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SYNOPSIS  

Novel imaging techniques are allowing hepatologists to investigate the structural and functional 

neuropathology of hepatic encephalopathy (HE) in greater detail but only limited techniques are 

applicable to the clinic. Computed tomography and magnetic resonance imaging (MRI) can rule out 

other diagnoses and in the case of MRI, give certain key diagnostic features in widely available 

sequences. While increased brain water content is a hallmark of HE, the localisation of low-grade 

cerebral edema, the extent of regional swelling or atrophy and the different functional characteristics 

of affected brain regions continue to be debated.  More specialised volumetric, diffusion-tensor, 

magnetization transfer, functional magnetic resonance imaging and magnetic resonance 

spectroscopy, in conjunction with positron emission tomography continue to enrich the investigative 

findings in HE. Nevertheless an internationally accepted diagnostic framework that includes an 

objective imaging test to replace or augment psychometry remains elusive. Quantitative MRI is likely 

to be the best candidate to become such a test and the utility of MR and nuclear medical techniques 

to the clinic and results from recent research are described in this article. 
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1. Introduction 

Hepatic encephalopathy (HE) is a neuropsychiatric disturbance affecting patients with acute liver 

failure (ALF), cirrhosis or non-cirrhotic portosystemic bypass (1). The clinical spectrum of HE extends 

from mild cognitive impairment, to coma and death (2). The majority of cases involve patients with 

minimal HE (MHE), which has been associated with an impaired ability to drive automobiles safely, 

reduced health-related quality of life and increased risk of hospitalization due to overt HE (3-5).  

 

The disease process is multifactorial, with hyper-ammonaemia, gut-derived toxins, short and medium 

chain fatty acids, cerebral manganese deposition and relative deficiencies in circulating amino acids 

with consequent neurotransmitter imbalance commonly implicated. There is consensus that ammonia 

is central to the pathogenesis (6). Varying degrees of cerebral edema may result from the uptake of 

excess ammonia into astrocytes, with subsequent conversion to glutamine, which acts as a cerebral 

osmolyte, mitochondrial toxin and instigator of neurotransmitter instability (7-11). 

 

Currently, the diagnosis of HE lacks standardization, particularly in MHE, which requires 

neuropsychiatric testing to detect cognitive impairment. Psychometric test results can be dependent 

on the patient’s age, educational status, emotional affect and linguistic abilities. Evaluation varies 

between countries while in some forms of testing, considerable expertise and facilities to conduct an 

assessment are required (12). This perceived diagnostic difficulty leads to under recognition of this 

important clinical problem. Even when the presentation of HE is clinically overt, the grading and 

assessment of longitudinal change is subjective among clinicians, and is also prone to disagreement 

or even misdiagnosis (12).  

 

The cerebral insults secondary to hepatocellular failure or portosystemic shunting result in structural 

and functional abnormalities in the brain, which imaging may detect and quantify. Suitable modalities 

include magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), computed 

tomography (CT) in conjunction with positron emission tomography (PET) and single photon emission 

computed tomography (SPECT) (Table 1 and Box 1). These imaging techniques may allow the 

development of tools for the objective, reproducible and non-invasive diagnosis and monitoring of HE. 
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While stand-alone computed tomography (CT) is useful for determining gross structural lesions such 

as cerebral edema in ALF or other pathologies in patients with CLD, it is limited as a diagnostic and 

longitudinal research tool, owing to poor sensitivity and repeated exposure to ionizing radiation. MRI 

and PET/SPECT will thus be the focus for this article with particular focus on patients with HE 

secondary to cirrhosis, where most possibility for diagnostic doubt or pathophysiological disagreement 

exists. 

 

2. Magnetic Resonance Imaging 

MRI is currently the most frequently utilized imaging tool in HE research studies and even standard 

clinical sequences can give information supporting a diagnosis of HE. A clinical set of sequences 

when requesting an “MR Brain” study would usually consist of T1- and T2-weighted sequences as 

standard and a selection of more advanced T2-weighted sequences such as Fluid Attenuated 

Inversion Recovery (FLAIR) or Diffusion-Weighted Imaging (DWI).  

 

2.1 T1-weighted MRI 

Bilateral and symmetric hyper-intensity of the basal ganglia, using T1-weighted MRI sequences in 

patients with cirrhosis is an observation with some clinical utility (Figure 1) (14-17). It has been 

postulated that excess circulating manganese is the cause of such hyperintensity, due to reduced 

hepatobiliary excretion as a result of liver failure, and subsequent deposition in the basal ganglia 

where blood flux is high (18,19). This theory has been corroborated by the correlation between blood 

and cerebrospinal fluid manganese levels with T1-weighted hyperintensity; and also the normalization 

of basal ganglia hyperintensity and blood levels of manganese after liver transplantation (20-22).  

 

However, the results of studies investigating the relationship between manganese-related pallidal 

hyperintensity and psychometric performance in HE are conflicting (23,24). It is therefore unclear 

whether T1-weighted hyperintensity represents a manifestation of HE, or if it is an occurrence 

secondary to cirrhosis, cholestasis and/or porto-systemic shunting (25,26).  The preferential 

deposition of manganese in the basal ganglia has been suggested to be an explanation for the 

Parkinsonian-like symptoms, which can arise as a result of HE (27). So while a useful adjunct this 
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lack of correlation with grades of HE makes a single T1-weighted exam insufficient in MR Brain in 

patients with cirrhosis. 

 

2.2 T2-weighted MRI: Fast FLAIR Imaging 

Fast FLAIR (Fluid Attenuated Inversion Recovery) T2-weighted imaging represents a MRI sequence 

that has been shown to be sensitive for the detection of diffuse high intensity white matter lesions 

(WMLs) (28,29). WMLs may develop secondary to cerebrovascular small-vessel disease, which 

neuropathologically, are a combination of reversible edema and irreversible neuronal damage. (30). 

Minguez and colleagues noted WMLs were found to be reduced in volume and number after 

treatment with neomycin and/or branched-chain amino acids in conjunction with improved 

psychometric performance (31). To further investigate this observation, the same investigators 

compared WML volumes in patients with impaired cognition, pre- and post-liver transplantation (32). A 

significant reduction in WML volume was detected after liver transplantation (Figure 2), as well as a 

strong negative correlation between fast FLAIR T2-weighted lesion load and psychometric score. 

Rovira and colleagues, and Cordoba and colleagues, measured high-signal intensity, along the 

corticospinal tract on fast FLAIR T2-weighted images in patients with chronic liver disease, with 

subsequent signal normalization after liver transplantation. (33,34).  

 

2.3 T2-weighted MRI: Diffusion Weighted Imaging  

Diffusion-Weighted MRI (DW-MRI) is a commonly available sequence often used in assessing 

neurovascular disease which assesses changes in the motion of water molecules, by defining the 

chemical interaction between water and cellular barriers (35). The diffusivity of water molecules can 

be quantified by calculating the apparent diffusion coefficient (ADC) and can distinguish between 

vasogenic (interstitial) and cytotoxic edema (36,37).   

 

Several studies have consistently demonstrated a link between increased cerebral ADC 

(demonstrating interstitial edema) and patients with either MHE or overt HE; the degree of brain water 

diffusivity also correlating with grade of HE (37-40).  DW-MRI studies have countered the traditional 

astrocytic swelling hypothesis, suggesting increased ADC values relate to purely extracellular water 

accumulation in low-grade cerebral edema, secondary to chronic HE (37,41-43). Theories that explain 
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this phenomenon include hyperammonemia-induced increased blood-brain barrier permeability and 

reduced glial fibrilliary acidic protein (GFAP) expression, a protein that regulates astrocytic 

permeability; reduced membranous GFAP in astrocytes has been previously linked increased 

diffusivity in the extracellular space (44-46).  Discrepancies in studies where ADCs have been raised 

or lowered in clinically defined HE may be related to the onset of disease. Lower ADC values have 

been noted in patients with HE, secondary to ALF (and cytotoxic edema), whereas higher 

periventricular white matter and basal ganglia ADC in patients with CHE have been suggested to 

support a finding of interstitial edema (47). 

 

Detection of water diffusion has improved in recent years with the development of diffusion tensor 

MRI (DT-MRI), a technique that provides detailed information on brain tissue structure. Fractional 

anisotropy (FA, where the fractional free or bound water component is estimated) maps can be 

assimilated to perform “tractography”, a method of determining underlying brain anatomy and where 

edema is localised (48). Kumar and colleagues demonstrated increased mean diffusivity in the 

internal capsule and cortical gray and white matter of HE patients, but differential patterns of 

correlation between mean diffusivity and fractional anisotropy in the corpus collusum suggested that 

interstitial edema was the primary HE correlate in this study of 14 low-grade HE patients. While DWI 

is often used in clinical scanners, and we would recommend using T1-weighted and FLAIR/DWI T2-

weighted sequences, the statistical requirements of DTI make it currently unsuitable for standard 

clinical use.  

 

2.4 Volumetric MRI 

Shah and colleagues correlated quantitative T1 mapping of cerebral water content in the putamen, 

globus pallidus and occipital white matter with severity of HE (13). This was one of the first direct and 

quantitative measurements of increased regional cerebral water content with more severe grades of 

HE, but the imaging technique is highly specialised. Cerebral edema that occurs as a result of ALF 

can be routinely viewed using MRI (49), but is often low grade and is hence undetectable by 

radiologists in chronic HE. The question arises of whether a simple measure of total brain volume 

(BV) would be useful. Recent developments in software packages for brain volumetry allow small 

(<1% total BV) changes in brain size in HE to be quantitated, allowing precise measurements of BV 
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(50) on relatively standard T1-weighted MR sequences (51-55). Single time-point determination of 

brain volume is considerably less accurate than when BV change is determined longitudinally, owing 

to the ability to co-register (align) images using the theoretically unchanged skull surface, thus 

allowing more robust determination of CSF and gray and white matter densities (50,56). Further 

structural information can be determined using voxel-based morphometry (VBM) where regional 

contribution to brain volume change can be calculated; this has been applied in many 

neuropathological scenarios (57). 

 

A pilot study conducted by Patel and colleagues, was the first to utilize co-registered MRI techniques 

to determine changes in BV in chronic liver disease (58). This small scale investigation focused on six 

patients with MHE, and three patients who had been diagnosed with overt HE. The authors concluded 

that in patients treated with lactulose brain volume fell, in association with improved psychometric 

performance.  

 

In contrast patients with HE often have risk factors for cerebral atrophy (such as age, alcohol abuse 

and possibly cirrhosis itself) and these effects couldalso contribute to neuropsychological impairment 

and apposite structural brain changes. Garcia-Martinez and colleagues investigated cognitive 

function, cerebral magnetic resonance spectroscopy and BV post-liver transplantation (59). Post-

transplantation, BV was reduced in patients with prior HE, correlating with worse neuropsychiatric 

score in this group. This study, suggests that brain atrophy accrued prior to liver transplantation, but 

masked by low grade edema, may also play a role in cognitive dysfunction post-transplantation. 

Further evidence of the contribution of atrophy in patients with hepatic encephalopathy has recently 

emerged with the identification areas of atrophy throughout the cortex and white matter quantitated by 

VBM and correlating with the severity of encephalopathy (60). A lack of corroborative MR 

spectroscopy or more advanced water localisation sequences could not add further mechanistic data 

to this interesting observation, which requires validation from other groups. 

 

2.5 Magnetization Transfer Imaging  

Magnetization transfer imaging (MTI) improves image contrast as a consequence of the magnetic 

properties of free and bound protons (61). Free protons are present in water molecules, whereas 
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bound protons are fixed to macromolecules, such as proteins, lipids, carbohydrates and nucleic acids 

(62). Magnetization transfer between bound and free protons reduces the signal intensity observed in 

the resultant MR image (17,25). MTI also allows for the magnetic transfer ratio (MTR) to be quantified, 

which ultimately reflects brain parenchymal changes: a low MTR indicates neuronal damage as well 

as an increase in water content or membrane permeability (17,63).  

 

Lower MTRs have been demonstrated in patients with HE, including a cohort who developed MHE 

secondary to extra-hepatic portal vein obstruction (64-66). A study by Cordoba and colleagues 

verified this by concluding MTR normalisation post-transplantation reflected the correction of low-

grade cerebral edema in patients with MHE, and that the basal ganglia and white matter are initial 

targets for water accumulation (67). A study by Miese and colleagues that utilized both MTI and DW-

MRI to investigate cerebral edema in HE, found that both reduced MTR and raised ADC were 

correlated with HE grade in non-alcoholic patients (40). However, in patients continuing to drink to 

alcohol to excess, no such correlation was established, suggesting chronic alcohol mis-use may 

independently cause cerebral oxidative damage in this group,  although as has been noted above, the 

effect of atrophy on these measurements may be underestimated (68).  

 

2.6 Functional MRI  

Functional MRI (fMRI) measures changes in deoxyhaemoglobin concentration (a substance with 

paramagnetic properties, relative to tissue) that occurs as a result of the rise in blood oxygenation 

during neuronal activity (69). The subsequent blood oxygen level dependent (BOLD) contrast 

highlights areas of activity in the brain.  

 

fMRI has the benefit of being a non-invasive and safe investigatory tool in low grade HE (as these 

patients can follow instructions in the scanner), that is particularly useful in longitudinal studies as no 

radioactive marker injections are required (35). Zafiris and colleagues demonstrated that MHE is 

associated with impaired coupling between visual judgment areas (70). A study conducted by Zhang 

and colleagues compared brain fMRI data in 14 patients with cirrhosis and 14 healthy volunteers (71). 

An incongruous word reading task and incongruous color-naming task (testing for attention and 

interference) highlighted various cerebral areas on fMRI: there was greater activation of the bilateral 



9 
 

parietal and prefrontal cortices in the patients with cirrhosis (72). In a separate study, Zhang and 

colleagues concluded there was reduced functional connectivity in the right middle frontal gyrus and 

left posterior cingulate cortex, (part of the default-mode network [DMN)).. This highly interconnected, 

metabolically active and well described area of the brain is vital for the preservation of attention and is 

worthy of further study into whether this abnormal activation is related to hyperammonemia or low-

grade cerebral edema (73-75). 

 

2.7 Magnetic Resonance Spectroscopy 

MRS has been utilised in HE investigations since the 1980s, although it has been more widely used in 

recent times as a consequence of improved sequence development and higher field strength to 

resolve metabolite signals. MRS also allows for the investigation of HE at the molecular level, by 

studying cerebral tissue in vivo in whole-body clinical magnets (typically at 1.5-3.0T) (76).  

 

Various nuclei can be used to determine metabolite changes in HE, the most common clinically-used 

being proton (
1
H) and 31-phosphorus (

31
P) MRS. 

1
H MRS allows for the quantification of metabolites 

such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA), glutamine (Gln) and glutamate (Glu) or 

the unresolved combination (Glx), as well as osmolytes such as myo-inositol (mI) and taurine. 
31

P MR 

spectra allow definition of phosphomonoester (PME), inorganic phosphate (Pi), phosphodiester 

(PDE), phosphocreatine, γATP, αATP and βATP resonances (or also more correctly termed 

nucleoside triphosphate resonances [NTP], as they also contain contributions from cytosine 

triphosphate, guanosine triphosphate and uridine triphosphate, in addition to the overwhelming 

proportion from adenosine triphosphate, [ATP]) (77). These resonances provide information on cell 

membrane turnover with cell membrane precursors measured in the PME resonance and cell 

membrane degradation products measured in the PDE resonance, while information on high energy 

phosphate metabolism and intracellular pH is available from the Pi, PCr and NTP resonances (78-80). 

Ammonia is not detected by MRS due to rapid interchange with water (81).  

 

The characteristic spectral appearance of HE on in vivo 
1
H MRS adds further evidence to the 

astrocyte swelling hypothesis demonstrated by a reduction in intracellular mI and Cho, and a 

concurrent increase in Gln and Glu (Figure 3) (77,82). Furthermore, these characteristic metabolic 
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changes have been shown to correlate with psychometric performance (23). This suggests that cells 

expel osmolytes, such as taurine, mI and Gln, in the face of an osmotic water load. In vivo 
1
H MRS 

allows the degree of intracellular osmolyte homeostasis to be detected and monitored sequentially 

and to give an indirect indication of cell swelling in a non-invasive way. The technique is also open to 

following response to therapeutic intervention. Recent sequence development using 2-dimensional 

spectroscopy allows improved resolution of 1-dimensional 
1
H MRS and resolution of glutamine and 

glutamate (Figure 4) (83). 

 

The interpretation of 
31

P MRS is complex in vivo, since many of the resonances are multi-component 

and are not easily separated into their constituents at clinically-used magnetic field strengths. Overall, 

however, changes do appear to reflect alterations in bioenergetic pathways, and glucose utilisation 

(since sugar phosphates also contribute to both the PME and PDE resonances), as well as giving an 

indication of phospholipid membrane synthesis and degradation and of cell membrane fluidity (77,84). 

Consensus on 
31

P MRS studies has been hampered by small study sample sizes and inconsistencies 

in MRS protocols between centers (35). Studies conducted by Taylor-Robinson and colleagues have 

demonstrated reductions in the PME/ βATP and PDE/ βATP which correlate with reduced choline, as 

verified by parallel 
1
H MRS on the same subjects (77,84,85). These changes were thought to 

represent reduced glucose utilisation in HE, as components of the glycolytic pathway contribute to the 

31
P MRS spectrum in vivo. However, a change in membrane fluidity is equally possible. 

1
H in vivo 

MRS is more likely to be developed for clinical use but normal ranges and diagnostic thresholds for 

key metabolites are not yet agreed. 

 

3. Nuclear medicine: Positron Emission Tomography and Single Photon Emission Computed 

Tomography  

PET involves the measurement of the concentration of positron emitting radioisotopes from the body. 

Co-registered CT or MR tomographic imaging provides structural information, while, depending on the 

radioligand used, functional data are available in the form of glucose and oxygen metabolism, blood 

flow, amino acid metabolism and rates of amino acid incorporation into proteins, acid-base balance 

and membrane transport (86). Positron-emitting radionuclides that are used in PET include: 
11

C, 
18

F, 

15
O, and 

13
N (87). 
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Lockwood and colleagues have used 
18

F-fluorodeoxyglucose (FDG) PET to investigate functional 

changes in chronic HE (88,89). They demonstrated a reduction in glucose metabolism in the anterior 

cingulate gyrus, which may reflect the attention deficit found in many HE patients on 

neuropsychometric testing and in fMRI studies. Alterations in cerebral blood flow (CBF) have also 

been established using FDG PET and 
15

O PET, where poor neuropsychiatric performance correlated 

with reduced blood flow in all cortical areas; temporal lobe CBF was found to be most discriminatory 

between HE patients and healthy volunteers (88).  

 

Brain imaging with 
13

N-ammonia, has been used to assess cerebral ammonia metabolism in (i) 

healthy subjects, (ii) subjects with mild liver disease, but with no evidence of cirrhosis, (iii) subjects 

with cirrhosis with and without HE, and (iv) subjects with malignant neoplasms with metastases in the 

liver (90-94). However, the results of these studies are somewhat conflicting, particularly with respect 

to interpretation of blood-brain barrier (BBB) permeability in HE. This is probably owing to differences 

between research groups in the tracer kinetic modeling approach used to determine parameters of 

cerebral ammonia metabolism quantitatively. Different expert opinions exist over which conclusions 

should be drawn out of conflicting results in PET studies of ammonia metabolism and BBB 

permeability. Some proponents suggest that further studies, including larger numbers of patients and 

using standardized analysis techniques are necessary, in order to provide consensus and easy 

methodology to clarify the relationship between BBB permeability and ammonia toxicity (95).  

 

Changes in different neurotransmission systems have been demonstrated in HE patients using 

radiotracer methods. Increased benzodiazepine receptor binding, decreased dopamine receptor 

binding and decreased binding to serotonin transporters have been shown (Figure 5) (96). These 

changes correspond to symptoms observed in HE (depression of neuropsychological function and 

extrapyramidal symptoms) and suggest possible targets for treatment (97-99). Studies of neuronal 

activity have been used to shed light on the pathophysiology of HE, while imaging of a potentially 

crucial process in HE, neuroinflammation, using the radioligand C-11-PK11195 to detect peripheral 

benzodiazepine receptors (PTBR), which are present on a number of cell types, including activated 

microglial cells, is gaining increased attention (100-102).  
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Molecular imaging using SPECT requires a molecular marker that is labelled with a radionuclide, 

which results in the emission of gamma ray photons or high-energy X-ray photons (103). Cerebral 

blood flow is most commonly assessed by using 
99

Tc or 
133

Xe radioactive tracers. Despite SPECT 

being more readily available and cheaper than PET, the latter is preferred in functional imaging 

studies due to its superior spatial and temporal resolution (86). Previous studies have demonstrated 

increased cerebral blood flow in the basal ganglia in patients with MHE, suggesting increased 

ammonia delivery to these areas, resulting in astrocytic dysfunction and cognitive alterations 

(104,105). This is in agreement with a 
1
H MRS study by Taylor-Robinson and colleagues that 

demonstrated Glx concentration was highest in the basal ganglia (82). However, SPECT studies that 

have investigated HE have been thwarted by small study sizes, limiting the conclusions that can 

presently be drawn from the use of this functional imaging tool. 

   

4 Summary 

In a patient with liver disease and neurological impairment, a CT scan and/or preferably, MRI of the 

brain can rule out other diagnoses and provide some corroborative evidence of HE. More research-

based modalities such as MRT, DTI, MRS, PET and SPECT have provided valuable insight into the 

pathogenesis of HE, but have not been transformed into widely available diagnostic tools. Prior to this 

transformation, there must be consensus with regards to uniformity of study protocols, imaging 

sequences and analysis methodologies, both in MRI/MRS and in PET/SPECT, where promising 

functional data are emerging. In the future, a quantitative MR technique is most likely to give 

objective, reproducible and longitudinal diagnostic information in this common but under recognised 

complication of liver disease. 
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Imaging 
technique 

Availability Findings in Hepatic Encephalopathy Recommended in 
the clinic 

CT Brain Standard Cerebral edema in ALF 
Rules out some common differential 
diagnoses 

Yes 

 
MRI brain 

   

T1-weighted Standard Basal ganglia hypersensitivity  
(not HE specific) 
Cerebral oedema in ALF  
Quantitative brain volume by 
research statistical methods 
 

Yes (not in ALF) 

T2-weighted 
FLAIR 
 
 
DWI 

 
Standard 
 
 
Standard 

 
White matter lesions in cases of low 
grade HE 
 
High ADC in CHE 
Low ADC in ALF 

 
Yes (not in ALF) 

Diffusion tensor 
imaging 
 

Research  
 

Increased mean diffusivity in 
corticospinal tracts 

No 

Magnetisation 
Transfer 
 

Available in 
specialist centres 

Low MTR in white matter No 

1H MR 
Spectroscopy 

Available in 
specialist centres 

High Glx (glutamine/glutamate) 
Low myoinositol and choline in basal 
ganglia and frontal white matter 

No 

Functional MRI Research Deactivation of the default mode 
network including the anterior 
cingulate 

 

Nuclear 
medicine 
 

   

PET Research in HE Reduced glucose uptake in the 
anterior cingulate 

No 

SPECT Research in HE Increased blood flow to the basal 
ganglia 

No 

Table 1: Approach to different imaging modalities in HE in clinical and investigative use 
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 CT Brain can demonstrate edema in ALF and assists in the differential diagnosis of 

neurological impairment in cirrhosis 

 MR Brain is not recommended routinely in ALF but can assist in the diagnosis of HE in 

cirrhosis where it is the preferred method of brain imaging 

 Quantification of cerebral metabolites or brain water is possible but not yet widely used 

diagnostically 

 PET/SPECT are powerful but expensive research tools 

 

Box 1: Clinical and research imaging techniques applied in the diagnosis of hepatic encephalopathy 
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Figure 1: T1-weighted magnetic resonance image of the brain of a patient with cirrhosis. The arrow 

demonstrates the area of pallidal hyperintensity. Reproduced from Córdoba J, et al.  
1
H magnetic 

resonance in the study of hepatic encephalopathy in humans. Metab Brain Dis 2002;17(4):415. With 

permission from Springer Inc. 
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Figure 2: A. Baseline fast-FLAIR MRI image of a hepatitis C patients prior to liver transplantation. 

Focal lesions can be visualized in the subcortical white matter (arrows). B. Same MRI study 6 months 

post-liver transplant in the same patient; there is a noticeable decrease in the size of focal white 

matter lesions. Reproduced from Rovira A, et al. Decreased white matter lesion volume and improved 

cognitive function after liver transplantation. Hepatology 2007;46(5):1485. With permission from John 

Wiley and Sons Inc. 

 

 

Figure 3: 
1
H MR spectra from the basal ganglia of a patient with chronic hepatic encephalopathy and 

healthy volunteer, demonstrating decreased choline/creatine ratio and increased glutamate/glutamine 

resonance in the CHE patient. Cho: choline; Cr: creatine; Glx: glutamine/glutamate; NAA: N-acetyl 

aspartate. Reproduced from Taylor-Robinson SD, et al. Regional variations in cerebral proton 

spectroscopy in patients with chronic hepatic encephalopathy. Metab Brain Dis. 1994 Dec;9(4):347-59 

With permission from Springer Inc. 
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Figure 4: The 2D-COSY spectrum from the occipital lobe of a 51-year-old patient with minimal hepatic 

encephalopathy. Cr: creatine; Ch: choline; Glx: glutamate/glutamine; NAA: N-acetyl aspartate; Asp: 

aspartate; PE: phosphoethanolamine; PCh: phosphocholine; mI: myoinositol; Tau: taurine; ThrLac: 

overlapping cross peaks of threonine and lactate; GABA: gaba-aminobutyric acid; mICh: overlapping 

cross peaks of myo-inositol and choline; MM: macromolecules. Reproduced from: Singhal A et al. 

Two-dimensional MR spectroscopy of minimal hepatic encephalopathy and neuropsychological 

correlates in vivo. Journal of magnetic resonance imaging 2010;32(1):35. With permission from John 

Wiley and Sons Inc. 
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Fi Figure 5: Analyses of benzodiazepine binding in patients with hepatic failure (top row), control 

(middle row), and voxel-by-voxel comparison of between-group differences (bottom row). The 

greatest changes in distribution volume of flumazenil was seen in the cerebellum. Reproduced from 

MacDonald GA, et al. Cerebral benzodiazepine receptor binding in vivo in patients with recurrent 

hepatic encephalopathy. Hepatology 1997;26(2):277. With permission from John Wiley and Sons Inc. 

gure 5 

 

 


