-
mer+solvent systems and it can have a significant effect, primarily in the description of
liquid-liquid equilibria (e.g., see [186]). From figure 4.14 it can be seen that the SAFT-γ
Mie predictions are in very good agreement with the experimentally determined phase
behaviour of the mixture, accurately reproducing the width of the coexistence region at
higher pressures, with only a minor overshoot of the liquid-liquid critical point. The pro-
posed methodology provides a significantly improved description of the mixture in compar-
ison to the results obtained with the SAFT-γ SW EoS based on the SW potential [19, 29].
It is important to note that the same parameter set can be used for the prediction of
different types of phase behaviour: vapour-liquid equilibria for the n-butane+n-decane
system and liquid-liquid equilibria for the propane+n-hexacontane system.
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Figure 4.14: Pressure-weight fraction representation of the fluid phase behaviour (liquid-
liquid equilibria) of the propane + n-hexacontane (n-C60H122) binary mixture. The continu-
ous curves represent the predictions with the SAFT-γ Mie approach, the dashed curves the
corresponding predictions with SAFT-γ SW [19], and the symbols the experimental data at
different temperatures [379].
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Figure 4.15: Predictions for selected excess thermodynamic properties of binary mixtures of
n-alkanes: (a) excess speed of sound for n-hexane+n-dodecane (squares), n-hexane+n-decane
(triangles) and n-hexane+n-octane (circles) at 298.15 K [381]; and (b) excess molar volumes
for n-hexane+n-hexadecane at 293.15 K (circles), 303.15 K (triangles-up), 313.15 K (squares),
323.15 K (diamonds) and 333.15 K (triangles-down) [382]. The continuous curves represent
the predictions with the SAFT-γ Mie approach.

The performance of SAFT-γ Mie has also to be assessed in the prediction of excess ther-
modynamic properties of binary mixtures of n-alkanes. Excess thermodynamic properties
are a stringent test in the validation of thermodynamic methodologies, as they tend to
be more sensitive to the molecular details and intermolecular parameters than fluid phase
equilibria. Properties such as the excess volume and enthalpies have been the subject of
numerous studies, including among others the seminal work of Flory and co-workers [383–
385] and more recently the work of Blas and co-workers [177, 386, 387], within the SAFT
framework. An example of the performance of the SAFT-γ Mie approach is illustrated in
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figure 4.15, where the predictions of the theory are compared to experimental data for the
excess speed of sound (uE) of selected n-hexane+n-alkane binary mixtures [381] and the
excess molar volumes (V E) of the binary mixture of n-hexane+n-hexadecane at different
temperatures [382]. As for the fluid phase behaviour, the predictions of the theory are
in very good agreement with the experimental data. For the excess speed of sound, the
predictions of the theory are seen to be in quantitative agreement with the experimental
data; the trend of the data to lower values as the difference in the chain length of the
components of the mixture decreases is correctly reproduced. Quantitative agreement for
the excess molar volume is seen with the data at higher temperatures, and the trend of
the data to lower values with decreasing temperatures is reproduced by the theory. Given
the small magnitude of the data (especially at lower temperatures), and the fact that one
of the components of the mixture was not included in the parameter estimation procedure
(n-hexadecane), the overall agreement of the theory with the experimental data is deemed
to be satisfactory. Despite an accurate overall performance, it has to be noted that the
theory cannot reproduce the fine features of the excess enthalpies of binary systems of
asymmetric n-alkanes, as these arise from conformational effects that the theory does not
account for. Such effects can be incorporated in the general theoretical framework by
including a term that accounts for intramolecular interactions as has been shown by dos
Ramos and Blas [177].

The group parameters obtained for the CH3CO group and the unlike interaction values
shown in tables 4.2 and 4.3 allow for the prediction of properties of binary n-alkane +
2-ketone mixtures. A rather interesting mixture to examine in this regard is the binary
mixture of n-hexane+2-propanone (acetone), due to the liquid-liquid immiscibility exhib-
ited by the system at lower temperatures (see figure 4.16). The SAFT-γ Mie approach with
a single set of parameters is seen to reproduce, in a satisfactory manner the experimental
data for both the vapour-liquid [388] and the liquid-liquid equilibria [389]. Comparing the
results with the predictions of the SAFT-γ SW approach [29], it can be seen that the pro-
posed methodology leads to a reduction in the overprediction of the upper critical solution
temperature of the liquid-liquid phase envelope, whilst retaining a similar accuracy in the
description of the vapour-liquid phase equilibria. It is important to reiterate at this point
that within a GC approach for ketones, acetone is expected to be an outlier, and that a
specific model for acetone would provide a much improved description of the mixture fluid
phase behaviour.

The same set of group parameters can be used for the prediction of the phase behaviour
of a wide range of n-alkanes+2-ketones mixtures. In figure 4.17.(a) a comparison between



4. SAFT-γ group contribution methodology based on Mie segments 132

the predictions of the theory and the experimental data [390–392] for the phase behaviour
of the n-heptane+acetone binary mixture is shown. It can be seen that the fluid phase
behaviour of the mixture can be accurately reproduced with SAFT-γ Mie, including the
homogeneous azeotrope that appears at high concentrations of acetone. In figure 4.17.(b)
the predictions of the theory are compared to the experimental data [392, 393, 395] for
three binary mixtures including 2-butanone with three alkanes of varying size (n-hexane,
n-heptane and n-octane). The trend of the experimental data and the shift of the location
of the homogeneous azeotrope to higher compositions of 2-butanone as the chain length
of the alkane in the system increases is very well predicted by the theory.

One can also examine the adequacy of the theory in describing excess properties of mixing
of binary systems of n-alkanes+2-ketones. The excess heat of mixing predicted with
SAFT-γ Mie for three binary mixtures of 2-butanone with alkanes of varying size (n-
pentane, n-hexane and n-heptane) is compared to the experimental data [367, 396] in
figure 4.18.(a). It can be seen that the heat of mixing of the three selected mixtures is
described well and the correct variation in the magnitude of the excess heat with varying
chain length of the n-alkane is also predicted. This is very pleasing, given the magnitude of
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Figure 4.16: Predictions of the fluid phase behaviour of n-hexane+acetone as temperature-
composition (T − x) isobar at 1 bar. The circles represent the experimental data for the
vapour-liquid equilibria of the system [388], the squares the liquid-liquid equilibria [389], the
continuous curves the predictions of the SAFT-γ Mie approach, and the dashed curves the
corresponding predictions with the SAFT-γ SW approach [29].
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the excess enthalpy for this mixtures (∆HE ≤ 1.5 kJ/mol). The predictions for the excess
volumes of two binary mixtures, n-heptane+2-butanone and n-heptane+2-pentanone, are
compared to experimental data [398] in figure 4.18.(b). In this case, higher deviations
are observed between the experimental values and the SAFT-γ Mie predictions. However,
the performance of the proposed methodology is deemed as satisfactory given the correct
representation of the trend of the excess volumes to smaller values as the components of
the system become more similar in size is reproduced.
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Figure 4.17: Predictions of the fluid phase behaviour of selected n-alkane+2-ketone binary
mixtures. Pressure-composition (p − x) representation of the vapour-liquid equilibria of: (a)
n-heptane+acetoneat 308.15 K [390] (circles), at 313.15 K [391] (squares), at 323.15 K [392]
(triangles); and (b) n-octane+2-butanone at 313.15 K [393] (triangles), n-heptane+2-butanone
at 318.15 K [394] (circles) and n-hexane+2-butanone at 333.15 K [395] (squares). The contin-
uous curves are the predictions of the SAFT-γ Mie approach.
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4.5 Concluding Remarks

In this chapter the development of the SAFT-γ Mie approach is presented in detail. The
method is a reformulation of the SAFT-VR Mie EoS [31] within a group contribution
formalism, where the interactions between monomeric segments are represented by means
of the Mie pair potential of variable attractive and repulsive range. The molecular model
employed for the description of pure substances and mixtures is a fused heteronuclear
model, an idea following from previous studies [19]. Together with the implementation of
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Figure 4.18: Predictions for selected excess properties of binary systems of n-alkanes+2-
ketones: (a) excess heat of mixing for n-pentane+2-butanone (triangles), n-hexane+2-
butanone (squares) and n-heptane+2-butanone (circles) at 298.15 K [367, 396]; and (b) excess
volumes for n-heptane+2-butanone (circles) [397] and n-heptane+2-pentanone (triangles) [398]
at 298.15 K. The continuous curves represent the predictions with the SAFT-γ Mie GC ap-
proach.



4. SAFT-γ group contribution methodology based on Mie segments 135

the new intermolecular potential, a key novelty of the theory lies in the treatment of the
monomer contribution to the free energy, where a third-order perturbation expansion is
employed. The performance of the theory in the description of real systems is examined
in the study of two chemical families (the n-alkanes and the 2-ketones), where parameters
for the corresponding functional groups (CH3, CH2 and CH3CO) are obtained from fluid
phase behaviour data and single-phase densities of the pure components. In the devel-
opment of the CH3CO group parameters (and the unlike parameters with the n-alkane
groups) selected data for the excess enthalpies of binary mixtures are used, in order to
better characterise the nature of the unlike interactions.

The SAFT-γ Mie approach is shown to allow for an excellent description of the pure com-
ponent properties of the correlated compounds, with average relative errors of 1.85% for
the vapour pressure, 0.91% for the saturated liquid density, and 0.96% for the single-phase
density. It is also shown that the treatment of the monomer term proposed, leads to a
significant improvement in the description of the near-critical region of fluids, compared
to the SAFT-γ SW formulation [19]. Apart from fluid phase behaviour, second-order
thermodynamic derivative properties are also considered. The Mie intermolecular poten-
tial model employed in the proposed methodology allows for an accurate representation
of such properties (speed of sound, heat capacities, Joule-Thomson coefficient, etc.) as
shown in detail for the n-alkanes, whereas slightly higher deviations are to be expected
for the 2-ketones.

The predictive capability of the method is examined in the prediction of fluid phase equi-
librium and, when available, derivative properties of high molecular weight compounds not
included in the regression of the group parameters, where the performance of the SAFT-γ
Mie approach is found to be very satisfactory. A predictive study in the limit of high
molecular weight polymers confirms the robustness of the presented methodology and the
corresponding group parameters obtained in this work. Finally, the performance of SAFT-
γ Mie is examined in the prediction of the fluid phase behaviour and excess properties
of binary mixtures of n-alkanes and n-alkane+2-ketone. The theory is seen to accurately
describe the fluid phase behaviour of a variety of systems, including different types of
equilibria (vapour-liquid and liquid-liquid), over a wide range of conditions, including the
high-pressure critical points of the mixtures. The excess properties of binary mixtures
are also very well described and, for the cases considered, the calculations of the SAFT-γ
Mie are in better agreement compared to the calculations using the modified UNIFAC
(Dortmund) GC approach. The description of such properties is a challenging task, which
is known to be very sensitive to the specific molecular details, and the performance of
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the SAFT-γ Mie demonstrates the future potential of the theory for the study of other
chemical families.

Based on the very promising performance of the SAFT-γ Mie method presented here, the
theory is applied to the modelling of solubilities of complex organic compounds in solvents.
The thermodynamic framework for the modelling of solubilities together with an example
of the application of the SAFT-γ Mie in the study of complex systems are presented in
the following chapter.



Chapter 5

Modelling the solubility of
complex organic molecules in
organic solvents

In the work presented thus far, the performance of several thermodynamic methodologies
in the description of vapour-liquid and liquid-liquid equilibria of fluid mixtures has been
discussed. With a detailed analysis of SAFT-type GC methods it has been shown that an
accurate representation of fluid phase equilibria for a variety of mixtures can be obtained.
However, the performance of the method in studies of solid-liquid equilibria (solubilities)
has not yet been examined.

The accurate modelling of the solubility of complex organic molecules in solvents and sol-
vent blends is of great importance to the pharmaceutical and the agrochemical industry.
The end product is in these cases typically obtained in pure solid form by means of a crys-
tallisation process, where the quality of the solvent or solvent blend used can to a great
extent determine the success or failure of the process [399]. The choice of the appropriate
solvent, commonly referred to as solvent screening, can help manipulating the solubility
of the solid product in order to achieve an optimal production process. For the specific
case of active pharmaceutical ingredients (APIs), the importance of solubility modelling
extends beyond the scope of production. In this case, the solubililty of the solid drug in
aqueous media can dictate its bioavailability, while the permeation of the API through
biomembranes can be related (in the context of sobulitily) to water/octanol partition co-
efficients. The study of solubilities can be very consuming and cumbersome to carry out
experimentally, especially in the case of solvent blends, given the wide range of solvents
and compositions of the blend that have to be examined. The number of experiments
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that can be conducted is often limited by the small quantities of APIs typically produced
in early stages of drug discovery and design. An interesting alternative is to carry out
solvent screening and solubility study with thermodynamic tools that predict accurately
the solubilities of interest. The importance of the application of such methodologies has
been highlighted as a key element in the progress of the development of manufacturing
processes within pharmaceutical industries [400].

The application of the SAFT-γ Mie GC method (presented in chapter 4) to the study of the
solubility of complex organic molecules in organic solvents is developed in this chapter.
The thermodynamic framework for calculating solubilities by means of fluid theories is
presented next, followed by a review of the thermodynamic methodologies that have been
applied to the study of solubilities of organic molecules, including APIs, in solvents and
solvent blends. The SAFT-γ Mie parameter table is extended to include functional groups
commonly encountered in APIs and solvents, and the performance of the novel approach
in the challenging application of the prediction of solubilities of APIs in organic solvents
is investigated.

5.1 Modelling solid-liquid equilibria

The solubility of a compound (the solute, slt) in a solvent or solvent blend is defined as
the maximum quantity of the compound that can be dissolved in a given amount of a
solvent (solid, gas, or liquid) to form a homogeneous solution. This can be determined
by solving for the phase boundary of the solid-liquid equilibrium (SLE) of the system.
Here, the thermodynamic framework for solid-liquid equilibria presented and discussed by
Prausnitz et al. [401] is followed, starting from the conditions of fluid phase equilibrium,
i.e., the equality of the fugacity f (chemical potential) of the solute (denoted by subscript
slt) in the liquid (L), and in the solid (S) phase at the specified temperature T and pressure
p:

fS,∗
slt (T, p, xS

slt = 1) = fL
slt(T, p, xL

slt) , (5.1)

where the asterisk indicates a pure component; it is hereby assumed that the solid phase
consists solely of pure solute (a good approximation in practice), while the liquid phase
is a mixture of solute and solvent(s). Hence, the equality of fugacities applies only to the
solute and not to all of the components of the mixture. The fugacity of the solute in the
liquid phase can be calculated as:

fL
slt(T, p, xL

slt) = xL
sltγ

L
slt(T, p, xL)fL,∗

slt (T, p, xL
slt = 1) , (5.2)
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where xL is the composition of the liquid mixture, xL
slt is the composition of the solute

in the liquid phase, and γL
slt(T, p, xL

slt) its activity coefficient. For the study of solid-
liquid equilibria in binary mixtures, the activity coefficient can be written as a function
of the composition of the solute in the liquid phase, xL

slt, i.e., γL
slt(T, p, xL

slt). The fugacity
fL,∗

slt (T, p, xL
slt = 1) is that of the pure solute, as a subcooled liquid, at the specified tem-

perature and pressure; for temperatures below the melting point of the solute, Tm, the
fugacity of the subcooled liquid can be calculated by extrapolation of the liquid thermody-
namic properties into the solid region [58]. Omitting the composition constraint xL

slt = 1
in the pure component fugacities for brevity, the equilibrium equation now becomes:

fL,∗
slt (T, p)

fS,∗
slt (T, p)

= 1
xL

sltγ
L
slt(T, p, xL)

. (5.3)

The ratio on the left hand side of eq. (5.3) can be calculated from the thermodynamic cycle
depicted in figure 5.1, where it is assumed that the pressure p is fixed. The thermodynamic
cycle can be extended to account for differences in pressure, as shown in reference [402].
However, given that solubility data are usually reported at ambient pressure, the solid-
liquid equilibria working equation is derived here neglecting pressure effects. The ratio of
the solid and subcooled liquid fugacities can be related to the molar Gibbs free energy
change going from the the solid (a) to the liquid (d) state as:

∆ga→d = RT ln
fL,∗

slt (T, p)
fS,∗

slt (T, p)
. (5.4)

Solid Liquid

Operating 

Temperature, T

Melting point 

Temperature, T
m

a

b

d

c

Figure 5.1: Thermodynamic cycle for the calculation of the fugacity of a pure subcooled
liquid as in Prausnitz et al. [401].

Based on the standard thermodynamic relation ∆ga→d = ∆ha→d − T∆sa→d, the molar
Gibbs free energy change is related to the molar enthalpy and entropy changes. The
thermodynamic cycle presented in figure 5.1 is employed for the evaluation of these two
quantities, according to which the difference along the path a → d can be calculated based
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on the alternative path a → b → c → d. The cycle describes the following 3-step constant
pressure process [58]:

• the solid is heated at fixed p from the operating temperature T to its melting tem-
perature Tm (a → b);

• at Tm the solid is melted to form a liquid (c → c);

• the liquid is cooled without solidification from Tm to the temperature of the mixture
T (c → d);

The change in enthalpy can be written as

∆ha→d = ∆ha→b + ∆hb→c + ∆hc→d (5.5)

=
∫ Tm

T
cS

pdT + ∆hfus.(Tm) +
∫ T

Tm
cL

p dT

= ∆hfus(Tm) +
∫ T

Tm
∆cp(T )dT ,

where ∆hfus(Tm) is the enthalpy of fusion of the solute at the melting point, ∆cp = cL
p −cS

p

the difference between the isobaric heat capacity of the solute in liquid and solid state,
and Tm the melting temperature of the solute. The same analysis for the entropy gives

∆sa→d = ∆sfus(Tm) +
∫ T

Tm

∆cp(T )
T

dT . (5.6)

Rearranging eqs. (5.4)-(5.6), making use of the relation between the entropy and enthalpy
of fusion at the melting point (∆sfus = ∆hfus

Tm
), and under the assumption that the heat

capacity differences do not depend on temperature (∆cp = const.) we obtain the following
expression:

ln
fL,∗

slt

fS,∗
slt

= ∆hfus
R

( 1
T

− 1
Tm

)
− ∆cp

R

(
Tm
T

− 1
)

+ ∆cp

R
lnTm

T
. (5.7)

Typically eq. (5.7) is simplified in order to obtain the working equation for the calculation
of solid-liquid equilibria, by neglecting the terms accounting for the difference between
the heat capacity of the solid and the liquid phase, i.e., the last two terms on the right-
hand side of eq. (5.7). In view of the typical absence of available experimental data for
the heat capacity differences, these two terms are assumed to be of approximately equal
contribution, and given the opposite sign, to cancel out, thereby introducing only slight
error. The working equation is then written in its simplified form (where the fugacity ratio
has been replaced using eq. (5.3)) as

lnxL
slt = −∆hfus

R

( 1
T

− 1
Tm

)
− lnγL

slt(T, p, xL) . (5.8)
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Despite the fact that the contribution of the ∆cp terms is commonly neglected, it has
been suggested that it can significantly affect the solubility calculations, especially for
compounds with a significant difference between the heat capacity of the solid and the
liquid [403, 404]. As an example, Gracin et al. [405] found that including ∆cp in the
calculation of the solubility of paracetamol (for which ∆hfus = 27.1 kJ/mol [405] and
∆cp = 98.9 J/mol [406]) within the UNIFAC formalism can lead to a significant increase,
in some cases exceeding 100% compared to the calculation neglecting the heat-capacity
contribution.

From the working equation (cf. eq. (5.8)) it can be seen that the calculation of the solid-
liquid phase boundary (solubility) of a pure solute and a liquid phase with composition
xL requires a knowledge of three quantities: the enthalpy of fusion ∆hfus and the melting
temperature Tm of the pure solute, as well as the activity coefficient of the solute in the
liquid phase at the specified conditions (T , p, and xL). The first two quantities are typi-
cally obtained from experimental data; when these are not available, their values can be
approximated using, e.g., pure component GC approaches, such as that of Constantinou
and Gani [38], the method of Chickos et al. [407], or the more recent approach of Oskoei
and Keshavarz [408], and the GC+ approach of Gani and co-workers [409]. It should be
noted that ∆hfus and Tm can be also used to distinguish between the solubility of different
polymorphs of the same compound, as discussed in [403]. Polymorphs are different forms
of a substance with similar free energies that might exist simultaneously at certain pres-
sure and temperature conditions and, within the context of the approach presented here,
can be distinguished based on the different values of ∆hfus and Tm that characterise each
of these forms.

The activity coefficient of the solute in the liquid mixture quantifies the nonidealities
arising from the interactions between the solute and the solvent. When the chemical nature
of these compounds is very similar, the activity coefficient is tends to unit γL

slt(T, p, xL) →
1, characterising an ideal mixture. The solubility calculated from eq. (5.8) is then the
ideal solubility. For non-ideal systems, the activity coefficient is calculated by means of
a thermodynamic approach for the liquid mixture. Several types of methods have been
applied for the calculation of the solubility of APIs in solvents and solvent mixtures, a
review of which is given in the following section.
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5.2 Thermodynamic methodologies for the calculation of
the solubility of APIs in solvents

A wide range of methodologies has been applied to describe the solubility of complex or-
ganic molecules and active pharmaceutical ingredients (APIs). Many empirical approaches
have been developed where the solubility of a compound is predicted based on its struc-
tural properties; for a review see reference [410]. Most quantitative structure-property
relationships (QSPR) have been developed for the study of the aqueous solubility and the
water/octanol partition coefficient of drug-like molecules, mainly due to their importance
both in the production of pharmaceuticals as well as their behaviour in the human body.
As a consequence, QSPR approaches do not yield accurate solubility for other solvents.
This can be overcome by the application of thermodynamic models, which are based on
molecular interactions between chemically distinct species or functional groups and are, in
principle, not limited to the study of a given class of solvents. A number of methodologies
have been applied, varying from formalisms based on lattice-fluid theories, such as the
non-random hydrogen bonding (NRHB) method [403, 404], to activity coefficient models,
such as Wilson-type methods [411], approaches based on the Kirkwood-Buff fluctuation
solution theory [412], and association theories, such as the CPA EoS [413, 414].

Of particular relevance to the current work is the application of SAFT-type method-
ologies to the prediction of solubility of pharmaceutical compounds in solvents. SAFT-
type methods have been applied to the study of solid-liquid equilibria, e.g., the recent
work with SAFT-VR on the study of the solubility of naphthalene and acetic acid in or-
ganic solvents [415]. As far as pharmaceutical compounds are concerned the PC-SAFT
EoS [165, 166] has been recently applied to the prediction of solubility of, for example,
paracetamol, ibuprofen and lovastatin [416, 417]. In these studies with PC-SAFT the pa-
rameters describing the API (typically 6 parameters per compound) have to be determined
from solubility data, where commonly aqueous solubility data are used, as experimental
vapour pressures and saturated liquid densities are rarely available; these compounds tend
to be in the solid state at normal conditions. In addition to the pure component API pa-
rameters, solubility data are also used to determine the unlike interactions between the
solutes and solvents. In order to make the approach more predictive, Ruether and Sad-
owski [416] proposed a scheme of classification of solvents according to their chemical
nature, transferring the values of the unlike interaction parameters between the API and
all solvents of a given class. Three representative solvents are used, namely ethanol for
associating (hydrogen bonding) solvents, acetone for weakly polar solvents, and toluene for
aromatic solvents, in order to determine the unlike dispersive energy between the API and
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a class of solvents. It has to be noted that two solubility points at different temperatures
are needed for each regression, as the unlike dispersive energy is assumed to have a linear
temperature dependence. It is shown that the PC-SAFT EoS can accurately correlate
the solubility data used in the regression, and that good predictions for the solubility in
mixtures of mixed solvents used in the regression are obtained. However, when transfer-
ring the value of the unlike interaction parameters between solvents of the same class,
i.e., the value obtained from regression to ethanol for associating solvents is used for the
prediction of solubility in another associating solvent, e.g., 2-butanol, the agreement with
experimental solubility data deteriorates significantly. In order to address the dependence
of the pure solute parameters on the solubility data, Cassens et al. [418] subsequently
presented a methodology that allowed for the estimation of the majority of the pure so-
lute parameters based on quantum mechanical calculations. This approach reduced the
dependency on experimental data, however it has to be noted that solubility data are
still required for determining the solute-solvent interaction parameters. In more recent
work, Spyriouni et al. [417] proposed a different scheme to determine the pure component
parameters for APIs. Within their approach, solubility data in three different classes of
solvents were used (a hydrophilic, a polar, and a hydrophobic liquid) in order to obtain
average pure component parameters for the APIs, while the interaction energy between
the API and solvents other than water was calculated by means of a standard geometric
combining rule. It was shown that a satisfactory description of the solubility of APIs as a
function of the composition of solvent mixtures can be achieved. However, for a number
of pure solvents not included in the estimation of the API parameters, large deviations
between the predictions of the theory and the experimental data were found.

One of the most widely applied thermodynamic models in the prediction of solubility
of pharmaceutical compounds is the non-random two-liquid segment activity coefficient
(NRTL-SAC) model. The NRTL-SAC model was developed by Chen and Song [231] based
on a modification of the NRTL activity coefficient approach [116]. The main concept of
NRTL-SAC rests on the assumption that the activity coefficient of a molecule can be cal-
culated based on the molecular descriptors (segments) that characterise a molecule. Four
distinct classes of molecular descriptors were identified, related to the chemical nature of
the compound (hydrophobicity, polarity, solvation, and hydrophilicity); the interactions
between the conceptual segments were assumed to be constant and were determined by
regression to extensive experimental data for solid-liquid equilibria for a wide range of
solvents [231]. Given the knowledge of the interaction parameters the characterisation of
a compound within NRTL-SAC is undertaken based solely on the measure of each concep-
tual segment on the compound, i.e., to which extent it is hydrophobic, polar, solvating or
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hydrophilic. These measures can be obtained from experimental data for the solubility of
the compound(s) in question in pure solvents, where it has to be noted that, for a reliable
characterisation, data for at least four solvents (each solvent representing one type of the
four conceptual segments) is required. The reported average deviations in the prediction
of the solubility of a selection of complex molecules in solvent and solvent mixtures with
the NRTL-SAC method are of the order of 40-60% [419]. However, its heavy reliance on
experimental solubility data is a significant drawback.

A common denominator in the methodologies mentioned thus far is that solubility data
are typically used for the parameterisation of the models. This limits their application to
systems for which experimental data is available. When this is not the case, predictive
thermodynamic methodologies can be applied. The two predictive methods most widely
applied to the study of solubility of APIs in solvents and solvent blends are the univer-
sal quasi-chemical functional group activity coefficient (UNIFAC) and the conductor-like
screening model for real solvents - segment activity coefficient (COSMO-SAC) methods.

The performance of the UNIFAC method in the prediction of the solubility of a number
of complex organic molecules (phenylacetic acid, p-hydroxyphenylacetic acid, ibuprofen,
paracetamol) in a selection of eight pure solvents, including polar and hydrogen bonding
compounds, was the focus of a study by Gracin et al. [405]. The solubility calculations
presented were based on the original UNIFAC description of the activity coefficient of
the liquid with the parameters of Hansen et al. [83]. The authors concluded that the
original UNIFAC approach can lead to a varying degree of accuracy in the description of
the solubility, ranging from 20% for ibuprofen to values exceeding 500% for paracetamol.
In order to improve the performance of the method, a pharma-modified UNIFAC has
recently been presented [420] where the fragmentation of groups was geared specifically
to the study of APIs (e.g., the definition of the sulfonic acid amine group), and several
solubility data were included in the regression of the parameters. The resulting parame-
terisation performs significantly better compared to the results obtained with the original
UNIFAC database and provides more accurate predictions than the COSMO-SAC method
described below. However, the method was developed by neglecting several group-group
interactions and can only be applied to concentrations of APIs which are less than 10%
mol/mol. Although this covers the range of concentrations encountered in most crystalli-
sation purposes, the limited composition range can be considered a significant limitation
of the pharma-modified UNIFAC. Of perhaps more critical importance, it should be noted
that the underlying assumptions of the pharma-modified UNIFAC result in a reformula-
tion of the theory, so that the existing UNIFAC parameter table cannot be directly used.
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Another predictive thermodynamic methodology that has been applied to the study of
the solubility of APIs in solvents is the COSMO-SAC model [230], developed based on the
COSMO-RS methodology of Eckert and Klamt [421]. The residual part of the activity
coefficient within this model is calculated based on the interactions between molecules
through surface contacts. In this approach the nature of these interactions is expressed by
using a screening charged density, typically referred to as the σ profile, which is obtained
from ab initio calculations for a molecule in a perfect conductor [421], so that no exper-
imental data are required for the parameterisation of the model. This, however, appears
to affect the accuracy of the methodology, as it is generally considered less accurate than
NRTL-SAC [232, 422]. In a recent study it has been shown that by combining COSMO-
SAC with solubility data in pure solvents for the determination of the segment σ profile
one can significantly improve the prediction of API solubility in mixed solvents, from av-
erage deviations of the order of 400% to 90% [423].

In summary, it may be appreciated at this point that the accurate description of solu-
bilities of complex organic molecules in solvents remains a significant challenge. Given
the promising results obtained with the SAFT-γ Mie approach presented in chapter 4
for the prediction of the fluid phase behaviour and derivative thermodynamic properties
of a broad range of complex mixtures, the performance of the SAFT-γ Mie EoS in the
prediction of the solubility of APIs in organic solvents is now considered as a case study
for two APIs in the following sections.

5.3 Estimation of group parameters for the modelling of
APIs

The main objective here is the preliminary assessment of the performance of the SAFT-
γ Mie methodology in the description of the solubility of complex organic molecules and
active pharmaceutical ingredients in organic solvents. The prototypical systems chosen for
this assessment are the APIs phenylacetic acid and ibuprofen as solutes, and acetone and
methyl-isobutyl ketone (MIBK) as solvents. The molecular structure of the components
of the target molecules is shown in figure 5.2. Phenylacetic acid is used in the production
of penicillin G and is also employed to treat type II hyperammonemia to help reduce
the amount of ammonia in the bloodstream. It is modelled with 3 different functional
groups (5 aCH groups, 1 aCCH2 group, and 1 COOH group). Ibuprofen is a widely
used nonsteroidal anti-inflammatory drug, and has a more complex molecular structure
than phenylacetic acid. Within the context of the current work ibuprofen is modelled as
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comprising 5 distinct functional groups: 4 aCH groups, 1 COOH group, 1 CHCH3 group,
2 CH3 groups, and 2 aCCH2 groups; strictly speaking, ibuprofen contains an instance of
the aCCH group, which in this instance is approximated as an additional aCCH2 group.
This is expected to introduce only slight error in the thermodynamics of the mixture,
and reduces significantly the number of unlike interaction parameters that need to be
determined to model the mixture of interest. The procedure followed to characterise the
groups identified is presented in the next sections, however it is worth noting at this stage,
that no experimental data regarding the APIs studied is included in the development of
the model. A summary of the groups that the substances comprise and the instances of
each group is given in table 5.1.

It is important to reiterate some of the assumptions of the study undertaken here in the
representation of these complex systems. All substances are studied by applying the GC
concept at the first-order level, i.e., accounting solely for the number of occurrences of
each chemical functional group on a substance. In that way, proximity effects are not
explicitly treated. In previous studies of systems of similar complexity using the UNIFAC
approach based on quantum mechanical calculations, Gracin and co-workers [405] showed
that for molecules such as ibuprofen, with multiple functional groups in close vicinity,
the assumption that the behaviour of functional groups is independent of the molecular
structure may be too crude an approximation; in such cases proximity effects should be
taken into consideration. Furthermore, the only types of interactions between segments
that are accounted for are repulsive and dispersion interactions and association, mediated
by short-ranged interaction sites. Additional effects arising from the chemical nature of
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Figure 5.2: Molecular structures of the compounds in the solute+solvent mixtures studied:
(a) phenylacetic acid, (b) ibuprofen, (c) acetone, and (d) methyl-isobutyl ketone (MIBK).
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Table 5.1: Analysis of the two APIs (phenylacetic acid and ibuprofen) and the two solvents
(acetone and methyl-isobutyl ketone (MIBK)) of the mixtures studied (cf. figure 5.2) in terms
of the functional groups that these molecules comprise and the instances of each group. It
should be noted that the aCCH group present in ibuprofen is approximated as an additional
instance of the aCCH2 group.

Group Phenylacetic acid Ibuprofen Acetone MIBK
CH3 0 2 1 1
CH2 0 0 0 1
CH3CO 0 0 1 1
CHCH3 0 1 0 1
aCH 5 4 0 0
aCCH2 1 2 0 0
COOH 1 1 0 0

the compounds and functional groups studied, e.g., the polarity of the ketones or the aro-
maticity of the hydrocarbons, are treated only effectively by means of the aforementioned
dispersion interactions, and are not explicitly accounted for. It is possible to account
explicitly for such effects by including additional contributions for polar and quadrupolar
interactions, see for example [172, 174, 175, 190].

From the molecular structure of the compounds of interest and the decomposition of these
into functional groups, it can be seen that alongside the functional groups of the n-alkanes
(CH3 and CH2) and the 2-ketones (CH3CO), the parameters for the branched methyl
group CHCH3, the aromatic carbon (aCH) and methylene aCCH2 groups, as well as for

Table 5.2: Group parameter matrix featuring the functional groups required for the modelling
of the compounds of figure 5.2. The ticks denote the group parameters available from the work
in chapter 4, while the dashes denote the parameters that have to be determined in order to
describe the mixture of interest. The line demarcating the two parts of the matrix highlights
the fact that the matrix is symmetric.

CH3 CH2 CH3CO CHCH3 aCH aCCH2 COOH
CH3 X X X – – – –
CH2 X X X – – – –
CH3CO X X X – – – –
CHCH3 – – – – – – –
aCH – – – – – – –
aCCH2 – – – – – – –
COOH – – – – – – –
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the carboxyl group (COOH) have to be determined, together with the unlike group inter-
actions between the aforementioned functional groups. The group parameters and unlike
group interactions required for the description of the solubility of ibuprofen in acetone are
summarised in table 5.2.

5.3.1 Pure component parameters: branched alkanes

The branching of the alkyl chain for ibuprofen and MIBK is modelled by defining the
CHCH3 group (cf. figure 5.2 and table 5.1). The parameters for this group are ob-
tained by regression to experimental vapour-liquid equilibrium data for selected methyl
and dimethyl substituted alkanes. The group parameters estimated with the SAFT-γ Mie
approach provide an excellent description of the fluid phase behaviour of the branched
alkanes, with an average absolute deviation %AAD of 1.72% for the vapour pressure and
0.53% for the saturated liquid density for all of the compounds. A list of the compounds
included in the parameter estimation procedure, together with the deviation per com-
pound and per property and the details of the experimental data used in the regression
are presented in table 5.3.

Table 5.3: Percentage average absolute deviations (%AAD) of vapour pressures pvap(T ) and
saturated liquid densities ρsat(T ) for the branched alkanes obtained within the SAFT-γ Mie
framework from the experimental data [280] used in the regression, where n is the number of
data points.

Compound T range (K) n %AAD pvap T range (K) n %AAD ρsat

2-methylbutane 190-410 30 1.70 145-410 36 0.41
2-methylpentane 289-445 19 0.61 158-445 34 0.39
2-methylhexane 273-477 36 0.62 273-477 36 0.53
2-methylheptane 233-500 37 1.36 277-500 31 0.52
2-methyldecane 273-462 24 1.07 253-553 12 0.54
2-methylundecane 356-483 9 3.20 253-553 12 0.51
2-methyldodecane 373-502 9 2.98 273-588 11 0.53
2,4-dimethylpentane 289-463 32 1.76 273-463 35 0.62
2,5-dimethylhexane 246-495 37 0.63 273-495 33 0.57
2,7-dimethyloctane 293-432 28 3.10 253-523 11 0.69

Average - - 1.70 - - 0.53

The description of the vapour-liquid phase behaviour of the branched alkanes is shown in
graphical form in figures 5.3 and 5.4 for the coexistence densities and the vapour pres-
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Figure 5.3: SAFT-γ Mie description of the coexistence densities for selected methyl branched
alkanes (2-methylbutane to 2-methyldodecane from right to left) included in the estimation
of the CHCH3 group parameters. The symbols represent the experimental data [280] and the
continuous curves the calculations of the theory.

sures in a logarithmic representation for the methyl branched alkanes and in figures 5.5.(a)
and 5.5.(b) for the dimethyl branched alkanes.

The parameters obtained for the CHCH3 functional group are presented in table 5.6.
The intermolecular potential that describes the interactions between the segments of
the CHCH3 group was found to be determined by a value of the repulsive exponent of
λr

CHCH3
= 13.885, whereas the attractive exponent was fixed to the London dispersion

value of λa
CHCH3

= 6. The repulsive exponents of the CH3 and CH2 groups (λr
CH3

= 15.050
and λr

CH2
= 19.871), are seen to be larger than the optimal value of the repulsive exponent

for the CHCH3 group; this is in line with the finding that more coarse-grained models re-
quire lower values of the repulsive exponent (“softer” potentials) [424]. The segment size
for the CHCH3 is found to be larger than that of the CH3 (σCHCH3 = 4.575 Å compared
with σCH3 = 4.077 Å), for a similar value of the shape factor, which is physically reason-
able based on the number of carbon atoms that each group comprises. The optimal value
of the interaction energy is ϵCHCH3/kB = 317.904 K, which as expected is larger than that
for the CH3 group, ϵCH3/kB = 256.766 K.



5. Modelling the solubility of complex organic molecules in organic solvents 150

200 300 400 500 600 700
T / K

10
-7

10
-5

10
-3

10
-1

10
1

p 
/ M

P
a

Figure 5.4: SAFT-γ Mie description of the vapour pressure for selected methyl branched
alkanes (2-methylbutane to 2-methyldodecane from left to right) included in the estimation
of the CHCH3 group parameters. The symbols represent the experimental data [280] and the
continuous curves the calculations of the theory.

5.3.2 Pure component parameters: alkylbenzenes

The aromatic part of the molecules considered here is modelled by means of two functional
groups: an aCH group for the unsubstituted aromatic carbons of the ring, and an aCCH2
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Figure 5.5: SAFT-γ Mie description of: (a) the coexistence densities; and (b) the vapour
pressures for selected dimethyl branched alkanes included in the regression of the parameters
of the CHCH3 functional group. The symbols represent the experimental data [280] (triangles
for 2,4-dimethylpentane, for 2,5-dimethylhexane, and squares for 2,7-dimethyloctane) and the
continuous curves the calculations of the theory.
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Table 5.4: Percentage average absolute deviations (%AAD) of vapour pressures pvap(T )
and saturated liquid densities ρsat(T ) for the alkylbenzenes obtained within the SAFT-γ Mie
framework from the experimental data [280], where n is the number of data points.

Compound T range (K) n %AAD pvap T range (K) n %AAD ρsat

Benzene 280-508 58 0.51 280-508 58 0.51
Ethylbenzene 424-554 29 1.07 183-490 38 0.49
Propylbenzene 348-433 20 1.75 223-543 10 0.40
Butylbenzene 253-418 18 1.50 223-583 11 0.42
Pentylbenzene 233-477 12 1.41 233-593 35 3.96
Hexylbenzene 263-463 21 1.42 298-486 64 0.26
Heptylbenzene 309-513 20 5.29 281-367 11 0.22
Octylbenzene 303-462 17 5.48 243-648 11 1.00
Nonylbenzene 303-466 19 3.26 282-368 9 0.10
Decylbenzene 476-570 9 0.99 273-678 11 1.29

Average - - 2.27 - - 0.87

group that incorporates the first methylene group in case of an alkyl substituted phenyl
ring. The interaction parameters for both these groups are obtained by parameter esti-
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Figure 5.6: SAFT-γ Mie description of the coexistence densities as a function of tempera-
ture for benzene and selected alkylbenzenes (ethylbenzene to decylbenzene from right to left)
included in the estimation of the aCH and aCCH2 group parameters. The symbols represent
experimental data [280] and the continuous curves the calculations of the theory.
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mation based on the pure component VLE data of selected alkylbenzenes, where benzene
is also included in the estimation procedure. The identification of the functional groups
for the modelling of alkylbenzenes is consistent with the one employed in previous work
with the SAFT-γ method based on the square-well potential [19], and with the treatment
within the framework of the original UNIFAC [83]. It is worth noting that the quadrupo-
lar nature of benzene and the alkylbenzenes is not explicitly accounted for; it is described
in an effective manner by means of dispersion forces. The theory provides an excellent
description of the pure component phase behaviour of the correlated alkylbenzenes, with
average deviations for all the compounds of 2.27% for the vapour pressure and 0.87% for
the saturated liquid density. More details regarding the deviations per component (and
per property) together with the specifics of the experimental data used are provided in
table 5.4. From the results presented, it can be seen that the SAFT-γ Mie approach pro-
vides a significantly improved description of the pure component VLE of the correlated
compounds compared to the corresponding results with the SAFT-γ SW approach [19]:
for the same chemical family (excluding benzene) the reported %AADs with the SW ver-
sion of the theory were 4.12% for the vapour pressure and 1.49% for the saturated liquid
density [19]. The corresponding deviations with the SAFT-γ Mie approach are 2.47% for
pvap and 0.91% for ρsat.

The pure component fluid phase behaviour of the correlated alkylbenzenes is shown in
figure 5.6 for the saturated liquid densities and figure 5.7 for the vapour pressure, in a
logarithmic representation. The parameters for the aCH and aCCH2 functional groups
are summarised in table 5.6. For both groups, the value of the attractive exponent is fixed
to λa

aCH = λa
aCHCH2

= 6, and the optimal values for the repulsive exponents were found
to be λr

aCH = 14.762 and λr
aCHCH2

= 9.117, where it can be seen that as for the CHCH3

group a more coarse-grained model of the aCCH2 group leads again to lower values for the
repulsive exponent. The segment size of the aCHCH2 group is found to be significantly
larger than the aCH group (σaCCH2 = 5.041 Å and σaCH = 4.092 Å), as expected based
on the chemical structure of the groups.

5.3.3 Pure component parameters: carboxylic acids

A common feature of most active pharmaceutical ingredients is that they invariably feature
one or more associating functional groups. One of the most frequently encountered groups
is the carboxyl group (COOH), present in both APIs considered here (cf. figure 5.2). The
parameters for the carboxyl group are obtained based on experimental data for the pure
component fluid phase behaviour of selected members of the chemical family of carboxylic
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Figure 5.7: SAFT-γ Mie description of the vapour pressure as a function of temperature
for benzene and selected alkylbenzenes (ethylbenzene to decylbenzene from left to right) in-
cluded in the estimation of the aCH and aCCH2 group parameters. The symbols represent
experimental data [280] and the continuous curves the calculations of the theory.

acids, more specifically from propanoic to decanoic acid. The average deviations for the
correlated compounds are 12.13% for the vapour pressure and 2.50% for the saturated
liquid density. The variation in accuracy observed in the deviations for pvap is related
to the disparate temperature ranges of the experimental data used. For example, in the
case of butanoic acid, data for the vapour pressure from 246 to 465 K are used, while for
propanoic acid the temperature range is 328 to 438 K; the inclusion of data at lower tem-
peratures combined with the lower absolute values of the vapour pressure of compounds
of higher molecular weight at these conditions can lead to high relative errors. More de-
tails of the experimental data used and the deviations per property and per compound
is given in table 5.5. The description of the pure component vapour-liquid equilibria of
the correlated carboxylic acids is presented in figure 5.8 for the coexistence densities and
figure 5.9 for the vapour pressure.

It is evident that the description of the carbocylic acids is not as accurate as for other
chemical families presented so far. The large deviations could be related to the treatment
of the association interactions where the approximation of the radial distribution function
as that of an effective hard-core that allows for the simplified treatment of the association
contribution presented in chapter 4, which is not as accurate for soft potentials. This
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Table 5.5: Percentage average absolute deviations (%AAD) of vapour pressures pvap(T )
and saturated liquid densities ρsat(T ) for the carbocylic acids obtained with the SAFT-γ Mie
framework from the experimental data [280], where n is the number of data points.

Compound T range (K) n %AAD pvap T range (K) n %AAD ρsat

propanoic acid 328-438 35 2.19 237-490 33 1.93
butanoic acid 293-452 39 6.06 273-563 21 2.13
pentanoic acid 246-465 33 24.08 233-553 26 2.53
hexanoic acid 355-478 38 16.02 273-588 27 2.64
heptanoic acid 348-494 40 11.21 263-583 16 2.64
octanoic acid 403-513 35 7.51 293-573 22 2.59
nonanoic acid 372-528 11 12.71 288-323 7 3.23
decanoic acid 350-543 13 17.23 313-573 14 2.30

Average - - 12.13 - - 2.50

approximation is more appropriate for hard-core potentials, as testified by the level of ac-
curacy achieved for associating compounds within the framework of the SAFT-γ method
based on the square-well (hard-core) intermolecular potential, where specifically for the
carboxylic acids the reported deviations were 3.60% for the vapour pressure and 1.42% for
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Figure 5.8: SAFT-γ Mie description of the coexistence densities for selected carboxylic acids
(propanoic to decanoic acid from right to left) included in the estimation of the COOH group
parameters. The symbols represent the experimental data [280] and the continuous curves the
calculations of the theory.
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the saturated liquid densities [29]. An alternative treatment of the association term is pos-
sible, e.g., by following the ideas employed in the development of the LJ-SAFT approach
through the correlation of molecular simulation data to model associating systems [425].
This is however beyond the scope of the current work. The existing model is employed
in the preliminary study of the solubilities presented here, since, as will be shown in the
following section, it allows for a reasonable description of the nature of the interactions
between functional groups and provides a good description of the fluid phase behaviour of
mixtures.
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Figure 5.9: SAFT-γ Mie description of the vapour pressure for selected carboxylic acids
(propanoic to decanoic acid from left to right) included in the estimation of the COOH group
parameters. The symbols represent the experimental data [280] and the continuous curves the
calculations of the theory.

The parameters that describe the COOH functional group are presented in table 5.5.
The attractive exponent is fixed to the London dispersion value of λa

COOH = 6 and the
optimal value of the repulsive exponent is found to be λr

COOH = 14.679. The COOH
group is modelled as comprising 3 identical spherical segments (ν∗

COOH = 3), following the
modelling approach of earlier work [19] in view of the relatively large size of the group.
The functional group of the carboxylic acids is the only associating group considered
in the current work, where the self-association between carboxylic groups is modelled
with a single associating site, as carboxylic acids are known to dimerise. The additional
association sites would allow for the formation of chains and network aggregates. It should
be noted however, that in order to model the association with other components such as
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water, additional association sites will have to be considered for the carboxylic acids in
order to describe the complex unlike hydrogen-bonding.

5.3.3.1 Predictions of fluid phase behaviour from pure component data

The heteronuclear model employed within the SAFT-γ approaches allows for the unlike
group interaction energy ϵkl/kB between groups k and l to be estimated directly from pure
component data. This provides a capability for predicting the fluid phase behaviour of
binary mixtures without the need for any experimental information of the mixtures, as
previously shown in chapter 4 for binary mixtures of n-alkanes. The assessment of the
predictions of the method for the fluid phase equilibria of binary mixtures is central to the
validation of the physical robustness of the parameters estimated from pure component
data alone and the group identification scheme employed. As shown in section 3.3.2, differ-
ent modelling strategies for the functional group of a given chemical family can result in an
equivalent accuracy in describing the pure component properties. It is the extrapolation
to the representation of binary mixtures in a predictive manner that reveals the adequacy
of the group identification procedure and the estimated parameter set, and that provides
a test of the predictive capabilities of the approach. For the chemical families presented
in this chapter, the respective group interaction parameters obtained are summarised in
tables 5.6 and 5.7. The performance of the method in predicting the vapour-liquid phase
behaviour of selected binary mixtures with parameters obtained from pure component

Table 5.6: Group parameters for the functional groups needed to model the solid-liquid
equilibria of the target systems of figure 5.2. Each group is characterised by the number of
identical segments the group comprises, ν∗

k , its shape factor, Sk, the repulsive and attractive
exponents of the group-group interaction potential, λr

kk and λa
kk, the group segment size, σkk,

and the group-group interaction energy, ϵkk/kB. The association interactions are characterised
by the number of sites of type a on group k, nk,a, the energy, ϵHB

kkaa/kB, and the range, rc
kkaa/σ̄ii,

of the association interaction. The range is given in reduced units (reduced by the effective
molecular segment diameter, σ̄ii).

Group k ν∗
k Sk λr

kk [-] λa
kk [-] σkk [Å] (ϵkk/kB) [K] nk,a [-] (ϵHB

kk,aa/kB) [K] rc
kk,aa/σ̄ii [-]

CH3 1 0.572 15.050 6 4.077 256.766 - - -
CH2 1 0.229 19.871 6 4.880 473.389 - - -
CH3CO 2 0.628 17.508 6 3.748 463.412 - - -
CHCH3 1 0.522 13.885 6 4.575 317.904 - - -
aCH 1 0.311 14.762 6 4.092 377.272 - - -
aCCH2 1 0.245 9.117 6 5.041 501.642 - - -
COOH 3 0.941 14.679 6 2.524 375.360 1 2000 0.25
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data alone is shown in figure 5.10. It is apparent from the figure that the theory provides
accurate predictions of the vapour-liquid equilibria for a wide variety of mixtures, includ-
ing polar and associating compounds. In particular, the predicted fluid phase behaviour
of the binary mixture n-heptane+pentanoic acid (see figure 5.10.(d)) is in good agreement
with the experimental data. This demonstrates that, despite the relatively high devia-
tions observed in the description of the pure component carboxylic acids included in the
estimation of the parameters for the COOH group, the values of the unlike COOH-CH3

and COOH-CH2 interactions allow for a satisfactory representation of the fluid phase be-
haviour of the mixture.
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5.3.4 Determination of unlike group interactions

The heteronuclear model employed within the SAFT-γ Mie formalism allows for the de-
termination of the binary interaction energy ϵkl/kB between groups k and l from pure
component data, when both groups k and l are present on the same molecule. The unlike
interaction parameters obtained from pure component data during the characterisation of
the functional groups presented in table 5.2, are given in table 5.7. Is it clear that in order
to describe the systems of figure 5.2, a number of unlike group interaction parameters have
to be determined. This is undertaken based on pure component data for molecules that
feature multiple functional groups and an appropriate selection of mixture data.

5.3.4.1 Unlike group interactions from pure component data

For the determination of the unlike interactions between the branched alkyl, and the car-
bonyl and carboxyl groups, CHCH3-CH3CO and CHCH3-COOH, experimental data for
pure components are employed. This is mainly due to the availability of pure component
data for compounds that feature the groups of interest, i.e., a carbonyl or carboxylic acid
group and at the same time a branched alkyl chain. For each parameter pure component
fluid phase behaviour data for a single compound can provide enough information, as only
a single parameter has to be determined from each data set.

The compounds selected for this purpose are methyl-isobutyl ketone (MIBK) for the inter-
action between the CHCH3 and CH3CO functional groups and 2-methylbutanoic acid for
the interaction between the CHCH3 and COOH groups. The interaction parameters are

Table 5.7: Group interaction energies estimated for the functional groups needed to model
the target system of figure 5.2. The values in bold denote parameters obtained from the exper-
imental data of appropriate mixtures, while N/A denotes parameters that are not available.
The symmetry of the group interaction matrix is highlighted by the diagonal boundary.

ϵkl/kB [K] CH3 CH2 CH3CO CHCH3 aCH aCCH2 COOH
CH3 256.766 350.772 334.437 312.396 309.156 404.566 300.000
CH2 350.772 473.389 405.882 396.016 419.959 439.841 412.991
CH3CO 334.437 405.882 463.412 N/A N/A N/A N/A
CHCH3 312.396 396.016 N/A 317.904 N/A N/A N/A
aCH 309.156 419.959 N/A N/A 377.272 410.567 N/A
aCCH2 404.566 439.841 N/A N/A 410.567 501.6416 N/A
COOH 300.000 412.991 N/A N/A N/A N/A 375.360
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Figure 5.11: SAFT-γ Mie description of: (a) the coexistence densities, and (b) the
vapour pressures for the pure components used in the estimation of unlike group interac-
tion parameters. The triangles represent the experimental data for methyl-isobutyl-ketone
(MIBK) [430], used to determine the CHCH3–CH3CO interaction, and the circles the data for
2-methylbutanoic acid [430], used for the CHCH3–COOH interaction. The continuous curves
are the calculations with the SAFT-γ Mie theory.

obtained based on vapour pressure and saturated liquid density data, using the objective
function discussed in sections 3.1.1 and 4.3. The optimal values of the interaction ener-
gies are included in table 5.8, and the agreement between the calculations of the theory
and the experimental data is shown in figure 5.11. The deviations of the SAFT-γ Mie
calculations from the experimental data are 1.20% and 9.95% for the vapour pressure,
and 0.95% and 3.59% for the saturated liquid density, for MIBK and 2-methylbutanoic
acid, respectively. In line with the results obtained earlier for the carboxylic acids, the
deviations for 2-methylbutanoic acid are somewhat higher than for MIBK.

5.3.4.2 Unlike group interactions from mixture data

For certain unlike group interactions, experimental data for pure compounds that feature
the groups of interest can be difficult to find. In such situations, the estimation of unlike
group interaction parameters can be obtained from experimental data for binary mixtures.
The unlike interaction parameters for the following combinations of groups are obtained
from data for the respective systems:

• CH3CO – aCH from the acetone+benzene binary mixture;

• CH3CO – aCCH2 from the acetone+ethylbenzene binary mixture;

• CHCH3 – aCH from the MIBK+benzene binary mixture;
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Table 5.8: Group interaction energies estimated for the functional groups needed to model
the target system of figure 5.2. The parameters in bold denote values obtained from the
experimental data of appropriate mixtures. The symmetry of the group interaction matrix is
highlighted by the diagonal boundary.

ϵkl/kB [K] CH3 CH2 CH3CO CHCH3 aCH aCCH2 COOH
CH3 256.766 350.772 334.437 312.396 309.156 404.566 300.000
CH2 350.772 473.389 405.882 396.016 419.959 439.841 412.991
CH3CO 334.437 405.882 463.412 329.042 405.280 419.340 428.740
CHCH3 312.396 396.016 329.042 317.904 329.340 153.700 358.890
aCH 309.156 419.959 405.280 329.340 377.272 410.567 375.800
aCCH2 404.566 439.841 419.340 153.700 410.567 501.641 285.136
COOH 300.000 412.991 428.740 358.890 375.800 285.136 375.360

• CHCH3 – aCCH2 from the MIBK +ethylbenzene binary mixture;

• COOH – aCH from the butanoic acid+benzene binary mixture;

• COOH – aCCH2 from the propanoic acid+ethylbenzene binary mixture;

• COOH – CH3CO from thebutanoic acid+butanone binary mixture.

In the majority of cases data of two binary mixtures are used to estimated each class of
group parameters. This is appropriate when interaction parameters between a given group
and the groups of the aromatic hydrocarbons (aCH, aCCH2) are estimated, where typi-
cally a first interaction parameter between group k and aCH is obtained from a mixture
with benzene, and the corresponding value is then transferred to represent a mixture with
an aklylbenzene for the unlike interaction parameter with the aCCH2 functional group.
The agreement between the calculations of the SAFT-γ Mie approach and the experimen-
tal data for the mixtures in question can be assessed in figure 5.12. It is apparent that
the interaction parameters estimated in this way provide an accurate representation of the
fluid phase behaviour of the mixtures included in the regression. It should be noted that
for the binary mixture of butanoic acid+2-butanone (see figure 5.12.(d)) the description
of the theory is based on the assumption that there are no specific association interac-
tions between the the carboxylic acid and the ketone groups, so that the only adjustable
parameter in this case is the unlike dispersion energy, ϵCH3CO−COOH. The satisfactory
representation of the fluid phase behaviour of the system at two temperatures supports
this assumption. The values of all the unlike group interaction parameters estimated are
summarised in table 5.8.
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5.4 Predictions of solid-liquid equilibria

Solid-liquid equilibrium (SLE) is calculated with the approach outlined in section 5.1,
where experimental values for the enthalpy of fusion and the melting temperature of each
solute are used, and the activity coefficient of the solute in the liquid phase is calculated
by means of the SAFT-γ Mie approach. In the derivation of eq. (5.8), the solid phase is
assumed to consist only of pure solute and the contribution of the terms that arise due to
the difference between the heat capacity in the solid and the liquid phase is neglected. The
performance of the SAFT-γ Mie GC approach in the description of the SLE of real systems
is now assessed based on the aforementioned assumptions. In figure 5.13 the predictions
of the theory are compared with the experimental data for the solubility of the soluid
form of long chain linear n-alkanes (n-dodecane, n-hexadecane and n-eicosane) in liquid
n-hexane. The parameters for the CH3 and CH2 groups, and the unlike group interactions
(cf. tables 5.6 and 5.7), that describe these mixtures are obtained entirely from pure com-
ponent vapour-liquid equilibrium experimental data for the linear n-alkanes, from ethane
to n-decane; this means that the corresponding calculations are fully predictive for the
SLE of these mixtures. The ability to obtain information regarding the unlike interac-
tions between groups from pure component data is a unique feature of the heteronuclear
models inherent in SAFT-γ. From the figure it can be seen that the solubilities predicted
with the SAFT-γ Mie EoS are in very good agreement with the experimental data for
the solid-liquid equilibrium phase boundary, with parameters obtained from fluid phase
properties. The experimental values for the heat of fusion and melting temperatures of
the solutes examined in the current work are summarised in table 5.9.

As has been discussed, fluid theories can be employed to describe solid-liquid equilibria,
by determining the activity coefficient of the solute in the solute+solvent liquid mixture
(provided of course that Tm and ∆hfus are available). However, in some cases, further
insight on the behaviour of the solid phase is necessary in order to achieve an accurate
representation of solid-liquid equilibria. A case in point is the study of the solubility of
compounds where the solute undergoes a solid-solid transition. This occurs, for example,
in the chemical family of n-alkanes, mostly for compounds with more than 22 and an even
number of carbon atoms, where solid-solid phase transitions occur at temperatures close
to the melting point [437]. The enthalpy of this transition ∆hSS (occuring at a temper-
ature TSS) is of the same order as the heat of fusion (e.g., for n-C22H46, ∆hfus ≈ 48 kJ
mol−1 and ∆hSS ≈ 29 kJ mol−1) and therefore has a significant impact on the solid-liquid
phase boundary. Such transitions can be accounted for with the current framework for
the modelling of solid-liquid equilibria by extending the thermodynamic cycle described in
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Figure 5.13: Prediction of temperature-composition representation of the solid-liquid equi-
libria of binary n-alkane mixtures at ambient pressure (1 atm). The composition xC6H14 is
that of the solvent shown in mole fraction and the symbols represent the experimental solid-
liquid phase boundary for different solutes (squares for n-dodecane [435], triangles [436] and
stars [435] for n-hexadecane, and circles [436] for n-eicosane). The continuous curves represent
the predictions of the SAFT-γ Mie approach.

section 5.1, as shown in figure 5.14. On comparing the thermodynamic cycles of figures 5.1
and 5.14, it becomes apparent that the solid-solid phase transition is described by the path
a → b → c of figure 5.14.

Based on this thermodynamic cycle, the ratio of the fugacities between the liquid and the
second solid phase can be calculated based on the change of the molar Gibbs free energy

Solid 1 Liquid

Operating 

Temperature, T

Melting point 

Temperature, T
m

a

b

d

c

Solid 2

e

f

Phase transition

Temperature, T
SS

Figure 5.14: Thermodynamic cycle for the derivation of the working equation for the study
of solid-liquid equilbria, where the compound undergoes a solid-solid phase transition.
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along the path a → f :

∆ga→f = RT ln
fL,∗

slt (T, p)
fS2,∗

slt (T, p)
. (5.9)

The molar Gibbs free energy is calculated based on the enthalpy and entropy changes
along the path a → b → c → d → e → f , in a similar way as in section 5.1. For the
enthalpy,

∆ha→f = ∆ha→b + ∆hb→c + ∆hc→d + ∆hd→e + ∆he→f (5.10)

=
∫ TSS

T
cS2

p dT + ∆hSS(TSS) +
∫ Tm

TSS

cS1
p dT

+ ∆hfus(Tm) +
∫ T

Tm
cL

p dT

= ∆hfus(Tm) + ∆hSS(TSS) +
∫ TSS

Tm
∆cI

pdT +
∫ T

TSS

∆cII
p dT ,

where two integrals relating to the heat capacity differences refer to the two distinct
temperature ranges, defined as ∆cI

p = cL
p − cS1

p and ∆cII
p = cL

p − cS2
p . Making use of the

thermodynamic cycle for the calculation of the entropy changes, the following expression
is derived:

lnxL
slt = −∆hfus

R

( 1
T

− 1
Tm

)
− ∆hSS

R

( 1
T

− 1
TSS

)
(5.11)

−
∆cI

p

R

(
Tm
TSS

− 1
)

+
∆cI

p

R
ln Tm

TSS

−
∆cII

p

R

(
TSS
T

− 1
)

+
∆cII

p

R
lnTSS

T

− lnγL
slt(T, p, xL) .

This expression can be simplified by neglecting the terms that account for the contribution
due to the differences in the heat capacity between the liquid and the two solid phases
(∆cI

p and ∆cII
p ). The simplified final equation is of the following form [438]:

lnxL
slt = −∆hfus

R

( 1
T

− 1
Tm

)
− ∆hSS

R

( 1
T

− 1
TSS

)
− lnγL

slt(T, p, xL) , (5.12)

An example of the effect of such transitions on the solid-liquid phase boundary is shown
in figure 5.15, where the theoretical predictions which neglect the solid-solid transition of
n-dotriacontane (n-C32H66) are compared to the experimental solubility data for the n-
dotriacontane+n-hexane mixture. The inclusion of the term accounting for the transition
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Figure 5.15: Comparison of the predictions of the SAFT-γ Mie approach for the solid-
liquid equilibria of the binary n-hexane (solvent) + n-dotriacontane (solute) mixture with the
experimental data at 1 atm. (triangles [439] and stars [435]). The dashed curves are predictions
of the theory neglecting the solid-solid transition of the system (eq. 5.8), while the continuous
curves represent predictions accounting for the transition (eq. 5.12).

in the solid phase is shown to improve significantly the accuracy of the calculations.

The solid-liquid equilibria of a wide range of systems can be determined predictively based
on the parameters and the unlike group interaction values summarised in table 5.7, ob-
tained for the chemical families described in sections 5.3.1-5.3.3. The description of the
SAFT-γ Mie approach for the solid-liquid equilibria for selected binary systems is shown
in figure 5.16. The experimental values of the heat of fusion and melting temperature for
the solute in each of these systems are given in table 5.9; in cases where further informa-
tion about transitions in the solid phase are available, eq. (5.12) is used. It is apparent
that the SAFT-γ Mie approach provides a good predictive platform for the solid-liquid
equilibria of a wide range of systems, including polar and associating compounds, in good
agreement with the experimental data. Of particular mention is the example shown in
figure 5.16.(b), where the theory is shown to accurately predict the SLE of long-chain
n-alkanes in benzene, with the correct description of the location and the composition
of the eutectic point of the mixtures. The slight deterioration of the theory for these
mixtures on the branch of the SLE where benzene is the solute may be attributed to the
chemical nature (quadrupole) of benzene which is expected to have a marked effect on the
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solid-liquid equilibria of the system. As mentioned previously, multipolar interactions are
not accounted for explicitly in our current theory, though, they can however be treated by
including additional terms in the free energy (e.g. quadrupolar terms [190]). The decision
to treat polar or quadrupolar compounds in an effective manner for all the interactions
of the system through effective dispersion forces is justified based on the performance of
the SAFT-γ Mie approach in the description of the vapour-liquid equilibria of pure com-
ponents and mixtures (cf. chapter 4). Nevertheless, such effects are expected to be of
greater importance in the solid phase than in the fluid (vapour and liquid) phases. The
performance of the theory in describing the SLE of polar and quadrupolar compounds
with the inclusion of a polar term in the free energy will be the subject of future work.

The predictions of the theory for the SLE in mixtures of carboxylic acids+n-hexane (see
figure 5.16.(d)) are seen to be in good agreement with the experimental data. Despite the
high deviations of the vapour-liquid equilibria reported when developing the parameters
for the COOH group, the effect of the unlike interaction energies between the carboxyl and
the methyl and methylene groups on the solid-liquid equilibrium appears to be adequately
described by the theory. Finally, it is important to note that the predictions shown in
figure 5.16 are obtained with parameters developed for the description of the vapour-liquid
equilibria in the corresponding binary mixtures (cf. figure 5.10). The simultaneous de-
scription of different types of phase equilibria with a single set of parameters is a nontrivial
task, and lends credence to the versatility and the physical robustness of the SAFT-γ Mie
GC approach.
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Table 5.9: Melting points and heats of fusion for the solutes: benzene (C6H6), linear
alkanes (from n-C12H26 to n-C32H66) and long chain carboxylic acids (C13H27COOH and
C17H35COOH). Where applicable the solid-solid transition temperature and enthalpy are also
given.

Solute Tm [K] ∆hfus [J mol−1] TSS [K] ∆hSS [J mol−1] Ref.
C6H6 278.7 9934 - - [443]
C12H26 263.6 36755 - - [437]
C14H30 279.0 45030 - - [437]
C16H34 291.2 53332 - - [437]
C18H38 301.2 61306 - - [437]
C20H42 309.5 69730 - - [437]
C24H50 323.6 54396 320.7 31701 [437]
C32H66 342.5 75758 337.1 40835 [437]
C13H27COOH 326.5 45000 325.3 6400 [444]
C17H35COOH 342.4 63200 325.9 5700 [444]

5.5 Solubility predictions for APIs

The solubilities of two APIs, phenylacetic acid and ibuprofen, in two solvents, acetone
and methyl-isobutyl ketone (MIBK), are considered as a preliminary assessment of the
performance of the theory. The molecular structure of the four compounds is presented in
figure 5.17 highlighting the identification of the constituent functional groups; the types of
functional groups and instances of each group per molecule are summarised in table 5.1.
For each system the solubilities are calculated by means of eq. (5.8), using the experimental
values for the heat of fusion and the melting temperature [405]: for phenylacetic acid
(PAA), ∆hfus,PAA = 15.5 kJ mol−1 and Tm,PAA = 349.15 K; and for ibuprofen, ∆hfus,Ibu =
25.5 kJ mol−1 and Tm,Ibu = 347.15 K.

Phenylacetic acid is modelled by identifying 3 different functional groups and a total of
8 occurrences of structural units (5 aCH groups, 1 aCCH2 and 1 COOH group). A com-
parison of the solubility predictions with the SAFT-γ Mie approach and the experimental
solubility data in acetone and MIBK is shown in figure 5.18. The temperature depen-
dence of the solubility of the API is represented here in grams of solute per kilogram of
solute-free solvent, a representation that allows for a clear distinction between the solubil-
ity in the two different solvents. From the figure it can be seen that the predictions of the
SAFT-γ Mie approach for the solubility of phenylacetic acid are in good agreement with
the experimental data for both solvents examined. Our approach correctly describes the
significant increase in the solubility of phenylacetic acid in acetone, compared with that
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Figure 5.17: Molecular structures of the solute APIs, (a) phenylacetic acid and (b) ibuprofen,
and the solvents, (c) acetone and (d) methyl-isobutyl ketone (MIBK). of the mixtures studied.
The functional groups identified in the modelling of the compounds are highlighted with dashed
curves.

in MIBK, at a given temperature. The quality of the description with the SAFT-γ Mie
method compares favourably with the calculations using the original UNIFAC and the
parameters of Hansen et al. [83] for the same mixtures, which are presented in figure 5.18.
A fair comparison of the two methodologies is possible in this instance as only VLE data
are employed in the development of the group parameters in both the SAFT-γ Mie and
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Figure 5.18: Comparison of the predictions of the SAFT-γ Mie approach (continuous curves)
and the original UNIFAC method (dashed curves) with parameters from Hansen et al. [83] with
the experimental data for the solubility of phenylacetic acid in acetone (circles) and methyl-
isobutyl ketone [MIBK] (squares) [405] at 1 atm.
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UNIFAC approaches. Admittedly, a large number of the group interaction parameters are
obtained from pure component data alone in our SAFT-γ Mie formalism.

As a second preliminary case study, the solubility of the API ibuprofen was examined. It
has a more complex molecular structure than phenylacetic acid, and within the context of
the current work is modelled as comprising 5 distinct functional groups: 4 aCH group, 1
COOH group, 1 CHCH3 group, 2 CH3 groups, and 2 aCCH2 groups (cf. table 5.1). The
predictions with the SAFT-γ Mie approach are compared with the experimental data for
the solubility of ibuprofen in acetone and MIBK in figure 5.19. From the figure it can be
seen that the predictions of the theory are in good agreement with the experiments for
the solubility of the API in MIBK, bearing in mind the complexity of the mixture which
features a total of seven distinct functional groups. For the solubility in acetone, higher
deviations between the predicted and the experimental values are apparent. Neverthe-
less, the ranking of the solvents in terms of their ibuprofen solubility is reproduced by
the theory. The original UNIFAC method is shown to describe the solubility of ibuprofen
in acetone more accurately; for MIBK the description with both methods is of the same
quality. It has to be noted that within our current study the aCCH group present on
ibuprofen is described as an additional instance of the aCCH2, whereas within UNIFAC,
the aCCH group is modelled explicitly.

The preliminary study of the solubility of two APIs presented here is an attempt to examine
the performance of the SAFT-γ Mie approach in describing the solid-liquid equilibria of
complex systems that feature multiple functional groups. It is important to reiterate
that all the functional groups are developed based on experimental information of the
fluid phase behaviour of pure components and selected binary mixtures. Including solid-
liquid equilibrium data in the development of the group parameters is hoped to increase
the accuracy of the predictions of the theory in the study of solubilities. However, the
predictive capability of the approach presented here would still be retained, as no solubility
data for the actual complex system under study is required. Based on the transferability
of the parameters inherent in the GC formalism, solid-liquid equilibrium data for simpler
systems that feature the functional groups of interest can be employed for the development
of the group parameters.

5.6 Concluding Remarks

In this chapter the performance of the SAFT-γ Mie approach in predicting solid-liquid
equilibria (SLE) is examined. The solubility limit is calculated following a thermodynamic
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Figure 5.19: Comparison of the predictions of the SAFT-γ Mie approach (continuous curves)
and the original UNIFAC method (dashed curves) with parameters from Hansen et al. [83] with
the experimental data for the solubility of ibuprofen in acetone (circles) and methyl-isobutyl
ketone [MIBK] (squares) [405] at 1 atm.

route, which requires a knowledge of the melting temperature Tm and the heat of fusion
∆hfus of the solute, as well as the activity coefficient of the solute in the solvent. The latter
is calculated here by means of the SAFT-γ Mie approach. A simplified thermodynamic
scheme is used, derived under the assumption that the difference in the heat capacities of
the solute in the liquid and the solid phases have a negligible effect on its solubility. The
SAFT-γ Mie approach is shown to provide an excellent description of a wide variety of
binary systems of hydrocarbons, including polar (benzene and alkylbenzenes) and associ-
ating (carboxylic acids) compounds.

Given the promising performance of the SAFT-γ Mie approach in the description of the
SLE of simple systems, the method is subsequently applied to the study of the solubility of
active pharmaceutical ingredients (APIs) in organic solvents. For this preliminary study
the solubilities of two APIs, phenylacetic acid and ibuprofen, in two solvents, acetone
and methyl-isobutyl ketone, are assessed. The majority of the group parameters for the
target systems are obtained from pure component vapour-liquid phase behaviour data for
the chemical families of branched alkanes, alkylbenzenes, and carboxylic acids. For the
families studied the average deviations from the correlated data are 5.36% for the vapour
pressure and 1.30% for the saturated liquid density; the largest deviations are seen in the
description of the carboxylic acids, due to approximations in the treatment of the associ-
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ating effects. Whenever needed, unlike interaction parameters not available through pure
component data (e.g., CH3CO-aCH, CH3CO-aCCH2, CHCH3-aCH, CHCH3-aCCH2) are
obtained based on experimental data for the fluid phase behaviour of binary mixtures.

Based on the parameters estimated from the fluid phase properties, the performance of the
SAFT-γ Mie theory is examined in the prediction of the solid-liquid equilibria of selected
binary mixtures including alkanes, branched alkanes, alkylbenzenes, and carboxylic acids.
It is shown that the theory can describe with equal accuracy the vapour-liquid and the
solid-liquid equilibria exhibited by these binary mixtures with a single parameter set. This
challenging task demonstrates the versatility and physical robustness of the SAFT-γ Mie
approach for the description of non-ideal systems over a wide range of conditions and for
different types of phase equilibria.

Finally the SAFT-γ Mie method is applied in a preliminary study of the solubility of com-
plex organic pharmaceutical molecules in organic solvents, by transferring the previously
determined group parameters. It is shown that the predictions of the theory for these chal-
lenging mixtures comprising multiple functional groups are in reasonable agreement with
experiment, for phenylacetic acid and ibuprofen in acetone and methyl-isobutyl ketone. It
is important to note that in both cases, the method predicts the correct ranking of the
solubility in the two solvents, which is of particular relevance to solvent screening. The
predictions of the theory are seen to compare well to the predictions of the well-established
UNIFAC approach. Bearing in mind the complexity of these mixtures, the performance of
the SAFT-γ Mie approach is deemed to be very promising. However, there are certain as-
pects that need to be considered in future work to improve the performance of the method
in the prediction of more complex systems. From the perspective of obtaining group in-
teraction parameters, it will be useful to assess how the inclusion of selected experimental
data for the solid-liquid equilibria of selected binary mixtures can improve the description
of the overall phase behaviour with the SAFT-γ Mie platform. A similar approach is
followed for the parameter estimation within the Dortmund-modified UNIFAC which has
been shown to improve the predictions of the theory in the study of SLE. The inclusion
of SLE data can be undertaken in a manner that does not limit the predictive capability
of the approach presented in this chapter, using experimental data for “simple” mixtures
to determine the parameters which can then be transferred. Another avenue that can be
followed to improve the predictions of the SAFT-γ Mie approach, which relates more to
the theoretical background of the method, is the explicit inclusion of proximity effects
between functional groups at the level of the theory. Proximity effects describe how the
chemical nature of a given group is altered by the presence of a different functional group,
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and can be treated, e.g., within the Constantinou and Gani approach [38]. Proximity
effects are expected to play an important role in the prediction of solubility of complex
organic molecules such as APIs since compounds of this kind typically comprise multiple
functional groups of a different chemical nature in close vicinity to one another.



Chapter 6

Conclusions

Group contribution (GC) methods provide an excellent predictive thermodynamic tool
that can yield an accurate description of the thermodynamic properties of fluids and fluid
mixtures. Methodologies of this kind can also find extensive application in the general
area of fluid formulation and computer-aided molecular design (CAMD), where the goal
is to determine the molecular structure that satisfies a set of performance criteria. From
the wide variety of GC methods available, a comprehensive review of which is provided in
chapter 2, the UNIFAC approach and its modifications [14, 85] stand out as the current
state-of-the-art methodology for the property prediction of mixtures. The popularity of
UNIFAC is due to its accuracy in the prediction of fluid phase equilibria, its ease of use,
and the extensive parameter table available. However, the UNIFAC approach suffers from
a key limitation: being an activity coefficient method, UNIFAC treats the liquid phase
alone, and an additional thermodynamic approach is required for the vapour phase. This
limitation calls for the development of GC approaches within the framework of an equa-
tion of state for the fluid, a strategy which started to be followed in the 1980s, within the
framework of cubic equations of state, and more recently with the application of the GC
concept within the statistical associating fluid theory (SAFT) [21–24]. The development
of such an approach is the core goal of the work presented in this thesis.

The SAFT-γ Mie approach presented in chapter 4 is based on a fused heteronuclear off-
lattice molecular model, where the interactions between the monomeric segments making
up the molecules are modelled by means of the Mie intermolecular potential of variable
attractive and repulsive range. Early work on the formulation of SAFT as a group con-
tribution approach has given rise to the homonuclear approaches [18, 201, 206], where
the fundamental theory remains unchanged and the GC concept is applied at the level of
determining the molecular parameters of the theory in a predictive manner. A more de-

175



6. Conclusions 176

tailed formulation was subsequently presented [19], where the molecular model employed
explicitly accounts for the presence of different functional groups. Such a heteronuclear
molecular model is at the heart of the SAFT-γ equation of state [19, 29] which was orig-
inally based on the square-well intermolecular potential, and was later employed in the
development of other SAFT-based GC approaches [20, 224]. In chapter 3, the SAFT-γ
method is applied to the study of the fluid phase behaviour of a wide variety of mixtures,
including aqueous solutions of alkanes and alkanols [348]. Aqueous solutions are very chal-
lenging systems to model due to the highly non-ideal phase behaviour that they exhibit,
featuring heterogeneous azeotropes and large regions of immiscibility. At the same time,
they are of high industrial relevance for broad ranges of applications from waste water
treatment to the study of solubilities of complex compounds. It is shown that the SAFT-
γ approach provides a very good predictive description of aqueous solutions. During the
course of the application of the method to the study of aqueous solutions the delicate
issue of group identification is also discussed. A key finding presented in Chapter 3 is that
different modelling strategies for a given family can change the performance of the theory
in the prediction of fluid phase behaviour. Despite the overall satisfactory performance of
the SAFT-γ approach based on the square-well potential form in the description of a wide
range of mixtures, several challenges are identified, mainly related to the description of
thermodynamic derivative properties and fluid phase behaviour in the vicinity of the crit-
ical point. Regarding the derivative properties, the performance of the SAFT-γ method
is related to the simplistic form of the intermolecular potential model that is at the core
of the SAFT-VR SW and SAFT-γ SW approaches.

The aforementioned challenges call for the development of a new theory, based on a more
realistic representation of the interactions between molecules. In order to address this,
the theory developed in chapter 4 is based on the Mie intermolecular potential of variable
attractive and repulsive range. The versatility of this potential was previously shown to
allow for an accurate description of phase behaviour and derivative properties within the
framework of the homonuclear SAFT-VR Mie [31, 263] approach. A key feature of the
SAFT-γ Mie representation is the treatment of the monomer term, where a third-order
perturbation expansion is employed [31]; the inclusion of the higher-order terms is shown
to significantly improve the description of fluid phase behaviour in the vicinity of the crit-
ical point. A central aspect of the extension of the theory to account for a heteronuclear
molecular model is a detailed assessment of the combining and mixing rules employed,
which are of critical importance to the accuracy of the theory. The resulting SAFT-γ Mie
equation of state is then applied to the study of the fluid phase behaviour and derivative
thermodynamic properties of the chemical families of the n-alkanes and the 2-ketones,
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incorporating Mie models for the constituent functional groups: methyl, methylene and
carbonyl. The formalism is shown to accurately describe the fluid phase behaviour of the
correlated compounds, where a significant improvement compared to other SAFT-type
GC approaches is seen. The effect of the new treatment of the monomer perturbation
term in the description of the near-critical region is highlighted. Furthermore, it is shown
that the application of a more detailed intermolecular potential allows for a significant im-
provement in the representation of the thermodynamic second derivative properties (such
as the isobaric heat capacity, the speed of sound, the isothermal compressibility, and the
Joule-Thomson coefficient), through an extensive study for the properties of the n-alkanes
in comparison to previous work based on the square-well potential. The predictive ca-
pability of the approach presented in this thesis is examined through the description of
the pure component properties for compounds not included in the regression of the group
parameters, and to the study of the properties of binary mixtures. The predictions of the
theory are, in all cases studied, in very good agreement with the experimental data, even
in the case of the excess thermodynamic properties, the accurate representation of which
is a challenge for most thermodynamic models.

Group contribution methodologies offer a particularly attractive platform for the appli-
cation in the prediction of solubility of complex organic molecules (and more specifically,
pharmaceutical compounds) in solvents and solvent blends. The study of solubilities of
complex molecules, including active pharmaceutical ingredients (APIs), is of great rele-
vance to the manufacturing process of pharmaceutical formulations. Since typically lim-
ited experimental data are available in this context, thermodynamic tools such as GC
approaches with predictive capabilities are usually required. The solubilities of two APIs,
phenylacetic acid and ibuprofen, in two organic solvents, acetone and methyl-isobutyl
ketone, are predicted by application of the SAFT-γ Mie approach and a standard ther-
modynamic framework for the calculation of solid-liquid equilibria. It is shown, based on
experimental data for the vapour-liquid equilibria of simple systems, that the method can
provide a reasonable predictive capability for the preliminary systems studied and can
be used to rank the solvent solubilities in agreement with the experimental data. Given
the complexity of the mixtures considered, comprising molecules with multiple functional
groups in close vicinity, the performance of the SAFT-γ Mie approach is deemed highly
satisfactory. This preliminary study is conducted in order to demonstrate the potential
of the theory in describing solid-liquid equilibria in a predictive manner. A more detailed
analysis of these systems and other compounds, and the potential inclusion of proximity
effects at the level of the theory can help towards improving our SAFT-γ Mie predictive
platform.
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6.1 Summary of the key contributions of the current work

The contributions of the work presented in this thesis can be summarised as follows:

• Group identification within group contribution methods. The impact of different
modelling approaches based on the physicochemical nature of the functional groups,
related to polarisability effects, on the performance of the theory is presented for the
chemical family of 1-alkanols within the SAFT-γ EoS;

• Extension of the SAFT-γ method based on the square-well potential to the study
of aqueous solutions of hydrocarbons. In this case, the ability of the theory to
successfully describe the highly non-ideal phase behaviour of the mixtures studied
is demonstrated. It is shown that the SAFT-γ method provides with an accurate
simultaneous description of the vapour-liquid and the liquid-liquid equilibria that
aqueous mixtures exhibit;

• Generalisation of the SAFT-VR Mie EoS to the SAFT-γ Mie group contribution
approach, based on a fused heteronuclear molecular model and the Mie intermolec-
ular potential of variable attractive and repulsive ranges for the description of the
segment-segment interactions. The extension of the theory required a thorough ex-
amination of the performance and validity of the mixing and combining rules that
are employed in the development of the theory for heteronuclear molecules;

• Modelling the thermodynamic properties and fluid phase behaviour of the chemical
families of the n-alkanes and the 2-ketones with the SAFT-γ Mie GC approach,
by developing parameters for the CH3, CH2, and CH3CO functional groups. It is
shown how the use of the Mie intermolecular potential allows for the simultaneous
description of phase behaviour and thermodynamic derivative properties;

• Demonstration of the predictive capabilities of SAFT-γ Mie in the accurate descrip-
tion of the fluid phase behaviour (vapour-liquid and liquid-liquid) and excess ther-
modynamic properties of a range of binary mixtures, including n-alkanes, branched
alkanes, 2-ketones, alkylbenzenes and carboxylic acids, in a predictive manner;

• Application of the SAFT-γ Mie approach to the preliminary study of the solubilities
of the APIs phenylacetic acid and ibuprofen in organic solvents acetone and methyl-
isobutyl ketone in a fully predictive manner. For the description of the APIs the
group parameters for 7 distinct functional groups and all unlike group interactions
were developed, as summarised on table 6.1.
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Table 6.1: Parameter matrix of the pure group and unlike group interactions developed in
the work presented. The line demarcating the two parts of the matrix highlights the fact that
the matrix is symmetric.

Functional Group CH3 CH2 CH3CO CHCH3 aCH aCCH2 COOH
CH3 X X X X X X X

CH2 X X X X X X X

CH3CO X X X X X X X

CHCH3 X X X X X X X

aCH X X X X X X X

aCCH2 X X X X X X X

COOH X X X X X X X

6.2 Directions for future work

As for every group contribution method, the predictive power of the SAFT-γ Mie approach
depends primarily on the extent of the group parameters available. In order to enhance the
predictive power of the methodology presented, the current parameter table, featuring the
functional groups to represent the families of n-alkanes, branched alkanes, alkylbenzenes,
2-ketones and carboxylic acids, has to be extended to include other functional groups that
will allow one to model other chemical families. Such examples are the family of amines
(NH2) and alkanols (OH), for example in the modelling of alkanolamines in processes of
carbon capture, esters (COO) for biodiesel processes, as well as the modelling of charged
groups in a group contribution fashion. The introduction of key molecules modelled as
single groups, such as water (H2O), carbon dioxide (CO2) and methane (CH4), as well
as the binary interaction parameters of these groups with the functional groups in the
larger multifunctional compounds, based on mixture data, will also expand the range of
applicability of the method. It should to be noted however, that for the modelling of asso-
ciating compounds, the current implementation of the association term has to be revisited.

A long-term aim of the work presented in this thesis is an extensive application of the
method to the modelling of the solubilities of APIs in solvents and solvent blends. Based
on the results presented in chapter 5, where the performance of the SAFT-γ Mie ap-
proach is examined in the description of the solubility of ibuprofen and phenylacetic acid
in two solvents, the methodology is seen to offer great potential in the study of the phase
behaviour of such complex molecules in a predictive manner. However, there are some
aspects that need to be considered, especially in cases where high fidelity quantitative
agreement between the calculations of the theory and the experimental data is needed.
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From the perspective of the estimation of the group interaction parameters, it would be of
great interest to assess the importance of including solid-liquid equilibrium data in the re-
gression of the group parameters. The extension of the types of experimental data used in
the parameter estimation is a strategy also employed within the modified UNIFAC Dort-
mund, and is expected to improve the predictions of the method in the study of solid-liquid
equilibria and solubility. At the same time, from a theoretical perspective, the inclusion
of higher-order group contributions (at the second- and third-order level as discussed in
chapter 2), that account for proximity effects, is of great interest. Proximity effects, that
describe how the chemical nature of a group is altered when a chemically different group
is found in close vicinity, are expected to play an important role in the description of
highly complex molecules that feature multiple distinct functional groups. Furthermore,
higher-order effects can lead to a general improvement in the description of fluids and fluid
mixtures and allow for the distinction between isomers, a common shortcoming of most
GC approaches.

Having established a large database of group parameters and extended the application
of the SAFT-γ Mie framework to the study of the solubility of several APIs in solvents,
the method presented can serve as a platform for solvent screening. The aim in this case
would be to construct a framework based on the SAFT-γ Mie method, that can optimise
the components of a solvent blend and/or the composition of the blend based on a desired
solubility of a given API.
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[201] J. Vijande, M. M. Piñeiro, D. Bessières, H. Saint-Guirons, and J. L. Legido. De-
scription of PVT behaviour of hydrofluoroethers using the PC-SAFT EoS. Phys.
Chem. Chem. Phys. 6, 766 (2004).

[202] C. G. Gray and K. E. Gubbins. Theory of Molecular Fluids. Clarendon Press,
Oxford, (1984).

[203] T. X. N. Thi, S. Tamouza, P. Tobaly, J. P. Passarelo, and J. C. de Hemptinne.
Application of group contribution SAFT equation of state (GC-SAFT) to model
phase behaviour of light and heavy esters. Fluid Phase Equilib. 238, 254 (2005).

[204] D. Nguyen-Huynh, M. Benamira, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne.
Application of GC-SAFT EoS to polycyclic aromatic hydrocarbons. Fluid Phase
Equilib. 254, 60 (2007).

[205] F. S. Emami, A. Vahid, J. R. Jr. Elliott, and F. Feyzi. Group contribution predic-
tion of vapour pressure with Statistical Associating Fluid Theory, Perturbed-Chain
Statistical Associating Fluid Theory and Elliott-Suresh-Donohue equations of state.
Ind. Eng. Chem. Res. 47, 8401 (2008).

[206] A. Tihic, G. M. Kontogeorgis, N. von Solms, M. L. Michelsen, and L. Constantinou.
A predictive group-contribution simplified PC-SAFT equation of state: Application
to polymer systems. Ind. Eng. Chem. Res. 47, 5092 (2008).

[207] A. Tihic, N. von Solms, M. L. Michelsen, G. M. Kontogeorgis, and L. Constantinou.
Application of sPC-SAFT and group contribution sPC-SAFT to polymer systems
- Capabilities and limitations. Fluid Phase Equilib. 281, 70 (2009).
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