
University of Huddersfield Repository

Chrpa, Lukáš and Vallati, Mauro

Revisiting Inner Entanglements in Classical Planning

Original Citation

Chrpa, Lukáš and Vallati, Mauro (2013) Revisiting Inner Entanglements in Classical Planning. In:

Scandinavian Conference on Artificial Intelligence, 20-22 November 2013, Aalborg, Denmark.

(Unpublished)

This version is available at http://eprints.hud.ac.uk/18317/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/17294017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Revisiting Inner Entanglements in

Classical Planning

Lukáš CHRPA a,1, Mauro VALLATI a

a PARK research group, School of Computing and Engineering, University of

Huddersfield, UK

Abstract. In Automated Planning, learning and exploiting structural patterns of

plans, domain models and/or problem models, in order to improve plan genera-

tion speed-up and increase the scope of problems solved, has attracted much re-

search. Reformulation techniques such as those based on macro-operators or entan-

glements are very promising, mainly because they are planner-independent. This

paper aims to extend and revisit the recent work on inner entanglements, relations

between pairs of planning operators and predicates encapsulating exclusivity of

predicate ‘achievements‘ or ‘requirements’, in order to bring new theoretical re-

sults (PSPACE-completeness of deciding inner entanglements), present a new way

of encoding of inner entanglements and empirical comparison between different

kinds of inner entanglements.

Keywords. Classical Planning, Inner Entanglements, Problem Reformulation

1. Introduction

Automated planning, which deals with the problem of finding a totally or partially or-

dered sequences of actions transforming the environment from an initial state to a de-

sired goal state, has been studied extensively for several decades and lead to develop-

ment of many advanced planning techniques [7]. The International Planning Competi-

tion (IPC) provides a standard environment for comparing automated planners that, since

the first edition of such competition, have been developed and significantly enhanced.2

A promising way for improving the planning process is to learn some domain character-

istics which can narrow the search space. One well known approach is based on macro-

operators which encapsulate a sequences of (ordinary) operators [2,4].

A recent technique introduces inner entanglements [5], relations between pairs of

planning operators and predicates, denoting exclusivity of predicate ‘achievement’ (en-

tanglements by succeeding) or ‘requirement’ (entanglements by preceding). That is, one

operator achieves a predicate exclusively for another operator, or an operator requires a

predicate exclusively from another operator. Inner entanglements in fact eliminate some

alternatives in the search space. Enforcing inner entanglements in a planner-independent

way can be done by reformulating planning domain/problem models which is a com-

1Corresponding Author: Lukáš Chrpa, School of Computing and Engineering, University of Huddersfield,

Queensgate, HD1 3DH, Huddersfield, United Kingdom; E-mail: l.chrpa@hud.ac.uk.
2http://ipc.icaps-conference.org

plementary approach to other pruning techniques, often incorporated in state-of-the-art

planning engines [9,13].

In this paper, we revisit and extend the recent work on inner entanglements, i.e.,

entanglements by preceding and succeeding [5]. We will extend the theoretical results by

proving that deciding inner entanglements is generally intractable (PSPACE-complete),

i.e., as hard as classical planning itself. We will also propose a new compact encoding of

inner entanglements, for cases where both entanglements by preceding and succeeding

hold for a pair of operators and a predicate. Moreover, we will empirically evaluate the

impact that different kinds of entanglements have on the performance of several state-of-

the-art planning systems.

The rest of this paper is organized as follows. We first provide the necessary back-

ground information on classical planning, and the basic terminology. Next, we introduce

the theoretical properties of inner entanglements and we describe how planning problems

can be reformulated by introducing inner entanglements. Finally, we show the results of

an empirical analysis and we give conclusions and discuss some avenues for future work.

2. Preliminaries

Classical planning (in state space) deals with finding a sequence of actions transforming

the static, deterministic and fully observable environment from some initial state to a

desired goal state [7].

In the set-theoretic representation atoms, which describe the environment, are

propositions. States are defined as sets of propositions. Actions are specified via

sets of atoms specifying their preconditions, negative and positive effects (i.e., a =
(pre(a),eff−(a),eff+(a))). An action a is applicable in a state s if and only if pre(a)⊆ s.

Application of a in s (if possible) results in a state (s\ eff−(a))∪ eff+(a).
In the classical representation atoms are predicates. A planning operator o =

(name(o),pre(o),eff−(o),eff+(o)) is a generalized action (i.e. action is a grounded in-

stance of the operator), where name(o) = op name(x1, . . . ,xk) (op name is an unique

operator name and x1, . . .xk are variable symbols (arguments) appearing in the operator)

and pre(o),eff−(o) and eff+(o) are sets of (unground) predicates. A planning problem is

specified via a planning domain, initial state and set of goal atoms. The details can be

found in [7].

The set-theoretic representation can be obtained from the classical representation

by grounding. Note that comparing predicates (needed for set operations) is done such

that predicates are equal if it has the same name and their arguments (including their

order) are identical. Hereinafter, we will assume that different operators have different

arguments (unless otherwise stated). A Substitution Θ = {v1 → t1, . . . ,vk → tk} is a set

of mappings where v1, . . . ,vk are variable symbols and t1, . . . , tk are terms. Substitutions

are used to rename or ground operators’ or predicates’ arguments. We will use a postfix

notation, e.g oΘ means that a substitution Θ is applied on an operator o.

3. Basic Terminology

By analysing action or operator schema we can identify how these influence each other.

As discussed in Chapman’s earlier work [3], an action having some atom in its positive

effects is a possible achiever of that atom for some other action having that atom in

its precondition. An action achieving an atom for another action in a given plan is a

necessary achiever. Note that being ‘achiever’ refers to a notion “causal link” in plan-

space planning. A notion of being a possible achiever can be easily extended for planning

operators. Formally:

Definition 1. Let ai and a j be actions. We say that ai possibly achieves an atom p for a j

if and only if p ∈ eff+(ai)∩pre(a j).
Let oi and o j be planning operators and Θ be a substitution. We say that oi possibly

achieves an atom (predicate) p for o j with respect to Θ if and only if p ∈ eff+(oi)∩
pre(o jΘ).
Let 〈a1,a2, . . .an〉 be a plan. We say that an action ai necessarily achieves (hereinafter

achieves only) an atom p for an action a j if and only if i < j, p ∈ eff+(ai)∩pre(a j) and

∀k ∈ {i+1, . . . , j−1} : p 6∈ eff+(ak). �

Hereinafter, the well known BlocksWorld domain will be used as a running example

we use. It consists of four operators: pickup(?x) — a robotic hand picks-up a block ?x

from the table, putdown(?x) — a robotic hand puts-down the block ?x it is holding to the

table, unstack(?x,?y) — a robotic hand unstacks a block ?x from ?y, and stack(?x,?y)

— a robotic hand stacks a block ?x to ?y.

3.1. Inner Entanglements

Inner Entanglements have been recently introduced as relations between pairs of plan-

ning operators and predicates [5]. Inner entanglements stand for operator exclusivity of

‘achieving’ or ‘requiring’ predicates. In the BlocksWorld [16] it may be observed, for

instance, that operator pickup(?x) achieves predicate holding(?x) exclusively for oper-

ator stack(?x,?y) (and not for operator putdown(?x) since it only reverses effects of

pickup(?x)). This relation is denoted as an ‘entanglement by succeeding’. Similarly, it

may be observed that predicate holding(?x) for operator putdown(?x) is exclusively

achieved by operator unstack(?x,?y) (and not by operator pickup(?x) since it only re-

verses effects of putdown(?x)). This relation is denoted as an ‘entanglement by preced-

ing’. This is formalized in the following definition [5].

Definition 2. Let P be a planning problem. Let o1 and o2 be planning operators and p

be a predicate (o1,o2 and p are defined in a planning domain related to P) and Θ be a

substitution such that p ∈ eff+(o1) and p ∈ pre(o2Θ).
We say that o1 is entangled by succeeding o2 with p if and only if there exists a plan π

solving P and ∀a1,a2 ∈ π such that a1 achieves pgnd (pgnd is a grounded instance of p)

for a2 it holds that if a1 is an instance of o1 then a2 is an instance of o2.

We also say that o2 is entangled by preceding o1 with p if and only if there exists a plan

π solving P and ∀a1,a2 ∈ π such that a1 achieves pgnd (pgnd is a grounded instance of

p) for a2 it holds that if a2 is an instance of o2 then a1 is an instance of o1.

Henceforth, entanglements by preceding and succeeding are denoted as inner entangle-

ments. �

Informally speaking, inner entanglements provide constraints affecting ordering of

operators’ instances in solution plans. If an operator o1 is entangled by a succeeding

operator o2 with a predicate p in a given planning problem, then in some solution plan

instances of o1 are at some point followed by corresponding instances of o2 and no

corresponding instance of other operator having p in its precondition can be placed in

between them. Similarly, if an operator o2 is entangled by a preceding operator o1 with a

predicate p in a given planning problem, then in some solution plan instances of o2 are at

some point preceded by corresponding instances of o1 and no corresponding instance of

other operator having p in its positive effects can be placed in between them. Note that

if there is a plan in which no instance of p is achieved or required by any action, it does

not violate the entanglement conditions.

Situations, where an instance of the predicate (e.g. holding(a)) is already present

in the initial state and thus not exclusively achieved by an instance of a certain operator

(e.g. unstack(a,b)), or is present in the goal state and thus not exclusively achieved for

an instance of a certain operator (e.g. stack(a,b)), do not break entanglements according

to Definition 2. To enforce the exclusivity of ‘providing’ and ‘requiring’ predicates only

between given operators, Definition 2 must be strengthened as follows.

Remark 1. Let P be a planning problem, I be the initial state in P and π = 〈a1, . . . ,an〉
be a plan solving P. Let aI = (/0, /0, I) and aG = (sG, /0, /0) be actions where sG is a state

obtained by executing π in I. Universal quantifier (∀a1,a2 ∈ π) used for defining both en-

tanglement by succeeding and preceding can be modified to ∀a1,a2 ∈ 〈aI ,a1, . . . ,an,aG〉
(in both cases). Then we say that entanglement by succeeding (or preceding) is strict.

A single (inner) entanglement requires only the existence of one plan solving the

given planning problem where the entanglement conditions are met and, therefore, dif-

ferent entanglements might be met in different solution plans. A set of compatible en-

tanglements ensures existence of at least one solution plan following all the entangle-

ments in the set [5]. For example, both the BlocksWorld related entanglements men-

tioned throughout this section forms a set of compatible entanglements. Hereinafter, we

will assume that multiple entanglements are a set of compatible entanglements unless

stated otherwise.

We can also define conflicting entanglements, a pair of entanglements, that cannot be

present together in any set of compatible entanglements (of the (set of) problem(s)), i.e.,

there is no solution plan for the problem (or for some problem from the set of problems)

following both the entanglements.

4. Theoretical Properties of Inner Entanglements

In general, deciding inner entanglements is intractable, which will be formally proved in

the following theorem. For this purpose we will use the landmark theory [10]. A land-

mark is a proposition (atom) which must become true at some point during execution

of every valid solution plan (of a given problem). A greedy necessary ordering of land-

marks p →g q (p and q are landmarks) refers to situation where in every solution plan

p is achieved before q is achieved at the first time. Problems of deciding a landmark or

greedy necessary ordering of landmarks is PSPACE-complete [10].

Theorem 1. Deciding entanglements by succeeding is PSPACE-complete. Deciding en-

tanglements by preceding is PSPACE-complete as well.

Proof. We reduce the problem of deciding whether landmarks p and q are greedily nec-

essarily ordered, i.e., p →g q, which is PSPACE-complete to the problem of deciding

entanglements by succeeding or preceding. Without loss of generality, let p and q de-

fined in some problem P be nulary and landmarks. Let O be a set of planning opera-

tors defined in P. Let Op = {o | o ∈ O, p ∈ eff+(o)} be set of operators achieving p and

Oq = {o |o ∈ O,q ∈ eff+(o)} be set of operators achieving q. We extend the description

of P by adding predicates p′, p′′, q′ and q′′ (without loss of generality we assume that

none of the predicates is defined in P). We modify operators in Op and Oq as follows.

∀o∈Op : replace p by p′ in eff+(o). ∀o∈Oq : add q′ into eff+(o) and add q′′ into eff−(o).
The initial state of P is modified by replacing p by p′ if p is present in the initial state,

and adding q′ if q is present in the initial state, or q′′ if q is not present in the initial state.

Hence, we can observe that q′ is true after q has been achieved and q′′ is true only before

q is achieved (if q is true in the initial state, q′′ is never true).

To prove PSPACE-completeness of the problem of deciding entanglements by suc-

ceeding we introduce the following operators into the modified problem P (without

loss of generality we assume that none of the operators is defined in P), i.e, an op-

erator op′ = ({p′},{p′},{p′′}), and operators oq′ = ({p′′,q′},{p′′},{p}) and oq′′ =
({p′′,q′′},{p′′},{p}). We can observe that if op′ is entangled by succeeding oq′ with p′′

(in the modification of P), then there exists a solution plan of P where q is achieved be-

fore p (if p has to be achieved before q, oq′′ must be applied which is in the contradiction

with the entanglement). Hence, op′ is entangled by succeeding oq′ with p′′ if and only

if p →g q does not hold. So, the problem of deciding entanglements by succeeding is

co-PSPACE-complete = PSPACE-complete.

To prove PSPACE-completeness of the problem of deciding entanglements by

preceding we introduce the following operators into the modified problem P (with-

out loss of generality we assume that none of the operators is defined in P), i.e, op-

erators op′ = ({p′,q′},{p′},{p′′}) and op′′ = ({p′,q′′},{p′},{p′′}), and an operator

oq′ = ({p′′},{p′′},{p}). We can observe that if oq′ is entangled by preceding op′ with

p′′ (in the modification of P), then there exists a solution plan of P where q is achieved

before p (if p has to be achieved before q, op′′ must be applied which is in the contra-

diction with the entanglement). Hence, oq′ is entangled by preceding op′ with p′′ if and

only if p →g q does not hold. So, the problem of deciding entanglements by preceding is

co-PSPACE-complete = PSPACE-complete.

Deciding whether a pair of (inner) entanglements is conflicting is PSPACE-complete

as well. Since we can reformulate planning problems in order to enforce inner entangle-

ments (see Section 5), we can apply the previous theorem for the reformulated problem

where one of the entanglements is involved.

Despite the complexity results we can identify (inner) entanglements in some trivial

cases, for instance, if there is only one operator achieving some predicate, or if there is

only one operator having some predicate in its precondition [5]. These trivial cases, how-

ever, do not lead to pruning of some unpromising alternatives in the search space, since

the exclusivity of predicate ‘achievement’ or ‘requirement’ what inner entanglements

capture is trivially met by existence of only one predicate achiever or ‘requirer’. On the

other hand, we believe that it is possible identify some non-trivial inner entanglements

in polynomial time. For instance, the example of the BlocksWorld domain mentioned

before we can observe that after picking up the block from the table we can either stack

it on some other block or put it down on the table. We can easily find out that putting

the block down on the table after picking it up from the table results in the same state as

before the block is picked up and hence applying such actions consequently is meaning-

less. From this observation we can derive the entanglement by succeeding between the

pickup and stack operators.

4.1. Approximative Detection of Inner Entanglements

Because of general intractability, we can use an approximation method for detecting

compatible sets of inner entanglements which has recently been published [5]. This

method analyses a set of training plans, solutions of simpler planning problems, in order

to identify a set of compatible (inner) entanglements which holds for every training prob-

lem; it is then assumed that this set of compatible (inner) entanglements holds for a whole

class of planning problems using the same domain model. Although such an approach

is generally incomplete it has been empirically shown in [5] and also will be shown in

this paper that on IPC benchmarks only in a very few cases incorrect entanglements have

been detected.

5. Problem Reformulation

To exploit entanglements by any existing planning engine, the original domain and prob-

lem models must be reformulated as discussed in [5].

Let P be a planning problem and an operator o1 is entangled by a succeeding opera-

tor o2 with a predicate p. Then the problem P is reformulated as follows:

1. Create a predicate p′ (not defined in the domain of P) having the same arguments

as p and add p′ to the domain of P.

2. Modify the operator o1 by adding p′ into its negative effects. p′ has the same

arguments as p ∈ eff+(o1).

3. Modify the operator o2 by adding p′ into its positive effects. p′ has the same argu-

ments as p ∈ pre(o2).

4. Modify all operators o such that o 6= o2 and o is a possible achiever for o1 by p by

adding p′ into its precondition. p′ has the same arguments as p ∈ pre(o).

5. Add all possible instances of p′ into the initial state of P and if the entanglement

is strict, then also to the goal situation of P.

Let P be a planning problem and an operator o2 is entangled by a preceding operator

o1 with a predicate p. Then the problem P is reformulated as follows:

1. Create a predicate p′ (not defined in the domain of P) having the same arguments

as p and add p′ to the domain of P.

2. Modify the operator o1 by adding p′ into its positive effects. p′ has the same argu-

ments as p ∈ eff+(o1).

3. Modify the operator o2 by adding p′ into its precondition and negative effects. p′

has the same arguments as p ∈ pre(o2).

4. Modify all operators o such that o 6= o2 and p ∈ eff−(o) by adding p′ into its

negative effects. p′ has the same arguments as p.

5. Modify all operators o such that o 6= o1 and p ∈ eff+(o) by adding p′ into its

negative effects (p′ has the same arguments as p).

6. If the entanglement is not strict, then i) add all possible instances of p′ to the initial

state of P.

There are also situations where both the (strict) entanglements by preceding and

succeeding hold for operators o1, o2 and a predicate p. Of course, we can reformulate the

problem according to previous reformulation approaches. On the other hand, it requires

more supplementary predicates which might not be very desirable. Therefore, we intro-

duce a more compact reformulation approach for such situations. Let P be a planning

problem, o1 is strictly entangled by succeeding o2 with p, and o2 is strictly entangled by

preceding o1 with p. Then the problem P is reformulated as follows:

1. Create a predicate p′ (not defined in the domain of P) having the same arguments

as p and add p′ to the domain of P.

2. Modify the operator o1 by replacing p by p′ in o1’s positive effects.

3. Modify the operator o2 by replacing p by p′ in o1’s precondition and (possibly)

negative effects.

Given the strict entanglement relations by preceding and succeeding between o1, o2 and

p, we can see that there is no other operator which either achieves p for o2 or requires p

from o1. Replacing p by a new predicate p′ (having the same arguments) in o1’s positive

effects and o2’s precondition enforces the entanglements, but does not affect solvability

of the problem.

6. Experimental Evaluation

The aim of the experimental evaluation is to demonstrate how different types of inner

entanglements and different domain/problem reformulation strategies influence the plan-

ning process. For evaluation purposes we chose several IPC benchmark domains (typed

strips) from IPC-3, IPC-6 and 7 (learning track), where it was clear that this kind of refor-

mulation would be applicable (for example, it would not be applicable to domains with

one operator). The domains are BlocksWorld (BW), Depots, Zeno, DriverLog, Gold-

Miner, Parking and Matching-BW. As benchmarking planners we chose Metric-FF [8],

LPG-td [6], Probe [12], LAMA 2011 [13], SatPlan [11] (using SAT-MAX-PLAN en-

coding [15] and the Precosat [1] SAT solver) and Mp [14]. All the planners successfully

competed in the IPCs. Timeout was set to 900 seconds, as in IPC learning tracks. The

experiment was performed on Intel Xeon
TM

3 GHz, 2 GB RAM. For each benchmark we

selected 5-7 easy problems as training problems and produced training plans by Metric-

FF which were used to learn inner entanglements and generate macros from them. Time

spent on learning was in the order of tenths of seconds per one domain.

Cumulative results of the evaluation are presented in Table 1, with the original

problem formulation compared to the existing reformulation technique of inner entan-

glements, considering both the kind of entanglements, only entanglements by preced-

ing and only by succeeding. Values are computed according to rules used in IPC-7

learning track.3 Score for every solved problem is computed according to the formula

3http://www.plg.inf.uc3m.es/ipc2011-learning/Rules

Planner Model BW Depots Zeno DriverLog GoldM Parking MatchingBW
(60) (60) (20) (20) (60) (60) (60)

Metric-FF

Orig 0.0 17.7 17.6 17.2 20.1 16.9 20.6
IE 0.0 20.3 17.8 15.9 29.2 15.1 0.4
ES 0.0 20.1 19.7 – 43.0 – 0.4
EP 0.0 22.7 16.0 15.9 54.4 15.1 19.5

LPG

Orig 26.8 30.8 19.2 18.5 44.0 0.0 26.0
IE 59.7 42.6 12.9 18.4 42.4 0.0 23.4
ES 47.6 32.8 13.1 – 57.5 – 29.9
EP 35.4 26.7 17.5 18.4 56.9 0.0 19.1

Probe

Orig 39.1 58.5 16.9 19.6 35.4 10.3 20.0
IE 47.0 36.5 18.6 17.9 33.6 12.3 23.0
ES 49.4 55.3 19.6 – 53.1 – 16.6
EP 17.8 37.3 15.0 17.9 60.0 12.3 23.4

LAMA

Orig 41.1 15.5 18.4 19.1 23.0 9.8 42.3
IE 23.8 22.4 18.9 19.1 53.6 7.6 10.1
ES 42.3 23.7 19.7 – 55.2 – 9.9
EP 17.5 27.1 17.8 19.1 56.3 7.6 39.8

SatPlan

Orig 0.0 7.9 14.0 14.8 59.5 0.0 37.0
IE 0.0 8.1 15.3 13.4 58.9 0.0 30.0
ES 0.0 8.4 15.2 – 58.5 – 29.5
EP 0.0 8.7 14.6 13.4 59.1 0.0 0.0

Mp

Orig 0.0 30.8 18.8 18.5 59.8 5.0 0.0
IE 0.0 49.6 19.3 18.8 32.6 3.2 0.6
ES 0.0 42.9 19.9 – 44.6 – 2.0
EP 0.0 33.1 18.6 18.5 54.4 3.2 0.5

Table 1. Time score (max score per domain is shown in brackets) on selected domains. Values are computed

by considering each planner separately. “–” indicates that no entanglements of that type were generated. Orig

– Original domain model, IE – Both types of Inner Entanglements, EP – Entanglements by Preceding, ES –

Entanglements by Succeeding.

(1/(1+ log10(T/T ∗))). T is the running time of the certain planner for a certain (origi-

nal or reformulated) problem and T ∗ is the minimum running time achieved by a certain

planner on either original problem or any of its reformulation. The score for unsolved

problems is zero.

The technique of using inner entanglements to reformulate domains can reduce the

search branching factor, but does so at the cost of introducing supplementary predicates.

Good results were achieved for this technique in the Gold-miner domain because supple-

mentary predicates had only a few instances. Contrary to this, many supplementary pred-

icates were needed in DriverLog, which caused poor performance for the planners gener-

ally. In the previous work [5] only both types of entanglements have been considered for

experiments, while in this paper entanglements by preceding and succeeding were con-

sidered individually. In about half of cases, using just one type of inner entanglements

brought the best results.

Metric-FF, Probe and LAMA usually achieve best results while exploiting either

preceding or succeeding inner entanglements. In the Metric-FF case, entanglements by

preceding usually perform better than entanglements by succeeding or both of them. The

reason is in the FF heuristic used by Metric-FF which is based on delete relaxation (all

negative effects are omitted while the heuristic value is being computed). Entanglements

by succeeding are enforced by removing a supplementary predicate (when the first op-

erator is executed) to prevent applicability of ‘unwanted’ operators (those which are not

in the entanglement relation). Hence, the FF heuristic cannot efficiently propagate en-

tanglements by succeeding. In the Probe and LAMA case results are mixed, however,

using both types of entanglements never outperforms using only one type of them (ei-

Metric-FF LPG Probe LAMA SatPlan Mp

Domain IE nIE IE nIE IE nIE IE nIE IE nIE IE nIE

BW 0.0 0.0 57.5 50.7 41.6 50.0 28.3 44.2 0.0 0.0 0.0 0.0

GoldM 31.2 60.0 45.8 59.3 37.4 60.0 53.5 60.0 58.2 60.0 35.0 60.0

Depots 20.6 26.3 37.6 47.1 35.7 60.0 21.9 34.0 8.1 10.0 43.2 46.6

Table 2. Time IPC score on selected domains. Values are computed by considering each planner separately.

IE – existing (old) encoding, nIE – New encoding.

ther entanglements by preceding or succeeding). This might be caused by a significant

increase of the number of atoms considered during the search. SatPlan and Mp, even

if both are based on SAT, have different behaviours. SatPlan usually has better perfor-

mance on original domain models, while Mp is able to exploit the reformulated version

of domain models that include both the type of entanglements, or only preceding ones.

We believe that the SAT-MAX-PLAN encoding strategy used by SatPlan for translating

the planning problem in a SAT formula is more sensitive to the increase of the number

of atoms than the one used by Mp. The other encoding strategies that are included in

the SatPlan framework are generally generating too large formulas for most of the con-

sidered testing problems, leading to a dramatically small number of solved problems.

LPG’s performance are usually best while exploiting both the preceding and succeeding

entanglements or only preceding ones (except in Zeno and DriverLog), intuitively we

can argue that this is due to the fact that LPG uses greedy local search on the Planning

Graph, hence the reduction of the branching factor improves its performance.

Regarding the quality, in terms of number of involved actions of solution plans, we

noticed that the exploitation of inner entanglements by the planners do not result in sig-

nificant modification of the plans quality. This is interesting, since inner entanglements

were designed for improving the performance of planners by reducing the branching

factor. Given these results, we can derive that by exploiting inner entanglements we are

able to improve the runtime of planners, in most of the considered domains, without

decreasing the quality of solution plans.

Table 2 shows the results of the comparison between Both types of Inner Entangle-

ments, inner entanglements encoded using the existing technique, and New encoding,

which are encoded using the new technique proposed in this paper. These techniques

lead to different domain reformulations in three of the considered domains, namely

BlocksWorld, Gold-Miner and Depots. The results clearly indicate that the new encoding

are able to further improve the performance of the considered planners. The main reason

for such improvement is in the significantly smaller number of atoms considered during

the search.

7. Conclusions

In this paper, we revisited and extended the work on inner entanglements, relations cap-

turing the exclusivity of predicate ‘achievement’ and ‘requirement’ between planning

operators [5]. We formally proved PSPACE-completeness of deciding both types of in-

ner entanglements, entanglements by preceding and succeeding. We also proposed a new

compact encoding for situations where a pair of operators is in both types of (strict) in-

ner entanglements. We empirically showed that the proposed compact encoding outper-

forms the existing one. We also compared how different types of inner entanglements

influence the planning process. The results showed that in many cases, using just one

type of inner entanglement was the best option. This result is interesting, since it points

to the problem of utility of different inner entanglement relations. Even though inner en-

tanglements prune some unpromising alternatives in the search space, introducing sup-

plementary predicates causes overheads in the planning process. Therefore, a given inner

entanglement relation is useful only if the overheads are smaller than the time saved by

avoiding exploration of unpromising search alternatives.

In future, we will investigate in which situations deciding inner entanglements can

be tractable. We will also investigate how to efficiently estimate the utility of particular

inner entanglement relations, since it might significantly improve the planning process.

Acknowledgements The research was funded by the UK EPSRC Autonomous and In-

telligent Systems Programme (grant no. EP/J011991/1). The authors would like to ac-

knowledge the use of the University of Huddersfield Queensgate Grid in carrying out

this work.

References

[1] A. Biere. P{re,i}cosat@sc’09. In SAT Competition 2009, 2009.

[2] A. Botea, M. Enzenberger, M. Müller, and J. Schaeffer. Macro-ff: Improving ai planning with automat-

ically learned macro-operators. Journal of Artificial Intelligence Research (JAIR), 24:581–621, 2005.

[3] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–377, 1987.

[4] L. Chrpa. Generation of macro-operators via investigation of action dependencies in plans. Knowledge

Engineering Review, 25(3):281–297, 2010.

[5] L. Chrpa and T. L. McCluskey. On exploiting structures of classical planning problems: Generalizing

entanglements. In Proceedings of ECAI, pages 240–245, 2012.

[6] A. Gerevini, A. Saetti, and I. Serina. Planning through stochastic local search and temporal action

graphs. Journal of Artificial Intelligence Research (JAIR), 20:239 – 290, 2003.

[7] M. Ghallab, D. Nau, and P. Traverso. Automated planning, theory and practice. Morgan Kaufmann

Publishers, 2004.

[8] J. Hoffmann. The metric-ff planning system: Translating ”ignoring delete lists” to numeric state vari-

ables. Journal Artificial Intelligence Research (JAIR), 20:291–341, 2003.

[9] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search.

Journal of Artificial Intelligence Research, 14:253–302, 2001.

[10] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning. Journal of Artificial Intelli-

gence Research (JAIR), 22:215–278, 2004.

[11] H. Kautz, B. Selman, and J. Hoffmann. Satplan: Planning as satisfiability. In Proceedings of the fifth

IPC, 2006.

[12] N. Lipovetzky and H. Geffner. Searching for plans with carefully designed probes. In Proceedings of the

21st International Conference on Automated Planning and Scheduling (ICAPS-11). AAAI press, 2011.

[13] S. Richter and M. Westphal. The lama planner: guiding cost-based anytime planning with landmarks.

Journal Artificial Intelligence Research (JAIR), 39:127–177, 2010.

[14] J. Rintanen. Engineering efficient planners with sat. In Proceedings of ECAI, pages 684–689, 2012.

[15] A. Sideris and Y. Dimopoulos. Constraint propagation in propositional planning. In Proceedings of

ICAPS, pages 153–160, 2010.

[16] J. Slaney and S. Thiébaux. Blocks world revisited. Artificial Intelligence, 125(1-2):119–153, 2001.

