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Abstract. We have investigated in detail the two models of the V- centre, where a hole is 
trapped at a cation vacancy. These are the model of Bartram, Swenberg and Fournier, where 
optical transitions occur within an 0- ion, and the model of Schirmer, Koidl and Reik, 
which involves a hole hopping from one oxygen ion to another. 

Our calculations show (i) that the hole should be self-trapped on a single oxygen, as 
observed, (ii) that our predictions of ground-state ionization energy and of elastic and elec- 
trical dipole moments (apart from some uncertainties in local-field corrections) agree 
adequately with measurements, (iii) that the transitions within an 0- ion appear to account 
for observed structure at around 1.5 eV, both in energy and oscillator strength, and (iv) 
that the observed 2.3 eV band corresponds to the transition suggested by Schirmer et al. 
Calculations are also given for some centres related to the V- centre, Vo, V& and [Na)O, 
again predicting optical absorption in good agreement with experiment. 

1. Introduction 

Centres in which a hole is trapped by a cation vacancy have been observed in many 
oxides. The review of Hughes and Henderson (1972) describes data for these V- centres 
in the cubic oxides MgO, CaO and SrO, for the wurtzite systems Be0 and ZnO, and 
for alumina. No doubt analogous centres exist in more complex oxides. 

Both spin resonance and optical absorption have been detected for some of these 
systems, including MgO, CaO and A120,. The main features of the ground state are 
fairly clearly understood. The hole is trapped on one of the six oxygen ions neighbouring 
the cation vacancy, giving an 0- ion instead of 02-.  In pure systems, the localization 
is a result ofthe lattice distortion produced by the hole, i.e. there is self-trapping, analogous 
to that seen in V, centres. Of course, the hole can hop between the oxygen ions adjacent 
to the vacancy, but this occurs relatively slowly, and can be inhibited by the random 
strains in the crystal. 

Many of the properties of V- centres can be understood reasonably well on a simple 
model (Bartram et a1 1965, with some extensions by Hughes and Henderson 1972). In this 
model, one concentrates on the energy levels of an 0- ion in a crystal field whose axial 
component results from the presence of the vacancy. The axial field splits the 2p levels 
of the oxygen, the p-state along the 0- vacancy axis being raised in energy. In this simple 
model, the splitting A of the 2p levels can be estimated in three ways: from a simple 
crystal-field theory, from the orbital contribution to the g factor, and from the observed 
optical absorption. 
t Present address : SESI, Centre d'Etudes Nucleaires, Fontenay-aux-Roses, France. 
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Qualitatively, the theory is very successful. However, there remain discrepancies in 
detail which suggest that a more complicated model is necessary. Two of these problems 
are qualitative, and so insensitive to many of the details of the model. Thus the observed 
gll exceeds the free-spin value, whereas the opposite inequality is predicted. Further, 
the variation of magnetic circular dichroism with field direction is wrong (Izen et a1 
1973). A third problem is quantitative, and appears because there are significant incon- 
sistencies in the detailed values of parameters (like the spin-orbit coupling I I  and the 
axial splitting A) which are hard to eliminate. For these and other reasons, Schirmer 
et a1 (1974) proposed another model. In this, the optical excitation is best regarded as a 
polaron transition. The hole on one oxygen transfers to an adjacent oxygen in a time 
so short that the lattice does not relax to its new equilibrium configuration. Thus the 
transition energy is determined by the self-trapping distortion produced by the hole. 

We present here quantitative calculations of both models, and we shall show that a 
combination of both models agrees well with most observations. 

2. Lattice relaxation calculations 

Two types of calculation are involved in the present work. One includes the Hartree- 
Fock calculations of electronic structure for specified lattice geometries. The other 
requires a variety of estimates of lattice geometries and of the related polarization and 
distortion energies. In this second class we use a shell model which has already proved 
successful in dealing with other intrinsic defects in MgO. 

2.1. Model for lattice relaxation studies 

The lattice relaxation studies used the Harwell program HADES, which is an efficient 
and general code for evaluating energies and geometries. 

HADES requires an interatomic potential which, for an ionic material like MgO, 
consists of a Coulomb part and a short-range part; it is also necessary to account for ion 
polarization. Catlow et a1 (1976) have developed suitable potentials based on the shell 
model. The ions are doubly charged, and the assumed short-range interaction 4:: has 
overlap and van der Waals parts : 

$fF(r) = Aij exp ( - r / p i j )  - Cij /r6.  

All parameters used are listed in table 1. 
The nearest-neighbour interactions were fitted using the lattice constant, combina- 

tions of the elastic constants, and the equilibrium condition. The O2 --02- parameters 
A - -  and p - -  were taken from Catlow's (1974) ab initio Hartree-Fock work. His 
calculation assumed that, since the extra electron on 02- is not bound in the free ion, 
the short-range O--O- interaction would be close to the desired potential. The short- 
range Mg2'-Mg2+ parameters A +  +, C, + were set to zero, as was C+ _. The remaining 
parameters A ,  -, p +  - and C - -  were obtained from (c1 l-c12), c44 and the lattice spacing 
through the equilibrium condition. 

The elastic constants of MgO have c44 > c12, the fairly large deviation from the 
Cauchy relation indicating significant non-central or many-body terms in the potential. 
The most satisfactory model of Catlow et a1 (1976) used a breathing-shell model to 
describe the non-central terms. Thus the pair-potential was fitted to c11-c12 and c44, 
which have no contribution from symmetric ion deformations. Explicit inclusion of 
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Table 1. Parameters for interatomic potential 

(a)  Short-range interactions: 
Anion-cation potential A +  - exp ( - r / p +  -) 
A +  - = 1152.0 eV 
p + - = 0.3065 8, 

Mgz+-Oz- interaction in models I and I1 and 
MgZf-O- in model I 

MgZ+-O- interaction in model I1 A +  - = 331.2 eV 
p + - = 0.3632 8, 

Anion-anion potential A -  - exp ( - r i p -  -) - C-  - / r6  
A -  - = 22760.0 eV 
p - -  = 0.1498, 
C- -  = 28.96 eV A6 

(b)  Shefl-model parameters 
Core charges X +  = 2.0 le1 X -  = 0.62 / e /  
Shell charges Y+= 0.0 /e( 1'- = - 2.62 le/ 
Shell-core force k + = m k - = 19.01 eV A -  * 

constants 

These parameters (Catlow et a/ 1976) are fitted to c ,  , - cI2, c44, wTo eo, E, ,  lattice parameter 
and Hartree-Fock 0-0 interactions. 

ion deformation had a negligible effect on defect energies, and we have omitted this 
effect in the present work. The shell parameters for 02- (Mg2+ was regarded as un- 
polarizable) were adjuated to give a best fit to the observed static and optic dielectric 
constants and to the infrared dispersion frequency. 

The model for the perfect lattice is thus well defined. In treating the V- centre, we 
need 0- parameters also. The dominant effect is simply the change of the anion charge 
from - 2)el to - (el. A unit increase in the shell charge leads to a physically reasonable 
reduction in polarizability. We have verified separately that our results are insensitive 
to the 0- polarizability. The parameters A and p for the Mg2+-0- interaction are 
less simple, and we have used two models. In model I the Mg2+-O- repulsion was 
assumed to be the same as the corresponding Mg2+-02- term. In many cases this is 
acceptable, for the hole leads to a relaxation of the cations away from the 0-, so that 
the repulsive term is small. However, we also need to consider hole jumps at fixed 
lattice configuration, and the results are then quite sensitive to the assumed interaction. 
Thus we obtained a model I1 which estimated the Mg2+-0- interaction directly by a 
statistical method (see Wedepohl 1967, Gordon and Kim 1972). 

2.2. Predictions common to both models of the V -  centre 

A useful preliminary check of the shell model involves three features which are common 
to both the models of Bartram et a1 and of Schirmer et al. First, the model should predict 
correctly that the hole is localized on one of the oxygens, rather than spread over all six. 
Secondly, it should give the correct ionization energy for the thermal loss of the trapped 
hole. Thirdly, the reorientation behaviour should be correctly predicted, both the static 
dipole strengths and the dynamic behaviour. 

When the hole is localized onto one, rather than all six, of the oxygens adjacent to 
the cation vacancy, there is a big gain of polarization energy. On the other hand, the 
hole can gain in kinetic energy by spreading out on all of the oxygens. The gain in 
polarization energy is estimated as 2.33 eV, appreciably larger than the kinetic energy 
term which is around 1 eV using Schirmer et al's estimate of the tunnel matrix element. 
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We have also confirmed that localization on two sites is unfavourable, the polarization 
term being around 1.5 eV and the kinetic term a few tenths of an electron volt. Thus 
self-trapping of the hole onto a single site is favoured, in agreement with observation. 

The binding energy of the hole was calculated by comparing the energy of the V-  
centre with the energy of an isolated vacancy and a hole trapped on a distant oxygen ion. 
The prediction, 1.41 eV, agrees well with the measured value of 1.6 0.2 eV (Tench 
and Duck 1973, 1975). Searle and Glass's (1968) less direct experimental estimate of 
1.13 eV is also in the same range. In fact their result is closer to the ionization energy 
expected for the V i  centre, where the (002) A13+ substituting for Mg2+ repels the hole 
slightly and reduces the binding energy by 15-20 %. 

The energy for reorientation has been calculated by methods analogous to those 
used by Norgett and Stoneham (1973) for the V, centre. The energy which is calculated, 
E,, is (with certain qualifications) the activation energy which would be observed at 
high temperatures; for MgO, this would probably be appropriate above about 500°C. 
At lower temperatures, a much smaller effective activation energy, EZff, would be found 
by fitting an Arrhenius form over a small temperature range. We predict the high tem- 
perature value E ,  to be 1.36 eV, whereas the EZff is only about 0.1 eV in the temperature 
range where motional effects on spin-resonance spectra are seen. No appropriate 
analyses of the experimental data are known, although Rius et a1 (1976) have reported 
studies at very low temperatures. The values of E ,  and EZff seem plausible, and it would 
be useful to have higher-temperature data to check them. 

2.3. Dipole moments of the V -  centre 

The V- centre can be aligned by either uniaxial stress or by an electric field. Under a 
(100) pressure, the centre aligns along the stress axis. The energy difference between the 
parallel and perpendicular orientations can be described by an elastic dipole moment 
p where (Rius et a1 1976) 

p = - (9.6 & 0*4)(10-3 K(kgcm-')-') E - 0.85 eV/(unit strain 2e,, - exx - eyy) . .  . . (2.2) 

The unit strain needed in the second expression is the value that would occur in a perfect 
MgO crystal ; no effects of altered local force constants are built in. Similarly, the energies 
of V- centres in an electric field can be described by a dipole lelL, where 

L = (3.4 & 0.4)A 
= (3.2 & 0.l)A 

(Rose and Cowan 1974) 
(Ruis et a1 1976). 

We now calculate the two terms p and L. 
The main problem theoretically concerns the effects of local field corrections, both 

elastic and electrical, and the very slow convergence of sums appearing in expressions 
for the elastic dipole. In principle, these local corrections can be calculated directly by 
calculating energies in a compressed crystal, for example. This works well for silicon 
and diamond (Larkins and Stoneham 1971), but there are technical problems because 
of the long-range forces in ionic crystals, and comparable calculations would be too 
demanding here. 

In absence of local corrections, the elastic dipole is given by a sum over all ions i of 
the form 

ptheory = 3 1 (Fzi zi - & E F x i x i  f F y i y i l )  (2.4) 
i 
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where F i  is the force on ion i and ri (x i ,  y i ,  z i)  the (relaxed) position of ion i. Values of 
,utheory, listed in table 2, are around - 2 eV. The sign means that the V- centre prefers 
to lie along the compressive stress axis, in agreement with observation. The predicted 
value is too large by a factor 2.3 which we tentatively associate with the effects of differences 
between the local and bulk strains. 

The simplest picture of the electric dipole simply considers a net charge + (el (cor- 
responding to 0-) which can move over the vertices of an octahedron?. The ‘point ion’ 
dipole moment is then lela 3 2.10 lelA. However, this moment polarizes the lattice, reduc- 
ing the net dipole moment, and the expression analogous to (2.4) is 

where i labels the various shell and core charges (2. Values are given in table 2. The reduc- 
tion is calculated to be about 24 % in this case, giving around 1.6)eI A. This is still not what 

Table 2. Dipole moments 
( a )  Electrical dipole moment with the sum taken over a sphere of radius Ra centred on the 
vacancy, with a the nearest-neighbour distance. Values in l e l A  are given for (A) no local 
field correction, for (B) the Onsager correction 3 q , / ( 2 ~ ~  + 1) and for (C) the Lorentz-Lorenz 
correction (eo + 2)/3 

Model A B C 

Unpolarizable point ions, rigid lattice 
I R = 5.0 1.49 2.13 5.86 

R = 6.0 1.62 2.31 6.37 
R = 6.5 1.64 2.34 6.45 

I1 R = 5.0 1.41 2.01 5.45 
R = 6.0 1.53 2.18 6.02 

Experiment 3’2-3’4 

2.10 

(b)  Elastic dipole moment. Values are in eV and without the elastic analogue of a local field 
correction. 

Model Moment 

I R = 5.0 
R = 6.0 
R = 6.5 

I1 R = 50 
R = 6.0 
R = 6.5 

Experiment 

- 2.23 
- 1.87 
- 2.21 

- 1.69 
- 1.41 
- 1.73 
- 0.85 

is measured, for the field must be given a local correction. General discussions are given 
by Herring (1956), Smith and Dexter (1973) and Stoneham (1975). It is here that ambi- 
guities set in. In the Onsager model, a cavity-field correction of 3Eo/(2Eo + 1) is appro- 
priate, giving around 2.3 lelA. The Lorentz-Lorenz correction, on the other hand, is 
(eo + 2)/3, giving 6.3 (e& These bracket the experimental value. 

t One must remember that the cation vacancy does not move in the reorientation. If the centre of charge were 
fixed instead, the effective dipole moment would be 3/2 ea. 
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2.4. Electric field gradients 
The quadrupole terms observed (see e.g. Chen and Abraham 1975) in the spin resonance 
of a related centre, the [Na]' centre (basically a V- centre with an Na' ion in the cation 
vacancy), allow an estimate of the electric field gradient at the Na nucleus. There arc 
some uncertainties, mainly because of the large effect of the Sternheimer antishielding 
factor. 

We can calculate the electric field gradient from a sum over all the charges present 
(i.e. cores and shells) : 

Here ri (xi, y ,  zi) is measured from the Na+ nucleus, and the z axis is along the join 
of the hole and the impurity. In a rigid, undisturbed lattice, q is qo = - 2(el/a3 with a the 
nearest-neighbour distance. We find a value significantly less : 

Since other calculations have used (q/qo) as a measure of the Na+-O- separation, we 
note that such arguments suggest a separation of about 1.29 a, whereas the atomistic 
model gives about lvla. Whilst the hole dominates in the field gradient, the discrepancy 
shows that other contributions are important too. This is in line with earlier comments 
(Stoneham 1975, 5 13.7) on the problems of measuring lattice distortions by spin- 
resonance methods. 

3. The Bartram-Swenberg-Fournier model 

We start by using the earlier of the two models, and make detailed predictions for V- 
centres in MgO. Simple versions of the model have been applied to MgO by Hughes 
and Henderson (1972). Whilst the results had many of the right features, the anomalies 
mentioned in 5 1 remain. The predicted transition energy was 1-47 eV, significantly less 
than the 2.3 eV observed, for example, and a very low oscillator strength is indicated, 
probably lower than the observed 0.1. However, it is not clear whether or not these 
values are in error only because of simplifying assumptions, rather than for more 
fundamental reasons. For this reason we have extended the calculations in several 
respects, whilst maintaining the same basic model. 

3.1. Generalizations of the model 

the calculations easier : 

uniform electric field ; 

The simple version of the model contained several important assumptions to make 

(i) The 0- ion is assumed to be very compact, so that it experiences an essentially 

(ii) The 0- orbitals are the same as those of a free 0- ion in Hartree-Fock theory; 
(iii) The electric field is entirely due to the charge missing from the vacancy site, 

(iv) There is no lattice distortion. 
regarded as a point charge ; 

We have generalized the model to cover these aspects. 
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The first generalization is that we have made Hartree-Fock calculations for an 0- 
ion in an appropriate array of point charges. Thus the main differences between the crystal 
ion and the free ion have been dealt with, and the inhomogeneity of the crystal field 
included. Some approximations do remain, however, including overlap terms of various 
sorts. Their effects are likely to be small in the present case. 

The second generalization is that we have calculated the local lattice distortion, 
using the model described elsewhere in this article. We have not only used this local 
geometry in our Hartree-Fock calculations, but also we have ensured that the electric 
field at the 0 - is properly calculated, including electronic polarization and long-distance 
ionic displacement terms. These features are Amportant in both the energies and the 
transition probabilities for, roughly speaking, the optical transition is from a 2p, or 
2p, state to a (2p, t 2s admixture) axial state, and the 2s admixture depends strongly 
on the applied field. 

3.2. Details of geometry and basis functions 

In our calculations, the 0- ion was surrounded by six point charges. Five of these were 
charges + 2 [el, and corresponded to the neighbouring cations. Their positions were 
fixed by an independent lattice-relaxation calculation. The sixth, a charge of - 2 I el was 
placed on the axis the other side of the cation vacancy so as to ensure the correct electric 
field at the 0- ion. The positions are listed in table 3. 

Table 3. Local geometry for generalized Bartram-Swenberg-Fournier model 

Ion Coordinates? Charge (14) 

Axial cation (0, 0, - 0.808) 2 

Charge to ensure correct field (0, 0, 1.854) - 2  

Oxygen (O,O, 0) 2 = 8 + 9 electrons 

Equatorial cations (*0.842,0,0167), (0, k0.842, 0.167) 2 

t Units are those of the nearest-neighbour distance in the perfect crystal 

The atomic basis functions were chosen from the experience of a number of previous 
workers, including Clementi (1965) and Harker (1974). Five s functions (two 1s and 
three 2s) and five p functions were used; these are listed in table 4. The energy levels 

Table 4. Basis functions foi 0- ion 

Type Exponent (au) 

1s 7.6126 
1s 13.3654 
2s 3,2045 
2s 6.2896 
2s 1.7631 
2P 1,7424 
2P 3,4363 
2P 0,8565 
2P 0.41 
2P 7,807 
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and wavefunctions were calculated using the ATMOL program provided by Dr Saunders 
of the Atlas Laboratory. In all cases we calculated excited states self-consistently, i.e. 
we did not use Koopmanns’ Theorem. 

3.3. Results 

We have calculated three parameters : the optical transition energy, the oscillator strength, 
and the orbital reduction factor needed in estimating spin resonance parameters. 

The optical transition energy proves to be 1.56 eV. This is almost exactly the same 
as the simplest calculations (cf Hughes and Henderson 1972), which gave 1.47 eV. Both 
are significantly less than the main V- band at 2.3 eV. It is our view that the transitions 
within 0- are responsible for a separate transition near 1-5 eV, as suggested by Rose 
and Cowan (1974). 

The oscillator strength is estimated to be 0.09. Whilst approximations in the wave- 
functions affect this, the effects are probably slight. For example, if the (non-self-con- 
sistent) virtual excited state is used instead of the self-consistent one, the oscillator 
strength is still of order 0.08. Thus the optical transition is a significant fraction of the 
observed total oscillator strength of about 0.1. 

The s-p admixture in the axial 2pa state is relatively small, despite its importance in 
the oscillator strength. There are only slight effects of this admixture and of the modifica- 
tions of the relative forms of the 2pa and 2pn states from the crystal field on the matrix 
elements of L, the orbital angular momentum. In particular, the matrix element of L 
between the 2pa and 2p7t state is reduced by only 2 % from the value for pure 2p functions. 
Reduction factors are hard to deduce consistently from experiment, but will contain 
other components which we have not estimated, like covalency effects and, in suitable 
circumstances, Jahn-Teller terms. 

4. The Schirmer-Koidl-Reik model 

This model argues that the important optical transition is a small-polaron transition, 
in which the transition energy is related to the self-trapping distortion of the hole. By 
self-trapping of the hole we mean that, when the hole is localized on only one ofthe oxygens 
neighbouring the cation vacancy, the energy gain from distortion and polarization of 
the lattice exceeds the kinetic energy advantages of placing the hole symmetrically on 
all six neighbours. The energetics of self-trapping were discussed in 5 2.2. 

4.1. Optical transitions of V -  

In the Schirmer-Koidl-Re& model, the optical transitions result from hole transfer 
from one oxygen to the other oxygen neighbours of the vacancy at constant lattice con- 
figuration. In line with most other colour-centre calculations, it is natural to assume the 
electronic polarization does follow the hole in its transition, although the lattice distor- 
tion does not. We have used the shell model of 8 2 to calculate the optical transition energy. 
The main results are given in table 5. These confirm that the Schirmer et al(l974) model 
correctly describes the 2.3 eV band. 

We now outline the different contributions to the transition energy. The main contri- 
bution is the energy to move a hole from one oxygen (the ‘axial’ oxygen) to one of the 
four equivalent ‘equatorial’ oxygens. The transfer is at constant geometry but with the 
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electronic polarization following the hole. This part of the transition energy shows a 
systematic dependence on the model. It is higher for a rigid ion model, where there is 
no electronic polarization to follow the hole's motion. Further, model I gives a higher 
energy than model 11: the more accurate representation of the smaller 0- ion leads 
to a further reduction in energy. We note incidentally that it is the size of the 0- ion 
rather than its polarizability which is important ; changes in the polarizability over a 
wide range produced only insignificant changes ( -  0.04 eV) in the transition energy. 

Table 5. Optical transitions of the V- and related centres 
The values listed in eV all refer to the Schirmer- Koidl-Reik polaron model. For reference, 
one value is also given for the rigid ion model; all others refer to the shell models of 5 2. The 
contributions are the basic transfer energy Ao, the tunnelling correction 4J = AT, and the 
crystal field correction AcF; the final energy is (Ao - A, - ACF) = AE. Strictly, this is for 
the lower of two absorption bands; their centroid is higher by J N 0.18 eV. 

Centre Model A. AT ACF A E  Experiment 

V- Rigid Ion 6.08 
I 5.15 0.72(~1) -0.14 4.57 
I1 3.49 0 7 2  0.62 2.15 2.3(c) 

[Na]' I1 3.27 0.72 1.04 1.5 1 1,58(d) 
V-(Al) I1 3.78 (0,72)(b) 0.52 2.54 2.32(c) 2.33(e) 
V0 I1 3.77 (0.72)(b) 0.89 2.16 - 2 . 3 ( ~ )  2,37(a) 

(a) Schirmer 1975, 1976; (b) estimated from comparison with other centres; (c) Chen and 
Abraham 1975; (d) Abraham et al 1973; ( e )  Kappers et al 1974. 

The result just cited assumes the hole is transferred to a single oxygen. In fact, as 
Schirmer et al have noted, the transition is to a final state in which the hole moves 
among the four equatorial oxygens. The tunnelling term reduces the transition energy 
by 45, or around 0.72 eV in Schirmer's most recent estimate. Provided that the electronic 
polarization follows the hole in its motion between these four oxygens, just as it does in 
the main transition, then the polarization energy is not altered. 

A second correction comes from the crystal field splitting of $ 3 .  For the 0- ion, 
there are two p-like orbitals with energy - 6, all doubly occupied, and one higher singly- 
occupied orbital with energy + 26. The energy 36 = ABS, is the transition energy in the 
Bartram-Swenberg-Fournier model. Now the splitting at the final site, 36, is different 
from that at the initial one, just because the lattice distortion does not follow the hole. 
This leads to an extra energy correction in (Efinal-Einitial) of 2(6, - 6,) = SAesF( 1 - 6,/6,). 
Estimating dF/6, from the magnitudes of the shell-core displacements in the two cases 
allows us to estimate the corrections Ac- of table 5. Whilst the shell-core displacements 
are only approximately related to crystal-field splittings, they do reflect correctly both 
the purely electrical and short-range repulsive terms, and the rough value of the correc- 
tion should be adequate. 

Collecting the results together, we see that the predicted transition energy in model 
I1 is 2.15 eV, strikingly close to the observed peak at 2-3 eV. Thus our calculations verify 
the proposal of Schirmer et a1 that the main V- transition is a polaron transition. They 
also show how important it is to have the correct short-range O--MgZ+ repulsive 
terms, for the less accurate model I leads to a much higher transition energy. 
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4.2. Optical transitions of centres related to V - 

We have also calculated transition energies in the Schirmer-Koidl-Reik model for 
three centres related to V-. These are (i) a V- centre with an Na' ion in the cation vacancy. 
the so-called [Na]' centre, (ii) a V o  centre with two holes trapped at opposite oxygens 
adjacent to a cation vacancy, i.e. a (V- centre + hole) system and (iii) a Vil centre, with 
an A13+ substituting for the closest axial Mg2+ opposite the 0- ion in the V- centre. 

The calculations proceed in much the same way as before. There are some differences 
in detail. The centres are electrically neutral, so the polarization energies tend to be less. 
For the two-hole Vo system, the crystal-field splittings for both 0- ions must be included. 
Here, as for other centres, we have used the dipole moments from HADES to scale the 
Hartree-Fock result of 0 3 ; this is probably the weakest part of our calculation. Tunnelling 
parameters J have only been estimated by Schirmer for V- and for the [Na]O centre. 
In both cases J - 0.18 eV, so we have retained this value for the Vo and V- : A1 centres. 

The agreement with experiment (table 5 )  is very good. The low transition energy for 
[Na]' is particularly well reproduced, and we confirm that the Vo, V- and V- (Al) 
centres all give transitions around 2.3 eV, in agreement with experiment. If V- and V- (Al) 
centres contribute to the observed 2.3 eV band, then our results suggest that the V- 
centre should give the major low-energy contribution and the V-  (Al) centre the major 
part at higher energies. 

5.  Conclusions 

Our atomistic calculations of the properties of trapped-hole centres in MgO have led 
to a quantitative understanding of their behaviour. We have confirmed that the hole 
should be localized on one oxygen, as observed, and that the elastic and electric dipole 
moments of the V- are in reasonable agreement with those observed. Transition energies 
have also been calculated, including the ionization energy, and there is very good agree- 
ment with experiment. In particular, a recent controversy has been resolved: we have 
shown that the observed 2.3 eV band of the V- centre corresponds to the polaron 
transition proposed by Schirmer et a1 (1974), whereas the intra-0- transition proposed 
by Bartram et a1 (1965) appears to be responsible for structure around 1.5 eV. Similar 
results have been obtained for centres related to the V- centre, again in very good agree- 
ment with experiment: 
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