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Abstract

In the framework of the classical theory of linearised water waves in unbounded domains,

trapped modes consist of non-propagating, localised oscillation modes of finite energy oc-

curring at some well-defined frequency and which, in the absence of dissipation, persist in

time even in the absence of external forcing.

Jones (1953) proved the existence of trapped modes for problems governed by the Helm-

holtz equation in semi-infinite domains. Trapped modes have been studied in quantum

mechanics, elasticity and acoustics and are known, depending on the context, as bound

states, acoustic resonances, Rayleigh-Bloch waves, sloshing modes and motion trapped

modes.

We consider trapped modes in two dimensional infinite waveguides with either Neumann or

Dirichlet boundary conditions. Such problems arise when considering obstacles in acous-

tic waveguides or bound states in quantum wires for example. The mathematical model

is a boundary value problem for the Helmholtz equation. Under the usual assumptions of

potential theory, the solution is written in terms of a boundary integral equation. We de-

velop a Boundary Element Method (BEM) program which we use to obtain approximate

numerical solutions. We extend existing results by identifying additional trapped modes

for geometries already studied and investigate new structures. We also carry out a detailed

investigation of trapped modes, using the planewave spectrum representation developed

for various characteristic problems from the classical theories of radiation, diffraction and

propagation. We use simple planewaves travelling in diverse directions to build a more

elaborate solution, which satisfies certain conditions required for a trapped mode. Our

approach is fairly flexible so that the general procedure is independent of the shape of

the trapping obstacle and could be adapted to other geometries. We apply this method to
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the case of a disc on the centreline of an infinite Dirichlet acoustic waveguide and obtain

a simple mathematical approximation of a trapped mode, which satisfies a set of criteria

characteristic of trapped modes. Asymptotically, the solution obtained is similar to a nearly

trapped mode, which is a perturbation of a genuine trapped mode.
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Chapter 1

Introduction

Within the framework of classical wave theory, trapped modes are time-harmonic oscilla-

tions at some well-defined frequency, localised to the vicinity of a boundary or trapping

structure in unbounded domains, and decaying exponentially with distance away from the

trapping feature.

In 1951 Ursell showed that a water-wave system bounded by a surface of infinite extent,

may have decaying eigenmodes corresponding to point eigenvalues embedded in the con-

tinuous spectrum of propagating modes [73]. Ursell constructed two trapped modes: (1) a

mode on a sloping beach in a semi-infinite canal and (2) a mode near a submerged circular

cylinder in an infinite canal of finite width. In a subsequent study Jones (1953), using the

theory of unbounded operators, investigated the spectrum of the Laplacian and established

that semi-infinite domains which are cylindrical at infinity have a continuous spectrum with

a discrete spectrum embedded in it [37]. Jones’ work established the Helmholtz equation,

with suitable boundary conditions as a mathematical model for the study of trapped modes.

This formulation applies to the trapped modes studied in this thesis. Similar confinement

properties were predicted for the solutions of analogous acoustic or electromagnetic prob-

lems. He also investigated cases where trapped modes occur in surface wave problems,

governed by the Laplace’s equation plus certain boundary conditions. Thus the two main

governing equations for the study of trapped modes were established. Lately however, new

mathematical models for this topic have emerged, to account for the diversity of contexts

in which they are studied. For example (Maksimov 2006) uses the linear Navier-Cauchy
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equation, which models the vectorial vibrations in elastic plates, to reveal the bound states

appearing in X, T and L-shaped elastic waveguides [46].

Over the past 60 years the study of trapped modes has intensified and diversified. De-

pending on the context, trapped modes are known as acoustic resonances, Rayleigh-Bloch

waves, edge waves, array guided surface waves, sloshing modes, motion trapped modes

and bound states. There is an immense amount of literature on trapped mode problems,

covering analytical, numerical and physical aspects to which it is hard to do justice. We

mention here a few trends, results and relevant topics, with our list of references being far

from exhaustive.

1.1 Non-uniqueness of solutions

For a specified geometry, uniqueness of the solution to a forcing problem at a particular

frequency is equivalent to the non-existence of a trapped mode at that frequency. A trapped

mode is a solution of the corresponding homogeneous problem and represents a free oscil-

lation with finite energy (see section 1.2) of the fluid surrounding the fixed structure. For

a given structure, trapped modes may exist only at discrete frequencies. Mathematically, a

trapped mode corresponds to an eigenvalue of the relevant operator but not all eigenvalues

give rise to trapped mode solutions. Principally, a condition preventing any dissipation of

energy in the far field, must be satisfied by an eigenfunction to be a trapped mode solution.

The uniqueness of solutions in the frequency-domain to the scattering and radiation prob-

lems has been a subject of research since at least the early 1950’s (uniqueness at a particular

frequency is equivalent to the absence of trapped modes). In 1950 John [36] established

uniqueness for a particular class of single, surface-piercing bodies, which have the prop-

erty that any vertical line emanating from the free surface does not intersect the body and

Ursell (1950) proved uniqueness for a circular cylinder submerged in fluid of infinite depth

[72]. Since then many other partial results have been obtained (see, for example, Simon

and Ursell 1984 [68]). A detailed review of the literature is provided by Kuznetsov et al.

[39] and by Linton & McIver [43]. Despite a growing number of results, a general proof of

uniqueness for all bodies at all frequencies was not found. The reason for the absence of a

general uniqueness proof became clear when M. McIver (1996), showed how to construct

an explicit example of two surface-piercing bodies for which the potential is non-unique at

a specific frequency [49]. Hence there can be no general uniqueness proof because trapped
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modes can be constructed for given structures meaning that non-trivial solutions of the

homogeneous problem exist for particular frequencies.

1.2 Finite energy

Ursell (1951) established the correspondence between the finite energy of a trapped mode

and the type of eigenvalue which gives rise to it [73]. If a fluid is bounded by fixed surfaces

and by a free surface of finite extent on which the pressure is constant, there is an enumer-

able infinity (or discrete spectrum) of characteristic modes. But if the free surface extends

to infinity, the modes of vibration will be expected to form a continuous spectrum, with an

infinite amount of energy in each mode. As an illustration, consider the zeroth order Bessel

equation

d2y

dx2
+

1

x

dy

dx
+ λ2y = 0 (1.1)

where the solution has to be bounded and to vanish at x = L. When L is finite, an eigen-

mode is y = J0(λx) where λ is a root of J0(λL) = 0. But when L is infinite, every positive

value of λ2 is an eigenvalue and the energy
∫∞

0
x[J

′
0(λx)]2dx is infinite. These eigenvalues

form a non-countable set, a complete, continuous spectrum. But, as Ursell points out [73],

if there are also modes of oscillation with finite total energy, i.e. with amplitude falling

rapidly to zero, the previous modes, with infinite energy, do not by themselves form a com-

plete set. Any motion possessing finite total energy may then be expanded in an integral

over the infinite modes (continuous spectrum), together with a sum over the modes of finite

energy (discrete spectrum). An analogue of the Riemann-Lebesgue lemma, applied to the

time and space dependent solutions, shows that at any point the energy in the continuous

spectrum is ultimately transferred to infinity whereas the energy in the discrete spectrum

remains trapped near the origin. Ursell presented two problems from the theory of surface

waves with a discrete as well as a continuous spectrum. The first is that of an infinite slop-

ing beach and the second describes motion round a submerged circular cylinder with the

axis normal to the walls of a deep tank. Hence he showed that if the free surface extends

to infinity in some direction there may be eigenmodes with finite total energy as well as

modes with infinite total energy. The eigenmodes corresponding to frequencies in the point

spectrum retain their energy whereas the latter radiate towards infinity.



1.3 Classes of trapped modes 16

More details on the notion of embedded eigenvalues are given in Chapter 2.

1.3 Classes of trapped modes

The classification of trapped modes is not straightforward as they depend on the governing

equations, type of eigenvalue, propagation medium, geometry and symmetries. We now

present a brief synopsis of trapped modes in waveguides and periodic media, governed

by the 2-D Helmholtz equation. We also include a brief section on trapped modes in water

waves, governed by the Laplace equation. This classification is not definitive as some water

waves problems are governed by the Helmholtz equation. For example the mathematical

formulation for an infinite array of vertical cylinders in water waves is similar to that for

one cylinder in a waveguide, with appropriate boundary conditions, and this is a classical

trapped mode problem governed by the reduced wave equation.

1.3.1 Waveguides

In an important paper by Jones (1953) the spectrum of the Laplacian is investigated when

the boundary conditions are given on surfaces which extend to infinity [37]. Infinite or

semi-infinite waveguides have a continuous spectrum with a discrete spectrum embedded

in it. Jones’ work proved the existence of trapped modes for problems governed by the

Helmholtz equation in infinite waveguides, indicating that such bound states could occur

in other contexts, e.g. acoustics and electromagnetic waves. Details of the governing equa-

tions and boundary conditions, for the trapped mode problem in acoustic, water-wave and

quantum waveguides are included in Chapter 2.

A class of geometries frequently studied is that of waveguides with simple geometric in-

dentations or protrusions out of the waveguide walls. Such configurations permit decom-

position into subdomains on which the eigenfunctions of the relevant operator are known

and connection formulae between regions are used to determine the trapped mode frequen-

cies. In this manner Evans & Linton (1991) identified the modes trapped in a guide contain-

ing a symmetrically placed rectangular rigid block extending throughout the water depth

[21]. The modes, which are antisymmetric about the centreline of the guide, may be either

symmetric or antisymmetric about a line through the middle of the block perpendicular to

the channel walls.
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Another area of research receiving interest recently is that of Neumann and Dirichlet wave-

guides with a smooth arbitrarily shaped cross-section and a single slowly varying disten-

tion. Using WKBJ theory, Biggs (2012) derived an approximate expression for the oscil-

lating and evanescent modes which can be present in the guide. Using established results

in perturbation theory, a turning point is found in the geometry such that the solution is

oscillatory in the enlarged part of the guide and decaying towards infinity. Asymptotic

expansions in the two regions are matched and a uniform expansion in Airy functions is

determined for the trapped modes [6]. Gaulter & Biggs (2012) extended this scheme to

three-dimensional waveguides with arbitrary cross-section, again with either sound soft or

sound hard boundary conditions. Countably many trapped modes, symmetric and antisym-

metric and increasing in number with the distention amplitude, are computed for guides

with circular and elliptic cross-sections [7].

Waveguides with one or more obstacles of various shapes, placed either symmetrically

with respect to the centreline or off-centre, have been studied in various contexts as the

problem has been shown to have some important applications. The configuration is equi-

valent mathematically to that of an infinite array of vertical cylinders. It was discovered

that finite counterpart structures may exhibit ‘nearly’ trapped modes, which consist of large

amplitude oscillations that appear at frequencies near those of trapped modes - see section

1.3.1.2.

The existence of a trapped mode in an infinitely long Neumann acoustic waveguide con-

taining an obstacle of a fairly general shape, symmetric about the centreline was proved by

Evans et al. [22]. The proof makes use of the Rayleigh quotient idea to characterise the

lowest eigenvalue of the Laplacian on an infinite domain. Calculations of associated eigen-

values for embedded and non-embedded trapped modes for one or more circular obstacles

followed. Callan et al (1991) established that a non-embedded trapped mode, antisymmet-

ric with respect to the centreline, is supported by a circular obstacle of any radius, placed

on the centre of a Neumann guide [10]. Above the first cut-off only one such mode exists

for a precise ratio of the radius of the obstacle to the guide width. Please note that the defin-

ition and a detailed discussion on the notion of cut-off frequency are included in Chapter 2,

section 2.2. The geometry and associated frequencies are discussed in detail in this thesis

in Chapter 4. We reproduce these results, using our numerical method, and find that as the

disc radius approaches the width of the guide two modes exist, the second is antisymmetric
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with respect to both axes of symmetry of the guide - see Chapter 4, section (4.2.1.3). For

the Dirichlet problem (soft walls) a non-embedded mode, antisymmetric with respect to the

guide centreline, can be found for circular obstacles with radii such that the ratio between

the disc and half the waveguide width is less than 0.6788. In contrast, between the first

and the second cut-off, only one embedded mode exists for a particular frequency and disc

radius. These embedded modes are unstable in that varying only one parameter destroys

them. It was shown by McIver (2001) that embedded modes do not exist for arbitrary sym-

metric bodies but if an obstacle is defined by two geometrical parameters then branches of

trapped modes may be obtained by varying both of these parameters simultaneously [51].

A family of embedded trapped modes was computed for ellipses of varying aspect ratio and

size, placed on the centreline of a Neumann waveguide. Thus the circle is just one point on

a continuous curve of shapes which support embedded modes, ranging from a plate laying

on the centreline of the guide to a plate perpendicular to the guide walls. Evans and Porter

(1997) extended these results to include any number of cylinders symmetrically placed on

the centreplane of a channel and established that there are at mostN non-embedded trapped

modes for any configuration of N cylinders, the precise number depending critically on the

geometry. We extend this result by establishing the behaviour of the modes for two discs

of either equal or different radius as they progressively approach and intersect each other,

up to the point where they are concentric. We also investigate the existence of embedded

trapped modes for two similar cylinders and find that by varying the separation distance, a

mode can be found for obstacles of continuous radius below a certain limit, depending on

the boundary condition on the waveguide walls.

For symmetric perturbations many authors employed the general same strategy: if the es-

sential spectrum of the operator is bounded away from zero, say [k2
c ,∞) then the search for

point eigenvalues is carried out in the interval (0, k2
c ). If the essential spectrum is [0,∞)

then the problem is decomposed into a symmetric and antisymmetric part and the latter

will have [k2
a,∞) as its essential spectrum for some ka specific for the antisymmetric prob-

lem. A simple variation principle applied to the linear operator in question means that any

solutions found for the antisymmetric problem below the first cut-off are also valid for the

whole problem.

This strategy is not applicable to cases without symmetry about the centre line of the guide.

Linton et al. [51] using a variety of techniques (variational methods, boundary integral
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equations, slender-body theory, modified residue calculus theory) established a host of res-

ults for two dimensional Dirichlet and Neumann waveguides, with one obstacle placed

asymmetrically with respect to the centreline. For the Dirichlet problem below the first

cut-off a geometric condition is derived to predict whether it is likely for an obstacle to

support a trapped mode. In general, the closer a body is to the centreline, the less likely it is

for a trapped mode to exist. An exception to this is a thin plate aligned with the guide walls

for which modes exist for any offset greater than zero. Trapped modes are also possible for

the Dirichlet problem between the first and second cut-offs and for the Neumann problem

below the first cut-off. For the Neumann problem between the first and second cut-offs the

problem is solved for a thin plate aligned with the guide walls and it is shown that modes

exist for discrete pairs of the two parameters which define the geometry (the size and the

position of the plate). Another notable rigorous treatment for this class of geometries is

that of Davies & Parnovski [17]. The authors established general results for existence and

non-existence of embedded eigenvalues for a pair of identical obstacles of general shape,

reflections of each other and located symmetrically with respect to the guide centreline.

In this thesis we consider some cases without symmetry with respect to the centreline of

the guide. We investigate the existence of embedded and non-embedded trapped modes in

Dirichlet and Neumann waveguides with rectangular and smooth cavities. In addition we

consider these configurations with a circular obstacle placed in the centre and off the centre

of the guide. The cases are presented in detail in Chapter 5 and full numerical results are

given in Appendix B.

The waves described by the Helmholtz equation subject to Dirichlet boundary conditions

apply to analogous electromagnetic problems. Following Ursell’s important article [73],

in 1965 Weinstein reported resonant modes in open laser systems [74] and the question

of bound states in special quantum waveguides was raised by Sakaki in 1984 [65]. The

mathematical setup is equivalent to that of electrons in open configurations described by

the steady Schrodinger equation and these studies suggested that confinement is also a

feature of the two-dimensional transport of charge carriers in ultra-fine metal and semi-

conductor devices [11]. The study of bound states in quantum guides is in general linked

to any local enlargement in a smooth waveguide. The simplest waveguide that supports

a bound state is a curved waveguide. Exner and Seba (1987) established that for a free

quantum particle on a curved planar strip with Dirichlet boundary conditions, bound states,
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with energy below the first transversal mode, exist for sufficiently fast decaying curvatures

of the guide [29]. Goldstone and Jaffe [32] proved that at least one bound state exists

for all twisted two-dimensional tubes, subject to Dirichlet boundary conditions, except in

waveguides of constant curvature, which have no bound states. A series of theoretical and

experimental studies followed for more complicated structures showing that generally, by

bending and crossing waveguides and quantum wires, bound states can be obtained with

energies below the continuous spectrum. Bound states were found in the cross-terminal

structure (the X-shaped waveguide) by Schult et al. [66] and in the T and L-shaped wave-

guide by Lin et al. [40] and Maksimov [46]. Amore et al. [3] considered the behaviour

of bound states in asymmetric cross, T- and L-shaped configurations. For different values

of the ratio of the widths Amore et al. proved the existence, or non-existence under cer-

tain conditions, of bound states in each symmetry class. Moreover, many similar quantum

wire systems have been found with bound states embedded in the continuous spectrum

[8]. A full mathematical treatment of the spectra of open quantum waveguides is contained

in chapter 16 of the book by Blank et al. [8]. Also recently Linton & Ratcliffe (2003)

using a mode-matching technique computed the bound-state energies in two and three-

dimensional coupled waveguides [45], [44]. A number of computed examples (using the

method of particular solutions) of eigenmodes of L- and zig-zag shaped finite and infinite

plates are presented together with a discussion of their implication concerning bound and

continuum states, symmetry and resonances by Trefethen & Betcke [71].

1.3.1.1 Empirical /Observed trapped modes

Trapped modes are ubiquitous in nature, appearing in oscillating systems at mesoscopic

scale in quantum waveguides, at macroscopic scale in built systems and at planetary scale

in oceans and continental shelves. They have even been reported on astrophysical scale

where for example trapped oscillating modes of pulsating white dwarf stars (pure hydrogen

atmosphere) correspond to certain eigenvalues of the frequency spectrum [75], [57]. We

present now a few specific examples of trapped modes experiments together with relevant

references.

Acoustic resonances are observed in axial flow compressors and this has led to many de-

tailed investigations into the conditions for their existence. In particular, Parker [59] ob-

served such resonances experimentally, in two-dimensional (2D) channels that contain ar-
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rays of parallel plates - see section 1.3.2. Careful experiments by C. H. Retzler∗ have

confirmed the predicted trapped mode frequencies of Callan et al. [10] for three different-

sized circular cylinders. Field observations of edge waves have been reported by Huntley

& Bowen [34]. Trapped modes played an important role in the impedance budget of the

Large Hadron Collider (LHC) [12]. Casper (1995) showed that they occur very close to the

waveguide cutoff frequency of the LHC liner and are linked to the perforations in the tube.

Cobelli et al. [16] carried out an experiment which provides evidence for the occurrence the

trapped modes around a vertical surface-piercing circular cylinder of radius a placed sym-

metrically between the parallel walls of a long but finite water waveguide of width 2d. A

wavemaker placed obliquely near the entrance of the waveguide was used to force an asym-

metric perturbation into the guide, and the free-surface deformation field was measured

using a global single-shot optical profilometric technique. Using the optical profilometric

technique the authors were able to measure the space-time evolution of the free-surface

deformation within the guide. A series of measurements showing the time evolution of

the free surface deformation, for the aspect ratio a/d = 0.5 is shown in Fig. 1.1. A har-

monic decomposition in terms of the driving angular frequency ω = 2πf of the surface

deformation, allowed the dominant linear contribution to be isolated from the higher order

time harmonics (the nonlinear part of the free surface deformation). The f = 2.5Hz is the

incident wave frequency and it corresponds to an angular frequency ω = 15.7080 rad/s.

Further separation of the free-surface linear deformation into symmetric and antisymmet-

ric parts with respect to the centerplane of the channel, led to the recovery of the detailed

structure of the trapped mode. An example showing the first linear deformation field and

its decomposition into even and odd parts is shown in Fig. 1.2. For each of the aspect

ratios considered, the spatial structure of the trapped mode was obtained and compared to

the theoretical predictions of Callan et al. [10] by the multipole expansion method.

At least one trapped mode was observed for each aspect ratio a/d below the first cut-off (of

the antisymmetric problem). A second trapped mode was found for radii a/d = 0.85, 0.90

and 0.95, a result which is also consistent with our findings for this case, see section 4.2.1.3.

∗Private communication (1996) to D. V. Evans [26]
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Figure 1.1: Cobelli et. al. [16] Experimental measurements of the instantaneous total free-surface deformation fields. The figure shows a
time-sequence of the evolution of the free surface deformation fields for a particular case of the aspect ratio explored, namely a/d = 0.5.
The incident wave frequency is f = 2.5Hz. Frames are separated by ∆t = 0.04s.
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Figure 1.2: [16]Linear part of the experimentally measured free-surface deformation for
a/d = 0.5. Panel (a) shows the linear deformation field . Panels (b) and (c) show the
symmetric and antisymmetric parts of the linear mode respectively. The position of the
obstacle within the waveguide is indicated by the black circle.

1.3.1.2 Nearly trapped modes

A related and relevant topic is that of nearly trapped modes, which are resonances with very

small radiation. Trapped modes are characterised by zero radiation. Nearly trapped modes

become important especially when considering the real implications of trapped modes.

They are generally perturbations of trapped modes and there are two main ways in which

they appear in this problem.

Firstly, some of the geometric specification for trapped modes may be idealised and not

likely to occur in physical situations. For example, an infinite or doubly infinite periodic

array of vertical cylinders is known to support pure trapped waves. In finite arrays near-
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trapping occurs in the form of large resonances which appear at the incident wave frequency

which corresponds to the trapped mode frequency for the infinite array [24]. Predicting

near-trapping is important as this phenomenon arises because of the existence of standing

waves trapped between cylinders whose energy leaks away to infinity but critically more

slowly than it is being supplied. Maniar and Newman calculated the distribution of forces

along a finite array of 100 cylinders at the ‘near-trapping’ frequency and shown that the

force on the middle cylinder is approximately 34 times higher than that on an isolated

cylinder [47]. This is obviously relevant to the wave forces on the supporting columns

of an offshore platform and undoubtedly to other industrial applications governed by the

Helmholtz equation in a domain exterior to a periodic array of obstacles.

Nearly trapped modes also appear consistently throughout our numerical and analytical in-

vestigations. We found that in general the specific set of parameters which corresponds to

an embedded trapped mode is a discrete point in a small continuous band of parameters

which all support nearly trapped modes. What this means is that a geometry which approx-

imates that required for a trapped mode will give rise to a nearly trapped mode, which in a

physical system might be indistinguishable from an exact resonant mode. We refer to Table

4.3 in Chapter 4 for the problem of a Neumann waveguide with a sound-hard disc and a

rectangular cavity of varying width w and depth h. The energy dissipation calculated for a

range of h and w sharply decreases as it approaches the geometric parameters required for

the formation of a trapped mode but we can see that slightly perturbed configurations have

low radiation loss, corresponding to a nearly trapped mode.

We also find that in embedded regimes, there are some configurations which only support

nearly trapped modes and despite intense investigation we are not able to identify a set of

parameters providing a purely trapped mode.

1.3.2 Periodic structures

Acoustic resonances were observed in axial flow compressors and this has led to many

detailed investigations into the conditions for their existence. In particular, Parker [59]

observed such resonances experimentally, in two-dimensional (2D) channels that contain

arrays of parallel plates. He subsequently made numerical calculations of the frequencies

of the oscillations [60] and this has led to them being referred to as Parker modes. Over the

next two decades, he and several of his co-workers made both theoretical and experimental
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investigations into the types of resonances that can exist and a review of the work in this

area is given by Parker and Stoneman [61]. Many more examples have been studied since

then, using both analytical and numerical techniques. Acoustic resonances are also found

when quasi-periodic boundary conditions are applied on the channel walls. In this case,

they are known as Rayleigh - Bloch waves and represent waves that propagate along, and

are confined to the vicinity of, an infinite, periodic array of rigid structures. If the grating

has periodicity 2d (in the y-direction, for example) we can search for a quasi-periodic

solution φ which satisfies

φ(x, y + 2md) = e2imβdφ(x, y), (1.2)

for somem ∈ Z and some real parameter β (the propagation or Bloch constant). For a given

β we can search for values of k for which the solution decays to zero as |x| → ∞. Standard

techniques are used to search for Rayleigh-Bloch modes below this cut-off and Porter and

Evans (1999) discovered such surface waves along a variety of periodic structures [25]. Just

as for the waveguide problem, for each given k there are a number of possible propagating

modes in the region, away from the array, and increasing by one every time one of the

cut-off lines ) k = mπ/d ± β is crossed. See section 2.2 for a discussion on the notion

of cut-off frequencies. The existence of embedded modes, in which β < k < π/d − β,

has been established by Porter and Evans for comb-like gratings [27] and for arrays of

rectangular blocks [28], the former being a special case of the latter. More theoretical

investigations into the conditions under which such modes exist for arrays of structures

have been made by Evans [20], Bonnet-Bendhia and Starling [5], Linton and McIver [41]

and McIver [50].

1.3.3 Water waves

The modes in this case are the result of interaction of water waves with a structure that is

either fixed or free to move within a fluid that extends to infinity in at least one horizontal

direction. The problem considered is the linearised frequency domain problem with the

implied e−iωt dependence. In this context trapped modes correspond to solutions for the

velocity potential φ of the Laplace equation ∇2φ = 0 subject to appropriate boundary

conditions on the surface of the trapping structure and the sea bed, a radiation condition

that requires that any disturbance created by the structure must propagate outwards and the
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linearised condition

∂φ

∂z
= Kφ (1.3)

on the undisturbed free surface [43], [52]. Here z is the vertical coordinate and K = ω2/g.

The main mathematical distinction between the water-wave and the waveguide problem is

that the eigenvalue parameterK appears in the boundary condition (1.3) rather than the field

equation. The first example of decaying solutions to this problem was discovered by Stokes

[70] and consists of waves which are periodic in one direction, travel in the long-shore

direction over a uniformly sloping beach and decay to zero in the seaward direction. Such

trapped modes are called edge waves and they have been the subject of intense research over

the past 50 years. A discussion of mathematical results obtained for edge waves, modes

trapped by submerged obstacles and surface piercing structures, is provided by Kuznetsov

et al. [39] and a review by Linton & McIver [43].

In the last fifteen years, the study of trapped modes has developed and diversified widely.

For more information regarding recent developments in the study of trapped modes, we

refer to the comprehensive review given by Linton & McIver [43]. Other notable trapped

modes results from various domains of physics, such as quantum mechanics, elasticity,

acoustics are those of Zernov et al. [76], Pagneux [58] and Postnova & Craster (2008)

[63].

1.3.4 Elastic plates

A well known example of an elastic trapped mode is the so-called edge resonance, when

the elastic energy is localized near the edge of a semi-infinite stress-free plate. The phe-

nomenon was first observed by Shaw (1956) in his experiments on vibration of circular

discs [67]. When excited at a particular frequency, vibration tended to localize near the

disc edge. However, the observed vibration frequency lay below the first cut-off frequency

of the corresponding infinite layer and could not therefore be related to thickness vibration

modes [38]. A first explanation was provided by Mindlin & Onoe in 1957 [54]. They noted

that at every particular frequency, in addition to a finite number of propagating Rayleigh -

Lamb modes (modes along a solid plate, constrained by the elastic properties of the sur-

face that guide them), an unbounded plate possesses an infinite family of non-propagating
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modes associated with complex wavenumbers. These exponentially decaying modes form

an infinite system of standing waves, which can be used to satisfy the boundary conditions

at the edge of a semi-infinite plate. It has recently been shown that trapped modes exist in

elastic waveguides that have either curvature or width variations [33], [38] and [62].

The solution for the elastic problem in 2-D waveguides, the displacement field, is presented

in terms of two scalar potentials that completely determine the displacement components.

Each of these potentials satisfies the Helmholtz equations.

1.4 Overview of thesis

The literature on trapped modes is extensive, however establishing whether a given arbit-

rary geometry can support trapped modes is extremely difficult and requires a large suite

of mathematical methods. The aim of this research is to develop a flexible, accurate and

reliable method of investigating trapped modes for complex configurations.

In this thesis we study a few examples of trapped modes of the Helmholtz equation in

waveguides, with either Dirichlet or Neumann boundary conditions. The trapping features

are either cavities, smooth or rectangular, sound hard circular obstacles on the centre of the

guide or a combination of both.

In Chapter One - Introduction, trapped modes as a physical phenomenon and as a mathem-

atical object are introduced. The development of the mathematical context and of associ-

ated notions, including non-uniqueness and the energy associated with this type of solution

are presented, in a quasi-chronological manner. A brief review of the main classes of

trapped modes, areas of research and relevant results is given in an attempt to cover some

main points without being exhaustive.

In Chapter Two, details of the governing equations and associated notions relevant to the

study of trapped modes, cut off frequencies and embedded eigenvalues of the problem, are

presented.

In Chapter Three, the mathematical model used and adapted for this problem is discussed.

Under the usual assumptions of potential theory, the solution is derived in terms of a bound-

ary integral equation. We also present the Boundary Element Method (BEM) written in

Matlab, in order to obtain approximate numerical solutions. The program identifies the
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eigenmodes which depend on a finite set of parameters including wave frequency and the

domain configuration.

In Chapter Four, to validate our approach and test the accuracy of the program, test cases

are considered and compared with known analytical solutions obtained by other authors us-

ing different methods (modified multipole potentials, finite element and perfectly matched

layer methods). We present details of five such cases alongside with published results.

In Chapter Five, additional trapped modes found using our BEM program are presented

in detail. The findings extend results for some geometries already studied, for higher fre-

quency bands, and for more complex, new configurations.

In Chapter Six, guided by the numerical results obtained we carry out a detailed invest-

igation of one set of results (antisymmetric modes in Dirichlet waveguide with a sound

hard disc on the centreline) and discuss characteristics which are common to all the modes.

We superpose simple planewaves travelling in diverse directions to build a more elabor-

ate approximate solution, which satisfies certain conditions required for a trapped mode.

Our approach is fairly flexible so that the general procedure is independent of the shape of

the trapping obstacle and could be adapted to other geometries. We apply this method to

the case of a disc on the centreline of an infinite Dirichlet acoustic waveguide and obtain

a simple mathematical approximation of a mode which satisfies a set of criteria which is

also satisfied by the corresponding trapped mode. Asymptotically, the solution obtained is

similar to a nearly trapped mode, which is a perturbation of a genuine trapped mode.

Finally, in Chapter Seven the main results of the thesis are summarised annd discussed and

proposed extensions to the research are described. We also included a short discussion on

practical applications of trapped modes.

Appendix A and B contain details of trapped modes for two identical discs and for two disc

of different radii, placed on the centreline of either a Dirichlet or Neumann waveguide.

Appendix C presents mathematical details of solving the disc integral derived in Chapter 6.

Appendix D contains the mathematical details of approximating the waveguide integral

derived in Chapter 6.

Appendix E contains the code for the BEM program used to identify trapped mode in an
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infinite Dirichlet acoustic waveguide with a rectangular cavity and a sound hard disc on its

centre.
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Chapter 2

Basic Concepts

2.1 Formulation of the problem for infinite waveguides

Throughout the thesis we will refer to the trapped mode problem in terms of spectral ter-

minology applied to acoustic problems, but a comparison can be made with associated

trapped mode problems in water-waves and in quantum waveguides.

The domain is an infinite waveguide, W , consisting of a pair of two-dimensional parallel

walls (Γ±), separated by a distance 2d. The walls are at y = ±d and the guide is parallel to

the x-axis. Cartesian axes are chosen so that both x and y axes coincide with the horizontal

and vertical guide centerlines respectively. Depending on the case to be studied, cavities

or circular obstacles will be added to the guide to act as trapping features. In those cases

where one or more discs are added to the domain, the assumption is that they are sound

hard discs, i.e. the Neumann condition applies on their boundaries.

2.1.1 Acoustic waveguides

We consider the propagation of acoustic waves in two dimensions, described by the linear

wave equation:

∇2U =
1

c2

∂2U

∂t2
. (2.1)

where c is the speed of sound in still air and U = U(x, t) is the velocity potential. If the

motion is assumed to be time-harmonic, with ω the angular frequency, the function U may
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be written in the form:

U(x, t) = φ(x)e−iωt. (2.2)

Here φ is the reduced velocity potential which is only space dependent. With the elimina-

tion of the time coordinate, equation (2.1) reduces to the Helmholtz equation (2.4) and we

have the dispersion relation

k2 =
ω2

c2
. (2.3)

Boundary conditions on Γ± are either Neumann or Dirichlet, depending on the nature of

the guide. We now write explicitly the Neumann (N) and the Dirichlet (D) boundary value

problems for the potential φ(x, y), in acoustic context. Let D be a trapping feature placed

inside the guide and bounded away from infinity with boundary ∂D. The symbol ∂/∂n

refers to the directional derivative considered at a point on a boundary, along the normal

vector to that surface at that point.

(∇2 + k2)φ = 0 for (x, y) ∈ W\D (2.4)

lim
x→±∞

[
φ∓ ik∂φ

∂x

]
= 0 for |y| ≤ d (2.5)

∂φ

∂n
= 0 for (x, y) ∈ ∂D (2.6)

Dirichlet problem: φ = 0 for (x, y) ∈ Γ± or (2.7)

Neumann problem:
∂φ

∂y
= 0 for (x, y) ∈ Γ± (2.8)

A number λ = k2 is an eigenvalue of either the Dirichlet or Neumann problem if it cor-

responds to a non-trivial solution φ which satisfies either eqns. (2.4) - (2.7) or eqns. (2.4)

- (2.6) and (2.8) respectively. In terms of spectral theory of operators, the eigenvalues k2

make up the point spectrum of the problem. Potentials relating to the values of k2 in the

continuous spectrum are known as propagating modes.

The condition (2.6) is the Sommerfeld radiation condition which prohibits any incoming

waves from infinity. This condition leads to the following decay condition for a trapped

mode:

φ→ 0 for |x| → ∞, |y| ≤ d. (2.9)
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To show the similarity between the two expressions, (2.6) and (2.9) consider the waveguide

W , bounded at infinity by the segments y = ±d, x = ±L,L → ∞. Let φR and φI be the

real and the imaginary parts of the potential φ respectively. Assuming that φ is twice

continuously differentiable in W we apply Green’s second identity as follows:∫
W

φR∇2φI − φI ∇2φR dx =

∫
∂W

∂φI
∂n

φR −
∂φR
∂n

φI ds. (2.10)

Both the real and imaginary parts of φ must satisfy the Helmholtz equation hence the left

side of (2.10) is zero. Given either Dirichlet or Neumann boundary conditions for a prob-

lem, the terms in the right side of (2.10) are zero on Γ±. We apply (2.6) to the real and

imaginary parts of φ and we get the following relations

∂φR
∂x
± kφI = 0,

∂φI
∂x
∓ kφR = 0, (2.11)

for a point in W at x → ±∞ respectively. There are two remaining contributions to the

integral from the boundary segments y = ±d, x = ±L,L → ∞. Using (2.11) for each

respective case, the contributions are

k

∫ d

−d

[
φ2
R(x, y) + φ2

I(x, y)
]
dy = 0, x = ±L,L→∞. (2.12)

This is possible only if φR → 0, φI → 0 as x→ ±∞, as stated in (2.9).

2.1.2 Quantum waveguides

The same set of equations can also be used to study bound states in mesoscopic semicon-

ductor structures. In this context trapped modes are known as bound states in quantum

wires or quantum waveguides [11], [29]. The narrow two dimensional quantum wave-

guides are composed of tiny strips of very pure semiconductor material, that allow elec-

trons to propagate but require the wave function to vanish on the surface. If in the Sch-

rodinger equation, describing a system with piecewise constant potential V , we denote

k2 = 2mE/~2, where m is the mass of an electron, E is its total energy and ~ is the re-

duced Planck constant, we reduce the problem to finding trapped modes of the Helmholtz
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equation, subject to the Dirichlet boundary condition.

2.1.3 Water waveguides

The problems of acoustic resonances in an infinite waveguide with circular 2-D obstacles

and that of trapped modes in a 3-D long narrow channel with standing cylinders are identical,

from a mathematical viewpoint [43]. Under the usual assumptions of linear water-wave

theory, the problem is formulated as follows: the origin is placed in the undisturbed free

surface z = 0 midway between the parallel channel walls situated at y = ±d. The z− axis

is measured vertically upwards with the channel bottom at z = −h, with h constant. Let a

three-dimensional fluid flow be characterised by the fluid velocity u such that

u = [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)], (2.13)

and suppose that the fluid is irrotational, so that there exists a velocity potential Φ(x, y, z, t),

which we assume has a separable depth dependence so that

Φ(x, y, z, t) = Re{φ(x, y)f(z)e−iωt}, (2.14)

The fluid motion arises from a deformation of the water surface. We denote the equation

of this surface

z = η(x, t) (2.15)

By Acheson, the linearised kinematic condition on the free surface [2] is

∂Φ

∂z
=
∂η

∂t
on z = 0. (2.16)

Also, from the Bernoulli’s linearised equation for unsteady irrotational flow, the linearised

condition on the free surface [2], can be derived as

∂Φ

∂t
+ gη = 0 on z = 0. (2.17)
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A fixed vertical cylinder is placed on the centreplane of the channel and extends uniformly

throughout the depth. If we assume a travelling wave solution, the free surface is

η = Re{φ(x, y)e−iωt}, (2.18)

where ω is the angular frequency. If the fluid is bounded by a rigid plane on the bottom of

the channel so that

∂Φ

∂z
= 0 at z = −h (2.19)

By virtue of the incompressibility equation ∇ · u = 0, Φ satisfies the Laplace’s equation

and this gives for f(z)

f ′′φ+∇2φf = 0, (2.20)

Let k2 be the separation constant for the (2.20) above. Then φ satisfies the Helmholtz

equation (2.4). We also can write the general solution for

f(z) = Cekz +De−kz, (2.21)

and applying the condition on the bottom of the guide (2.19) we obtain

Φ = Re{φ(x, y)[C(ekz − e−k(2h+z))]e−iωt}, (2.22)

Substituting this form of Φ into (2.16) and (2.17), keeping in mind that they are valid at

z = 0, we have

Ck(1 + e−2kh) = −iω, C(1− e−2kh)(−iω) + g = 0. (2.23)

and thus we obtain the dispersion relation for this problem

ω2 = gk tanh(kh). (2.24)

A similar formulation for the deep water problem results in the dispersion relation

ω2 = gk, (2.25)
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with the phase velocity

c2 =
g

k
. (2.26)

Thus we found that the time independent potential φ satisfies the Helmholtz equation (2.4)

and the problem has again been reduced to finding those solutions which satisfy the re-

quired boundary conditions, including condition (2.9). The depth dependence has been

removed and the wavenumber k is now the positive root of the dispersion relation (2.24).

Trapped modes in channels with one or more cylinders on the centreline, have already

been extensively studied, [22], [10], [23], [47], [43] and references therein, using different

techniques. These studies are motivated by the fact that it is possible to remove the channel

walls and regard the solutions as oscillations between adjacent cylinders in an infinite row.

The Neumann modes then have an antinode at each mid-plane between cylinders while the

Dirichlet modes a node. It is important to predict the trapped mode frequencies in view

of the fact that such periodic arrays have practical applications, for example to floating

bridges, floating airports, off-shore oil platforms and other structures supported by bottom

mounted cylinders [47].

2.2 Cut-off frequencies

One of the characteristic properties of waveguides is the occurrence of cut-off frequencies.

Studies of trapped modes are associated with cut-off frequencies, which partition the fre-

quency domain, depending on the number of associated travelling modes. In physics and

electrical engineering, a cutoff frequency is a boundary in a system’s frequency response

at which energy flowing through the system is reduced (attenuated or reflected) rather than

passing through. The cut-off frequency of an acoustic, or electromagnetic, waveguide is

the lowest frequency which allows a mode to propagate.

In our problem cut-off values are mainly used to differentiate between two important types

of trapped mode namely embedded and non-embedded, defined in section (2.3). They

provide a delineation between the frequency bands to be investigated.

The cut-off frequencies for our problem are found by solving the Helmholtz equation in

an unobstructed waveguide. Any exciting frequency lower than the cut-off frequency will
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attenuate, rather than propagate. To illustrate this we consider the Helmholtz equation in

a Dirichlet guide. If we seek y-antisymmetric solutions in an unobstructed channel, the

potential φ should be similar to a superposition of solutions of the form:

φ ≈ exp

{
i

[
k2 −

(nπ
d

)2
] 1

2

x

}
sin
(nπy

d

)
(2.27)

where n is any positive integer. If we are looking for y-symmetric solutions we just replace

sin(nπy/d) with cos[(2n− 1)πy/2d].

The first cut-off for the Dirichlet anti-symmetric case is k1 = π/d > 0 , and is so defined

because for k in the range 0 < k < k1 = π
d

, the corresponding solution decays exponen-

tially; propagation down the guide is not possible, hence any mode for this k is trapped.

Subsequent cut-off frequencies, integer multiples of the first one, kn = nπ/d, n = 1, 2 . . . ,

act similarly, as barriers to all the modes with frequencies below them. On the other hand

for a frequency k such that k1 < k < k2 the x component of the solution in (4.15) for

n = 1 propagates rather than decays and we say that a travelling mode is present in that

frequency range. For a given frequency k with k ≤ kn+1 there are n y-antisymmetric trav-

elling modes present which we need to bear in mind when seeking trapped modes. For the

Neumann problem, a solution of the form eikx, i.e. with n = 0, satisfies the boundary con-

ditions for all values of k hence zero is the first cutoff for this case. For a given frequency

k < kn there are n y-antisymmetric travelling modes. It is much more difficult to establish

the existence of trapped modes in regions of parameter space which permit energy to travel

away from the trapping structure.

2.3 Embedded trapped modes

In this section we discuss the notion of an embedded eigenvalue, which appears in the

context of spectral analysis of an operator, and establish the connection with the trapped

mode problem.

Trapped modes can be classified as embedded or non-embedded, depending on whether

their frequency is either above or below the first cut-off respectively. It is important to

distinguish between the two types as this determines the stability of the modes. The non-

embedded modes are stable in the sense that if a geometric parameter is modified, the



Chapter 2. Basic Concepts 37

mode persists up to some limit, with only a slight variation of the frequency. In contrast,

embedded modes may only exist for a specific combination of the geometric parameters

and are destroyed by an infinitesimal perturbation of the configuration. This is because

they exist in regions of the k- space where travelling modes are present. Therefore for each

additional propagating mode that is introduced, an extra geometric parameter is required

to satisfy side conditions, which force the amplitude of these travelling modes to zero. A

slight change in geometry modifies the relation between the coefficients of these modes

and the resulting mode is a combination of an exponentially decaying mode and travelling

modes. This means that often, a given configuration may not support any embedded modes

at any frequency or there may be only a few discrete sets of geometric parameters which

support such a mode.

An important physical aspect of embedded modes is that since they exist at frequencies

which also support travelling modes they can be excited by appropriate external forcing.

In contrast, non-embedded trapped modes can only be excited by internal, local pulsating

sources as they can not be accessed via any propagating waves. Although the definition of

trapped modes assumes total trapping of energy in practice some radiation occurs, but at a

slower rate than it is being put into the system, and this allows for a large concentration of

energy around the trapping structure. Depending on the geometry, these resonances lead

to increase of forces in response of the incident wavefield which correspond to the trapped

modes. For example, Neumann and Maniar (1996) analysed the pressure forces on a finite

array of bottom-mounted, identical, equally spaced circular cylinders [47] and established

that the force on the middle cylinder at the centre of an array of 100 cylinders is cca. 35

times larger than that on an isolated cylinder. Evans and Porter [26] showed that the peak

force on an arrangement of four standing cylinders placed at the corner of a square is 54

times higher than that on an isolated cylinder, under the effect of an incoming wave at the

trapped mode frequency.

Formally, an eigenvalue λ of a differential operator L is called an embedded eigenvalue

if it is a point spectrum in the continuous spectrum of L. A point spectrum is a complex

value λ such that λI −L does not have an inverse. The equation (λI −L)y = 0 then has a

non trivial solution called an eigensolution and λ is an eigenvalue of L. We shall say that a

number λ is an eigenvalue of either the Dirichlet (D) or the Neumann (N) boundary value

problems, in other words, λ belongs to the point spectrum of the problem (D) or (N) if for
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this λ there exists a non-trivial potential φ which satisfies (2.4) - (2.7) or (2.4) - (2.6) and

(2.8) respectively.

We will refer to the notions of point and continuous spectra of the problem, rather than of

the operator, as defined by Evans et al. [22] as follows:

A point λ belongs to the continuous spectrum of the problem if for this value there exists a

non-trivial potential φ , which satisfies the Neumann or Dirichlet condition above with the

exception of φ → 0 as |x| → ∞ . The solution φ may propagate or grow algebraically,

∼ |x|n, n ∈ Z, but not exponentially [22]. The potentials corresponding to frequencies in

the continuous spectrum are eigenfunctions of the operator but not solutions of the full Di-

richlet or Neumann problems. As they are propagating modes rather than trapped modes,

they do not satisfy the decay condition (2.9). However, consideration of such non-decaying

solutions is important for the understanding of our problems in terms of spectral theory

of operators. From the physical point of view, modes corresponding to point eigenvalues

neither receive from nor radiate energy to x = ±∞ whereas radiation occurs in modes

corresponding to points of the continuous spectrum. From a computational perspective the

distinction is important because embedded trapped modes require higher detection accur-

acy than non-embedded modes as an eigenvalue in the continuous spectrum of an operator

disappears under very small perturbations.

The notions of embedded eigenvalues and cut-off frequencies are connected as follows:

the first-cut off is the square root of the lower bound of the essential spectrum (i.e. the

continuous spectrum plus any embedded eigenvalue) of the problem. If the lower bound of

the continuous spectrum is not zero and if an eigenvalue of the problem can be found below

the first cut-off then the corresponding trapped mode is non-embedded. All other trapped

modes, corresponding to point spectrum eigenvalues, above the first cut-off, are embedded.

The continuous spectrum of the Neumann problem is the semi-interval [0,+∞) [21], [37].

If the problem is symmetric about the centreline of the guide then it can be decomposed into

its symmetric and anti-symmetric parts and the latter will have [(π/2d)2,∞) as its essential

spectrum [22]. The Neumann problem then has an additional Dirichlet condition on the

centre-plane, φ = 0. With this modification the problem reduces to finding eigenvalues in

the range 0 < k < π/2d . This is a valid approach because if λ is an eigenvalue of the

anti-symmetric problem then it is also an eigenvalue to the full problem. Also, since the
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continuous spectrum of the problem occupies the entire non-negative half line [0,∞) , any

eigenvalues that are found are embedded in the continuous spectrum. A rigorous proof for

the existence of a minimum eigenvalue for the Neumann anti-symmetric problem an infinite

waveguide with an obstruction of a fairly general shape, symmetric about the centreline was

provided by Evans et al. [22].

The first cut-off for the full Dirichlet problem, without any symmetry considerations, is

π/2d. However, if the trapped modes sought are anti-symmetric about the centreline of

the guide then the continuous spectrum of the problem is the semi-interval [π2,+∞). Ei-

genvalues below this range correspond to non-embedded trapped modes. It follows that

an eigenvalue λ regarded as an eigenvalue of the full Dirichlet or especially the Neumann

boundary value problem could be seen as embedded in the continuous spectrum but when

regarded as an eigenvalue of the anti-symmetric problem could be below the first cut-off

value, hence non-embedded. This convention which places the eigenvalues outside the em-

bedded regime, is not applicable to cases where the geometry is not symmetric about the

centreline of the guide as the problem can not be decomposed into two parts, symmetric

and antisymmetric.

Aslanyan et. al [4] showed that if the symmetry is broken then real eigenvalues transform

into complex resonances of so called leaky modes with radiation losses. Evans et al. (1993)

proved the existence of trapped modes for an off-centre plate of finite length placed parallel

to the waveguide walls, showing that symmetry is not a necessary requirement for the

existence of trapped modes [19]. Linton et al. (2001) considered a non-symmetric obstacle

as part of an infinite array of obstacles symmetric about the sound-hard waveguide wall

or antisymmetric about the soft wall and were able to compute embedded trapped modes

above the first cut-off frequency [42].
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Chapter 3

Investigation method

We use basic concepts of potential theory to derive an integral equation representation of the

problem. Integral equation methods are often used to solve boundary-value problems. The

essential feature and the main advantage of the method is that it transfers a problem over

the whole domain of interest to one involving only its boundary, so that the dimension over

which computation is carried out is reduced by one. We formulate the problem indirectly,

starting from Green’s second identity and regarding the potential function and its normal

derivative on the domain boundary as main variables. We develop a numerical method

which we use to identify any existing trapped modes.

The domain W is two dimensional, bounded, with boundary ∂W . We denote a point in the

field x = (x, y) ∈ W and a source point x′ = (x′, y′) ∈ W . The fundamental solution

G(x,x′) has a singularity at x = x′. Let L be the Helmholtz operator∇2 +k2 and consider

the following integral over the whole domain W∫
W

[Lφ(x)G(x,x′)− LG(x,x′)φ(x)] dx (3.1)

We exclude the source point from the domain W by removal of a disc Dε , of radius ε→ 0,

centered at x′ hence the integral in (3.1 above) is equal to

lim
ε→0

{∫
W\Dε

[Lφ(x)G(x,x′)− LG(x,x′)φ(x)] dx

}
(3.2)

On W\Dε, both Lφ and LG are zero. Since we removed the singularity at x′, both φ and G
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are differentiable and we can Green’s second identity on W\Dε. Eqn. (3.2) can be written

lim
ε→0

{∫
W\Dε

[
∇2φ(x)G(x,x′)−∇2G(x,x′)φ(x)

]
dx

}
=

∫
Γ±

[
∂φ

∂n
(x)G(x,x′)− ∂G

∂n
(x,x′)φ(x)

]
ds(x)

+ lim
ε→0

{∫
∂Dε

[
∂φ

∂n
(x)G(x,x′)− ∂G

∂n
(x,x′)φ(x)

]
ds(x)

}
. (3.3)

Adding and subtracting φ(x′) · ∂G
∂n

(x,x′) from the integrand in expression (3.3), we obtain

lim
ε→0

{∫
∂Dε

[φ(x′)− φ(x)]
∂G

∂n
(x,x′)− ∂φ

∂n
(x)G(x,x′) ds(x)

}
−φ(x′)

∫
∂Dε

∂G

∂n
(x,x′) ds(x). (3.4)

As ε → 0, the potential and its derivative approaching the source point are such that

φ(x′)→ φ(x) and
∫
∂Dε

∂φ
∂n

(x)G(x,x′) ds(x)→ 0. The only non-zero term left to estimate

in equation (3.4) is −φ(x′)
∫
∂Dε

∂G
∂n

(x,x′)ds(x). In two dimensions the fundamental free-

space Green function is the Hankel function of zeroth order, of either first or second kind,

depending on the radiation condition we impose. For our problem we only allow outgoing

waves, towards infinity, therefore the suitable Green function is the Hankel function of first

kind.

G(x,x′) =
−i
4
H1

0 (k|x− x′|) =
−i
4
H1

0 (kr), r = |x− x′|. (3.5)

Its normal derivative is:

∂G

∂n
(x,x′) =

−i
4

∂H1
0 (kr)

∂n
=
ikH1

1 (kr)

4

∂r

∂n
, (3.6)

and when r → 0 , according to Abramovitz and Stegun [1], the Hankel function is approx-

imately

H1
1 (kr) ≈ 2

iπkr
. (3.7)

Using polar coordinates, integral (3.4) reduces to:

−φ(x′)

{∫
Dε

∂G

∂n
(x,x′)ds(x)

}
= −φ(x′)

{
1

2π

∫ 2π

0

dθ

}
= −φ(x′). (3.8)



Chapter 3. Investigation method 42

Combining equations (3.4 - 3.8) we get an expression for the potential φ(x′), in terms of

integrals defined on the domain boundary

φ(x′) =

∫
∂W

[
φ(x)

∂G(x,x′)

∂n
−G(x,x′)

∂φ(x)

∂n

]
ds(x). (3.9)

For any point x′ on the boundary ∂W , the boundary integral equation (3.9) can be general-

ised in the form

c(x′)φ(x′) =

∫
∂W

[
φ(x)

∂G(x,x′)

∂n
−G(x,x′)

∂φ(x)

∂n

]
ds(x), (3.10)

since the previous idea of excluding the source point is still valid, the only change being on

the upper limit of the integrals in (3.8) which is now the angle α subtended at point x′. The

free coefficient c(x′) is then given by:

c(x′) =
α

2π
, 0 ≤ c(x′) ≤ 1. (3.11)

Thus we converted the domain integrals to an expression for φ involving only boundary

integrals.

3.0.1 Boundary element method

We now develop a general numerical method which we apply to the solution obtained in

(3.10) and can be used to solve problems with arbitrary geometry and boundary conditions.

The Boundary element method (BEM) is a well-known method of solving boundary integ-

ral equations, based on a discretisation procedure. First we approximate the boundary by

dividing it into N small boundary elements Sm such that:

N∑
m=1

Sm ≈ ∂D. (3.12)

Taking this into account, equation (3.10) can be written in the form:

c(x′)φ(x′) =
N∑
m=1

{∫
Sm

[
φ(x)

∂G(x,x′)

∂n
−G(x,x′)

∂φ(x)

∂n

]
ds(x)

}
, x′ ∈ Sm, (3.13)
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so that the integration along the entire boundary has been reduced to a summation of in-

tegrals over each boundary element. Thus we can, within a certain level of approximation,

model a general boundary using polygons.

At each point on the boundary either φ or ∂φ/∂n is known from boundary conditions

but not both. Along each boundary element Sm we write the unknown φ or ∂φ/∂n, as a

linear function of their values taken at the end points. As the potential (or its derivative) is

considered at each of these points, the singularity of the Green function dictates that they

are excluded from the domain, one by one, following the procedure outlined in section 3,

hence they are referred to as source points. We introduce the fairly standard notation: let

φp be the potential and qp = ∂φ/∂n the flux at the source point p. Consider the boundary

element Smwith extremities, x′m = (xm, ym) and x′m+1 = (xm+1, ym+1) respectively. We

introduce a local coordinate −1 ≤ ξ ≤ 1 along each boundary element so that general

Cartesian coordinates (x, y) become:

x =
1− ξ

2
xm +

1 + ξ

2
xm+1,

y =
1− ξ

2
ym +

1 + ξ

2
ym+1, 1 ≤ m ≤ N. (3.14)

On the boundary element Sm either φm or qm and φm+1 or qm+1, at its extremities, are

unknown. We assume that these quantities, potential and flux, vary linearly between the

endpoints so that at a general location x ∈ Sm we can write:

φ(x) =
1− ξ

2
φm +

1 + ξ

2
φm+1, x ∈ Sm,

and

q(x) =
1− ξ

2
qm +

1 + ξ

2
qm+1, x ∈ Sm. (3.15)

Let lm be the length of each boundary element Sm. Then in local coordinate we have that:

ds =

[(
dx

dξ

)2

+

(
dy

dξ

)2
] 1

2

dξ =
lm
2
dξ. (3.16)

For each node p = 1, . . . , N , we apply equation (3.13) and obtain N equations of the form:
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cpφp =
N∑
j=1

{∫
Sm

[(
1− ξ

2
φm +

1 + ξ

2
φm+1

)
∂

∂n

(
−iH1

0 (kr)

4

)∣∣∣∣
r=rpm

−
(

1− ξ
2

qm +
1 + ξ

2
qm+1

) (
−iH1

0 (krpm)

4

)]
lm
2
dξ

}
, (3.17)

where

rpm = rpm(ξ) = |xp − x|, x ∈ Sm. (3.18)

The derivative of the Green function, with respect to the normal alongside the boundary

element Sm is of the form:

∂

∂n

[
−i
4
H1

0 (kr)

]
r=rpm

=
ik

4
H1

1 (krpm)
∂r

∂n

∣∣∣∣
r=rpm

=
ik

4
H1

1 (krpm)
dpm
lmrpm

, (3.19)

The quantities dij depend on the coordinates of the nodal point i, (xi, yi) and the extremities

of the boundary element Sj , i.e. the points (xj, yj) and (xj+1, yj+1), as follows:

dpm = d [xmym+1 − xm+1ym − xp(ym+1 − ym) + yp(xm+1 − xm)] . (3.20)

The coefficient d = ±1, depending on the orientation of the contour under integration. We

denote

Âpm =
ikdpm

16

∫
Sm

(1− ξ)H
1
1 (krpm)

r
dξ,

B̂pm =
ikdpm

16

∫
Sm

(1 + ξ)
H1

1 (krpm)

r
dξ,

Cpm =
−ilm

16

∫
Sm

(1− ξ)H1
0 (krpm)dξ,

Dpm =
−ilm

16

∫
Sm

(1 + ξ)H1
0 (krpm)dξ. (3.21)

and

Apm = Âpm − cpδpm,

Bpm = B̂pm − cpδpm. (3.22)
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Here δpm is the Kronecker delta symbol. The cp terms result from integrating (3.18) around

each source point and are given by the formula in (3.11). Now we re-write equation (3.17)

in the form:

N∑
m=1

(Apmφm +Bpmφm+1) =
N∑
m=1

(Cpmqm +Dpmqm+1) , (3.23)

for all nodal points p = 1, . . . , N . Once the boundary conditions are applied we have a

system of N equations in N unknowns, which are either φm or qm, at each nodal point

m = 1, . . . , N . The system is written in matrix form as:

MX = 0. (3.24)

where the matrix M = M(k) is obtained by combining the entries in matrices A,B,C and

D and X is a vector storing the unknowns. Trapped modes, i.e. non-unique, non-trivial

solutions of the problem correspond to those values of k where the Laplacian operator has

an eigenvalue. M is a complex matrix, which we can write explicitely as

M = MR + iMI . (3.25)

The physical problem must have real solutions for φ meaning that the eigenvector X must

be real or have a small imaginary part. Hence solutions to our problem correspond to those

frequencies for which both the real and the imaginary parts of the matrixM(k) are singular

|MR| = 0 & |MI | = 0. (3.26)

We use these two conditions in our program to verify the accuracy of the calculations.

3.0.2 Singularities

The coefficientsApm, Bpm, Cpm andDpm, for p 6= j are evaluated using standard numerical

integrations schemes. For those cases where the source point is on the element under

integration (p = m, or p = m − 1), due to the singularity of the fundamental solution we

have to carry out a more accurate integration. The Hankel function of zeroth order has a

singularity of the form ln(kr/2) which poses a problem as we approach the source point

(p), (r → 0). To solve this, when evaluating the coefficients App, App−1, Bpp, Bpp−1, which
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involve integration on elements collinear with node (p), we subtract the singularity and

resolve it analytically. The integral left after subtracting the singularity is then evaluated

using standard numerical methods (we used the Simpson composite method).

The coefficients Cpm, Cpp−1, Dpp, Dpp−1 , that involve evaluation of ∂G/∂n on boundary

elements that are colinear with the source located at xp , are all zero since on elements Sp
and Sp−1 the radial unit vector r̂ and the normal n̂ to the boundary element are perpendic-

ular to each other, therefore we have that ∂r/∂n = 0.

3.0.3 Trapped-mode solutions

To detect trapped modes for a particular configuration, in a particular frequency range, we

look for non-trivial solutions of eqn. (3.24). The necessary condition for the existence of

such non-trivial solutions translates into finding values of k which satisfy equations (3.26).

The trapped mode problem is formulated for an infinite domain. To carry out computations

on a finite domain we must impose conditions which mimic the infinity at the point where

we truncate the waveguide - for details see eq. (4.9) in section 4.2. The truncation of the

domain leads to the appearance of spurious eigenvalues which appear at values of k which

although satisfy eqn. (4.9) they do not satisfy the trapped mode problem. Plotting the

determinant of the matrix M against values of k, for increasing number of discretisation

points N , can help differentiate between pure, genuine trapped modes and fictitious solu-

tions. A typical situation is that (3.26) may have a solution for a certainN but if we shorten

the length of the boundary element, the solution will disappear. Another typical situation

is that with each increase in N the curve det[M(k)] will cross the axis at different points,

at distances large enough to suggest that they will fail to converge to a limit.

Below we illustrate these situations for the case of a cavity (of depth h = 2.2 and width

w = 5.8) in a Dirichlet waveguide (of width 2d and for ease of notation let d = 1) . This

geometry has two trapped modes, at two different frequencies, k1 ≈ 2.7361 = 0.8709π and

k2 ≈ 3.03302 = 0.9654π. In Fig. 3.1 we show plots of the det[MR(k)] for k in the vicinity

of the real trapped modes. The plots are drawn for two discretisation rates, N = 280

(boundary element = 0.2) and N = 560 (boundary element = 0.1). In each plot we show

the real trapped mode and a spurious eigenvalue. In the first plot we see a variation of cca.

0.005 between the solutions given by the two discretisations, which in our experience is
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too large to consider it a candidate for a genuine trapped mode. A true eigenvalue also

varies with the number of points used to discretise the boundary, however the change is of

order 10−6, which is consistent with errors predicted by the Simpson rule which we use

to estimate the entries in matrix M . The second plot illustrates the case where with the

doubling of the number of discretisation points the spurious mode disappears altogether.

Once a genuine eigenvalue of the problem is identified, the values of either φ or q = ∂φ
∂n

around the domain boundary are given by the eigenvector of M corresponding to the zero

matrix eigenvalue. The system (3.24) is solved and the values of φ and q obtained along

the boundary, are substituted back in equation (3.13), with position coefficient c(x′) = 1,

to calculate the potential φ at points inside the domain W .

We implemented this numerical method using Matlab software. The flexible design of the

program allows analysis of any two dimensional geometry, for which coordinates can be

calculated, and can be applied to both internal and external problems.

More details of how the boundary element program is used to detect trapped modes, includ-

ing the methods we use to differentiate between pure, genuine trapped modes and fictitious

solutions are included in Chapter 4, section 4.2.1.1.
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Figure 3.1: Plots of the det[MR(k)] variation with kd, for different discretisation rates, help
separate genuine trapped modes from spurious eigenvalues.
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Chapter 4

Test Cases

Trapped modes correspond to discrete eigenvalues in the spectrum of an operator. Some

of these values are unstable and can easily be destroyed by any small perturbation to the

geometry. To ensure that our method yields correct results we initially applied it to cases

where solutions are either already known or can be calculated analytically. In this chapter

we present some known trapped modes we replicated with our program in order to confirm

our method’s validity. New results, where we extended the range of frequencies investig-

ated for geometries already studied and for new configurations are presented in Chapter 5.

To confirm the accuracy of the program we also checked the convergence rate of frequen-

cies to known results.

4.1 Closed domains

Although trapped modes are only defined on unbounded domains we first considered simple

closed shapes for which solutions to the Helmholtz equation are known analytically. Using

our numerical method we sought eigenvalues for internal problems, defined on circular and

rectangular domains and a combination of both, with either Dirichlet or Neumann bound-

ary conditions. For all these problems, the eigenvalues are well-known and can be precisely

computed.
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4.1.0.1 Disc with Dirichlet boundary conditions

For example, consider the problem of the Helmholtz equation on a circular domain with

radius r = a, with Dirichlet boundary conditions. In polar coordinates the Helmholtz

equation is
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂2θ
+ k2φ = 0. (4.1)

Assuming solutions of the form φ(r, θ) = R(r)Θ(θ) we obtain two equations, one for

Θ(θ), which yields solutions of the form ane
inθ+bne

−inθ and one forR(r). It follows from

the periodicity condition (Θ must be periodic of period 2π) that Θ(θ) = αn cosnθ where n

must be an integer.

Making the substitution rk = ρ in the equation for R(r), we obtain the Bessel equation

ρ2R′′ + ρR′ + (ρ2 − n2)R = 0. (4.2)

Hence, the general solution for our problem takes the form of an infinite sum of terms

involving products of sin(nθ) or cos(nθ) and Bessel functions of the first kind of order n,

denoted Jn.

To satisfy the Dirichlet boundary condition it is required that Jn(ka) = 0. The Bessel

function of order n, Jn, has infinitely many roots, denoted ρm,n with m signifying the

m’th root, in ascending order. Our program correctly identifies the non-trivial, non-unique

solutions of this problem occuring for precisely those frequencies k = 1
a
ρm,n.

To illustrate, in Table (4.1), we show the first five values of k, obtained with our method

presented in Chapter 3, corresponding to the first zeros of the Bessel functions J0, J1, J2, J3

and J4. As the number of pointsN , used to discretise the boundary progressively increases,

k converges to the Bessel function’s roots (values listed in the last column):

N 30 60 120 240 480 ∞
k1 2.405781 2.405183 2.405046 2.404946 2.404869 J0,1 = 2.404825
k2 3.832370 3.832210 3.832041 3.831887 3.831805 J1,1 = 3.831705
k3 5.140863 5.136209 5.136068 5.135894 5.135696 J2,1 = 5.135622
k4 6.385247 6.380649 6.380690 6.380471 6.380326 J3,1 = 6.380161
k5 7.591930 7.588619 7.588954 7.588729 7.588542 J4,1 = 7.588342

Table 4.1: As N increases, the values of k converge to zeros of Bessel functions.
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4.1.0.2 Rectangle with Neumann boundary conditions

Another case where we can easily compute the eigenvalues is the Helmholtz equation on

on a rectangular domain. Consider a rectangle with sides −a ≤ x ≤ a and −b ≤ y ≤ b.

Then the eigenfunctions

φnm = cos
(mπx

a

)
cos
(nπy

b

)
,

φnm = cos
(mπx

a

)
sin
(nπy

b

)
,

φnm = sin
(mπx

a

)
cos
(nπy

b

)
,

φnm = sin
(mπx

a

)
sin
(nπy

b

)
. (4.3)

are all solutions to the problem for the appropriate values of m,n = 0, 1
2
, 1, 3

2
, ... chosen to

satisfy the Neumann condition at x = 1 and y = b. Possible eigenvalues for this problem

satisfy

λnm = π2

(
n2

a2
+
m2

b2

)
. (4.4)

for couples of (m,n) chosen appropriately, to satisfy the boundary conditions.

The first five solutions for a configuration with a = a, and b = 1, calculated using our

program, taking increasing number of discretising points N around the boundary and the

corresponding exact values, computed using equation (4.4) are presented in the table (4.2).

N 40 80 160 320 640 1, 280 ∞ (m, n)
k1∗ 1.5766 1.5723 1.5712 1.5709 1.5708 1.5707 1.5707

(
1
2
, 0
)

k2 2.2342 2.2247 2.2222 2.2216 2.2214 2.2214 2.2214
(

1
2
, 1

2

)
k3 3.1650 3.1479 3.1432 3.1420 3.1416 3.1416 3.1416 (1, 0)
k4 3.5146 3.5141 3.5136 3.5130 3.5125 3.5120 3.5120

(
1
2
, 1
)

k5 4.5497 4.4684 4.4488 4.4443 4.4432 4.4429 4.4428 (1, 1)

Table 4.2: As N increases, the values of k converge to exact eigenvalues of the Helmholtz
equation on a rectangular domain, with Neumann boundary conditions.

*Note: as we have chosen a = b = 1, both
(

1
2
, 0
)

and
(
0, 1

2

)
are eigenfunctions for this

problem, hence k1 is a double eigenvalue. Figure 4.1 shows a plot of det[MR(k)] and we

see that the curve behaves like (k − π/2)2. The equation det([MR(k)] = 0 has a double

solution indicating that the problem has a degeneracy at π/2.

The matrix M(k1) has two eigenvalues equal to zero and their respective eigenvectors cor-
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Figure 4.1: The equation det[MR(k)] = 0 has a double solution at π/2.

respond to the eigenfunctions of the problem.

A simple error analysis confirms the precision of our method as follows: letN1 be the num-

ber of points taken around the boundary, kN1 the value of k obtained for this discretisation

and k∞ the exact value of an eigenvalue k (calculated analytically). The error correspond-

ing to this discretisation is

e1 = kN1 − k∞ ≈
α

N2
1

(4.5)

for some constant α. Doubling the number of points, N2 = 2N1, the error is

e2 ≈
α

N2

≈ e1

22
, (4.6)

and if we continue doubling the discretisation rate, for a number of points Np = 2p−1N1,

the error should be

ep ≈
α

(2p−1N1)2 ≈
1

22p−2
e1. (4.7)

Equation (4.7) predicts that the logarithm of the error decreases linearly with the discret-



Chapter 4. Test Cases 53

isation rate p

Ep = log ep = −2p log 2 + 2 log 2 + log e1. (4.8)

Ep = log(ep) for k1 to k5 listed in Table (4.2) are plotted in Fig. (4.2) to illustrate the agree-

ment between the error prediction and the accuracy of results obtained using our method.

The values of Ep = log(ep) obtained using our program are in fact exactly the same values

predicted by Eq. (4.8).
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Figure 4.2: Log-error plot for the first five eigenvalues; the logarithm of error decreases
linearly with the discretisation rate, as predicted by Eq.(4.8).

4.1.0.3 Multiply connected domain

In this section we consider the problem on a multiply connected domain, composed of an

inner square boundary and outer circular boundary. The eigenvalues for this problem were

computed by Chen et. al [35] using a finite element method. We computed the eigenval-

ues for this problem, and in this section we present the results for the case with Dirichlet

boundary conditions on all boundaries. Our results are very similar to those already pub-

lished. The first four eigenvalues, together with the corresponding eigenmodes, are shown
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in Figure (4.3). The process of reduction of the Helmholtz eigenvalue problem from the

k
1
=  2.1903
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Figure 4.3: Four eigensolutions corresponding to four different eigenvalues of the Dirichlet
problem on a closed multiply connected domain.

exterior domain to the boundary gives rise to difficulties of non-uniqueness which are not

inherent in the original problem [9], [31]. These irregular values embedded in the sin-

gular integral equations are found to be the associated eigenvalues for the corresponding

interior problem with either Dirichlet or Neumann boundary conditions [9], [48]. For our

problem, the boundary-element method yields spurious eigenvalues which depend on the

geometry of the inner domain [14]. For this case, the first predicted fictitious eigenvalue is

π
√

2 = 4.4428, corresponding to the inner square solution sin πx sinπy. Our program also
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yields this spurious eigenvalue, however, as the number of pointsN around the boundary is

increased, this false solution disappears. In the next section we will relate a few more tech-

niques we apply to distinguish between real and fictitious eigenvalues, which often appear

in problems for infinite domains and can be computationally very costly.

4.2 Infinite domains

4.2.1 Waveguide with circular obstacle

This case is as formulated in Chapter 2, Eqn.(2.4-2.7) for the Dirichlet problem and Eqn.(2.4-

2.6) and Eqn.(2.8) for the Neumann problem, including one circular obstacle D placed on

the centerline of the waveguide with x2 + y2 = a2 and its radius a ≤ d.

This is the first case where we verify that our program can detect actual trapped modes,

rather than eigensolutions, as they are found in an infinite or semi-infinite domain. This

obviously poses the difficulty of computing over a finite area for a problem defined on an

infinite domain. We also have to set an appropriate boundary condition to reflect the fact

that solutions decay exponentially in the far field. To ensure that our program detects the

decaying modes and filters out the propagating modes we impose, away from the obstacle,

for −d < y < d and x� a a condition of the form:

∂φ

∂x
∼ −µ1φ, (4.9)

The decay coefficient µ1 depends on the problem and the range of frequencies investigated.

For example, if we look for y - antisymmetric trapped modes, below the first cut-off, the

decay coefficient is

µ1 =

[( π
2d

)2

− k2

] 1
2

, (4.10)

for the Neumann problem and

µ1 =

[(π
d

)2

− k2

] 1
2

. (4.11)

for the Dirichlet problem. This choice of a boundary condition is motivated as follows: for
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the Neumann problem, in the far field, away from the obstacle, the solution is

φ ≈
n=∞∑
n=1

ane
−µnx sin

[
(2n− 1)π

2d
y

]
, µn =

[(
2n− 1

2d
π

)2

− k2

] 1
2

. (4.12)

for large x, the solution asymptotically should behave like the dominant term

φ ≈ a1e
−µ1x sin

πy

2d
. (4.13)

This condition, selects the solutions where the coefficients an, n = 2, . . . , are zero which

in effect filters out solutions that do not decay exponentially, as specified by equation (4.9).

4.2.1.1 Spurious eigenvalues

Condition (4.9) enables accurate detection of any trapped modes present in the frequency

ranges investigated, but it also introduces fictitious solutions. Although the convention is

that the eigenvalues corresponding to the antisymmetric mode are not in the continuous

spectrum of the antisymmetric problem, the actual computation is carried out for frequen-

cies embedded in the continuous spectrum of the whole problem, therefore travelling modes

are in fact present in that k-parameter space. For certain values of k, down the guide, where

we truncate the domain, on the lines say |x| = L, |y| < d, travelling modes φ ∼ sin kx

or φ ∼ cos kx, satisfy the condition imposed by Eq. (4.9) but they obviously do not de-

cay exponentially. These spurious modes are identified by our BEM program and they are

false solutions to the trapped mode problem. We now discuss the strategies we adopted to

identify and discard spurious modes.

One strategy to eliminate these travelling modes is to apply the decay condition (4.9) to

modes φ ∼ a sin kx and φ ∼ b cos kx , at distance |x| = L away from the obstacle. We

obtain two relations depending on k, as follows:

k +

[√( π
2d

)2

− k2

]
tan kL = 0 and (4.14)

k tan kL−

[√( π
2d

)2

− k2

]
= 0 (4.15)
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We plot each of these two equations above against det[M(k)] = 0 and discard those values

of k where the solutions coincide.

Increasing the number of points used to discretise the domain and comparing the plots for

det[M(k)] is also a way to differentiate between genuine and spurious eigenvalues, and two

examples are discussed in Chapter 2. However, both these strategies, although reliable, are

time consuming when applied to wide ranges of frequencies and geometric parameters.

A fast method we use to distinguish between genuine trapped modes and fictitious solutions

is by computing an energy radiation index (ERI) as follows:

• for a given geometry determine all frequencies such that det[MR(k)] = 0

• identify for each singular matrixMR(k) the zero eigenvalue(s) and the corresponding

eigenvector(s)

• use the eigenvector to compute the solution φ at points in the far field, located in a

rectangular mesh , of width circa one wavelength, positioned down the guide, in the

farfield. For example a mesh is formed of a finite number of points in W such that

nλ ≤ x ≤ (n+ 1)λ,−d ≤ y ≤ d

• compute the potential φ on the boundary of the truncated waveguide

• the energy radiation index is the ratio between the sums of the squares of these two

values

EDI(k) =

∑
(x,y)∈Mesh

[φ(k, x, y)]2∑
(x,y)∈ Boundary

[φ(k, x, y)]2
. (4.16)

• a trapped mode will correspond to a local minimum of the energy dissipation index,

represented as a function of geometric parameters.

This is a very effective method to detect trapped modes as the dissipation indices can be

calculated and stored for all values of k in a given frequency range and corresponding

to many sets of geometric parameters. These data can provide at a glance an indication

of those configurations which may support a trapped mode. In Table (4.3) we show the
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lowest energy dissipation indexes calculated for values of k such that det[M(k)] = 0 for

the problem of a Neumann waveguide with a disc of a fixed radius (a/d = 0.6) placed on

the centre, and a rectangular cavity of depth h/d and width w/d. We vary the depth and

the width of the cavity and display the lowest EDI for each geometry. Different values

of minimum EDI correspond to different sets of geometric parameters (h,w) and it can

be seen as the cavity approaches h/d → 0.6, w/d → 6 the energy dissipation reaches

a minimum. An extra check to ensure that the trapped mode found is genuine is to vary

the truncation of the waveguide, the length x = L, over which the computation is carried

out. The eigenvalue corresponding to genuine trapped mode will not vary with L whereas a

spurious mode will yield a different k for each length of the waveguide. The trapped modes

for these cases will be discussed in detail in Chapter 5.

Energy Dissipation Index
Width

Depth 5.6 5.8 6 6.2 6.4

0.3 0.008455 0.002247 0.003243 0.002444 0.00258
0.4 0.003609 0.002715 0.006771 0.003997 0.002162
0.5 0.007636 0.009425 1.01E − 05 0.033749 0.005245
0.6 0.006043 0.020728 4.86E − 07 0.022481 0.032897
0.7 0.006498 0.027052 8.23E − 06 0.000752 0.000417
Corresponding k value

Width
Depth 5.6 5.8 6 6.2 6.4

0.3 1.394992 1.377506 1.332086 1.331205 1.3311
0.4 1.217997 1.21766 1.211755 1.205328 1.178883
0.5 1.216767 1.216327 1.370104 1.446332 1.454928
0.6 1.21718 1.20984 1.371246 1.420508 1.419266
0.7 1.218978 1.207365 1.371073 1.286347 1.122679

Table 4.3: Energy dissipation index, and associated frequencies, for the problem of a Neu-
mann waveguide with disc of fixed radius a/d = 0.6 and a rectangular cavity with varying
depth h/d and width w/d.

4.2.1.2 Disc on the centre of Dirichlet waveguide, k < k1

It has been established that in this range of k, a unique trapped mode exists for each a such

that 0 < a/d ≤ 0.6788 [43].

Using our method we computed the eigenvalues for this problem. Our results agree to a
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high level of accuracy with those of Maniar and Newman [47], obtained using a different

numerical method, based on Fourier modes. The eigenvalues we obtained are presented in

the table (4.4), together with the results of Maniar and Newman, for comparison.

a kd kd/π Maniar & Newman results
0.1 3.129 0.996 3.129
0.2 3.056 0.969 3.055
0.3 2.990 0.951 2.989
0.4 2.998 0.954 2.999
0.5 3.071 0.977 3.071
0.6 3.132 0.999 3.132

Table 4.4: Comparison of Dirichlet trapped wavenumber obtained using our method
(columns 2 and 3) with results obtained by Maniar & Newman

The absence of trapped modes for a/d > 0.6788 may be due to the proximity of the

Dirichlet condition on the wall and the Neumann condition on the circle. Figures (4.4(a)

- 4.4(b)) show contour profiles of two trapped mode solutions. For the smaller disc of

radius a/d = 0.3, the solution decays rapidly and has a more prominent x dependence.

The second profile is for the near-limit case a/d = 0.676, and we can see the decay rate is

much smaller in comparison with the previous example.
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(a) Potential φ in a waveguide with Dirichlet BCs on the walls, a/d = 0.3, kd ∼ 2.990 = 0.951π
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(b) Potential φ in a waveguide with Dirichlet BCs on the walls, a/d = 0.676, kd ∼ 3.1415 = 0.999π

Figure 4.4: Trapped modes in a Dirichlet waveguide, obtained using our BEM program
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The infinite Dirichlet waveguide with a disc on its centreline will be discussed in detail

in Chapter 6.4, where we develop a mathematical representation using the plane wave

spectrum analysis method.

4.2.1.3 Disc on the centre of Neumann waveguide, k < k1

For every k ≥ 0, a travelling mode of the form eikx satisfies the Neumann boundary con-

dition on the waveguide walls, hence the continuous spectrum for this problem is [0,∞).

For the y−antisymmetric problem the first cut-off is π/2d and so the solutions can be con-

sidered to be non-embedded eigenvalues.

We computed the eigenvalues for the Neumann problem in the range 0 < k < k1. The

variation of the non-dimensionalised trapped mode kd with the radius of the obstacle a/d

is shown in Fig. 4.5, the minimum value being kd ≈ 1.32 ≈ 0.42π.
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Figure 4.5: Variation of Neumann trapped-mode wavenumbers with the spacing parameter
a/d. Notice the second mode, antisymmetric with respect to both x and y axes.

The solutions described above are stable in the sense that if the geometrical parameter a/d

is varied continuously the trapped modes persist and the eigenvalues also vary continuously.
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The limiting case a/d → 0 is similar to the previous Dirichlet trapped modes case - as

a/d → 0, the trapped mode approaches the standing wave solution with slow decay down

the guide.

For the a/d → 1 we found two trapped modes, the second being anti-symmetric with

respect to both axes. The first mode of this type is found for a/d = 0.85. We initially con-

sidered that the second modes may be due to errors which may appear due to computations

carried out in the sharp region between the circle and the waveguide (|x| → 0, |y| → d)

where the solution has a singularity. However, despite increasing the number of points N

used to discretise the boundary, these second modes persisted. We subsequently found that

the same modes were reported in a note by Evans and Porter [24]. They are also consistent

with the results reported by Cobelli et al. who reproduced experimentally this case (see

Chapter 1) and reported two resonance curves for discs a/d ≥ 0.85 [16]. The variation

with a/d, for the second type of modes, is also shown on Fig.(4.5). We notice that frequen-

cies increase as a/d → 1 for the first type of mode, whereas they decrease for the second

mode.

These new solutions contradict the results reported by Callan [10], where all the solutions,

constructed using multipole potentials, were found to be antisymmetric with respect to the

x axis only. The values found using our program for both types of modes, for a/d ≥ 0.8,

are presented in Table (4.5).

x-Symmetric

y-Antisymmetric x, y-Antisymmetric

a/d k1d k1d/π k2d k2d/π

0.85 1.33171 0.42389 1.56487 0.49811

0.90 1.35201 0.43034 1.54580 0.49204

0.95 1.38457 0.44070 1.51762 0.48307

1.0 1.38457 0.44070 1.51762 0.48307

Table 4.5: Two trapped modes are found for a sound-hard disc on the centre of a Neumann
guide as the radius increases: a/d ≥ 0.85.

Plots for two trapped modes found for a disc of radius a/d = 0.85 are presented in Fig.

4.6(a) - 4.6(b).
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(a) Neumann trapped mode, a/d = 0.85, kd ≈ 1.33171 = 0.42389π
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Figure 4.6: Two trapped modes are found for the same case, Neumann waveguide with a
disc on the centre of the guide, a/d = 0.85.

4.2.1.4 Disc on centre of Dirichlet waveguide, k1 < k < k2

Using the same approach we looked for eigenvalues in the range k1 < k < k2. The

continuous spectrum of this problem is [(π/d)2,∞), therefore any trapped mode found in

this range are embedded. For this geometry only one embedded trapped mode exists in this

range: kd ≈ 6.258 ≈ 1.992π for a/d ≈ 0.267. The presence of propagating waves restricts

the values of a/d for which trapped mode exist. This is due to the need to satisfy a side

condition which corresponds to forcing the amplitude of the travelling mode to be zero [?].
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Figure 4.7: Dirichlet embedded trapped mode kd ≈ 6.258 ≈ 1.992π for a/d ≈ 0.267

This type of eigenvalue is unstable in the sense that it exists only for a particular geometry

(in this case a/d ∼ 0.267) and an arbitrary geometrical perturbation will destroy the eigen-

value. However, the mode is stable in the sense that if a geometrical parameter is varied
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continuously in such a way as to maintain the validity of the operator decomposition into

symmetric and anti-symmetric parts, then the eigenvalue varies continuously [4]. This prin-

ciple applies to the case of a two-dimensional waveguide with a symmetric obstacle placed

on the centreline. It was proved by McIver et al. [51] that the embedded trapped mode

found for the Dirichlet waveguide with a circular obstacle on the centerline is a point on

a continuous branch of modes for obstacles with shapes of the form |x/a|ν + |y/a|ν = 1 ,

1 ≤ ν <∞ , the circle corresponding to ν = 2.

4.2.2 Neumann waveguide with two rectangular symmetric indentations

Duan et al. [18] computed a series of trapped modes for the case of an infinite Neumann

waveguide with a rectangular cavity. Acoustic resonances for a rectangular cavity and

waveguide are well known and the problem allowed for a mode matching approach. The

results were compared with resonances obtained numerically using a combination of the

finite element method (FEM) and perfectly matched layer (PML). We were able to repro-

duce their results and an example of a symmetric mode found for w/d = 5.987, h/d = 2,

kd ≈ 1.0500 = 0.334π is shown in Fig. 4.8.
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Figure 4.8: Neumann embedded trapped mode at frequency kd = 1.0500 = 0.334π for
w/d = 5.987, h/d = 2.

We have thus tested the boundary element program we devised to detect trapped modes

for the Helmholtz equation in two dimensions. We established that it is accurate and reli-

able and were able to reproduce a large, varied set of published results, for a wide range

of geometries, boundary conditions in both the embedded and non-embedded frequency

regimes.

The results we presented in this chapter have already been obtained by other researchers

using different methods and our intention was to reproduce them in order to validate and
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refine our BEM program. In Chapter 5 we apply our method to extend these results and

investigate new, more complex geometries.
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Chapter 5

New results

The existence of the trapped modes presented in Chapter 4 has already been established

[22] and associated calculations were reported in [10], [23] and [47]. All these solutions

were obtained using different techniques from the one we developed and we reproduced

them in order to test the validity of our approach and assess the accuracy of the boundary

element program (BEM), prior to extending it to other, more complex configurations. Our

method allows for easy modification of the domain and the addition of new elements so that

the appearance of new modes may be investigated. In this chapter we present additional

modes for geometries already studied and also some results for new structures. With one

exception, for the cases presented in this chapter, to our knowledge, there are no published

results neither in the context of acoustic nor water-wave problems. The exception is the case

of non-embedded trapped modes for two, non-intersecting discs in an infinite waveguide.

Our results are in agreement with those published by Evans and Porter [26] for the case of a

long narrow wave channel containing any number of different size bottom mounted circular

cylinders arbitrarily spaced along the centreline of the channel. As discussed in Chapter 2,

these modes correspond to acoustic resonances, where the same governing equations and

boundary conditions apply. Evans and Porter have already shown that there are no more

than N trapped modes, in the range 0 < kd < π, for any configuration of N cylinders, the

precise number depending critically on the geometry of the configuration. We extend the

existing results for this case by establishing the behaviour of these modes for intersecting

discs, up to the point where they become a single disc. We also study this configuration for

the next band of frequency values, π < kd < 2π.
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All the geometries considered in this chapter include a 2-D infinite waveguide, consisting

of a pair of two-dimensional parallel walls (Γ±). Walls are such that y = ±d and the guide

is parallel to the x -axis. Cartesian axes are chosen so that both x and y axes coincide with

the horizontal and vertical guide centerlines respectively. A disc radius will be denoted a,

with appropriate subscripts if necessary. For ease of notation, we now set d = 1, with the

implicit assumption that all the spacing parameters in this chapter are non-dimensionalised

by a factor of d. The boundary conditions on Γ± are either Neumann or Dirichlet. In those

cases where one or more discs are added to the domain, the assumption is that they are

sound hard discs, i.e. ∂φ
∂n

= 0 on their boundaries. A disc radius will be denoted a, with

appropriate subscripts if necessary. Two discs will be separated by a distance c, measured

between their centres. We shall often relate c to the wavelength of the mode, which is

defined, as is the usual convention, in wave theory

λ =
2π

k
. (5.1)

In this chapter we present trapped mode result for the following geometries:

• Two sound-hard discs on the horizontal centreline of either a Neumann or a Dirichlet

waveguide. The two discs are either similar or of different radii.

• Neuman and Dirichlet waveguides with rectangular, triangular and smooth cavities.

The smooth cavity is modeled by a Gaussian function.

• A sound-hard disc on the horizontal centreline of either a Neumann or Dirichlet

waveguide, with one rectangular cavity. The disc is either located on the vertical

symmetry line of the cavity or removed from the centre, thus the geometry does not

have any symmetry lines.

Throughout this chapter we shall refer to the trapped mode frequency for one single disc on

the centreline of an infinite waveguide as the characteristic frequency and use the notation

k = kc.
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5.1 Two discs on the centre of an infinite waveguide

In this section we present the trapped modes supported by two discs, placed on the centreline

of an infinite waveguide. We consider both identical and different-sized discs and determ-

ine the trapped modes occurring in two k ranges: 0 < kd < π/2 and π/2 < kd < 3π/2 for

Neumann waveguides and 0 < kd < π and π < kd < 2π for Dirichlet waveguides. The

problem is either Dirichlet (D) or Neumann (N) as defined in Chapter 2. As mentioned in

Chapter 2, the problems of acoustic resonances in an infinite waveguide with circular 2-D

obstacles and of trapped modes in a 3-D long narrow channel with bottom-mounted cylin-

ders are mathematically identical. The study of trapped modes in these configurations is

motivated by the fact that it is possible to remove the channel walls and regard the solutions

as oscillations between adjacent pairs of cylinders in a doubly infinite row, the Neumann

modes having an antinode (the wave amplitude is a maximum) at each mid-plane between

pairs of cylinders and the Dirichlet modes a node (the wave has minimal amplitude). It is

then important to predict the trapped mode frequencies in view of the fact that such peri-

odic arrays have important applications, for example to structures such as floating bridges,

proposed designs for floating airports and other structures supported by bottom mounted

cylinders, e.g. off-shore oil platforms [47].

For non-intersecting discs, Evans and Porter [24] already determined the trapped modes

which can occur, for identical and different-sized cylinders, in both Neumann and Dirichlet

waveguides, below the first cut-off. The solution obtained by Evans and Porter is based on

the multipole method, in which singular solutions of the Helmholtz equation, satisfying an

antisymmetry condition on the channel centreplane are modified to include the boundary

condition on the channel walls. For further details we refer to [24] and references therein.

Throughout this chapter we shall refer to the trapped mode frequency characteristic to one

disc on the centreline of the waveguide as k = kc.
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5.1.1 Two identical discs on the centreline of an infinite Neumann wave-

guide

5.1.1.1 0 < k < π/2

All modes are embedded since for any frequency in this range, at least one propagating

mode exists. This propagating mode is a solution of the Helmholtz 2-D equation, which

satisfies the boundary conditions on the waveguide walls and discs. For the case of one

disc, of radius a, placed on the centre of an infinite Neuman waveguide it was established

by Callan et.al [10] - and we were able to reproduce these results using our programme -

that at least one trapped mode exists for all discs of radii 0 < a ≤ 1. All modes presented

in this section are antisymmetric about the centreline of the waveguide. Henceforth, unless

otherwise stated, symmetry references will apply to the x direction only.

Two discs of equal radius, placed on the centreline of the waveguide support either one

or two trapped modes, depending on the distance between discs. There are some features

which distinguish, qualitatively, between the modes found:

• For a small separation (see Appendix A), the value of which decreases with a, oscil-

lations are captured between the two discs. We call these coupled modes as the two

obstacles are connected by this non-decaying continuous wave.

• As c/a increases we find a lower frequency symmetric mode and a higher frequency

antisymmetric mode for each configuration. The potential φ attains maximum/minimum

values near each disc. The solution decays exponentially in the inner region and in

the case of the anti-symmetric mode, the potential is zero at x = 0, so there is no

energy transfer between the two parts of the guide.

To illustrate, we present in detail the case a1 = a2 = 0.3.

• 0 ≤ c < 2a

For c = 0 we obviously have the single disc solution and k = kc = 1.5086 =

0.4802π. As c increases, the object formed by the two intersecting discs supports a

trapped mode at a frequency which decreases linearly with the spacing parameter c,

up to the point where the discs separate (c = 2a) and k = 1.2352 = 0.3931π.
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c/d - Separation between discs' center 

k1 d - Frequencies of symmetric modes k2 d - Frequencies of anti-symmetric modes 

c =2 a   Discs are tangent to 
each other 

Second mode, anti-symmetric 
with respect to y-axis, appears 

Figure 5.1: Trapped mode frequencies for two discs of equal radius, a/d = 0.3, placed on
the centre of a Neumann waveguide

• 2a < c . λ.

A symmetric trapped mode, at a lower frequency, say ks < kc, envelopes the two

discs and there is a standing wave between them. These are coupled modes as they

are linked by the trapped oscillation and there is no exponential decay between discs.

• c ≈ λ

As the separation between discs increases, exponential decay appears in the inner

region. There are relatively high amplitude waves localised around each disc but their

interaction diminishes. At some point they become independent of each other and

this new degree of freedom enables the appearance of a new, antisymmetric trapped

mode, at a higher frequency (kc < ka). Figure 5.3 shows the two modes, symmetric

and anti-symmetric for a disc of radius a = 0.3. The separation c required for the

decoupling of the two oscillations is specific to the case discussed here, a = 0.3. As

can be seen from the data in Appendix A, for other cases, the separation c required
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Figure 5.2: Coupled mode trapped by two discs of radius a = 0.3, separation distance
c = 1. This geometry has only one trapped mode, at kd = 1.4138 = 0.4502π
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Figure 5.3: The same structure, two discs of a = 0.3, at distance c = 4 supports two trapped
modes: symmetric, kd ≈ 1.4881 = 0.4739π and anti-symmetric, kd ≈ 1.5389 = 0.4901π,
with respect to the y - axis

for oscillations decoupling and the appearance of a second mode, decreases with

the radius of the discs. For a/d > 0.5 the second mode will be found even for

intersecting discs - see Appendix A.

• c > λ

The two modes, symmetric and anti-symmetric persist and their frequencies converge

to kc -see Fig. 5.1.

Figure 5.1 shows the evolution of trapped mode frequencies with the separation

between discs. Each point on the computed curves corresponds to a trapped mode
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and we can see that as c→∞ the trapped modes approach the single-disc results as

the interaction between them diminishes. Trapped modes in this k range are stable

in that varying the geometry continuously does not substantially change the whole

picture. The sample presented here is sufficiently illustrative for this type of geo-

metry. As results are similar for disc of other radii we relegate the relevant details to

Appendix A .

5.1.1.2 Embedded modes, π/2 < k < 3π/2

As discussed in Chapter 2, section 2.3, as k increases through successive cut-off values, ad-

ditional travelling modes are possible. It is likely that trapped modes exist for all frequency

ranges, but for each additional propagating mode that is introduced, an extra geometrical

parameter is required to satisfy side conditions which force the amplitude of these travelling

modes to zero.

A single disc on the centre of a Neuman waveguide supports one embedded trapped mode,

above the first cut-off (π/2 < k < 3π/2), [23], for a = 0.352 for a frequency

kcd ≈ 4.677 ≈ 1.4896π.

The addition of another disc on the centreline of the Neumann waveguide, provides a new

parameter, the separation distance c, which can be varied until a specific value will corres-

pond to zero amplitude of the propagating modes. This rationale predicts that more than

one trapped modes may exist for this geometry. Using our BEM program we established

the following results for this frequency range

• Trapped modes exist for discrete couples (a, c) for small discs, 0 < a ≤ 0.4. Varying

the spacing parameter in the range 0 < c < 4, we found ten configurations which

support trapped modes, both symmetric and antisymmetric. It is likely that for a

given radius one might find an appropriate value of c such that a trapped mode might

be detected in that geometry. These modes are difficult to detect as embedded eigen-

values are sensitive to minute changes in the geometry and can only be distinguished

from the travelling modes when the exact combination of parameter values is used.

The relevant parameters for these modes are presented in Table 5.1.
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• All modes are y-antisymmetric. For larger separations both x-symmetric and anti-

symmetric modes can be found. The x - symmetry for each mode found is specified

for each case in Table 5.1.

• Each of these modes is accompanied by a large number of nearly trapped modes

and they exist for all values of 0 < a < 0.4 and slightly modified values of c.

Although from a mathematical viewpoint, nearly trapped modes are not solutions

to our problem, physically they are important as they would behave similarly in a

domain which approximates that required for a genuine trapped mode. A list of

nearly trapped modes is enclosed in Table 5.2.

• For a particular value of a more than one embedded trapped mode exists for different

separations c. For example we identified a symmetric coupled mode, for a/d =

0.25, c/d = 0.8 at a lower frequency kd ≈ 4.4915 = 1.4296π, and an antisymmetric

one for c = 1.9 for a higher frequency, kd ≈ 4.6968 = 1.4950π. Plots of both these

modes are presented in Fig. 5.4.
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Figure 5.4: Trapped modes in a Neumann waveguide with two discs of radius a = 0.352
on its centreline, distance between centres c = 8 appear at frequencies ksymmetric ≈ 4.6771
and kantisymmetric ≈ 4.6792.

• The largest radius of discs which we found to support an embedded trapped mode is

a ≈ 0.4 - a symmetric mode exists for c = 1.9. This exceeds the value a ∼ 0.352

which is the only single disc case in this frequency range. The mode we found for
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a = 0.4 is presented in Fig. 5.5.
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Figure 5.5: Trapped mode enveloping two discs of radius a = 0.4, at distance c = 1.9 for
kd ≈ 4.6968 = 1.4950π.

• Two discs with a = 0.352, placed on the waveguide centre do not support trapped

modes but only nearly trapped modes, some with low energy radiation, which can be

computed as detailed in section (4.2.1.1). For 0 < c . 1, i.e. including intersecting

discs but not fully overlapping, the geometry does not support trapped modes. For

c ≈ 1 a symmetric mode appears at a frequency lower than kc. Increasing the separa-

tion to c ≈ 2.6 we find an anti-symmetric mode, at a slightly higher frequency than kc
- see (5.2). The solutions feature two independent, non-interacting, high amplitude

oscillations confined in regions around each disc - see Fig. 5.4. The antisymmetric

mode is decoupled, in the sense discussed above, the solution decays exponentially

in the inner region between discs and so there is little interaction between the waves

localised around the two obstacles.

ksymmetric ≈ 4.457 < kc = 4.677 < kantisymmetric ≈ 4.682. (5.2)

5.1.2 Two discs of different radii on the centre line of a Neumann wave-

guide

In this section the geometry consists of two discs of different radii, a1 = 0.3 and a2 = 0.7,

with Neumann boundary conditions on all surfaces. We look for trapped modes in the range
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a c kd kd/π x - Symmetry

0.125 3.60 4.656108 1.482085 Symmetric

0.250 0.80 4.491496 1.429687 Symmetric

0.250 1.20 4.692561 1.493688 Antisymmetric

0.275 2.80 4.634083 1.475074 Antisymmetric

0.300 3.60 4.625632 1.472384 Symmetric

0.325 1.00 4.457053 1.418724 Symmetric

0.325 2.60 4.682178 1.490383 Antisymmetric

0.350 2.60 4.659922 1.483299 Symmetric

0.350 3.90 4.689750 1.492793 Antisymmetric

0.400 1.90 4.696900 1.495070 Symmetric

Table 5.1: Embedded trapped modes supported by two identical discs placed on the centre
of a Neumann waveguide.

0 < k < π/2 which are anti-symmetric about the centreline of the guide. As π/2 is the first

cut-off value all eigenvalues which are found in this range are non-embedded. Solutions

corresponding to non-embedded frequencies are stable, in that varying the geometry does

not destroy the trapped mode, it only modifies the value of k.

The characteristic trapped mode frequencies are kc1 = 1.5086 = 0.4802π for an isolated

disc of a = 0.3 and kc2 = 1.3241 = 0.42148π for a = 0.7 respectively. We present below

our main findings for this case. Further details of trapped mode frequencies are enclosed in

Appendix A.

Depending on the distance c between the discs, there are either one or two trapped modes

for each geometry:

• Overlapping discs, 0 < c < (a1 + a2)

A single trapped mode is found for all c in this range, at a frequency near the char-
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a c kd kd/π x Symmetry

0.1 0.7 4.6462 1.4789 Symmetric

0.15 0.7 4.5582 1.4340 Symmetric

0.2 0.9 4.5051 1.4509 Symmetric

0.3 0.9 4.5433 1.4462 Symmetric

0.38 1.8 4.7012 1.4964 Symmetric

Table 5.2: Nearly trapped modes supported by two identical discs placed on the centre of a
Neumann waveguide.

acteristic frequency for the larger disc. As the distance between discs increases, the

trapped mode frequency decreases linearly with the separation c until it reaches a

minimum frequency of kd = 1.1342 = 0.3610π, for c = 1, i.e. the discs are tangent

to each other.

• a1 + a2 < c < 2.2 ∼ 0.4λ

The discs are separated but the distance between them does not permit the decoupling

of oscillations. In this geometry only one trapped mode is found at a frequency

nearer to the frequency characteristic of the larger disc k → kc2. As kc2 < kc1,

the wavelength corresponding to the larger disc, of a = 0.7, is greater than that

for the smaller disc. It makes geometric sense that the trapped mode is found for a

frequency nearer to kc2 as the wavelength must accommodate both discs and satisfy

the required boundary conditions. Oscillations are present around both discs with

higher amplitudes near the larger disc where the potential φ attains its maximum and

minimum. This type of solution is illustrated in Fig. 5.7.

• 2.2 ≈ 0.4λ < c

Two trapped modes exist, a symmetric mode, at a lower frequency say ks, and an

antisymmetric mode, at a higher frequency ka, for each geometry. The symmetric

mode has stronger perturbations localised around the larger disc, with ks < kc1, ks →
kc1. The antisymmetric mode has maximum and minimum amplitudes around the
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Figure 5.6: Two discs of radius a/d = 0.25, placed at different distances, c, support two
embedded modes: symmetric, c = 0.8, for kd ≈ 4.4914 = 1.4296π and anti-symmetric,
c = 1.3, kd ≈ 4.6925 = 1.4936π.
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Figure 5.7: Contour plot of trapped mode enveloping two discs of radii a1 = 0.3, a2 = 0.7,
separated by a distance c = 1.6, and at a frequency kd ≈ 1.2802 = 0.4075π.

smaller disc, with frequencies ka < kc2, ka → kc2.

Figure 5.8 shows the variation of k with the distance between disc centres, for the two type

of modes.
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c - Distance between discs  

x  Symmetric trapped modes, localised around disc a =0.7 

x  Antisymmetric trapped modes, localised around disc a =0.3 

 c= 1,  discs  are tangent to each other 

Second mode, x-antisymmetric   
appears  at c  ≈ 2.2 

Figure 5.8: Variation of trapped mode frequencies with the distance between two discs
with radii a1 = 0.3 and a2 = 0.7. The discs are placed on the centreline of a Neumann
waveguide.

5.1.3 Two identical discs on the centreline of a Dirichlet infinite wave-

guide

One trapped mode, with frequency below the first cut-off, 0 < kd < π , can be found for

all discs on the centre of a soft (satisfying the Dirichlet boundary condition, φ = 0), infinite

waveguide, as long as 0 < a/d . 0.67 as reported by Maniar et. al [47] and Callan [10].

For π/d < kd < 2π, a trapped mode exists only for a ≈ 0.267 , see Porter [23] and Linton

[43]. Two discs, of equal radius, 0 < a ≤ 0.67, on the center of a Dirichlet waveguide,

support one or two trapped modes. The second mode can be found only for discs such that

0 < a < 0.6 and only if the separation parameter is above a certain value, depending on

the disc size.

5.1.3.1 Frequency range: 0 < kd < π

In this frequency range we find at least one trapped mode for every geometry, as long as

a1, a2 . 0.67, irrespective of the distance between discs. The modes are stable, in the
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sense that the frequency varies continuously as we increase the separation, the only abrupt

change is the appearance of a second mode when the spacing parameter c reaches a certain

value. We present below in detail the case a = a1 = a2 = 0.3. The frequencies for trapped

modes for all other cases studied are enclosed in Appendix A.
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Figure 5.9: Two discs of a = 0.3, placed on the centreline of an infinite Dirichlet wave-
guide, at a distance c = 2 from each other, support two trapped modes: x− symmetric,
kd ≈ 2.9595 = 0.9420π and x−antisymmetric, kd ≈ 3.0670 = 0.9762π.

• 0 < c ≤ 2a

Two intersecting discs support a trapped mode at a frequency which decreases lin-

early with the separation, from a starting value of k = kc, when c = 0, to kd =

2.7852 = 0.8865π, when the discs are tangent to each other.

• 2a < c < 1.2 ≈ 0.55λ

A coupled, symmetric mode is supported by these geometries, its frequency increases

with the separation c.

• 1.2 ≈ 0.55λ < c

Two trapped modes exist in this range, with high amplitude oscillations localised

around each disc. Frequencies for the symmetric and anti-symmetric modes are such

that

ksymmetric < kc < kantisymmetric. (5.3)
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Plots of two such modes, for the same geometry, are enclosed in Fig. 5.9.

The second mode, antisymmetric does not exist for 0.6 ≥ a, as indeed mentioned

by Evans and Porter [24]. However, for larger discs we found another type of mode

which, although is not a solution to our problem, in that it does not satisfy condition

(2.9), is still notable in the context of trapped modes. The maximum amplitude of

oscillations in the inner area is ≈ 103 higher than in outer area. Although theses

are not trapped modes from a mathematical viewpoint, the high amount of energy

present between the discs, in comparison with the amount that dissipates, could be

of importance in predicting the exciting forces on individual cylinders within a large

periodic arrangement of circular obstacles. These modes are symmetric with respect

to the guide centreline and can be either symmetric or anti-symmetric in x. For large

distances between circles more than one mode can be found for the same geometry.

An example of such a mode, for a = 0.7, is presented in Fig. 5.10.
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Figure 5.10: (x, y) Symmetric mode for a = 0.7, c = 4.4 and kd ≈ 2.6497 = 0.8434.

5.1.3.2 Frequency range π < kd < 2π

For one disc on the centreline of an infinite Dirichlet waveguide only one embedded mode

exists in this range, for a specific value of a [43].

kd ≈ 6.258 ≈ 1.992π, a/d ≈ 0.267. (5.4)

We refer to section (2.3) where we discussed that in embedded regimes the presence of

propagating modes requires side conditions which force the amplitude of these travelling
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modes to zero. In this k range we have one propagating mode but we also have an additional

parameter, c which can be varied until a trapped mode is found. Our results show that

trapped modes can be found for discs of all radii such that a . 0.3 at discrete values of

c. Some disc sizes support more modes in this frequency range than others. For distances

0 < c < 4, a disc with a = 0.125 has three trapped modes whereas for a slightly smaller

disc, for a = 0.1, only one mode was found. The list of modes found for this geometry is

given in Table 5.3. It is probable that as the distance between discs is increased more modes

can be found for additional values of c for small discs but not for larger discs. In Fig. 5.11(a)

- 5.11(c) we present three trapped modes for the same disc, with radius a = 0.125. The

first plot, Fig. 5.11(a), corresponds to a small separation between discs c = 0.6. A second

mode appears at a slightly larger separation, c = 1.75. Both these modes are symmetric in

x and antisymmetric in y. As the distance increases, a third mode, anti-symmetric in both

x and y, appears at c = 3.35. It is probable that more modes can be found for additional,

larger c.

5.1.4 Two discs of different radius on the centreline of an infinite Dirichlet

waveguide

In this section we present the results for the case of two discs, with radii a1 = 0.2, a2 =

0.5, placed on the centreline of a soft waveguide. The discs have individual characteristic

trapped mode frequencies, kc1d = 3.0561 = 0.9728π, kc2d = 3.07145 = 0.9776π. This

type of geometry has either one or two trapped modes, depending on the separation between

the discs. The modes are stable in the sense that frequencies vary continuously with c,

they are antisymmetric about the guide centreline and they can be either symmetric or

anti-symmetric in x. The symmetric mode has the highest amplitude oscillations localised

around the smaller disc, with ks < kc1, ks → kc1 and the anti-symmetric mode is localised

around the boundary of the larger disc, with ka > kc2, ka/d → kc2. Fig. 5.12, shows the

frequencies of the two type of trapped modes and their variation with c. As the distance

between discs changes we distinguish three stages in the appearance of trapped modes and

how they modify their qualitative features:

• 0 < c < a1 + a2

One symmetric trapped mode exists for all c, with frequencies decreasing linearly

with c.
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(a) First embedded trapped mode, for a disc of radius a/d = 0.125, at kd ≈ 6.1313 = 1.9516π and distance between
discs c/d = 0.6.
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(b) Second embedded trapped mode, for a disc of radius a/d = 0.125, at kd ≈ 6.1897 = 1.9702π and distance between
discs c/d = 1.75.
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(c) Third embedded trapped mode, for a disc of radius a/d = 0.125, at kd ≈ 6.2188 = 1.9795π and distance between
discs c/d = 3.5.

Figure 5.11: Three embedded modes, π < kd < 2π for two identical discs on the centreline
of a Dirichlet waveguide

• a1 + a2 ≤ c < λ

A second mode, antisymmetric in x appears, at a higher frequency. The symmetric

mode is coupled in the sense that there is oscillation between discs. The antisymmet-

ric mode is decoupled, as exponential decay appears in the inner area and the waves

localised around each disc are almost independent of each other.

• 3λ < c

As the distance between obstacles increases, the energy distribution between the two

discs becomes skewed and the trapped mode tends to be localised around only one

disc: the symmetric mode has potential minimum/maximum on the boundary of the
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c/d - Separation between discs center 

k1 /d - Symmetric mode (max/min on boundary of small disc) 

k2/d - Anti-symmetric modes (max/min on boundary of large disc) 

Figure 5.12: Trapped mode frequencies for two discs with radii with a1 = 0.2, a2 = 0.5,
placed on centre of soft infinite waveguide

smaller disc, with ks < kc1, ks → kc1 as c → ∞. We also note that the anti-

symmetric mode has the highest amplitude oscillations on the boundary of the larger

disc, with ka > kc2, ka → kc2. In Fig. 5.13 five trapped modes are plotted as follows:

– Panel 1: one trapped mode with c = 1.6 at kd ≈ 2.9873 = 0.9508π.

– Panels 2 and 3: two trapped modes, for same geometry, one symmetric and

one anti-symmetric, c = 3.6 at kd = 3.0553 ≈ 0.9725π and kd ≈ 3.0873 =

0.9827π respectively.

– Panels 4 and 5: two trapped modes, for same geometry, symmetric and anti-

symmetric, c = 6, for kd ≈ 3.0652 = 0.9756π and kd ≈ 3.0727 = 0.9780π.

Notice the skewed distribution of velocity potential φ between the two discs.

– Panels 6 and 7: two trapped modes, for same geometry, symmetric and anti-

symmetric, c = 8 for frequencies kd ≈ 3.0664 = 0.9760π and kd = 3.0711 =

0.9775 respectively. Notice that in each case there are strong oscillations in the
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vicinity of one disc and φ→ 0 in the neighbourhood of the other disc.
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Figure 5.13: Trapped mode solutions for two discs with radii with a1 = 0.2, a2 = 0.5,
placed on centre of a soft infinite waveguide for four values of the spacing parameter c =
1.6, 3.6, 6 and 8.
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a c kd kd/π x Symmetry

0.100 0.60 6.2831 1.9999 Symmetric

0.125 0.60 6.1313 1.9516 Symmetric

0.125 1.75 6.1897 1.9702 Symmetric

0.125 3.50 6.2188 1.9795 Antisymmetric

0.175 0.62 6.0866 1.9374 Symmetric

0.175 1.75 6.1652 1.9624 Symmetric

0.175 2.30 6.2108 1.9769 Antisymmetric

0.225 0.65 6.1368 1.9534 Symmetric

0.225 1.75 6.1963 1.9723 Symmetric

0.250 0.75 6.1850 1.9687 Symmetric

0.250 1.75 6.2216 1.9804 Symmetric

0.250 1.75 6.2412 1.9843 Symmetric

0.275 1.30 6.2412 1.9866 Symmetric

0.295 1.55 6.2703 1.9959 Symmetric

Table 5.3: Embedded trapped modes supported by two identical discs on the centreline of
a Dirichlet waveguide.
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5.2 Infinite waveguides with cavities

In this section we present results for rectangular, triangular and smooth cavities in an infin-

ite, 2-D infinite waveguide, consisting of a pair of two-dimensional parallel walls (Γ±) at

y = ±d. The boundary conditions will be either Neumann or Dirichlet on the waveguide

walls with the usual decay condition at infinity (2.9).

5.2.1 Rectangular cavity in a Dirichlet waveguide

First we consider the problem of a rectangular cavity of depth h and width 2w in a Di-

richlet infinite waveguide. The trapped modes for this problem can be either resonances

in soft acoustic waveguides or bound states in quantum waveguides [11], [29]. The latter

are narrow two dimensional quantum waveguides, composed of tiny strips of a very pure

semiconductor material, that allow electrons to propagate but require the wave function to

vanish on the surface. We keep h/d = 1 fixed, vary w/d and seek trapped modes in the

range 0 < kd < π/2. For small widths of the cavity, the eigenmode rate of decay with

distance x is small and the trapped mode frequency is close to the cut-off frequency π/2d.

As w → 0 , the solution approaches the non-trapped standing wave solution φ ∼ cos π
2d
y.

A simple analysis predicts the appearance of trapped modes as follows: for generality we

consider both symmetric and anti-symmetric solutions, with respect to the x-axis. If we

assume simple separable solutions of the Helmholtz equation in a waveguide

φ = X(x) · Y (y), (5.5)

in this regime of k values, the first cut-off prescribes, far away from the cavity, solutions of

the form

φ ≈ exp

{
±i
[
k2 −

( π
2d

)2
] 1

2

x

}
cos
(πy

2d

)
. (5.6)

If kd < π/2, this y - symmetric oscillation cannot propagate down the guide. We now

assume that w is large and consider the region of the cavity separately. In the centre of

the cavity, for |x| → 0, in order to satisfy the Dirichlet boundary condition on y = d and
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y = −d− h, the y component of the solution should behave like

Y (y) ' cos

[
π

2

(
y + h/2

d+ h/2

)]
= cos [µ2(y + h/2)] , (5.7)

so that the wavevector is µ = (µ1, µ2) with

µ1 =
√
k2 − µ2

2,

µ2 =
π

2

(
1

d+ h/2

)
, (5.8)

prescribing the x-dependency inside the cavity as

X(x) ' e(±iµ1x) = exp
[
±i
(
k2 − µ2

2

) 1
2 x
]
. (5.9)

If k is such that

π

2d+ h
< k <

π

2d
, (5.10)

oscillations are possible in both the x and y directions in the region of the cavity, but not in

the rest of the guide. A wave inside the cavity would be effectively trapped there as it would

not be permitted to propagate down the guide. This is obviously an over-simplification of

the problem, a real trapped mode has a far more complicated structure than that assumed

above. However, this is the non-embedded regime and due to the simplicity of the geometry,

this argument renders the appearance of trapped modes plausible. Also, if we consider the

Dirichlet boundary condition on the vertical walls of the cavity, at x = ±w we require

X(w) = cosµ1w = 0, (5.11)

and this gives us an approximation for the minimum width of the cavity for a trapped mode

µ1w =
π

2
. (5.12)

This condition, together with (5.10), predicts that for w/d ≈ 1.34 y-even modes are pos-

sible inside the cavity but not down the guide. And indeed for 1.3 . w/d we find an

x-symmetric trapped mode for all cavities. This expression also serves as an approxima-
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tion for k. These approximations for k, though not the frequencies of the mode themselves,

are a useful indicator of the range of values which should be checked numerically for the

actual trapped mode, saving significant computation time.

k ≈

√(
π

2d+ h

)2

+

(
kn
w

)2

, (5.13)

where we denote the cut-off values kn = π/2, π, 3π/2, 2π, ...

For example if we look at a cavity of h = 1, w = 2.8, according to the above formula

a trapped mode should appear for roughly kd ≈ 1.1879 = 0.3781π. We find using our

boundary element program the first trapped mode for this geometry has kd = 1.1524 ≈
0.3668π. We also see that (5.13) predicts that k will decrease as the width of the cavity

increases, which is consistent with the values we found.

As the width of the cavity increases, additional, x-antisymmetric, modes appear for the

same geometry. These new solutions appear for new values of k which satisfy approxim-

ately

µ1w = π. (5.14)

Following the same route as above, we find that the new trapped modes exist for all w &

2.2. As we increase w more trapped modes are found as new eigenvalues can be found

satisfying the condition

µ1w = kn. (5.15)

This example and the simple analysis developed illustrates how the existence and the val-

ues of trapped modes is determined by the relationships between various geometric para-

meters.

We now look at trapped modes in the range π/2 < kd < π. These modes are embedded

and exist for discrete couples (w, h). There are only a few values we found which sup-

port trapped modes in this range and they are tabulated in Table 5.4 below. To find these

eigenvalues we used a boundary element step of l = 0.1 and l = 0.05 hence the spacing

parameters h and w displayed in Table 5.4 have an expected error in the range 0.05− 0.1.
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(a) Dirichlet, first trapped mode, for w = 2.3, h = 1 at kd ≈ 1.1943 = 0.3801π,
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(b) Dirichlet, second trapped mode, for the same geometry, at kd ≈ 1.5028 = 0.4783π.

Figure 5.14: Two non-embedded trapped mode for a cavity in a Dirichlet waveguide.

One notable geometry we found is the cavity with h = 2.2, w = 2.9 which supports two

trapped modes, at two different frequencies, k1d ≈ 2.7361 = 0.8709π (see Fig. 5.15(a)

for solution contour plot) and k2d ≈ 3.03302 = 0.9654π (see Fig. 5.15(b)).

5.2.2 Smooth cavity in a Dirichlet waveguide

Whilst searching for trapped modes in a rectangular cavity we found that if we smoothed

slightly the sharp corners at the top of the cavity, the trapped mode would disappear. This

raised the question about the role of corner singularities in the formation of trapped modes

and whether a smooth cavity would support trapped modes. We considered a Dirichlet

waveguide with a smooth lower boundary, modelled by a Gaussian function

Γ−(x) = −d− h · e
−x2
w . (5.16)

Keeping h/d = 1 fixed we checked the frequencies range 0 < kd < π/2 and found that

non-embedded trapped modes exist for all w/d and their k-values vary continuously with

the geometry as illustrated in Fig. 5.16.
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h/d w/d kd kd/π

2 1.9 2.4819 0.7900

2.2 2.9 2.7361 0.8709

2.2 2.9 3.0330 0.9654

2.6 1.4 2.9022 0.9238

3.0 1.7 2.6566 0.8456

3.0 1.95 2.6212 0.8343

2.1 2.6 2.3726 0.7552

Table 5.4: Embedded trapped modes supported by a rectangular cavity in a Dirichlet wave-
guide.

Embedded modes in the higher frequency range, π/2 < kd < π, exist only for discrete

pairs (h,w) and the details for two such modes are presented in Table 5.5.

h/d w/d kd kd/π

3 1.80 2.3442 0.7461

2.6 0.80 2.7473 0.8745

Table 5.5: Embedded trapped modes supported by a cavity with a Gaussian curvature in a
Dirichlet waveguide.

5.2.3 Triangular cavities in a Neumann waveguides

The case of Neumann trapped modes for rectangular cavities was discussed in section

(4.2.2). The flexibility built into our program allows us to investigate trapped modes in

other cavities. We looked at a triangular indentation with depth h and upper width w and

found that trapped modes exist for discrete couples (h,w) and these geometric parameter

values are similar to those which support trapped modes in the case of rectangular cavit-
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(a) Dirichlet, embedded, first trapped mode, for w = 2.9, h = 2.2 at k1d ≈ 2.7361 = 0.8709π,
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(b) Dirichlet, embedded, second trapped mode, for the same geometry, at k2d ≈ 3.0330 = 0.9654π.

Figure 5.15: Two embedded trapped modes for the same rectangular cavity, in a Dirichlet
waveguide.
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Figure 5.16: Trapped mode frequencies below the first cut-off, 0 < kd < π/2, for a smooth
cavity in an infinite Dirichlet waveguide.
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Figure 5.17: Embedded trapped mode in a smooth cavity with Gaussian profile, h/d =
3, w/d = 1.8 and frequency kd ≈ 2.3442 = 0.7461π.

ies. The essential spectrum of the operator is [0,∞), meaning that the trapped modes are

embedded. Table 5.6 lists the modes found for this case. All modes found are even in x.

h/d w/d kd kd/π

2.9 3.8 1.45625 0.4635

3.5 5.2 1.2448 0.3962

3.9 5.8 1.1594 0.3690

5.6 4.4 1.3492 0.4294

5.9 4.8 1.2823 0.4081

Table 5.6: Trapped mode frequencies for a triangular cavity in a Neumann waveguide.
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Figure 5.18: An embedded trapped mode in a triangular cavity, h = 2.9, w = 3.8 and
frequency kd ≈ 1.4563 = 0.4635π.

5.3 Rectangular cavity and disc in an infinite waveguide

A single disc, of radius a, on the centreline of an infinite waveguide may support a trapped

mode, depending on its size and the type of boundary condition on the guide. A cavity, of

width w and depth h, in the absence of other obstacles in the guide, may support a trapped

mode for discrete (h,w). Isolated thin or shallow cavities cannot support trapped modes

- the spacing parameters must exceed some threshold in order for such resonances to be

found. The addition of a disc in the centre of a waveguide (x = 0, y = 0) changes the

situation completely as the combination of these two elements greatly increases the affinity

of a geometry to trapped mode type resonances.

5.3.1 Rectangular cavity and disc in a Neumann waveguide

Using our BEM program we searched for trapped modes in a Neumann waveguide with a

rectangular cavity and a disc placed on its centre, in the frequency range 0 < kd < π/2.

Our findings for this case can be summarised as follows:

• All discs of radius 0 < a ≤ 1, placed in the centre of the guide, support trapped

modes for discrete couples of (h,w). The case a = 1 is included because a cavity of

width w > 1, allows the whole domain to remain connected.

• A disc of a given radius supports trapped modes for more than one cavity, for discrete,

specific couples (h,w).

• The addition of a disc enables the appearance of trapped modes for cavities which
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would not support trapped modes on their own.

• Trapped modes can be found for a larger range of geometric parameters than for

isolated disc or cavity as the combination of both gives rise to many more resonances.

For example, in the absence of a disc, shallow or narrow cavities do not support

trapped modes. The minimum depth required for the appearance of a mode in a

cavity is h ≥ 2, whereas the addition of a disc will enable trapped modes, in some

cases, for cavities such that h ≤ 0.4.

• For a given cavity depth it is possible that there are no trapped modes, irrespective of

its width and the disc radius.

• For a given cavity width it is possible that there are no trapped modes, irrespective of

its depth and the disc radius.

• Some cavities may support modes for more than one disc. For example a cavity of

depth h = 4.6 and width w = 4.2, has a trapped mode in combination with a disc

of radius a = 0.3. If the disc diameter changes, even by a small amount, the trapped

mode is perturbed but there are still a multitude of nearly trapped modes with very

low radiation, which physically would probably be very difficult to distinguish from

the trapped mode itself. At a = 1 an antisymmetric mode appears, at a frequency

kd ≈ 1.5432 = 0.4912π.

We also considered geometries without any (x, y) symmetry. Let the coordinates of the

disc centre be (xc, yc). When the disc is placed in the centre of the guide the coordinates

are xc = 0, yc = 0. If the disc is removed from the centre of the guide, even by a small

distance, in the x direction say, so that 0 < xc < ε, any existing trapped mode will be

perturbed and become a nearly trapped mode. As the distance is increased further, at some

point the nearly trapped mode also disappears. As xc & λ, we recover nearly trapped

modes corresponding to the pure trapped modes for either a single cavity or a single disc in

the waveguide. The frequencies are similar but not identical to those corresponding to the

pure trapped modes. These modes are localised either around the disc or the cavity. The

mode for a disc is perturbed in the region of and beyond the cavity. Also, the mode trapped

in the cavity is perturbed as it approaches the disc down the guide. However, we should

note that although they are perturbations of pure trapped modes, the radiation is very low.
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Two such modes, for a cavity h = 4, w = 11.9 and a disc of radius a = 0.4 placed on the

centreline of the guide, removed from the centre of the guide by a distance xc = 10 are

enclosed in Fig. 5.19. The characteristic trapped mode frequencies for the isolated disc

and cavity are kc ≈ 1.4478 = 0.4608π and kc ≈ 0.5050 = 0.16074π respectively. We did

not find any pure trapped modes for asymmetric geometries, irrespective of the disc radius

and cavity size. This does not exclude the possibility that a trapped mode may exist for a

specific set of values (a, h, w, xc), however we were unable to identify such a geometry.
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Figure 5.19: Nearly trapped modes in a rectangular cavity at kd ≈ 0.5250 = 0.1671π at
and around a disc on centre of a Neumann waveguide, for kd ≈ 1.4566 = 0.4636π. The
characteristic trapped mode frequencies for the isolated cavity and disc are kc ≈ 0.5050 =
0.16074π and kc ≈ 1.4478 = 0.4608π respectively.

In Table 5.7 we present trapped mode frequencies for the case a = 0.4. The k values found

vary noticeably from case to case in contrast to those for an isolated disc in the waveguide,

which are close to the relevant cut-off. Details of trapped mode for other discs (0 < a ≤ 1)

are given in Appendix A.

Some examples of trapped modes found for this geometry are presented in Figures 5.20 -

5.22. Further plots to illustrate the variety of trapped modes supported by this geometry are

presented in Appendix A. The plots below illustrate the evolution of the trapped modes as
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h/d w/d kd kd/π x− Symmetry

0.8 6 1.15662 0.36816 Symmetric

1.4 6.75 0.98842 0.31462 Symmetric

1 7 1.26435 0.40246 Anti-symmetric

3.4 6 1.14732 0.36520 Symmetric

3.8 6.2 1.09465 0.34844 Symmetric

4.8 4.4 1.36155 0.43339 Symmetric (see Fig 5.22)

4.2 7 1.02482 0.32621 Symmetric

4.6 3.4 1.40248 0.44642 Symmetric (see Fig. 5.20)

4.9 6.6 1.45577 0.46339 Anti-symmetric (see Fig. 5.22)

Table 5.7: Trapped mode frequencies found for a cavity and a sound hard disc placed on
the centre of a Neumann waveguide.

the cavity size increases. As the horizontal walls of the cavity are pulled further apart, the

solution develops new local critical points on the cavity walls, at x = ±w - see Fig. 5.20

below. As the cavity increases further, an antisymmetric mode appears, with a series of

peaks and troughs on the cavity walls - see Fig. 5.22.
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Figure 5.20: Trapped mode for a rectangular cavity and a disc on centre of a Neumann
waveguide, h/d = 4.6, w/d = 3.4 and frequency kd ≈ 1.4024 = 0.4464π.
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Figure 5.21: Trapped mode for a rectangular cavity and a disc at the centre of a Neumann
waveguide, h/d = 4.8, w/d = 4.4 and frequency kd ≈ 1.3615 = 0.4334π.

5.3.2 Rectangular cavity and disc in a Dirichlet waveguide

In the last section of this chapter we present our findings for a soft infinite waveguide with

a rectangular cavity of depth h and width w, and a disc of radius a, positioned in the centre

of the guide. A single disc with 0 < a < 0.67, on the centreline of the guide, without

cavities, supports one trapped mode with kd < π, kd → π as a/d → 0 and a/d → 0.67.
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Figure 5.22: Trapped mode for a rectangular cavity and a disc at the centre of a Neumann
waveguide, h/d = 4.9, w/d = 6.6 and frequency kd ≈ 1.4557 = 0.4634π.

The addition of a cavity to the guide leads to the appearance of a large number of trapped

modes as follows:

• Any disc of radius 0 < a ≤ 1, placed at the centre of a soft infinite guide, supports

trapped modes for discrete couples of (h,w). We note that the presence of a cavity

increases the range of possible disc sizes above the a = 0.67 limit for an isolated

disc. The case a = 1 is considered with a cavity such that w > 1, which allows the

±x sides of the guide to remain connected.

• A disc of a given radius supports trapped modes for more than one cavity with dis-

crete, specific values of h and w.

• For just a cavity in a soft waveguide, in the range 0 < h ≤ 6, 0 < w ≤ 6, we found

only six geometries which support trapped modes - see Table5.4. We obviously did

not exhaust all the possible choices of h and w and it is plausible that there are other,

larger cavities which may support trapped modes. However, for the size range, with

the addition of the disc to the guide, we found 84 trapped modes (see results presented

in Appendix B).

• For a given depth it is possible that there are no trapped modes, irrespective of the

cavity width and disc radius. For a given width it is possible that there are no trapped
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modes, irrespective of cavity height and the disc radius.

• As the (a, h, w) triples are so densely distributed, we found that most geometries sup-

port at least nearly trapped modes. It is therefore possible, to find either a trapped

mode or a nearly trapped mode with low radiation for most values of h and w. Al-

though not an exact solution to our problem, nearly trapped modes would physically

be very difficult to distinguish from the perfectly decaying modes.

• Some cavities may support modes for more than one disc.

• Some configurations may support more than one mode. We found two examples,

where the same geometry has two trapped modes, at two different frequencies. Solu-

tion plots in Fig. 5.23(e) and Fig. 5.23(f) correspond to such a geometry with

(a = 0.4, h = 3, w = 3.8).

We also considered geometries without any (x, y) symmetry for this case. Using the same

notation for the centre of the disc as in the previous case we are also able to recover nearly

trapped modes corresponding to either a single cavity or a single disc in the waveguide

for xc & λ. The frequencies are similar but not identical to those corresponding to the

pure trapped modes. Two such modes, for a cavity h = 2.6, w = 5.8 and a disc of radius

a = 0.3 placed on the centreline of the guide, removed from the centre of the guide to a

distance xc = 6, are enclosed in Figures 5.23(a) -5.23(b). We did not find any pure trapped

modes for asymmetric geometries, irrespective of the disc radius and cavity size. This

does not exclude the possibility that a trapped mode may exist for a specific set of values

(a, h, w, xc, yc), however we were unable to identify such a geometry.

In Figure 5.22 we present ten trapped modes found for the same disc, of radius a = 0.4. The

series of plots illustrates the manner in which the solution profile changes with the cavity

size. The modes are presented in increasing order of cavity depth. A list of trapped mode

frequencies for all disc sizes, with a catalogue of solution plots, to illustrate the variety

of solutions found are enclosed in Appendix B. The figures enclosed map out, for each

disc size, the transformations in trapped mode profiles, induced by changes of the spacing

parameters (h,w).
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(a) Nearly trapped mode in a Dirichlet waveguide, for a disc of radius a = 0.3, at k ≈ 2.9931 = 0.9527π.
For a single disc a trapped mode appears at kc ≈ 2.9907 = 0.9511π
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(b) Nearly trapped mode in a Dirichlet waveguide, for a cavity with h = 2.6, w = 5.8, at k ≈ 2.7037 =
0.8606. For the same cavity a trapped mode appears at kc ≈ 2.6566 = 0.7900

Figure 5.23: Nearly trapped modes form around trapping features which are at a distance
xc >> λ from each other.

5.4 Conclusion - overview of results

Two sound-hard discs placed on the centreline of an infinite acoustic waveguide were found

to support either one or two non-embedded trapped modes, depending on the distance

between them. Our results are in agreement with those of Evans and Porter [26] for the

case of a long narrow wave channel containing any number of different size bottom moun-

ted circular cylinders arbitrarily spaced along the centreline of the channel. Evans and

Porter showed that there are no more than N trapped modes, in the range 0 < kd < π, for

any configuration of N cylinders, the precise number depending critically on the geometry

of the configuration. We extended the existing results for this case by establishing the be-

haviour of these modes for intersecting discs, up to the point where they become a single

disc. We also studied this configuration for the next band of frequency values π < kd < 2π.

We also investigated similar geometries in a Neumann waveguide, for both non-embedded

(0 < kd < π/2) and embedded frequencies (π/2 < kd < 3π/2).

We first considered two intersecting discs then progressively increased the distance between
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them, c, up to several wavelengths. For each of these geometries we found the associated

trapped modes and mapped the evolution of trapped mode frequencies with the distance

separating the discs. Evans et. al [22] proved that a two-dimensional acoustic waveguide

containing a y−symmetric obstruction of general shape, has at least one local oscilla-

tion which decays with distance down the waveguide, away from the obstruction. Using

our program we found this type of mode for two intersecting discs. The mode found is

y−antisymmetric and x-symmetric (symmetric mode). Interestingly, the frequency de-

creases linearly with the distances between the discs’ centres, irrespective of the discs

relative sizes. The minimum frequency value is attained for the case when the discs are

tangent to each other. After separation, the two discs support at least one trapped mode.

A second mode, antisymmetric with respect to both axes, appears at a specific separation

distance which depends on the discs radii (antisymmetric mode). The antisymmetric mode

frequency is higher than that of the symmetric mode. Both modes persist and vary con-

tinuously with the geometry. As c/d increases the frequencies of both the symmetric and

antisymmetric modes approach the characteristic frequencies of the isolated discs. For the

case of two discs of equal radius, as c/d→∞ we found that

ksymmetric → kc ← kantisymmetric, (5.17)

and for two discs of different radii, a1 < a2, with characteristic trapped mode frequencies,

kc1, kc2

ksymmetric → kc2 < kc1 ← ksymmetric, (5.18)

as illustrated in Fig. (5.1) and (5.8).

Non-embedded modes were also computed for two sound-hard discs on the centreline of a

soft waveguide. Qualitatively, these modes follow the same pattern as in the previous case.

A slight variation relates to the disc sizes which support these modes. For the symmetric

case we found that two identical discs of radius up to a/d = 0.7 support trapped modes in

contrast to just a single disc in a waveguide, where the upper limit is a/d = 0.67. We found

antisymmetric modes only with 0 < a/d < 0.6, in accordance with Evans et. al [22].

Embedded Neumann trapped modes, both symmetric and antisymmetric with respect to

the y−axis, were found for two discs of radii 0.125 ≤ a1/d = a2/d ≤ 0.400 and specific
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values of c/d. For a given radius in this range there may be more than one value of c

which corresponds to a trapped mode. The addition of a second disc increased the range

of geometries which support trapped modes in this frequency range. We note that for an

isolated disc in a waveguide only one embedded mode occurs at a/d = 0.352. Details of the

modes found are presented in Table 5.1. We did not exhaust the range of geometric couples

(a/d, c/d) which support trapped modes in this frequency range. Further computations

would undoubtedly identify new trapped modes for increasing values of c. For all modes

found we have that

ksymmetric < kantisymmetric, (5.19)

and that the antisymmetric mode appears at a larger separation distance than that required

for the symmetric mode.

Dirichlet embedded modes were also found for two discs of identical radii in the range

0.1 ≤ a1/d = a2/d ≤ 0.295 and specific values of c/d, in contrast to the case of one

isolated disc in a soft waveguide, which supports only one mode for the discrete value

a/d = 0.267. As for the Neumann case, the antisymmetric trapped mode frequencies are

higher than those found for the symmetric modes. Details of the modes found are presented

in Table 5.4.

Rectangular cavities in Dirichlet waveguides support trapped modes below the first cut-off

(0 < kd < π/2) for any cavity of depth h and width 2w such that

w '
1√

1− 1
d+h/2

. (5.20)

This lower limit is obtained using a simple argument whereby an oscillation of frequency

such that π
2d+h

< k < π
2d

which satisfies a Dirichlet condition on the cavity walls, |x| =

w, would be effectively trapped inside the cavity and decay to zero with distance away

from the cavity. All these non-embedded modes are y−symmetric. As the cavity width is

increased more modes appear, symmetric and antisymmetric in x. The first mode found is

x-symmetric, for h/d = 1 and width 2w/d ≈ 2.4, as predicted by eqn. (5.20). Embedded

modes for this problem (π/2 < kd < π) only appear for discrete couples (h,w) and

examples of such modes are presented in Table 5.4. Predicting the appearance of these
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modes is not as straightforward as for non-embedded modes and we are only able to identify

the suitable values of h and w by using our computational method to investigate a large

range of geometric parameters.

Searching for trapped modes occurring in cavities in Neumann waveguides is equivalent to

searching for embedded oscillations which means that they exist only for discrete paramet-

ers (h,w). The rectangular cavity has already been studied and we refer to results obtained

by Duan et. al [18]. We extended the study of this problem by looking at triangular cavities

in Neumann guides and presented five such embedded modes, which we found using our

BEM program - see Table 5.6.

We also investigated a smooth cavity in a Dirichlet waveguide, and established that in the

absence of sharp corners at the top of the cavity, trapped modes are still possible. Firstly,

for the non-embedded frequencies, (0 < kd < π/2), we found that trapped modes appear

for any cavity such that h/d = 1, w/d > 0.8. Within the next band of frequencies, (π/2 <

kd < π) we only found trapped modes for discrete couples (h/d, w/d) and examples of

two such modes are presented in Table 5.5. Undoubtedly more embedded modes could be

found, if we extended the range of geometric parameters investigated.

The last type of geometry investigated involves a sound-hard disc on the horizontal centreline

of either a Dirichlet or a Neuman waveguide with a rectangular cavity. To our knowledge

there are no known results for this geometry. The x−axis is not a line of symmetry for

this geometry anymore, hence the problem can not be decomposed into its symmetric and

antisymmetric parts. As a consequence the argument mentioned in 2.3 is not valid for this

problem and this means that all the modes we found are embedded.

A symmetric combination of the two features, cavity and disc, greatly increases the affinity

of the geometry to trapped mode type resonances. We first studied the case where the disc

centre (xc, yc) is symmetrically placed above the cavity.

We found that for both cases, Dirichlet and Neumann, trapped modes exist for discrete

triples (a/d, h/d, w/d). If one geometric parameter is fixed, the other parameters can be

varied until a mode is found. For example, for a given disc radius we varied the cavity size

and found a number of trapped modes for discrete, precise values of h and w. We thus

found that discs of all radii (0 < a/d ≤ 1) support trapped modes for many associated
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cavities. A list of modes found for both Dirichlet and Neumann cases, for cavities in the

range 0 < h/d < 6, 0 < w/d < 6, are presented in Appendix B. This contrasts with the

case of a single disc in a Dirichlet waveguide, which in the absence of a cavity, has one

trapped mode in the range π/2 < kd < π, but only if 0 < a/d < 0.67. The presence of

the disc also extends the range of cavities which support trapped modes, as in general thin

or shallow cavities do not support embedded trapped modes. If more than one geometric

parameter is fixed we were not always able to find a trapped mode, e.g. for a cavity of

given (h,w), we were not necessarily able to find any trapped modes irrespective of the

disc’s size.

As with all embedded modes, changing a geometric parameter destroys the trapped mode.

For this geometry, however, we found many nearly trapped modes, some with low radiation,

which means that physically they would be difficult to distinguish from genuine trapped

modes.

We also considered geometries without any (x, y) symmetry. As the disc is removed from

the cavity’s vertical symmetry line, any existing trapped mode is destroyed. We did not

find any pure trapped mode for the asymmetric geometries, irrespective of the disc radius

and cavity size. This does not exclude the possibility that a trapped mode may exist for a

specific set of values (a, h, w, xc, yc), but we were unable to find such a geometry. If the

disc is moved more than one wavelength from the cavity symmetry line we found nearly

trapped modes, corresponding to the pure modes of either the isolated disc or cavity. The

nearly trapped modes are oscillations localised around either the disc or the cavity, decaying

away from the trapping feature and perturbed near the cavity or disc, respectively.

The cases studied show that symmetry is an essential condition for the formation of trapped

mode type resonances. Increasing the number of trapping features, placed with a degree of

symmetry, leads to the appearance of new trapped modes. The addition of a new geometric

parameter to a problem which has one embedded trapped mode solution for a specific

discrete geometry, leads to the appearance of a continuous set of trapped modes.
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(a) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 1.4, w = 2.9 at kd ≈
2.6463 = 0.8423π.
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(b) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 1.4, w = 4 at kd ≈
2.7526 = 0.8761π
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(c) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 2.3, w = 3.6 at kd ≈
2.9913 = 0.9521π.
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(d) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 3.6, w = 2.2 at kd ≈
2.9854 = 0.9503π.
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(e) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 3, w = 3.8 at kd ≈
2.9172 = 0.9286π.
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(f) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 3, w = 3.8 at kd ≈
2.5975 = 0.8268π.
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(g) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 3.4, w = 3.8 at kd ≈
2.9302 = 0.9327π.
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(h) Trapped mode in a Dirichlet waveguide, for a = 0.4, h = 3.4, w = 3.8 at kd ≈ 2.5374 = 0.8076π.
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(i) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 3.4, w = 3.8 at kd ≈
2.4679 = 0.7855π.
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(j) Dirichlet waveguide with a cavity and a sound-hard disc, with a = 0.4, h = 3.4, w = 3.8 at kd ≈
2.6968 = 0.8584π.

Figure 5.22: Trapped modes in a Dirichlet waveguide, supported by cavities of various
sizes and a disc of radius a/d = 0.4.
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Chapter 6

Planewave spectrum analysis

6.1 Preliminaries

The catalogue of trapped modes obtained using our BEM program gives a global perspect-

ive on the structure of these solutions and reveals a series of characteristics which are com-

mon to all geometries. The numerical results indicate that on boundaries, the solution and

its normal gradient could locally be approximated by a series of simple trigonometric func-

tions, homogeneous or inhomogeneous planewaves, with wavelengths commensurate with

the size of the trapping feature. In this chapter we proceed with an analysis of a trapped

mode, based on a planewave spectrum representation, which was developed for various

characteristic problems in the classical theories of radiation, diffraction and propagation.

The idea is to employ the simplicity of plane waves travelling in diverse directions and use

them to build more elaborate types of solutions which may arise in various geometries. Our

approach is fairly flexible so that the general procedure is independent of the shape of the

trapping obstacle and could be adapted to other geometries. Once the validity of the method

is confirmed, guided by the computational results obtained and presented in Chapter 5, we

will seek to apply it to other geometries.

In this chapter we consider the Dirichlet problem, defined in Chapter 4, Eq. (4.11) -(4.15)

for a Neumann circular obstacle, of radius 0 < a/d < 0.67, placed on the centreline of a

two dimensional infinite soft waveguide of width 2d, see Fig. 6.1. A solution φ(x) satisfies

the two dimensional Helmholtz equation in the fluid region between the circle and the lines,
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and the normal gradient of the potential vanishes on the circle. Existence of eigensolutions

for this particular geometry satisfying conditions (4.11) - (4.15) follows from [22] and

calculation of associated eigenvalues were reported in [10] and [47]. In each of these

works the appropriate potential was constructed using an infinite linear combination of all

possible, suitably modified multipoles, involving Hankel functions.

We now introduce the main notation and terminology used throughout this chapter. We use

the usual notation for the the position vector r = (x, y):

x = r cos θ,

y = r sin θ, θ ∈ (0, 2π]. (6.1)

We consider a general plane wave which travels at angle α to the x axis, that is:

u(x, y) = Ueik(x cosα+y sinα) = Ueikr cos(θ−α). (6.2)

The propagation vector k has components

k = (k1, k2),

k1 = k cosα,

k2 = k sinα. (6.3)

Vector k has magnitude k as defined for the acoustic problem in Chapter 2, (2.6).

The geometric domain of the problem is denoted W . The waveguide boundaries are Γ−

and Γ+, with y(Γ−) = −d and y(Γ+) = d. A disc of radius a is placed on the centre of the

guide. The disc boundary is denoted ∂D so that

∂W = Γ− ∪ Γ+ ∪ ∂D.

A point of interest in the field, P ∈ W\∂W , has position vector r = (x, y) with x, y as

defined above (6.1). A point Q on the boundary of the domain (Q ∈ ∂W ), has position

vector r′ = (x′, y′).

Let R be the vector connecting a point P inside the domain, with a pointQ on the boundary
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Figure 6.1: Problem domain - an infinite Dirichlet waveguide with disc on its centre.

∂W , then

R = r− r′, (6.4)

with

R = R(cos ν, sin ν), ν ∈ (0, 2π]. (6.5)

In this chapter we often use the terms near and far field. The near field is in the order of the

trapped mode wavelength; it is located in the centre of the guide and it extends away from

the trapping structure as far as the oscillatory behaviour is detected. The far field is the part

of the domain where the mode is decaying exponentially. As in optics, where we borrowed

the terms from, there is not a clear boundary between the two regions, rather there is a

transition zone where the two fields overlap.

6.2 Overview of method

The most general velocity potential field satisfying the Helmholtz equation is expressible

as a superposition of harmonic terms, that is, as a Fourier integral. For this we require that

the integration in the frequency space, must run the full range from −∞ to ∞. We note
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that there is no requirement that the components of k be restricted to real values; for full

generality they must be supposed to be complex. Hence we can write our solution as an

appropriate superposition of plane waves of the form (6.2) :

φ(r) =

∫
C

P (k, sinα) eikr cos(θ−α) dα =

∫
C

P (k, sinα) eik·r dα. (6.6)

The contour of integration C is chosen so that two main requirements are satisfied:

• The range covered by α is such that sinα, hence the vertical component of the

propagation vector, k2, goes through real values from −∞ to∞,

• The sign of the imaginary part of α is determined by the requirement that the in-

homogeneous waves decay away from the y axis.

An appropriate integration path C, in the complex α plane, is that depicted in Fig. 6.2.

Figure 6.2: Complex α - contour.
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Assume x > 0 and let β ∈ R+, then the exponent

ψ = ikr cos(θ − α), (6.7)

takes the following values along the chosen contour C:

1. α = −π
2

+ iβ, ψ = −kx sinh β − iky cosh β, decay in x - direction and oscillations

in y direction,

2. α ∈
[
−π

2
, π

2

]
, ψ = ikx cosα + iky sinα , oscillations in x and y directions,

3. α = π
2
− iβ, ψ = −kx sinh β + iky cosh β, decay in x - direction and oscillations

in y direction.

In equation (6.6), P (sinα) is the spectrum function, which specifies in terms of amplitude

and phase the “weight“ attached to each plane wave of the spectrum.

We now illustrate the general strategy of our approach with a simpler case, that of a two

dimensional Dirichlet waveguide, without any obstacles. Although this geometry does not

support a trapped mode we use this example to outline the method which will later be

applied to the case of a disc on the centre of the guide, where trapped modes are known to

exist.

We consider the Helmholtz equation in this domain. Following the procedure described in

Chapter 3, after application of Dirichlet boundary conditions on Γ− and Γ+, the solution,

according to (3.10), can be written as follows:

φ(r) =

∫
Γ±

(
−∂φ(r′)

∂n

)(
− i

4
H1

0 (kR)

)
dr′, r′ ∈ Γ±. (6.8)

An integral representation for the Hankel function of first kind, according to Morse and

Feshbach [56] is

H1
0 (kR) =

1

π

∫
C

eikR cos(ν−α) dα (6.9)

where the contour C can be modified to be the same as our chosen contour in Fig. 6.2. We

also note that the result in (6.9) is independent of ν, therefore ν can be chosen so that it
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coincides with the angle of the vector R. Substituting this expression for H1
0 in (6.8) we

can write our solution as follows:

φ(r) =
i

4π

∫
Γ±

∂φ(r′)

∂n

∫
C

eikR cos(ν−α) dα

 dr′ =
i

4π

∫
Γ±

∂φ(r′)

∂n

∫
C

eik·R dα

 dr′

=

∫
Γ±

∂φ(r′)

∂n

 i

4π

∫
C

eik·(r−r
′) dα

 dr′ =

∫
C

eik·r

 i

4π

∫
Γ±

∂φ(r′)

∂n
e−ik·r

′
dr′

 dα

=

∫
C

P (k, sinα) eik·rdα (6.10)

Comparing the expression above with that given in (6.6), we infer that

P (k, sinα) =
i

4π

∫
Γ±

∂φ(x′)

∂n
e−ik·r

′
dx′. (6.11)

For a Dirichlet problem we cannot specify ∂φ(r′)/∂n in (6.10). However, if a suitable

function for a trapped mode is found, the integral in (6.11) should decay exponentially as

x→ ±∞. Suitable trial functions can be substituted for the planewave spectrum in (6.11)

to verify whether they satisfy this exponential decay requirement. The results, although

not exact for a trapped mode, can reveal useful properties of the spectrum function and

give some useful insight of its mathematical form. Further progress can be made if the

behaviour of φ(r) or its gradient could be known in certain regions of the domain. Let us

assume that some geometric, symmetry or physical factors allows us to specify ∂φ(r)
∂x

on

x = 0 for example. Then

∂φ(r)

∂x

∣∣∣∣
x=0

=

∫
C

ik cosαP (k, sinα) eiky sinα dα. (6.12)

and with the change of integration variable from α to

λ = sinα (6.13)
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(6.12) becomes
∂φ(r)

∂x

∣∣∣∣
x=0

= ik

∫ ∞
−∞

P (λ) eikyλ dλ. (6.14)

If there is some well behaved function f(k, y) which approximates the directional derivat-

ive of φ in the direction +x, at x = 0

ik

∫ ∞
−∞

P (λ) eikyλ dλ ∼ f(k, y) (6.15)

then an approximation for P (λ) is given by the Fourier inverse of Eq.(6.14), namely

P (λ) ∼ − i

2π

∫ ∞
−∞

f(k, y) e−ikyλ dy. (6.16)

The remainder of this chapter is concerned with determining a suitable approximation

for P (k, sinα) for the Dirichlet problem (D) as defined in Chapter 2, using these simple

strategies. Broadly we proceed as follows:

• We first derive conditions on P (k, sinα) motivated by the exponential decay condi-

tion at infinity. The requirement is that integration of Eq.(6.10) should result in an

expression which decays exponentially as x → ±∞. The direct application of the

method above, coupled with the method of steepest descent, leads us to conclude

that P (k, sinα) can not be an analytical smooth function, hence we will consider

functions which have two simple poles in the complex plane α.

• Guided by numeric results obtained computationally we assume a simple plane wave

form for φ on the segment normal to the disc, on x = 0, between the disc and the

waveguide wall. This simple local approximation suggests that P (k, sinα) must have

two simple poles at two particular values of α which depend on d− a.

• Again, we use our BEM solutions to approximate the normal of the solution on the

waveguide walls, in the far field. Using these simple planewave approximations we

find the same contribution to P (k, sinα) in the form of two simple complex poles at

particular values of α.

• Using these properties and conditions on the plane wave spectrum, we finally derive a

mathematical expression which satisfies certain criteria required for a trapped mode.
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The asymptotic behaviour of the approximation obtained for φ is that of a nearly

trapped mode, which is a perturbation of a genuine trapped mode solution.

6.3 Trapped mode - Case study

In this section we extend the procedure briefly introduced in the previous section, to the

case of two dimensional Dirichlet acoustic waveguide described by two infinite parallel

lines a distance 2d apart with sound hard disc (Neumann condition) of radius a < d, placed

symmetrically between them. As discussed in Chapter (5), trapped mode exists for all discs

of radius a such that 0 < a/d < 0.67, at a frequency k satisfying 0.95π < kd < π. For this

Dirichlet problem, the velocity potential calculated at a field point P (x, y) = P (x), not on

any boundary (P ∈ W\∂W ), according to Eq.(3.11), can be written as

φ(r) =

∫
∂D

φ(r′)
∂

∂n

(
−i
4
H1

0 (k0R)

)
dr′

︸ ︷︷ ︸
IDisc

+

∫
Γ±

(
−∂φ(r′)

∂n

)(
− i

4
H1

0 (k0R)

)
dr′

︸ ︷︷ ︸
IWaveguide

(6.17)

where r′,Γ±, R are as defined in section (6.2). We shall refer throughout this chapter to

IDisc, IWaveguide as the Disc Integral and Waveguide Integral respectively.

Using the integral representation for H1
0 (Eq.6.9) and expression (6.5) we have:

φ(r) = − i

4π

∫
∂D

φ(r′)
∂

∂n

∫
C

eik·(r−r
′)dα

 dr′ +
i

4π

∫
Γ±

∂φ(r′)

∂n

∫
C

eik·(r−r
′) dα

 dr′

= − i

4π

∫
C

eik·r

∫
∂D

φ(r′)(−ik · r̂′)e−ik·r′dr′
 dα +

i

4π

∫
C

eik·r

∫
Γ±

∂φ(r′)

∂n
e−ik·r

′
dr′

 dα

=

∫
C

P (k, sinα) eik·r dα. (6.18)

where

P (k, sinα) =
i

4π

∫
∂D

φ(r′)(ik · r̂′) e−ik·r′dr′ +

∫
Γ±

∂φ(x′)

∂n
e−ik·r

′
dr′

 (6.19)
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and r̂′ is the unit position vector

r̂′ =

(
x′√

x′2 + y′2
,

y′√
x′2 + y′2

)
. (6.20)

The integration order interchange in eqn. (6.18) is admissible as the limits of both integrals,

with respect to α and r, are (−∞,∞). Also, the two separate integrals are convergent for

a trapped mode, satisfying the theorems for reversing the order of integration [13].

We note that the plane wave spectrum P (k, sinα) is determined by values of φ on ∂D and

by its normal gradient on the waveguide walls. However, once the boundary conditions for

the problem are prescribed, without fully solving the problem neither φ(r′) on ∂D nor its

normal derivative ∂φ(r′)/∂n on Γ− ∪ Γ+ can not be specified.

We can however use the numeric results obtained with our BEM method and the expo-

nential decay at infinity condition in order to obtain some suitable approximations for the

solution in the far field and on x = 0 in the nearfield. These in turn will help us derive some

properties for P (k, sinα) and determine the type of function which would be suitable as a

spectrum function for trapped mode.

In Fig. 6.3 we present six trapped mode plots for discs of increasing radii. An overview of

solutions displayed in Fig. 6.3 reveals some common features and also some differentiating

aspects, which help us determine which parameters depend on the obstacle size and which

attributes are independent of a/d. For example, two main types of solution behaviour

can be distinguished in each contour plot, the near field, where the dominant behaviour

is oscillatory, and the far field where the potential decays exponentially. A comparison

can be made between these contour plots, with respect to the extent of these fields. There

is a transition between the near field, where the propagation vector in the x direction has

a near zero or small imaginary part, and the far field where the solution decays to zero.

There is a direct correlation between the disc size, and by extension the trapped mode

frequency k, and the length of this transition region. In Table 6.1 we present computational

results obtained for various a/d. Numerical results obtained with our BEM programme

show that for each trapped mode, in the far field (2π/k � |x|), the solution is similar to

a simple decaying mode in a waveguide without obstructions and the propagation vector

components tend to constant values. Let these constant values be (µ1, µ2). We adopt the
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Figure 6.3: Trapped modes in a Dirichlet waveguide with a disc on the centreline.
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notation

µ1 = k cos β0,

µ2 = k sin β0, (6.21)

where β0 is a particular value of α such that the constant components (µ1, µ2) are achieved.

The horizontal component, µ1 is imaginary hence it corresponds to the decay rate in the x

direction. Using our BEM program we easily computed the decay rate for each mode and

values for seven such cases are enclosed in Table 6.1. The decay rates obtained are similar

to
√
k2 − (π/d)2 for 0.2 ≤ a/d ≤ 0.5. We notice that lower frequencies result in higher

decay rates and oscillations vanish at short distances from the obstacle, hence determining

the length of the transition region between the near field and the far field where the solution

decays to zero. Going back to the contour plots in Fig. 6.3 we also notice some differentiat-

a/d kd µ1

√
k2 − (π/d)2

0.1 3.1340 0.2028 i 0.2086 i

0.2 3.0618 0.7043 i 0.7054 i

0.3 2.9930 0.9534 i 0.9547 i

0.4 3.0001 0.9336 i 0.9342 i

0.5 3.0715 0.6547 i 0.6597 i

0.6 3.1331 0.2331 i 0.2369 i

0.65 3.1414 0.0021 i 0.00389 i

Table 6.1: Variation of solution decay rate, in the far field, with a/d . Values found compu-
tationally (µ1) and comparison with

√
k2 − (π/d)2.

ing aspects between modes which appear beyond certain threshold values of a/d . For discs

of radius 0.5 ≤ a/d < 0.67, noticeable exponential decay appears in the region between

disc and waveguide walls. This indicates that the vertical component of the propagation

vector in the centre of the nearfield has a non-zero imaginary part. The behaviour of the

solution in the nearfield is complicated and we could not describe it exactly using simple

functions. We refer to the work of Callan et. al [10] and Maniar [47] where the appropriate

Helmholtz potential satisfying (4.11 - 4.15) was constructed using an infinite linear com-



6.3 Trapped mode - Case study 118

bination of all possible suitable modified multipoles. The wave vector components in the

near field vary with x and y, in contrast to those in the far field, where the solution settled

to an asymptotic decaying form.

We will now use these observations to approximate the solution in the far field, x → ∞
and on the segments x = 0, a < |y| < d.

6.3.1 Far field

The cartesian and polar coordinates for a point in the far field are such that

r → x, θ → 0,

y � x. (6.22)

and the potential in Eq. (6.18)

φ(r)→
∫
C

P (k, sinα) eikx cosα dα. (6.23)

The large x in the exponential term means that (6.23) is suitable for the application of the

method of steepest descent, a classical procedure for approximating integrals in the com-

plex plane. As this is a well known method for estimating integrals we only outline the

main ideas, necessary for its application to our problem. A preliminary heuristic argument

is based on the method of stationary phase. As x→∞ the amplitudes of the inhomogen-

eous waves are very small and such waves may be neglected. Moreover, the contributions

of the homogeneous waves largely annul each other by destructive interference, since with

kx� 1 the phase of the waves varies rapidly with α, in the sense that a phase change of π

is achieved by only a small change in α.

If we assume that P (k, sinα) is a smooth, analytical function of α then the method of sta-

tionary phase applies on contour C as it stands. Using the concept of phase interference

the method asserts that when kx � 1 only the part of the integration path C, in the vi-

cinity of a saddle point of the exponent (α = 0), contributes significantly to the integral.
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Consequently an approximation to (6.23) would be

P (k, 0)

∫
C

eikx cosα dα. (6.24)

The expression (6.24) is a multiple of the Hankel function, which does not decay exponen-

tially away from the obstacle. This would be satisfactory only if P (k, 0) = 0 for the correct

value of k. However, we have to consider the possibility that the spectrum function has one

or more singularities in the complex plane and carry out a more rigurous analysis using the

method of steepest descent which does not make a priori assumptions about the analyticity

of P (k, sinα).

6.3.2 Near field

The wave vector components in the near field vary with x and y, in contrast with those in

the far field, where the solution settled to an asymptotic decaying form. However, guided

by numeric results obtained with the BEM program, we carry out a simple analysis of the

solution in the near field as follows: let the nearfield propagation vector be

k ∼ η = (η1, η2).

(6.25)

Assume that the solution behaves locally as an inhomogeneous wave, then we can approx-

imate φ by

φ ∼ AeiΨ(x,y), (6.26)

We define the components of η as follows

η1 =
∂Ψ

∂x
, η2 =

∂Ψ

∂y
. (6.27)

Differentiating φ twice

φxx
φ

= −η2
1 + i

∂η1

∂x
,

φyy
φ

= −η2
2 + i

∂η2

∂y
. (6.28)
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Both η1 and η2 vary with x and y. If we assume that ∂η1
∂x
, ∂η2
∂y
� k2 then

η1 ≈

√
−φxx

φ
,

η2 ≈

√
−φyy
φ
. (6.29)

We thus use the numeric results for φ to obtain an overview of the magnitude of η compon-

ents in the near field. Mapping the magnitude of η2 across the nearfield gives an overview

of the change from real to imaginary, hence from oscillation to decay in different regions of

the guide. Examples of this mapping for six modes, are enclosed in Fig. 6.4. To interpret

these figures we first note that

k2 = η2 = η2
1 + η2

2, (6.30)

then we have two possible situations:

1. η2 < k, η1 ∈ R: both components of the propagation vector are real, hence the

solution oscillates in both directions. In our plots this behaviour corresponds to the

blue palette.

2. η2 > k, η1 ∈ C: the solution decays in the x direction. This corresponds in our plots

to the red palette.

Based on the numeric results and boundary conditions on waveguide and disc at x = 0, we

propose an approximation to φ along x = 0, |y| > a/d as follows

φ(x = 0, y) ' γ(x = 0, y) =

 A sin
[
π
2

(y−d)
d−a

]
, y > a,

A sin
[
π
2

(y+d)
d−a

]
, y < −a.

(6.31)

whereA is a constant and without loss of generality we will assume for the remainder of this

chapter that it has been normalised, so that A = 1. Consequently the vector components of

η are

η1 =

√
k2 −

(
π

2(d− a)

)2

,
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Figure 6.4: The magnitude of the vertical component, η2, of the propagation vector, in the
nearfield of trapped mode solutions for discs of different radii.

η2 =
π

2(d− a)
, (6.32)

The proposed function satisfies the boundary conditions on both the disc (Neumann) and

waveguide (Dirichlet) at y = 0. We found an agreement between values for η1 and η2 in

this region, computed according to (6.28), and illustrated in Fig.6.4, and those calculated

according to (6.32). The latter values are enclosed in Table 6.2 for seven cases. This

proposed form for φ and η (6.31 and 6.32 respectively) concurs with the appearance of

exponential decay in the centre of the nearfield, in the region between disc and waveguide

walls, for trapped modes for discs of radius 0.5 ≤ a/d. Highlighted figures in Table

6.2 show that for a radius such that 0.5 ≤ a/d the horizontal component exceeds the

magnitude of the propagation vector (η2 > k) and this gives rise to inhomogeneous waves
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in the x direction. We also note that if the components of the wavevector are achieved for

a particular value of α = α0 such that

η = (η1, η2) = η(cosα0, sinα0), (6.33)

then for cases where 0.5 ≤ a/d this particular value of α0 is imaginary and this tallies with

the changes in the profile solution which occur in the near field as the disc radius becomes

larger than 0.5 - see Fig. 6.3, i.e. the amplitude of the field decays in the region between the

disc and the waveguide walls. We will now use this simple approximation to φ on x = 0,

a/d kd η2 sinα0 α0

0.1 3.1340 1.7453 0.5569 0.5907

0.2 3.0618 1.9635 0.6413 0.6962

0.3 2.9930 2.2440 0.7497 0.8477

0.4 3.0001 2.6180 0.8726 1.0606

0.5 3.0715 3.1416 1.0228 1.5708− 0.2132 i

0.6 3.1331 3.9270 1.2534 1.5708− 0.6977 i

0.65 3.1414 4.4880 1.4287 1.5708− 0.8957 i

Table 6.2: Approximation of magnitude of the vertical component (η2) of the propagation
vector, on the segments x = 0, a < |y| < d.

to investigate a suitable choice for P (k, sinα) so that after carrying out the integration in

Eq. (6.18), the result is similar to (6.31). According to (6.18) the solution on x = 0 is

φ(x = 0, y) =

∫
C

P (k, sinα) eik2ydα =

∫
C

P (k, cosα) eiky sinα dα. (6.34)

We make the following change of variable

sinα = λ, (6.35)

and obtain

φ(x = 0, y) =

∫
C

P (k, sinα) eiky cosα dα =

∫ ∞
−∞

P (λ)√
1− λ2

eikyλ dλ. (6.36)
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The integration path C now runs along the real axis with λ being a real variable. According

to the Fourier theorem, the function P (λ)√
1−λ2 is defined for all real values of λ such that

P (λ)√
1− λ2

=
k

2π

∫ ∞
−∞

φ(y) e−ikyλ dy. (6.37)

The expression for P (λ)√
1−λ2 must be such that the result of (6.36) should be similar to the

function γ(x = 0, y) which we proposed, based on our numeric results. We propose a

spectrum, with simple poles at particular values of α, which when substituted in (6.36)

achieve the form of φ we prescribed on x = 0. Let a particular complex value of λ0

correspond to a particular value of the vertical component of the wavevector in the nearfield

η2

η2 = k sinα0 = kλ0. (6.38)

We consider the following spectrum function

P (λ) =
√

1− λ2
e−ikλ0d

2πi

(
1

λ− λ0

+
1

λ+ λ0

)
. (6.39)

and substitute it in (6.36). First let us consider what happens when integrating the first term

in (6.39) above. Assume that λ0 has a positive imaginary part. Then the path of integration

in can be closed by an infinite semicircle, above the real axis if y > 0 and below when

y < 0, without altering the value of the integral. As λ→∞, according to Jordan Lemma,

there is no contribution to the integral (6.36) from the semicircular part of the path. Once

the path has been closed the value of the integral it can be written down from Cauchy’s

residue theorem. Proceeding in the same manner with the second term we obtain for (6.36)

φ(x = 0, y) ∼

{
−eikλ0(y+d) for y < 0,

eikλ0(y−d) for y > 0.
(6.40)

These results need only be expressed in a slightly different way to cater for the case when

λ0 is real. It is then necessary to indent the path of integration in (6.36) so that it avoids the

pole at λ0. Hence, referring back to (6.37) the formal inverse is

P (λ)√
1− λ2

=
k e−iη2d

2πi

(
1

λ− λ0

+
1

λ+ λ0

)
=

kλ e−iη2d

πi(λ2 − λ2
0)
. (6.41)
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The plane wave spectrum is then suggested to take the form of a function containing simple

poles

k e−iη2d

2πi

(
cosα

sinα− sinα0

+
cosα

sinα + sinα0

)
. (6.42)

This gives an useful insight into the type of terms the plane wave spectrum should include

and will ensure that the simple functions used to approximate the normal on Γ− and Γ+

are appropriate. However, the expression for P (sinα) is not complete; if we substitute this

spectrum function in (6.10), for x → ±∞ we obtain a sum of four Fresnel integrals, a

result which does not satisfy condition φ → 0 for any π/2 < kd < π. The approximation

(6.31) for φ on x = 0 factors meaningfully the size of the disc into the spectrum but does

not reflect the behaviour of the solution on the boundary of the disc. An additional term

which would account for the circular geometry of the obstacle will result in a spectrum

which, for a particular frequency, satisfies the required decay condition at infinity.

For the remainder of this chapter we will use the results of our analysis to estimate the

integral in (6.17). Based on these observations we choose simple functions to approximate

either the potential or its normal on the boundary, and by direct substitution in (6.17) we

will obtain a first representation of a trapped mode solution.

6.3.3 Disc integral

In this section we calculate the contribution to the plane wave spectrum coming from the

disc integral (6.17) . We use the notation introduced in section (6.1) with the addition of

polar coordinates; for a point Q(x′, y′) on the disc boundary

x′ = r cos υ, y′ = r sin υ,

υ ∈ [0, 2π). (6.43)

From Eq.(6.18)

IDisc =

∫
∂D

φ(r′)
∂

∂n

(
−iH

1
0 (kR)

4

)
dr′ = − i

4π

∫
C

eik·r

∫
∂D

φ(r′)
∂

∂n

(
e−ik·r

′
)
dr′

 dα
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= − i

4π

∫
C

eik·r

∫
∂D

φ(r′)(−ik · r̂′)e−ik·r′dr′

 dα. (6.44)

Until we solve the full problem we can not specify φ(x′) on the circle. However, based

on our numeric solution, an approximation for it, on the segments {x = 0, a < y < d}
and {x = 0,−d < y < −a}, is given by the function γ(x = 0, y) (6.31) with η as in

(6.32). Assuming that a → 0 and that the solution is continuous in the region near the

disc, the vertical component of φ could be locally approximated by (6.31). The horizontal

component can also be locally approximated by a simple plane wave hence in the vicinity

of the disc we assume that φ is

φ ' γ(x, y) =

 cos η1x sin
[
π
2

(y−d)
d−a

]
, |x| < a, a < y,

cos η1x sin
[
π
2

(y+d)
d−a

]
, |x| < a, y < −a.

(6.45)

This particular choice of γ is supported by results obtained using our BEM program -

its values calculated along the disc surface agree with φ(x) computed numerically. To

illustrate the similarity, plots of γ and actual values obtained for φ, computationally, for

two cases (a/d = 0.2 and 0.6), are enclosed in Fig.6.5.
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Figure 6.5: Potential computed using the boundary element program and γ values calcu-
lated using (6.45), on boundary of two discs (a = 0.2 and a = 0.6).

The trial function γ is then used as a substitution for φ(x′) in Eq.(6.44). Calculating the

integral is straightforward and details are enclosed in Appendix ??. The disc integral con-
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tribution to the plane wave spectrum is

IDisc ∼
iπka

4
cos η2d sinα0 sin θ J1(2ka) H1

1 (kr). (6.46)

where a is the disc radius, k is the propagation vector magnitude and trapped mode fre-

quency, α0 is as defined in (6.33) and J1 is the Bessel function of first kind and first order.

To each disc radius corresponds a particular value α0 and estimates for these angles are

enclosed in Table 6.2.

6.3.4 Waveguide Integral

In this section we calculate the waveguide contribution to the plane wave spectrum function

P (sinα). For this we require a suitable function to describe the normal of φ on the wave-

guide walls. First let us consider the numeric results obtained using our BEM program. As

discussed in section (6.3), in the far field the solution tends to a simple exponential mode,

with a decay rate µ1 →
√

(π/d)2 − k2. In Fig. 6.6 plots of ∂φ
∂n

and log
(
∂φ
∂n

)
along Γ− are

shown. For |x| > kd the normal on boundaries appears to be an exponential function, with

a constant decay rate. It was also established that there is a requirement that P (sinα) be a

function with at least two simple poles, located at specific values of k2. A simple function

can be used to approximate the normal in the far field and obtain the terms prescribed by

(6.42). This far field approximation will be continued in the nearfield as well. Let ν be

a function which approximates the normal derivative on waveguide walls Γ− and Γ+ as

follows

Γ− :
∂φ

∂n
= −∂φ

∂y
∼ ν(r′) =

{
−µ2e

µ1x′ cosµ2y
′ , x′ < 0,

−µ2e
−µ1x′ cosµ2y

′ , x′ > 0,
(6.47)

Γ+ :
∂φ

∂n
=
∂φ

∂y
∼ ν(r′) =

{
µ2e

µ1x′ cosµ2y
′ , x′ < 0,

µ2e
−µ1x′ cosµ2y

′ , x′ > 0,
(6.48)

where the propagation vector µ = (µ1, µ2) and the particular value of α = β0 are as

introduced in (6.21). The transition between η and µ is not trivial and we could not model

its change with x adequately, hence only the latter wavevector is used in the expression of
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Figure 6.6: Figures on the left side correspond to ∂φ/∂n on Γ−(lower guide wall) obtained
using the BEM program. Figures on the right side represent log

(
∂φ
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)
for the same radii.

ν. We substitute (6.47) and (6.48) in the waveguide integral

IWaveguide =
i

4π

∫
C

eik·r

∫
Γ±

∂φ(r′)

∂n
e−ik·r

′
dr′

 dα =

∫
C

(
IΓ− + IΓ+

)
eik·rdα (6.49)

and obtain

IΓ− ∼
∫

Γ−

ν(r′) e−ik·r
′
dr′ = −µ2 cosµ2d e

ik2d

(
1

µ1 − ik1

+
1

µ1 + ik1

)

= −2µ1µ2 cosµ2d e
ik2d

µ2
1 + k2

1

, (6.50)
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IΓ+ ∼
∫

Γ+

ν(x′) e−ik·r
′
dr′ = −µ2 cosµ2d e

−ik2d
(

1

µ1 − ik1

+
1

µ1 + ik1

)

= −2µ1µ2 cosµ2d e
−ik2d

µ2
1 + k2

1

, (6.51)

IΓ− + IΓ+ ∼ −
4µ1µ2 cosµ2d cos k2d

µ2
1 + k2

1

. (6.52)

The total waveguide contribution to the plane wave spectrum is:

IWaveguide ∼−
i

π

∫
C

µ1µ2 cosµ2d cos k2d

µ2
1 + k2

1

eik·rdα. (6.53)

The wavevector µ is such that µ2 = π/d and k < π/d hence µ1 is purely imaginary;

therefore according to (6.7)

µ2
1 = µ2

2 − k2, (6.54)

and because k2 = µ2

µ2
1 + k2

1 = k2
2 − µ2

2, (6.55)

which allows us to re-write

IWaveguide ∼−
i cosµ2d

2π

∫
C

cos k2d

(
µ1

k2 − µ2

+
µ1

k2 + µ2

)
eik·rdα

=− i cosµ2d

2π

∫
C

cos k2d

(
cos β0

sin β0 − sinα
+

cos β0

sin β0 + sinα

)
eik·r dα. (6.56)

The kernel of the waveguide integral resulted in a series of spectrum terms containing

simple poles as prescribed by (6.42). We write compactly

IWaveguide ∼
∫
C

PWaveguide(k, sinα)eik·rdα, (6.57)
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where PWaveguide(sinα) is the waveguide contribution to the plane wave spectrum

PWaveguide(sinα) = −i cosµ2d cos k2d

2π

(
cos β0

sin β0 − sinα
+

cos β0

sin β0 + sinα

)
. (6.58)

To calculate this integral we will use the classic method of steepest descent adapted from

Clemmow [15]. We first proceed by distorting the original path to pass through a saddle

point αS = αSR + iαSI - see Fig. 6.7. At the saddle point Re(ψ) (ψ is as defined in eqn.

(3)) attains its maximum value, then it rapidly decays away from the saddle point to −∞.

At the same time Im(ψ) remains constant, on the distorted contour, and equal to its value

at the saddle point

Im[ψ(α)] = Im[ψ(αs)]. (6.59)

If the real and imaginary parts of α are displayed explicitly

α = αR + iαI (6.60)

then the exponential in (6.57) is

ψ = ikr cos(α− θ) = ikr cos(αR − θ) coshαI + kr sin(αR − θ) sinhαI . (6.61)

It is necessary for the convergence of the integral that sin(αR − θ) sinhαI be negative as

αI → ±∞. Consequently the extremes of any path of integration obtained by distorting C

must lie in the sectors specified by:

−π + θ < αR < 0 when αI > 0,

θ < αR < π + θ when αI < 0. (6.62)

For a point of interest in the field such that x > 0, θ ∈
[
−π

2
, π

2

]
, hence the regions allowed

for the modification of C are

−3π

2
< αR < 0 when αI > 0,

0 < αR <
3π

2
when αI < 0. (6.63)
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The saddle point of interest, such that the real part of ψ attains a maximum value, is αS = θ

with αSR = θ and αSI = 0. To obtain a meaningful approximation to (6.57) the requirement

is that when moving away from the saddle point, we follow a path in the complex plane

along which the real part of ψ decreases as rapidly as possible and its imaginary part is

constant

Im(ψ) = Im[ψ(αS = θ)] = ikr. (6.64)

We proceed by distorting the original path of integration C into a new path along which

ikr[1− cos(θ − α)] is real. This path is found by applying the requirement in (6.64) to the

imaginary part of ψ in 6.61).

cos(αR − θ) coshαI = 1. (6.65)

For a given θ we find that two paths satisfying (6.65). For our problem we choose the one

which passes through α = θ at an angle 3π
4

- see Fig. 6.7 - and call this modified path S(θ).

Furthermore, (6.65) is equivalent to

sin(αR − θ) = − tanhαI , (6.66)

and when both these conditions, (6.65) and (6.66), are obeyed, Eq. (6.61) states that

ikr cos(α− θ) = ikr − kr sinhαI tanhαI . (6.67)

We modify our initial contour C to follow S(θ) where the real part of ψ has its maximum

value, zero, at α = θ and decreases monotonically to −∞ away from the saddle point

on either side. It is possible, after distorting the path to S(θ), to change the variable of

integration from α to τ , where

ikr cos(α− θ) = ikr − krτ 2, (6.68)

and τ runs through real values from −∞ to∞. Expression (6.68) is equivalent to

τ =
√

2e
iπ
4 sin

α− θ
2

, (6.69)
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Figure 6.7: Modified C through the saddle point αS = θ and allowed regions (shadow) for
the convergence of the waveguide integral.

so that

dτ =
e
iπ
4

√
2

cos
α− θ

2
dα

dα =

√
2 e−

iπ
4

cos α−θ
2

dτ. (6.70)

and the explicit transformation of the waveguide integral (6.57) is

IWaveguide =
√

2 e−
iπ
4 eikr

∞∫
−∞

PWaveguide(k, sinα)√
1− iτ2

2

e−krτ
2

dτ. (6.71)

This integral is calculated using a method adapted from Clemmow [15]. We omit the calcu-

lation here but details of the intermediary steps are included in Appendix C. PWaveguide(sinα)
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contains four simple poles (6.57) each corresponding to an expression involving a Fresnel

integral. For the definition of the Fresnel complex integral please refer to eqn. (D.22),

Appendix D. Let T1, T2, T3 and T4 be the four terms in IW (6.57). We obtain the following

T1 =

∫
C

i cosµ2d cos k2d

4π
tan

α− β0

2
eikr cos(θ−α)dα

= ±4
√
πei(kr−

3π
4 ) i cosµ2d cos k2d

4π
sin

α− β0

2
F

[
∓i
√

2kr cos

(
β0 − θ

2

)]
, (6.72)

T2 =

∫
C

i cosµ2d cos k2d

4π
tan

α + β0

2
eikr cos(θ+α)dα

= ±4
√
πei(kr−

3π
4 ) i cosµ2d cos k2d

4π
sin

α + β0

2
F

[
±i
√

2kr cos

(
β0 + θ

2

)]
, (6.73)

T3 =

∫
C

i cosµ2d cos k2d

4π
cot

α− β0

2
eikr cos(θ−α)dα

= ±4
√
πei(kr−

3π
4 ) i cosµ2d cos k2d

4π
cos

α− β0

2
F

[
∓i
√

2kr sin

(
β0 − θ

2

)]
, (6.74)

T4 =

∫
C

i cosµ2d cos k2d

4π
cot

α + β0

2
eikr cos(θ+α)dα

= ±4
√
πei(kr−

3π
4 ) i cosµ2d cos k2d

4π
cos

α + β0

2
F

[
±i
√

2kr sin

(
β0 + θ

2

)]
. (6.75)

To calculate the Helmholtz potential at a point of interest with polar coordinates (r, θ) the

initial path C is indented to avoid the simple poles as listed in Table 6.3. The modified path

S(θ) crosses the saddle point αs = θ and it will capture these poles or not depending on

the θ coordinate. To illustrate this let us consider a field point with x > 0 ,−π
2
< θ < π

2
.

The relevant saddle-point is at αS = θ so allowance must be made for the saddle point

lying arbitrarily close to the poles. But β0 = sin−1
(
µ2
k

)
, µ2 = π and k < π/d hence

β0 ∈ C, β0 = π
2
− iξ for some ξ ∈ R. When distorting the initial path of integration C

into S(θ), to allow the approximation of the integral via the steepest descent method, the

poles captured are β0 and π
2
− iξ,−π

2
+ iξ, ξ ∈ R. Adding the two expressions, for IDisc
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Term Pole

sec
(
α−β0

2

)
α = π + β0

sec
(
α0+β0

2

)
α = π − β0

cosec
(
α−β0

2

)
α = β0, 2π + β0

cosec
(
α+β0

2

)
α = −β0, 2π − β0

Table 6.3: Values of α where the path integration must be indented above poles

Figure 6.8: Deformed α - contour, S(θ). Poles are captured or not depending on θ.

and IWaveguide, we obtain an approximation of a trapped mode solution

φ(r, θ) ≈iπka cos η2d

4
sinα0 sin θ J1(2ka) H1

1 (kr) +
cos[(k sin θ)d]√

π
ei(kr−

π
4 ){

± sin

(
θ − β0

2

)
F

[
∓i
√

2kr cos

(
β0 − θ

2

)]
∓ sin

(
θ + β0

2

)
F

[
±i
√

2kr cos

(
β0 + θ

2

)]
± cos

(
θ + β0

2

)
F

[
∓i
√

2kr sin

(
β0 + θ

2

)]
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∓ cos

(
β0 − θ

2

)
F

[
±i
√

2kr sin

(
β0 − θ

2

)]}
. (6.76)

with the proviso that the sign of each term must be considered for each point in the domain

as the integration path is distorted according to the method of steepest descent. Also, the

sign of the argument of each Fresnel term must take into account the value of the angle

(β0±θ
2

), and in principle for each point it has to be decided whether each simple pole is

captured or not, depending on the position of the point in the field.

The disc integral results in a term involving a Hankel function which reflects the radial

symmetry of the obstacle. The waveguide contribution is a series of the Fresnel integ-

rals, commonly found in optics, in particular describing nearfield solutions to problems

involving diffraction by infinite screens - which in our problem correspond to the infinite

waveguide walls.

As (6.76) is obtained using simple plane wave approximations of the solution and its normal

on boundaries, it is not expected to faithfully describe the nearfield potential where the

solution has a complex behaviour.

To assess the validity of (6.76) as a trapped mode prediction tool it is necessary to consider

its behaviour as x→ ±∞. The far field behaviour of the Hankel function [1] is given by

H1
1 (kr) ≈

√
2

πkr
ei(kr−

3π
4 ) (6.77)

hence IDisc (6.46), as r → x→ ±∞, asymptotically behaves like

IDisc ≈
1

2

√
π

2
e−

iπ
4 cos η2d sinα0 sin θ ka J1(2ka)

eikr√
kr

(6.78)

By Clemmow [15] an asymptotic expansion for the complex Fresnel integral

F (a) ≈ 1

2ia

[
1 +

1

(−2ia2)
+

1 · 3
(−2ia2)2

+ . . .

]
(6.79)

can be used when ∣∣∣∣√2kr cos

(
β0 ± θ

2

)
,
√

2kr sin

(
β0 ± θ

2

)∣∣∣∣ >> 1. (6.80)
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For a point in the field such that θ ∈ (−π
2
, π

2
), using the first term of (6.80), the waveguide

integral (6.71) is

IWaveguide ≈
cos[(k sin θ)d] e−

i3π
4

2
√

2π

[
cot

(
β0 − θ

2

)
− cot

(
β0 + θ

2

)
+ tan

(
β0 + θ

2

)
− tan

(
β0 − θ

2

)]
eikr√
kr
. (6.81)

We hence obtain an approximation of our solution which is valid as x→∞

φ(θ) ≈


1

2

√
π

2
e−

iπ
4 cos η2d sinα0 sin θ ka J1(2ka)︸ ︷︷ ︸

E(D)

+

cos[(k sin θ)d] e−
i3π
4

√
2π

[
cos β0

sin β0 − sin θ
− cos β0

sin β0 + sin θ

]
︸ ︷︷ ︸

E(W )


eikr√
kr

= E(k)
eikr√
kr
. (6.82)

Here E(D), E(W ) correspond to terms from the disc integral and waveguide integral re-

spectively. The solution obtained depends on k, a/d and the position of the field point. We

now check the behaviour of this solution as x → ∞, that is θ → 0. For θ << 1 we know

that

y

x
= tan θ ≈ sin θ ≈ θ. (6.83)

We have for the coefficients in (6.82) above, the following

E(D) =
a

2

√
π

2
e−

iπ
4 cos

[
πd

2(d− a)

]
π

2(d− a)
J1(2ka)

y

x
, (6.84)

E(W ) =
e−

i3π
4

√
2π

cos

(
ky

x

)
2 cos β0 sin θ

(sin β0)2 − (sin θ)2
=

2e−
i3π
4

√
2π

cos β0

(sin β0)2

y

x

=
2e−

i3π
4

√
2π

k
√
k2 − (π/d)2

(π/d)2

y

x
(6.85)
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In virtue of (6.83) we discarded the term (sin θ)2 in (6.85). We also assumed that cos
(
ky
x

)
≈

1 for θ → 0. For a trapped mode the coefficients of the terms of order O(x−1) should cancel

out. We now have a complex equation for k depending only on the geometric ratio a/d:

a

2

√
π

2
e−

iπ
4 cos

[
πd

2(d− a)

]
π

2(d− a)
J1(2ka) +

2e−
i3π
4

√
2π

k
√
k2 − (π/d)2

(π/d)2
= 0. (6.86)

We find that for the real and the imaginary part of the equation (6.86) have one, common

solution, for each a/d such that kd < π. These values of k, similar to those obtained for

trapped modes, are listed in Table 6.4. In Figure 6.9 we show an example (a/d = 0.1)

where both the real and imaginary part of E(k) become zero for a particular value of kd.

The validity of Eq. (6.82), in the sense that it can correctly predict whether a particular

a/d Actual kd Solutions of (6.86)

0.1 3.1340 3.1415

0.2 3.0618 3.0666

0.3 2.9930 2.9460

0.4 2.9907 2.8922

0.5 3.0715 2.9027

0.6 3.1331 3.1389

0.65 3.1414 N/A

Table 6.4: Comparison of trapped mode frequencies found using our BEM program and
solutions of (6.86).

geometry may support a trapped mode, is supported by the following criteria

1. The solution exhibits decay away from the trapping structure, that is φ→ 0 as θ → 0.

2. The trapped mode frequencies are very similar to those obtained using our BEM

program.

3. k varies with the radius of the disc in a specific manner - see Fig. 6.10 below. The

pattern followed by the values of k which solve the real and the imaginary parts of

(6.86) is similar to that of trapped mode frequencies found computationally: kd→ π

for a/d→ 0, then decreases with the increase of the radius, up to a/d = 0.34 where

it reaches a minimum value of kd ≈ 2.98. After this point kd increases and as
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a/d→ 0.67, kd→ π. The behavioural similarity is illustrated by Figure 6.10 which

shows side by side the variation of trapped mode frequencies found computationally

and the same for the values of kd which solve the real and the imaginary parts of the

equation (6.86).

4. A trapped mode exists only for radii such that 0 < a/d < 0.67. We find that the

real and the imaginary parts of (6.86) have a solution only for 0 < a/d < 0.62; for

a/d > 0.62 (6.86) does not have a solution in the range π/2 < kd < π.
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Figure 6.9: Real (blue) and imaginary (red) parts of E(k) for a disc of radius a/d = 0.1
and detail of intersection on kd - axis.
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Figure 6.10: Variation of kd with radius of disc a/d for trapped modes found computation-
ally using the boundary element method and values of kd which solve (6.86).

All four criteria listed above are satisfied and we believe that this is a strong endorsement of
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the validity of the trapped mode approximation and of the method developed in the sense

that it correctly signals the existence of a trapped mode. We also note that the Fresnel

integrals are solutions to diffraction problems that are valid in the nearfield, therefore our

approximation although not valid near the disc, is adequate for field points located one

wavelength away from the origin.

Another test for the validity of this approximation is as follows: for a fixed |y| < d co-

ordinate we plot the solution φ(x), found numerically with our BEM program. The curve

away from the trapping structure is exponentially decaying with absolutely no oscillation

in the far field. We call this plot a trapped mode signature. For the same coordinates, (6.73)

gives a superposition of oscillating modes and a mode with exponential decay, in both

directions, x → ±∞. A trapped mode corresponds to an isolated eigenvalue in the con-

tinuous spectrum of the relevant operator. For frequencies close to the isolated eigenvalue,

we obtain nearly trapped modes, which are perturbations of a trapped mode and appear as

superpositions of travelling modes and an exponentially decaying mode. The approxima-

tion we obtain with (6.76) is a nearly trapped mode, similar to a highly perturbed trapped

mode. The purely exponential decaying mode can only be obtained by calculating exactly

the solution for the precise trapped mode frequency. The exponential decay envelope seen

in Fig. 6.11 is only present, for a given obstacle, for a particular value of k/d (e.g for

a/d = 0.4 , kd = 2.8922 = 0.9206π). Plots for both cases, a trapped mode signature and

the trapped mode approximation are shown in Fig.(6.11).
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Figure 6.11: Trapped mode signature - φ for fixed y coordinate and the nearly trapped mode
obtained using (6.73), both cases for a disc of radius a/d = 0.4.
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6.4 Summary of Chapter

We developed a method which uses simple trigonometric trial functions to investigate

whether a trapped mode can be present in a given geometry. Although the approxima-

tions are fairly crude this observation in conjunction with the planewave spectrum method

was used to obtain a useful approximating treatment by virtue of proceeding from boundary

values rather than boundary conditions.

The plane wave spectrum analysis, as applied here, can be adapted to other trapped mode

problems. All the trapped modes we detected have an exponentially decaying part in the

far field and an oscillatory nearfield component. The approximation of the solution by a

simple decaying mode in the far field applies to all trapped modes in an infinite waveguide,

irrespective of the trapping structure. Also, although crude approximations, simple oscilla-

tions in the nearfield, with wavelength comensurate with elements of the geometry, can be

substituted for the solution in the nearfield and a suitable form for the planewave spectrum

may be found.

The results, although not exact for a trapped mode are important as near trapping arises in

corresponding finite array of cylinders as shown by Maniar and Newman [47] and Evans

and Porter [24]. Maniar and Newman calculated the distribution of forces along a finite

array of 100 cylinders at the ’near-trapping’ frequency and shown that the force on the

middle cylinder is approximately 34 times higher than that on an isolated cylinder force.

We also refer to Fig. 11(a) in [24] which shows the free-surface elevation in the plane

touching the outside of cylinders in head seas at the near-trapping frequency. The profile is

similar to the near trapped mode potential obtained using our approximation and plotted in

Fig. 6.11.
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Chapter 7

Summary and concluding remarks

7.1 Summary

The thesis has studied trapped modes in waveguides, governed by the two dimensional

Helmholtz equation. Our approach to investigating this problem was twofold. Firstly, we

developed a numerical method which can be used to study the problem over a wide range

of bounded or unbounded 2-D domains. More specifically, based on a boundary integ-

ral method we wrote a boundary element program, using Matlab software. The program

identifies the eigenmodes and eigenfrequencies which depend on a finite set of parameters,

including wave frequency and the domain configuration. We explored various methods of

differentiating between real trapped modes and spurious eigenvalues, induced by the trun-

cation of the domain. The most time efficient and reliable method we developed is based on

the computation of an energy dissipation index (EDI) for a range of geometric parameters

and frequencies. The method relies on the fact that perturbations of trapped modes result

in nearly trapped modes, which have a higher radiation loss but much lower than that of a

travelling mode. The EDI results for various parameter values provide a good indication of

potential candidates for real trapped modes.

Secondly, we carried out an analytical investigation of the trapped modes. Using our de-

tailed numerical results we established general features of trapped mode solutions, common

to many geometries. One particular observation was that a good local approximation for

the solution on the boundary is provided by simple trigonometric functions. These trial
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functions were chosen to fit numerical results and also took into account the local bound-

ary conditions and geometry. We then adapted the planewave spectrum analysis method,

developed by Clemmow [15] for various problems in the classical theories of radiation,

diffraction and propagation, and applied it to the case of a disc on the centreline of an

infinite Dirichlet acoustic waveguide. The approach uses planewaves travelling in diverse

directions to build a more elaborate approximate solution, which satisfies certain conditions

required for a trapped mode.

We obtained a simple mathematical approximation of a mode which satisfies a set of criteria

which is also satisfied by the corresponding trapped mode. From the asymptotic analysis

for this solution we obtained an equation for k which depends only on the geometric ratio

a/d. This equation has solutions which are very similar to the trapped mode frequencies.

Asymptotically, the solution obtained is similar to a nearly trapped mode, which is a per-

turbation of a genuine trapped mode. The results, although not exact may be useful as near

trapping appears in configurations which are approximations of a geometry required for a

trapped mode. The general procedure is similar for any shape of the trapping obstacle or

the boundary conditions and could be adapted to other geometries.

Using the boundary element program we found additional modes for some geometries

already studied and also investigated new structures. We extended the results of Evans and

Porter [26] for two intersecting sound-hard discs, in Neumann and Dirichlet waveguides.

We studied this geometry in the non-embedded regime for two discs of equal radius and

discs of different radii. We also studied this configuration for the next band of frequency

values, π < kd < 2π and found that embedded modes exist for discrete values of the dis-

tance between discs and any ratio a/d ≤ 0.4 for Neumann waveguides and a/d ≤ 0.3, for

Dirichlet waveguides.

We also studied the case of a rectangular cavity of depth h and width 2w in a Dirichlet

infinite waveguide of width 2d, for two frequency bands, 0 ≤ kd ≤ π/2 (non-embedded)

and π/2 < kd ≤ π (embedded). For small widths of the cavity, the eigenmode decays

slowly with distance x, and the trapped mode is close to the cut-off frequency π/2d. As

w → 0 , the solution approaches the non-trapped standing wave solution. Keeping h/d = 1

fixed and varying w/d, we found that in the non-embedded regime for 1.2 ≤ w at least

one trapped mode exists for each value of w. As the cavity width is increased additional
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modes appear. Embedded trapped modes exist at discrete couples (h/d, w/d). For cavities

of dimensions in the range 0 < h/d ≤ 6, 0 < 2w ≤ 6 we found seven modes, listed in

Table 5.4. Notably, one geometry with h/d = 2.2, w/d = 2.9, supports two x-symmetric

trapped modes, at two different frequencies.

We also considered triangular cavities in a Neumann waveguide and the frequency band

0 < kd ≤ π/2. As we do not impose any symmetry condition with respect to the centreline

of the guide, all modes found are embedded. We checked cavities in the range 0 < h/d < 6,

0 < 2w/d < 6 and found five trapped modes for this type of geometry, for discrete couples

(h/d, w/d).

To establish whether cavities without corner singularities would still have trapped modes,

we looked at a Dirichlet waveguide with a smooth lower boundary, modelled by a Gaussian

function. Keeping h/d = 1 fixed we checked the frequencies range 0 < kd < π/2

and found that non-embedded trapped modes exist for all w/d and their k-values vary

continuously with the geometry. Embedded modes in the higher frequency range, π/2 <

kd < π, exist only for discrete pairs (h/d, w/d). Details of two embedded modes we found

for this case are in Table 5.5.

The combination of a disc aligned with a cavity increases the affinity of a geometry to

trapped mode type resonances. We studied this geometry with Neumann condition on the

disc and either Neumann or Dirichlet boundary conditions on the waveguide walls and

Neumann condition on the disc. For the Neumann problem we found that trapped modes

exist in the band 0 ≤ kd ≤ π for discs of all radii and for cavities of specific depth

and width. The majority of modes are y-antisymmetric and can be either x-symmetric or

antisymmetric. Some modes are neither symmetric nor anti-symmetric with respect to the

guide centreline.

We also considered the combination of a disc and a cavity, in Dirichlet or Neumann wave-

guides, without any (x, y) symmetry. If the disc is removed from the centre of the guide

any existing trapped mode will be destroyed. As the separation between the disc and the

cavity becomes larger than approximately 2λ, depending on the disc radius and cavity size,

nearly trapped modes appear, corresponding to the pure trapped modes for either a single

cavity or a single disc in the waveguide. The frequencies are similar but not identical to

those corresponding to the pure trapped modes. We did not find any trapped modes for
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asymmetric geometries, irrespective of the disc radius and cavity size. This does not ex-

clude the possibility that a trapped mode may exist for a specific combination of geometric

parameters, however we were unable to identify such a geometry.

7.2 Possible applications

Possible applications fall into three broad categories: first, the situations where trapped

modes are undesirable, as the accumulation of energy can have destructive effects on a

structure. Already known examples are constructions supported by large arrays of standing

columns (offshore platforms, bridges and proposed designs for floating airports), long tun-

nels for high speed trains and cavities in quantum waveguides, with application in particle

accelerators. Here, the detection of trapped or nearly trapped modes is essential and a

simple method to avoid them, where design permits, is to break the symmetry of the con-

figuration.

The second category relates to information about structures which are not directly access-

ible. Trapped modes are suitable for these applications due to their high localisation and

the fact that they are sensitive to environmental changes. A growing body of research is

concerned with their use for sensors and non-destructive testing. A part of the energy in

a propagating guided wave excites the trapped energy mode through mode conversion and

then leaks out [16]. This leak appears as a long-tailed ringing due to a high Q of the trapped

mode [53]. Q, the quality factor of an oscillator, is the standard term in physics that de-

scribes how efficiently energy is stored rather than lost by a resonator or equivalently the

resonant frequency over the bandwidth of the resonance. The resonant frequency and Q

of a trapped energy is sensitive to changes in its vibrating region and hence can be used to

sense changes in waveguide width, surface condition (roughness and corrosion) and liquid

properties (density and viscosity) [53]. Extensive experiments in this regard have been

conducted recently at the University of Tokyo [55] to assess the feasibility of remote ex-

citation of trapped energy modes in plates and pipes and its applications to sensors and

non-destructive testing. This is of practical interest, because for example pipes are used

in many engineering applications, chemical processing and micro-capillaries are used in

biomedical applications.

A third category is that of structures where high resonance at a narrow band of frequencies

is desired. A rapidly growing area of research is that of trapped modes in metamaterials
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i.e. in artificially structured matter with new properties, some with no analogue in natur-

ally available materials. The exotic and often dramatic functionality of most metamaterials

is based on the resonant interactions of the metamaterial constituents with the incident

electromagnetic radiation and the associated dispersive effects [69]. Hence achieving res-

onances with high-quality factors is essential in order to make metamaterials performance

efficient. However, resonance quality factors demonstrated by conventional metamaterials

are often limited to rather small values due to the fact that resonating structural elements

suffer significant losses due to radiation. As recent theoretical analysis showed, high-Q

resonances involving trapped modes are possible in metamaterials [64]. Fedotov et al. re-

ported exceptionally narrow transmission and reflection resonances in planar metamaterials

[30]. The appearance of the narrow resonances is attributed to the excitation of, otherwise

inaccessible, symmetric trapped modes.

Undoubtedly there are other applications where it is desirable to control the energy input

and minimise the radiation loss. A recent discussion with a member of the organisation

Cancer Research UK revealed that research is being carried out into the feasibility of using

trapped mode frequencies in laser therapy, in order to destroy cancerous cells located be-

hind ribs. The cancerous tissue, which can not be accessed without opening the rib cage,

would be the trapping structure and the bones would act as the ‘waveguide’ structure. We

were not able to find any published work on this subject but one can see how such research

and applications would be of great interest.

7.3 Further work

The BEM program we developed is flexible and gives reliable results. We found a large

number of trapped modes but for all the geometries studied there is scope to investig-

ate whether solutions exist for higher frequency ranges. The number of modes decreases

sharply with every cutoff frequency and the presence of additional travelling modes in-

creases computation time for each set of parameters, as they cause more spurious modes.

The thee dimensional analogue for this method, possibly with axial symmetry, would also

be of great interest, especially given that the great majority of existing results, both analyt-

ical and numeric, have been developed for the 2-D problem.

The planewave spectrum analysis method has only been applied to the Dirichlet case. The

obvious extension is that of the analogous Neumann problem. Also a simple case to con-
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sider would be that of a cavity in either Dirichlet or Neumann waveguide. Further refine-

ments of the choice of trial functions may also be possible.

7.4 Conclusion

The rich catalogue of results obtained with our BEM program leads us to conclude that

trapped modes, far from being rare, singular occurrences, are ubiquitous in a wide array of

oscillating systems. Both methods we developed, the numerical and analytical, are valid,

general and flexible so that they can easily be extended to other cases, which has been the

aim of this work.

Trapped modes are an interesting phenomenon, easy to understand intuitively yet difficult

to pin down mathematically. They can have varied and surprising profiles. And probably

the trapped modes found so far, the implications of this interesting phenomenon and its

possible applications are only at the beginning.
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Appendix A

New Results - Two discs in an infinite

waveguide



Two discs of equal radius on the centreline 
of an infinite,  Neumann waveguide 
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2.8 1.2909574 0.410923542 1.425769678 0.453835523 

3.2 1.307144279 0.416075974 1.404045812 0.446920617 

3.6 1.318606308 0.419724442 1.388288268 0.441904847 

4 1.326869995 0.422354849 1.377067953 0.438333318 

4.4 1.332892134 0.424271751 1.369129699 0.435806499 

4.8 1.337307552 0.425677219 1.363515938 0.434019588 

5.2 1.340555118 0.426710949 1.359536165 0.43275279 

5.6 1.342946923 0.427472283 1.356705145 0.43185165 

6 1.345038699 0.428138114 1.354684222 0.431208372 

6.4 1.346001797 0.428444677 1.353237153 0.430747757 

6.8 1.346951732 0.42874705 1.352198709 0.430417211 

7.2 1.347646913 0.428968332 1.351452541 0.430179699 

7.6 1.348154153 0.429129791 1.350916094 0.430008943 

8 1.348523235 0.429247274 1.350530315 0.429886146 

8.4 1.348791255 0.429332587 1.350252653 0.429797763 

8.8 1.348985456 0.429394403 1.350052078 0.429733918 

9.2 1.349129214 0.429440162 1.349909156 0.429688425 

9.6 1.349232329 0.429472985 1.349802943 0.429654616 

10 1.349309349 0.429497501 1.349726205 0.42963019 

         



a1 /d= a2/d = 0.7  

       c/d k1d k1d / π Type k2d k2d / π Type 

  
     

  

0 1.324184354 0.421499985 
   

  

0.2 1.27620699 0.406228352 

C
o

u
p

le
d

, 
sy

m
m

et
ri

c 

  
  

0.4 1.208391701 0.384642125 
  

  

0.8 1.061830624 0.337990395 
  

  

1.2 0.951069099 0.302733989 
  

  

1.6 1.060927497 0.337702921 

Se
p

ar
at

e,
 s

ym
m

et
ri

c 

1.497789492 0.476760088 

Se
p
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at

e,
 a

n
ti

-s
ym

m
et
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c 

2 1.169739844 0.372338886 1.465312628 0.466422405 

2.4 1.22869358 0.391104399 1.433091206 0.456166032 

2.8 1.253909184 0.399130756 1.404678223 0.44712192 

3.2 1.274593028 0.405714613 1.382037567 0.439915192 

3.6 1.288717375 0.410210522 1.365125602 0.434531959 

4 1.298607773 0.413358726 1.352933015 0.430650947 

4.4 1.305637253 0.415596274 1.346478057 0.428596275 

4.8 1.310676909 0.417200442 1.338212233 0.425965188 

5.2 1.314307377 0.418356053 1.333939397 0.424605105 

5.6 1.316928754 0.419190461 1.330933432 0.423648278 

6 1.31882273 0.419793331 1.328814187 0.422973704 

6.4 1.3203689 0.420285491 1.327316573 0.422496999 

6.8 1.321176483 0.420542552 1.326257522 0.422159894 

7.2 1.321885042 0.420768093 1.325507035 0.421921007 

7.6 1.322393015 0.420929786 1.324975841 0.421751923 

8 1.322756097 0.421045358 1.324600268 0.421632375 

8.4 1.323013541 0.421127305 1.324333725 0.421547531 

8.8 1.323197262 0.421185785 1.324145375 0.421487578 

9.2 1.323327698 0.421227304 1.324011036 0.421444817 

9.6 1.323420361 0.4212568 1.323914173 0.421413984 

10 1.323485786 0.421277625 1.32384313 0.421391371 

       

         



a1 /d= a2/d = 0.8 

       c/d k1d k1d / π Type k2d k2d / π Type 

  
     

  

0 1.324184354 0.421499985 
   

  

0.2 1.248278989 0.397338614 
   

  

0.4 1.222465209 0.389121852 

Se
p

ar
at

e,
 s

ym
m

et
ri

c 

1.553855546 0.494606425 

Se
p

ar
at

e,
 a

n
ti

-s
ym

m
et

ri
c 

 

0.6 1.169508502 0.372265248 1.539432685 0.490015497 

0.8 1.129383379 0.359493054 1.524988137 0.485417665 

1 1.013923974 0.32274127 1.511348467 0.481076033 

1.2 0.845974522 0.269281424 1.498632419 0.477028399 

1.4 0.781909002 0.248888784 1.486589162 0.47319492 

1.6 0.794328775 0.252842111 1.47512193 0.469544796 

1.8 1.027340312 0.327011813 1.463792971 0.465938684 

2 1.107242422 0.352445385 1.452425688 0.462320374 

2.4 1.190130127 0.378829299 1.428827036 0.454808708 

2.8 1.234419566 0.392927033 1.405392167 0.447349175 

3.2 1.261608401 0.401581488 1.384439697 0.440679812 

3.6 1.27945232 0.40726137 1.367386597 0.435251654 

4 1.291618349 0.411133928 1.354381223 0.431111925 

4.4 1.300107337 0.413836051 1.344840815 0.428075126 

4.8 1.306114401 0.415748154 1.337987693 0.425893714 

5.2 1.310401831 0.417112882 1.333114288 0.424342465 

5.6 1.313476934 0.418091716 1.329663033 0.423243899 

6 1.315687663 0.418795411 1.327221209 0.422466644 

6.4 1.317284509 0.419303702 1.325500733 0.421919001 

6.8 1.318430327 0.419668426 1.324280042 0.421530444 

7.2 1.319253205 0.419930356 1.323418084 0.421256075 

7.6 1.319845557 0.420118907 1.322810348 0.421062627 

8 1.320270615 0.420254206 1.322384467 0.420927065 

8.4 1.320577556 0.420351909 1.322088563 0.420832876 

8.8 1.320802372 0.420423469 1.321886349 0.420768509 

9.2 1.320971716 0.420477373 1.321752306 0.420725842 

9.6 1.321105911 0.420520089 1.321669517 0.42069949 

10 1.321220762 0.420556647 1.321627651 0.420686163 

 

  



Two discs of different radius on the 
centerline of an infinite, Neumann waveguide 

a1 /d= 0.3,  a2/d = 0.7  

kc1 d  = 1.50867707 
    

  

kc2 d  = 1.32418435 
    

  

  
     

  

c/d k1d k1d / π Type k2d k2d / π Type 

  
     

  

0.2 1.323496894 0.421281161 

  

  
  

0.3 1.323508668 0.421284908 
  

  

0.4 1.323420655 0.421256893 
  

  

0.5 1.295276492 0.412298349 
  

  

0.6 1.271724003 0.404801376 

C
o

u
p

le
d

, s
ym

m
et

ri
c,

 lo
ca

lis
ed

 
ar

o
u

n
d

 la
rg

er
 d

is
c 

  
  

0.7 1.236562292 0.393609082 
  

  

0.8 1.200250089 0.382050576 
  

  

0.9 1.170958733 0.372726869 
  

  

1 1.134286267 0.361053688 
  

  

1.2 1.234728953 0.393025513 
  

  

1.4 1.262607078 0.401899375 
  

  

1.6 1.280296604 0.407530113 
  

  

1.8 1.292651503 0.411462791       

2 1.30159264 0.414308836 

Se
p

ar
at

e,
 s

ym
m

et
ri

c,
  l

o
ca

lis
ed

 a
ro

u
n

d
 la

rg
e 

 d
is

c 

1.55819657 0.495988213 

Se
p
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at

e,
 a

n
ti

-s
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m
et

ri
c,

 lo
ca
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ed

 a
ro

u
n

d
 s

m
al

l d
is

c 

2.4 1.312991402 0.417937166 1.548314517 0.492842665 

2.8 1.319480437 0.420002686 1.539570796 0.490059459 

3.2 1.322458241 0.420950548 1.532667794 0.48786217 

3.6 1.324199665 0.421504859 1.527543841 0.486231169 

4 1.32510927 0.421794395 1.523858651 0.48505814 

4.4 1.325581819 0.421944811 1.521246039 0.484226521 

4.8 1.325826802 0.422022792 1.519403672 0.483640079 

5.2 1.325953748 0.4220632 1.518105773 0.483226946 

5.6 1.326019405 0.422084099 1.517190867 0.482935723 

6 1.326052911 0.422094764 1.5165455 0.482730297 

6.4 1.326068146 0.422099613 1.51609042 0.482585441 

6.8 1.326075647 0.422102001 1.515770319 0.48248355 

7.2 1.326092532 0.422107376 1.515546582 0.482412332 

7.6 1.326125308 0.422117809 1.515392222 0.482363198 

8 1.326080768 0.422103631 1.515288347 0.482330133 

8.4 1.326090764 0.422106813 1.515126058 0.482278475 

8.8 1.326085719 0.422105207 1.515073621 0.482261784 

9.2 1.326086871 0.422105574 1.515041317 0.482251501 

9.6 1.32608557 0.42210516 1.515024609 0.482246183 

10 1.32608278 0.422104272 1.515020248 0.482244795 



Two discs of equal radius on the centerline 
of an infinite, Dirichlet waveguide 

a1 /d= a2/d = 0.2  

       
c/d k1d k1d / π Type k2d k2d / π Type 

0 3.0561657 0.9728078         

0.4 2.8696533 0.9134390 

C
o

u
p

le
d

, 
sy

m
m

et
ri

c 
m

o
d

es
 

  
  

0.8 2.9751325 0.9470141 
  

  

1.2 3.0042589 0.9562853 
  

  

1.6 3.0214238 0.9617491       

2 3.0329515 0.9654184 
Sy

m
m

et
ri

c 
m

o
d

es
 

3.1248486 0.9946702 

Se
p

ar
at

e,
 a

n
ti

-s
ym

m
et

ri
c 

m
o

d
es

 

2.4 3.0411364 0.9680238 3.1094268 0.9897613 

2.8 3.0471421 0.9699355 3.0975929 0.9859944 

3.2 3.0516439 0.9713684 3.0890223 0.9832664 

3.6 3.0550661 0.9724577 3.0828950 0.9813159 

4 3.0576909 0.9732932 3.0785090 0.9799199 

4.4 3.0597149 0.9739375 3.0753512 0.9789147 

4.8 3.0612799 0.9744357 3.0730616 0.9781859 

5.2 3.0624912 0.9748212 3.0713898 0.9776537 

5.6 3.0634285 0.9751196 3.0701615 0.9772628 

6 3.0641530 0.9753502 3.0692540 0.9769739 

6.4 3.0647121 0.9755282 3.0685802 0.9767594 

6.8 3.0651429 0.9756653 3.0680781 0.9765996 

7.2 3.0654742 0.9757707 3.0677025 0.9764800 

7.6 3.0657285 0.9758517 3.0674208 0.9763904 

8 3.0659234 0.9759137 3.0672091 0.9763230 

8.4 3.0660726 0.9759612 3.0670497 0.9762722 

8.8 3.0661865 0.9759975 3.0669295 0.9762340 

9.2 3.0662734 0.9760252 3.0668390 0.9762052 

9.6 3.0663397 0.9760462 3.0667707 0.9761834 

10 3.0663901 0.9760623 3.0667193 0.9761671 

 

  



 

a1 /d= a2/d = 0.3  

       
c/d k1d k1d / π Type k2d k2d / π Type 

0 2.9907554 0.9519870         

0.1 2.9394609 0.9356595 

C
o

u
p
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d

, s
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m
et

ri
c 

m
o

d
es

 

  
  

0.2 2.8668404 0.9125436 
  

  

0.3 2.8057705 0.8931045 
  

  

0.4 2.7400486 0.8721846 
  

  

0.5 2.6592189 0.8464557 
  

  

0.7 2.7852560 0.8865745 
  

  

0.8 2.8439360 0.9052529       

1.2 2.9081389 0.9256894 
Sy

m
m

et
ri

c 
m

o
d

es
 

3.1362458 0.9982981 

D
e-

co
u

p
le

d
, a

n
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m

m
et

ri
c 

m
o

d
es

 

1.6 2.9400380 0.9358432 3.0998215 0.9867038 

2 2.9595495 0.9420539 3.0670548 0.9762739 

2.4 2.9723821 0.9461386 3.0443969 0.9690616 

2.8 2.9811330 0.9489241 3.0314073 0.9649269 

3.2 2.9872172 0.9508608 3.0200937 0.9613257 

3.6 2.9914884 0.9522203 3.0138963 0.9593530 

4 2.9944982 0.9531784 3.0098313 0.9580591 

4.4 2.9966194 0.9538536 3.0067012 0.9570627 

4.8 2.9981118 0.9543286 3.0053422 0.9566301 

5.2 2.9991589 0.9546619 3.0041337 0.9562454 

5.6 2.9998914 0.9548951 3.0033164 0.9559853 

6 3.0004024 0.9550578 3.0027614 0.9558086 

6.4 3.0007580 0.9551709 3.0023830 0.9556882 

6.8 3.0010049 0.9552495 3.0021244 0.9556059 

7.2 3.0011761 0.9553040 3.0019474 0.9555495 

7.6 3.0012946 0.9553418 3.0018259 0.9555109 

8 3.0013768 0.9553679 3.0017425 0.9554843 

8.4 3.0014337 0.9553860 3.0016852 0.9554661 

8.8 3.0014733 0.9553986 3.0016457 0.9554535 

9.2 3.0015009 0.9554074 3.0016186 0.9554449 

9.6 3.0015205 0.9554137 3.0015999 0.9554389 

10 3.0015347 0.9554182 3.0015871 0.9554349 

 

 

 

  



 

a1 /d= a2/d = 0.4  

       
c/d k1d k1d / π Type k2d k2d / π Type 

0 2.9998213 0.9548728         

0.4 2.873801 0.914759 

C
o

u
p
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d

 s
ym

m
et

ri
c 

m
o

d
es

 

      

0.8 2.747781 0.874646       

1.2 2.884731 0.918239 3.128299 0.995768 

D
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u
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d
, a
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m
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c 

m
o

d
es

 

1.6 2.928180 0.932069 3.098739 0.986359 

2 2.952439 0.939791 3.069600 0.977084 

2.4 2.967716 0.944653 3.047231 0.969964 

2.8 2.977874 0.947887 3.033584 0.965620 

3.2 2.984825 0.950099 3.021425 0.961750 

3.6 2.989655 0.951637 3.014611 0.959581 

4 2.993037 0.952713 3.010107 0.958147 

4.4 2.995410 0.953469 3.007678 0.957374 

4.8 2.997075 0.953999 3.005112 0.956557 

5.2 2.998241 0.954370 3.003766 0.956128 

5.6 2.999055 0.954629 3.002856 0.955839 

6 2.999623 0.954810 3.002238 0.955642 

6.4 3.000018 0.954935 3.001818 0.955508 

6.8 3.000291 0.955022 3.001530 0.955417 

7.2 3.000481 0.955083 3.001334 0.955354 

7.6 3.000612 0.955125 3.001199 0.955311 

8 3.000703 0.955153 3.001107 0.955282 

8.4 3.000766 0.955174 3.001044 0.955262 

8.8 3.000810 0.955187 3.001000 0.955248 

9.2 3.000840 0.955197 3.000970 0.955238 

9.6 3.000862 0.955204 3.000949 0.955232 

10 3.000877 0.955209 3.000935 0.955227 

 

 

 

 

 

 

 

 



 

a1 /d= a2/d = 0.5  

       
c/d k1d k1d / π Type k2d k2d / π Type 

0 3.071451 0.977673         

0.4 3.067872 0.976534 

Sy
m

m
et

ri
c 

m
o

d
es

 

  
  

0.8 2.879437 0.916553       

1.2 2.950033 0.939025 3.139192 0.999236 

D
ec
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u
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d
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m

m
et
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c 

m
o

d
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1.6 2.999079 0.954637 3.131632 0.996829 

2 3.021638 0.961817 3.123343 0.994191 

2.4 3.035324 0.966174 3.114221 0.991287 

2.8 3.044489 0.969091 3.105358 0.988466 

3.2 3.050969 0.971153 3.097587 0.985993 

3.6 3.055708 0.972662 3.091244 0.983973 

4 3.059252 0.973790 3.086287 0.982396 

4.4 3.061942 0.974647 3.082507 0.981193 

4.8 3.064004 0.975303 3.079659 0.980286 

5.2 3.065593 0.975809 3.077524 0.979606 

5.6 3.066822 0.976200 3.075925 0.979097 

6 3.067775 0.976503 3.074726 0.978716 

6.4 3.068513 0.976738 3.073826 0.978429 

6.8 3.069086 0.976920 3.073149 0.978214 

7.2 3.069529 0.977061 3.072639 0.978051 

7.6 3.069872 0.977171 3.072252 0.977928 

8 3.070137 0.977255 3.071960 0.977835 

8.4 3.070342 0.977320 3.071738 0.977765 

8.8 3.070500 0.977370 3.071570 0.977711 

9.2 3.070621 0.977409 3.071442 0.977670 

9.6 3.070714 0.977439 3.071345 0.977640 

10 3.070786 0.977461 3.071272 0.977616 

 

 

 

 

 

 

 

 

 



Two discs of different radius on the 
centerline of an infinite, Dirichlet waveguide 

a1 /d= 0.2    
     a2/d = 0.4           

       
c/d k1d k1d / π Type k2d k2d / π Type 

kc1 3.056166 0.972808         

kc2 3.071451 0.977673 
   

  

0.4 3.002378 0.955687 

Sy
m

m
et

ri
c 

m
o

d
es

 

  
  

0.8 2.923478 0.930572 
  

  

1.2 2.987336 0.950899       

1.6 3.012973 0.959059 3.134666 0.997795 

D
e
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o

u
p
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d
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n
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sy

m
m

et
ri

c 
m

o
d

es
 

2 3.028394 0.963968 3.123862 0.994356 

2.4 3.038725 0.967256 3.112335 0.990687 

2.8 3.046027 0.969581 3.102008 0.987400 

3.2 3.051360 0.971278 3.093694 0.984754 

3.6 3.055334 0.972543 3.087360 0.982737 

4 3.058329 0.973497 3.082659 0.981241 

4.4 3.060599 0.974219 3.079216 0.980145 

4.8 3.062868 0.974941 3.076712 0.979348 

5.2 3.063602 0.975175 3.074907 0.978773 

5.6 3.064551 0.975477 3.073621 0.978364 

6 3.065234 0.975694 3.072720 0.978077 

6.4 3.065710 0.975846 3.072105 0.977881 

6.8 3.066029 0.975947 3.071698 0.977752 

7.2 3.066234 0.976013 3.071436 0.977669 

7.6 3.066363 0.976054 3.071273 0.977617 

8 3.066441 0.976078 3.071173 0.977585 

8.4 3.066487 0.976093 3.071113 0.977566 

8.8 3.066515 0.976102 3.071078 0.977554 

9.2 3.066531 0.976107 3.071057 0.977548 

9.6 3.066540 0.976110 3.071044 0.977544 

10 3.066546 0.976112 3.071037 0.977542 
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Appendix B

Results - Disc and cavity in an infinite

waveguide

B.1 Neumann waveguide



r=0.2 

      Mode no. h/d w/d kd kd/π x-Symmetry 
0.2-1 0.4 0.4 1.2956 0.4124 Symmetric 

0.2-2 0.5 5.0 1.2948 0.4121 Symmetric 

0.2-3 0.8 5.25 1.2293 0.3913 Symmetric 

0.2-4 0.8 6.1 1.0734 0.3417 Symmetric 

0.2-5 0.8 7.0 1.3244 0.4216 Antisymmetric 

0.2-6 2.8 4.8 1.3264 0.4222 Symmetric 

0.2-7 3.2 5.5 1.2239 0.3896 Symmetric 

0.2-8 3.6 6.1 1.1371 0.3619 Symmetric 

0.2-9 3.8 5.5 1.2239 0.3896 Symmetric 

0.2-10 4.6 4.2 1.4353 0.4569 Symmetric 

0.2-11 5.8 4.2 1.2187 0.3879 Symmetric 

0.2-12 5.8 6.4 1.2178 0.3876 Symmetric 

0.2-13 5.8 5.4 1.2176 0.3876 Symmetric 

 

 

Mode 02-2 

 

Mode 02-5 

 



Mode 02-6 

 

Mode 02-10 

 

r=0.4 

      Mode no. h/d w/d kd kd/π x-Symmetry 
0.4-1 0.8 6.0 1.15662 0.3682 Symm 

0.4-2 1.4 6.75 0.98842 0.3146 Symmetric 

0.4-3 1 7.0 1.26435 0.4025 Antisymmetric 

0.4-4 3.4 6.0 1.14732 0.3652 Symmetric 

0.4-5 3.8 6.2 1.09465 0.3484 Symmetric 

0.4-6 4.8 4.4 1.36155 0.4334 Antisymmetric 

0.4-7 4.2 7.0 1.02482 0.3262 Symmetric 

0.4-8 4.6 3.4 1.40248 0.4464 Antisymmetric 

0.4-9 5 6.6 1.45577 0.4634 Antisymmetric 

 

 



Mode 04-1

 

Mode 04-2

 

Mode 04-7

 

 



Mode 04-8

 

 

r=0.6 

      Mode no. h/d w/d kd kd/π x-Symmetry 
0.6-1 0.6 6.0 1.37107 0.4364 Antisymmetric 

0.6-2 0.8 6.5 1.23149 0.3920 Symmetric 

0.6-3 2.2 4.5 1.40747 0.4480 Symmetric 

0.6-4 2.6 4.5 1.28866 0.4102 Symmetric 

 

Mode 06-1 

 

Mode 06-3

 



 

 

 

  

a = 0.8 

      Mode no. h/d w/d kd kd/π x-Symmetry 
0.8 -1 0.6 5.75 1.3846 0.4407 Antisymmetric 

0.8 -2 2.6 4.5 1.2643 0.4024 Symmetric 

0.8 -3 3.6 6.5 1.2309 0.3918 Antisymmetric 

0.8 -4 4.8 2 1.3206 0.4204 Symmetric 

 

 

Mode no. 0.8–3  

 

Mode no. 0.8–4  
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B.2 Dirichlet waveguide



a/d= 0.2    

      Mode No. h/d w/d kd kd / π Type 
0.2 - 1 2.0 1.2 3.05274 0.97172 Symmetric 

0.2 - 2 2.4 2.9 2.94200 0.93647 Symmetric 

0.2 - 3 2.7 1.7 2.83115 0.90118 Symmetric 

0.2 - 4 3.6 2.9 2.94046 0.93598 Symmetric 

0.2 - 5 3.7 3.6 2.83115 0.90118 Symmetric 

0.2 - 6 4.0 1.2 3.05436 0.97223 Symmetric 

0.2 - 7 4.0 3.5 2.71868 0.86538 Symmetric 

 

Mode No 0.2 - 1

 

Mode 0.2 - 6

 



Mode No. 0.2 - 5

 

Mode No. 0.2 - 7 

 

 

 

 

 



a/d= 0.3    

      Mode No. h/d w/d kd kd / π Type 
0.3 - 1 1.2 3.4 2.91233 0.92702 Symmetric 

0.3 - 2 1.6 4.0 2.64178 0.84090 Symmetric 

0.3 - 3 1.6 3.4 3.04218 0.96836 Antisymmetric 

0.3 - 4 1.8 1.3 2.98267 0.94941 Symmetric 

0.3 - 5 2.6 1.8 2.98330 0.94961 Symmetric 

0.3 - 6 2.2 3.4 2.99660 0.95385 Symmetric 

0.3 - 7 2.8 1.6 2.99660 0.95385 Symmetric 

0.3 - 8 2.8 3.2 3.07459 0.97867 Anti-symm 

0.3 - 9 3 3.8 2.59016 0.82447 Symmetric 

0.3 - 10 3 3.6 2.96646 0.94425 Antisymmetric 

0.3 - 11 3.2 3.2 3.06215 0.97471 Symmetric 

0.3 - 12 3.2 4.2 3.01957 0.96116 Symmetric 

0.3 - 13 3.2 4 2.81968 0.89753 Antisymmetric 

0.3 - 14 3.2 4 3.02608 0.96323 Symmetric 

0.3 - 15 3.2 4.2 3.01957 0.96116 Symmetric 

0.3 - 16 3.2 5 2.69225 0.85697 Antisymmetric 

0.3 - 17 3.8 4.8 2.49856 0.79532 Antisymmetric 

0.3 - 18 4.2 1.6 2.98325 0.94960 Symmetric 

 

Mode No. 0.3 - 2

 



Mode No. 0.3 – 3  

 

Mode No. 0.3 – 5 

 

Mode No. 0.3 – 6

 



Mode No 0.3 - 11

 

Mode No. 0.3 – 9

 

Mode No. 0.3 - 10

 

 

 

 



a/d= 0.4   

      Mode No. h/d w/d kd kd / π Type 
0.4 - 1 0.4 3.8 2.91181 0.92686 Antisymmetric 

0.4 - 2 0.6 4.2 2.72432 0.86718 Antisymmetric 

0.4 - 3 0.8 4.8 2.52567 0.80395 Antisymmetric 

0.4 - 4 1 3.6 3.09261 0.98441 Symmetric 

0.4 - 5 1.4 3 2.64636 0.84236 Symmetric 

0.4 - 6 1.4 4 2.75261 0.87618 Symmetric 

0.4 - 7 1.8 4 2.83507 0.90243 Antisymmetric 

0.4 - 8 2.2 3.6 2.99137 0.95218 Symmetric 

0.4 - 9 2.4 4.8 2.46092 0.78333 Antisymmetric 

0.4 - 10 3 3.8 2.91729 0.92860 Antisymmetric 

0.4 - 11 3 3.8 2.59755 0.82683 Symmetric 

0.4 - 12 3.2 1.4 2.98553 0.95033 Symmetric 

0.4 - 13 3.2 5 2.46796 0.78558 Symmetric 

0.4 - 14 3.2 5 2.69685 0.85843 Antisymmetric 

0.4 - 15 3.4 4 2.45937 0.78284 Symmetric 

0.4 - 16 3.4 3.8 2.93025 0.93273 Symmetric 

0.4 - 17 3.6 2.2 2.98549 0.95031 Symmetric 

0.4 - 18 3.8 2 2.95417 0.94034 Symmetric 

0.4 - 19 4 4 2.67420 0.85122 Symmetric 

0.4 - 20 4.4 4.2 2.53742 0.80769 Symmetric 

 

Mode No. 04 – 3

 

Mode No. 0.4 – 4

 



Mode No. 0.4 - 6

 

Mode No.  0.4 - 8

 

Mode 0.4 – 10

 

Mode 0.4 - 11 



 

 

Mode No.0.4 – 16

 

Mode No.0.4 – 20

 

 



a/d= 0.5   

      Mode No. h/d w/d kd kd / π Type 
0.5 - 1 1.2 2 3.05683 0.97302 Symmetric 

0.5 - 2 1.6 4 2.91675 0.92843 Antisymmetric 

0.5 - 3 3.4 2.6 3.03562 0.96627 Symmetric 

0.5 - 4 3.6 4 2.45102 0.78018 Symmetric 

0.5 - 5 4 1.2 3.05626 0.97284 Symmetric 

0.5 - 6 4 1.6 3.06547 0.97577 Symmetric 

 

Mode No. 0.5 – 1

 

Mode No. 0.5 - 2

 



Mode No. 0.5 - 3

 

 

Mode No 0.5 – 4

 

  

a/d= 0.6    

      Mode No. h/d w/d kd kd / π Type 
0.6 - 1 1.8 1.2 3.13480 0.99784 Symmetric 

0.6 - 2 2.2 2.8 3.08010 0.98043 Symmetric 

0.6 - 3 2.2 4 2.54860 0.81124 Symmetric 

0.6 - 4 3.2 3.2 3.11298 0.99089 Symmetric 

0.6 - 5 3.2 3.6 2.70943 0.86244 Symmetric 

0.6 - 6 3.2 4 3.08229 0.98112 Symmetric 

0.6 - 7 3.4 2.2 3.116000 0.99185 Symmetric 



  Mode 0.6 – 4

 

Mode No. 0.6 – 5

 

 

a/d= 0.7    

      Mode No. h/d w/d kd kd / π Type 
0.7 - 1 1.0 3 3.094245 0.98493 Symmetric 

0.7 - 2 1.2 5 3.072042 0.97786 Antisymmetric 

0.7 - 3 1.4 3.6 2.866064 0.91230 Symmetric 

0.7 - 4 1.4 4.4 2.969265 0.94515 Antisymmetric 

0.7 - 5 2.0 3 3.079549 0.98025 Symmetric 

0.7 - 6 2.0 3.2 3.011674 0.95865 Symmetric 

0.7 - 7 2.4 4.6 3.056370 0.97287 Antisymmetric 

0.7 - 8 2.8 2.9 3.135751 0.99814 Antisymmetric 

0.7 - 9 3.0 3.2 2.985512 0.95032 Symmetric 

0.7 - 10 3.0 4.4 2.284029 0.72703 Symmetric 



Mode No. 0.7 – 1

 

Mode 0.4 – 4

 

Mode No. 0.7 - 6

 

 



Mode No. 0.7 – 7

 

Mode 0.7 – 10 

 

a/d= 0.8   

      h/d   w/d kd kd / π Type 
0.8 - 1 0.8 1.2 3.006279 0.95693 Symmetric 

0.8 - 2 1.2 4.4 2.60853 0.83032 Symmetric 

0.8 - 3 1.4 5.8 2.90441 0.92450 Antisymmetric 

0.8 - 4 1.8 5.2 2.67329 0.85093 Antisymmetric 

0.8 - 5 2.8 2 3.00612 0.95688 Symmetric 

0.8 - 6 2.8 5.4 3.00583 0.95679 Symmetric 

0.8 - 7 3.0 4 2.48272 0.79027 Symmetric 

0.8 - 8 3.0 4 2.81717 0.89673 Symmetric 

 



Mode No. 0.8 – 1

 

Mode No. 0.8 – 3

 

Mode No. 0.8 – 5

 



Mode 0.8 – 6

 

a/d= 0.9   

      Mode No.   w/d kd kd / π Type 
0.9 - 1 1.0 4.8 2.601422 0.82806 Symmetric 

0.9 - 2 1.4 5.8 2.889752 0.91984 Antisymmetric 

0.9 - 3 1.6 3.6 2.876110 0.91549 Symmetric 

0.9 - 4 1.6 5.6 2.160214 0.68762 Symmetric 

0.9 - 5 1.8 3.2 2.672035 0.85054 Symmetric 

0.9 - 6 1.8 4.6 2.367837 0.75371 Symmetric 

0.9 - 7 1.8 5 2.239986 0.71301 Symmetric 

0.9 - 8 1.8 5.6 2.085912 0.66397 Symmetric 

0.9 - 9 1.8 5.8 2.043547 0.65048 Symmetric 

0.9 - 10 2.8 4 2.878430 0.91623 Symmetric 

0.9 - 11 2.4 6 2.978324 0.94803 Antisymmetric 

 

Mode No. 0.9 – 3

 



Mode No. 0.9- 5

 

Mode No. 0.9 - 8

 

Mode No. 0.8 - 9

 



Mode No. 0.9 – 11
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Appendix C

Disc Integral

This section is concerned with resolving the disc integral in (6.17). The notation used is as

introduced in section (6.1) and (6.3.3). In expresssion (6.44) change inner integral variables

to polar coordinates

IDisc = − a

4π

∫
C

eik·r

k cosα

2π∫
0

φ(x′) cosψ e−ik·r
′
dψ

︸ ︷︷ ︸
D1

+k sinα

2π∫
0

φ(x′) sinψ e−ik·r
′
dψ

︸ ︷︷ ︸
D2

 dα

= − a

4π

∫
C

eik·r (k1D1 + k2D2) dα. (C.1)

First write the trial function γ (6.31) as

γ(x′) =

{
= eiη1x

′
+e−iη1x

′

2
· eiη2(y

′−d)−e−iη2(y′−d)
2i

, y > 0,

= eiη1x
′
+e−iη1x

′

2
· eiη2(y

′+d)−e−iη2(y′+d)
2i

, y < 0.
(C.2)

and substitute for φ(x′) in (C.1). D1, D2 are then

D1 ∼
cos η2d

4i

2π∫
0

ei[(η1−k1)x′+(η2−k2)y′] − ei[(η1−k1)x′+(−η2−k2)y′]

+ ei[(−η1−k1)x′+(η2−k2)y′] − ei[(−η1−k1)x+(−η2−k2)y′] cosψ dψ
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=
cos η2d

4i

4∑
j=1

2π∫
0

εj e
αj cosψ+βj sinψ cosψ dψ (C.3)

D2 ∼
cos η2d

4i

2π∫
0

ei[(η1−k1)x′+(η2−k2)y′] − ei[(η1−k1)x′+(−η2−k2)y′]

+ ei[(−η1−k1)x′+(η2−k2)y′] − ei[(−η1−k1)x+(−η2−k2)y′] sinψ dψ

=
cos η2d

4i

4∑
j=1

2π∫
0

εj e
αj cosψ+βj sinψ sinψ dψ (C.4)

where

α1 = ia(η1 − k1), β1 = ia(η2 − k2) (C.5)

α2 = ia(η1 − k1), β2 = ia(−η2 − k2)

α3 = ia(−η1 − k1), β3 = ia(η2 − k2)

α4 = ia(−η1 − k1), β4 = ia(−η2 − k2)

and

ε1 = ε3 = +1

ε2 = ε4 = −1

The integrand is analytic, we move to the complex unit disc D(0, 1), i.e. centered at

(x, y) = (0, 0) with a radius r = 1. We make the following substitutions:

z = eiψ (C.6)

dψ=
dz

iz

cosψ =
1

2

(
z +

1

z

)
(C.7)

sinψ=
1

2i

(
z − 1

z

)
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(C.8)

With this substitution the exponential in integrand of D1 and D2 becomes:

αj cosψ + βj sinψ =
1

2

(
αj +

βj
i

)
z +

1

2

(
αj −

βj
i

)
1

z
(C.9)

Let

τj =
1

2

(
αj +

βj
i

)
(C.10)

λj =
1

2

(
αj −

βj
i

)
(C.11)

We obtain for D1:

D1 ∼
cos η2d

8i

4∑
j=1

εj

∫
D(0,1)

eτjz+
λj
z

(
z +

1

z

)
dz

iz
(C.12)

= −cos η1d

8

4∑
j=1

εj

 ∫
D(0,1)

(
∞∑
m=0

(τjz)m

m!

)(
∞∑
n=0

λnj
n!zn

)
dz

+

∫
D(0,1)

(
∞∑
p=0

(τjz)p

p!

)(
∞∑
s=0

λsj
s!zs+2

)
dz

 (C.13)

The integrand is an analytic function of z, except at z = 0, and by Cauchy’s theorem all

terms in the expansion above are zero, except for those where

m− n = −1 and p = s+ 1 (C.14)

Collect all the residues and obtain for D1

D1 ∼ −
iπ cos η2d

4

4∑
j=1

εj(τj + λj)
∞∑
m=0

(λjτj)
m

m!(m+ 1)!
(C.15)

Following the same route we obtain for D2

D2 ∼ −
π cos η2d

4

4∑
j=1

εj(λj − τj)
∞∑
n=0

(λjτj)
n

n!(n+ 1)!
(C.16)
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Noting that:

τj + λj = αj (C.17)

λj − τj = iβj (C.18)

we have the disc kernel:

k1D1 + k2D2 ∼ −
iπ cos η2d

4

4∑
j=1

εj (k1αj + k2βj)
∞∑
m=0

(λjτj)
m

m!(m+ 1)!
(C.19)

We also have for each element of the series expansion above that:

τjλj =
1

4
(α2

j + β2
j ) (C.20)

Compute for each j:

λ1τ1 = −a
2

(k2 − k·η) =−a
2

4
(k− η)2

λ2τ2 = −a
2

(k2 − k·η̄) =−a
2

4
(k− η̄)2

λ3τ3 = −a
2

(k2 + k·η̄) =−a
2

4
(k + η̄)2

λ4τ4 = −a
2

(k2 + k·η) =−a
2

4
(k + η)2 (C.21)

where we defined:

η̄ = (η1,−η2) (C.22)

The identities above are possible because:

k2 − k · η = k2 − k1η1 − k2η2 (C.23)

But k2 = η2 hence

η2 − k · η = η2 − k1η1 − k2η2 (C.24)

= k2 − k1η1 − k2η2 (C.25)

→ 2( k2 − k · η) = ( k − η)2 (C.26)
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We also have that

α1k1 + β1k2 = −ia(k2 − η·k) = −ia
2

(k− η)2

α2k1 + β2k2 = −ia(k2 − η̄·k) = −ia
2

(k− η̄)2

α3k1 + β3k2 = −ia(k2 + η̄·k) = −ia
2

(k + η̄)2

α4k1 + β4k2 = −ia(k2 − η·k) = −ia
2

(k + η)2 (C.27)

Hence

k1D1 + k2D2 ∼
iπ cos η2d

4

4∑
j=1

εj

∞∑
m=0

(−1)m+1
(a

2

)2m+1 (k− ηj)2m

m!(m+ 1)!
(C.28)

where

η1 = η (C.29)

η2 = η̄

η3 =−η̄

η4 =−η

We compute the disc contribution to the spectrum:

IDisc ∼ −
cos η2d

8

4∑
j=1

εj

∫
C

eik·r
∞∑
m=0

(−1)m+1
(a

2

)2(m+1) (k− ηj)2m+2

m!(m+ 1)!
dα

= −cos η2d

8

4∑
j=1

εj

∞∑
m=0

(−1)m+1

m!(m+ 1)!

(a
2

)2(m+1)
∫
C

eik·r(k− ηj)2(m+1) dα

= −cos η2d

8

4∑
j=1

εj

∞∑
m=0

(−1)m+1

m!(m+ 1)!

(a
2

)2(m+1)
∫
C

ei(k−η
j+ηj)·r(k− ηj)2(m+1) dα

= −cos η2d

8

4∑
j=1

εj

∞∑
m=0

(−1)m+1

m!(m+ 1)!

(a
2

)2(m+1)

eiη
j ·r
∫
C

ei(k−η
j)·r(k− ηj)2(m+1) dα

= −cos η2d

8

4∑
j=1

εj

∞∑
m=0

1

m!(m+ 1)!

(a
2

)2(m+1)

eiη
j ·r
∫
C

∇2(m+1)
[
ei(k−η

j)·r dα
]
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= −cos η2d

8

4∑
j=1

εj

∞∑
m=0

1

m!(m+ 1)!

(a
2

)2(m+1)

eiη
j ·r ∇2(m+1)

e−iηj ·r ∫
C

eik·r dα


= −cos η2d

8

4∑
j=1

εj

∞∑
m=0

1

m!(m+ 1)!

(a
2

)2(m+1)

eiη
j ·r ∇2(m+1)

[
e−iη

j ·rπH1
0 (kr)

]
(C.30)

We show here the first few terms, for j = 1, for example:

m = 0 : ∇2
[
e−iη

1·r πH1
0 (kr)

]
= π

(
H1

0 (kr)∇2e−iη
1·r + 2∇e−iη1·r · ∇H1

0 (kr) + eiη
1·r∇2H1

0 (kr)
)

= π

[
(iη)2H1

0 (kr)e−iη
1·r − 2ik

r
η1 · rH1

1 (kr) e−iη
1·r

−k2H1
0 (kr) e−iη

1·r
]

= −2πk2
[
H1

0 (kr)− i cos(α0 − θ) H1
1 (kr)

]
e−iη

1·r

(C.31)

m = 1 : ∇4
[
e−iη

1·r πH1
0 (kr)

]
= 8πk4

[
H1

0 (kr)− i cos(α0 − θ)H1
1 (kr)

]
e−iη

1·r

(C.32)

m = 2 : ∇6
[
e−iη

1·r πH1
0 (kr)

]
= −32πk6

[
H1

0 (kr)− i cos(α0 − θ)H1
1 (kr)

]
e−iη

1·r

(C.33)

By induction we can show that the m-th term is:

∇2(m+1)
[
e−iη

1·r πH1
0 (kr)

]
= (−1)m+1π 22m+1 k2(m+1)

[
H1

0 (kr)− i cos(α0 − θ)H1
1 (kr)

]
e−iη

1·r

(C.34)

Adding the contributions for all j we get the disc spectrum:

IDisc ∼
iπ

4
cos η2d sinα0 sin θ H1

1 (kr)
∞∑
m=0

(−1)m(ka)2m+2

m!(m+ 1)!
(C.35)

But

∞∑
m=0

(−1)m(ka)2m+1

m!(m+ 1)!
= J1(2ka) (C.36)
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Finally we get the expression for the disc integral as:

IDisc ∼
iπ

4
cos η2d sinα0 sin θ ka J1(2ka) H1

1 (kr) (C.37)
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Appendix D

Waveguide Integral

The waveguide integral is solved using the method of steepest descent and the result ob-

tained is valid for y → ±∞. The waveguide integral is (6.56)

IWaveguide ∼−
i cosµ2d

2π

∫
C

cos k2d

(
µ1

k2 − µ2

+
µ1

k2 + µ2

)
eik·rdα

=− i cosµ2d

2π

∫
C

cos k2d

(
cos β0

sin β0 − sinα
+

cos β0

sin β0 + sinα

)
eik·r dα. (D.1)

Each term in (D.1) is now re-written in a form which allows us to solve this integral using

a method developed by Clemmow [15].

cos β0

sinα− sin β0

=
1

2

(
tan

α + β0

2
+ cot

α− β0

2

)
,

cos β0

sinα + sin β0

=
1

2

(
tan

α− β0

2
+ cot

α + β0

2

)
. (D.2)

First, consider the plane wave representation

I(α) =

∫
S(θ)

sec

(
α− β0

2

)
eikr cos(θ−α)dα, (D.3)

in which the only singularities of the spectrum function in the complex α− plane are simple

poles at α = ±β0, β0 +(2n+1)π, n = 1, 2, ..., and the path of integration is distorted from
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C to S(θ) - see Fig. (D.1). With a change of variable from α to α− θ, (D.3) is

I(α) =

∫
S(0)

sec

(
α− β0 + θ

2

)
eikr cosαdα. (D.4)

where the path of integration S(0) is that depicted in Fig. (D.1)

Figure D.1: Integration path S(0)

Reversing the sign of α we get

I(−α) =

∫
S(0)

sec

(
α− β0 + θ

2

)
eikr cosαdα (D.5)

The addition of (D.4) and (D.5) and division by two puts (D.4) in the form

I(α) = 2 cos

(
β0 − θ

2

)∫
S(0)

cos(α
2
)

cosα + cos(β0 − θ)
eikr cosαdα (D.6)
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The same procedure applied to

I(α) =

∫
S(θ)

sec

(
α + β0

2

)
eikr cos(θ−α)dα, (D.7)

results in

2 cos

(
β0 + θ

2

)∫
S(0)

cos(α
2
)

cosα + cos(β0 + θ)
eikr cosαdα. (D.8)

For the poles of the spectrum of the form

I(α) =

∫
S(θ)

cosec
(
α− β0

2

)
eikr cos(θ−α)dα, (D.9)

we follow the same change of variable from α to α− θ we have that

I(α) = −I(−α) (D.10)

and by addition of I(α) and −I(α) and division by two we get

I(α) = 2 sin

(
β0 − θ

2

)∫
S(0)

cos(α
2
)

cosα− cos(β0 − θ)
eik0r cosαdα. (D.11)

The same routine applied to

I(α) =

∫
S(θ)

cosec
(
α + β0

2

)
eikr cos(θ−α)dα, (D.12)

results in

I(α) = 2 sin

(
β0 + θ

2

)∫
S(0)

cos(α
2
)

cosα− cos(β0 + θ)
eikr cosα dα. (D.13)

Now consider again:

2 cos

(
β0 − θ

2

)∫
S(0)

cos(α
2
)

cosα + cos(β0 − θ)
eikr cosα dα. (D.14)



Appendix D. Waveguide Integral 201

We make the change of variable from α to τ and by (6.70) the expression (D.6) becomes

I(α) = 2e
1
4
iπeikr

√
2 cos

β0 − θ
2

∫ ∞
−∞

e−k0rτ
2

iτ 2 + 2 cos2 β0−θ
2

dτ

= 2e−
1
4
iπeikrb

∫ ∞
−∞

e−krτ
2

τ 2 + ib2
dτ (D.15)

where

b = i
√

2 cos

(
β0 − θ

2

)
. (D.16)

Integral (D.15) is similar to that in Clemmow [15] and we give here some details for com-

pleteness. The integral can be expressed in terms of the complex Fresnel integral. Let

I = b

∫ ∞
−∞

e−χτ
2

τ 2 + ib2
dτ, (D.17)

where χ is a real positive parameter and we will show that the expression above is also a

form of the complex Fresnel integral. Since

d

dχ

(
Ie−ib

2χ
)

=− b
∫ ∞
−∞

e−χ(τ2+ib2)dτ,

= −
√
π b

e−ib
2χ

√
χ
, (D.18)

it follows that

I =
√
π b eib

2χ

∫ ∞
χ

eib
2χ′

√
χ′
dχ′, (D.19)

the upper limit being determined by the fact that I → 0 as χ→∞ ([15]). The transforma-

tion χ′ = τ 2/b2 shows that (D.19) leads to

I = 2
√
πeib

2χ

∫ ∞
b
√
χ

e−iτ
2

b dτ = 2
√
π F (b

√
χ). (D.20)

hence

b

∫ ∞
−∞

e−λrτ
2

τ 2 + ib2
dτ = ±2

√
π F (±b

√
λ). (D.21)
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where F is the Fresnel complex integral which has the particular form

F (a) = eia
2

∫ ∞
a

e−iτ
2

dτ. (D.22)

The integral in (D.17) is an odd function of b and the corresponding result for b real and

negative is

I = 2
√
πF (−b√χ). (D.23)

By analytic continuation, therefore

b

∫ ∞
−∞

e−χτ
2

τ 2 + ib2
dτ = ±2

√
πF (∓b√χ), (D.24)

where χ is real and positive, and where the upper sign holds for −3
4
π < arg b < 1

4
π and

the lower sign for 1
4
π < arg b < 5

4
π [15]. Applying this result to integrals in our problem

we get for

I(α) =

∫
S(θ)

sec

(
α− β0

2

)
eikr cos(θ−α)dα (D.25)

=± 4
√
πe−

iπ
4 eik0rF

[
±i
√

2kr cos

(
β0 − θ

2

)]
(D.26)

with the upper sign for β0 − θ between S(−π) and S(π) and the lower sign otherwise,

noting that the expression cos
(
β0−θ

2

)
has period 4π in β0 − θ. We also note that in the

argument of the Fresnel integral we have that β0 = sin−1
(
µ2
k

)
, µ2 = π and k < π/d hence

β0 ∈ C, β0 = π
2
− iξ for some ξ ∈ R.

Each term in our waveguide integral (D.1) has a simple pole which can be factored out by

writing for example

T (α) =

∫
C

i cosµ2d cos k2d

4π
tan

α− β0

2
eikr cos(θ−α)dα

=

∫
C

Q(cosα) sec

(
α− β0

2

)
eikr cos(θ−α)dα. (D.27)
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where Q(cosα) is

i cosµ2d cos k2d

4π
sin

(
α− β0

2

)
. (D.28)

Q(cosα) has no singularities in the vicinity of the saddle-point so it may be removed from

under the integral sign with α equated to θ. Thus we obtain for each term in the waveguide

integral the following expression∫
S(θ)

Q(cosα) sec

(
α− β0

2

)
eik·rdα

=± 4
√
πei(kr−

3π
4 )Q(cos θ)F

[
∓i
√

2kr cos

(
β0 − θ

2

)√
2k0r

]
,

(D.29)

∫
S(θ)

Q(cosα) sec

(
α + β0

2

)
eik·rdα

=± 4
√
πei(kr−

3π
4 )Q(cos θ)F

[
±i
√

2kr cos

(
β0 + θ

2

)]
,

(D.30)

∫
S(θ)

Q(cosα)cosec
(
α− β0

2

)
eik·rdα

=± 4
√
πei(kr−

3π
4 )Q(cos θ)F

[
∓i
√

2kr sin

(
β0 − θ

2

)]
(D.31)

∫
S(θ)

Q(cosα)cosec
(
α + α0

2

)
eik·rdα

=± 4
√
πei(kr−

3π
4 )Q(cos θ)F

[
±i
√

2kr sin

(
β0 + θ

2

)]
(D.32)
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Appendix E

Boundary Element Program

We present an example of the boundary element program developed for the case of a Di-

richlet waveguide with a cavity and a disc on the centre.



%DISC AND SKEW CAVITY IN A DIRICHLET WAVEGUIDE 

 

% The program calculates the energy dissipation for a range of frequencies 

[kmin,kmax] and a set of geometric parameters specified by r (disc radius), 

hp (cavity height vector) and wp (cavity width vector). 

 

global a  b l X Y d R1 R2 R3 R4 R5 L LNN Alpha Beta W1 W2 W3 W4 N Nc k0 Vmin;    
%% Declare global variables for this program 
hp =(1:0.2:4); %% cavity height range 
wp =(1:0.2:4); %% cavity width range 

  
%% Structure m stores the energy dissipation for each k, hp and wp. 
r=0.5;a=16; l=0.1;  Beta=pi; kmin=pi/2;kmax=pi;kp=300; 
m =struct('KValues',{},'Energy',{}); 
 for i=1:length(hp ) 
     for j=1:length(wp ) 
         [m(i,j).KValues m(i,j).Energy] =EnergyDissipation(hp (i),hp 

(i),wp(j),r,c1,c2,kmin,kmax,kp); 
     end 
 end   
%% 
save('m.mat','m','a','l','hp','wp','r','b','kmin','kmax','kp') 
 

%% For each geometry select and display the minimum energy dissipation index 

and the correspondent frequency  

 
EnMin=zeros(length(hp),length(wp)); 
 for i=1:length(hp) 
     for j=1:length(wp) 
         if isempty(m(i,j).Energy)==1 
             EnMin(i,j)=1; 
         else 
            EnMin(i,j)=min(m(i,j).Energy); 
         end 

     end 
 end 
 [ind, e]=min(EnMin); 
 %% 
index1=1   ;  %  
index2=1   ;  
h= hp(index1)    
w=wp(index2)   
[W1 W2 W3 W4 N Nc L LNN Alpha Xc Yc X Y d WX WY]=fBoundary(h,h,w ,r,0,0 ); 
R1=R(-1); R2=R(-0.5);R3=R(0);  R4=R(0.5);R5=R(1); 
 M0=real(M(k0)); 
           [V0 lambda0]=eig(M0); Lambda=abs(lambda0); 
           T= diag(Lambda); [Emin,IndT]=min(T); 
           Vmin=V0(:,IndT);  
ft=@Phi; 
%% 
[xp,vp]=VPhi(-(a/2)+0.2,(a/2)-0.2,-0.7,100);figure, plot(xp,vp),grid on 
%%  Display trapped mode signature  

 

 

 

 



function [W1 W2 W3 W4 N Nc L LNN Alpha Xc Yc X Y d WX WY]= 

fBoundary(h1,h2,w,r,c1,c2) 
%This function calculates the coordinates of points around the boundary. 
%The boundary consists of  
%a rectangular waveguide with length a, width b, a disc of radius  
% a with centre coordinates (c1, c2) and  
%a cavity of side heights h1, h2 % and width h2 

  
global  a   b l  ; 
Nc=ceil(2*pi*r/l); % No of points around disc 
%W1...W4 = Indices of corners of the waveguide 
%C1..C4 - Indices of corners of cavity 
%l = Length of boundary element 
w1=sqrt(((h1-h2)^2)+w^2);  %w1 is the distance betweern C2 and C3 i.e. the 

segment at the bottom of the cavity 

  
n1=floor(((a/2)-(w/2))/l);           W1=1+Nc;  
n2=floor(h1/l );                     C1=W1+n1; 
n3=floor(w1/l) ;                     C2=C1+n2; 
n4=floor(h2/l) ;                     C3=C2+n3; 
n5=n1;                               C4=C3+n4; 
n6=floor(b/l) ;                      W2=C4+n5; 
n7=floor(a/l) ;                      W3=W2+n6; 
n8=n6  ;                             W4=W3+n7; 
N=Nc+n1+n2+n3+n4+n5+n6+n7+n8;                    %Total no of points on the 

boundary  
Xc=r*double(cos((((0:Nc-1)*2)./Nc)*pi))-c1;      %X coordinates of points on 

circle 
Yc=r*double(sin((((0:Nc-1)*2)./Nc)*pi))-c2;      %Y coordinates of points on 

circle 
%The following are vectors with x and y coordinates of points on the 
%boundary - taken on each segment going anticlockwise 
xstep=l*cos(acos(w/w1)); 
ystep=l*sin(acos(w/w1)); 

X1=zeros(1,n1); 
for i=1:n1 
    X1(i)=-(a/2)+(i-1)*l ; 
end 
X2=zeros(1,n2); 
for i=1:n2 
    X2(i)=-w/2; 
end 
X3=zeros(1,n3); 
for i=1:n3 
    X3(i)=(-w/2)+(i-1)*xstep ; 
end 
X4=zeros(1,n4); 
for i=1:n4 
    X4(i)=w/2 ; 
end 
X5=zeros(1,n5); 
for i=1:n5 
    X5(i)=w/2+(i-1)*l ; 

end 
X6=zeros(1,n6); 
for i=1:n6 



    X6(i)=a/2; 
end 
X7=zeros(1,n7); 
for i=1:n7 
    X7(i)=(a/2)-(i-1)*l ; 
end 
X8=zeros(1,n8); 
for i=1:n8 
    X8(i)=-a/2 ; 
end 
Y1=zeros(1,n1); 
for i=1:n1 
    Y1(i)=-b/2; 
end 
Y2=zeros(1,n2); 
for i=1:n2 
    Y2(i)=-b/2-(i-1)*l; 
end 
Y3=zeros(1,n3); 
for i=1:n3 
    if h1<h2 
        Y3(i)=((-b/2)-h1)-ystep*(i-1); 
    else 
        Y3(i)=(-(b/2))-h1+ystep*(i-1); 
    end 
end 

  
Y4=zeros(1,n4); 
for i=1:n4 
    Y4(i)=(-(b/2))-h2 +(i-1)*l; 
end 
Y5=zeros(1,n5); 
for i=1:n5 
    Y5(i)=-b/2; 

end 
Y6=zeros(1,n6); 
for i=1:n6 
    Y6(i)=(-b/2)+(i-1)*l; 
end 
Y7=zeros(1,n7); 
for i=1:n7 
    Y7(i)=b/2; 
end 
Y8=zeros(1,n8); 
for i=1:n8 
    Y8(i)=b/2-(i-1)*l; 
end 
%Waveguide coordinates: 
WX=[X1 X2 X3 X4 X5 X6 X7 X8];   
WY=[Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8]; 
%Domain coordinates 
X=[Xc X1 X2 X3 X4 X5 X6 X7 X8];  
Y=[Yc Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8]; 

L=zeros(N,1); 
for i=1:N 
    if(i<Nc) 
         L(i)=sqrt((X(i+1)-X(i)).^2 +(Y(i+1)-Y(i)).^2); 



    elseif (i==Nc) 
         L(i)=sqrt((X(1)-X(i)).^2 +(Y(1)-Y(i)).^2); 
    elseif (i>Nc)&&(i<N) 
         L(i)=sqrt((X(i+1)-X(i)).^2 +(Y(i+1)-Y(i)).^2); 
    else  
        L(i)=sqrt((X(Nc+1)-X(i)).^2 +(Y(Nc+1)-Y(i)).^2); 
    end 
end 

  
Alpha=zeros(N,1);   %Alpha stores the angles in radians between any two 

boundary elements 
for i=1:N 
    if i==1 
        Alpha(i)=(2*pi)-acos((((X(i)-X(Nc))^2)+((Y(i)-Y(Nc))^2)+  ((X(i+1)-

X(i))^2)+((Y(i+1)-Y(i))^2 )-(((X(i+1)-X(Nc))^2)+((Y(i+1)-Y(Nc))^2)))/(2*( 

sqrt    ((((X(i)-X(Nc))^2)+((Y(i)-Y(Nc))^2)))*   sqrt( (((X(i+1)-

X(i))^2)+((Y(i+1)-Y(i))^2)))   ))); 
    elseif (i>1)&&(i<Nc) 
        Alpha(i)=(2*pi)-acos((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)+  ((X(i+1)-

X(i))^2)+((Y(i+1)-Y(i))^2 )-(((X(i+1)-X(i-1))^2)+((Y(i+1)-Y(i-1))^2)))/(2*( 

sqrt    ((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)))*   sqrt( (((X(i+1)-

X(i))^2)+((Y(i+1)-Y(i))^2)))   ))); 
    elseif (i==Nc) 
        Alpha(i)=(2*pi)-acos((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)+  ((X(1)-

X(i))^2)+((Y(1)-Y(i))^2 )-(((X(1)-X(i-1))^2)+((Y(1)-Y(i-1))^2)))/(2*( sqrt    

((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)))*   sqrt( (((X(1)-X(i))^2)+((Y(1)-

Y(i))^2)))   ))); 
    elseif (i==(Nc+1)) 
        Alpha(i)=acos((((X(i)-X(N))^2)+((Y(i)-Y(N))^2)+  ((X(i+1)-

X(i))^2)+((Y(i+1)-Y(i))^2 )-(((X(i+1)-X(N))^2)+((Y(i+1)-Y(N))^2)))/(2*( sqrt    

((((X(i)-X(N))^2)+((Y(i)-Y(N))^2)))*   sqrt( (((X(i+1)-X(i))^2)+((Y(i+1)-

Y(i))^2)))   ))); 
    elseif (i<N)&&((Nc+1)<i) 
        Alpha(i)=acos((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)+  ((X(i+1)-

X(i))^2)+((Y(i+1)-Y(i))^2 )-(((X(i+1)-X(i-1))^2)+((Y(i+1)-Y(i-1))^2)))/(2*( 

sqrt    ((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)))*   sqrt( (((X(i+1)-

X(i))^2)+((Y(i+1)-Y(i))^2)))   ))); 
     elseif (i==N) 
        Alpha(i)=acos((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)+  ((X(Nc+1)-

X(i))^2)+((Y(Nc+1)-Y(i))^2 )-(((X(Nc+1)-X(i-1))^2)+((Y(Nc+1)-Y(i-

1))^2)))/(2*( sqrt    ((((X(i)-X(i-1))^2)+((Y(i)-Y(i-1))^2)))*   sqrt( 

(((X(Nc+1)-X(i))^2)+((Y(Nc+1)-Y(i))^2)))   ))); 
    end 
end 
Alpha(W1:W2)=0; 
Alpha(W3:W4)=0; 
d=zeros(N,N); 
for i=1:N 
    for j=1:N 
        if (j<Nc) 
            d(i,j)= -(X(j)*Y(j+1)-X(j+1)*Y(j)-X(i)*(Y(j+1)-Y(j))-Y(i)*(X(j)-

X(j+1))); 
        elseif (j==Nc) 

             d(i,j)= -(X(j)*Y(1)-X(1)*Y(j)-X(i)*(Y(1)-Y(j))-Y(i)*(X(j)-

X(1))); 
         elseif (j==N) 



             d(i,j)=X(j)*Y(Nc+1)-X(Nc+1)*Y(j)-X(i)*(Y(Nc+1)-Y(j))-Y(i)*(X(j)-

X(Nc+1)); 
        else 
            d(i,j)=X(j)*Y(j+1)-X(j+1)*Y(j)-X(i)*(Y(j+1)-Y(j))-Y(i)*(X(j)-

X(j+1)); 

        
        end 
    end 
end  
LNN=repmat(L',N,1);  
 

%% END OF BOUNDARY FUNCTION 

 
function Matrix=M(k) 

%% This   function calculates the integrals for either Phi or its derivatives 

at nodal points around the boundary. The matrix has zero determinant for a 

trapped mode frequency. The eigenvector corresponding to the zero eigenvalue 

stores solves the trapped mode problem.  

 
global    N  Nc d R1 R2 R3 R4 R5   W1 W2 W3 W4  L LNN Alpha Beta; 
Matrix= 19*((A(k)+B(k)-(C(k)+D(k)))- diag(Alpha/(2*pi))); 
function f1=A(x)  
            % Coefficients of Phi(j) i.e. dG/dn on Ej 
            %This function computes the first set of coefficients i.e. of  
            %(Phi(j) in the linear progression on the boundary element 

Phi(j)*(1-psi) 
            %+Phi(j+1)*(1+psi) in the Neumann boundary conditions case 

  
        f1= d.* ((x* (((1i)/48)*(((besselh(1,1,(x*R1))) ./R1) +  

(3*((besselh(1,1,(x*R2))) ./R2))   + ((besselh(1,1,(x*R3))) ./R3)  +  

((besselh(1,1,(x*R4))) ./R4))))); 

  
              for i=1:N 
                  f1(i,i)=0; 
              end 
             f1(:,W1:W2)=0; 

             
             f1(:,W3:W4)=0; 
        end 

                  
        function f2=B(x) 
            % Coefficients of Phi(j+1) i.e. dG/dn calculated on E(j)  

  
            b1 = d.* ((x* (((1i)/48)*(((besselh(1,1,(x*R2))) ./R2) + 

((besselh(1,1,(x*R3))) ./R3)    + (3*((besselh(1,1,(x*R4))) ./R4)) +  

((besselh(1,1,(x*R5))) ./R5))))); 

  
            ind=find(isnan(b1)); 
            b1(ind)=0; 

             
            b1(:,W1:((W2)-1))=0; 

            b1(:,N)=0; 
            b1(:,((W3)-1):((W4)-1))=0; 

              
                b11=b1(:,1:Nc); 



                b12=b1(:,(Nc+1):N); 
                b111=circshift(b11,[0,1]); 
                b112=circshift(b12,[0,1]); 

                 
                f2=[b111,b112]; 
        end 

  
        function f3= C(x) 
            %Coefficients of dPhi / dn 
            f3=CNonSingular(x) +Cjj(x) +Cjjminus1(x) ;  %Cjj-1 do not have a 

singularity as we use the linearly varying element 

  
                % Disc - Neumann condition: 
                  f3(:,1:Nc)=0;     

  
               %Waveguide - Dirichlet condition on boundary element W2 - 
               %Phi at node W2 is zero therefore q(W2) on W2 is zero 

                
                f3(:,W2)=0;            
                f3(:,W4)=0;         %Same as above for boundary element W4 

  

            
                f3(:,((W2)+1):((W3)-1))=(- sqrt(Beta^2-

(x^2)))*f3(:,((W2)+1):((W3)-1)); 
                f3(:,((W4)+1):N)=(- sqrt(Beta^2-(x^2)))*f3(:,((W4)+1):N); 
        end 
                    function fCNotSing=CNonSingular(x) 
                        fCNotSing = LNN.*(((-

1i)/48)*(besselh(0,1,x*R1)+(3*besselh(0,1,x*R2)) + 

besselh(0,1,x*R3)+besselh(0,1,x*R4))) ; 

  
                        for l=1:N  
                            fCNotSing(l,l)=0;  
                        end 
%   Coefficients Ajj and Ajj-1 are calculated separately  
Ajj have singularities - the source point is collinear with the 
point of integration so in this function set them to zero and calculate 
using ASing and fAjminus1 
                  for n=1:(Nc-1) 
                            fCNotSing((n+1),n)=0;  
                        end 

  

                        fCNotSing(1,Nc)=0; 
                        for n=((Nc+1):(N-1)) 
                        fCNotSing((n+1),n)=0; 
                        end 
                        fCNotSing(Nc+1,N)=0; 
                    end 
                    function CSingular =Cjj(x) 

  
%   This function calculates coefficients on the diagonal resulting from the 

integral on the boundary element Bjj.  
                        CSingular= diag(c1(x)+c2(x) ); 

  



  
                   function f1c=c1(x) 
                            f1c= ((-1i/96)*( 

1.999*GreenSingular((0.0005)*x*L) + 6*GreenSingular(0.25*x *L) 

+2*GreenSingular(0.5*x*L) +2* GreenSingular((3/4)*x*L))).*L; 
                            end 

  
                    function f2c=c2(x) 
                                f2c= L.*((1/(8*pi))*((2*log(x*L))-3)); 

  
                            end 
                    end  
                    function fCjjminusone= Cjjminus1(x) 
                    fc1= L.*(((-1i)/48)*(0.0005* besselh(0,1, (0.0005*x*L))+ 

besselh(0,1, (0.25*x*L))+ besselh(0,1, (0.5*x*L)) +  3*besselh(0,1, 

((3/4)*x*L))  + besselh(0,1, (x*L)))); 

  
%Must shift coefficients in place for the lower diagonal so split into four 

units, shift one to circle around each domain then regroup 

                         
                        fc11=diag(fc1(1:Nc)); 
                        fc12=diag(fc1(Nc+1:N)); 
                        fc111=circshift(fc11,1); 
                        fc112=circshift(fc12,1); 
                        c1=zeros(Nc,N-Nc); 
                        c2=zeros(N-Nc,Nc); 

                         
                        c11=[fc111,c1]; 
                        c12=[c2,fc112]; 

                         
                    fCjjminusone=[c11;c12]; 
                    end            
            function f4=D(x) 

                 
                %   Coefficients of dPhi/dn 

                
                    fd=DNonSingular(x) +Djj(x) + Djjminus1(x);  %Djj do not 

have a singularity - see notes 

  
                    %Disc - Neumann condition: 
                     fd(:,1:Nc)=0;     
                     fd(:,((W3)-1))=0; 

                     fd(:,N)=0;  

                      
                    fd(:, W2:((W3)-2))=(-sqrt(Beta^2-(x^2)))* fd(:, W2:((W3)-

2));  %Decay condition at infinity 
                    fd(:, W4:(N-1))=(-sqrt(Beta^2-(x^2)))* fd(:, W4:(N-1)); 
                      %   Dij's are coefficients to Phi(j+1) so need to shift 

around each boundary:                       
                    fd1=fd(:,1:Nc); 
                    fd2=fd(:,Nc+1:N); 

                     
                    fd11=circshift(fd1,[0,1]); 
                    fd12=circshift(fd2,[0,1]); 



                    f4=[fd11,fd12]; 
            end 

     
            function fDNotSing=DNonSingular(y) 

  
                                fDNotSing = LNN.*(((-1i)/48)* 

(besselh(0,1,y*R2)+besselh(0,1,y*R3)+(3*besselh(0,1,y*R4))+ 

besselh(0,1,y*R5)))   ; 

  
                                for l=1:N  
                                    fDNotSing(l,l)=0;  
                                end 

  
                      %Main diagonal  
                                for n=1:N  
                                    fDNotSing(n,n)=0;  

      
                                end 
                  %   Lower diagonal for each structure: 

  
                                for n=1:Nc-1  

      
                                    fDNotSing(n+1,n)=0;  

      
                                end 

  
                                fDNotSing(1,Nc)=0; 

     
                                for n=Nc+1 : N-1 

         
                                    fDNotSing(n+1,n)=0; 

         

                                end 

     

     
                                fDNotSing(Nc+1,N)=0; 
            end 

     
                    function DSingular =Djj(x)   
                            DSingular= diag(L.*(((-1i)/48)*(0.0005* 

besselh(0,1, (0.0005*x*L))+ besselh(0,1, (0.25*x*L))+ besselh(0,1, (0.5*x*L)) 

+  3*besselh(0,1, ((3/4)*x*L))  + besselh(0,1, (x*L))))); 
                    end                 
             

function fDjjminusone= Djjminus1(x) 
 

                            function f1d=d1(x) 
                                f1d=L.* ((((-1i)/96)*( 

(1.9999*GreenSingular(0.00005*x*L)) + (6*GreenSingular(0.25*x *L)) 

+(2*GreenSingular(0.5*x*L)) +(2* GreenSingular((3/4)*x*L))))); 

                            end 

  
                            function f2d=d2(x) 
                                f2d= L.*(((1/(8*pi))*((2*log(x*L))-3)));  



  end 

                             
                            %Create a matrix 
                                fsd1= d1(x)+ d2(x); 
%Shift along each structure to place values on lower diagonal  

  
                                fsd11=diag(fsd1(1:Nc)); 
                                fsd12=diag(fsd1(Nc+1:N)); 

                                 
                                fsd111=circshift(fsd11,1); 
                                fsd112=circshift(fsd12,1); 

                                 

                                 
                                d01=zeros(Nc,N-Nc); 
                                d02=zeros(N-Nc,Nc); 

                         
                                d11=[fsd111,d01]; 
                                d12=[d02,fsd112]; 

                         
                    fDjjminusone=[d11;d12]; 

                      
            end 

      

end 
 

% END OF M(k) FUNCTION 

  
 

function  GS =GreenSingular(y) 
GS=(besselh(0,1,y))-(((2i)/pi)*log(y)); 
  

% THIS FUNCTION CALCULATES THE ENERGY DISSIPATION FOR A GIVEN VALUE OF K 

 
function [KValue Energy]=EnergyDissipation(h1,h2,w,r,c1,kmin,kmax,kp) 
global    a b  l X Y W1 W2 W3 W4  N Nc L LNN Alpha d R1 R2 R3 R4 R5 Beta  

Vmin 
 [W1 W2 W3 W4 N Nc L LNN Alpha Xc Yc X Y d WX WY]=fBoundary(h1,h2,w,r,c1); 
[XPerimeter YPerimeter]=fPerimeter(h1,h2,w,r,c1); 
R1=R(-1); 
R2=R(-0.5); 
R3=R(0);  
R4=R(0.5); 
R5=R(1); 

  
Points=linspace(kmin, kmax , kp); 
RM=zeros(kp,1); 
for i=1:kp 
    RM(i)=det(real(M(Points(i)))); 
end 
SignRM=sign(RM); 
ProductSign=zeros(kp-1,1); 

    for i=1:kp-1 
        ProductSign(i)=SignRM(i)*SignRM(i+1); 
    end 



ZerosofDet=zeros(kp-1,1); 
    for j=1:kp-1 
        if sign(SignRM(j+1))~=sign(SignRM(j)) 
            ZerosofDet(j)=fzero('RealDet',[Points(j+1),Points(j)]); 
        else 
            ZerosofDet(j)=ZerosofDet(j); 
        end 
    end 

  
KValues=double(nonzeros(ZerosofDet)); %KValues 
Energy1=zeros(1,length(KValues)); 
for i=1:length(KValues) 
    Energy1(i)=Phi(KValues(i)); 
end 
[Energy Ind1]=min(Energy1); 
KValue=KValues(Ind1); 
    function Potential=Phi(k0) 

    

     
    M0=real(M(k0)); %i.e. find value of k s.t. det(M)=0 
    [V0 lambda0]=eig(M0);               %   Calculates the eigenvalues and 

eigenvectors of M0 
     Lambda=abs(eig(M0)) ;              %   Calculates the eigenvalues of M0 

and puts them in a vector column 
     [Emin I] =min(Lambda);             %   Calculates value  and index of 

the smallest eigenvalue 
     Vmin=V0(:,I);   

    
    np=length(XPerimeter); 
            PerimeterPotential =zeros(np,1); 
                for index2=1:np 
                    

PerimeterPotential(index2)=real(sum(Vmin'.*((fA(XPerimeter(index2),YPerimeter

(index2))+fB(XPerimeter(index2),YPerimeter(index2)))-

(fC(XPerimeter(index2),YPerimeter(index2))+fD(XPerimeter(index2),YPerimeter(i

ndex2)))))); 
                end 

     
    PerimeterEnergy= (sum(PerimeterPotential.^2)); 

     

     
    nx=10; 
    ny=10; 
    xp1=linspace((-a/2)+0.2,(-a/2)+2,nx); 
    xp2=linspace((a/2)-2,(a/2)-0.2,nx); 

  
    xp= [xp1,xp2]; 
    yp=linspace(-b,b,ny); 

    
    AreaPotential = zeros(2*nx,ny); 
    for index5=1:2*nx 
        for index6=1:ny 
            

AreaPotential(index5,index6)=real(sum(Vmin'.*((fA(xp(index5),yp(index6))+fB(x



%DISC AND SKEW CAVITY IN A DIRICHLET WAVEGUIDE 

 

% The program calculates the energy dissipation for a range of frequencies 

[kmin,kmax] and a set of geometric parameters specified by r (disc radius), 

hp (cavity height vector) and wp (cavity width vector). 

 

global a  b l X Y d R1 R2 R3 R4 R5 L LNN Alpha Beta W1 W2 W3 W4 N Nc k0 Vmin;    
%% Declare global variables for this program 
hp =(1:0.2:4); %% cavity height range 
wp =(1:0.2:4); %% cavity width range 

  
%% Structure m stores the energy dissipation for each k, hp and wp. 
r=0.5;a=16; l=0.1;  Beta=pi; kmin=pi/2;kmax=pi;kp=300; 
m =struct('KValues',{},'Energy',{}); 
 for i=1:length(hp ) 
     for j=1:length(wp ) 
         [m(i,j).KValues m(i,j).Energy] =EnergyDissipation(hp (i),hp 

(i),wp(j),r,c1,c2,kmin,kmax,kp); 
     end 
 end   
%% 
save('m.mat','m','a','l','hp','wp','r','b','kmin','kmax','kp') 
 

%% For each geometry select and display the minimum energy dissipation index 

and the correspondent frequency  

 
EnMin=zeros(length(hp),length(wp)); 
 for i=1:length(hp) 
     for j=1:length(wp) 
         if isempty(m(i,j).Energy)==1 
             EnMin(i,j)=1; 
         else 
            EnMin(i,j)=min(m(i,j).Energy); 
         end 

     end 
 end 
 [ind, e]=min(EnMin); 
 %% 
index1=1   ;  %  
index2=1   ;  
h= hp(index1)    
w=wp(index2)   
[W1 W2 W3 W4 N Nc L LNN Alpha Xc Yc X Y d WX WY]=fBoundary(h,h,w ,r,0,0 ); 
R1=R(-1); R2=R(-0.5);R3=R(0);  R4=R(0.5);R5=R(1); 
 M0=real(M(k0)); 
           [V0 lambda0]=eig(M0); Lambda=abs(lambda0); 
           T= diag(Lambda); [Emin,IndT]=min(T); 
           Vmin=V0(:,IndT);  
ft=@Phi; 
%% 
[xp,vp]=VPhi(-(a/2)+0.2,(a/2)-0.2,-0.7,100);figure, plot(xp,vp),grid on 
%%  Display trapped mode signature  

 

 

 

 



        b12=b1(Nc+1:N); 
        b111=circshift(b11,[0,1]); 
        b112=circshift(b12,[0,1]); 

                    
      f2=[b111,b112];                 
    end 

  
 %  C:COEFFICIENTS OF dPhi/dn =q(j) 

  
    function  f3=fC(x,y) 
         f3=   L'.*(((-1i)/48)* (((besselh(0,1, k0*Rad(x,y,-1))) + 

(3*(besselh(0,1, k0*Rad(x,y,-0.5)))) + (besselh(0,1, k0*Rad(x,y,0))) + 

(besselh(0,1, k0*Rad(x,y,0.5))))));  

            
                % Disc - Neumann condition: 
                  f3(1:Nc)=0;     

  
                  f3(W2)=0;            
                  f3(W4)=0;          

  

            
                f3(((W2)+1):((W3)-1))=(- sqrt(Beta^2-

(k0^2)))*f3(((W2)+1):((W3)-1)); 
                f3(((W4)+1):N)=(- sqrt(Beta^2-(k0^2)))*f3(((W4)+1):N); 

                
        end 

  
 %  D:COEFFICIENTS OF dPhi/dn =q(j+1) 
    function f4=fD(x,y) 
        fd = L'.*(((-1i)/48)* (((besselh(0,1, k0*Rad(x,y,-0.5))) + 

(besselh(0,1, k0*Rad(x,y,0))) + (3*(besselh(0,1, k0*Rad(x,y,0.5)))) + 

(besselh(0,1, k0*Rad(x,y,1))))));  

                    
                    fd(1:Nc)=0;     

         
                    fd(((W3)-1))=0; 
                    fd(N)=0;   

         

                      
                    fd(W2:((W3)-2))=(-sqrt(Beta^2-(k0^2)))* fd(W2:((W3)-2)); 
                    fd(W4:(N-1))=(-sqrt(Beta^2-(k0^2)))* fd(W4:(N-1)); 

         

                     
            %   Dij's are coefficients to Phi(j+1) so need to shift around 

each boundary: 
                    fd1=fd(1:Nc); 
                    fd2=fd((Nc+1):N); 

                     
                    fd11=circshift(fd1,[0,1]); 
                    fd12=circshift(fd2,[0,1]); 

                     
                    f4=[fd11,fd12]; 

                    



    end 

  
% 

  
            end 
end 
 %   END OF ENERGY DISSIPATION FUNCTION  

  

  
function Potential=Phi(x,y) 
%   CALCULATES THE POTENTIAL PHI AT AN INTERNAL ARBITRARY POINT x IN THE 

DOMAIN  
%   Rad is the distance from the arbitrary point x to points on the 
%   boundary elments  
%   As the point is in the interior of the domain, not on the boundary, 
%   there are no singularities 

  
global  W1 W2 W3 W4   L N Nc  Beta k0 Vmin ; % V0 is the eigenvector 

corresponding to lambda0, it is in the nullspace of M(k0). See Phi1 for 

solutions with eigenvector for k1 
Potential =  real(sum(Vmin'.* ((fA(x,y)+fB(x,y))-(fC(x,y) + fD(x,y))))); 

  
%   A:- COEFFICIENTS of Phi(j) 
    function f1=fA(x,y) 
           f1=(dfun(x,y)).*(((k0*(1i/48))* (((besselh(1,1, k0*Rad(x,y,-

1)))./(Rad(x,y,-1))) +(3*((besselh(1,1, k0*Rad(x,y,-0.5)))./(Rad(x,y,-

0.5))))+((besselh(1,1, k0*Rad(x,y,0)))./(Rad(x,y,0)))+((besselh(1,1, 

k0*Rad(x,y,0.5)))./(Rad(x,y,0.5)))))); 
           f1(W1:W2)=0; 

             
           f1(W3:W4)=0; 
    end 

               

  
%   B:COEFFICIENTS of Phi(j+1) 

      
    function f2=fB(x,y) 
      b1=(dfun(x,y)).*(((k0*(1i/48))* (((besselh(1,1, k0*Rad(x,y,-

0.5)))./(Rad(x,y,-0.5))) +((besselh(1,1, 

k0*Rad(x,y,0)))./(Rad(x,y,0)))+(3*((besselh(1,1, 

k0*Rad(x,y,0.5)))./(Rad(x,y,0.5))))+((besselh(1,1, 

k0*Rad(x,y,1)))./(Rad(x,y,1)))))); 

         
        ind=find(isnan(b1)); 
        b1(ind)=0; 

       
        b1(W1:((W2)-1))=0; 
        b1(N)=0; 
        b1(((W3)-1):((W4)-1))=0;   

         
        b11=b1(1:Nc); 

        b12=b1(Nc+1:N); 
        b111=circshift(b11,[0,1]); 
        b112=circshift(b12,[0,1]); 



                    

         
      f2=[b111,b112]; 

                    
    end 

  

      
 %  C:COEFFICIENTS OF dPhi/dn =q(j) 
    function  f3=fC(x,y) 
         f3=   L'.*(((-1i)/48)* (((besselh(0,1, k0*Rad(x,y,-1))) + 

(3*(besselh(0,1, k0*Rad(x,y,-0.5)))) + (besselh(0,1, k0*Rad(x,y,0))) + 

(besselh(0,1, k0*Rad(x,y,0.5))))));  
                % Disc - Neumann condition: 
                  f3(1:Nc)=0;     
                  f3(W2)=0;            
                  f3(W4)=0;          
                f3(((W2)+1):((W3)-1))=(- sqrt(Beta^2-

(k0^2)))*f3(((W2)+1):((W3)-1)); 
                f3(((W4)+1):N)=(- sqrt(Beta^2-(k0^2)))*f3(((W4)+1):N); 

                
        end 
%  D:COEFFICIENTS OF dPhi/dn =q(j+1) 

  
    function f4=fD(x,y) 
        fd = L'.*(((-1i)/48)* (((besselh(0,1, k0*Rad(x,y,-0.5))) + 

(besselh(0,1, k0*Rad(x,y,0))) + (3*(besselh(0,1, k0*Rad(x,y,0.5)))) + 

(besselh(0,1, k0*Rad(x,y,1))))));  

                    
                    fd(1:Nc)=0;     
                    fd(((W3)-1))=0; 
                    fd(N)=0;         
                    fd(W2:((W3)-2))=(-sqrt(Beta^2-(k0^2)))* fd(W2:((W3)-2)); 
                    fd(W4:(N-1))=(-sqrt(Beta^2-(k0^2)))* fd(W4:(N-1)); 

           
%   Dij's are coefficients to Phi(j+1) so need to shift around each boundary: 
                    fd1=fd(1:Nc); 
                    fd2=fd((Nc+1):N); 

                     
                    fd11=circshift(fd1,[0,1]); 
                    fd12=circshift(fd2,[0,1]); 

                     
                    f4=[fd11,fd12]; 

                    
    end 

  
end 

 

function  R =R(z) 
 %   Function used to calculate elements with local coordinates 
   global N Nc X Y;   
   R=zeros(N,N); 

       

       
for i =1:N 



    for j=1:N 
        if (j==Nc) 
          R(i,j)=sqrt (((X(j)*(0.5*(1-z))+X(1)*(0.5*(1+z))-X(i))^2) + 

((Y(j)*(0.5*(1-z))+Y(1)*(0.5*(1+z))-Y(i))^2) ); 
         elseif (j==N) 
              R(i,j)= sqrt (((X(j)*(0.5*(1-z))+X(Nc+1)*(0.5*(1+z))-X(i))^2) + 

((Y(j)*(0.5*(1-z))+Y(Nc+1)*(0.5*(1+z))-Y(i))^2)); 
          else 
             R(i,j)= sqrt (((X(j)*(0.5*(1-z))+X(j+1)*(0.5*(1+z))-X(i))^2) + 

((Y(j)*(0.5*(1-z))+Y(j+1)*(0.5*(1+z))-Y(i))^2)); 
        end 
    end 
end 

  

  

 


