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Abstract 

 

Protein-protein interactions are ubiquitous in Biology and therefore central to 

understand living organisms. In recent years, large-scale studies have been 

undertaken to describe, at least partially, protein-protein interaction maps or 

interactomes for a number of relevant organisms including human. Although the 

analysis of interaction networks is proving useful, current interactomes provide a 

blurry and granular picture of the molecular machinery, i.e. unless the structure of 

the protein complex is known the molecular details of the interaction are missing 

and sometime is even not possible to know if the interaction between the proteins is 

direct, i.e. physical interaction or part of functional, not necessary, direct 

association. Unfortunately, the determination of the structure of protein complexes 

cannot keep pace with the discovery of new protein-protein interactions resulting in 

a large, and increasing, gap between the number of complexes that are thought to 

exist and the number for which 3D structures are available. The aim of the thesis 

was to tackle this problem by implementing computational approaches to derive 

structural models of protein complexes and thus reduce this existing gap. Over the 

course of the thesis, a novel modelling algorithm to predict the structure of protein 

complexes, V-D2OCK, was implemented. This new algorithm combines structure-

based prediction of protein binding sites by means of a novel algorithm developed 

over the course of the thesis: VORFFIP and M-VORFFIP, data-driven docking and 

energy minimization. This algorithm was used to improve the coverage and 

structural content of the human interactome compiled from different sources of 

interactomic data to ensure the most comprehensive interactome. Finally, the 

human interactome and structural models were compiled in a database, V-D2OCK 

DB, that offers an easy and user-friendly access to the human interactome 

including a bespoken graphical molecular viewer to facilitate the analysis of the 

structural models of protein complexes. Furthermore, new organisms, in addition to 

human, were included providing a useful resource for the study of all known 

interactomes.   
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Chapter 1 

Introduction 

1.1 Introduction 

 In 1962 Zuckerkandl and Pauling wrote in their chapter “Molecular 

disease and genetic heterogeneity”: Life is a relationship between 

molecules, not a property of any one molecule. So is therefore disease, 

which endanger life (Zuckerkandl and Pauling, 1962). All biological 

processes that take place within or between cells are the result of 

interactions between molecules and thus, understanding these interactions 

has become the focus of study for virtually all fields in molecular biology. In 

the genetics area, where genome sequencing has been facilitated with the 

advent of next generation sequencing (NGS), research is focused on 

understanding the relation between genes (Oshlack, et al., 2010). In 

proteomics, the experimental high-throughput methods for detection of 

protein-protein interactions (PPIs) have given rise to comprehensive protein 

interaction maps. These interaction networks contain mineable information 

useful in a broad range of areas: new therapeutic targets can be proposed 

for drug design, protein function can be predicted (Vazquez, et al., 2003) 

and they allow a better understanding of cellular regulatory mechanisms 

(Ideker, et al., 2002). 

 Among millions of molecular interactions that take place in cells, 

proteins are present in almost all cellular processes. These molecules form a 

highly structured network of interactions where biological events can be 

located in particular sets of connected nodes. Moreover, proteins fulfil their 

functions not as single units but as an active component within the network. 

These interacting molecules team up to build macromolecular assemblies 

and cell machinery providing the cells with the different tools needed to carry 

out their functions. Depicting the role of proteins and their interactions within 

a biological process is required to fully understand their role in cell 

processes.  

 It is well known that protein structure defines its function. However, it 

is not always possible to obtain the 3D structure, particularly so in the case 

of protein complexes. Among all protein complexes that are known to exist, 

the 3D structure is known for only a very small fraction (above 1% of the 

human interactome). Indeed, while the number of protein structures in the 
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Protein Data Bank (PDB) is rapidly increasing, the number of protein 

complexes with known structures still represents only a small fraction of the 

known interactome (Stein, et al., 2011). Experimental techniques currently 

used to determine structure require lengthy procedures that are limited due 

to the size of proteins, strength of the interaction or life span of the complex. 

In general, weak or transient interactions are very difficult to crystallize, 

Nuclear Magnetic Resonance (NMR) has a clear limitation in terms of size of 

the protein complexes that can be analysed and electronic microscopy (EM) 

does not offer sufficient resolution. 

 The main goal of this thesis is to apply existing knowledge and 

computational tools in order to develop novel computational methods to 

improve the resolution of interactomes. This will provide information about 

the molecular detail of the interaction between proteins that are known to be 

part of the same protein complex. Ultimately, the outcome of this thesis will 

provide a new dimension to current interaction maps that will account for the 

molecular details of the interaction and indeed deliver a sharper and more 

informative picture of the machinery of the cell. 

1.2 Project overview 

 Interactomes or protein networks provide useful information for 

understanding biological processes; however, a clear understanding of 

molecular mechanisms can only be realized when the structures of protein 

complexes are available. As mentioned, there is a large gap between the 

number of known protein complexes and those with a known 3D structure. 

An example of the gap and imbalance is portrayed in Figure 1-1. The nodes 

in this sub-network are human proteins with known structure, either 

described by X-ray crystallography or NMR. The edges of the network 

represent experimentally proven interactions (blue edges) and interactions 

for which the structure is available, i.e. the structure of the complex between 

the given protein is been solved (red edges). Even when the structure of the 

individual components is known, in most cases the structure of the complex 

is still missing and thus those with known structure represent a minority of 

the overall interactome. Although this example covers a tiny part of the 

human interactome, it illustrates the focus of this project, which is the 

development of a computational strategy to enhance the structural 

dimension of networks.  
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Figure 1-1 Example of a subnet of the human interactome. Nodes (green 
circles) represent human proteins with known structure; blue edges 
represent experimentally proven interactions between proteins; red 
edges binary complexes with known structure. The ratio between the 
red and blue edges reflects the low percentage of protein-protein 
interactions whose structure has been determined. 
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1.2.1 Preliminary results 

 In the previous section, an example was presented to illustrate the 

limitations of current interactomes. To further determine the potential impact 

and contribution of this project, the interactomes of human and three more 

model organisms were analysed following the same approach. As shown in 

Figure 1-2, the number of binary complexes for which the 3D structure is 

known represents only a small proportion of the total. For a larger proportion, 

the structure of binary complexes is unknown even though the structure of 

individual components is available. The percentages range from 9% in the 

case of H. sapiens to 28% in the case of M. musculus. These results justify 

the proposed research and anticipate the potential impact and range of 

applicability of the resulting technology. 

 

 

Figure 1-2 Distribution of the binary complexes in different 
interactomes. In red, binary complexes for which the structure is 
known. In blue, binary complexes for which the structure is unknown. 
Interactomes shown: H. sapiens, M. musculus, S. cerevisiae and E. 
coli. 
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1.3 Protein-protein interactions - Overview 

1.3.1 Biological relevance 

 Protein-protein interactions occur in all aspects of cellular functions 

such as metabolism, cell signalling and cell division. Indeed, cell processes 

are carried out by highly regulated associations of several components, most 

frequently involving proteins. One of the major functions of proteins in a cell 

is the catalysis of enzymatic reactions. Enzymes act as complexes formed 

by several protein units, e.g. human glyoxalase, which acts as a homodimer 

(Cameron, et al., 1997). Protein complexes also regulate gene expression 

and signalling pathways; the epidermal growth factor (EGF) is a hormone 

released by cells that interacts with the EGF-receptor, a transmembrane 

receptor, so stimulating cell division (Ferguson, 2008). Protein complexes 

also act in different aspects of the immune system, including the activation of 

defence mechanisms or the neutralization of antigens. Structural or fibrous 

proteins form highly regulated and extensive complexes to reinforce 

membranes and to form the cytoskeleton of cells and thus provide 

mechanical support to the cell by means of microtubules and microfilaments. 

Finally, protein complexes act as carriers to transport molecules within and 

between cells and across membranes and have an active role in 

bioenergetic processes such as light-absorption, respiration or energy 

production. 

1.3.2 Experimental methods to detect protein-protein interactions 

There exist an important number of experimental techniques that can 

be used to describe PPIs. The most common are briefly described below. In 

general, no method is totally accurate and all of them have limitations. It is 

therefore important to understand the potential sources of artefacts such as 

false positives (detection of non-native interactions) and false negatives 

(missing real interactions). False positives are an important problem in 

current databases that compile interactomic data (Chatr-Aryamontri, et al., 

2008; Mackay, et al., 2007) and cleaning and curating these data is a 

challenging and time consuming task. 

1.3.2.1 Affinity fusion-based tag (AFT) methods 

In this technique the bait protein is expressed as a tagged protein. 

Usually a chromatographic column is used to identify and capture the tagged 

bait from the resulting cell lysate. Then, the bait protein is recovered together 

with any protein bound to it. Finally, proteins are separated by gel 

electrophoresis and bound proteins are identified by mass spectrometry.  
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AFT detects multimeric complexes or functional associations of 

proteins. However, it does not provide information on the nature of the 

interaction between the eluted proteins, i.e. whether is direct or indirect. 

Post-processing is required to translate group-based observations into 

binary interactions. The most commonly used algorithm is the spoke-hub 

modelling that usually generates a small number of false positives (Bader 

and Hogue, 2002; von Mering, et al., 2002). As proteins are expressed in 

vivo, the bait protein can undergo post-translational modifications (e.g. 

phosphorylation) that often are used to increase or decrease the affinity for 

their targets. 

One of the main drawbacks of AFT is the detection of transient 

interactions. The binding affinity between proteins is higher in the crowded 

molecular environment of the cell compared with the elution buffer. Transient 

interactions, often with low binding affinity, do not endure when proteins are 

diluted in a buffer. Other problems relate to the tagging of the bait protein; if 

the tag becomes buried during the complex formation, then the complex will 

not be recovered during column separation. Also, the tag can decrease 

binding affinity between the bait protein and cognate partners, thus 

preventing the formation of the complex. 

1.3.2.2 Yeast two-Hybrid (Y2H) methods 

This technique is used to identify binary interactions. The method is 

based on many eukaryotic transcription factors being composed of two 

functional domains, the DNA binding domain (BD) that binds to a promoter 

and a second domain that mediates the transcriptional activation: activation 

domain (AD). In the Y2H assay two plasmids are used: one that encodes the 

bait protein fused to a BD domain and the other encoding a target protein 

fused to an AD domain. The two plasmids are co-expressed in the same cell 

and if bait and target proteins interact the BD and AD domain will be brought 

together generating an integral and functional transcriptional activator which 

induces the expression of a reporter gene. 

Y2H is relatively inexpensive to use, simple to set up and it detects 

PPIs in vivo. Weak and transient interactions can be detected because the 

reporter gene that allows signal amplification (Estojak, et al., 1995). 

However, the rate of false positives is an important disadvantage due to 

unspecific interactions; it has been estimated that up 50% of the interactions 

can be artefacts (Deane, et al., 2002), and thus interactions detected by this 

method require further validation using alternative methods. 
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1.3.2.3 Co-Immunoprecipitation (Co-IP) 

This technique is similar to the AFT methods but without using a 

tagged bait protein. The target complex is captured using an antibody that 

recognizes and binds to the bait protein; then the protein complex is 

captured using protein A or protein G covalently attached to sepharose 

beads. The proteins of the complex are eluted and all proteins are identified 

by mass spectrometry or immunoblotting. This technique avoids the 

problems associated with a fused tag; however, it requires a range of highly 

specific antibodies to recognize the bait protein. To simplify the need for 

different types of antibodies, the bait protein can be tagged and a single 

antibody against the tag is then used. Although this modification simplifies 

the antibody design, the drawbacks associated with the fused tag are again 

present. 

1.3.3 Interactomic data 

1.3.3.1 Standard data model to store interactomic data 

The volume of interactomic data is growing fast and new databases 

are being developed to compile this information. Most databases follow their 

own structure design and there are multiple schemas to represent data from 

the different experimental protocols. When different data structures exist to 

represent the same information, merging or comparing data from different 

sources becomes more difficult. For that reason, the Proteomics Standards 

Initiative (PSI) proposed a standard data model (Hermjakob, et al., 2004) for 

the representation and exchange of PPI data, that has been adopted by the 

main databases (Aranda, et al., 2010; Chatr-aryamontri, et al., 2007; 

Keshava Prasad, et al., 2009; Stark, et al., 2011; Xenarios, et al., 2001). 

The PSI developed the Molecular Interaction (MI) XML schema as the 

standard for representing molecular interaction data. The different fields of 

the PSIMI XML schema are organized hierarchically defining the necessary 

elements to describe an interaction between molecules and the details of the 

experiments or experimental techniques used to obtain this information. PSI-

MI format is a unified data structure for interactomic data that facilitates the 

exchange and comparison of information between databases that use this 

format. Also, as it follows the XML specification, all existing software 

packages developed to parse and collect data in XML format files can be 

used for mining and accessing the information. Although all databases have 

their own architecture and follow a different data structure depending on 

their needs, main-stream databases also provide their data in PSI-MI format 
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(Hermjakob, et al., 2004). For a detailed explanation of the different fields 

and their content see appendix B.1. 

1.3.3.2 Existing databases 

The amount of data generated by experimental methods necessitates 

the use of a computational system for the storage, manipulation and to 

provide access for the scientific community. Several publications describe 

the development of databases to compile PPI data (Aranda, et al., 2010; 

Chatr-aryamontri, et al., 2007; Keshava Prasad, et al., 2009; Stark, et al., 

2011; Xenarios, et al., 2001). Along with databases, in most projects, user-

friendly interfaces for accessing and representing data are provided to 

facilitate the collection and analysis of information. The databases can be 

classified in three types depending on the method used for data collection: 

(i) Primary databases, where the data are compiled from large-scale and 

small-scale experimental assays, i.e. primary sources; (ii) meta databases or 

compilation of several primary sources after an integration and/or curation 

process (Cowley, et al., 2012), and (iii) databases that compile experimental 

and computationally predicted interactions (Szklarczyk, et al., 2011). Since 

all databases contain artefacts, only PPIs described by experimental means, 

i.e. not predictions, were considered in this project in order to minimize false 

positives. 

 The following sections present a brief description of the databases 

used in this thesis. With the exception of MPACT, all the data contained in 

these databases were generated from large- and small-scale experiments 

published and analysed by expert curators. MPACT database, which is a 

curated version of the comprehensive yeast genome database (CYGD) 

database (Guldener, et al., 2005), includes both functional and molecular 

interactions. 

1.3.3.2.1 Database Interaction of Protein (DIP) 

DIP (Xenarios, et al., 2001) is a compilation of protein pairs described 

experimentally. It contains information for 469 organisms with 24,569 

proteins and 73,495 binary interactions identified from 5,323 publications 

and analysing the structure of protein complexes in the Protein Data Bank. 

1.3.3.2.2 Human Protein Reference Database (HPRD) 

 HPRD (Keshava-Prasad, et al., 2009) compiles interactomic 

information derived from human. The information has been extracted and 
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curated from 453,521 publications, and currently classifies 39,194 

interactions between 27,081 proteins. 

1.3.3.2.3 IntAct 

 IntAct (Aranda, et al., 2010) is the largest molecular interaction 

repository. It contains about 290,000 interactions of which 201,380 are PPIs 

between 61,805 proteins in 492 different organisms. The data have been 

compiled from 5,500 publications and 16,000 experimental assays.  

1.3.3.2.4 Molecular Interaction Database (MINT) 

 MINT (Chatr-Aryamontri, et al., 2007) focuses on experimentally 

determined PPI data. It compiles about 240,000 PPIs in more than 400 

organisms. The data are mined from the scientific literature by expert 

curators. 

1.3.3.2.5 The MIPS protein interaction resource on yeast (MPACT) 

 MPACT (Guldener, et al., 2006) is a repository of interactomic data 

from yeast. The data have been derived from the yeast genome database 

CYGD (Guldener, et al., 2005), a more extensive database that compiles 

genomic information for yeast including PPIs. MPACT contains about 4,300 

interactions between 1,500 proteins. 

1.3.3.2.6 BioGRID 

 BioGRID (Stark, et al., 2011) compiles genetic and PPIs. The 

information has been compiled from 24,812 scientific publications after a 

comprehensive curation. The database contains about 200,000 PPIs 

between 41,000 proteins in different organisms. 

1.4 Protein binding site prediction 

1.4.1 Distinctiveness of residues in protein interfaces 

Large-scale analyses on protein complexes have shown that residues 

located in interfaces present a number of specific traits in terms of 

physicochemical and geometric properties. Existing protein binding site 

prediction methods use one or more amino acid properties to distinguish 

interface residues from the rest of the protein surface. Hydrophobic residues 

tend to be present at the interfaces (Glaser, et al., 2001; Larsen, et al., 

1998), especially in permanent complexes (Jones and Thornton, 1995; Lo 

Conte, et al., 1999). Also, charged residues contribute to PPI (Jones and 

Thornton, 1996; Larsen, et al., 1998; Lo Conte, et al., 1999). Interface 
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residues have higher solvent accessibilities than non-interface surface 

residues (Chen and Zhou, 2005; Jones and Thornton, 1997), being one of 

the most effective features to predict homodimer interfaces (Jones and 

Thornton, 1997). Some studies suggested that residues with low 

crystallographic B-factors are likely to be part of a protein interface when 

compared with exposed residues that are not part of an interface (Jones and 

Thornton, 1995). Sequence conservation has proven its merit in the 

prediction of functional sites (Wang, et al., 2006; Yan, et al., 2004) and some 

studies have shown that interface residues are more conserved (Lichtarge, 

et al., 1996). In terms of entropy, interface residues appear to be less likely 

to sample alternative side-chain rotamers (Cole and Warwicker, 2002; Liang, 

et al., 2006) perhaps to minimize entropic cost upon complex formation.  

1.4.2 Overview of existing protein binding site prediction 

methods 

Many protein binding site prediction methods have been developed in 

the last 20 years. The commonality in these methods is the incorporation of 

several physical and/or biochemical amino acid properties (e.g. 

hydrophobicity indexes or solvent accessibility surface) into a numerical 

value (score or probability). The score represents a measure of the 

likelihood of a protein residue or surface patch being part of a binding site. In 

order to combine and integrate heterogeneous data, two different strategies 

are used: (i) combining data by means of an explicit scoring function (e.g. a 

function to scale electrostatic energy with the residue surface area) (Fiorucci 

and Zacharias, 2010) or (ii) using a machine learning (ML) approach to 

integrate the heterogeneous data into a unique scoring framework. 

Jones et al. (Jones and Thornton, 1997) developed one of the first 

protein binding site prediction methods using patch analysis. Each residue 

patch was analysed with six parameters: solvation potential, residue 

interface propensity, hydrophobicity, planarity, protrusion and accessible 

surface area. This method calculates a relative combined score that gives 

the probability of a surface patch forming PPI. More recently, Fariselli et al. 

(Fariselli, et al., 2002) implemented a Neural Network based system trained 

using evolutionary conservation and surface disposition features. Neuvirth et 

al. (Neuvirth, et al., 2004) combine secondary structure, hydrophobicity, 

experimental B-factor values and others structural features into a probability 

score to predict the location of protein-protein binding side. Bradford et al. 

(Bradford and Westhead, 2005) utilized a support vector machine with 6 

structural and chemical features to predict interacting patches, trained with 
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transient complexes and predicting patches in obligate complexes and vice 

versa. Again, Bradford et al. (Bradford, et al., 2006) trained a Bayesian 

Network using 14 structural and chemical features improving the results 

obtained in his previous work. Vries et al. (de Vries, et al., 2006) used a 

parametric score function based on sequence conservation and structural 

information for surface residues. For each residue, the final score was 

computed using its conservation value and the values of its neighbours in 

the Euclidean metric space. Porollo and Meller (2007) used a Neural 

Network trained with single-sequence based attributes, features derived 

from evolutionary profiles of protein families and features based in the 

accessible surface area. This method makes use of residues’ micro-

environments, defining the micro-environment as amino acids that fall inside 

a distance threshold. Residue features of its micro-environment are used to 

increase the accuracy of the predictions. More recently, Sikić et al. (2009) 

trained a Random Forest to predict interacting residues using a 9-residues 

sliding window along the amino acid sequence. The secondary structure of 

the central residue and the window average of several structural measures 

comprise the set of input variables for the Random Forest that assigned a 

probability to the central residue. One of the advantages of this method is 

that can be trained using sequence features, so it can be applied to 

prediction of protein binding sites in protein sequences. 

1.5 Protein docking 

Protein-protein docking is a computational approach to derive structural 

models of protein complexes. Most protein docking methods perform the 

docking between a ligand and a receptor, namely a binary complex, but 

there are more advanced methodologies that can also handle multimeric 

complexes, i.e. several monomers. From a mathematical point of view, the 

problem of protein docking is a search for the “best solution” in a six degrees 

of freedom. That is, while one protein remains fixed the other can be rotated 

in three axes and translated in three directions. Therefore, protein docking 

methods have to solve two different problems: first, the conformation space 

is too big to be fully sampled by brute force algorithms and therefore the 

representation of the system, i.e. proteins, have to be simplified and second, 

a scoring system to rank all possible conformations is needed. This section 

introduces the most common search strategies and scoring methods. 
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1.5.1 Search algorithm 

Different mathematical representations of proteins and search spaces 

have been used to find the ‘optimal’ conformation between two interacting 

proteins. Once a search domain and an energy or scoring function are 

defined, finding the optimal solution for the proposed equations (e.g. 

maximum or minimum) requires of mathematical search algorithms such as 

Monte Carlo simulations, genetic algorithm or numerical methods. 

1.5.1.1 Correlation methods 

As stated above, sampling all possible conformations between 2 

proteins requires six degrees of freedom during the search: three for 

rotations and three for translations. Exploring all possible combinations leads 

to high computational cost algorithm and a non-deterministic polynomial-time 

hard problem. In order to avoid that, correlation methods are based on 

Fourier Transform and its properties on function convolution to simplify the 

cost of the searches and evaluations. 

The group of Vakser developed a method using the Fast Fourier 

Transform (FFT) (Katchalski-Katzir, et al., 1992) to score the possible 

conformations between two proteins. In this approach the proteins are 

represented as discrete functions in a grid (3D space discretization in 

voxels) where three regions are distinguished: interior (inside the protein), 

exterior (outside the protein) and surface. Then, the discrete function takes a 

value depending on the region where the voxel is located. Given two 

proteins let        be the discrete function associated to one protein 

       {

     (     )          
     (     )           

     (     )           

 

and        the function associated to the second protein 

       {
     (     )          
     (     )           

     (     )           

 

where   is a large negative value and   a small positive value, then the 

correlation between these functions is defined as 

       ∑ ∑ ∑                   

 

   

 

   

 

   

 

where  (     ) is a displacement for the discrete function  . This correlation 

function is used to score the potential solution. The function   increases its 
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value as the overlap between surface voxels of   and   overlaps, whereas, 

when both interiors intersect the score is penalized. 

Local maximum of the score function   corresponds to high 

overlapping between surface proteins; however, to evaluate all possible 

combinations of (     ) and (     ) is computationally expensive, as the 

order of the calculation is   (  ) . To simplify the computational cost, a 

convolution property of the Fourier transform is used: 

 (   )          

Then, the Fourier transform of the function   can be calculated using 

the transforms of   and   as follows: 

        ̅             

Finally, the scoring function   can be calculated using the inverse 

Fourier transform: 
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Therefore, it is possible to calculate the scoring function   without 

evaluating all combinations between (     ) and (     ). Moreover, using 

the FFT algorithm the computational cost to calculate the function   is 

reduced to   (     ). The process needs to be completed by sampling the 

relative orientation of the two molecules; for each orientation the scoring 

function   needs to be evaluated and a new potential solution will be 

generated. 

Correlation methods have also been implemented using non-

geometric functions such as FT-DOCK that employs an electrostatic criterion 

(Gabb, et al., 1997) in defining the functions   and   

       {
       (     )            

 (     )    (     )            
 

and 

          (     ) 

where 

 (     )  ∑
 

  (  )

  

  
 

 

is the electrostatic potential,    the charge on atom  ,    the distance 

between position (     )  and atom   and   (  )  a distance-dependent 
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dielectric function.        represents the charge of the ligand in the grid voxel 

(     )  

1.5.1.2 Geometric surface matching 

In this approach the proteins are represented by molecular surfaces 

and geometric local features such as convexity/concavity, curvature, size, 

depth, etc. are used to define and annotate different sections of the surface. 

The actual docking between proteins matches these annotated sections 

between two proteins to assemble possible conformations. The principle 

behind this approach is the geometric complementarities of the binding sites. 

The first method to define and describe the protein surface was 

proposed by Connolly and Connolly (1983). The molecular surface was 

determined using the rolling sphere algorithm (Lee and Richards, 1971). As 

a result, the surface was divided into regions where each region was 

classified as: cap (convex), pit (concave) or belt (saddle shape) depending 

on the surface curvature (see section 3.4.1.1 for a detailed description of the 

method). Using this method, Connolly et al. (1986) developed a docking 

method matching critical points defined on the surface of two proteins. The 

critical points of a protein corresponded to the vertices of the polyhedron that 

was obtained by triangulating the solvent accessible surface. Two measures 

were annotated for each critical point: (i) the shape function calculated as 

the volume of a fixed sphere within the protein and (ii) a normal vector with 

direction defined by the critical point and the centre of mass of the sphere 

inner volume. Then, for a perfect match between two critical points, their 

normal vectors have to form an angle of 180° and the sum of their shape 

functions 905Å3 (volume of the sphere used with radius 6Å). Finally, the 

docking method compared quads of critical points in each protein and the 

potential solutions were calculated fitting them both proteins. 

Further adaptations of this surface representation were found 

necessary to reduce the computational cost and to be efficient for protein 

docking. Norel et al. (Norel, et al., 1994) used pairs of Connolly critical points 

and their normal volume vector to simplify the combinatorial complexity of 

the problem. Another solution proposed by Wolfson et al. (Duhovny, et al., 

2002), divided the surface into concave, convex and flat patches and 

compared these regions rather than critical point (see section 4.3 for a more 

detailed description of this method). 
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A more sophisticated method to determine protein surface was 

introduced by Lesk et al. (2008) Protein surface was defined by means of a 

density function 

 ( )       (∑    ( 
‖    ‖    

 
)

 

) 

where    is the radius for atom   and    the position coordinates of its centre. 

The molecular surface was defined by the condition      Note that     if 

  is located outside the molecule and     within the molecule. Then, the 

marching cubes algorithm was used to generate a triangulation of the protein 

surface. Finally, the docking was performed using rigid transformations on 

the ligand and combining pairs of facets, one from each protein. The 

conformations were scored by means of a modified Lennard-Jones potential. 

1.5.1.3 Energy minimization methods 

Typically, energy minimization methods use the atomic representation 

together with a force field The interaction energy is defined as a contribution 

of several energy terms, different energy contributions have been used for 

the development of different methods. The most frequently used energies 

are: electrostatic energy resulting from the interaction between partially 

charged atoms, Van der Waals potential due the attraction of the subatomic 

particles, desolvation energy due the interaction of the proteins with the 

solvent molecules, etc. These energy terms are combined into an energy-

like scoring function that is used to find the ‘optimal’ conformation between 

two proteins. Thus, the key is to find a rigid and/or flexible transformation 

that minimizes the energy score. For that purpose, minimization methods 

such as Monte Carlo or genetic algorithms can be used. 

 One method based on energy minimization was developed by 

Dominguez et al. (Dominguez, et al., 2003). HADDOCK is a data-driven 

docking method (see section 3.7.4) that minimizes a scoring function based 

on several energy terms. The method needs initial restraints to start the 

process, the ambiguous interactions restraints (AIR) are interacting residues 

derived from any kind of experimental information available that are used as 

input to guide the docking process. For each residue defined as AIR the 

effective distance is defined as 
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where the term     represents the attractive part of the Lennard-Jones 

potential. The docking protocol consists of 3 stages: 

i. Rigid body energy minimization 

ii. Flexible refinement 

iii. Solvent refinement 

 In the first step, the proteins are positioned at 150Å from each other 

and randomly rotated around their centre of mass and a rigid body energy 

minimization is performed for each rotation. In the second step the solutions 

computed in the previous step are refined, atoms located in the interface 

residues are allowed to move. Finally, in the last step the energy score is 

calculated for all generated complexes. The scoring function used in these 

steps is 

    
        

         
        

            

where the energy terms used are: Van der Waals, electrostatic and 

desolvation energy. Also, a contribution of the AIR residues and the buried 

surface area is added to the scoring function. The weights of the function are 

modified in each stage of the protocol. 

1.5.1.4 Unbiased and biased docking 

 Depending on whether the docking sampling is restricted to a specific 

region(s) of the protein(s) or fully samples the whole exposed surface, 

docking methods can be divided into unbiased (Chen and Weng, 2002) (or 

free docking) and biased (or data-driven) docking methods (Dominguez, et 

al., 2003). In free docking or unbiased methods, the search algorithm 

explores all (or at least those that are optimal under certain criteria) potential 

conformation, while data-driven methods are subject to restraints that are set 

a priori. The restraints are usually a list of residues that are known to interact 

or are important for a give reason or geometric retrains that places proteins 

in a particular orientation. Data-driven docking programs do not provide 

these initial restraints and these have to be defined, for example from 

experimental or published assays or using others computational tools such 

as protein binding-site prediction, as in the strategy explored in this thesis 

(Chapter 3). 

1.5.2 Scoring docking complexes 

 Docking protocols generate hundreds and even thousands of 

potential solutions and thus there is a need for a scoring function or scoring 

algorithm to rank these conformations. Ideally, the scoring function should 
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be able to identify those docking conformations that are close to the native 

one and penalize those that are distant. There are 3 main strategies used to 

score docking solutions: (i) Physic-based scoring functions; (ii) statistical 

potentials; and (iii) geometrical correlation. 

 Physic-based scoring functions make use of physical models to 

derive an energy-like score or a    binding energy. In theory, the free 

energy associated to the formation of a protein complex, i.e.    binding 

energy, can be used to identify complexes, as the formation of the protein 

complexes is driven by the search for a minimum in the free energy and 

usually the native complex is the one with the lowest   . In practice, the 

computational costs required to model the binding process are very high and 

thus simplifications need to be made (Zacharias, 2010). Consequently, 

scoring functions based on physical forces are at best an approximation to 

the real free energy and sometimes can lead to major errors. Energy scoring 

functions are usually a linear combination of energy terms including: 

electrostatic forces, Van der Waals interactions, hydrogen bonding, solvation 

energy, conformational changes, etc. 

 In addition to energy-like scoring functions, statistical potentials can 

be designed to evaluate docking models (Miyazawa and Jernigan, 1999; 

Moult, 1997; Tanaka and Scheraga, 1976). Statistical potentials are 

knowledge-based functions derived from protein complexes for which the 3D 

structure is known. The logic behind these methods is that interactions or 

pairing of atom-atom or residue-residue are not randomly distributed. Thus, 

some pairs appear more frequently than others in the protein interfaces. In 

statistical potentials, the observed frequency of atom-atom (or residue-

residue) contacts is related to the expected contact frequency at the 

receptor-ligand interface. The expected frequency represents randomly 

distributed contacts in the interface, i.e. no interaction exists between the 

residues or atoms of the proteins. Over- or under-representation of certain 

types of contacts is related with favourable or unfavourable interactions 

respectively. 

 Finally, geometric correlation (matching) methods are based on 

shape complementarity. The shape complementarity is a common feature of 

protein interfaces (Lawrence and Colman, 1993), i.e. hobs patches interact 

with knob areas and vice versa, and thus this method has potential 

application to scoring. An example of geometry correlation function is 

presented in section 1.5.1.1, where the correlation function        can be 

used to score docking conformations, i.e. high values would represent high 
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complementarity of matching protein surfaces. Also, the PatchDock 

(Duhovny, et al., 2002) scoring function described in section 3.4.3.2 is based 

on surface complementarity. 

1.5.3 Docking evaluation 

The evaluation of docking methods is carried out predicting the 

quaternary structure of interacting proteins and comparing the results with 

the native conformation of the complex. Then, evaluating docking methods 

requires two elements: first, a set of interacting proteins where the structure 

of the single units and the protein complexes has been experimentally 

solved. And second, a similarity measure to compare the predicted 

conformations with the experimental ones. To achieve a fair evaluation the 

unbound structures of the interacting protein must be used during the 

prediction process. Thus, the experimental structures of the interacting 

proteins need to be available as single units and not only as part of the 

protein complex. An example of fair tests are Benchmarks series  (Chen, et 

al., 2003; Mintseris, et al., 2005; Hwang, et al., 2008; Hwang, et al., 2010); 

theses benchmarks were compiled to provide a set of binary interactions 

where the experimental structure of the unbound state was available for all 

the proteins contained in the sets.   

The Critical Assessment of Protein Interaction (CAPRI) (Janin, et al., 

2003) is an on going series of blind tests to assess the accuracy of docking 

algorithms. Before the structure of protein complexes is released, the 

participant groups have access to the unbound structures of the components 

of the protein complex (usually binary complexes). The teams then submit 

the top 10 docking structural models to CAPRI for subsequent evaluation. 

The results are evaluated comparing the structure of the predicted models 

with the native complex and calculating the deviation in terms of RMSD. The 

native and predicted structure of the largest protein in the complex, named 

the receptor, is aligned and then the RMSD of the smallest protein, the 

ligand, is calculated. Two measures are considered: (i) the so-called 

interface-RMSD, iRMSD, where only backbone atoms of the interface 

residues are considered, and (ii) the ligand-RMSD, lRMSD where only the 

   atoms of the ligand protein are used to compute the RMSD. The results 

are classified in acceptable, medium and high if the lRMSD is lower than 

10Å, 5Å and 1Å respectively or if the iRMSD is lower than 4Å, 2Å and 1Å 
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1.6 Machine learning in bioinformatics: Random Forest 

1.6.1 Introduction 

 Machine learning algorithms (ML) are mathematical methods of high 

plasticity capable of modelling a wide range of different systems and 

problems in bioinformatics and computational biology. Although the theory 

and in-depth details of ML algorithms are beyond the scope of the thesis, a 

brief general introduction is given to ML with more description given of a 

particular type: Random Forests, as it used in the method developed during 

this thesis to predict protein-binding sites in proteins. 

 ML approaches are ensemble classifiers, that is to say, they assign 

elements into classes. The following situation is the type of question that can 

be answered using ML: given a set of elements where some features can be 

measured (e.g. structural features such as concavity) and where the 

elements can be classified in different types (e.g. part of an interface or not 

part of a interface), is there some method to decide the class of an element 

given the measure of these features? This problem is a perfect scenario to 

be addressed with ML algorithms.  

 There are two broad categories in ML algorithms: supervised and 

unsupervised. The term supervised refers to the different classification 

types, or classes, being known although generally the class of a particular 

element is unknown. Unsupervised methods do not preclude the number of 

possible classes of types and thus the problem implies a cluster of elements 

rather than classification. In the specific case in this thesis, the method that 

was used was a supervised Random Forest (see next section). 

 The following elements are always present in a supervised ML aimed 

at data classification: 

   universe, set of all elements 

           measurable features for any elements in the universe 

            set of classes 

       map or class function (unknown),  

    (       )        set of observations (or training set), features 

measured for a finite subset of the universe 

       observed mapping (class for elements in the training set, 

known),    |  

 The features can be interpreted as random variables and for any 

element of the universe can be calculated a vector        (       ). 

  

  

X = X
1
´… ´ X

n
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Then, a ML algorithm is a function that approximates the mapping function 

. Formally, a ML algorithm is a function of the form: 

       

 where      (   ) and     . The ML function depends on the 

set of initial observations   or the training set, which is used during the 

training phase. The approximation symbol has to be interpreted as an 

asymptotic equality, thus: 

   
   

 (   )    

 For the evaluation of how good is the approximation between 

         a second set of observation    with known classes is used. For a 

rigorous test, the set    must satisfy some condition of independence from  . 

This condition depends on the context and the type of features measured. 

Usually, the    set is named testing set. 

1.6.2 Decision trees 

1.6.2.1 Definition 

 Let           be a set of measurable features, then a decision tree  

is a deterministic finite state machine (          ) where 

    (       )        is the set of feature vectors 

   is the set of nodes in the tree 

      is the root node 

     are the final node of the tree 

           is the transition state function 

 If  (   )   (    )       (no loop condition) 

 Transition functions used in this work have very simple behaviour. For 

a node   and a feature vector    (       ) 

  (   )    if        

  (   )    if        

for some value and some feature    . 

1.6.2.2 Forest construction 

 Decision trees are used for classification of data or observations into 

classes. Given a set of features          , a finite set of observations, i.e. 

set a measures of these features,    (       )         and a map of 

these observations into classes             , the problem is to 

construct a decision tree that maps elements of   into   ( ) . For this 

purpose, the set   is going to be split recursively until the resulting sets will 

   

M
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be composed by elements of the same class. Then, the nodes of the tree will 

be the different sets obtained during the process and the transitions between 

nodes are the partitions used for dividing the sets. Before explaining in detail 

the process of constructing trees, some concepts and definitions are 

needed. 

Split, node impurity and goodness of the split 

 Given a subset     a split   is a function that divides the elements 

of   in 2 sets, usually named left and right. Formally, the split   is a function 

          and the 2 sets generated are  

         ( )     

         ( )     

The impurity of   is defined as 

 ( )   ∑      (  

 

   

) 

where    is the proportion of elements of class   in  . Note that if   is a pure 

node (all elements are mapped into the same class) then  ( )   . 

 The goodness of the split is a measure of the class discrimination 

power for a particular split. Given a set     and a split   the goodness of 

the split is defined as 

  (   )   ( )     (  )      (  ) 

where   and    are the proportion of elements in   assigned to    and   , 

respectively. 

Best split selection 

 To find the best split for a given subset     and a feature    only 

splits of the type 

 ( )  {
           

           
 

will be considered and thus the problem is reduced to select a proper    

value. For this purpose, all values of    in   are used to evaluate the 

goodness of the split   (   )  and the maximum value is selected. Thus 

   (   ) is maximum when       for some    . 
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Decision tree growing algorithm 

 Let           be a set of features,    (       )         a set of 

observation and     {       } the set of classes and map. Next pseudo-

code generates a decision tree based on the best split 

1:   initialize the root node with   

2: for each non-pure terminal node   of   

4: select the best split    of (           ) 

5: split         using    

6: add            to (   ) 

 The terminal nodes of   are pure nodes and can be labelled with the 

mapped class of their elements. These nodes are the final nodes   of the 

tree. The transition function   is defined by means of the computed splits 

         generated for each non-terminal node. The function   can be 

formulated as 

 (   )  {
         ( )   

        ( )   
 

Using decision trees for classifying 

 Let          be a set of features,   a set observations,   a map into 

classes and (     ) the generated tree. If an unclassified observation     

is given, decision tree can be used to classify it by mean of the transition 

function  ,  ( )    for some    . Thus, the class of   will be assigned to 

 . Note that   ( )  has not been formally defined, it is the terminal node 

where the observation   will end using recursively the transition function  . 

Formally,   ( ) can be defined as the recursive function    (   ) where 

  (   )  {
  (   (   ))       

                               
 

 Decision trees have been broadly used in biology and related fields to 

approach the classification and prediction problem, e.g. predicting microRNA 

sequences (Williams, et al., 2012), finding laccase mediator systems by 

means of quantum molecular descriptors (Medina, et al., 2013) or controlling 

drug administration (Hu, et al., 2012). 

1.6.3 Random Forests 

1.6.3.1 Definition 

 A Random Forest (RF) is a collection of trees derived from a set of 

features          , a set of   observations    (       )         and a 
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mapping              . Each tree is grown independently and with 

different initial conditions but derived from the same set of observations. 

1.6.3.2 Construction 

 The next pseudo-code generates a Random Forest from an initial set 

of observations and a mapping 

1: for each tree   to be trained 

2:   ( ) generate a bootstrap sample of   

3:   initialize the root node with   ( ) 

4: for each non-pure terminal node of  

5:  select random features {         } 

6:  select the best split    of ({         }  ) 

7:  split         using    

8:   add            to (   ) 

1.6.3.3 Using Random Forest as ensemble classifiers 

 Given a new observation    , each decision tree in the forest 

predicts a class and usually the most voted class is selected as the final 

prediction. However, the threshold to decide the class after all trees have 

voted can be modified based on the statistical performance on known cases. 

Parameters in RF 

 Random Forests can be tuned using two different parameters: (i) the 

number of trees to be grown in the forest and (ii) the number of variables to 

consider in each split. As a general rule, there is no cut-off for the number of 

trees to be grown as usually the more trees the better accuracy. However, 

the accuracy will reach a plateau and adding more trees will not be reflected 

in an increase of the accuracy. It is the second parameter, the number of 

variables selected in each split, which has a greater effect in the accuracy.  

 The optimal number of variables selected in each split is the one that 

balances the predictive strength of single trees and correlation between 

them. To illustrate the effect of this parameter let us consider two extreme 

cases: in the first case, if only one variable is selected in each split, the 

predictive power of individual trees will be quite low and thus overall rate of 

error of the forest will be high. At other end of the spectrum, if all variables 

are used, all trees will be the same and thus all of them will vote the same 

class for a given element. The resulting forest will the same as a forest that 

   

T



- 24 - 

contained only one tree and thus the error rate will be very high. The key is 

then to choose a balanced number of variables that both maximize the 

strength of the individual tree and generate trees with a low correlation 

between trees, i.e. not redundant. Breiman, L. (2001) showed that √  , 

where   is number of features, is a good balance between single tree 

strength and correlation between trees. 

 Random Forest is an accurate classification method broadly used in 

many research fields. In particular, in computational biology they have used 

for classification of genes from micro-array data (Moorthy and Mohamad, 

2011), cancer classification (Statnikov, et al., 2008) or protein functional site 

predictions (Segura, et al., 2012). 

1.6.4 Training and testing ML 

 In the development of ML system as classifiers, there are two major 

phases: the training and the testing phases. Likewise, the set of 

observations for both the training and testing phase are called the training 

and testing sets, respectively.  

 The training process is the first step of any ML method. It is the step 

where the ML is constructed using the set of observations and the class 

mapping,      (   ) (where   is the method used to construct the ML 

such as the one described in section 1.6.3.2 for Random Forests.) During 

the training phase, the method is trained in positive and negative cases and 

thus the method learns the specific of each. 

 The testing step assesses the quality of the ML in terms of 

performance, i.e. ability to distinguish between positive and negative cases. 

There are two major approaches to test the ML: 

(i) N-fold cross-validation. This consists of dividing the training set 

into n equal sizes and non-overlapping sub-sets (       

  ). Then, (n-1) sub-sets are used for training and one sub-set for 

testing. The testing sub-set is permuted until all sub-sets have 

been used once for testing. As a result, all elements of   have 

been tested once. 

(ii) The second approach consists of providing two different sets   

and    where in both sets the class of their elements is known. 

One set is used for training and the other set is used for testing. 

 In both approaches, some conditions for independency between sets 

are needed. If two elements are very close with respect to the features and 

one of them is used for training and the other for testing, the ML is more 
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likely produce the right classification when testing this element. In the 

context of proteins, two main criteria are used: (i) sequence identity cut-off, 

calculated with sequence alignment methods and (ii) structural similarity 

defined in terms of remote homology that can be either derived from protein 

structure classification databases as SCOP (Lo Conte, et al., 2000) or CATH 

(Orengo, et al., 1997) or measures of structural similarity, e.g. root mean 

square deviation. 

1.6.4.1 Assessing the performance of classifier 

 Several statistical measures are used to evaluate the performance of 

ML methods. These measures are applied in the context of decision 

algorithms, in particular a binary decision problem. For instance, suppose a 

sample of   elements: protein residues, where each one of them can belong 

to two different classes,    part of an interface or    non-part of a interface 

site residues. For each of the element a score value is calculated with ML 

algorithm where higher values are associated with    (part of an interface) 

and lower values with    (not on a interface). Suppose that the class of the 

elements is known, then let            be the score values for elements of 

   and            the values for elements of  . For a real number   the 

number of true positives    and the number of    are defined as 

   ∑ (    )

 

   

       ∑  (    )

 

   

 

where   is an indicator function with value 1 or 0 if the condition is satisfied 

or not, respectively. On the other hand, the number of false positives    and 

the number of false negatives    are defined as 

   ∑ (    )    

 

   

   ∑  (    )

 

   

 

 The number   is the decision threshold and decides which score 

values are classified as class    and which ones as   . To compare the 

performance of different classification methods or choose the most 

convenient threshold   different measures can be used.  

 Recall (or true positive rate, TPR) is the proportion of real-positive 

elements classified as positive by the method 

       
  

     
 

 True negative rate (TNR) is the proportion or real-negative elements 

correctly classified as negative 
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 Precision is the relation between the real-positives elements classified 

as positives and the total number of elements classified as positives 

 

 Mathews’ correlation coefficient (MCC) is a measure of how well the 

method splits the data in the two classes. It can take values from -1 to 1 

where MCC 0 means that the method has no discrimination power and mix 

the classes, a MCC value of 1 is the perfect split between classes and the 

negative MCC value -1 is the opposite classification. 

    
           

√ (     ) (     ) (     ) (     )
 

   is a measure of the classification accuracy and considers both precision 

and recall. A perfect classification would have      while a value of      

would mean the classification has not been successful 

    
                

                
 

 Accuracy is the proportion of correctly classified elements, real-

positives classified as positives or real-negative classified as negative 

    
     

           
 

 Finally, the Receiver Operating Characteristics (ROC) curves are 

plots to illustrate how the performance of the method changes when the 

threshold   is modified. The curve is created by plotting the False positive 

Rate (FPR) vs. the True Positive Rate (TPR) when   is varied between the 

maximum value of    and    to the minimum. The curve starts at the point 

(0,0) and it monotonically increases to the point (1,1) as   decreases. The 

ROC curve for a random classifier is a straight line from (0,0) to (1,1). The 

area under ROC curve (AUC) can be used as measure of the classification 

performance. A random classification will have AUC value of 0.5 and the 

perfect split between positives and negatives elements will lead to AUC 

value of 1. 

1.6.4.2 Statistical comparison of Receiver Operating Characteristic 

curves 

 Although AUC values can be used to compare the performance of the 

method, sometimes is not sufficient, and more advance approach are 

   

precision=
TP

TP+FP
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required to assess the significance of predictions. The main question is: how 

to assign statistical significance to differences observed between AUCs 

curves? The application StAR (Vergara, et al., 2008) computes a non-

parametric test to compare AUC curves; the software implements the 

method designed by DeLong et al. (DeLong, et al., 1988). 

 StAR calculates a p-value for the difference of AUCs. Thus, given a 

sample of elements that can be classified in two classes and two different 

classification methods    and    that leads to AUC values    and    

respectively. The p-value represents the probability to accept the null 

hypothesis in the test 

           

           

given the ROC curves generated by the classification methods    and   . 

1.7 Current status of the field 

 The volume of interactomic data derived from both high-throughput 

and low scale experiments is making possible the comprehensive charting of 

protein interaction networks in human and a number of model organisms. In 

a recent work by Stein et al. (2011), it was shown that structural coverage in 

current interactomes is, however, very low and only represent a small 

fraction of the number of complexes that are known to exist. These results 

also confirm our initial analysis described in sections 1.2.1 and 4.3.3. 

Moreover, it was, and it is still, a timely question to explore computational 

approaches to enrich the structural content and coverage of protein 

interactomes. 

 There are only few works that have focused on genome-wide 

prediction of protein complexes. One of the earliest attempts, was described 

by Mosca et al. (2009), where different docking methods where used to 

derive structural complexes for high-confidence experimentally determined 

protein-protein interactions in the yeast interactome. However, this work was 

not oriented to develop a database and the output of the work is merely a 

collection of independent files that makes its analysis very difficult. The 

group of Vakser developed the Genome-wide protein docking database 

(GWIDD) (Kundrotas, et al., 2010), a compilation of protein complexes 

derived from homology modelling for several different organisms. The main 

drawback of this methodology is that no models are available when the 

sequence similarity is low and no template can be found. More recently, the 
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group of Honig developed a method for the prediction of protein-protein 

interactions using structural information (Zhang, et al., 2012). Although the 

main objective was not the modelling of protein complexes, the method 

could be used for that purpose. However, its limitations are similar to those 

of Kundrotas et al. (2010) modelling by homology restricts its applicability to 

cases where suitable templates can be found. Finally, as previously 

described, the experimental methods used to solve the structure of protein 

complexes, namely X-ray crystallography, NMR and EM have important and 

intrinsic limitations and it is unlikely –at least in the short and medium term- 

that these will be overcome. Therefore, there is a real need to advance and 

develop computational tools able to provide useful and informative structural 

model of protein complexes. 

1.8 Project aims 

 The main aim of the project was the development of a computational 

strategy to derive structural models for protein complexes on genome-wide 

interactomes. The project focussed in binary complexes determined 

experimentally, i.e. there was experimental evidence showing the interaction 

between a pair of proteins, where structures of the individual components 

were known, but the structure of the protein complex was not known. A 

specific list of the objectives achieved in this thesis is presented below: 

i. To develop a framework and database to compile and integrate 

different databases of with experimental information on PPIs. 

ii. To develop a structure-based computational method to predict 

protein-binding sites in proteins: VORFFIP and more generally 

functional sites: Multi-VORFFIP. 

iii. To develop a computational approach to derive structural models of 

protein complexes by combining protein binding site prediction and 

data-driven docking: V-D2OCK. 

iv. To apply the resulting technology to the human interactome. 

v. To develop and implement a database to store, retrieve and visualize 

structural models and human interactome: V-D2OCK DB. 

 A schematic representation of the aims and goals achieved in this 

thesis is presented in Figure 1-3. Briefly: section (a) of the figure depicts the 

database integration. The first step of this project was the compilation of 

different databases containing interactomic data and its integration in a 
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Figure 1-3 Overview of the project. (a) Interactomic data is compiled from 
several databases and integrated in a centralized repository; (b) a new 
approach to predict protein-binding site, VORFFIP, is developed; (c) a 
new docking protocol, V-D2OCK, which combines VORFFIP 
predictions and protein docking is established. This protocol was 
applied to the human interactome. (d) Structurally annotated 
interactions of the human interactome are stored and archived in a new 
database: V-D2OCK DB. 
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centralized repository as described in Chapter 4. Six different databases 

were integrated and stored in a local database. The resulting database was 

the framework for the rest of the project. Section (b) Figure 1-3 shows 

VORFFIP, a novel computational tool to predict protein-binding sides, 

described in chapter 2. The research developed in this aspect of the thesis 

included development and testing of the algorithm, benchmarking against 

state-of-the-art methods, further extension of the method to predict any type 

of functional sites (Multi-VORFFIP), and development of a web server to 

allow access to the method through the Internet. V-D2OCK, a data-driven 

docking protocol described in Chapter 3 is labelled (c) in the figure. Protein 

binding-site predictions were used to drive docking algorithms to derived 

structural models of binary complexes. Different docking strategies were 

tested and assessed and a final docking methodology was established. V-

D2OCK was applied to the human interactome. The final product of the 

project is V-D2OCK database (d), a compilation and archiving of structural 

models of protein complexes for the human interactome described in 4.4. A 

web application was developed to interface the database that allows the 

querying, retrieval and visualization of the data.  
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Chapter 2 

Delineating protein interfaces: VORFFIP 

2.1 Introduction 

 This chapter describes the development and benchmarking of a new 

method to predict protein-binding sites in protein structures: VORFFIP. This 

method follows a ML approach to combine different features into a single 

score. The ensemble classifier is a 2-step Random Forest that integrates a 

multitude of input variables that account for structural, energy, evolutionary, 

amino acid physico-chemical properties, and crystallographic B-factors. 

VORFFIP uses a new definition of residue (micro-)environment by making 

use of Voronoi Diagrams (VD), that gives a better description and a more 

accurate quantification of the effect of the neighbouring residues than other 

traditional approaches such as sequence windows or distance cut-offs. 

 During the benchmarking, an extensive analysis was carried out to 

evaluate the predictive power of the individual features used to characterize 

protein residues. Different combinations of features were used to train the 

method and different benchmark sets were used to gauge the quality of the 

predictions. Also, several types of residue (micro-)environments, previously 

used by other authors, were compared with the novel approach using VD. 

Finally, VORFFIP was compared with state-of-the-art methods and results 

showed that under the same benchmarking conditions, VORFFIP 

outperformed those methods. 

 Following the same methodology, the method was extended to 

predict other types of functional site on proteins namely: peptide, DNA and 

RNA-binding sites. The broad spectrum of features included in VORFFIP 

and the architecture of the algorithm were flexible enough to adapt to the 

new types of functional sites. Thus, the classifier was trained with tailored 

datasets derived for each type of interactions, namely protein-peptide, 

protein-DNA and protein-RNA interactions. The method compared 

favourably with recently described fit-for-purpose methods. Moreover, the 

mapping of functional sites (e.g. protein- and DNA-binding sites) within the 

same protein was highly accurate and selective. 

 Finally, a user-friendly web application was developed to interface 

VORFFIP, the program runs four types of prediction: protein-protein, protein-

peptide, protein-DNA and protein-RNA binding-sites. The web server allows 
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the user to retrieve, analyse and visualize the predictions using a web-

browser and a tailored Jmol applet. The web server is accessible at 

http://www.bioinsilico.org/MVORFFIP. 

2.2 VORFFIP 

2.2.1 The VORFFIP algorithm 

VORFFIP algorithm consists of two-step Random Forest that uses a 

set of input variables based on properties of residues and their structural 

environment as well as probabilities scores. Figure 2-1 overviews the 

method. In step one, residues-based (see section 2.2.2) and environment-

based features (section 2.2.3) are calculated and used as inputs for the first-

step Random Forest. The scores calculated by the Random Forest are 

decomposed and constitute the third set of input variable that jointly with the 

previously calculated residue-based and environment-based features are the 

inputs to the second-step Random Forest that will yield the final scores. 

2.2.2 Residue-based features 

 Individual amino acids have different physical and chemical properties 

as described in sections 2.2.2.1-2.2.2.4, i.e. residues that are part of protein 

interfaces present a set of distinctive qualities. These can therefore be 

exploited for prediction purposes. In this work, the features used for 

prediction purpose were divided in four different groups: (i) structure-based; 

(ii) energy-terms; (iii) evolutionary-based; and (iv) crystallographic B-factors.  

2.2.2.1 Structure-based features 

 Structure-based features were derived from the proteins’ atomic 

coordinates using PSAIA (Mihel, et al., 2008) and DSSP (Kabsch and 

Sander, 1983) programs and the derived metrics are described below.  

2.2.2.1.1 Accessible surface area (ASA) 

 ASA is defined by atomic surface area that is accessible by the 

solvent (Lee and Richards, 1971), usually expressed in Å2. ASA is calculated 

using the ‘rolling ball’ algorithm (Shrake and Rupley, 1973), which 

represents the solvent as a sphere of a particular radius (usually 1.4Å which 

approximates a water molecule) to ‘probe’ the molecular surface. 

  

http://www.bioinsilico.org/MVORFFIP
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Figure 2-1 Overview of the method VORFFIP. The first-step RF uses (i) 
residue information (section 2.2.2) and (ii) environment-based features 
(section 2.2.3) as inputs. The second-step RF also included (iii) 
variables derived from the score values assigned by the first-step RF 
(section 2.2.4.2) yielding a final prediction score.   
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2.2.2.1.2 Relative accessible surface area (RASA) 

 RASA is the ratio between the actual ASA and the reference value for 

the particular residue. The reference ASA is defined as the ASA of the 

central residue in the triplet Ala-X-Ala in extended conformation, where X is 

the residue of interest (Hubbard and Thornton, 1993). 

2.2.2.1.3 Depth index (DPX) 

 DPX is a measure of how distant a given atom is from the molecular 

surface. The distance is calculated by selecting the nearest atom not 

belonging to the same residue with an ASA>0. For a given residue, three 

different DPX values were calculated: average DPX, maximum DPX and 

minimum DPX. 

2.2.2.1.4 Protrusion index (CX) 

 The CX is a measure that represents the curvature of a local surface 

around a non-hydrogen atom and was calculated using the expression 

   
  

    
   

where    is the volume of a sphere with radius R (by default 10Å) and 

                with       the number of heavy atoms inside the sphere 

of radius R and centred on the atom of interest and       the average 

atomic volume found in proteins (20.1 ± 0.9 Å3 ). Residues located in a flat 

surface will have a CX value close to 1 while those located in a convex 

surface will have a value greater than 1 and in a concave surface smaller 

than 1. 

2.2.2.1.5 Secondary structure 

 The secondary structure was defined using the method described by 

of Kabsch and Sander and implemented in DSSP (Kabsch and Sander, 

1983). The secondary structure is defined by a set of physical criteria 

including hydrogen-bonding and geometrical features extracted from the 

atomic coordinates. 

2.2.2.2 Energy terms 

 Energy terms were also considered to characterize reidues. The 

different energy terms, described below, were calculated using FoldX 

(Guerois, et al., 2002). 
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2.2.2.2.1 Atomic occupancy 

 The occupancy of a given atom is the sum of the volumes of atoms 

within a distance of 6Å and is calculated as 

   ( )  ∑    
  (

   
 

   )

        

 

where    is the fragmental volume of atom  ,     is the distance between 

atoms   and  , and      (    
     ) is the envelope function. The parameter   

is a constant of value 3.5Å that corresponds to the minimum of the Van der 

Waals radii between two heavy atoms (Stouten, et al., 1993). The scaling 

factor for an atom   is calculated using the linear equation 

      
   ( )         (  )

      (  )         (  )
 

where    is the atom type of the atom   and,        and        are derived 

from statistical analyses of protein data (Holm and Sander, 1992). 

2.2.2.2.2 Electrostatic energy 

 Electrostatic potential is the energy produced by charged particles 

and thus includes the charged atoms of the N and C termini, and between 

charged atoms of Asp, Glu, Arg, Lys and His if closer than 20Å. The energy 

is calculated using Coulomb’s potential with an ionic strength screening term 

    
 

   

    

   
     (     )  

where    and    are the charges of the atoms,   is the dielectric constant of 

the medium,     it the distance between the atoms and   is the Debye-

Hückel parameter to account for the ionic strength term of the solution 

    √
      

      
 

where   is the ionic strength of the solution (measured in M),    the 

Avogadro’s number,    the Boltzmann’s constant,   the temperature 

(measured in K),    the electric permittivity of the vacuum and   of the 

solution. Electrostatic energy is scaled with respect the atomic occupancy 

using the scaling term      . 

 

 

 



- 36 - 

2.2.2.2.3 Secondary structure preference 

 The secondary structure preference of the amino acids was computed 

using the method proposed by  Munoz and Serrano (1994). In this work, the 

residue preference was calculated analysing a set of 279 proteins with less 

than 50% of sequence homology. The     space was discreet in intervals 

of 18º leading to a finite space of 20x20 regions. Those regions with the 

same secondary structure (according to the definition of Kabsch and 

Sander) were pooled giving rise to different sections that correspond to a 

type of secondary structure. The propensity of a certain amino acid to 

populate a particular type of secondary structure was calculated as the ratio 

between the number of occurrences in the secondary structure section and 

the total number of observations of the particular amino acid in the dataset. 

Finally, the secondary structure preference of a particular residue was 

converted to an energy like score using the expression 

      (            ( )) 

where   is the universal gas constant (0.00198 kcal mol-1 K-1),   the 

temperature in Kelvin and             ( )  the propensity for the residue to 

populate a secondary structure of type  . 

2.2.2.2.4 Side chain entropy 

Entropy is a measure of the number of possible states of a system. 

The side-chain entropy was computed using the methodology proposed by 

Abagyan et al. (1994). In this work, the  - maps were divided into regions by 

visual inspection of the statistical distribution (Ponder and Richards, 1987). 

Three zones were defined for    and    maps: M (-60°±60°), P (60±60°) and 

T (180°±60°). The side chain entropy can be evaluated using the expression 

       ∑      (  )

 

 

where the summation is over all    and    possible conformations of a 

particular amino acid type,    is the proportion in the region   and R is the 

universal gas constant. The side chain entropy is scaled with respect the 

mean atomic occupancy of the residue to account for the fact that side chain 

mobility decreases with the solvent exposure (Guerois, et al., 2002). 

2.2.2.2.5 Van der Waals energy 

 Van der Waals interactions are short-range attractive or repulsive 

forces and originate from three different sources: (i) forces between 

permanent dipoles, Keesom force, (ii) forces between a permanent dipole 



- 37 - 

and an induced dipole, Debye force, and (iii) forces between two 

instantaneously induced dipoles, London dispersion force. Van der Waals 

energy function is derived from empirical data. The energy value for each 

amino acid type was obtained from the energy need to transfer small 

amounts of amino acids from vapour to water (Creighton, 1992). The final 

energy value for a folded residue is obtained scaling the experimental 

energy measure using the mean atomic occupancy scaling factor. 

2.2.2.2.6 Solvation energy 

 The solvation energy is the change in Gibbs free energy when a 

molecule is transferred from vacuum to a solvent. The solvation energy for 

each amino acid was calculated empirically from the energy cost of transfer 

of amino acids from vapour to water and from organic solvents to water 

(Radzicka and Wolfenden, 1988). The solvation energy is decomposed into 

atomic energies assuming that the energy varies linearly within the volume 

of the atoms. For each amino acid the contribution to the solvation energy is 

calculated for the polar and non-polar groups. The final energy for a folded 

residue is scaled using the mean atomic occupancy.  

2.2.2.3 Evolutionary-based features 

2.2.2.3.1 Sequence conservation 

 Conserved regions often correspond to functional sites or interaction 

binding sites (Lichtarge, et al., 1996). The conservation of individual residues 

was calculated using al2co (Pei and Grishin, 2001). Al2co estimates 

position-specific amino acid frequencies in the sequence alignment and then 

calculates the entropy for each position. To avoid the bias of 

overrepresented sequences, frequency is calculated over the number of 

independent observations. The estimated independent counts of an amino 

acid of type in the position is calculated as 

  
  ( )  

  
   ( )

    ( )
 

where    
   ( ) is the number of independent observation of amino acid   at 

position   and 

   ( )  ∑   
   ( )

  

   

 

 The number of independent observations of an amino acid   at 

position   is defined as the effective number of sequences,     , that contain 

amino acid   in the position  . Different definitions of      have been used by 
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different authors. In the work of Pei et al (Pei and Grishin, 2001),      was 

defined in terms of the average number of amino acid types per position,  . 

The final expression of      was derived in the following way; for a random 

alignment of   sequences it can be proved that the average number of 

different amino acids per position is 

     (       ) 

and the estimation of effective number of sequences can be calculated as 

     
   (       )

      
 

Then, the number of independent observations of amino acid   at position   

is calculated as 

  
  ( )  

   (         ( ))

      
 

where    ( ) is the average number of amino acid types per position of the 

sequences with amino acid   at position  . 

The final conservation value for a position   is calculated using the statistical 

definition of entropy 

 ( )  ∑   
  ( )     

   ( )

  

   

 

2.2.2.3.2 Regional conservation 

 The regional conservation score quantifies the conservation of 

residues that are close in the 3D space as implemented in 3DCA (Landgraf, 

et al., 2001). The regional conservation for a sequence is calculated as 

follows. Let   be a multiple sequence alignment of   sequences and length 

  where our reference sequence is included 

  (   )                     

 For each amino acid   in the reference sequence the regional 

alignment   ( )  is derived from the global alignment by extracting the 

columns corresponding to all residues within a 10Å radius of   

 ( )  (   )                    ( )  

 In the next step, a global matrix and a similarity matrix for each 

alignment are constructed. The global matrix is a     matrix 

  (    )                     
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where the elements of the matrix measure similarities between two 

sequences of the alignment 

     
 

 
∑

 (       )    (        )

  (       )

 

   

 

where   (        )  is the substitution score for the replacement of the 

residue in position   and sequence   with the residue in position   and 

sequence   . The substitution score is taken from the BLOSUM 62 matrix 

(Henikoff and Henikoff, 2000) that is obtained by subtraction of the lowest 

term to the entire matrix. The regional similarity matrix is calculated for each 

of the residues of the reference sequence 

 ( )  (    )                     

 The terms      ( ) are calculated using the same process as in the 

global similarity matrix but using the regional alignments 

    ( )  
 

  ( )
∑

 (       )    (        )

  (       )
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 The raw regional conservation score is a measure for the 

conservation of the structural neighbourhood of residue   compared to the 

protein as a whole 

  
 ( )  

 

 
 (  ∑

          ( )

  

    

) 

 In the last step the raw scores are converted to Z-scores. This is done 

by comparison with scores obtained from regional alignments of randomly 

picked points, of length equal to   ( ) . The mean and the variance are 

calculated from 50 independently generated random regional alignments. 

  ( )  
  

 ( )    
 

    (  
 )

 

2.2.2.4 Crystallographic B-factors 

 B-factors or temperature factors are a measure of the x-ray scattering 

attenuation caused by the atomic thermal motion and is calculated as follow 

        

 

where    is the mean square displacement of the atom. B-factors were 

converted to Z-score as described Yuan et al (Yuan, et al., 2003) 
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where     is the B-factor value of the carbon alpha and,    and    are the 

carbon alpha B-factor average and standard deviation over the protein 

chain. 

2.2.2.5 Residue feature representation 

 To give a precise formulation and define the set of features, let 

             be the residues of a protein. For a given amino acid    the set 

of features is defined as 

             

where   is an index set of all the features listed in sections 2.2.2.1-2.2.2.4. 

2.2.3 Environment-based features 

 Interfaces between globular protein tend to be large and continuous 

patches on the protein surface and thus residues that are part of an interface 

tend to cluster rather than being isolated on the protein surface. Then, if a 

given residue were located on an interface, structurally neighbouring 

residues would also be located in this interface, unless located on the 

boundary of the binding site. Thus, features of the environment can provide 

useful information for predicting whether or not a residue may belong to a 

protein-binding site. For that reason, some methods use environment 

information in addition to residue properties. 

2.2.3.1 How to define residue environment 

 There is no biochemical definition of residue environment. However, 

in order to use the information of the neighbourhood for a given residue, a 

formal definition of residue environment must be provided. Several 

approaches can be found in other works. Porollo et al. (Porollo and Meller, 

2007) defined the environment as the surface residues that are closer than 

15Å. Sikić et al. (2009) used an sliding window of 9 residues making the 

prediction on the central one. Valencia et al. (Fariselli, et al., 2002) used as 

residue environment the 8 closest surface residues. In this thesis, a novel 

residue environment definition is introduced by means of Voronoi Diagrams. 

Figure 2-2 shows a graphic representation of possible residue environments. 
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Figure 2-2 Different definitions of residues' structural environments or 
neighbourhoods. (A) Single residue (red), i.e. no environment. (B) 9-
residue sliding window (as in Sikic et al. (Sikic, et al., 2009)); central 
residue is shown in red and flanking residues in yellow. (C) Euclidean 
distance cut-off; residues enclosed in (2007) a sphere of radius R = 15 
Angstroms (yellow) as in Porollo et al. , centred on the given residue 
(red). (D) Voronoi Diagrams; residue of interest (red) with colour 
gradient showing neighbouring residues; orange: residues sharing 
more than 16 edges with residue of interest; yellow: between 8 to 16; 
green: less than 8. Inset shows the 2D projection of a VD between two 
residues. 
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2.2.3.2 A novel approach: Voronoi Diagrams (VD) 

 VD were used in other works to define protein interface in the 

structures of complexes (Cazals, et al., 2006; Janin, et al., 2008); however, 

in this work, VD was used to define a new type of residue environment. Non-

hydrogen atoms were used to compute a VD. The result was partition of 

space into cells with only 1 atom within each one. The neighbourhood 

between atoms was then defined as those atoms with neighbouring cells in 

the VD. Finally, this definition can be extended to residues; two residues will 

be neighbours if any of their atoms are neighbours. 

The idea behind using VD is related with visibility; between two 

neighbouring cells in the VD, a sphere with any point inside can be traced 

between the Voronoi edges (Figure A.2-0-2). In this way, two neighbouring 

atoms in the VD can see each other without any barrier and hence two 

neighbour residues will have pairs of visible atoms. Another advantage of 

VD is that not cut-offs are needed, i.e. distance cut off or a sequence length, 

also avoiding close (in sequence or distance) residues with no visibility being 

set as neighbours. VD allows also the implementation of a weighting function 

to account for highly or low visible (see below). 

2.2.3.3 Quantifying the microenvironment: strength of the contact 

 The VD of a given protein is computed using all non-hydrogen atomic 

coordinates. The micro-environment of a given residue is then all those 

residues with one or more pairs of atoms that share common edges on the 

VD. Two atoms will be in contact when they will share a common edge on 

the VD; in this context the word ‘contact’ is not related with physical 

interaction or chemical bond but with the VD geometry. Some residues will 

have more atomic contacts than others depending on their specific location 

on the VD. To take this fact into account, the contact strength was defined. 

Let be    a residue and {          } its neighbours. For each neighbour 

  , let     be the number of atomic contact pairs between    and    then, 

   ∑   

 

   

 

is the total number of atomic contact pairs of   with all its neighbours. The 

strength of the contact     between the amino acids    and    is defined as 
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Notice that         but usually         since     depends on the total 

number of atomic contact pairs of    that can be different to   , i.e.     . 

2.2.3.4 Matrix and Vector Descriptors 

 The contact descriptor vector (CDV) will contain the information of the 

amino acid types that form the micro-environment of a given residue. The 

CDV will be then a 20-tuple vector where each element represents an amino 

acid type (e.g. Ala, Cys, etc). The value of each element is normalised by 

the number of neighbour pairs of the corresponding element. Let    be a 

residue and {          } its neighbours, the lth element for the CDV of    

would be  

     ∑    

        

 

where     is the contact strength between the residue    neighbour of   , 

      corresponds to the lth amino acid type position in the CDV vector and 

         means that    is an amino acid of the type      . The CDV 

describes the type of amino acids that are neighbouring a given residue, but 

it does not give any information about the contacts between the amino acids 

in the neighbourhood. To provide a better description of the environment, the 

environment descriptor matrix (EDM) is used. The EDM contains information 

about the number of contacts between the different types of amino acids in 

the neighbourhood of a given residue. The EDM is a       matrix where 

the component       is the normalised number of contacts between amino 

acids of type       with type      , the types are sorted as in the CDV. Let 

   be a residue and {          }  its neighbours, the total environment 

atomic contact pairs for    is 

   ∑ ∑   

   

 

   

 

where     is the number of atomic contact pairs between the residues    

and   . The element       of the EMD matrix for the residue    will be 

      
 

  
∑∑   

    

 

where    and    are neighbours of    with         ,          and    . 

2.2.3.5 Environment-based features representation 

 For each feature of a residue, the environment feature is defined as 

follows: given a residue    and {          }  its neighbours, for each 

feature     the environment feature      is defied as 
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     ∑      

 

   

 

where    is the strength of the contact between the residue    and    and 

   is the value of the  th feature for the amino acid   . The set of the 

environment features for the residue    is 

               

2.2.4 Combining two Random Forest ensemble classifiers on the 

prediction 

 The aim of VORFFIP algorithm is to classify residues of a given 

protein into binding and non-binding sites. The method uses a vector of 

features as input and the core of the prediction process consists of 2 steps 

of RF. The predictions are performed for individual residues; however, the 

information for the whole protein is needed for a single residue prediction. At 

the end of the process the method produces a score value for each residue. 

2.2.4.1 First-step Random Forest 

 The 1-step RF is run using a vector of features calculated for each 

residue of a protein. Each amino acid is represented by a vector where the 

coordinates are the different properties or features of the amino acid 

described in sections 2.2.2 and 2.2.3. Given a residue    the vector of 

features is composed of: 

(i) residue-based features    

(ii) environment-based features     

(iii) elements of contact descriptor vector      

(iv) elements of environment descriptor matrix      

 Each tree in the forest votes for a residue as binding or non-binding 

site residue, then the score produced by the 1-step RF is the proportion of 

binding site votes, i.e. number of positive votes divided between the number 

of trees in the forest. 

2.2.4.2 Second-step Random Forest 

New features are calculated using the scores obtained in the 1-step RF. 

These new features together with the features previously used in the 1-step, 

comprise the final set of input features for the 2-step RF. 

 The 1-step RF produces a score for each residue of a given protein. 

Let    be a residue and {          }  the residue neighbours, then the 

environment score     is defined as 



- 45 - 

    ∑     

 

   

 

where     is the contact strength between residue    and residue    and    is 

the score value for the residue    calculated in the 1-step RF. The 

environment score is decomposed into values amongst the different amino 

acid types, the contact score vector CSV of the amino acid    is defied as 

     ∑      
        

 

where    is a neighbour of    and       corresponds to the lth amino acid 

type position, the order of amino acid type is the same as in the CDV. The 

CPV contains the contribution to the environment score of the different 

amino acid types. 

 Also, the minimum and maximum environment scores be included in 

the 2-step RF 

     {(   {  }     ) (   {  }     ) (   {     }     ) (   {     }    )} 

where    is the score of the neighbour   . 

The 2-step RF is run adding these new features to the vector of features 

    

     

      elements of the contact score vector 

      

2.3 Benchmarking 

2.3.1 Datasets 

 Five datasets of protein complexes, termed O333, S435, S149, W025 

and B100, were used for benchmarking and comparison purposes. Different 

definitions of protein interfaces were used depending on the specific dataset, 

some interfaces have been defined by a Euclidean distance to different 

protein chains, changes on the residue surface area accessibility or residues 

forming atomic interactions with other proteins in the complex. 

 The O333 dataset corresponds to that compiled by Ofran et al. (Ofran 

and Rost, 2003) and used by Sikic et al. (2009). The set consists of 333 

heterodimer complexes with 1134 protein chains where the e-value between 

two aligned chains was lower than 10-7. Residues in dataset O333 are 
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considered to be part of a protein interface if closer than 6 Å to any heavy 

atom in a neighbouring non-homologous chain.  

 The datasets S435 and S149 correspond to the two sets derived by 

Porollo et al., used to train and test SPPIDER (Porollo and Meller, 2007). 

The sets contain 435 and 149 chains respectively where sequence identity 

between two chains is lower than 50% and e-value lower than 10-3. The 

interfaces are defined in terms of the relative surface area (RSA) and 

accessibility surface area (ASA) changes between the unbound and bound 

structures. Any residue whose RSA changes more than 4% between 

unbound and the bound complex and has a ASA larger than 5 Å2, is 

considered to be part of a protein interface.  

 The dataset W025 corresponds to both Benchmark V1.0 (Chen, et al., 

2003) and V2.0 (Mintseris, et al., 2005) sets used to benchmark WHISCY 

(de Vries, et al., 2006). The set contains 25 complexes where no two single 

pair of proteins belong to the same SCOP family. The interface residues 

were defined using DIMPLOT (Wallace, et al., 1995) with default 

parameters.  

 Dataset B100 corresponds to Benchmark V3.0 (Hwang, et al., 2008) 

after discarding antigen antibody complexes and was used as an 

independent set to benchmark VORFFIP under different conditions, i.e. input 

data and environment definitions. The set consists of 100 complexes and no 

two single pairs of proteins belong to the same SCOP family. Interfaces 

were located using DIMPLOT (Wallace, et al., 1995) with default 

parameters. 

2.3.2 Predictive power of individual features 

To identify the capability of the features used to distinguish between 

interface and non-interface, a statistical analysis was performed. Some 

statistical plots were generated to compare the distribution of values when 

the features were calculated on interface and non-interface residues. The 

interfaces were extracted from a data set of 333 protein complexes (O333, 

see section 2.3.1) and only surface residues were used for the analysis.  

 The distribution of values was compared using boxplot diagrams. For 

each feature two plots were generated, one plot for the interface residues 

and a second for the non-interface residues. In this way, the distribution of 

values measured in the interface against non-interface have been 

compared. The most favourable case would be a clear difference between 

the medians and low overlapping between the boxes. Also, the two 
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distributions were compared by means of a Wilcoxon rank-sum test (MWW) 

to assess if one distribution tends to have larger values than the other. The 

null hypothesis in MWW test assumes that the observations of two samples 

come from the same distribution, while the alternative hypothesis states that 

one sample has greater values than the other. Figure 2-3 shows the 

boxplots generated for some of the features (all plots are shown in Appendix 

B.2). 

 Also, the p-value for the MWW test were lower than 10-6, these low 

values suggest rejecting the null hypothesis, i.e. the observed samples 

comes from the same distribution. 

2.3.3 One-step vs. two-steps Random Forest 

 The difference between the first-step and second-step RF is the use 

of scores generated by the first-step RF and the environmental score-

derived metrics   ,     and      (see section 2.2.4.2). It is known that 

residues that are part of an interface tend to form continuous patches rather 

than being isolated. It would then be expected that residues that are part of 

an interface would show homogenous and high scores and it is unlikely that 

residues with high scores would be neighboured mainly by low scored 

residues. Thus, the logic underlying the second-step RF was to utilize scores 

yielded by the first-step RF and environment scores to accommodate for 

these effects.  

 Results showed that the performance of VORFFIP is improved when 

the second-step RF was included. The ROC curve obtained on the second-

step RF showed higher sensitivity for any false-positive rates (Figure 2-4) 

and the difference of AUC values was statistically significant (p-value < 

0.01). Both ROC curves were derived using structure, energy, conservation 

and B-factors together with VD to account for the neighbourhood. However, 

the same behaviour was observed when using individual sets or 

combinations of features (e.g. energy terms) and other environment 

descriptors (e.g. sliding window) (data not shown). In terms of precision (P), 

recall (R), F1-scores and Matthews’ correlation coefficient (MCC), second-

step RF improved the performance of the method (first-step RF vs. second-

step RF: R: 0.50 vs. 0.56; P: 0.36 vs. 0.45; MCC: 0.34 vs. 0.42; F1-scores 

0.41 vs. 0.49). Thus, second-step RF and scored-derived metrics (e.g.    ) 

corrected false positives and identified missing hits, thus improving the 

performance of VORFFIP. Unless otherwise noted, the two-steps RF was 

selected as the default predictor. 
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Figure 2-3 Boxplots for some features. In green the distribution for 
interface residues and in red for non-interface. (A) Accessible surface 
area (B) Protrusion index (C) Deep index (D) Electrostatic energy (E) 
Van der Waals energy (F) Side chain entropy (G) 3D conservation (H) 
Sequence conservation. 
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Figure 2-4 ROC curves for first- and second-step RF. ROC curves for the 
first-step (blue) and second-step (red) RF in a 5-fold cross validation 
benchmark using B100 dataset. X-axis and Y-axis represent false 
positive and true positive rates, respectively.  



- 50 - 

2.3.4 Improving predictive power by combining heterogeneous 

data and using Voronoi Diagrams 

 A total of 60 combinations of features (i.e. structure, energy, 

conservation and B-factors) and environment definitions (i.e. VDs, sliding 

window, sphere and no-environment) was explored. The predictive 

performance of single features and 11 combinations are presented in Table 

2-1. 

 The general trend shows that combining features resulted in a 

statistically significant increase of AUC values. Individual features performed 

at a similar level, with B-factors being the poorer predictor in terms of AUC. 

However, the best performance is achieved when all features were 

combined and VDs was used as environment descriptor. Different 

combinations of features yielded different results, for instance no clear 

improvements were observed when structural information was combined 

with energy information (p-value 0.06; Table 2-2) or when adding B-factors 

information to structure, energy, and conservation (p-value 0.58; Table 2-2). 

Finally, evolutionary data (e.g. sequence conservation) did improve 

predictions in terms of AUC. 

 When examining the type of environment descriptors, in general VDs 

achieved the best performance for the different combinations of features 

when gauged against AUC. Also, as shown in Figure 2-5, VDs and the 

combinations of structural, energy, conservation and B-factors achieved the 

best performance in terms of true positive rate at any false positive rate 

when compared to sliding window, sphere and no-environment. 

 The difference in AUC between VDs and the rest of environment 

descriptors was statically significant (Table 2-3). The same trend was 

observed when looking at other performance indicators such as MCC, R, P 

and F1-scores (Table 2-3), i.e. combination of all features and VDs yielded 

the best scores. MCC scores are of special interest given the difference in 

size between the number of positive and negative cases, i.e. the number of 

exposed residues that do not belong to an interface are much higher than 

those that do. Both MCC and F1-scores improved when all the sources of 

information were combined and VD was used to account for the 

environment, thus resulting in better and more balanced predictions. 

2.3.5 Effect of the environment descriptors 

 As described in 2.3.4, the inclusion of environment descriptors had a 

positive effect on the performance of VORFFIP. In general, any prediction  
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FEATURES VD Sphere SW Single 

S 0.79 0.75 0.77 0.72 

E 0.77 0.72 0.75 0.71 

C 0.76 0.74 0.72 0.65 

B 0.74 0.71 0.69 0.61 

S+E 0.78 0.75 0.77 0.73 

S+C 0.82 0.78 0.81 0.77 

S+B 0.79 0.75 0.77 0.73 

E+C 0.81 0.75 0.77 0.76 

E+B 0.77 0.73 0.75 0.72 

C+B 0.76 0.74 0.72 0.68 

S+E+C 0.82 0.78 0.81 0.77 

S+E+B 0.79 0.75 0.77 0.73 

S+C+B 0.82 0.78 0.8 0.78 

E+C+B 0.81 0.75 0.77 0.76 

S+E+C+B 0.85 0.78 0.81 0.77 

Table 2-1 AUC values for different combinations of features and 
environment definitions. The test consisted of a 5-fold cross 
validation using the dataset B100 where interfaces were defined using 
DIMPLOT (Wallace, et al., 1995). The first column indicates the 
combination of features used: structural (S), energy (E), conservation 
(C), and B-factors (B). The second, third, fourth, fifth columns contain 
AUC values for Voronoi Diagram (VD), sphere (15 Å cut-off), 9-residue 
sliding window (SW), and single residue (no environment), respectively. 
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 S S+E S+E+C S+E+C+B 

S -    

S+E 0.06 -   

S+E+C 3,66 10-22 1,50 10-28 -  

S+E+C+B 2,76 10-23 1,27 10-29 0.58 - 

Table 2-2 Statistical analysis of ROC curves using StAR. The header 
and first column indicate the combination of features used to compute 
the ROC curves: structural (s), energy terms (e), conservation (c), and 
B-factors (b). In this test, Voronoi Diagram environment was used. The 
lower diagonal contains the p-values that represent the statistical 
significance of the difference between AUC. 

 
 
 
 
 
 
 

 Voronoi Window Distance No enviro. 

Voronoi -    

Window 6,60 10-9 -   

Distance 1,04 10-35 5,27 10-12 -  

No enviro. 4,80 10-86 7,48 10-68 3,11 10-17 - 

Table 2-3 Statistical analysis of ROC curves using StAR. The header 
and first column indicate the environment used to compute the ROC. In 
this test all residue features (structural, energy terms, conservation, 
and B-factors) were used. The lower diagonal contains the p-values 
that represent the statistical significance of the difference between 
AUC. 
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Figure 2-5 ROC curves combining structure, energy, conservation and 
B-factors information and different environment definitions. Red, 
green, blue and yellow lines represent ROC curves using VDs, sphere, 
sliding window, and single residues (i.e. no environment) as 
environment descriptors respectively. Purple line represents a random 
prediction. 
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that included environment information was superior that those that did not 

(Table 2-1, Table 2-4 and Figure 2-5). However, VDs were superior when 

compared to sliding windows and spheres due to the combination of a lower 

rate of false positive and a higher rate of true positive cases. A specific case 

of this effect is depicted in Figure 2-6. 

 In general, when VORFFIP uses environment information derived 

from sliding window, sphere and VDs, high scores are assigned to the main 

interface patch. However, using information derived from both sphere and 

sliding window resulted in either low scores assigned to residues in the 

interface patch or high scores assigned to residues that are not (Figure 2-6 

B-C), whereas VDs (Figure 2-6D) yielded a more accurate and balanced 

prediction, thus resulting in a sharper and more accurate charting of the 

protein interface. It is worth noting that while VDs and sphere descriptors 

only considered exposed residues, the sliding window approach, which is 

sensitive to the structural position of the central residue of the window, can 

include buried residues which might have a negative effect on the 

performance of the prediction. 

2.3.6 Comparing VORFFIP with other methods 

 The algorithm was compared against three recently published 

methods: SPPIDER (Porollo and Meller, 2007), WHISCY (de Vries, et al., 

2006) and the method developed by Sikić et al. (2009). In each case, 

VORFFIP was trained and tested following the same procedure described in 

the previous studies and using the same datasets. Also, the definition of 

interface residues was the same as described in the original publications. 

The method described by Sikić et al. 

 Sikić’s method (Sikic, et al., 2009) was benchmarked on the O333 

dataset using a 3-fold cross validation test, and thus the same procedure 

was followed in order to compare our method with that of Sikić et al. Also, 

the interface was defined as in the previous work using a distance threshold 

between atoms of 6Å. Figure 2-7 shows that VORFFIP outperforms the 

method of Sikić et al. with a higher precision at any recall rate (except for 

first-step RF at recall rates lower than 0.3). It also shows that VORFFIP 

results improve with the second-step Random Forest. 

 



- 55 - 

 
 
 

 
Voronoi Diagrams Sphere Sliding Window Single 

FEATURES MCC F1 P R MCC F1 P R MCC F1 P R MCC F1 P R 

S 0.27 0.33 0.28 0.41 0.24 0.12 0.92 0.07 0.27 0.25 0.56 0.16 0.21 0.13 0.66 0.07 

E 0.24 0.21 0.56 0.13 0.26 0.16 0.85 0.09 0.31 0.23 0.79 0.14 0.22 0.14 0.73 0.08 

C 0.23 0.29 0.28 0.31 0.26 0.15 0.91 0.08 0.33 0.26 0.82 0.15 0.16 0.11 0.49 0.06 

B 0.25 0.16 0.75 0.09 0.26 0.14 0.94 0.08 0.34 0.25 0.86 0.15 0.09 0.15 0.16 0.15 

S+E 0.26 0.32 0.27 0.39 0.24 0.13 0.91 0.07 0.31 0.29 0.55 0.21 0.21 0.1 0.95 0.05 

S+C 0.31 0.36 0.37 0.36 0.26 0.31 0.33 0.29 0.29 0.32 0.44 0.25 0.26 0.29 0.39 0.23 

S+B 0.27 0.33 0.27 0.43 0.24 0.13 0.89 0.07 0.27 0.23 0.6 0.14 0.21 0.09 0.97 0.05 

E+C 0.29 0.33 0.38 0.29 0.27 0.18 0.81 0.11 0.32 0.31 0.5 0.22 0.24 0.16 0.76 0.09 

E+B 0.25 0.29 0.34 0.26 0.25 0.14 0.88 0.08 0.32 0.24 0.79 0.14 0.22 0.12 0.83 0.07 

C+B 0.24 0.29 0.32 0.27 0.27 0.18 0.84 0.1 0.31 0.23 0.77 0.13 0.19 0.09 0.87 0.05 

S+E+C 0.31 0.36 0.37 0.35 0.26 0.31 0.36 0.27 0.33 0.32 0.46 0.25 0.26 0.31 0.29 0.34 

S+E+B 0.27 0.33 0.27 0.44 0.23 0.12 0.92 0.06 0.26 0.23 0.59 0.14 0.21 0.14 0.7 0.07 

S+C+B 0.31 0.36 0.35 0.46 0.27 0.31 0.38 0.26 0.31 0.34 0.41 0.29 0.26 0.31 0.3 0.33 

E+C+B 0.29 0.35 0.33 0.36 0.26 0.22 0.57 0.14 0.32 0.31 0.49 0.22 0.25 0.17 0.72 0.11 

S+E+C+B 0.31 0.35 0.47 0.31 0.26 0.31 0.34 0.29 0.31 0.33 0.45 0.26 0.26 0.31 0.33 0.28 

Table 2-4 Statistical performance using different definitions of micro-environment. The test consisted of a 5-fold cross validation 
using dataset B100 where interface residues were defined using DIMPLOT (7). The first column indicates the combination of 
features used: structural (S), energy terms (E), conservation (C), and B-factors (B). The table also shows the Matthew 
Correlation coefficient (MCC), F1 score, Precision (P), and Recall (R) for the different type of environment descriptors: VD, 
sphere (15 Å cut-off), sliding window (9 residues), and single (no environment). 
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Figure 2-6 Evaluating the effect of environment descriptors. The binding 
site of CI-2-SUBTILISIN NOVO (PDB code: 2sni, chain E; surface 
representation) was predicted using structural, energy, conservation, 
and B-factor information and three different types of environments 
definitions. (A) Interface as in the crystal structure (highlighted in red). 
(B) Prediction using a 9-residues sliding window. (C) Prediction using 
distance threshold (15 Angstroms cut-off). (D) Prediction using VDs. 
The gradient colour represents score values (s) where: blue (0 ≤ s < 
0.5), green (0.5 ≤ s < 0.7), yellow (0.7 ≤ s < 0.9), and red (s ≥ 0.9). 
Solid and dashed circles represent differences in the prediction of non-
interface and interface residues, respectively. 
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Figure 2-7 Precision versus recall curve on O333 dataset. Following 
same benchmark procedure described by Sikić et al. (2). X-axis and Y-
axis represent recall and precision respectively. Solid green, blue and 
red lines represent Sikić et al. (2), first-step RF, and second-step RF, 
respectively. 
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WHISCY  

 WHISCY (de Vries, et al., 2006) was benchmarked on W025 dataset 

and interfaces were defined using the program DIMPLOT (Wallace, et al., 

1995) with default parameters. The interface residues were calculated using 

the bound structure chains but the inputs for the method were calculated 

using the unbound structures. A subset of O333, SO72, generated by 

removing any protein complexes whose SCOP (Hubbard, et al., 1997; Lo 

Conte, et al., 2002; Murzin, et al., 1995) superfamily is represented in 

dataset W025, was used to train VORFFIP. This ensured that no 

evolutionary relationship, however remote, existed between the training set 

SO72 and the testing set W025. VORFFIP performed better in terms of R, P 

and MCC scores as shown in Table 2-5. Individual predictions for each 

individual protein complex in W025 dataset are shown in appendix B.3. 

SPPIDER 

 For training and testing, Porollo et al. (Porollo and Meller, 2007) 

derived two non redundant and independent sets from the PDB: S435 and 

S149, the interface was defined in terms of surface area changes. Following 

the same procedure described by the authors, VORFFI was trained on the 

S435 set and tested over the S149. The results are presented in Table 2-6 

showing that VORFFI achieved higher scores for each of the metrics used to 

evaluate predictive performance: Matthews’ correlation index (MCC), Q2, 

recall (R), precision (P), and area under the ROC curve (AUC; see ROC 

curve Figure 2-8). 

2.4 Extending VORFFIP predictions to other types of 

functional sites: MULTI-VORFFIP 

 MULTI-VORFFIP (MV) is an extension of VORFFIP to predict 

different type of interfaces or functional sites. The algorithm behind MV is the 

same algorithm used in VORFFIP but the Random Forest was trained using 

tailored datasets. Thus, the original method was trained with 3 new datasets: 

protein-peptide, protein-DNA and protein-RNA interactions. Figure 2-9 

shows the schema of MV architecture. The plasticity of machine learning 

algorithms and the diversity of the residue/environment-based features 

provides enough flexibility to adapt the method to predict these new types of 

interfaces.  

  



- 59 - 

 
 
 
 
 
 
 
 
 
 

METHOD R (%)
a 

P (%)
b 

MCC
c 

VORFFIP 47 42 0.38 

WHISCY 27 39 0.27 

WHISCYMATE 28 36 0.26 

Table 2-5 Comparing WHISCY, WHISCYMATE and VORFFIP. (a) Recall, 
(b) Precision, (c) Matthews’ correlation coefficient.  

 

 

 

 

 

 

METHOD MCC
a
 acc (%)

b
 R (%)

c
 P (%)

d
 AUC

e
 

VORFFIP 0.58 83.8 74.7 63.4 0.90 

SPPIDER 0.42 74.2 60.3 63.7 0.76 

Table 2-6 Comparing SPPIDER and VORFFIP. (a) Matthews’ correlation 
coefficient, (b) Second quartile, (c) Recall, (d) Precision, (e) Area under 
the ROC curve.  
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Figure 2-8 ROC curves using SPPIDER datasets (Porollo and Meller, 
2007). X-axis and Y- axis represent false positive and true positive 
rates, respectively. The method was trained using S435 data set and 
tested with dataset S149; interface residues were defined in terms of 
the relative surface area (RSA) and accessibility surface area (ASA) 
changes between the unbound and bound structures as described in 
the original report. Blue and red curves are the result for the first-step 
and second-step RF, respectively. For comparison, SPPIDER ROC 
curves are available in the original publication. 
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Figure 2-9 MULTI-VORFFIP flowchart. Overall flowchart of the prediction 
process. The algorithm has been trained using four different types of 
interactions: protein–protein, peptide–protein, DNA–protein, RNA–PPIs. 
BS: binding site. 

  



- 62 - 

2.4.1 Benchmarking 

2.4.1.1 Datasets 

 Three different datasets, PEP-set, DNA-set and RNA-set, extracted 

from recent publications, were used to benchmark MV. Benchmark V4.0 

dataset (Hwang, et al., 2010), named PROT-set, is also used to assess the 

selectivity of the predictions. The PROT-set is a dataset of 176 protein–

protein complexes specifically compiled for docking evaluation. The PEP-set 

is a non-redundant dataset of protein–peptides complexes compiled by 

Petsalaki et al. (2009) and it is composed of a non-redundant set, i.e. does 

not include protein–peptide complexes that belong to the same SCOP family 

(Lo Conte, et al., 2002) of 405 protein–peptides structure complexes solved 

both in bound and unbound conformation. The DNA-set is a dataset of 

protein–DNA complexes (Xiong, et al., 2011) that consists of 206 protein–

DNA complexes sharing <25% sequence identity and featuring both in 

unbound and bound conformations. The RNA-set is a dataset of protein–

RNA complexes (Liu, et al., 2010), comprising 205 protein–RNA complexes 

where RNA and protein sequences among the set share <60% and 25% 

sequence identity, respectively. Finally, a combined set, COMB-set, 

containing 17 proteins that have more than one functional site, e.g. a DNA- 

and a protein-binding site, was used to assess the selectivity of predictions 

(see appendix B.4 for a list of the PDB codes).  

 The benchmarking of MV, including the definition of interaction 

interfaces (i.e. binding sites), was performed following the same procedure 

described in each publication where the datasets were described. Thus, 

protein–peptide interfaces were defined as protein residues within a distance 

of 6 Å from the peptide (PEP-set); protein–DNA interfaces were defined by 

the protein residues with a relative surface accessibility area >10% and 

within 4.5 Å of the DNA (DNA-set); and RNA binding sites were defined 

using ENTANGLE (Allers and Shamoo, 2001) as in the original work (Liu, et 

al., 2010) (RNA-set). In the case of the PROT-set, interfaces were defined 

using DIMPLOT (Wallace, et al., 1995) as described in de Vries et al. (2006). 

2.4.1.2 Predictive performance and competitiveness 

 In general, the accuracy of the predictions increases as more 

information is included (Table 2-7 and Table 2-8), which is in agreement with 
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FEATURES PEP-set DNA-set RNA-set 

S 0.86 0.81 0.88 

E 0.86 0.80 0.88 

C 0.87 0.84 0.89 

B 0.84 0.80 0.88 

S+E 0.87 0.81 0.89 

S+C 0.88 0.85 0.90 

S+B 0.86 0.81 0.89 

E+C 0.87 0.85 0.90 

E+B 0.85 0.80 0.88 

C+B 0.88 0.84 0.90 

S+E+C 0.88 0.85 0.91 

S+E+B 0.86 0.81 0.89 

S+C+B 0.88 0.85 0.91 

E+C+B 0.87 0.84 0.90 

S+E+C+B 0.88 0.85 0.91 

Table 2-7 AUC values in a 5-fold cross validation for the different data 
sets: PEP-set, DNA-set and RNA-set. The first column indicates the 
combinations of features used for the predictions: structural features 
(S), energy terms (E), conservation (C) and experimental B-factors (B). 
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 PEP-set DNA-set RNA-set 

FEATURES MCC F1 P R MCC F1 P R MCC F1 P R 

S 0.55 0.50 0.93 0.34 0.30 0.35 0.27 0.52 0.51 0.56 0.64 0.49 

E 0.56 0.51 0.93 0.35 0.31 0.36 0.25 0.62 0.52 0.57 0.61 0.53 

C 0.55 0.50 0.93 0.34 0.29 0.39 0.23 0.64 0.51 0.56 0.62 0.51 

B 0.56 0.52 0.92 0.36 0.36 0.41 0.30 0.63 0.52 0.58 0.56 0.59 

S+E 0.55 0.50 0.92 0.35 0.29 0.35 0.25 0.57 0.53 0.57 0.64 0.52 

S+C 0.56 0.53 0.85 0.38 0.30 0.35 0.24 0.65 0.53 0.58 0.64 0.52 

S+B 0.56 0.51 0.91 0.36 0.38 0.44 0.42 0.46 0.54 0.59 0.56 0.63 

E+C 0.56 0.52 0.89 0.37 0.31 0.36 0.26 0.58 0.54 0.59 0.62 0.56 

E+B 0.56 0.51 0.94 0.35 0.37 0.42 0.35 0.54 0.54 0.59 0.64 0.54 

C+B 0.56 0.50 0.90 0.35 0.35 0.40 0.29 0.64 0.53 0.58 0.63 0.54 

S+E+C 0.56 0.51 0.91 0.35 0.37 0.43 0.33 0.58 0.54 0.59 0.61 0.57 

S+E+B 0.55 0.50 0.89 0.35 0.37 0.43 0.40 0.46 0.56 0.61 0.59 0.63 

S+C+B 0.56 0.52 0.89 0.37 0.37 0.43 0.22 0.72 0.55 0.60 0.61 0.59 

E+C+B 0.55 0.51 0.91 0.35 0.38 0.44 0.39 0.52 0.56 0.61 0.61 0.61 

S+E+C+B 0.56 0.52 0.84 0.38 0.39 0.45 0.38 0.56 0.56 0.61 0.60 0.62 

Table 2-8 Statistical performance on the different type of interactions. MCC, F1, precision (P) and recall (R) values in a 5-fold 
cross validation for the different data sets: PEP-set, DNA-set and RNA-set. The first column indicates the combinations of 
features used for the predictions: structural features (S), energy terms (E), conservation (C) and experimental B-factors (B). 

 



- 65 - 

observations described in section 2.3.4. Indeed, the performance of peptide-

, DNA- and RNA-binding site predictions in term of AUC, MCC, F1-score, 

Precision (P) and recall (R) values (Table 2-7 and Table 2-8) improved as 

structure, energy, conservation and crystallographic B-factors were added to 

the predictions. The only exception was precision values (P), which in the 

case of the PEP-set and RNA-set dropped slightly when all the features 

were combined although MCC values were higher, i.e. better R. 

2.4.1.3 Protein-peptide binding site prediction 

 PEP-set (Petsalaki, et al., 2009) was used to assess the performance 

in the prediction of peptide-binding sites. According to the original work, the 

optimal P-value cut-off in a leave-one-out cross-validation experiment was 

0.04, representing an MCC value of 0.24 according to the reported false 

positive and true positive rates (Petsalaki, et al., 2009). MV achieved a MCC 

value of 0.55 on a 5-fold cross-validation experiment that is more 

disadvantageous than the leave-one-out validation (as in the original 

publication) because the latter implies a larger training set and thus a better 

statistical model. However, MV predicts peptide-binding interfaces whereas 

the method of Petsalaki et al. takes into account the sequence of the 

peptide, i.e. predicts the interface based on the sequence of the peptides, 

which is a more difficult prediction. Hence, the MCC values between MV and 

Petsalaki's method are not directly comparable and so MV was compared 

with a random predictor. Under this scenario, MV performed substantially 

better in both MCC (0.55 vs 0.00 – expected value in a random prediction) 

and AUC (0.86 vs. 0.50 – expected value in a random prediction). 

2.4.1.4 Protein-DNA binding site prediction 

 The performance of MV in protein–DNA binding site prediction was 

assessed using the DNA-set and performing benchmark tests as previously 

described (Xiong, et al., 2011). The first test consists of a 5-fold cross-

validation using the entire DNA-set. In terms of F1 scores and AUC values, 

MV (F1: 0.49; AUC: 0.86) and the method described by Xiong et al. (Xiong, 

et al., 2011) (F1: 0.51; AUC: 0.82) performed comparably. In a second test, 

the DNA-set was derived into two subsets as described in the original work 

(Xiong, et al., 2011). One of the subsets was used as the training set while 

the other subset, including the bound and unbound conformations, was used 

as the test set. Again the performance of MV in terms of F1 (bound: 0.50; 

unbound: 0.44) and AUC (bound: 0.85; unbound: 0.80) values were 

comparable with those reported in the original publication (F1; bound: 0.51; 

unbound: 0.44; AUC: bound: 0.84; unbound: 0.78). 
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2.4.1.5 Protein-RNA binding site prediction 

 The RNA-set was used to assess the performance of MV in protein–

RNA binding site prediction. This set was recently derived to benchmark a 

RNA-binding site prediction method (Liu, et al., 2010). The first test 

consisted of a 5-fold cross-validation on the entire RNA-set. In terms of F1-

scores and AUC values, MV (F1-score: 0.80; AUC: 0.88) slightly 

underperformed in comparison with the method of Zhi-Ping et al. (Liu, et al., 

2010) (F1-score: 0.85; AUC: 0.92) although the differences were marginal 

and not significant (P>0.01). The second test consisted of the prediction of 

RNA-binding sites on a randomly chosen independent set of 100 complexes. 

In order to compare the performance of MV under the same conditions, the 

same 100 complexes were selected. In this comparison, the original method 

of Zhi-Ping (F1-score: 0.79; MCC: 0.49) performed marginally better than 

MV (F1-score: 0.79; MCC: 0.43) although differences were minimal. 

2.4.1.6 Selectivity of the predictions 

 A central consideration during the development of MV was to explore 

the selectivity or discriminative nature of the predictions. For example, did 

DNA-binding sites show consistently higher scores when using MV to predict 

DNA-binding sites than when predictions were made using the specific RNA-

binding statistical model? To answer this question, a number of cross-

prediction experiments were performed. MV was used with each dataset 

(PROT-set, PEP-set, DNA-set and RNA-set) to predict protein-, peptide-, 

DNA- and RNA-binding sites. When the training and testing sets were the 

same, the scores were calculated using a 5-fold cross-validation. The 

distributions of raw scores of the interfaces residues were plotted against 

each of the predicted interface types. 

 As shown in Figure 2-10, the distributions of scores and median 

values of interface residues were significantly different (P<0.01) when 

predicted interfaces and dataset types coincided. For example, the 

prediction scores for protein-binding interfaces in the PROT-set were higher 

and median values were significantly different than peptide-, DNA- and RNA-

binding site prediction scores. This was also true for the PEP-set, DNA-set 

and RNA-set. 

 The selectivity of the predictions was further assessed by analysing 

the COMB-set. The COMB-set includes three different types of complexes: 
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Figure 2-10 Residue binding site score box plots. The different colours 
represent the different datasets: light blue PROT-set, light green PEP-
set, red DNA-set and orange RNA-set. In each dataset, four binding 
site types were predicted as shown in the X-axis: prot, pep, DNA and 
RNA for protein-, peptide-, DNA- and RNA-binding site prediction, 
respectively. The central horizontal line in the box marks the median 
and the box edges the first and third quartile; errors bars show 
minimum and maximum values. 
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protein–protein–peptide, protein–protein–DNA and protein–protein–RNA. As 

shown in the Figure 2-11, the prediction scores were consistently higher 

when interface and prediction type was the same and were lower and 

distributed in a narrower interval when different, e.g. scores assigned to an 

actual DNA-binding site when predicting a protein-binding site. Two 

examples of combined predictions are depicted in the next sections. 

2.4.1.7 Examples 

2.4.1.7.1 A protein–protein–peptide complex 

 An example of a combined prediction of protein- and peptide-binding 

sites is depicted in Figure 2-12. Cyclin-A2 recognizes both a globular protein 

and a peptide and so can bind to both the cell division kinase 2 (CDK2) and 

the CDK2 substrate peptide. As shown in Figure 2-12, when predicting 

protein-binding sites, MV assigned high scores to the actual interface to 

CDK2 (red) and low scores to the rest of the exposed surface and the 

peptide-binding site (blue). On the contrary, when predicting peptide-binding 

sites, only the region that recognizes the substrate peptide scored high. 

Therefore, and in accordance to the data shown in Figure 2-11, MV was able 

to discriminate between two different types of interfaces and correctly locate 

the interaction patches on the surface of the protein. 

2.4.1.7.2 A protein–protein–DNA complex 

 The crystal structure of an engineered heterodimeric I-CreI 

endonuclease composed of two subunits V2 and V3 is an example of a 

protein that interacts both with a protein and DNA. The predictions of both 

protein- and DNA-binding sites on subunit V2 are depicted in Figure 2-13. 

MV predicted with a high accuracy the actual DNA-binding site (red) of the 

V2 endonuclease (chain A), while scoring low (blue) the interface with V3 

endonuclease. Likewise, MV assigned high scores to the actual protein 

interface between V2 and V3 endonucleases (red), while scoring low the 

DNA interface (blue). Again, this example shows the discriminative power of 

the predictions in agreement with the data shown in Figure 2-11. 

2.5 M-VORFFIP Web server 

 M-VORFFIP was implemented as web–server and is available at: 

http://www.bioinsilico.org/MVORFFIP. The web-server provides an easy and 

convenient system for users to use the program without having to install 
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Figure 2-11 Density plot of the predicted scores in the mixed 
benchmark COMB-set. In green, density of predictions when the 
interface type and prediction type was the same. In red, density of the 
scores when the interface type prediction was different, e.g. scores 
when predicting a DNA-binding site in a protein-binding site interface. 
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Figure 2-12 Structural mapping of protein- and peptide-binding site 
predictions. Structural mapping of protein- and peptide-binding site 
predictions onto the crystal structure of cyclin-A2 complexed with CDK2 
and the CDK2 substrate peptide: Nt-PKTPKKAKKL-Ct (PDB code: 
3qhr). Cyclin-A2 is shown in surface representation, while CDK2 and 
substrate peptide are depicted in ribbon. Cyclin-A2 coloured according 
to prediction scores (s): red s ≥ 0.8; orange 0.6 ≤ s < 0.8; yellow 0.4 ≤ s 
< 0.6; green 0.3 ≤ s < 0.4; light blue 0.2 ≤ s < 0.3; blue s < 0.2. (A) 
protein-binding site prediction; (B) peptide-binding site prediction. 
Peptide-binding site highlighted using a solid ellipse. 
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Figure 2-13 Structural mapping of protein- and DNA-binding site 
predictions. Structural mapping of protein- and DNA-binding site 
predictions onto the crystal structure of an engineered heterodimeric I-
CreI endonuclease complexed with a 24-bp oligonucleotide of the 
human RAG1 gene sequence (PDB code: 3mxb). V2 endonuclease is 
shown in surface representation, while V3 and DNA are shown in 
ribbon. V2 coloured according to prediction scores as described in 
Figure 2-12. (A) Protein-binding site prediction; (B) DNA-binding site 
prediction 
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any software or other external applications. A screenshot of the results web 

page is shown in Figure 2-14. As shown, the composite Jmol applet shows 

all four predictions simultaneously and side-by-side; any manipulation in any 

viewer will be reflected in all of them. Therefore, the process of comparing 

and analysing the different predictions is greatly facilitated. The prediction 

scores are represented with a colour code gradient where high-scoring 

residues are labelled in red and low scoring ones in blue. A table with scores 

and a PDB file with modified B-factors to represent scoring predictions is 

also readily available for download. The low computational cost of the 

method, in the order of tens of seconds, allows an immediate execution of 

the prediction tasks with a minimal waiting time. 

2.6 Conclusions 

 This chapter has described the protein interface prediction problem 

and the development of VORFFIP, a novel computational tool for the 

prediction of protein binding sites. Several studies of protein complexes for 

which the crystal structure is known have shown that residues at interfaces 

present unique properties. As shown, these properties, which include 

information that is specific to the structure, energy terms, evolutionary 

conservation and crystallographic B-factors of individual residues, have 

predictive power. However, it is the combination of this range of individual 

features by means of a RF ensemble classifier that clearly improved 

prediction, i.e. combination of information is more powerful than individual 

pieces of information (see section 2.3.4). Moreover, the second-step RF 

further enhanced the performance of the method (see section 2.3.3). The 

results show that all statistical measures used to gauge the performance of 

the method improved from the first-step to the second-step RF, and thus 

incorporating scores obtained by the first-step RF led to better predictions 

probably because of the nature of protein binding sites, i.e. continuous 

patches on the surface. 

 Accounting for the environment of residues also boosted the accuracy 

of the prediction. This observation is not new; however, the use of VDs in the 

framework of protein binding site prediction is. VDs not only provide a more 

natural and superior approach to define protein interfaces (as shown by 

Cazals et al 2006) but also sharper and more accurate definition of the local 

environment of exposed residues as shown by the results presented here as 

VDs yielded the best performance over other approaches such as Euclidean 
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Figure 2-14 MULTI VORFFIP server. Screenshot of the results web-page of 
MV web-server. Upon submission of the protein structure of interest, 
the server returns a composite Jmol applet that allows the 
simultaneous manipulation and visualization of protein-, peptide-, DNA- 
and RNA binding site predictions. 
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distances (spheres) or sliding window. Moreover, there are clear advantages 

when using VDs, including no requirement for cut-offs (distances or window) 

and given its nature, it is easy to define contact strength or weight 

parameters based on the number of contacts (see section 2.2.3.3). Thus, 

VDs offer a more natural and rational approach for defining the structural 

environment of residues.  

 A significant difference was observed between the precision and 

recall values in the SPPIDER and WHISCY tests. The difference between 

both tests was the datasets that were analyzed. While SPPIDER was trained 

and tested using a set of protein complexes, i.e. proteins in bound 

conformation, WHISCY used protein complexes from Benchmark set version 

1.0 (Chen, et al., 2003) and version 2.0 (Mintseris, et al., 2005). As 

mentioned, Benchmark sets have two representations for each protein 

complexes: unbound and bound; thus predictions are performed on the 

unbound version so ensuring no information from the bound conformation is 

used during prediction. It was found that crystallographic B-factors were very 

good predictors on the SPPIDER experiment whereas their performance 

seriously decreased in the WHISCY experiment. This observation highlights 

the need for reliable datasets, such as the Benchmark series (Chen, et al., 

2003; Hwang, et al., 2008; Hwang, et al., 2010; Mintseris, et al., 2005), to 

properly and fairly benchmarks computational methods. 

 VORFFIP methodology was extended to the prediction of other type 

of functional sites. The extended method, Multi-VORFFIPcan be use to 

predict protein-, peptide-, DNA- and RNA-binding sites. MV has been 

compared with recently published methods that predict individual types of 

interactions with a very positive outcome. The structural mapping of 

functional sites is highly selective, allowing multiple sites to be predicted with 

high accuracy and reliability. The method is accessible at 

http://www.bioinsilico.org/MVORFFIP.  

http://www.bioinsilico.org/MVORFFIP
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Chapter 3 

Modelling of protein complexes: V-D2OCK 

3.1 Introduction 

 This chapter focuses on the development of a high-throughput 

computational approach to model binary protein complexes combining 

protein-binding site prediction and data-driven docking. In particular, this 

chapter illustrates the integration in the V-D2OCK algorithm of V-PATCH 

(section 3.3), PatchDock (Duhovny, et al., 2002) and ROSETTA (Fleishman, 

et al., 2011; Leaver-Fay, et al., 2011). V-PATCH is an algorithm designed to 

delineate protein interfaces; it uses VORFFIP (Chapter 2) scores to finally 

generate a list of residues that defines the predicted binding site(s). This 

information is used to drive PatchDock (Duhovny, et al., 2002), a rigid-body 

docking method based on geometric shape complementarity. This method 

computes a first set of potential solutions that are then refined in the next 

stage. The refinement step is carried out using ROSETTA software, more 

precisely with the Fast Relax protocol (Khatib, et al., 2011). This method is 

based on energy minimization and allows conformational changes of the 

protein backbone and residue side-chains and therefore the refinement step 

delivers the optimized structures of protein complexes. 

 During the development of V-D2OCK algorithm, besides PatchDock, 

two other docking methods were assessed: HADDOCK (Dominguez, et al., 

2003) and HEX (Ritchie and Venkatraman, 2010). HADDOCK is a data-

driven docking method based on energy minimization, the docking algorithm 

comprises three steps: first, a rigid-body docking, second an energy 

minimization process where conformational changes are allowed and finally 

third, a water refinement stage where the potential conformations are 

scored. The other docking method, HEX, uses the correlation approach (see 

section 1.5.1.1) to compute docking; the method makes use of the FFT 

algorithm and its implementation in graphic process units (GPU) to optimize 

and reduce the computational cost of the process. The benchmarking 

docking set Benchmark V4 (Hwang, et al., 2010) was used to test 

performance and computational cost of the docking methods. The resulting 

algorithm, V-D2OCK, is fast enough to be applied to genome-wide 

interactomes and thus was used to annotate the human interactome (see 

4.4).  
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3.2 V-D2OCK algorithm 

 V-D2OCK algorithm includes a number of methods and a clustering 

and minimization step. Figure 3-1 illustrates the workflow of the method that 

will be further described in this chapter. In the first step, the binding-sites are 

delineated using the VPATCH algorithm (see section 3.3); this method uses 

VORFFIP scores to generate explicit binding site patches. Then, a rigid-body 

docking is computed using PatchDock guided by the predicted binding sites 

(see section 3.4). This method was benchmarked against 2 other methods 

(HADDOCK (Dominguez, et al., 2003) and HEX (Ritchie and Venkatraman, 

2010)) and selected due its performance and speed (see section 3.7.2). In 

the second step, PatchDock solutions are filtered by means of a clustering 

process and equivalent docking conformations are removed, the clustering 

algorithm used is part of GROMACS package (see section 3.5). Finally, 

filtered solutions are refined by an energy minimization method implemented 

in ROSETTA (see section 3.6). 

3.3 From single residues to interaction patches: V-PATCH 

 VORFFIP, described in Chapter 2, predicts protein-binding sites in the 

form of scores to individual residues although the delineation of the actual 

interface patch remains subjective and requires decision by the user. 

However, data-driven docking needs a set of well defined parameters 

including a list of residues that comprises the interface path (Dominguez, et 

al., 2003; Duhovny, et al., 2002), an initial orientation between molecules 

(Ritchie and Venkatraman, 2010) or an initial interaction model (Andrusier, et 

al., 2007). This section describes VPATCH, an algorithm that determines the 

explicit binding site, or interaction path calculated from the scores computed 

by VORFFIP. 

Note: Some concepts and definitions used in this section have been 

previously introduced in section 2.2. 

3.3.1 Algorithm 

 The algorithm computes the interface patch by using VORFFIP 

scores. In the first step a new score, named extended score, is calculated for 

each residue. The extended score is a contribution of the predicted score for 
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Figure 3-1 V-D2OCK workflow. (a) V-PATCH algorithm is used to predict 
protein binding sites. (b) Rigid-body docking is driven with the interface 
prediction. (c) Potential solutions are clustered based on their structure 
and only cluster centroids are considered, (d) Finally, a refinement 
stage based on energy minimization is applied on the selected 
conformations. 

  



- 78 - 

a particular residue and the environment score for the same residue. Let 

 (     )          be the residues and predicted scores of a given protein, 

the extended score   
  for a residue    with neighbours {         }  is 

defined as 

  
        

  ∑     
 

 

   

  

where     is the contact strength between    and    and   
  is the normalized 

score calculated as 

  
  

    

   
 

with                  and                 .  

 The concept behind this approach is to start with the highest ranked 

residues, generate an initial patch and extend it to neighbouring residues 

until the score falls below a threshold. The process is divided in three steps: 

(i) Patch generation; (ii) Patch selection; and (iii) Patch extension. 

Patch generation 

 An initial patch for each residue is generated including recursively 

neighbouring residues that have a score above a certain threshold  . The 

next pseudo-code algorithm computes this operation. 

1:    neighbouring residues of    

2: for each non-marked    in   

3:  if   
    then 

4:   for each    neighbour of    

5:    if       then add    to   

6:   mark    

7:     set   as the patch associated to    

 

 The parameter   is named the hard average cut-off and was 

calculated using the average of the extended scores for interface residues in 

the complexes of SOB4 dataset (see section 3.7.1). 
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Patch selection 

 In this stage, patches of residues scored above the hard average   

are removed and the redundancy generated by residues belonging to the 

same patch is simplified. The approach starts with a list of patches sorted by 

the patch size, then the patches associated to low scored residues are 

removed and for an accepted patch all other patches associated to its 

residues are excluded. The method can be implemented with the next 

pseudo-code algorithm. 

  

1:     (     )  sort by |  | 

2: for each (     ) in   

3:  if   
    then remove (     ) from   

4:  else 

5:   for each    in    

6:    remove (     ) from   

 

 When the algorithm ends   contains the list of selected patches that 

will be processed in the next step. The parameter   is the hard average 

used in the patch generation step of the algorithm. 

Patch extension 

 The last stage of the algorithm extends the patches to maximize the 

size of the interface patch by including neighbouring residues that were not 

selected in the previous round and whose extended score is above a certain 

threshold  . The process was implemented with the next pseudo-code 

algorithm. 

 

1:       

2: for each    in    

3:  for each    neighbour of    

4:   if        and   
    then add    to    

5: mark    as the extended patch 
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 The parameter   is named the soft average cut-off and was 

calculated by computing the average of extended scores in the case of 

residues that are not part of protein interfaces in SOB4 dataset (see section 

3.7.1). The extended patches conform then the list of residues that will be 

used to inform the docking (see next setion). 

3.4 Sampling of docking structural space 

 PatchDock was the method utilized to perform the docking. 

PatchDock was selected over two other data-driven methods due to 

computing speed and accuracy of the predictions (see section 3.7.2 for a full 

description of the benchmarking). 

 PatchDock computes a rigid transformation between two molecules, 

namely proteins, peptides or small ligands, and where the largest molecule 

is defined as receptor and the smaller one is the ligand. The rigid 

transformation is calculated on the ligand and consists of the three stages 

presented below: (i) Generation of the molecular surface for docking (section 

3.4.1); (ii) Surface Patch Matching (section 3.4.2), and (iii) Filtering and 

Scoring ( section 3.4.3).  

3.4.1 Search Algorithm 

3.4.1.1 Connolly surface and critical points 

 The surface of the protein is represented as a Connolly surface by 

rolling a sphere over the accessible atoms (Connolly and Connolly, 1983). 

The rolling probe algorithm (Shrake and Rupley, 1973) is better understood 

in terms of degrees of freedom. If the probe is not in contact with the surface 

it will have three degrees of freedom and it will lose one degree of freedom 

for each atom in contact with the probe. Three potential situations can 

happen:  

 Cap: one atom is in contact with the probe; hence 2 degree of free 

and rolling movement will define a convex spherical surface. 

 Belt: two atoms in contact, one degree of freedom and a section of 

inward facing torus surface. 

 Pit: three atoms in contact with the probe, no degrees of freedom and 

surface generated is a concave spherical surface. 

 Thus, the Connolly surface is composed of fragments of the surface 

sections that can be a cap, belt or pit. These fragments are connected 

forming 1D arcs and covering the atoms of the protein within a smooth 
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surface. The Connolly surface is similar to a polyhedron, except that each 

facet of surface is curved and the edges between faces are arcs. 

 Once the Connolly surface is computed the critical points are defined 

following the method described in Lin, et al. (1994). For each facet in the 

Connolly surface a critical point is calculated projecting its centroid to the 

surface. Each point is labelled with the atoms used to generate the particular 

facet of the Connolly surface, i.e. one atom for cap faces, two atoms for belt 

faces and three atoms for pit faces. 

3.4.1.2 Topology surface graph 

 Given the set of critical points a graph is defined as follows: the set of 

vertexes are the critical points and two critical points are connected with an 

edge if they have at least a common atom. Thus, two connected critical 

points with an atom in common have their faces are connected in the 

Connolly surface by an arc (edge). For an exact formulation, the graph is 

defined as      (         ) where 

                           

        (   )                                             

 Once the surface graph is defined, the vertexes of      are classified 

in knobs, holes or flats by means of a shape function (Connolly, 1986). 

Given the graph      the shape function    is defined as 

         (   )  

 where    ( ) is the fraction of the sphere inside the solvent-excluded 

volume when the centre of the sphere is placed at the surface point  . The 

radius of the sphere is selected according the molecule size; for proteins this 

value is set to 6Å (Duhovny, et al., 2002). For the classification process, 

given the set of critical points, two different thresholds,   and  , are calculate  

|       ( )    |  |         ( )    |  |         ( ) | 

 Thus,   and   split the histogram of    into 3 non-overlapping parts of 

equal size. Then, for a given critical point,   is classified as 

 Knob if   ( )    

 Flat if     ( )    

 Hole if     ( ) 
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 When all critical points have been labelled, 3 subgraphs 

                  of      are defined in the following manner:     (     ) 

where 

   {                      } 

   {(   )               } 

  

3.4.1.3 Surface patches generation 

 From each subgraph                   of      3 different sets of non-

overlapping patches are generated where each set belongs to one of the 

possible classes: knob, flat or hole. Two different distances are used in this 

step: 

 Geodesic distance: given two nodes of a connected graph, the 

geodesic distance is the shortest weighted path between them. The 

weight of an edge is the Euclidean distance between the nodes. 

 Diameter of a component: given a connected component of a graph, 

the diameter is defined as the largest geodesic distance between the 

nodes. The pair of nodes is called the diameter nodes. 

 The generation of surface patches is followed by a split and merge 

process starting with an initial set of connected components within each 

subgraph      ,       and      . Each of the components is split or merged 

until its diameter is between two fixed values using the next routines: 

 Split routine. Given a component  , the APSP (All Pairs Shortest 

Paths) algorithm (Cormen, et al., 2001) is used to calculate the 

diameter and the diameter nodes of the component. Let     be the 

diameter nodes of  , the nodes of   are divided in two sets     that 

correspond to the points closer to   and   respectively using the 

Euclidean distance. 

 Merge routine. Given a component  , the geodesic distance is 

calculated to every valid patch using the Dijskstra algorithm (Cormen, 

et al., 2001) over the graph     . The elements of component   are 

added to the closest patch. 

 Given a low and high patch threshold (            respectively) next 

pseudo-code algorithm generates the surface patches for    
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1:                              

2: for each non-valid component   of    

3: if diameter of   is greater than     

4:  (   )        ( ) , add (   ) to    

5: elseif diameter of   is lower than     

6:        (    ) 

7: else mark   as valid component 

 

where    is            , or      . When all elements of    have been 

marked,    contains surface patches of diameter between the low and high 

threshold and all points in a given patch are of the same type (knob, flat or 

Hole). 

 

3.4.2 Surface patch matching 

 Once the surface patches are generated both in receptor and ligand, 

the docking is performed by maximizing the local geometric complementarity 

of the patches. For that reason, knob patches should match with hole ones 

and flat patches can match any type of patch. The process compares two 

pairs of neighbouring patches in two steps: the first is based on geometric 

hashing (Wolfson and Rigoutsos, 1997) and the second one clustering the 

possible docking poses (rigid transformation) (Stockman, 1987). 

 As previously stated, patch matching is calculated between two pairs 

of neighbouring patches where the neighbours are of the same type (hole, 

knob or flat). Two patches are considered neighbours if there is at least one 

edge in      that connects the patches. The matching is performed by 

geometric hashing, after generating a geometric hash table for each pair of 

patches to be matched.  

3.4.2.1 Generation of docking poses 

The generation of docking poses consists of three steps: (i) Generation of 

geometric hash tables; (ii) Calculation of rigid transformations (poses); and 

(iii) Clustering of poses. 
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Geometric hash tables: 

 For two given neighbouring patches of the same class    and   , let 

        be the union of the points in both patches. For each pair of 

points      , a base and a signature is generated as follows:  

 The base of two points is defined by the given points     and their 

volume normal vector      . The volume normal vector is the unit 

vector at the surface point with direction the gravity centre of the face. 

 The signature of the points     is defined by the Euclidean and 

geodesic distances     and   , respectively, and the angles     

formed between the vector   ̅̅ ̅ and the normal volume vectors    and 

   respectively. 

 Each pair of points generates an entry in the geometric hash table, 

the signature is stored as key and the base as the value for that key. Next 

pseudo-code algorithm is used to fill the hash table for a given patch    

 

1:       Hash table 

2: for each pair     in   

3:      volume normal vector of   

4:      volume normal vector of   

5:  (           )   signature of (   ) 

6:    (           )   (         ) 

 

Calculation of rigid transformations (poses): 

To compare two patches the entries in their hash tables are compared, the 

keys are used to calculate the distance between them and the values 

associated to the keys are used to calculate a rigid transformation. Given   

and    as the two patches being compared from the receptor and the ligand 

protein, respectively, let       and          the two pairs of critical points, 

then the shape complementarity (Lawrence and Colman, 1993) is defined as 

  (   )  (     )  
     

      

 
 

where 

     
  (      )       ‖    ‖   
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 The rigid transformation defined by (         ) and (             ) is 

the one that maximizes the shape complementarity   (   )  (     ). 

 The next pseudo-code algorithm generates the different poses 

between a receptor and a ligand when the patches   and    are matched. 

 

1:      generate the geometric hash table for   

2:      generate the geometric hash table for    

3: for each key    in    

4:  for each key     in     

5:   if ‖      ‖    then  

6:       rigid transformation of        and          

7:    store pose    as a potential solution 

 

Clustering of poses: 

 Local geometry matching will generate multiple instances of very 

similar transformations that will lead to almost the same docking poses and 

thus clustering is necessary to reduce redundancy. For each pair of patches 

  and   , the generated poses are clustered in two steps: first, a clustering 

based on the transformation parameters and secondly, the root mean 

square deviation (RMSD) of the transformed ligands. The clustering using 

the transformation parameters can lead to very structurally dissimilar poses 

being clustered together. However, it is very fast and greatly simplifies the 

number of poses for the second step based on RMSD. The generated 

clusters are then refined in a second step clustering by RMSD of the 

transformed ligands; this process is much slower but provides higher 

similarity between the elements within the same cluster.  

3.4.3 Filtering and scoring 

 Since the rigid transformations are based on local features, it may 

generate steric clashes between the atoms of the receptor and ligand protein 

and thus a filtering step is required. Also, the large number of potential 

docking poses are scored and ranked. A distance transformation grid is used 

both to filter and score and is derived by representing the protein in a 3D grid 

where each voxel (     ) is classified as being in surface, exterior (outside 
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the molecule) or interior (inside the molecule). Then, the distance 

transformation grid    is defined as 

  (     )  {

          (     )           

             (     )          

              (     )           

 

where        is the smallest distance from the voxel (     ) to the molecular 

surface.  

3.4.3.1 Steric clashes 

 Docking poses are filtered using a steric clash filter as follows. The 

coordinates of the ligand are transformed and for each surface point the 

voxel (     )  corresponding to its coordinates is used to evaluate the 

distance transform grid. If the value   (     )  is lower than a certain 

threshold the rigid transformation is rejected, otherwise it is retained for 

ranking. 

3.4.3.2 Geometric scoring 

 Those poses that have been accepted are scored in this second step. 

The values of the distance transform grid function are discretized in five 

intervals 

           )           )         )      )     )  

 Then, given a rigid transformation the distance transform grid is 

evaluated for the critical points of the ligand surface and the number of 

points included in each interval is calculated. Finally, the geometric score is 

a weighted average of the number of points in the intervals 

   ∑     

 

   

 

 where    
 is the number of ligand surface points whose their distance 

transform grid lies in the interval    and    are the weights for the weighted 

average, thus        and ∑    . 

3.5 Clustering of docking poses 

 Clustering removes structural redundancy among docking poses. 

Docking methods may produce hundreds of poses and some of them are 

very similar in terms of RMSD. The main reason why poses were clustered 

was the computational cost of the minimization step (see section 3.6.2). In 

addition, using the centroids is a valid strategy to capture the conformational 
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diversity that most probably will recur, i.e. revisited, during the minimization 

step. 

3.5.1 Clustering method 

 The method used for structural clustering is part of the GROMACS 

package (Van Der Spoel, et al., 2005), this method was chosen for its 

efficiency and low computational cost. The method is applied to the docking 

solutions previously calculated with PatchDock. 

 The method starts with a list of all structures to be clustered, the 

RMSD matrix is computed and those structure pairs with a RMSD value 

lower than a fixed threshold are marked as neighbours. Then, the structure 

with greatest number of neighbours is selected as the centroid for the first 

cluster and removed from the initial list along with its neighbours. Finally, the 

process is repeated until the initial list is empty. The next pseudo-code 

algorithm implements the method. 

1:   initialize with PatchDock results 

2:     set of clusters 

3: while    do 

4:      neighbourhood hash table 

5:  for each structure    in   

6:   for each structure    in   

7:    if      (     )     then store    in       

8:  select the largest set      of   

9:  store      in   

10:  for each structure    in      

11:   remove    from   

 

 When the algorithm stops the hash table   contains the clusters, the 

keys of   are the centroids and the value      for centroid   is a set that 

contains the elements within the cluster.  

 A 5Å threshold has been chosen as the same threshold used in the 

CAPRI competition (Janin, et al., 2003) to define a docking solution as 

medium accuracy. Thus, if the RMSD between a docking solution and the 

native structure is less than 5Å then the predicted model is classified as 
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medium accuracy. This ensures that all members within a cluster will have a 

similar RMSD (5Å) if they are compared with the native conformation. 

3.6 Energy minimization 

 A final energy minimization step was used to both refine and optimize 

the docking poses. The minimization algorithm used is part of the ROSETTA 

package (Khatib, et al., 2011), described as Fast Relax. 

3.6.1 Energy scoring function 

 The scoring function used by ROSETTA is a linear combination of 

several energy terms (Gray, et al., 2003) 

                                                        

 

 

Van der Waals interactions 

Van der Waals interactions are short-range interactions represented 

by Lennard-Jones like potential. For a pair of atoms    the interactions are 

split into attractive and repulsive components 

   
       (

   
  

   
    

   
 

   
 )                     

and 

   
    {

   (
   

  

   
    

   
 

   
 )                        

   (    (          )   )               

 

 

 where     is the atomic radii sums (Neria, et al., 1996),     the distance 

between atoms centre,     the potential well depth and         constants that 

depend on    . 

Solvation energy 

 Solvation free energy score is calculated using the Lazaridis-Karplus 

model (Lazaridis and Karplus, 1999). For an atom   the solvation energy is 

computed as 

   
        

   
 ∑  (   )  
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 where    
   

 is the reference solvation energy measured when group 

  is fully solvent exposed, the summation is over all groups around  ,    is the 

volume of the group  ,     is the distance between the groups centre and    is 

the solvation free energy density function (Lazaridis and Karplus, 1999) for 

group  . 

 

Hydrogen bonding energy 

 Hydrogen bonding is calculated as a linear combination of the 

distance and angles between hydrogen and donor/acceptor atoms 

(Kortemme and Baker, 2002). 

                   

where    is a function dependent on the distance between the hydrogen and 

the acceptor atom 

    (
  
 
)
  

  (
  
 
)
  

 

  and   are the angles between donor-hydrogen-acceptor and hydrogen-

acceptor-acceptor base, respectively.    and    are computed from the 

logarithm of the probability distribution found in high resolution crystal 

structures. 

Internal residue energy 

 The internal residue energy score is calculated by backbone-

dependent rotamer probabilities (Dunbrack and Cohen, 1997). The score is 

computed as the sum over all residues internal energy 

     ∑     (      |      )

 

 

Residue pair potential 

 The pair potential is a statistical potential that measures the 

probability of observing a certain structural conformation given an amino 

acid sequence. The residue pair potential is calculated as 

      ∏    |    ∏
 {     |         }

 {  |         } {  |         }    

 

 where    is the structural environment of the amino acid    defined in 

terms of accessible area and secondary structure and     the distance 

between residues    and   . 
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3.6.2 Minimization protocol 

 Fast Relax (Khatib, et al., 2011) was the ROSETTA algorithm used 

for energy minimization. It consists of an iterative process where the 

weighting of the atom repulsion term is incremented gradually. Figure 3-2 

shows the different steps of the process; in yellow blocks the weight for the 

atomic repulsion force is modified by incrementing its value. Blue and 

orange stages are the minimization steps, where the 3D conformation of the 

protein complex is allowed to have minor movements of the backbone atoms 

allowing rigid-body transformation and     angles to minimize the energy 

scoring function. Finally, Repack blocks change the residue side-chains 

conformation searching for more energy favourable rotamers. The whole 

process is repeated eight times and the most favourable energy 3D 

conformation calculated at the end of all the iterations is selected. 

 

Figure 3-2 Fast Relax protocol. Yellow blocks, weights for the repulsive 
Van der Waals interactions are modified. Blue blocks (Repack protocol) 
residues rotamers are modified to minimize the energy score. Orange 
blocks (Minimize Blocks), score energy is minimized testing different 

main chain angles    . 
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3.7 Results. 

 The performance in the different steps of the docking workflow 

(Figure 3-1) was evaluated. For step (a) the accuracy of VPATCH was 

evaluated (section 3.7.1). For step (b) the different methods were compared: 

HADDOCK (Dominguez, et al., 2003), PatchDock (Duhovny, et al., 2002) 

and HEX (Ritchie and Venkatraman, 2010) (section 3.7.2). For step (c) the 

effect of clustering on docking accuracy was assessed (section 3.7.3) and 

finally, for step (d) the improvement of quality of the docking models before 

and after minimization was evaluated (section 3.7.4). 

3.7.1 V-PATCH results 

 The performance of VPATCH was tested using Benchmark V4.0 

(Hwang, et al., 2010). This benchmark was specifically compiled to test 

docking methods and it consists of 176 complexes classified in: rigid-body, 

medium difficulty and difficult cases depending on the structural changes 

after complex formation. The atomic structure for the proteins is available in 

both bound and unbound conformation, this makes Benchmark V4.0 a valid 

test of docking. 

 Protein interfaces were determined over the bound structures using 

DIMPLOT (Wallace, et al., 1995). Binding site prediction scores were 

computed using VORFFIP on the unbound structures. In this case, 

VORFFIP was trained with a subset of O333 (see section 2.4.1.1), SOB4, 

which resulted from removing any protein complexes whose SCOP 

superfamily was represented in Benchmark V4.0. Finally, for each protein, 

the interface patches were determined using VPATCH (section 3.3.1). 

 For data-driven docking, it is critical that the interface patches 

selected include the native interacting residues, otherwise the docking 

process will probably produce wrong poses. Figure 3-3 shows the 

histograms of coverage for individual predictions in proteins of Benchmark 

V4.0. For more than 150 proteins, the predicted interface patches contained 

more than 80% of the native interacting residues. For about 50 proteins the 

predicted binding site contained less than 20% of the interacting residues, 

including 7 proteins where the coverage was 0%.  

 Although binding-site coverage is essential in data-driven docking, 

over-predicting (low recall values) is also a disadvantage. The first drawback 
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Figure 3-3 Histogram of predicted binding site coverage for individual 
proteins in Benchmark V4.0. x-axis represents the coverage level and 
y-axis number of proteins in Benchmark V4.0 with the given prediction 
coverage level. 
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of low recall values is that this increases the search space and consequently 

the computational time required. Secondly, the number of false solutions will 

be increased making the scoring step more difficult. For that reason, the 

recall, coverage, F1 score and MCC (see section 1.6.4.1) were evaluated as 

a global measure of performance in this test. Also, VPATCH was compared 

to a system were interface patches were selected on the basis of a fixed 

threshold, i.e. a residue was selected as part of the patch if the predicted 

score was above a fixed threshold. The fixed threshold method has been 

tested using VORFFIP raw score and also normalizing the scores. 

 

METHOD R (%)
a 

P (%)
b 

F1
c
 MCC

d 

VPATCH 61 27 0.37 0.34 

THR. RAW SCORES 60 22 0.32 0.29 

THR. NORM. SCORES 60 24 0.34 0.30 

Table 3-1 Statistical performance of VPATCH and fixed threshold 
methods. First column is the method used to determine binding sites: 
VPATCH and fixed thresholds using raw and normalized score, (a) 
recall, (b) precision, (c) F1 score and (d) Matthews’ correlation 
coefficient. 

 

 Table 3-1 shows the different statistical measures calculated for 

VPATCH and using a fixed threshold. The fixed thresholds have been 

selected to give similar recall values as VPATCH to allow comparison of the 

precision of the 3 approaches. Also, the thresholds that achieve the best 

MCC values have been evaluated, leading to MCC values of 0.30 and 0.29 

using normalized and raw scores, respectively. Although there is not a huge 

difference between the different approaches in terms of statistical 

performance, VPATCH has other advantages: the first benefit is that 

VPATCH can define different patches on the surface, i.e. can generate 

different binding sites. The second advantage is that selected binding sites 

are connected in terms of atomic contacts (defined as Voronoi contacts, see 

section 2.2.3.2). 

3.7.2 Comparing docking methods 

Three different data-driven docking were considered during the 

development of V-D2OCK: PatchDock (Duhovny, et al., 2002), HADDOCK 

(Dominguez, et al., 2003) and HEX (Ritchie and Venkatraman, 2010). HEX 

is not strictly speaking a data-driven docking algorithm but it does require a 
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starting orientation for receptor and ligand prior to the docking search, hence 

can be adapted to use V-PATCH prediction by facing pairs of interface 

patches, i.e. the interface geometric centre and the angle and centre of 

rotation (see Appendix section B.5 for more details.) HEX is based on 

surface correlation (see section 1.5.1.1), it makes use of FFT algorithms 

implemented on GPU to reduce computational cost and making it one of the 

fastest programs. Benchmark V4.0 is used as a true test to evaluate the 

different approaches. HADDOCK and PatchDock, however, require the list 

of residues that comprise the interface. 

The performance of the three different docking algorithms was 

assessed on the Benchmark V4.0 dataset, in terms of best RMSD average 

and computational cost. Since the final aim is the high-throughput docking of 

the human interactions, i.e. over 20,000 binary complexes, the 

computational cost is a relevant parameter to choose the most suitable 

method. Table 3-2 shows the performance in terms of best RMSD average, 

resources required and computing time to process the entire set. PatchDock 

was the best method overall and HEX was the quickest although the most 

inaccurate in the quality of proteins complexes. HADDOCK was not tested 

on the whole dataset but only 33 complexes after which the method was 

abandoned due to the insufficient performance in term of computational time 

that made it unsuitable for purpose of the study. PatchDock was selected 

due its balance between accuracy and computational cost. 

 

Method
(a) 

Resources
(b) 

Total Time
(c)

 (h)
 Average RMSD

(d)
 

(Å) 

HADDOCK
* 

>100 CPU (2.8GHz)
 

168 14.3 

HEX 2 CPU (2.5GHz) 3 >30 

PATCHDOCK 2 CPU (2.5GHz) 19 9.3 

Table 3-2 Performance in Benchmark V4.0 for data-drive docking 
methods. (a) docking method used. (b) number of CPUs used. (c) time 
spent for the whole test. (d) best RMSD average. (*) Only 33 
complexes were predicted with HADDOCK. 

 

3.7.3 Effect of clustering in the quality and accuracy of models 

PatchDock generates an average of 1353 docking per complex, 

which would, potentially, have to be refined during the energy minimization 
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step. The number of dockings greatly surpassed the available computational 

resources that would have been required for the human interactome and 

thus a clustering step was introduced to reduce the number of docking 

poses. Moreover, the amount of disk space that would have been needed to 

store the potential conformations would have been also an issue. 

Different clustering cut-offs were explored to assess the impact on the 

quality of the docking poses. When clustering, the number of solutions was 

reduced by selecting a representative of each cluster. In this way, good 

models could be discarded in favour of reducing the number of poses. The 

average RMSD of the best docking poses was computed when: (i) no 

clustering was performed, (ii) clustering all solutions; (iii) clustering the top 

1000 solutions; (iv) clustering the top 200 solutions; (v) clustering the top 

100 solutions; and (vi) clustering the top 50 solutions. As shown in Table 

3-3, as the clustering stringency increase, so decrease the quality of the 

models. The best ratio between RMSD and number of docking poses is 

when selecting the top 1000 cluster where a decrease in RMSD of 1.1Å 

resulted in a reduction on the number of poses over 7 folds. 

 

# of solutions to cluster
(a) 

Average RMSD
(b)

 

(Å)
 

# Docking poses
(c) 

No clustering
 

9.3
 

1353 

All 11.4 270 

1000 11.8 191 

200 13.5 77 

100 14.5 51 

50 16.1 30 

Table 3-3 PatchDock performance after clustering. (a) sets of solutions 
used: no cluster (all generate solutions), clustering all generated 
solutions, clustering 1000, 200 and 100 best ranked solutions. (b) best 
RMSD average. (c) average number of solution after clustering. 
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3.7.4 Data-Driven vs free docking 

Data-driven docking is less comprehensive than free docking, i.e. 

data-driven docking directs the docking of receptor and ligand and thus 

restricts the search space. The question then was whether this limitation 

would prevent the sampling of suitable docking solutions. Reasons for using 

data-driven docking instead of free docking were justified comparing both 

methodologies over the same benchmarking conditions. For that reason, 

there were two experiments: a data-driven and a free docking using 

PatchDock on the same dataset, Benchmark V4.0. As shown in Table 3-4, 

the best RMSD average without clustering is 14.8Å, 5.5Å above data-driven 

docking (Table 3-3). If docking poses were clustered, then the best RMSD 

average was even higher in accordance to previous observation. 

 

# of solution to Cluster
(a) 

Average RMSD
(b)

 (Å)
 

# Docking poses
(c) 

No clustering
 

14.8
 

2064 

All 

CLUSTER ALL 

17.4 398 

Table 3-4 Non data-driven PatchDock performance after clustering. (a) 
sets of solutions used: no cluster (all generate solutions), clustering all 
generated solutions, clustering 1000, 200 and 100 best ranked 
solutions. (b) best RMSD average. (c) average number of solution after 
clustering. 

 

 The distribution of RMSD values also showed that data-driven 

docking was consistently generating docking poses closer to the native 

complexes and distributing in a narrower range than the free docking (Figure 

3-4). Thus PatchDock combined with VORFFIP was the most efficient 

approach to efficiently sample the docking space and provide suitable 

docking poses. 

3.7.5 Improvement of model after refinement step 

The final step of the V-D2OCK is the minimization and refinement of 

docking poses. As discussed, the logic behind the minimization step was the 

local sampling of the docking interface to refine and improve the quality of 

the structural models. In order to assess the positive effect and gain of the 

minimization step results were compared before and after the minimization. 

The minimization did improve the overall quality of the docking poses when 
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Figure 3-4 Best solution RMSD density. PatchDock best solution RMSD 
density for Benchmark V4.0 complexes. In green, data-driven docking 
using VORFFIP predictions and in red, free docking.  
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the method was applied on selected poses of clustering the 200 best 

PatchDock solutions. The average RMSD after energy minimization was 

12.8Å an improvement of 0.7Å (Table 3-3). Even though small, the 

minimization step greatly improved the quality of the docking poses for some 

of the cases in the benchmark set (see example in Figure 3-5), and thus 

justified its inclusion as the final step. It is worth noting that the minimization 

step will not dramatically change the conformation of the docking poses; 

hence if the starting conformation is erroneous, then the minimization step 

will not correct it. However, the overall quality of the complex in terms of 

stereochemical and geometrical quality is much higher than the unrefined 

complexes. 

3.8 Conclusions 

This chapter describes V-D2OCK a data-driven docking methodology 

that integrates VPATCH (see section 3.3), PatchDock (Duhovny, et al., 

2002) and ROSETTA (Fleishman, et al., 2011; Leaver-Fay, et al., 2011). V-

D2OCK method is suitable for docking in large-scale datasets and is used to 

model the PPIs of the human interactome (see Chapter 4).  

During the development of the final methodology, several data-driven 

docking methods were tested: PatchDock (Duhovny, et al., 2002), 

HADDOCK (Dominguez, et al., 2003) and HEX (Ritchie and Venkatraman, 

2010). The best performing method was PatchDock achieving the best 

accuracy in terms of RMSD in a reasonable time (see section 3.7.2). The 

main problem of this methodology is that no conformational changes are 

predicted because the method performs a rigid-body approach. Also, the 

number of potential solutions generated for each complex becomes a 

problem for manual analysis since the average number of predicted 

solutions was over 1300 per complex.  

To mitigate this problem, the solutions were clustered by structural 

similarity and only centroids were considered as representatives. The 

average number of solutions per complex is reduced to 77 when for each 

complex only the best 200 models are clustered; however, the performance 

decreased from a RMSD average of 9.3Å to 13.5Å (see section 3.7.3). 

Finally, an energy minimization method was used to allow conformational 

changes during the docking. The results improved from a RMSD average of 

13.5Å to 12.8Å. Two problems were found with this last step: first, the 

computational cost of the process makes it unfeasible for large 
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Figure 3-5 Energy minimization step. Protein complex between alpha-
chymotrypsin and proteinase inhibitor eglin c. Light blue, ligand in 
native structure. Yellow, ligand after rigid body docking 8.9Å. Purple, 
ligand after energy minimization 4.8Å. 
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datasets. Second, the amount of memory needed to store solutions 

increases dramatically. While for rigid-body docking only a rotation-

translation matrix is needed, when energy minimization is applied a whole 

new structure coordinates need to be saved. 

V-D2OCK methodology is used in chapter 4 to model the PPIs of the 

human interactome. However, to avoid the problems associated with the 

energy minimization stage, this step was not pre-calculated but the database 

provides the option to computethe minimization on demand for particular 

complexes. 
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Chapter 4 

Integration of Experimental Interactomic Data: 

V-D2OCK DB 

4.1 Introduction 

Collecting experimental data is the first step in the study of any 

biological system. Recent years have seen a technological revolution that 

has given rise to a huge increase of available data, including interactomic 

data. Interactomic information has been compiled in several databases 

(Keshava-Prasad, et al., 2009; Stark, et al., 2011; Xenarios, et al., 2001). 

These databases are useful resources for the scientific community, as they 

provide knowledge to support and drive experimental assays as well as for 

developing and testing new models or methods related to PPIs. As well as 

high-throughput experiments published in scientific journals, collections of 

small-scale experiments also play an important role in feeding interactomic 

databases. The latter require data-mining algorithms (Li, et al., 2010; Zhang, 

et al., 2010) as well as a subsequent curation of the resulting data to ensure 

the quality of the information. Several databases use literature-mining 

together with data from high-throughput techniques as sources of 

information (Chaurasia, et al., 2007; von Mering, et al., 2003). 

However, there are drawbacks to the availability of multiple resources 

and different methods for data collection. In many cases, these resources do 

not contain equivalent information; part of the data may be contained in one 

specific database but not present in the others. Another major problem 

results from the collection of data using different methodologies which 

causes irregularities in the format of the compiled data. Moreover, when 

several sources of information are available, users need to check and 

search through multiple sites to find all the information that is available, 

leading to potential errors and the need to check redundancy of information, 

both of which can be time consuming. Another problem arises when 

analysing PPI maps; in this case, it is desirable to have all the information 

that is available for a given organism and thus it is necessary to compile, 

merge and curate data into a single database; this is known as database 

integration. 

Database integration is in many cases a difficult and tedious task; the 

main problem is caused by different types of identifiers that are used to 
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characterize the data in the different sources. To overcome this, data must 

be compared and checked in order to ensure proper correspondence within 

databases. Usually, this mapping is performed using common feature values 

between database entities (as sequence) or more general identifiers as used 

in Uniprot (Chan and Uniprot, 2009) or NCBI Genebank (Takeya, et al., 

2011) IDs that are usually present in biological databases. Also, duplicated 

information can lead to errors, especially when statistical analyses are 

computed on the entire dataset. The entries in the databases that point to 

the same entity (e.g. Uniprot identification codes or the PDB code for the 

same protein) must be merged carefully to avoid either losing or duplicating 

information. 

This chapter describes the design of the V-D2OCK DB. V-D2OCK DB is 

the result of integrating several databases containing interactomic data in 

order to obtain the most complete interactome for the different model 

organisms. V-D2OCK DB only contains protein-protein interactions that were 

described experimentally, i.e. it does not contain predicted interactions. V-

D2OCK DB is cross-linked to several major databases including Uniprot 

(Chan and Uniprot, 2009) and PDB databank (Takeya, et al., 2011). 

 The PPI databases used in the interaction process contain no 

information about the molecular details of the interactions. One of the aims 

in this thesis is to develop a methodology to increase the resolution of 

protein interaction maps; thus, provide structural models of the interactions. 

For that reason, PPIs in human interactome are annotated with predicted 

models of the complexes using V-D2OCK method (Chapter 3) showing that 

this method is suitable for large-scale datasets. The predicted models are 

included in V-D2OCK DB providing a structural view of the human 

interactome. 

4.2 Database integration 

Information stored in different databases follows its own format and 

structure depending on the raw data sources and purpose. The most 

common hurdle is that difference between databases is the use of different 

identifiers for the same object, for example human protein PAX6 is identified 

with different identifiers: P26367 in Uniprot database, DIP:37436N in DIP 

(Xenarios, et al., 2002) or EBI-747278 in IntAct (Aranda, et al., 2010). This 

problem can be overcome through the use of more general identifiers since 

most biological databases map their own gene/protein identifiers with the 

most widely used as Uniprot (Chan and Uniprot, 2009) or Ensembl 
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(Hubbard, et al., 2002) databases. These IDs can be used to find equivalent 

entities (genes, proteins, etc.) between databases. 

Database integration is the unified view of data residing in different 

sources and it needs to achieve two major objectives: (i) entities pointing to 

the same object must be mapped into a unique entity and (ii) no information 

must be lost in the process. Mapping equivalent entities can be achieved by 

aligning them into a common reference system. The reference system 

depends on the nature of the integrated data; in the previous example 

(PAX6) the reference system was a more general set of identifiers used by 

most protein/gene databases; all proteins in Uniprot, DIP and IntAct are 

annotated with the Uniprot accession ID. However, a reference system may 

adopt different structures, e.g. the reference system used to integrate 

genome annotations (SNPs, promoters, DNA binding sites, etc.), uses the 

DNA coordinate system is used as reference.  

For the integration of the databases in this thesis, two reference 

system have been used. First, links between database entries were 

established using the Uniprot accession IDs (Chan and Uniprot, 2009) and 

secondly, once the link was established, this was confirmed by aligning the 

proteins in both databases; the link between entries was accepted only if the 

alignment was 100% identical. 

4.2.1 BIANA framework 

BIANA, Biologic Interactions and Network Analysis, was used to 

perform the database integration (Garcia-Garcia, et al., 2010). BIANA is a 

python package for biological database integration and network analysis. It 

can be used as standalone application or as a plugin for Cytoscape (Smoot, 

et al., 2011). BIANA performs the parsing of external data and stores the 

information in a local database. This process is transparent to the user 

through a python API and a Cytoscape plugin. BIANA also provides a parser 

for the PSI-MI XML format; all databases available in that format can be 

easily incorporated and integrated in the system. 

BIANA considers elements from external databases as external 

entities. These entities can be divided into objects or relations; relations are 

referred as external entity relation. Objects are the elements that comprise a 

system, while relations are the associations between these elements. In the 

context of protein interaction maps, objects are proteins while relations are 

interactions between proteins. Then, in a particular PPI, BIANA will consider 
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the protein participants as two different external entities (one in the case of 

homodimers) and the interaction between them as an external entity relation.  

In order to achieve data uniformity, BIANA unifies external entities. 

External entities have different attributes associated with their values, such 

as sequence, Uniprot ID and experimental method, and these features are 

used to determine equivalence between elements. BIANA unifies external 

entities using a set of rules, each rule is composed of an attribute and the 

databases to be compared, so all external entities with the same value for 

the attribute across databases are considered equivalent. 

Figure 4-1 shows a simple example of the BIANA unification protocol, 

where two PPIs from different databases are unified using the Uniprot ID 

attribute. When BIANA compares the Uniprot ID of the external entities 

eE:15 and eE:8 finds that they have the same value and assigns them the 

same unified entity ID uE:25. After data unification 3 different proteins 

(uE:25, uE:15, uE10) are present in the unified system. 

4.3 V-D2OCK database 

Although BIANA provides a clean and user-friendly interface to perform 

database integration, the database and the python API to access the data 

were not convenient for the purpose of the research to be developed in the 

thesis. Firstly, BIANA database contains raw data and the unification rules 

are stored as tables. Therefore, in order to link and map entities, users 

would have to issue individual SQL queries. This is not feasible in the case 

of large databases. Secondly, the interaction entities are not unified. In a 

case of protein-protein interactions, there are 3 entities: one for each protein 

partner and the other for the interaction itself. If this interaction is found in 

different databases, an external entity for the interaction will exist for each 

database. Figure 4-2 illustrates the main problem with BIANA unification 

protocol. In this example the same PPI is found in two different databases, 

DIP and BioGrid. While the proteins are unified (unification IDs uE:25 and 

uE:15), the interaction data are kept as two different external entity relations, 

eEr:17 and eEr:63. The lack of unification on the relations makes statistical 

analysis very challenging and difficult. Thirdly, the API interface does not 

provide a method to query the database with an interaction entity ID (this is a 

consequence of the non-unification of the interaction entities) and the API 

output methods are oriented to write data in an external file; therefore this is 

not suitable for queries that are performed inside scripts or programs. 
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Figure 4-1 BIANA unification protocol. Green nodes, binary complex from 
DIP database. Purple nodes, binary complex from Biogrid. Nodes 
within the same red circle correspond to unified proteins. 

 

 

 

 

Figure 4-2 V-D2OCK unification protocol. Green nodes, binary complex 
DIP database. Purple nodes, binary complex from Biogrid. Nodes 
within the same red circle correspond to unified proteins. Within green 
circle unified relations between proteins. 
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For these reasons, after databases were integrated using BIANA, a 

new scheme for V-D2OCK DB was implemented that was tailored to meet 

the needs of the project. 

4.3.1 V-D2OCK DB structure 

V-D2OCK DB is the result of the unification of external entity relations 

in BIANA. A simple criterion was followed to unify the external entity 

relations; two relations were mapped if their interaction partners were 

mapped in BIANA. Figure 4-2 shows a simple example of how relations are 

unified in V-D2OCK DB, the external entity relations eEr:17 and eEr:63 are 

unified into the ID uEr:58. Initial data were filtered to discard PPI between 

pairs of proteins mediated by third proteins or functional associations, thus 

V-D2OCK DB only contains direct PPIs. Proteins are linked to the PDB 

databank, and if the protein structure is not known, proteins are labelled as 

‘modelable’ or ‘not-modelable’ based on whether the structure can be 

predicted by comparative modelling at a very conservative threshold. The 

PFAM (Finn, et al., 2008) database is also cross-linked and domain 

definitions and taxonomy classification are included and linked with the rest 

of the data. 

The result is a relational database with 6 tables, described in Figure 

4-3. The central table is the ‘V2D_Nodes’; it contains all the protein nodes of 

the interaction networks. The master key points to the unified IDs 

established in BIANA after the unification protocol, so backtracking is 

possible, thus providing access to all BIANA information. The ‘V2D_edges’ 

table stores information related with PPIs, i.e. all the protein partners (edges) 

that interact with a given protein (node). The ‘V2D_Biana_Edges_Relation’ 

links the unified entity relations with BIANA external entity relations; for each 

interaction it links to all the information stored in BIANA as experimental 

method, external database source, etc. ‘V2D_PDB_Complex’ stores 

information about pairs of interacting proteins that the structure of the 

complex has been experimentally determined. Finally, ‘V2D_Taxonomy’ 

stores the taxonomy ontology (Phan, et al., 2003) used to classify the 

different organisms. 
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Figure 4-3 V-D2OCK DB schema. Tables and their relations in V-D2OCK 
database. Green fields are the primary key of the tables. Purple fields 
are foreign keys. Yellow fields contain the specific information of the 
table. 
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4.3.2 V-D2OCK DB class 

A python package was developed to provide programmatic access to 

V-D2OCK and BIANA databases. The package contains two main classes 

proteinData and interactionData. It was designed to handle the V-D2OCK 

DB/BIANA unified entities and relations IDs and it provides multiple methods 

to access data attributes as sequence, Uniprot ID, PDB ID, external 

databases ID, etc. It overcomes the main problems in BIANA described 

above. 

The architecture layer of the package is shown in Figure 4-4. It uses 

objects and methods provided by the BIANA API, as well as lower level 

package functions. It also queries and retrieves information from V-D2OCK 

DB to extract the data related to the PDB databank and structural models. 

4.3.3 V-D2OCK DB statistics 

The information stored in V-D2OCK DB is depicted in different tables 

to show the data contribution of the integrated sources. Table 4-1 shows the 

number of human complexes included from different sources and the total 

number contained in V-D2OCK DB after the unification protocol was applied. 

For 22072 of the 65254 (over 33%) binary complexes, the structure of both 

interacting partners is known and therefore amenable by the V-D2OCK 

algorithm described in Chapter 3. Table 4-2 presents a summary of the 

statistics for other model organisms also included in V-D2OCK DB. Finally, 

Table 4-3 shows the potential impact of using homology modelling for 

expanding the structural space in interactome. For example, for S. 

cerevisiae, up to 1000 proteins could be modelled with a high degree of 

confidence (30% of sequence similarity) that will allow to model up to 12408 

binary complexes. 

  



- 109 - 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 V-D2OCK class layer architecture. V-D2OCK class is built on 
BIANA and API classes extending them. New functions were added to 
allow the access to V-D2OCK database. 

  



- 110 - 

 

 

 

 

Databases # of proteins # of interactions # of structures 
# of potential 

complexes 

DIP 1038 1322 719 768 

MINT 6238 16456 2773 5130 

Biogrid 5972 19207 2662 7542 

IntAct 7666 24200 2773 6337 

HPRD 9582 39531 3526 14789 

V-D2OCK DB 11877 65254 3830 22072 

Table 4-1 Human data statistics in V-D2OCKDB. First column, database 
name. Second, number of proteins. Third, number of PPIs. Fourth, 
number of protein with experimentally solved structure. Fifth column, 
number of PPIs with known structure for the protein participants. 

 

 

 

Organism 
# of 

proteins 
# of 

interactions 
# of 

structures 
# of potential 

complexes 
# of complex 

structures. 

H. sapiens 11877 65254 3830 22072 2260 

S. cerevisiae 5985 62844 782 3856 765 

M. musculus 2644 3575 451 358 140 

E. coli 2284 4476 902 1781 557 

D. melanogaster 7795 23347 154 113 48 

Table 4-2 Data statistics in V-D2OCKDB for different organism. First 
column, organism name. Second, number of proteins. Third, number of 
PPIs. Fourth, number of protein with experimentally solved structure. 
Fifth, number of PPIs with known structure for the protein participants. 
Sixth column, number of binary complexes with solved structure. 
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Organism 
# of 

structures 
# of potential 

complexes 
# of ‘modelable’ 

structures 
# of potential 

complexes 

H. sapiens 3830 22072 5161 27868 

S. cerevisiae 782 3856 1739 12408 

M. musculus 451 358 1265 1208 

E. coli 902 1781 1353 2352 

D. melanogaster 154 113 2542 2877 

Table 4-3 Data statistics in V-D2OCKDB for different organism including 
homology modelling. First column, organism name. Second, number 
of proteins with experimentally solved structure. Third, number of PPIs 
with experimentally solved structure for the protein participants. Fourth, 
number of proteins with known structure by homology modelling or 
solved by experimental techniques. Fifth, number of PPIs with known 
structure for the protein participants including homology modelling. 
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4.4 Annotating Human Interactome in V-D2OCK DB 

This section describes how the data-driven methodology developed in 

Chapter 3, V-D2OCK, was applied to the PPIs stored in V-D2OCK DB. The 

database contains over 22000 pairs of known interacting proteins, where the 

structure of the individual proteins has been experimentally solved but not as 

a complex. The basic procedure is simple and intuitive, the method is 

applied to each pair of interacting proteins and the complex structure is 

predicted. In the case of multi-domain proteins where non-overlapping 

structures are available, then multiple binary complexes were derived, i.e. all 

possible combinations were taken into account. To facilitate the definition of 

protein domains, Pfam (Finn, et al., 2008) was integrated in V-D2OCK DB. 

4.4.1 Integrating protein domain boundaries 

4.4.1.1 Protein domain definition 

Protein domains are usually defined as the self-standing, folding 

units, of proteins. Domains usually perform a specific function and are 

characterized by conserved sequence patterns that can often be 

independently stable and folded. Protein domains can be interpreted as 

building blocks for proteins where different combinations within the same 

chain lead to different proteins and functions. Thus, proteins mainly consist 

of one or more domains connected by inter-domain regions. 

Often, protein structures only cover a region of the protein and 

independent structures may be available for different parts of a protein. 

When several structures exist for a pair of interacting proteins, all possible 

combinations were considered to model the interaction. Thus, different parts 

of the protein chains are used in the different docking combinations. 

Knowing which domains are within each region covered by the structures 

can provide valuable information in determining which protein parts are more 

likely to interact. Figure 4-5 shows the domain composition for a pair of 

interacting proteins and the regions for which structural information is 

available. 

There are several resources that classified protein domains (Sigrist, 

et al., 2010) and databases compiling domain-domain interactions (Finn, et 

al., 2008). One of these, Pfam database (Finn, et al., 2008) was integrated in 

V-D2OCK DB to define the protein domains and interacting pairs.  
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Figure 4-5 Pfam domain schema for interacting proteins P4.1 and 
hCASK. Pfam domains composition for proteins P4.1 in red and 
hCASK in blue. 
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4.4.1.2 Pfam domain definition 

 Pfam is a database (Finn, et al., 2008) of protein domains that are 

defined by conserved sequence patterns called Pfamseq. The sequence 

patterns are derived from multiple sequence alignments by using Hidden 

Markov Models (HMM.) A HMM consists of a linear chain of states with three 

transition states: match, deletion and insertion (see Figure 4-6.) Match and 

insertion states produce an observation associated with one of the 20 

possible amino acid types, while the deletion state represents a sequence 

gap or an empty observation. Each Pfamseq (pattern profile) is associated 

with a particular HMM, the HMM structure is constant while the length and 

transition probabilities of the model may be different between sequence 

patterns. The length of the model and transition probabilities are calculated 

from a non-redundant multiple sequence alignment called a seed.  

The Pfam database is divided into manually curated domains named 

Pfam-A and automatically generated, Pfam-B. For Pfam-A domains HMM 

initial transition probabilities are determined from a manually curated 

alignment. Then, an iterative process of refinement and retraining is carried 

out until the HMM is able to find all its domain members in SwissProt 

database. Inversely, Pfam-B domains are automatically generated from all 

sequences regions larger than 30 residues that are not covered by any 

Pfam-A domain. The different domain families are defined clustering these 

sequences by means of a multiple alignment (Sonnhammer and Kahn, 

1994). 

The information stored in V-D2OCK DB is enriched by annotating the 

Pfam domains over the protein sequences. Pfam domains are annotated in 

most domain-domain interactions and protein domain function databases 

(Sigrist, et al., 2010), knowing the particular function of a domain or whether 

two domains interact can help determining which regions are more suitable 

to represent the 3D structure of a particular binary complex. Pfam 

information is not stored in the local database but is generated on each 

request through a web-service. 
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Figure 4-6 Pfam Hidden Markov Model structure. HMM structure for a 

Pfam domain of length 3. In blue,    match state. In yellow,    insertion 
state. In purple,    deletion state.  
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4.4.2 Protein structures in V-D2OCK DB 

When different structures are available for different regions of a protein, 

it is not possible to establish a one to one relation between the protein 

sequence and structures. In this case, the Pfam definitions (see above) are 

used to dissect the regions of the protein. For example, there are two 

structures that represent TGF kinase: residues 1 to 74 (PDB code 2DAE 

chain A) contains a CUE domain and 662 to 693 (PDB code 2WWZ chain C) 

contains a Zn-finger domain. Long multi-domain proteins are difficult to 

crystallize, so are dissected into domains that are crystallized separately. In 

the case of the human interactions classified in in V2DOCK-DB, there are 

3830 proteins with known 3D structure, of which around one third are 

represented by several structures. Consequently, the 22072 binary 

complexes are represented by 47872 combinations when considering all 

potential combinations between the structures. 

4.5 Integrating docking models in V-D2OCK DB 

The initial data structure required to store structural models in V-

D2OCK DB was quite simple: only IDs to identify the proteins partners were 

necessary. However, in the case of proteins represented by several 

domains, a more complex data structure was required. Docking models will 

depend on the region of the protein used. Then, predicted models must be 

annotated with the structures selected to portrait the protein complex. Figure 

4-7 shows the relation between the different elements that are involved in 

the structural modelling of a PPI. 

To integrate the predicted models into V-D2OCK DB, two new tables 

were added to the database, Figure 4-8 shows the final database schema. 

The first table ‘V2D_Interactions_Models’ stores the relation between pairs 

of proteins and the structures used to model the protein complex. Each pair 

of possible structures used for docking is stored with a unique ID 

(interaction_id) and each entry in the table points to ‘V2D_edges’, then each 

pair of docked structures is associated with a particular PPI. The second 

table ‘V2D_PatchDock_predictions’ identifies the particular docking 

solutions. For each pair of docked structures the docking method generate 

several possible solutions, each solution is stored in this table where each 
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Figure 4-7 Hierarchical data structure for PPI and docking models. The 
root node represents a particular PPI. In the second level the nodes 
represent the two interacting proteins. In the third level, each protein is 
associated to a set of known structures. And, in the terminal node, each 
pair of structures leads to a set of docking models. 

 

 

Figure 4-8 V-D2OCK database final schema. Tables and their relations in 
V-D2OCK database. Green fields are the primary key of the tables. 
Purple fields are foreign keys. And, yellow fields contain the specific 
information of the table.   
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entry points to ‘V2D_Interactions_Models’ thus the predicted models are 

associated with the pair of structures used during the docking process. 

4.5.1 Docking models statistics 

V-D2OCK method was used to annotate the human interactome 

contained in the database. The predicted models were stored in the web 

server and the database was updated with the new tables and information. 

The current version of V-D2OCK DB included 3,830 human proteins and 

4,328 experimentally solved structures. The 22,072 human PPIs stored in 

the database led to 47,872 pair of possible structure combinations that 

generated after 3,686,144 of potential protein complexes. 

4.6 V-D2OCK DB web server 

A user-friendly web application was developed as an interface to the V-

D2OCK data. The program was written as a perl-cgi following an object-

oriented model. The web GUI functionality was enriched using JavaScript 

and several packages for window environment emulation (project, 2012) and 

graph-network plotting (Belmonte, 2012). Several viewers for the 3D 

representation of the proteins and complexes were integrated by means of 

the Jmol applet (http://www.jmol.org/). 

Figure 4-9 shows the web interface of the database. Searches in the 

application can be made by gene name or Uniprot entry using a simple form. 

When the system is queried, a plot of the local graph of annotated PPIs is 

shown. Then, the user can select the interaction of interest to retrieve the 

predicted models. The application divides the information in 4 sections: PPI 

database source, protein information, Pfam information and docking 

information. The docking section contains the information about the 

predictions, it shows the structures and the predicted interface used to 

mediate the PPI. The docking models are accessible through the main table 

where they are described. The Pfam panel plots the different protein 

domains within the protein sequence. Also, when different structures are 

available for different regions of a protein this panel allow to change 

structure used for the complex modelling. 
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Figure 4-9 V-D2OCK web server server interface. (a) Local PPI map, the 
application shows all the available interacting proteins with a particular 
protein. (b) Main graphic interface, when a particular PPI is selected the 
application shows the information associated with the interacting 
proteins and a table with the potential solution of the docking. (c) 
Protein complex viewer, the docking solutions are represented in a 
independent viewer by checking the checkbox in the table. 

  



- 120 - 

The protein and database source section provides the links to the external 

databases: PDB, Uniprot, Gene Cards and the PPI source (Chan and 

Uniprot, 2009; Safran, et al., 2010). Currently, the database only holds 

human interactome data but new model organisms will be added in the near 

future. 

4.7 Conclusions 

V-D2OCK DB is a relational database that contains information of PPIs 

compiled from several sources jointly with other information such as 

structure, taxonomy and annotations derived from PDB. Proteins and 

interaction data are classified by organism type offering an optimal 

framework for searching and analysis of PPIs. Searches in V-D2OCK DB can 

be tailored to the user needs and can be included as a part of scripts and/or 

programs by using V-D2OCK python class. This class is implemented as a 

user-friendly python package that interfaces the database and provides an 

efficient, customizable, and flexible system to query and retrieve information. 

It is built on BIANA API and lower level classes and it links all the information 

stored in BIANA database with V-D2OCK DB. 

The statistical analysis shows there are a large proportion of cases 

where, although the structures of the proteins are known, there is no 

structural information of the complex. From more than 22.000 human protein 

pairs described as interacting partners, over 2200 or 10% have structural 

information of the interaction. The results evidence the scale of the potential 

impact of the project and the range of applicability of the resulting 

technology.  

The data-driven methodology V-D2OCK has been applied to human 

interactome. The structural coverage and content was greatly improved by 

predicting the structure of protein complexes. The predicted complexes were 

included in the original interactomes, and thus enriching the molecular 

details of the interactions. The result is a database that contains structural 

models for 22072 binary complexes in human. Also, Pfam domains have 

been annotated on the protein sequences, providing useful information of 

domain definitions in multi-domain proteins. This information will help users 

deciding what part of a protein modiates a particular interaction. Finally, a 

user-friendly web application has been developed to browse V-D2OCK DB 

models. The application allows both online viewing or downloading models 

for local analysis. The web application is accessible at 

http://www.bioinsilico.org/VD2OCKDB. 

http://www.bioinsilico.org/VD2OCKDB
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Chapter 5 

Discussion 

 The need for computational approaches in molecular biology arose 

during the early 1960s. The discovery that proteins carry information 

encoded in linear sequences of amino acids (Sanger, 1960) and the 

development of associated sequencing methods generated a collection of 

sequences that needed computational support for both analyses and 

storage. Early studies using sequence information included, for instance, 

sequence alignments or phylogenetic analyses to understand molecular 

evolution, both of which would have been unfeasible to approach without the 

use of computers. As sequencing technologies progressed, so increased the 

volume of data that became available. The complexity of the problems 

increased as DNA sequencing became easier and quicker (Boguski, 1998) 

with the culmination of today’s conditions where next generation sequencing 

has made possible the full sequencing of entire genomes in a matter of 

days. Thus, the growth of sequence information in the last years has been 

exponential and currently two of the major sequence databases: UNIPROT 

(Chan, 2009) and ENSEMBL (Hubbard, 2002) compile over 60 million 

sequences, and the number of fully sequenced genomes has surpassed the 

6000 (http://ensemblgenome.org.)  

 Computational biology has also become essential in different aspects 

of life sciences and biology. To mention some examples, mathematical 

algorithms and computational approaches are used when experimental data 

need to be processed in order to obtain a useful model. For example, in 

structural biology diffraction patterns from X-ray crystallography need to be 

processed with numerical methods to obtain electron density maps and then 

atomic models (Kabsch, et al., 1993). Digital image processing algorithms 

are used to construct the 3D volume of protein images obtained by electron 

microscopy (Sorzano, et al., 2004). Protein NMR data are analysed with 

specific algorithms (Herrmann, et al., 2002) to calculate the atomic 

coordinates from the chemical shift information. In gene expression, 

statistical methods are used to obtain the expression levels of micro array 

data (Hubbell, et al., 2002). Different algorithms were developed to 

assemble the reads of NGS data and generate the genome sequence 

(Miller, et al., 2010). 

http://ensemblgenome.org/
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 Besides sequence and proteomic data, recent years have also 

witnessed a dramatic increase in the amount of information available on 

molecular interaction or interactomic data due to several large-scale projects 

aimed at deciphering the molecular interactions that take place in different 

model organisms (Aranda, et al., 2010; Chatr-aryamontri, et al., 2007; 

Keshava Prasad, et al., 2009; Stark, et al., 2011; Xenarios, et al., 2001). 

Similar to genome or proteome, the interactome is the map of interactions 

between proteins. The charting of the molecular interactions that occur in 

cells is very important in order to understand cellular processes; however, 

the full applications of these processes can only be achieved when the 

structural details of the interactions are known, i.e. structural information of 

the protein complexes. Although there have been important improvements in 

the experimental techniques aimed at solving the structures of protein, 

several limitations still remain in case of protein complexes. Not all protein 

complexes can be crystallized; nuclear magnetic resonance (NMR) has clear 

limitations and thus cannot be used to solve the structure of large 

complexes; and electron microscopy  (EM) has a clear limitation in terms of 

atomic resolution. While the known 3D structures of single proteins is 

increasing every year, 3D structures of known complexes are only available 

for a small percentage (less than 10% in H. sapiens, see section 4.3.3). 

 Computational approaches can be used to overcome these limitations 

and can provide structural models to bridge the existing gap between 

validated PPIs and 3D structure of protein complexes. This thesis therefore 

focuses on the particular challenge of improving the structural content of 

interactomes. Indeed, the overall aim of this thesis was to develop a 

methodology for structural modelling of protein interactions that was suitable 

for application to large datasets. The analysis performed in section 4.3.3 

described the large gap that exists between experimentally proven binary 

PPIs and those for which the 3D structure of the protein complexes was 

known. The outcome of this initial analysis confirmed that the structural 

content and coverage of protein interactions is currently very low; for 

example, the interactome of H. sapiens, with over 22,000 confirmed binary 

PPIs, has only 10% of cases with known structure of the resulting complex. 

Similar results were observed in other model organisms, highlighting the 

existing problems and limitations. After reporting the state of current 

interactomes, the work in this thesis describes the development and 

benchmarking of a new computational method, V-D2OCK (Chapter 3), to 

derive structural models of binary interactions at interactome-wide scale. An 

important element of V-D2OCK is the prediction of protein binding sites or 
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interfaces in protein structures, which was achieved by developing a 

competitive and state-of-the-art approach: VORFIIP (Chapter 2) (Segura, et 

al., 2011), subsequently extended to the prediction of functional sites 

(Chapter 2; http://www.bioinsilico.org/MVORFFIP) (Segura, et al., 2012). 

Upon developing and benchmarking of V-D2OCK, this was applied to the 

human interactome and the resulting data, i.e. structural models, compiled 

and classified in a fully browsable database: V-D2OCK DB (Chapter 4). The 

research developed in this thesis complements and extends the work in 

different areas of PPIs and these are briefly discussed below.  

 Structural modelling of protein complexes at genome-wide level has 

been addressed in other publications: Mosca et al. (2009) used different 

docking methods to predict structural complexes in the yeast interactome. 

However, the results were not stored in a database but in a collection of 

independent files. Vakser and co-workers developed the Genome-wide 

protein docking database (GWIDD) (Kundrotas, et al., 2010), a compilation 

of protein complexes derived from homology modelling for several 

organisms. More recently, the group of Honig developed a method for the 

prediction of protein-protein interactions using structural information (Zhang, 

et al., 2012). Although the main objective was not the modelling of protein 

complexes, the method could be used for that purpose. In all these cases, 

the modelling of protein complexes was based on the use of templates of 

protein complexes, i.e. comparative modelling. V-D2OCK was, however, 

designed to model protein complexes for which there are no templates 

available and thus is focused in a novel area that complements existing 

methods. Moreover, V-D2OCK results are stored in a database (V-D2OCK 

DB, Chapter 4) designed to collate PPIs from multiple sources, together with 

bespoke tools to facilitate the browsing, searching and visualization of data, 

something which is largely missing in the above mentioned resources. 

 V-D2OCK DB is the database developed to store protein interaction 

maps and structural models of protein interactions. It integrates information 

from 6 different sources: BioGrid (Stark, et al., 2011), IntAct (Aranda, et al., 

2010), MPACT (Guldener, et al., 2006), MINT (Chatr-aryamontri, et al., 

2007), DIP (Xenarios, et al., 2002) and HPRD (Keshava-Prasad, et al., 

2009) integrated using BIANA package (Garcia-Garcia, et al. 2010).  V-

D2OCK DB database contains 65254 PPIs for H. sapiens involving 11877 

human proteins. MySQL is used as relational database management system 

to store the information that can be accessed directly querying the system or 

by means of a python package developed for this purpose (section 4.3.2). V-

http://www.bioinsilico.org/MVORFFIP
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D2OCK DB contains the information needed for this work and constitutes the 

framework for the overall project. 

 The V-D2OCK strategy relies on the prediction of protein interfaces to 

guide the docking of proteins. To that end, VORFFIP (Chapter 2, available at 

http://www.bioinsilico.org/VORFFIP), a structure-based protein binding site 

prediction method was developed over the course of the thesis. Although 

protein binding site prediction is a well-studied problem and several methods 

can be found in the scientific literature (de Vries, et al., 2006;  Porollo and 

Meller, 2007; Sikic, et al., 2009), VORFFIP features a number of innovative  

concepts that make it a very successful and competitive prediction method. 

VORFFIP uses a novel definition of residue environment based on Voronoi 

Diagrams (VD). In general, using information about the residues’ 

environment or neighbours increases the performance of the method and 

the VD-based environment outperformed other classical definition such as 

sliding window (Sikic, et al., 2009) or Euclidean distance (Porollo and Meller, 

2007) (section 2.3.5). In addition, VORFFIP is based on machine learning 

(ML), in particular a cascade of Random Forests (RF) ensemble classifiers 

that integrate a wide range of information based on structure, evolutionary 

information, energy-terms and crystallographic B-factors.  The architecture 

of VORFFIP consists on cascaded RFs where the output of the first block is 

used to feed the second RF. VORFFIP was compared with state-of-the-art 

methods under the same benchmarking conditions achieving a good 

performance (section 2.3.6).  

 Following upon the VORFFIP success, an extension, M-VORFFIP, 

was developed to predict functional sites: peptide-, RNA- and DNA-binding 

sites. The structure of the original method and the broad spectrum of residue 

features used were flexible enough to allow the training of specific models 

for each type of functional sites. M-VORFFIP was competitive when 

compared with other methods for specific binding site prediction, achieving 

similar results in terms of MCC, precision or recall values (section 2.4.1). 

The clear advantage of M-VORFFIP when comparing with purpose-made 

tools is the unification of the different type of predictions in a single method 

that perform at a similar level. M-VORFFIP is accessible through a web 

application at http://www.bioinsilico.org/MVORFFIP.  

 As mentioned, V-D2OCK relies on a data-driven approach to derive 

structural models for protein complexes. Three data-driven docking 

methods: HEX (Ritchie and Venkatraman, 2010), PatchDock (Duhovny, et 

al., 2002) and HADDOCK (Dominguez, et al., 2003) guided using VORFFIP 

http://www.bioinsilico.org/VORFFIP
http://www.bioinsilico.org/MVORFFIP
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predictions were assessed in this thesis using Benchmark V4.0 (Hwang, et 

al., 2010) as benchmark set. The methods were evaluated by means of best 

solution RMSD (section 3.7.2) and the best performance was achieved by 

PatchDock with an average of 9.3Å and selected as docking method. To 

verify the enrichment of correct structural models, VORFFIP-driven dockings 

were compared against free dockings in the same benchmark set. The 

average RMSD for structural models derived by free, i.e. unbiased, docking 

was 14.8Å, higher than the 9.3Å achieved using VORFFIP predictions. 

Clearly the results improved when docking is driven with VORFFIP 

predictions. Two main issues were associated with PatchDock: firstly, the 

method produces a large number of potential poses, an average of 1353 

solutions per complex and secondly, docking is rigid. To decrease the 

number of potential solutions, PatchDock results were clustered and cluster 

centroids were selected (section 3.5). When clustering the best 200 scored 

solutions the performance of the method decreases to a RMSD of 13.5Å but 

the number of potential solutions was reduced to an average of 77 

conformations for protein complex. Finally, to allow conformational changes, 

an energy minimization method (FastRelax – ROSETTA (Khatib, et al., 

2011)) was used. Although there is not a big improvement in performance, 

with an average RMSD of 12.8Å, structural modes were more realistic and 

had a higher geometric and sterochemical quality. 

 The final aspect of the thesis concerns the structural annotation of the 

human interactome, although this research is being extended to other model 

organisms (see future directions) and the compilation of structural model in a 

centralized repository: V-D2OCK DB. V-D2OCK DB features a browser and 

searching engine as well as bespoken visualization tools to access and 

analyse the structural models of protein complexes. Moreover, Pfam 

domains definition are integrated in the database to provide added 

information to proteins and guide the selection of 3D conformation. V-D2OCK 

DB contains over 22000 annotated PPI with more than       potential 3D 

models. The database is accessible through a web application at 

http://www.bioinsilico.org/VD2OCKDB.  

 Overall, the outcomes of this thesis extends work in this field. This 

work expands the structural coverage to protein complexes where no 

templates are available for the protein complex, i.e. interologs for which 

structure is known. The V-D2OCK algorithm described in Chapter 3, deals 

with binary complexes and data-driven docking without the need for the 

structure of a protein complex to derive the geometry. Secondly, protein 

http://www.bioinsilico.org/VD2OCKDB
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complexes derived from homology modelling can easily be incorporated in 

V-D2OCK DB (Chapter 4) as the interactomic and existing structural data are 

both linked during the integration process. Finally, V-D2OCK DB is interfaced 

by a powerful web-application that allows the visualization, query and 

retrieval of structural models and thus greatly facilitating the analysis of the 

information by general users, thus making it available to thousands of 

potential users. 

Future directions 

 This thesis describes a methodology for structural modelling of PPIs 

and was applied to the human interactome. One of the major results of the 

thesis is V-D2OCK DB, a database that compiles the predicted complex 

structures for PPIs in H. Sapiens. The next step will be to extend this 

database using the same methodology to other model organisms: S. 

cerevisiae, M. musculus, E. Coli and D. melanogaster. The experimental 

interactomic data for all these organisms is already stored in V-D2OCK DB, 

hence ready to be incorporated into to V-D2OCK structural modelling. 

Moreover, the web server has been designed to support different organisms; 

thus, no modifications are needed in this application. 

V-D2OCK DB is a database of structural predicted binary complexes. 

During the thesis, only pairs of proteins known to interact and for which the 

structure of the individual components was available were considered. This 

approach did not consider individual pairs of proteins that could have been 

modelled using homology modeling. Table 4-3 shows how V-D2OCK DB 

statistics improve when homology modelling was considered and how the 

suitable range of applicability expanded. For example, in the case of H. 

Sapiens interactome, the number of amenable binary complexes increased 

to 27,868, more than the 5,000 PPIs when no homology modelling is 

performed. 

The last step of the modelling process in V-D2OCK is a structural 

refinement by means of energy minimization. The method used is 

FastRelax, a protocol implemented in ROSETTA package. The improvement 

between the rigid-body docking step and refinement is quite modest; other 

energy minimization methods such as FireDock (Andrusier, et al., 2007) or 

HADDOCK (Dominguez, et al., 2003) (flexible step) can be used for the 

same purpose and may result in better performances. 

Finally, V-D2OCK DB can be the framework for the study of genetic mutation 

to better understand of human genetic diseases. Information on genetics 
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disorders and gene mutations can be found in several databases as dbSNP 

(Sayers, et al. 2011), Human Gene Mutation Database (Stenson, et al. 

2003) or Online Mendelian Inheritance in Man (Amberger, et al. 2009). The 

genetic mutations affecting translated regions of the DNA can be mapped in 

the protein structures, and then assessed for potential impact using the 

structural models compiled in V-D2OCK DB. Mutations located in protein 

interfaces can provide useful information on the molecular details associated 

with a disease. Also, mutations that are known to disrupt a particular protein 

complex can guide the filtering structural models and select the ones that   

agree with experimental data. Single point mutations (SNPs) and other type 

of genetic variation data can be easily integrated in V-D2OCK DB given the 

flexibility of the database schema. Moreover, the bespoke visualization tools 

developed for V-D2OCK DB can be easily adapted to visualize genetic 

variants in the context of structural models of protein complexes as well as 

utilizing Pfam domain schema (Figure 4-5 and 4-9). 
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3D  3 dimensional 

API  Application program interface 

ASA  Accessible surface area 

CDV  Contact descriptor vector 

CPV  Contact probability vector 

DB  Database 

EDM  Environment descriptor matrix 

EM  Electronic microscopy 

FN  False negative 

FP  False positive 

HTML  Hyper Text Markup Language 

HUPO  Human Proteome Organisation 
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LIMM  Leeds Institute of Molecular Medicine 

MI  Molecular Interaction 

MCC  Matthew correlation coefficient 

NMR  Nucleic magnetic resonance 

PDB  Protein data bank 

PPI  Protein-protein interaction 

PSI  Proteomics Standards Initiative 

TN  True negative 

TP  True positive 

XML  Extensible Markup Language 
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Appendix A 

Computational Geometry 

A.1 Definition of Voronoi diagrams 

In order to define Voronoi diagrams and to explain the mathematical 

processes behind the algorithms used to compute them several definitions 

must be introduced. All definitions and methods are done for ℝ3 space and 

Euclidean distance  (   )  √‖   ‖ , however figures will be represented 

in ℝ2 for a better understanding and because projections to higher 

dimension space is needed in some algorithms. 

A Voronoi diagram (VD) is a partition of the space into cells given an initial 

set of points satisfying: (i) in each cell there is just 1 initial point and (ii) 

points inside a cell are closer to this particular point than any other initial 

point. A formal definition is, let             be a finite set of points in ℝ3 

the VD associated to   is a subdivision of ℝ3  ( )            where  

i.                

ii. if      (    )   (    )          

iii. ⋃   ℝ  

The sets   are called voronoi cells and their geometry in ℝ3 and Euclidean 

distance is a polyhedron, polygon in ℝ2. 

The Figure A.1-0-1 shows the VD of a planar set of points, in this case the 

geometry of the cells is not of a polyhedron but polygon due the 2D of the 

plane. The vertexes and the edges of the VD are named voronoi vertexes 

and edges respectively. 

A.2 Definition of Delaunay triangulation 

A Delaunay triangulation (DT) for a set of points   is a set of tetrahedra 

   ( )  whose vertexes are elements of   and where the circumscribed 

sphere for any element of    ( ) does not contain any point of  . A formal 

definition is, let             be a finite set of points in ℝ3 the DT    ( ) is 

defined as follows 

i. (           )     ( ) if and only if the sphere through              

contains no other point of    
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Figure A.1-0-1Voronoidiaram of a planar set of points 
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The Figure A.2-0-2 illustrates the DT of a planar set of points, in this case 

the points are joined using triangle instead of tetrahedral due the 2D o the 

plane. However, DT properties are still satisfied in the figure. 

A.3 Relationship between Voronoi Diagrams and Delaunay 

Triangulation 

The relation between the VD and DT can be described as the dual graph of 

a planar graph (Brown, 1979). Given a planar graph   the dual graph    has 

a vertex for each plane region of   and two vertexes are connected in    if 

their associated regions share an edge in  .  

The DT is the dual graph of the VD graph where the nodes are the voronoi 

nodes and edges the voronoi edges. It is possible to compute    ( ) form 

   ( ) and vice versa, the vertexes of the VD are the centres of the spheres 

that circumscribes the tetrahedron of the DT. 

Figure A.3-0-4 shows the relation of a planar VD and the corresponding DT. 

In ℝ3 rarely VD will form a planar graph, however the dual graph definition of 

a planar graph can be extended for VD in ℝ3. The dual graph of a VD have 

vertexes the voronoi cells and edges between those cells that share a 

common facet in the VD.  

Next algorithm computes the VD of a set of points and its DT    ( ), the 

output is a set containing the voronoi edges of the VD. 

 

1: for each tetrahedron   in    ( ) 

2: for each tetrahedron    that neighbours   

3:  create edge   connect circum-sphere centre of   with    

4:   add m to    ( ) 

A.4 Definition of Convex Hull 

The convex hull (CH) of a set of points is the smallest convex set that 

contains the points. A formal definition is, let             be a finite set of 

points,    ( ) is the convex hull for   if 

i.      ( )and   ( ) is convex 

ii. if      and     is convex     ( )      
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The CH for any finite set of points in the space is a polyhedron, Figure 

A.4-0-5 shows the CH for a set of points in the plane, the CH for a planar set 

of points is a polygon. 

 

 

 

 

Figure A.2-0-2 Delaunay triangulation of a planar et of points 

 

 

 

 

 

 

 

Figure A.3-0-3  is the dual graph of  . 
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Figure A.3-0-4 DT as the dual graph of the VD. 

 

 

 

 

 

 

 

Figure A.4-0-5 CH of a planar set of points. 
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Bradford et al. (Barber, et al., 1996) proposed an algorithm that computes 

the CH for a set of points in ℝn. The next pseudo-code computes the convex 

hull for a set of points .  

Observations: 

i. The convex hull is represented by its vertexes and (n-1)-dimensional 

faces (hyperplanes called facets).  

ii. Each facet includes a set of (n-2)-dimensional edges, a set of 

vertexes, a set of neighbouring facets and an orientation (normal 

vector of the hyperplane). 

iii. The signed distance is used to calculate the distance between point 

and facet.  

iv. A point is above of a facet if its distance is positive. The outside-set of 

a facet are the points with positive distance. 

1: create a n-dimensional simplex   from   

2: for each facet   in   

3: for each unassigned point   in   

4:   if  is above  then assign   to  ’s outside-set 

5: initialize   non-empty outside-set facets of   

6: initialize    empty outside-set facets of   

7: for each facet   of   

8: select the furthest point   of  ’s outside-set 

9: initialize the visible set      

10: for each unvisited neighbour facet    
 of    

11:  if  is above    
then add    

 to    

12:  initialize     boundary of    

13: for each edge   in    

14:  create a new facet    from   and   

15: for each new facet    

16:  for each unassigned point   in an outside-set of a facet in    

17:   if  is above   then assign   to    outside-set 

18:  if    has non-empty outside-set then add    to   

19:  else add    to    

   

P
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Algorithm overview 

 Step (1) selects a random tetrahedron, the convergence of the 

algorithm is independent of this selection, however some conditions 

can be used to improve the computational cost. 

 Steps (2-4) select the set of points that are visible (positive distance) 

for each facet of the tetrahedron. 

 Steps (5,6) the facets of the CH are those with empty outside-set and 

are stored in   , while   contains the facets with points above some 

facet and need to be extended.  

 Step (7) the main loop of the algorithm starts, the algorithm finishes 

when all facets in  have been processed. 

 Steps (8-11) the furthest point of the current processing facet is 

selected and connected facets with positive distance to this points are 

stored in    (Figure A.4-0-6 (c) shows a 2D representation of this 

step). 

 Steps (12-14) all boundary edges of    are used to create a new facet 

(Figure A.4-0-6 (c) shows a 2D representation of this step). 

 Steps (15-19) new facets are proceeded, facets with empty outside-

set are stored in   , those with non-empty outside-set in  . 

 The algorithm stopswhen all facets of   has been processed,    

contains the CH facets. 

Figure A.4-0-6 shows a graphical representation of the algorithm for a planar 

set of points. The main difference with 3D is the dimension of the boundary 

elements in   , while in 3D these elements are segments in 2D are points. 

When the algorithm is applied in ℝn elements of    are (n-2)-dimensional. 

A.5 Relationship between Convex Hull and Delaunay 

Triangulation 

K. Q. Brown presented a connection between CH, DT and VD (Brown, 

1979). This section explains a method which allows to calculate the DT from 

a CH. First a general description of the method, given a set of points in ℝn 

they are projected onto the unit elliptic-paraboloid forming a set of points in 

ℝn+1. The convex hull of this new set of points is calculated. Then, the DT is 

obtained projecting the down-facing facets (those whose normal vector has 

a negative      value) of the CH onto the hyperplane       . The 

following algorithm computes the DT for a finite set of points  ℝn 
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Figure A.4-0-6 Graphical representation of the CH algorithm.Given a 
planar set of points, 1 iteration of steps (7-19) is shown. (a) At a given 
point the algorithm is processing the facet  , the yellow points are 

outside-set. (b) Steps (8-11) the algorithm selects the furthest point  , 
in yellow, and all facets connected with   and with positive distance to 
  (purple edges) are stored in   . (c) Steps (12-19) the boundary of   , 

in this case the green points    (in 2D the boundary are points while in 

3D are edges), is used to generate the facets    and    .   has empty 
outside-set ten it will be part of the CH while     outside-set coatis 1 
point and it will be processed by steps (7-19) at some point. (d) The 
algorithm iterates these steps until all generated facets are processed. 
The CH is composed of the empty outside-set facets. 
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1: initialize    (       ∑   
 ) (         )  

2: initialize   ( )    

2: compute   (  ) 

3: for each facet   in    (  ) 

4: if   is down-facing 

5:  for each edge   of   

5:   set  |      

6:   add   to    ( ) 

As it was shown before from the DT we can compute the VD. The Figure 

A.5-0-7 shows an example of how VD and DT for a planar set of points is 

computed using this algorithm 
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Figure A.5-0-7Relation between CH, DT and VD of a planar set of 
points. (a) The points are projected onto the unit paraboloid. (b) The 
CH is calculated for the paraboloid projected points. (c) Edges of the 
CH facets are projected onto the plane generating the DT. (d) The VD 
is computed from the DT.  
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Appendix B 

 

See CD-ROM attached to thesis. 

Appendixes Content File type 

B.1 PSI/MI HUPO field description. .xml 

B.2 Boxplots and density functions for 

individual features. 

.tiff 

B.3 Prediction for individual proteins of 

W025. 

.pdf 

B.4 PDB codes list of COMB-Set. .docx 

B.5 HEX data-driven conditions. .docx 

 


