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Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic

states are pure nonstabilizer states which can be distilled from certain mixed nonstabilizer states via

Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates

are not expected to be magic state distillable, but it has been an open question whether all mixed states

outside this set may be distilled. In this Letter we show that, when resources are finitely limited,

nondistillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states,

which arise in entanglement theory, we call such states bound states for magic state distillation.
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The significant noise and decoherence in quantum sys-
tems means that harnessing these systems for computa-
tional tasks must be performed fault tolerantly [1,2]. In a
wide variety of setups only a limited set of gates, known as
the Clifford group, are implemented in a manifestly fault-
tolerant manner. Examples include some anyonic topologi-
cal quantum computers [3–5], postselected quantum com-
puters [6,7], and measurement based topological quantum
computers [8]. This motivates the problem of when such
devices, with practically error free Clifford gates, may be
promoted to a full quantum computer. The celebrated
Gottesman-Knill theorem shows that a Clifford circuit
acting on stabilizer states—simultaneous eigenstates of
several Pauli operators—can be efficiently simulated by a
classical computer [9]. However, given a resource of pure
nonstabilizer states, we can implement gates outside the
Clifford group. For example, a qubit in an eigenstate of the
Hadamard enables one to implement a �=8 phase gate that
when supplementing the Clifford group gives a dense
covering of all unitary operations [10], and so enables
universal quantum computation.

Preparation of nonstabilizer states would usually require
a non-Clifford operation, so in this context, one would
require that even noisy copies of these states enable high
fidelity quantum computation. Bravyi and Kitaev [10]
showed that this can be achieved. Coining the term magic
state distillation, they showed that most mixed nonstabil-
izer states can be distilled via Clifford group circuits to
fewer copies of a lower entropy state, reaching in the limit
of infinite iterations a pure nonstabilizer magic state.
However, the protocols they presented do not succeed for
all mixed nonstabilizer states. Bravyi and Kitaev were not
satisfied by the ambiguous status of these states and con-
cluded that ‘‘The most exciting open problem is to under-
stand the computational power of the model in [this] region
of parameters.’’ Either all nonstabilizer states are effi-
ciently distillable by an undiscovered protocol, or there
exist nonstabilizer states that are impossible to distill. Such
undistillable states we call bound states for magic state
distillation, in analogy with bound states in entanglement

distillation [11]. Here we make progress by showing that
bound states exist for a very broad class of protocols. By
showing that a single round of a finite sized protocol will
not improve these states, it follows that repeating such a
protocol, even with an infinite number of iterations, will
also have no benefit. Hence, we explain why all known
protocols fail to distill some states.
The single-qubit stabilizer states, for which the

Gottesman-Knill theorem applies, are the six pure stabil-
izer states (the eigenstates of �X, �Y, and �Z) and any
incoherent mixture of these. In the Bloch sphere, this
convex set with 6 vertices forms the stabilizer octahedron
partially shown in Fig. 1(a). Single-qubit states have den-
sity matrices:

�ðf; aÞ ¼ ½1þ ð2f� 1ÞðaXXþ aYY þ aZZÞ�=2; (1)

where a ¼ ðaX; aY; aZÞ is a unit vector, and f is the
fidelity with respect to the pure state jc aihc aj ¼
ð1þ aXX þ aYY þ aZZÞ=2. Stabilizer states satisfy

j2f� 1jðjaXj þ jaYj þ jaZjÞ � 1; (2)

where the equality holds for states on the surface of the
octahedron, and we denote the fidelity of such surface
states as fSa, which is unique assuming f � 1=2.
Prior protocols for magic state distillation [7,10,12,13]

increase fidelity towards eigenstates of Clifford gates, such
as the Hadamard H and the T gate [14]. These eigenstates

have aH ¼ ð1; 0; 1Þ= ffiffiffi
2

p
and aT ¼ ð1; 1; 1Þ= ffiffiffi

3
p

, with f ¼ 1
for ideal magic states. Given the ability to prepare a mixed
nonstabilizer state �, we can perform an operation called
polarization, or twirling, that brings � onto a symmetry
axis of the octahedron. For example, by randomly applying
1, T, or Ty, we map � ! �ðf; aTÞ.
Bravyi and Kitaev proposed the following protocol [10]

for jTi state distillation: (1) prepare five copies of �ðf; aTÞ;
(2) measure the four stabilizers of the five-qubit error
correcting code; (3) if all measurements give þ1, the
protocol succeeds and the encoded state is decoded into a
single-qubit state, and otherwise restart. Upon a successful
implementation of this protocol the output qubit has a
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fidelity FðfÞ plotted in Fig. 2(b). Provided the initial fidel-
ity is greater than some threshold, a successful implemen-
tation yields a higher fidelity. This protocol has a nontight
threshold, and exhibits a gap between the threshold and the
set of stabilizer states. Because the initial state was twirled
onto the T axis, the threshold forms a plane in the Bloch
sphere (see Fig. 1). In contrast, Reichardt has proposed a
protocol that does have a tight threshold for distillation of
�ðf; aHÞ states in a H-like direction [12]. His protocol is
similar to above, but uses seven qubits each attempt and
measures the six stabilizers of the STEANE code [1]. In
Fig. 2(a) we show the performance of this protocol, where
there is no threshold gap. When the initial mixture is not of
the form �ðf; aHÞ, we twirl the initial mixture onto the H
axis. Hence, the threshold forms a plane for each H-like
direction (see Fig. 1). Although the protocol is tight in
directions crossing an octahedron edge, the protocol fails
to distill some mixed states just above the octahedron
faces, and so is not tight in all directions. Even the com-
bined region of states distilled by all known protocols still
leaves a set of states above the octahedron faces, whose
distillability properties are unknown.

Here we show that for all size n protocols there is a
region of bound states above the octahedron faces. More
formally, we are considering all states �ðf; aPÞ where aP
has all positive (nonzero) components. Having all compo-
nents as nonzero excludes states above octahedron edges.
Considering only states in the positive octant is completely

general as Clifford gates enable movement between oc-
tants. Many copies of bound states cannot be used to
improve on a single copy, and below we formalize the
idea of not improved and state our main result.
Definition 1.—We say �0 is not an improvement on

�ðf; aPÞ, when �0 is a convex mixture of Ci�ðf;aPÞCy
i

and stabilizer states, where Ci are Clifford group gates.
Theorem 1.—Consider a device capable of ideal Clifford

gates, preparation of stabilizer states, classical feedforward
and Pauli measurements. For any protocol on this device
that takes �ðf;aPÞ�n and outputs a single qubit �0, there
exists an � > 0 such that �0 is not an improvement on
�ðf; aPÞ for f � fSaP þ �.

Theorem 1 covers a wide class of protocols, which attain
a fidelity that is upper bounded by a narrower class of
protocols [15], such that Theorem 1 follows from:
Theorem 2.—Consider all protocols that follow these

steps: (i) prepare �ðf; aPÞ�n; (ii) measure the n� 1 gen-
erators of an n qubit stabilizer code Sn�1 with one logical
qubit; (iii) postselect on all ‘‘þ1’’ measurement outcomes;
(iv) decode the stabilizer code and output the logical qubit
as the single-qubit state �0. For all such protocols there
exists an � > 0 such that �0 is not an improvement on
�ðf; aPÞ for f � fSaP þ �.

Prior protocols, such as those based on the STEANE code
and 5 qubit code, are covered explicitly by Theorem 2.
Here we use the structure of stabilizer codes to prove
Theorem 2, with Theorem 1 following directly from the
results of [15], where such distillation protocols are shown
to have equal efficacy with more general Clifford proto-
cols. It is crucial to consider the implication of these
theorems when an n-qubit protocol is iterated m times.
When a single round provides no improvement on the
initial resource, the input into the second round will only
differ by Clifford group operations, and hence our theorem
applies to the second, and all subsequent, rounds. Hence,
repeated iteration cannot be used to circumvent our theo-
rem. Before proving these theorems, we derive a pair of
powerful lemmas that identify bound states.

FIG. 2 (color online). The performance of magic state distil-
lation of (a) the STEANE code for distilling states in a H-like
direction; (b) the five-qubit code distilling states in a T-like
direction. Notice that both functions are continuous, and that in
(b) an input state on the octahedron surface, f ¼ fSaT , will output

a state below the surface. Consequently, there is also a region
above the surface where the output is a stabilizer state, and
hence, not an improvement on the initial state.

FIG. 1 (color online). One octant of the Bloch sphere with
various regions and directions shown. (a) The set of stabilizer
states in one octant. Each octant is identical, with all stabilizer
states forming an octahedron. (b) The plane for the distillation
threshold for the 5 qubit code, with the direction of aT shown.
The threshold plane is parallel to the underlying face of the
stabilizer octahedron, but is displaced by a small gap. (c) The
threshold planes for the STEANE code, with each plane differing
by local Clifford gates. These planes meet the stabilizer octahe-
dron at its edges. The three vectors are axes of H-like gates, e.g.
aH; (d) The combined region of states distilled by either the 5
qubit code or the STEANE code. This region only touches the
stabilizer octahedron at its edges, and no other known protocol is
tight in any other direction.
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Lemma 1.—Consider n copies of an octahedron surface
state �ðfSaP ; aPÞ projected onto the code space of Sn�1 and

then decoded. If the output qubit is in the octahedron
interior, then there exists an � > 0 such that for f � fSaP þ
� the same projection on �ðf; aPÞ�n also projects onto a
mixed stabilizer state.

This Lemma 1 follows directly from the dependence of
the output on f, which for finite n is always continuous. We
can observe Lemma 1 at work in Fig. 2(b). Our next lemma
identifies when octahedron surface states are projected into
the octahedron interior. Before stating this we must estab-
lish some notation. An initial state �ðfSaP ;aPÞ�n is an

ensemble of pure stabilizer states:

�ðfSaP ; aPÞ�n ¼
X

g2fX;Y;Zgn
qgj�gih�gj; (3)

where j�gi is stabilized, gj�gi ¼ j�gi, by the group Gg

generated by g ¼ ðg1; g2; . . . gnÞ. The operator gi is Xi, Yi,
or Zi, with i labeling the qubit on which it acts. Each
contribution has a weighting qg ¼ �i½agi=ðaX þ aY þ
aZÞ�. Measuring the generators of Sn�1 and postselecting
on ‘‘þ1’’ outcomes, projects onto the code space of Sn�1

with projector P ¼ P
s2Sn�1

s=2n�1, producing

P�ðfSaP ; aPÞ�nP
tr½P�ðfSaP ; aPÞ�nP�

¼ X
g2fX;Y;Zgn

q0gj�0
gih�0

gj; (4)

with projected terms j�0
gi of new weighting q0g. Each j�0

gi
has its stabilizer generated by (Gg; s1; s2; . . . ; sn�1), where

Gg is an independent generator that (a) was present in the

initial group Gg 2 Gg, and (b) commutes with the mea-

surement stabilizers GgSn�1 ¼ Sn�1Gg. In other words, it

must be equivalent to one of six logical Pauli operators of
the code space. We denote the set of logical operators asL,
and its elements �XL, �YL, and �ZL, and so Gg 2 L �
Sn�1. This defines a decoding via the Clifford map, XL !
X1 and ZL ! Z1. Since there are only six distinct logical
states, we can combine many terms in Eq. (4):

P�ðfSaP ; aPÞ�nP
tr½P�ðfSaP ; aPÞ�nP�

¼ X
L2L

qLj�Lih�Lj; (5)

where j�Li has stabilizer generators (L; s1; s2; . . . :sn�1).
The new weighting is qL ¼ P

q0g with the sum taken over

all g that generate Gg containing an element Gg 2
L � Sn�1. We can now state the next lemma:

Lemma 2.—Given n copies of �ðfSaP ; aPÞ projected into

the code space of Sn�1 and decoded, the output qubit is in
the octahedron interior if there exist any two pure states in
the initial ensemble, j�gi and j�g0 i [defined in Eq. (3)],

such that both (i) the projected pure states are orthogonal,
so that L 2 Gg and �sL 2 Gg0 where L 2 L and s 2
Sn�1; and (ii) upon projection j�gi and j�g0 i do not

vanish, so q0g � 0 and q0g0 � 0.

We prove this lemma by contradiction. From Eq. (2),
and ð2f� 1ÞaL ¼ ðqL � q�LÞ, surface states satisfy

jqXL
� q�XL

j þ jqYL
� q�YL

j þ jqZL
� q�ZL

j ¼ 1; (6)

and we assume to the contrary that the projected state has
this form. Since q�L are non-negative reals, we have jqL �
q�Lj ¼ qL þ q�L � 2minðqL; q�LÞ, where minðqL; q�LÞ
is the minimum of qL and q�L. Along with the normaliza-
tion condition,

P
LqL ¼ 1, this entails

minðqXL
; q�XL

Þ þminðqYL
; q�YL

Þ þminðqZL
; q�ZL

Þ ¼ 0:

Since all terms are positive, no cancellations can occur and
so every term must vanish, hence minðqL; q�LÞ ¼ 0, 8L.
However, conditions (i) and (ii) of the lemma entail that
there exists a nonvanishing minðqL; q�LÞ, as qL � q0g � 0

and q�L � q0g0 � 0. Having arrived at this contradiction,

we conclude the falsity of the assumption that the projected
state remains on the octahedron surface, and so must be in
the octahedron interior. This proves Lemma 2, and we now
show that Lemma 2 applies to all stabilizer reductions that

do not trivially take �ðf; aPÞ�n ! Ci�ðf; aPÞCy
i .

Our proof continues by finding canonical generators for
the code Sn�1. A related method has been used to prove
that all stabilizer states are local Clifford equivalent to a
graph state [16], and we review this first. All stabilizer
states have a stabilizer Sn with n generators. Each genera-
tor is a tensor product of n single-qubit Pauli operators.
This can be visualized as an n by n matrix with elements
that are Pauli operators, each row a generator and each
column a qubit. Different, yet equivalent, generators are
produced by row multiplication, via which we can produce
a canonical form. In this form column i has a nontrivial
Pauli operator Ai that appears on the diagonal, and all other
operators in that column are either the identity or another
operator Bi. Note that Ai and Bi compose a third nontrivial
Pauli AiBi ¼ ið�1Þ�iCi with �i ¼ 0, 1. Hence, all stabil-
izer states differ from some graph state by only local
Cliffords that map ðAi; BiÞ ! ðXi; ZiÞ.
A code, Sn�1, has one less generator than the number of

qubits, and so more columns than rows. We can apply the
diagonalization procedure on an n� 1 by n� 1 submatrix,
to bring this submatrix into canonical form. Hence, we can
find generators of Sn�1 such that

sj ¼ ð�1Þ�jAj

� Y
k�j;n

B
�k;j

k

�
Tj;n; (7)

where the variables �k;j ¼ 0, 1 denote whether Bk or 1k is

present, and �j ¼ 0, 1 defines the phase. With the nth

column out of canonical form, this leaves the nth qubit
operator Tj;n unspecified. However, if all these generators

have Tj;n ¼ 1n, then the protocol is trivial and projects n�
1 qubits into a known stabilizer state and the last qubit
untouched, and so no improvement is made for any f.
Hence, herein we assume the nontrivial case; in particular,
we assume stabilizer Tn�1;n � 1n. Since we can always

relabel qubits this is completely general. Furthermore, we
can define Tn�1;n ¼ An. Now we are ready to define a
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logical operator in the code space of Sn�1:

ZL ¼
� Y
1�j�n�2

B
�j
j

�
Bn�1Bn; (8)

where the variables �j ¼ 0, 1 are uniquely fixed by com-

mutation relations ZLsj ¼ sjZL. Note that ZL has some

inbuilt freedom as Bn is not fixed other than that Bn � An,
1n, which is equivalent to free choice of �n in the expres-
sion AnBn ¼ ið�1Þ�nCn. Nowwe enquire whether the final
state contains two terms stabilized by ZL and �sZL, re-
spectively, hence satisfying the conditions for Lemma 2. If
we consider the product of ZL and sn�1, and choose �n ¼
an�1 þ �n�1 mod 2, we have

� sn�1ZL ¼
� Y
1�k�n�2

B
�k;n�1þ�k
k

�
Cn�1Cn: (9)

Our choice of �n ensures a minus sign on the left hand side,
which aids in finding j�gi and j�g0 i that satisfy our lemma

by being stabilized by Gg ¼ ZL and Gg0 ¼ �sn�1ZL, re-

spectively. This criterion is fulfilled when

g ¼ ðB1; B2; . . . ::; Bn�2; Bn�1; BnÞ;
g0 ¼ ðB1; B2; . . . ::; Bn�2; Cn�1; CnÞ:

These states only vanish under projection, q0g, q0g0 ¼ 0, if

they are stabilized by the negative of some element of the
code Sn�1. To prove they do not vanish, we first observe
that every element of Gg and Gg0 has either 1j or Bj acting

on qubit j, for all j ¼ 1; 2; . . . n� 2. The only elements of
Sn�1 for which this is true are 1 and sn�1, but sn�1 has
An�1An acting on the last two qubits and neither Gg or Gg0

contain any such element.
Using a canonical form of the generators of Sn�1, we

have shown that nontrivial codes always satisfy the con-
ditions of Lemma 2. That is, all nontrivial code space
projections take many surface states into the octahedron
interior. From the continuity expressed by Lemma 1, this
entails the existence of a finite region of nonstabilizer
states that are also projected into the octahedron. Hence,
all n-copy protocols do no improve on a single copy for
some region of bound states above the octahedron faces,
completing the proof. This does not contradict known tight
thresholds in edge directions, as these directions have a
with one zero component.

Although our proof holds for protocols using fixed and
finite n copies of �ðf; aPÞ, we could conceive of a protocol
that varies n. If this varying-n protocol has an n-dependent
threshold, fTaPðnÞ, and fTaPðnÞ ! fSaP as n ! 1, then its

threshold would be arbitrarily suppressible. Repeated iter-
ations of a protocol, or equivalently employing concate-
nation of a single-qubit code, will not change the threshold.
However, one could consider a broader class of protocols
consisting of iterates that act on p qubits and output q
qubits (for p > q> 1) followed by a final round outputting
a single qubit. Such protocols map n qubits to 1 qubit, with

n growing each iterate, but with only p qubits involved in
each iterate. This implies that multiqubit output iterates
may suppress the threshold effectively, and are worth
further study. Currently, no such protocol is known. As
such, in the asymptotic regime, bound magic states may
not exist. However, numerical evidence so far indicates
that smaller codes tend to produce better thresholds than
larger codes. Nevertheless, the theorem does not rule out
infinite cases from attaining a tight threshold. In the regime
of finite resources, bound states do exist, and it is interest-
ing ask what computational power Clifford circuits acting
on such states possess. Can we find methods of efficiently
classically simulating bound states, or can bound states be
exploited in algorithms that offer a speedup over classical
computation?
Furthermore, our proof assumes a protocol acting on

identical copies, which invites study into whether our
results extend to nonidentical copies. In particular, follow-
ing the analogy with entanglement distillation, we specu-
late that bound magic states may be distillable via
‘‘catalysis,’’ where some nonconsumed distillable resource
activates the distillation [11]. Finally, we note that noisy
Clifford gates can also enable quantum computation
[17,18], and we conjecture that a similar theorem will
apply to a class of noisy Clifford gates analogous to states
just above the octahedron faces.
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