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Abstract-We develop a quantitative theory of the ratio R of radiative to non-radiative de-excitation based on the 
Dexter-Klick-Russell criterion for the occurrence of luminescence. The model invokes three essential elements: a 
promoting mode, an accepting mode, and a set of lattice modes which ultimately absorb the vibrational energy. The 
ratio R is determined by the relative population of the relaxed excited and pound states. We show that 
R - n “‘ln,‘“‘. where ni’) and n?’ are the numbers of vibrational quanta in the accepting mode associated with the 
excite: state and the around state, resoectivelv. at the crossing of their adiabatic potential energy curves. The 
result is consistent with experiment. . . 

1. INTROKWCTION 

In the model of Dexter et a/.[]], the probability for 
non-radiative de-excitation of a deep centre depends cri- 
tically on whether the intersection of adiabatic potential 
energy curves lies above or below the excited-state 
energy reached in a Frank-Condon optical transition 
from the ground state. This model is illustrated in Fig. 1; 
it is asserted that if X lies below B, the system cannot 
reach the relaxed excited state C, but rather decays 
non-radiatively to A instead. The model appears to work 
well for F centres in ionic crystals [2]. Actually, one 
would expect the quenching of fluorescence by this 
mechanism to be less than absolute, and the object of the 
present investigation is to provide a quantitative deter- 
mination of the ratio R of radiative to non-radiative 
de-excitations for cases where X lies below B. 

For clarity of presentation, we will assume that both 
ground and excited electronic states are non-degenerate, 
but are of opposite parity in order to ensure a clear 
distinction between promoting and accepting modes. 
Wave functions and symmetry-adapted displacements 
are illustrated schematically in Fig. 2 for a hypothetical 
center with tetragonal symmetry. Thus the analysis 
presented here does not apply to the F center in alkali 
halides, for which the excited state has symmetry-in- 
duced degeneracy, and there is a degenerate set of 
promoting modes. However, the extension of the theory 
to that case presents no difficulty in principle. 

Three types of modes form essential elements in the 
present analysis of non-radiative de-excitation: the ac- 
cepting mode of Figs. 1 and 2(c), which can take up any 
excess electronic energy in the transition; the promoting 
mode of Fig. 2(d), which provides the symmetry-mixing 
perturbation required to couple the electronic states; and 
sets of lattice modes of the same symmetries as the 
accepting and promoting modes, which ultimately absorb 
their vibrational excitation energy. The latter element 
distinguishes the present problem from that of the non- 
radiative de-excitation of a system in thermal equilibrium 
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[3]. We are concerned with the sequence of events 
following the absorption of a photon, as the combined 
electronic and accepting-mode system “cool off” by 
emitting lattice photons until its vibronic energy passes 
through the energy of the cross-over (point X of Fig. 1). 

The nature of the coupling of accepting and promoting 
modes to lattice modes is discussed in Section 2 in 
connection with the optical absorption process. The 
cooling process for the accepting mode is considered in 
Section 3, and the effect of the promoting interaction in 
Section 4. 

2 OPlwAL ABsOlmlONPROcEss 

The electronic states of our model defect are strongly 
coupled to the accepting and promoting modes, which in 
turn are weakly coupled to lattice modes. In favourable 
circumstances, there may be true local or gap modes 
associated with the defect which serve as accepting and 
promoting modes, and which are coupled to lattice 
modes by anharmonic interactions [4]. In the more usual 
circumstance, the electronic system is weakly coupled to 
very many normal modes, which are perturbed by the 
defect in such a way that the coupling is appreciable only 
in a relatively narrow frequency range [4]. This 
resonance can be represented by an “effective local 
mode” together with a set of “effective lattice modes”, 
which are coupled to one another simply as a 
consequence of not being true normal modes [5]. 
However, the utility of such a description depends cri- 
tically on how the initial state is prepared, as we shall 
demonstrate. 

The Hamiltonian for our model defect in the ap- 
proximation of linear coupling can be written in terms of 
the true normal modes in the form 

where 
(la) 

P) = (El + EM)[U - p’“‘)/2] 

+ x hol’)k(“)(oi(@+ ai’““)[(l - p’“‘)/2], 
i-1 (lb) 
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NP 
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i-l 

where energies Eo and EM are defined in Fig. 1, and 
where p’“’ and p@’ are electronic operators defined by 

P= IgXgl- IXXXL (Id) 
and 

P - IgXxl •t IxXsl. (be) 

Eigenkets Ig) and IX) correspond respectively to eiec- 
tronic wave functions $, and llJ of Fig. 2. Superscripts 
(a) and (p) distinguish accepting and promoting modes, 
respectively, and N,, and N,, are the numbers of modes 
of each type. The coupling constants ki’“’ simply reflect 
the relative displacement of accepting-mode potential- 
energy minima corresponding to the two electronic 
states. The coupling constants ki*’ are derived from the 
non-adiabaticity operator [31, and are given by 

P = (xla~Wt@‘l&?)/(2~‘), (2) 

where the Q/“’ are normal coordinates for promoting 
modes. 

In this section and the following section we will be 
concerned just with that part of the Hamiltonian, p’, 
which involves coupling to accepting modes. It is con- 
venient to define an operator & by the relation 

I$ = u:o’ + k:“‘( 1 - p’92. (3) 

Then P’ can be rewritten as 

P=Ea(l-p’92 t+++&t;), (4) 

where we have used the relation 

(5) 

The eigenkets of %?’ are Ig{n.}) and Ix{n,}), where 

@a) 

(6b) 

(The superscript (a) is suppressed in the remainder of 
this section and in the following section, since only 
accepting mode quantities are involved.) Note that, in 
general, scalar products (n,&J represent overlap in- 
tegrals of displaced harmonic oscillator wave functions, 
so that orthonormahty does not apply. 

Consider a transition from the ground state [g{O,}) to 
an excited state Ix{n,}) induced by absorption of a pho- 
ton polarized parallel to the tetragonal axis of the defect. 
It follows from first-order time-dependent perturbation 
theory that illumination of sufficient intensity can be 
considered to induce a transition to a non-stationary 

I 
J 

Fig. 1. Configuration co-ordinate diagram for the accepting 
mode, dlustrating the Dexter-Klick-Russell model. 

ICI IdI 

Fig. 2. A hypothetical center with tetragonal symmetry. (a) 
Ground state electronic wave function, I& (b) Excited state 
electron wave function, &. (c) Symmetry-adapted displacement 
of accepting mode, Q.. (d) Symmetry-adapted displacement of 

promoting mode, Q,. 

state of the form 

IWf)) = & Ixln,lX{n.}l(0,})e-iE""3"'" 
I 

This state provides a starting point for the processes to 
be discussed in subsequent sections, and serves as a 
basis for the introduction of an effective local mode. 
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Since, in a solid, the number of true normal modes is 
very large and the coupling to any one mode is very 
weak, the chance of exciting two or more vibrational 
quanta in any one mode is neghgably small, and we may 
approximate 19(O)) as follows: 

(8) 

where (IxiB,) is a vibrational overlap integral for the ith 
accepting mode, with nti = 1 and ngi = 0. An effective 
local mode may be introduced by the transformation 

where 

We can write 

n = TA,i + Ml -p)/2, 

where 

k&= zk: 
, 

(9b) 

(IW 

UW 

The transformation so defined is identical with that ad- 
vocated by O’Brien[Sl for Jahn-Teller systems. With this 
transformation, I*(O)) may now be written in the form 

IWO)) = &A exp (- k~Mk~dnx/n,!, 
“I 

(11) 

where n, is the vibrational quantum number of the local 
effective mode. 

We see that under the postulated conditions of illu- 
mination, all of the vibrational excitation in the excited 
state is associated with an effective local accepting 
mode. The ensuing redistribution of this excitation 
energy is considered in subsequent sections. 

3. UCOOUNG” PROCDS 

The results of the preceding section may be inter- 
preted as follows: Suppose that the effective local mode 
is predominantly associated with displacements of the 
nearest-neighbour ions, as illustrated in Fig. 2(c). Then 
according to eqn (11). the transition takes place in such a 
fashion that the nearest-neighbour ions acquire initial 
velocities but are not initially displaced (Frank-Condon 
principle). Their subsequent oscillation at the local-mode 
frequency is described by the motion of a wave packet 
formed by coherent superposition of the local-mode 
eigenfunctions. However, the system is in a non-sta- 

tionary state which develops in time in accordance with 
eqn (7). The wave packet spreads within a single period 
of oscillation, but the individual local-mode excitations 
may persist much longer if the resonance is sufficiently 
narrow. Ultimately, however, the initial phase relations 
of the true normal modes are lost. The vibrational ex- 
citation is no longer localized at the nearest-neighbour 
ions, which become relatively quiescent at their new 
equilibrium positions, but is shared among ail the ions of 
the crystal. The purpose of the present section is to 
explore the way in which the local-mode vibrational 
excitation is transferred to the lattice. 

We can complete the specification of effective modes 
by assigning values of coefficients A,, i# 1, which, 
together with the Ali of eqn (9), comprise an orthogonal 
matrix. The Hamihonian &rcO’ can then be written in the 
form [51 

3P'=R~tx It ma) 

~~=Eo(l-p'"')/2tb,n lj+q+$ 
( ) 

t,$Y;(oi+.i+~), WW 

where 

and 

(I2c) 

(Qd) 

(124 

The coupling %r of the effective local mode to the 
effective lattice modes is a consequence of the fact that 
neither are true normal modes. The coupling coefficients 
ci are defined by 

(13) 

From the orthogonality of the matrix A, they can be 
shown to satisfy a sum rule [S], 

where 

z ci(c’ = fi’(z - 02) = g2(A,o)‘, (M 

Wb) 

and (3( = rG;e) is defined by eqn (12e). If the coupling is 
sufficiently weak, it can be treated by first-order time- 
dependent perturbation theory; in that case we obtain the 
remarkable result that the excitation of the effective 
lattice phonons, one af a rime. A crude estimate of the 
transition rate can be derived from eqn (14a). We assume 
that the ci have a constant value c in the frequency 
range o~~~-Aw 5 w,n t Ao, and vanish otherwise. The 
transition rate at T = 0 is then 

w 2a = 7 nxc2p(lio.,) = nn,Ao, (15) 



where we have introduced new vibronic operators p’“’ 
and p”“’ defined by 
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where p(E) is the density of modes per unit energy 
range. However, the use of tirst order perturbation 
theory is justified only if the inequality n,Ao 4 OS~ is 
satisfied; otherwise, multiphonon transitions dominate. 

In the case of a true local mode or gap mode, the 
coupling constants cl vanish and the cooling process is 
effected by anharmonic interactions. In that case, the 
interaction term % of eqn (134 is replaced by 

C% = z, z, cfW%+ai+, (16) 

where the c’, are determined by the degree of anhar- 
monicity. This case was discussed briefly in an earlier 
account [lo]. 

LPRoMlmNG~cTloN 

Non-radiative de-excitation may be visualized qualita- 
tively in terms of the theory of Landau and Zener[6]. 
They postulate a sraric perturbation which produces an 
avoided crossing at the point X in Fig. 1. The probability 
that the system passes through the intersection odiuba- 
tic&, resulting in a non-rudiuriue transition, is 

p’“Y = ]gn:“‘)(gnd”‘] - ]xnJ(a’)(xnll(LI’], (1% 
and 

P (P)‘= ]gn,‘“‘)(xn,‘“‘] + ]xn,‘“‘)(gn,‘“‘]. (19b) 

Only the term containing p@” can mix the two elec- 
tronic states, and its effect is appreciable only when 
Eo+(nP’- n,‘“‘)g&~=O; i.e. when the two vibronic 
states Ignd”‘) and Ixn,‘“‘) are nearly degenerate. 
Furthermore, the mixing term contains as a reduction 
factor the vibrational overlap integral (n,‘“‘ln:“‘). which 
is appreciably different from zero only when the classical 
turning points coincide. Thus, the importance of the 
cross-over of the adiabatic potential energy curves (point 
X of Fig. I) becomes apparent. If kY is large enough, 
the mixing may be appreciable for several pairs of 
vibronic states, but to a lirst approximation the states are 
only mixed in pairs. 

For simplicity, we will neglect &t (n.‘“‘- n,‘“‘)/ko%‘; 
then we are left with a simple Jahn-Teller problem. The 
Hamiltonian can be written in the form 

P = 1 - exp ( - 2mf&4S, - .S,]), (17) 

where l W is the matrix element of the static pertur- 
bation, S, and S, are the slopes of the potential energy 
curves at the cross-over, and u is the speed with which 
the system passes through the cross-over. We add to 
their picture the additional feature that the vibronic 
energy is progressively diminished by “cooling”, as 
described in the preceding section, until it equals the 
potential energy at the cross-over. The cross-over then 
coincides with the classical turning point, with the result 
that u = 0 and P = I in eqn (17), and the system jumps 
back and forth rapidly between the two electronic states 
until it cools further. 

H(nd”‘, nx(o) )= (n:“‘t~)hu!$ 

thd$ p?y+p 
( 

m-u 

where 

? 
(P)‘- = a,(‘) t k’p,n,‘“‘ln,‘“‘)pw”‘, (20b) 

E, = kb%‘l(n~‘lnfl’)(*fiu!&), (2fk) 

and has eigenkets 

An alternative description can be based on the work of 
Lewis and Hougen[7], who also consider a static 
perturbation, but who derive stationary vibronic states 
for fixed energies near the cross-over. The present 
treatment resembles theirs, except that the static pertur- 
bation is replaced by a dynamic interaction with promot- 
ing modes. 

( f )In,‘P’) = (2)-“2((xn,(“‘) t Ignda)))ln+@)). (21) 

The corresponding adiabatic potential energy curves as 
functions of the promoting mode configuration coor- 
dinate Q, are shown in Fig. 3, together with the vibronic 
energy levels. 

A “cooling” transition from the state Ixnp’t l)O,,@‘) 
terminates in a combination of degenerate eigenkets 
I + )tn+‘P’) + I - $I-(“‘), where 

We now consider the mechanism by which promoting 
modes effect non-radiative transitions. The relevant part 
of the Hamiltonian, %@ of eqn (lc), invoives weak 
coupling to very many promoting modes. Again, it is 
possible to transform to an effective local mode plus a 
set of effective lattice modes. 

It is convenient to rewrite the Hamiltonian in a 
representation spanned by eigenkets Ignnd”‘) and ]xn?‘) 
of pa’. With omission of the lattice modes, a 2 x 2 block 
for fixed nfl’, n,‘“’ has the form 

n+ (P) = nww’ = &/h&$, (22) 

The probability for a subsequent cooling transition to the 
state Ixn,@ - l)jOo(p’) is 

W, = Im,‘“‘Ao $(O,,““) t (O0(p))/2, (23) 

and that for a cooling transition to the state ]gn:“‘- 
l)l lo@‘) is 

%(n,‘“‘. II?’ ) = (*y +$kY+ [&+(n:“‘-n:o? 

x L&q(l -p’“V2 + iIfUY[(Cr,Yr,*)+;) 
W, = ~~:“‘ho i I(%w'ln+'P') t {0,,~‘~n-‘P’)~2, (24) 

provided that 
+ kY(n,‘a’] n:O’)(a,*‘+ aI @)+)p’p’.l, (18) 

1 
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“P 

Fig. 3. Configuration coordinate diagram .for the promotin 
mode, for fixed degenerate accepting mode vibronic states ]mnJ ! 

and ]gn/ ) 

Here, the kets I&@‘) and (lO’p’) refer to the local 
promoting mode in the absence of a promoting inter- 
action. The factors involving vibrational overlap integrals 
in eqn (23) and (24) are expected to be comparable; 
accordingly the ratio of transition probabilities is given 
approximately by 

where n,‘“’ and a,(‘) are the quantum numbers ap- 
propriate to the cross-over. This is also the ratio of 
radiative to non-radiative de-excitations. It is convenient 
to introduce a parameter A defined by 121 

where the energies & and EM are defined in Fig. 1. In 
terms of A, the ratio of probabilities is simply 

R-(1-ZA)* Cm 

In order to preserve symmetry, the terminal ground 
electronic state must have associated with it at least one 
vibrational quantum of the local promoting mode, which 
is ultimately transferred to lattice modes of the same 
symmetry. As a consequence of this requirement, 
k$(n:“‘]n,‘“‘) must be large enough (4 1) to mix pairs 
of states above and below the cross-over; in particular, 
energy conservation demands that 

Several assumptions have been incorporated in the 
present derivation. Our description of the cooling 
process relies on the inequalities n,(“Aho aos and 
nd”‘Ao 6 02~‘; accordingly, we have assumed a relatively 
narrow resonance. If only the former inequality is 
satisfied, the ratio R is substantially diminished since the 
mixed state ca.n decay very rapidly to the ground state by 
muitiphonon transitions. On the other hand, if neither 
inequality is satisfied, the excited state relaxes by muiti- 
phonon transitions in a fraction of a vibrational period. 
This is the process envisioned by Seitz[lI]; physically, it 
means that the motion of the near-neighbour ions is 
over-damped and they proceed directly to their new 
equilibrium positions (point C of Fig. 1) without ever 
reaching the intersection of adiabatic potentialcnergy 
curves. Non-radiative de-excitation is then improbable, 
and R is very large. 

If follows from the discussion of section 2 that the 
intersection of adiabatic potential energy curves may 
also be avoided, with consequent enhancement of R, by 
the use of low-intensity monochromatic illumination. The 
optical transition is then directly to a vibronic state in 
which the vibrational excitation is shared among many 
ions rather than localized at the near neighbours. 

We have also assumed that the effective promoting 
interaction sat&es the inequality k’%(nT’lnd”‘) B 1, in 
order that several pairs of states above and below the 
cross-over be mixed. Weaker coupling than this would 
increase the value of R. If the promoting interaction 
were weaker than the coupling of effective local modes 
to effective lattice modes, it would be more appropriately 
treated by time-dependent perturbation theory, as was 
done by Brailsford and Chang[9]. 

We have assumed throughout that the lattice is at the 
absolute zero of temperature. Thermal phonons would 
modify the initial state and affect the cooling process, but 
would not radically alter our conclusions. However, 
thermally activated non-radiative de-excitation from the 
relaxed excited state, which was not included in the 
present analysis, could have a significant effect on the 
quantum efficiency of fluorescence, which in our theory 
is given simply by RI( 1 t R). Our prediction is in accord 
with the observed success of the Dexter-Kiick-Russell 
model [2, lo]. A quantitative comparison with experiment 
will be given elsewhere. 

for the lowest state of the sequence. 

I. nlmJssIoN 

It is evident from eqn (25) that the ratio R of radiative 
to non-radiative de-excitations satisfies the inequality 
R e 1, since nd”‘% n,“‘; this result lends strong support 
to the model of Dexter et af.[l], but shows clearly that 
luminescence is not absolutely prohibited when X lies 
below B in Fig. 1. 

SSE Vol. 21. No. 11112-E 

1. D. L. Dexter, C. C. Klick and G. A. Russell, Phys. Rev. lOtI, 
603 (1955). 

2. R. H. Bartram and A. M. Stoneham, Solid-B. Comm. 17, 
1593 (1975). 

3. K. F. Freed and J. Jortner, 1. C/tern. Phys. 52,6272 (1970). 
4. A. A. Maradudin, Solid-St. Phys. IS, 274 (1966); 19, 2 (1966). 
5. hf. C. hf. O’Brien, J. Phys. C. 5.2045 (1972). 
6. ~.ZZcr, Proc. R. Sot. (London) Ai37,6% (1932); AM, 660 

7. J. K. Lewis and J. T. Hougen, .I. C/rem. Phys. 48.5329 (1968). 
8. F. Seitz, The Modem Theory of Solids p. 452. McGraw-Hill, 

New York (1940). 
9. A. D. Braifsford and T. Y. Chang, 3. Chem. Phys. 53, 3108 

(1970). 
10. A. hf. Stoneham. Phil. Mag. 36, 983 (1977). 


