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Abstract

This dissertation explores how uncertainty affects different facets of an economy through

three empirical essays. First, we presents an analytical framework to examine the policy

reaction function of a central bank in an open economy context while allowing for asym-

metric preferences. This implies that the policy makers can weigh negative and positive

deviations of target variables (inflation and output gap) from their corresponding targets

differently. We use an open economy New-Keynesian forward looking model where ag-

gregate demand and supply depend on real exchange rate. Using quarterly data ranging

from 1979q1-2007q4 for Canada, Japan, the UK and the US, the empirical evaluation is

drawn through generalized methods of moments. The results strongly favor the presence

of asymmetries in the response of monetary policy towards both inflation rate and output

gap for all sample countries. The estimates show that central banks follow an active mon-

etary policy. Also, there is evidence that changes in foreign interest rate and exchange

rate significantly affects the domestic monetary policy formation.

Second, we examine the role of various sources of uncertainty on total factor productivity

growth. Specifically, this essay estimates the role of of uncertainty emanating from global,

country, and industry level on TFP growth in manufacturing industries of sixteen emerg-

ing economies. For this purpose, we use annual data covering the period from 1971-2008.

Our findings suggest a significant impact of each source of uncertainty on TFP growth.

Particularly, we observe that industry and country specific uncertainty have a positive

impact on TFP growth of manufacturing industries. However, global uncertainty has sta-

tistically significant and negative impact on TFP growth. We also provide evidence that

the impact of industry specific uncertainty strengthens as the size of industry increases

whereas the reverse holds for both country specific and global uncertainty. In addition,

we observe that the positive impact of both industry and country specific uncertainty gets

stronger at higher levels of factor intensity.

Third, we examine the role of of uncertainty of technology diffusion in TFP convergence of

manufacturing industries of frontier and non-frontier countries. For this purpose, we use

annual data covering the time period from 1981-2008, eighteen manufacturing industries of

five emerging economies. We employ superlative index number approach to compute the

TFP level and growth in manufacturing industries of these countries. Our findings suggest

a significant evidence of TFP convergence in manufacturing industries of non-frontier and

frontier countries. Moreover, technology diffusion not only pertains a positive impact on

TFP growth of manufacturing industries of non-frontier countries but also facilitates the

process of TFP convergence. More importantly, we report a significant negative impact

of uncertainty of technology diffusion on the TFP growth.
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Chapter 1

Introduction

There is a wide range of literature that explores the types, origins, and channels

through which uncertainty influences different facets of an economy. A considerable atten-

tion in this regard is devoted to investigate the role of policy formation and macroeconomic

performance. The prime aim of this dissertation is to empirically examine the direct and

the indirect role of uncertainty in three important aspects of an economy: monetary pol-

icy responsiveness, total factor productivity (TFP) growth, and TFP convergence. This

is achieved through following three empirical papers.

In explaining the role of uncertainty for macroeconomic policies, particulary mone-

tary policy, Greenspan (2004) claim that uncertainty is not only a persistent feature but a

defining characteristic of monetary policy landscape. Therefore, it is crucial that monetary

policy formulation is carried out by taking the danger of uncertainty into consideration

particularly in an open economy. There is lack of evidence on the response of monetary

policy towards uncertainty of target variable in an open economy framework. Therefore,

the first study of the dissertation, presented in the second chapter, aims to evaluate the

responsiveness of monetary policy towards target variables such as inflation rate and out-

put gap. We introduce a new element compared to the existing literature. First, we

investigate the influence of real exchange rate on optimal policy reaction function. The

dynamics of an open economy are analyzed by an open economy form of a New-Keynesian

model where aggregate demand and supply depends on the real exchange rate. Second, we

allow central banks to have an asymmetric linex loss function for both of its target vari-

ables in an open economy. This allows us to account both for asymmetric preferences of

policy-makers and for the uncertainty of target variables. By doing so, policy-makers can

weigh positive and negative deviations of inflation and output gap from their correspond-

ing targets differently. More concretely, central banks might prefer to react more strongly

to positive deviations of inflation from its target rather than to negative deviations. The

reverse might be true for output gap deviations from its target.

The empirical investigation in this regard is largely motivated by the seminal work of

Friedman (1948) who proposes rule-based monetary policy instead of discretionary mone-

tary policy. Taylor (1975) tests for the impact of monetary policy on real economic activity.

In doing so Taylor has provided a theoretical framework, which explains that monetary

policy can influence real output growth if expectations about inflation are transitional. A

major contribution to the literature can be found in the work of Kydland and Prescott

1



(1977), Barro and Gordon (1983), and Blanchard and Fischer (1989) where policy rule

is preferred over discretion. Moreover, Kydland and Prescott (1977) stressed that infla-

tionary expectations about optimal policy rule raise the problem of time inconsistency. In

the same vein, Taylor (1993) has presented the famous Taylor rule in comparison to the

money supply rule of Friedman and Schwartz (1963) by asserting that a policy rule with

some weights to output stabilization is preferable to a pure price rule. The distribution

of weights is still a matter to investigate, though. Further he argued that policy-makers

cannot follow the policy rules mechanically but it would be interesting to incorporate the

rule-like behavior in the actual policy-making process by central banks.1

Recently some researchers argue that central banks penalize differently the positive

and negative deviations of target variables from their respective targets. This approach

introduces a policy rule incorporating asymmetric preferences of central banks towards

positive and negative deviations of target variables. The studies of (Nobay and Peel,

2000, 2003), Bec et al. (2002), Ruge-Murcia (2003b), (Dolado et al., 2004, 2005), and

(Surico, 2003, 2007b, 2008) among others follow this strategy to evaluate the performance

of policy rule across different phases of the business cycle.

Despite the theoretical and empirical progress, relatively less attention is paid to ex-

plore the behavior of central banks in an open economy framework. In recent years,

central banks are influenced not only by changes in domestic factors but also by changes

in exchange rate and foreign monetary policy. Ball (1999b) is the first to introduce an

open economy Taylor rule. On similar ground, Svensson (2000), Leitemo et al. (2002),

Leitemo and Söderström (2005), Dolado et al. (2005), and Adolfson et al. (2008) among

others analyze the response of monetary policy towards changes in the international fac-

tors. However, these studies incorporate exchange rate and foreign monetary policy on

an ad-hoc basis. It is therefore important to understand the link through which exchange

rate and foreign monetary policy enters into the policy rule. Also, these researchers have

largely evaluated the response of monetary policy towards target variables by assuming

symmetric response of central banks in an open economy framework.

Differing from the existing literature, this chapter has various distinctive features.

First, we derive the optimal policy rule for an open economy, which allows asymmetries

in central bank preferences towards target variables. Thus we estimate an optimal policy

reaction function accounting for the impact of real exchange rate, foreign monetary policy,

and measures of volatility concerning both the state variables included in the objective

1This interest rate rule with both inflation and output gap as target variables has widely been used
in the literature including (Ball (1999a), Rudebusch and Svensson (1999), Ireland (1999), Leitemo et al.
(2002), and (Taylor, 1999a, 2001a) among others).2 Indeed, a noteworthy contribution in the examina-
tion of monetary policy rules is made by (Clarida et al., 1998, 2000) who introduce the forward-looking
expectations in the Taylor rule.

2
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function of policy-makers. Second, on theoretical grounds, we extend the New-Keynesian

model described by Clarida et al. (1999) by accounting for the behavior of real exchange

rate. In this set-up, the optimal reaction function will include not only expected inflation

and growth but also expected changes of real exchange rate and foreign monetary policy

rule.

Although there are numerous specifications estimated for an open economy monetary

policy rule such as Ball (1999b), Clarida et al. (1999), Clarida et al. (2001) and Svensson

(2000) but our study differs from the existing literature. These studies incorporate ex-

change rate in the policy rule at an ad-hoc basis whereas we derive the policy rule which

contains the exchange rate movement. Moreover, our specification differs from the open

economy models of Ball (1999b) and Leitemo et al. (2002). The former gives completely

backward-looking expression of output and inflation and presents the general form of ex-

change rate to explicate the scenario of an open economy. However, the latter incorporates

exchange rate as the only forward-looking variable in the model. Whereas, we introduce

a forward-looking policy rule for an open economy with asymmetric preferences of central

banks. Thus we not only contribute to the literature by deriving a policy rule, which ex-

ploits more information but also provides a new insight into the literature on functioning

of monetary policy asymmetries in an open economy framework.

To estimate the monetary policy rule, we utilize quarterly data from International Fi-

nancial Statistics published by International Monetary Fund database. In particular, our

dataset spans the period over 1979q1-2007q4, while for each country the starting point of

the empirical analysis depends on the specific factors that affected the behavior of each

central bank to implement independent monetary policy. We use data on seasonally ad-

justed series of Gross Domestic Product (GDP) of all selected economies. We implement

the HP (Hodrick and Prescott (1997)) filter to generate the output gap from the log of

GDP for all countries. Growth rate of Consumer Price Index of each country is used

to measure Inflation rate of respective economies. We use the corresponding short-term

interest rate such as the overnight interbank rate for the UK, the overnight money market

rate for Canada, the call-money rate for Japan, and the Federal Funds rate for the US as

policy instruments. In addition, the 3-month forward exchange rate is used as a proxy for

the expected exchange rate.3 Our empirical investigation is based on GMM where we test

both for over and under-identification.

The empirical results show that all the central banks conduct an active monetary pol-

icy as it is indicated by the coefficient of expected inflation rate. Similarly, the response

3 Data on forward exchange rate for the UK are accessed from the bank of England database whereas for
the USA, Canada and Japan the forward exchange rate data are obtained from the WorldScope database
via DataStream.
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of interest rate towards output gap is positive and statistically significant. We provide

a significant evidence that central banks have asymmetric preferences in the sense that

they set interest rate accounting for uncertainty of inflation and output gap. Specifically,

except for the bank of Japan, the response of all central banks towards output gap volatil-

ity is negative and statistically significant. This finding identifies that central banks are

more conscious in times of recession as compare to expansionary times. We interpret

the positive reaction of bank of Japan towards output gap volatility as the central bank is

mainly concerned about inflation and considers a positive output gap as an indicator of fu-

ture inflation. Next, We observe a positive and statistically significant response of central

bank towards inflation volatility. This implies that the central banks are more aggressive

when there is inflationary pressures in the economy relative to deflationary pressures. The

impact of expected changes in exchange rate is statistically significant with mixed signs.

Finally, we observe that domestic monetary policy has significant and positive response

towards changes in foreign monetary policy. These findings suggest that the central bank

follows an active monetary policy where the nominal interest rate must increase more in

proportion to the expected inflation which changes as a consequence of movements in the

foreign policy variables.

The third chapter of this dissertation examines the impact of different types of un-

certainty on the TFP growth of manufacturing industries of emerging economies. The

main objective of this chapter is to investigate how uncertainty stemming from different

sources such as industry, country, and world level determines the TFP growth of man-

ufacturing industries. This analysis will not only helps us to understand the underlying

mechanism generating uncertainty but also in formulating policy to overcome its adverse

impact.

Theoretically, the growth impact of uncertainty is documented by Friedman (1977)

suggesting that inflation uncertainty dampens growth through allocative inefficiency. Em-

pirically, Kydland and Prescott (1982) and Long Jr and Plosser (1983) present the idea

of the unification of business cycle and growth theory to investigate the factors behind

economic fluctuations. Both of these studies conclude that technological shocks are the

main driving force of output fluctuations.4 Lucas(987), in contrast, explains that there is

no link between growth and macroeconomic volatility.5

4In a similar vein, King et al. (1988) document that temporary shocks may leave permanent impact on
economic activity. Rebelo (1991) explains that the permanent changes in policy also affect the economic
activity. King et al. (1988) merge the endogenous growth and real business cycle models and report that
the short-run fluctuations in production may impact the path of output for a long time period.

5There are a large number of studies that focus on examining the link between macroeconomic uncer-
tainty and growth. These include, among others, Nelson and Plosser (1982), Bernanke (1983), Pindyck
(1982) , Pindyck (1991), Aizenman (1993), Ramey and Ramey (1991), Kormendi and Meguire (1985),
Mirman (1971) , Zarnowitz and Moore (1986), Zarnowitz and Lambros (1987), Grier and Tullock (1989),
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A large number of empirical studies argue that endogenous growth models potentially

maintain both a positive and negative relationship depending on the nature of shocks

and model parametrization (See, e.g., Stockman (1988), Aghion et al. (1998), Jones et al.

(1999), Turnovsky and Chattopadhyay (2003), and Blackburn and Pelloni (2004) among

others). In particular, Stockman (1988) argues that it is crucial to identify the origin of a

shock to examine its impact on growth. He decomposes shocks into aggregate and industry

level and provides evidence that industry-specific technology shocks play a stronger role

in the business cycle as compared to country-specific shocks. Later, researchers such as

Norrbin and Schlagenhauf (1990), Costello (1993), Kose et al. (2003), Imbs (2007), and

Koren and Tenreyro (2007) among others, decompose different types of uncertainty and

examine their impact on GDP growth.

Some researchers also focus on examining the link between uncertainty and produc-

tivity growth. On theoretical grounds, Comin (2000) and Oikawa (2010) formalize the

relationship between productivity and volatility. The former explains that uncertainty

leads to adoption and diffusion of new technologies and accelerates TFP growth by shift-

ing the investment from inflexible capital to flexible capital. While the latter bases his

argument on the firms’ optimization behavior and concludes that uncertainty forces firms

to invest more in R&D activities, which results in knowledge accumulation. On the empir-

ical side, Dixit and Rob (1994), Leahy and Whited (1996), Miller and Upadhyay (2000),

and Berument et al. (2011) explore the link between uncertainty and productivity.

The third chapter of the dissertation contributes to the existing literature on several

grounds. First, to the best of our knowledge, there is no existing empirical work that

analyzes how and to what extent uncertainty impacts the TFP growth in manufacturing

industries.6 In particular, we categorize uncertainty originating from industry, country,

and world level and estimate the individual impact of each source of uncertainty on TFP

growth. By doing so, we differ from Imbs (2007) in two manners: (a) we estimate the

impact of each type of uncertainty individually whereas he uses the residual sum of four

types of uncertainty as a proxy for uncertainty, (b) We conduct our analysis for the TFP

growth of manufacturing industries whereas Imbs (2007) executes his analysis for output

growth of manufacturing industries. Also, we cater a different set of countries. Second,

in addition to scrutinizing the direct impact, we examine the conditional impact of uncer-

tainty on TFP growth. We do so by identifying the impact of uncertainty on TFP growth

through other factors such as industry size, factor intensity, and the level series of each

type of uncertainty. Third, we present the total impact of each type of uncertainty on TFP

Aizenman and Marion (1999), Mascaro and Meltzer (1983), Abel (1983), Levine and Renelt (1992), Gre-
gory and Head (1999), and Ventura and Zeidan (2000).

6However, there is some evidence showing the impact of different forms of uncertainty for growth both
at aggregate and disaggregate levels.
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growth by combining the direct and the conditional effect. Also, we plot the total impact

of each type of uncertainty through all the conditioning factors. This exercise provides a

detailed evidence on the relationship between TFP and uncertainty, which has been over-

looked by the existing literature. Fourth, we are the first to present evidence concerning

the link between uncertainty and TFP growth for the sample of emerging economies.7

To empirically examine how uncertainty affects TFP growth of manufacturing indus-

tries of emerging economies, we use data from various data sources. We access annual data

of manufacturing industries of emerging economies from the United Nation’s Industrial

Development Organization (UNIDO) database. We also use country-specific investment,

real GDP and inflation rate, which are obtained from the IFS database. The world-specific

variables such as world inflation rate are accessed from the world development indicators.

We employed a dynamic panel data estimator: two-step system GMM estimator developed

by Blundell and Bond (1998) to carry out the empirical investigation in this chapter. Our

findings not only report the direct impact of each type of uncertainty but also conditional

effect through various other factors affecting TFP growth. This analysis is not only new

but also interesting as these findings will identify the threshold level of conditioning factors

where the impact of uncertainty turns to change.

Our results from this estimation suggests a statistically significant impact of each

source of uncertainty on TFP growth. Furthermore, we have found that the impact of

industry specific uncertainty is higher than the impact of country and world specific un-

certainty. The impact of industry and country specific uncertainty is positive whereas the

world uncertainty has a negative impact on the TFP growth of manufacturing industries.

Next, in addition to the direct impact of uncertainty, we estimate the indirect impact of

each source of uncertainty. To do this, we use three interaction terms (i)interaction of

each source of uncertainty with industry size. This interaction measures how the impact

of uncertainty changes when industry size increases. (ii) interaction of each source of

uncertainty with factor intensity (capital-labor ratio). This interaction term captures if

there is change in factor intensity, how the impact of uncertainty varies. (iii) interaction

of each source of uncertainty with their own level series which identifies how the impact of

uncertainty changes at different levels of their own series. The empirical estimation reveals

that as the industry size increases, the positive impact of industry and country specific

uncertainty increases. However, the negative impact of world uncertainty increases for

larger industries. Similarly, as factor intensity of industries increases, the positive impact

of industry specific uncertainty increases. Whereas, the positive impact of country specific

uncertainty weakens at higher levels of factor intensity. In contrast, the negative impact

7The existing studies, however, mainly examined TFP convergence for a set of OECD or developed
economies.
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of world uncertainty monotonically decreases as factor intensity increases. Finally, the

interaction of industry output (ratio to manufacturing sector output) with its uncertainty

has positive sign which indicates that there is monotonic increase in the positive impact

of industry specific uncertainty as the we move on higher level of industry output ratio to

manufacturing sector output. The interaction of country specific uncertainty with country

investment( ratio to country GDP) has negative sign. This indicates that as the level of

country investment increases the positive impact of country specific uncertainty decreases.

Finally, the interaction of world uncertainty with world inflation rate has shown a positive

sign which identifies that the negative impact of world uncertainty is weaker at higher

level of inflation whereas it is stronger at lower level of world inflation rate. We also plot

the total impact of each type of uncertainty through all the conditioning factors. The

figures further support our empirical findings.

In the current economic situation, not only the technological diffusion but also un-

certainty attached to technology diffusion influences the convergence process. Therefore,

the fourth chapter of this dissertation aims to examine how uncertainty attached to dif-

fusion of technology affects TFP growth and TFP convergence. For doing so, we select

emerging economies as non-frontier countries while taking the USA as the technological

frontier country.

The debate on convergence has evolved in theoretical and empirical literature since

the seminal work of Solow (1956). The empirical research following neo-classical growth

theories advocates the dominant role of human capital for explaining cross-country income

differences ( Mankiw et al. (1992), Bernard and Jones (1996c)). However, neo-classical

trade theory assumes that cross-country income differences accrue to the difference in fac-

tor endowment by assuming similar technology across countries (Islam (2001)). A wide

range of empirical literature explores the cross-country income and productivity differ-

ences. The earlier studies such as Domar et al. (1964), Denison (1967) Barger (1969),

Kuznets (1971), Bergson (1975), and Jorgenson and Nishimizu (1978) introduce the rela-

tive time series approach for TFP growth across countries. Later this approach is followed

by Dowrick and Nguyen (1989), Dougherty and Jorgenson (1996), Dougherty and Jorgen-

son (1997), Wolff (1991), and Dollar and Wolff (1994). In contrast, the cross section and

panel form of TFP comparison is implemented by (Hall and Jones, 1996, 1997), and Islam

(1995). However, none of the above-mentioned studies incorporate the role of technologi-

cal developments in measuring the productivity differences. On the theoretical forefront,

endogenous growth models given by Romer (1986), Lucas (1988) and Romer (1990) advo-
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cate growth through endogenous technological change.8

Later studies such as Ben-David (1993) and Barro and Mankiw (1995) among oth-

ers provide a new surge to the convergence literature. These studies introduce an open

economy framework of the neoclassical growth model. Coe and Helpman (1995) have

introduced the role of technology transfer through the channel of trade, which plays an

important role in the TFP convergence. Following studies such as Griffith et al. (2004),

Cameron et al. (2005), and Madsen (2008) also confirm the hypothesis presented in Coe

and Helpman (1995). They conclude that in an open global economy framework, the

economy’s productivity levels are not only determined by its own innovation activities but

also by the innovation activities of its trading partners.9 Thenceforth, the empirical stud-

ies stressed upon the role of international trade in technology spill over and productivity

convergence.10

The contribution of the fourth chapter can be summarized as: First, we select five

large trading partners of the USA among emerging economies as non-frontier countries.

We select emerging economies instead of a widely used sample of OECD countries. This

is so because Bernard and Jones (1996a) and Keller (2000) report that the convergence

analysis for developing economies can bring more interesting findings related to the TFP

convergence.

Second, to the best of our knowledge, there is no empirical research that has analyzed

the impact of uncertainty of technology diffusion on TFP growth and TFP convergence.

We compute uncertainty in the import of technological products and estimate its impact

on TFP growth of manufacturing industries of non-frontier countries. Third, we not only

estimate the own impact of uncertainty of technology diffusion and TFP gap but also their

conditional impact. In doing so, we introduce three interaction terms: (i) an interaction

between uncertainty of technology diffusion and uncertainty of technology diffusion, which

will capture how the uncertainty impact changes when the level of technology diffusion

8In this regard, further development is carried out by Aghion and Howitt (1992), Howitt (2000) Gross-
man and Helpman (1991), Klenow and Rodriguez-Clare (2005), Córdoba and Ripoll (2008), Romer (1993),
Parente and Prescott (1994), and Bernard and Jones (1996c). Bernard and Jones (1996c) state that the
role of technology in explaining the relative income levels is crucial for the convergence process but it has
been ignored and misguided in the empirical literature.

9 Griliches (1980), Mansfield (1980), Griliches and Lichtenberg (1984b), Hall and Mairesse (1995).
Microeconomic foundation are supplied by the theoretical literature on endogenous innovation and growth
see, e.g., Aghion et al. (1998) Aghion and Howitt (1992), and Romer (1990). At industry level, the
productivity convergence is examined by Bernard and Jones (1996a), Bernard and Jones (1996b), Dollar
and Wolff (1988), Dollar and Wolff (1994), Jorgenson and Kuroda (1991), Dowrick (1989), and Hansson
and Henrekson (1994).

10See, e.g., Ben-David and Loewy (1998), Edwards (1998), Frankel and Romer (1999), and Lawrence
and Weinstein (1999). Following studies such as Coe et al. (1997), Frantzen (2000), Guellec and Van Pot-
telsberghe de la Potterie (2001), Lumenga-Neso et al. (2001), del Barrio-Castro et al. (2002), Crespo et al.
(2004), and Guellec and Van Pottelsberghe de la Potterie (2004) have concluded a significant contribution
of technological spillover in the convergence process. In contrast, Keller (1998) and Kao et al. (1999)
among others did not support the hypothesis that the technology spillover is important for convergence of
TFP growth.
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changes, and (ii) an interaction between TFP gap and technology diffusion. In this case,

we aim to investigate how technology diffusion affects the process of TFP convergence

among the frontier and non-frontier countries. (iii) we interact TFP gap with uncertainty

of technology diffusion. In this manner, we scrutinize, how the convergence process takes

place at different levels of uncertainty of technology diffusion. Fourth, having established

the direct and conditional impact of uncertainty of technology diffusion in the convergence

process, we compute the total impact of technology diffusion and its uncertainty on TFP

convergence.

We obtain data from two datasets. The data on industry level output, value added, em-

ployment, wages and salaries, and gross fixed capital formation are taken from the United

Nation’s Industrial Development Organization (UNIDO) database published in 2011. We

use two-digit ISIC Revision 3 classification for manufacturing industries over the period

1981-2008. To measure the impact of technology diffusion, we use data on industry-

specific import of technological products from the frontier country. For this purpose we

use the following standard international trade classification (SITC) for high technology

products: chemicals and related products (SITC section 5), machinery and transport

equipment (SITC section 7), professional and scientific instruments (SITC section 8.7).

Data on industry-specific imports are accessed from the United Nation’s commodity trade

database published in 2011.

Based on a two-step system GMM estimator, our findings from this chapter enable

us to understand the convergence process in emerging economies. We report a statisti-

cally significant impact of technology diffusion and its uncertainty on TFP convergence

in non-frontier and frontier countries. Also, our empirical estimates identify the level of

technology diffusion where the negative impact of uncertainty turns into positive for the

TFP growth. Specifically, we first, estimate the impact of TFP growth of frontier country

and the lagged TFP growth of the non-frontier countries. The results has shown statis-

tically significant and positive impact of the lagged TFP growth of non-frontier countries

as well as the current and lagged TFP growth of frontier country. Next, we augment our

model with the measure of technology diffusion. The estimates have provided a positive

impact of technology diffusion on the TFP growth of non-frontier countries. However, the

uncertainty of technological trade, which we have computed through the RA(1) process

of technological trade, have shown a negative impact on the TFP growth. In addition

to the direct impact of uncertainty of technology diffusion, we have also computed the

conditional impact through interaction of technology diffusion and its uncertainty. This

exercise enables us to understand how uncertainty affects TFP growth at different levels

of technology diffusion. The interaction of uncertainty has a positive impact on TFP

growth. By combining both unconditional and conditional impact of uncertainty, we have
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found that although uncertainty has a negative impact on TFP growth but as the level

of technology diffusion increases this negative impact weakens monotonically. Our em-

pirical estimates have shown statistically negative impact of the relative TFP gap on the

TFP growth of non-frontier countries. This finding has confirmed that further the coun-

tries lie behind the technological frontier, higher will be the growth and thus the speed

of convergence. While estimating the impact of TFP gap through technology diffusion,

our results have confirmed earlier empirical findings that at higher levels of technology

diffusion rate of convergence is higher. Finally, the estimates on the interaction of TFP

gap and uncertainty of technology diffusion show that uncertainty leads to weakens the

TFP divergence among manufacturing industries of non-frontier and frontier countries. In

addition, we have also plotted the total effect of uncertainty and TFP gap conditional on

technology trade. The diagrammatical analysis have also supported the empirical findings.

The thesis is structured into five chapters. Chapter 2 empirically examines the asym-

metric preferences of four central banks concerning the deviation of inflation and output

gap from their respective targets in an open economy framework. Chapter 3 assesses

the role of uncertainty originating from different sources on TFP growth of manufactur-

ing industries of emerging economies. Specifically, this chapter identifies the direct and

the indirect impact of industry-specific, country-specific and world-specific uncertainty.

Chapter 4 explores the TFP convergence of manufacturing industries in non-frontier and

frontier countries. This chapter empirically investigates how the technological distance

from the frontier country affects TFP growth and TFP convergence of these economies.

Chapter 5 presents the conclusion of this dissertation. Particularly, this chapter presents

the background and summary of the thesis. Further, the chapter summarizes main empir-

ical findings of all chapters and some policy implications. Also, it presents the limitations

of this dissertation. Finally, the chapter exposes some interesting areas to which new

research can be directed.
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Chapter 2

Asymmetric Monetary Policy Rules for Open Economies:
Evidence from Four Countries

2.1 Introduction

It is well accepted that monetary policy plays an essential role in providing a stable macroe-

conomic background which facilitates the efficient allocation of resources. To demonstrate

that such an economic environment can be achieved by adopting an optimal monetary

policy framework, researchers have proposed several alternative models leading to the

development of a vast literature. For instance, a large number of studies advocate the

adoption of inflation targeting and its implementation through variants of Taylor rule.1

Yet many (recent) studies including McCallum and Nelson (2000), Clarida et al. (2001),

Taylor (2001b), Clarida et al. (2002), Batini et al. (2003), Dennis (2003), Leitemo and

Söderström (2005), and D’Adamo (2011) argue that the impact of foreign factors on the

domestic policy is small, and therefore their effects can be excluded.2

However, in an open economy context, it is somewhat surprising to discount the role

of exchange rate movements on the monetary transmission mechanism: exchange rates

which respond to foreign disturbances do affect domestic prices. To that end, Ball (1999b)

shows that although Taylor rules are optimal in a closed economy context these policies

perform poorly in an open economy framework unless they are modified to account for

the movements in the exchange rates. Svensson (2000) argues that the optimal reaction

function in an open economy accounts for more information in comparison to a closed

economy Taylor rule. He discusses the presence of various direct and indirect channels

through which the exchange rate can affect monetary policy and shows that CPI-inflation

responds to foreign variables including foreign inflation, foreign interest rate, exchange

rate and shocks from the rest of the world. More recently Gali and Monacelli (2005),

Lubik and Schorfheide (2007), and Adolfson et al. (2008) implement open economy DSGE

models to investigate whether central banks respond to exchange rate movements. In this

framework, Chen and MacDonald (2012) move a step further by incorporating parameter

instability into a small scale open economy DSGE model.

1Researchers have examined different variants of the Taylor rule by introducing backward or forward
looking components while allowing the policy makers to have linear or nonlinear objective functions.
Among others see for instance Taylor (1993), Svensson (1997), Ball (1999a), Rudebusch and Svensson
(1999), Ireland (1999), Clarida et al. (2000), Ruge-Murcia (2003b), Dolado et al. (2004), and Surico
(2007a).

2For instance Taylor (2001b) argue that the exchange rate changes are implicitly incorporated through
prices therefore the closed economy models are well representative of an open economy scenario. Similarly,
Clarida et al. (2001) document that the open economy models are isomorphic to the closed economy
models.
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It is also important to note that the recent literature in monetary economics has

challenged the assumption that policy makers minimize a quadratic loss function subject

to a linear IS equation and a Philips curve —the assumption that the vast majority of

research on optimal policy rules has used. Cukierman and Gerlach (2003) suggest that

a central bank responds strongly to inflation when the economy is in expansion and to

output gap when the economy is in contraction. Dolado et al. (2005) relax the assumption

of a linear Phillips curve while allowing both inflation and the loss function to be convex

functions of the output gap. In particular, Nobay and Peel (1998), Ruge-Murcia (2004),

Ruge-Murcia (2003a), Dolado et al. (2004), Surico (2007a), and Surico (2003) assume that

central banks have a linear exponential (i.e. linex) loss function. The use of this function

allows the monetary policy authorities to have an asymmetric response towards inflation

and/or output gap as actual inflation or output level exceeds or falls short of the target.

In this approach since the quadratic loss function corresponds to a special case where the

asymmetry parameter of the linex loss function is equal to zero, one can test the null

hypothesis of quadratic preferences against the alternative of asymmetric preferences.

In this paper, different from the existing literature, we model the optimal monetary

policy rule of a central bank in an open economy framework while we allow for asymmetric

preferences such that the policy makers can weigh positive and negative deviations of

inflation and output gap from their corresponding targets differently. To achieve our

purpose, we use an open economy New-Keynesian model where aggregate demand and

supply depend on the real exchange rate while we assume that policy makers have a linex

loss function. The latter assumption implies that the certainty equivalence does not hold

and uncertainty will induce a prudent behavior on the part of the central bank. Thus, in

this set up, minimization of the loss function subject to the IS equation and the Philips

curve lead to an optimal reaction function which respond not only to the deviation of

inflation and output gap from their respective targets but also to changes in the exchange

rate and to the volatility of inflation and output gap. Therefore, within this framework

while we discuss the effect of changes in exchange rate and foreign monetary policy on

the domestic interest rate, we can also examine whether policy makers have asymmetric

response towards inflation and/or output gap across different phases of the business cycles.

We estimate the resulting optimal policy rule from our model using quarterly data for

four major industrialized countries including Canada, Japan, the United Kingdom (UK)

and the United States (US). Our dataset spans the period over 1979q1-2007q4, while for

each country the starting point of the empirical analysis depends on the specific factors

that affected the behavior of each central bank to implement independent monetary policy.

Our empirical findings, based on the generalized method of moments approach, provide

evidence that central banks follow an active monetary policy and control for the impact
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of real exchange rate on output and inflation. We show that policy makers in all four

countries have asymmetric preferences with respect to both inflation and output gap such

that they weigh positive and negative deviations of inflation and output gap differently.

We also find that the domestic interest rate reacts positively with respect to changes in

foreign interest rate.

The rest of the paper is organized as follows: Section 3 presents the model. Section 4

discusses the empirical issues and the data. Section 5 lays out the empirical results while

Section 6 concludes.

2.2 The Model

In this section we present a New-Keynesian model for an open economy whose variants

are implemented in, among others, Ball (1999b), Svensson (2000), Clarida et al. (2001),

and Leitemo et al. (2002). The economic structure we present below differs from that of

Ball (1999b) as our model contains forward looking elements. The structure we present

here is also different from that of Leitemo et al. (2002) as the forward looking element in

their model is embedded only in the behavior of the exchange rate which is determined by

the uncovered interest parity (UIP) condition. Furthermore, different from both studies

we allow the policy makers to have asymmetric response towards inflation and output gap

as their actual levels exceeds or falls short of the corresponding targets. We obtain the

policy rule for our proposed framework by solving an intertemporal optimization problem.

2.2.1 Economic Structure

The dynamics of the open economy are given by the following three equations which

describe the behavior of the output gap, inflation and the exchange rate, respectively.

yt = α1Etyt+1 − α2(it − Etπt+1) + α3qt + εyt (2.1)

πt = β1Etπt+1 + β2yt + β3(Etqt+1 − qt) + επt (2.2)

qt = Etqt+1 − (it − Eπt+1) + (ift − Eπ
f
t+1) (2.3)

Equation (2.1) is an open economy forward looking aggregate demand curve (IS-curve).

At any point in time t, the output gap is denoted by yt, the domestic nominal interest rate

is it and inflation is πt. Expected value of variable xt+1 given the information set at time

t is denoted by Etxt+1. This equation implies that the expected course of real interest

rate has a negative impact on the output gap. Equation (2.1) also assumes that the real

exchange rate, qt, which is defined as the domestic currency price of foreign currency, has

a positive effect on the output gap. εyt depicts demand shocks.

Equation (2.2) describes an open-economy Phillips curve. This equation allows the

price setters to adjust the current prices accounting for future marginal costs. In that
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sense this equation captures the Calvo-type world in which the price adjustment takes

place with a constant probability by each firm in a given period of time. Here, inflation is

a positive function of the output gap. We also assume that the real exchange rate affects

inflation positively as suggested by Svensson (2000) who argues that the current exchange

rate has a direct impact on the CPI inflation rate.3,4 In this equation επt captures cost

disturbances.

Equation (2.3) suggests that the real exchange rate is determined according to the UIP

conditions. The foreign interest rate and the foreign expected inflation rate are denoted

by ift and πft+1, respectively. Hence, the first and the second parenthesized terms capture

the domestic and the foreign real interest rates at time t. Equation (2.3) shows that an

increase in the domestic real interest rate leads to an appreciation of the exchange rate as

the domestic assets become more attractive. This equation also shows that an increase in

the foreign real interest rate will result in depreciation of the exchange rate (due to capital

flight from the home country).

2.2.2 Objective Function

Following the earlier research, we assume that policy makers choose interest rate at the

beginning of time t based upon the information available at the end of the previous period

before the economic shocks are realized. The policy authorities therefore minimize the

following intertemporal loss function:

Min Et−1

∞∑
τ=0

δτLt+τ (2.4)

subject to the dynamics described in Equations (2.1-2.3). In Equation (2.4), δ is the

discount factor and Lt stands for the period t loss function of the central bank. The

objective of the central bank is to choose a path for its instrument, the short term interest

rate, to minimize the expected loss.

Here, we use a linear exponential (linex) loss function that allows policy makers to

weigh positive and negative deviation of output gap and inflation from their respective

targets differently. The linex loss function was proposed by Varian (1974). Subsequently,

Zellner (1986), Granger et al. (1996), and Christoffersen and Diebold (1998) used this

function in the context of optimal forecasting. Nobay and Peel (2003) use the linex loss

function to study optimal policy reaction function under both discretion and commitment.5

3Several other researchers, including Ball (1999b) and Leitemo et al. (2002), relate inflation to changes
in real exchange rate. Ball (1999b) argues that changes in the real exchange rate affects the inflation
rate by the import price pass through mechanism which constitute an indirect impact of exchange rate on
domestic inflation.

4Introducing difference of the expected exchange rates in Equation (2.2) rather than the level of exchange
rate does not change our results.

5Following Nobay and Peel (2003) several researchers have used linex form including Ruge-Murcia
(2004), Ruge-Murcia (2003a), and Surico (2003) among others.
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The loss function that we implement for our purposes takes the following form:

L(πt, yt) =
eµ(πt−π

∗) − µ(πt − π∗)− 1

µ2
+ λ

eγyt − γyt − 1

γ2

where the parameters µ and γ capture any asymmetry in the objective function with

respect to inflation and output gap respectively. The policy preference towards inflation

stabilization is normalized to one and λ represents the relative aversion of the policy maker

towards output fluctuations around its long run equilibrium level. The inflation target set

by the central banker is denoted by π∗. The output gap target is set to zero.

The significance of µ and γ identifies whether the policy makers have asymmetric

response towards inflation and output gap, respectively, in different economic situations.

For instance, a positive value for µ implies that the central bank is more worried about

inflation exceeding the set target level π∗ because the cost of high inflation exceeds that

of low inflation. This is so because if µ > 0 then the exponential term (eµ(πt−π
∗)) will rule

over the linear component. Thus, positive deviations from the inflation target will have

dominant effects on policy makers’ loss function than negative deviations. The reverse is

true if µ < 0. In a similar vein, we can argue that should the central bank place more

weight to output contractions (y < 0), then γ must take a negative value such that the

exponential in the second term (eγyt) plays the dominant role. However if the policy maker

is more worried that the economy overshooting its long run growth (y > 0), then we should

observe a positive value for γ. Hence, this framework can provide us information whether

the business cycle fluctuations have welfare effects beyond the first order or not.

Besides the idea that the policymakers can have asymmetric weights depending on the

stance of inflation and output gap with respect to their targets, the linex function also

allows discretion on the part of the central bank so that higher moments of inflation and

output gap might play an important role in designing optimal policy rules (see Kim et al.

(2005)). Furthermore, the evidence of asymmetry implies that certainty equivalence does

not hold. Thus, uncertainty about inflation and output gap will induce a prudent behav-

ior on the part of the central bank. This is so because uncertainty raises the expected

marginal cost of inflation and output gap from their respective targets. Finally, the model

nests the quadratic preferences as a special case. The loss function reduces to symmetric

parametrization when both µ and γ are equal to zero, which can be empirically tested.
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2.2.3 Solution of the model

To solve the model, we first substitute Equation (2.3) into (2.1) and (2.2). After rearrang-

ing the terms, we obtain:

yt = α1Etyt+1 − (α2 + α3)(it − Etπt+1)+α3Etqt+1 + α3(i
f
t − Etπ

f
t+1) + εyt (2.5)

πt = β1Etπt+1 + α1β2Etyt+1 − [β2(α2 + α3)− β3](it − Etπt+1) (2.6)

+(β2α3 − β3)(ift − Etπ
f
t+1)+β2α3Etqt+1 + β2ε

y
t + επt

Next, we minimize Equation (2.4) subject to (2.5) and (2.6) with respect to the current

interest rate it and obtain the following first order condition:

Et−1
∂L(πt, yt)

∂it
=
−(β2α2 + β2α3 − β3)

µ
Et−1[e

µ(πt−π∗) − 1]−

λ(α2 + α3)

γ
Et−1[e

γyt − 1] = 0 (2.7)

We assume that the demand and supply shocks (εyt and επt ) are normally distributed.

Hence, the exponential terms in Equation (2.7) are log normally distributed with condi-

tional means e[µ(πt|t−1−π∗+µ
2
σ2
π,t)] and e(

γ2

2
σ2
y,t), respectively.6 Here, σ2π,t and σ2y,t denotes

the conditional variance of inflation and output gap, respectively. Thus, we can rewrite

Equation (2.7) in the following form:

Et−1
∂L(πt, yt)

∂it
=
−(β2α2 + β2α3 − β3)

µ
[e(µ(πt|t−1−π∗)+(µ

2

2
)σ2
π,t) − 1]

− λ

γ
(α2 + α3)[e

( γ
2

2
σ2
y,t) − 1] = 0 (2.8)

Linearizing the expression in Equation (2.8) by taking a first-order Taylor approximation

and solving for expected inflation we arrive at:

Et−1πt = π∗−µ
2
σ2π,t −

λ(α2 + α3)

(β2α2 + β2α3 − β3)
[(
γ

2
)σ2y,t] (2.9)

Taking the conditional expectation of Equation (2.6) with respect to information set avail-

able at time t− 1 and substituting Et−1πt into (2.9), we can show that the policy variable

takes the following form:

it = ϕ0 + ϕ1Et−1yt+1 + ϕ2Et−1πt+1 + ϕ3Et−1qt+1 (2.10)

+ ϕ4Et−1(i
f
t − π

f
t+1) + ϕ5σ

2
π,t + ϕ6σ

2
y,t + (error)

Equation (2.10) depicts the forward looking policy rule of the central bank with asymmet-

ric preferences in an open economy framework. The associated coefficients of the equation

are the reduced form parameters (ϕi) which measures the response of monetary policy

6Recall that output gap is a zero mean normally distributed variable so that we have Et−1 exp(γyt) is

equal to e
γ2

2
σ2
y,t .
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with respect to those variables in the policy rule. In particular, given the parameters in

Equations (2.1- 2.4), each coefficient (ϕi) in Equation (2.10), can be written as follows:

ϕ0 =
−π∗

(α2β2 + α3β2 − β3)
, ϕ1 =

α1β2
(α2β2 + α3β2 − β3)

, ϕ2 =
β1 + α2β2 + α3β2 + β3

(α2β2 + α3β2 − β3)

ϕ3 =
α3β2

(α2β2 + α3β2 − β3)
, ϕ4 =

α3β2 + β3
α2β2 + α3β2 − β3

, ϕ5 =
−µ/2

α2β2 + α3β2 − β3

ϕ6 =
−λ(α2 + α3)(γ/2)

(α2β2 + α3β2 − β3)2
.

The policy rule given in Equation (2.10) by construction differs from the standard

Taylor rule on three facets. First, it incorporates the forward looking expressions of output

gap and inflation rate. Second, it introduces exogenous variables such as the exchange

rate and foreign interest rate. Third, it captures asymmetric preferences by accounting

for the volatility of output gap and inflation rate.

2.3 Empirical Issues

The policy rule in Equation (2.10) contains expected future output gap, inflation, the

exchange rate and the foreign real interest rate. We proxy for the expected exchange rate

by using twelve-month ahead forward exchange rates. To compute the expected output

gap and inflation rate we first construct an autoregressive model based upon the Akaike

information criterion (AIC) and Bayesian Information criterion (BIC). The selected model

is then used recursively to compute the h-step ahead out-of-sample forecasts for both

series.7 The foreign real interest rate is calculated as the deviation of nominal interest

rate from the expected inflation rate of the corresponding country.

We estimate Equation (2.10) by implementing the generalized method of moments

(GMM) technique as we replace the unobserved expectations with their forecasts and

the volatility terms with proxies derived from GARCH models as described below. In

doing so we face two major issues concerning the instruments employed in the GMM

estimation. First, the reliability of our econometric methodology depends crucially on

the validity of the instruments which we evaluate by computing the Sargan–Hansen J

test of overidentifying restrictions, asymptotically distributed as χ2 in the number of

restrictions. A rejection of the null hypothesis that instruments are orthogonal to errors

would indicate that the estimates are not consistent. We also test for the presence of the

first and the second order serial correlation so as to determine the correct lag structure

of the instrument set. In each of the models presented below, the Hansen J statistic for

7We compute the h-step ahead forecast for yt implementing ŷt+h|t = φ̂0 +
∑p
i=1 φ̂iŷt+h−i|t where φ̂i

are the estimated coefficients based on in-sample information. Then φ̂i are used to forecast out-of-sample
yt+h.
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overidentifying restrictions and the autocorrelation tests show that our instruments are

appropriate and our models do not suffer from serial correlation problem, respectively.

Another important issue in implementing the GMM methodology is the possibility

that the instruments could be weak; that the instruments could be weakly correlated with

the endogenous variables. Weak instruments will distort the distribution of the estimators

and the test statistics will lead to misleading statistical inference.8 Therefore, for the

reliability of the instrumental variable approach, the instruments should be relevant and

strongly correlated with the endogenous variables. Indeed, a measure of the strength of the

instruments can be determined by the concentration parameter (see Anderson (1977)).9

We can test for weak instruments either by testing for rank deficiency of the concentration

statistic or using the reduced rank regression technique developed by Anderson and Rubin

(1950) which is later extended for the presence of autocorrelated errors by Cragg and

Donald (1997), Robin and Smith (2000), and Kleibergen and Paap (2006). Here, we

follow the latter approach and report the p-values of the reduced rank test suggested in

Kleibergen and Paap (2006).

In view of the fact that our model employs expected variables which are generated

by the use of autoregressive models, one may be concerned about the use of lags of these

series as instruments in estimation. We address these concerns by investigating the forecast

performance of the models that we employed. If the models perform well, lags of the series

can be used as proper instruments in our investigation. We test for forecast rationality

by checking whether the forecast minimizes the loss function of the decision maker. It

should be noted that forecast rationality must be evaluated in consideration of the decision

maker’s loss function. If a forecaster has a quadratic loss function (QLF) then forecast

rationality requires forecast to be unbiased implying that the forecast errors are not on

average significantly different from zero. We test for forecast being unbiased by regressing

the forecast error on a constant.10

To further investigate forecast rationality, we next relax the assumption that the fore-

casters have a QLF and employ another forecast evaluation test which is optimal for any

loss function. We do so by using the density forecast criterion introduced by Diebold et al.

(1998). The density forecast criterion allows us to test whether the forecasting model used

by the researcher is not significantly different from the model that generated the actual

data. If this is the case then obviously the forecasting model will be optimal for any

8For a review of weak instruments see Stock et al. (2002). For the impact of weak instruments on
statistical inference see Mavroeidis (2004) and Hansen et al. (1996).

9Intuitively, it is possible to interpret the concentration statistic as a portmanteau F-test on the signif-
icance of instruments which are regressed on an endogenous variable.

10An h-step ahead forecast is autocorrelated of order h-1. We account for autocorrelation by using the
heteroscedasticity and autocorrelation consistent variance covariance matrix suggested by Newey and West
(1987). In our investigation, we adopt uniform weights.
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loss function. Diebold et al. (1998) show that if a sequence of density forecasts are cor-

rectly conditionally calibrated then the sequence of the probability integral transform of

standardized forecast errors are iid and U(0,1). Berkowitz (2001) suggests an alternative

goodness-of-fit test where under the null, the sequence of standardized forecast errors is

iid N(0, 1).11 However, he also argues that to test for normality more powerful tools can

be employed than testing uniformity.12 Under the null the likelihood ratio test suggested

in Berkowitz (2001) follows a χ2
3. We use both tests but for the sake of brevity we present

results only from the Berkowitz’s test.

Figure 2.1 here

Figure 2.2 here

Figure 2.1 Presents the forecast performance of both output gap and inflation rate.

Panel A of Figure 2.1 show the out of sample forecast of inflation rate of all the countries

whereas panel B displays the forecast series of output gap of all the countries. We provide

the evidence that in both panels, for all cases, forecasts are unbiased in most

of the time periods. The p-value tests the null hypothesis that the forecast

is unbiased. In our context, the forecast is unbiased when the forecast error

is not significantly different from zero. As, in most of the time periods, the

p-value is greater than 0.05, therefore, we conclude that the inflation rate

and output gap series are unbiased. Thus, the naive autoregressive models that

we use for the out-of-sample forecasting exercise do not systematically under-predict or

over-predict the target variables. In Figure 2.2, we present recursive estimates of density

forecasts which implement the naive autoregressive model for all the countries. Panel A

represents the recursive estimates for density forecast of inflation whereas Panel B presents

the density forecast of output gap for all the countries. However, Figure 2.2 shows that the

naive autoregressive models does not represent the true data generating process (DGP)

for the UK and Japan as the density forecast criterion fails either the distributional or

independence assumption. Although such evidence may raise doubts concerning the use

of lags of inflation as an instrument, Kleibergen and Paap (2006) show that lags of these

variables are not subject to the problem of weak identification.

The last issue that needs to be addressed is the volatility terms that appear in Equa-

11The density forecast is constructed as follows. We assume that disturbances are i.i.d. Gaussian and

compute the standardized forecast errors as {z∗t+1} = {( yt+1−ŷt+1

σ̂t+1
)} where ŷt+1 is the one-step-ahead

forecast of yt+1 made at time t and σ̂t+1 is the standard deviation of ŷt+1. Then the probability integral
transform values are given by {zt+1} = {Φ(z∗t+1)} where Φ is the Normal CDF. Here, instead of testing
for uniformity and independence of {zt+1} we follow Clements and Smith (2000) and test for normality
and independence of {z∗t+1}. We do so by employing the Doornik and Hansen (1994) normality test and
the Ljung-Box for autocorrelation test.

12The Berkowitz test is computed as z∗t = c + ρz∗t−1 + εt, LRB = −2[L(0, 1, 0) − L(ĉ, σ̂2, ρ̂)] where
L(ĉ, σ̂2, ρ̂) is the value of the exact maximum likelihood function of an AR(1) model.
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tion (2.10). To generate these two series (inflation volatility and output gap volatility), we

implement a GARCH(1,1) model. As Pagan (1984) and Pagan and Ullah (1988) point out,

the use of generated regressors may lead to some problems in estimation and statistical

inference. According to Pagan (1984) although one may overcome these problems by using

instrumental variables approach, the use of lagged series as instruments may not be possi-

ble when the variable under consideration is a function of the entire history of the available

data. In such cases, Pagan and Ullah (1988) suggest testing the validity of the underlying

assumptions of the model that generates the proxy. For instance, Ruge-Murcia (2003)

follows these suggestions and uses lagged conditional volatility of unemployment obtained

from a GARCH(1,1) model as an own instrument after checking for any remaining het-

eroscedasticity in the standardized squared residual. Here, we, too, follow a similar route.

We generate output gap and inflation volatility measures implementing GARCH(p,q) and

ARCH(p) models after we carefully check whether these models are well specified and

whether there is any neglected heteroscedasticity. We then use the lags of these proxies

as instruments to estimate our model.

2.3.1 Data Sources and Definition of Variables

In our empirical investigation we use quarterly data which cover the period between

1979q1-2007q4. We estimate the policy rule given in Equation (2.10) for Canada, Japan,

the UK and the US where the starting point of the empirical analysis slightly differs for

each country depending on the specific factors that have affected the behavior of each

central bank. To that end, we start the analysis for the UK on 1979q1 as the bank of

England increased its emphasis on controlling inflation. In the case of Japan we begin the

analysis as of 1979q1, too, as she went through a period of financial market deregulation

in 1979 where all capital controls were removed and the Bank of Japan began to use the

interbank lending rate to conduct monetary policy.13 In the case of Canada our starting

date is 1980q1 as the bank of Canada began to float the bank rate. Last, for the US, our

investigation begins as of 1983q4. In fact a large body of literature is devoted to empiri-

cally evaluating the monetary policy of the FED by classifying FED’s policy preferences

for pre and post 1979 to capture the role of Volcker period. However, Surico (2007a) and

Ilbas (2010) argue that the period between 1979–1983 is a period of frequent shifts in the

monetary policy and high uncertainty, and suggest to use the post 1983 period for anal-

ysis. Bernanke and Mihov (1998) also document that during the period 1979q4 -1982q3

the operating procedure of Fed switched from federal funds rate to non-borrowed reserves

targeting. Similarly, Dolado et al. (2004) conclude that post-1983 period portrays the US

policy preferences well. Therefore, we use the data between 1983q4 and 2007q4 to examine

13See Batten (1990).
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the behavior of the FED’s monetary policy.

The end date of our empirical analysis of each country is twelve months prior to the

latest available data due to the fact that our investigation uses four quarter ahead out

of sample forecast of inflation rate and output gap. In our empirical modeling, for each

country we use the growth rate of consumer price index to measure inflation rate. As

suggested in Svensson (2000) all inflation targeting countries in our data-set use CPI

inflation targets. More importantly, direct exchange rate channel is more prominent in

the CPI inflation.14 Leitemo and Söderström (2005) also argue that imported inflation is

considered as one of the components of inflation while setting the target for inflation. We

use log of gross domestic product(GDP) of each country to obtain output gap. There are

two widely used methods to compute output gap namely linear de-trending and Hodrick

and Prescott (1997) filter15.We employ HP filter to generate output gap from log of GDP

for all the countries. The HP filter trend is the potential output level, hence output gap

is the difference between actual and potential GDP.

Following the existing literature, we use the respective short term interest rate of each

country as the policy instrument. As argued by Clarida et al. (1998) that the short term

interest rate is considered as the main operating instrument for monetary policy. More

specifically, they explained, an interbank lending rate for overnight loans made between

banks is used as an policy instruments by most of the central banks. Thus, we use the

overnight interbank rate for the UK and the overnight money market rate for Canada. We

use the call-money rate for Japan as the policy variable as among others Miyao (2002),

Miyao (2000), Kasa and Popper (1997), and Morgan (1993) use call money rate as an

instrument of monetary policy for the bank of Japan. Miyao (2002) prefers call money

rate over monetary aggregates as an appropriate measure of monetary policy because

interest rate is predetermined for monetary aggregates. De Andrade and Divino (2005)

also argue in favor of call rate as a policy instrument. For the US, we use the Federal-Funds

rate as the appropriate policy instruments as argued by researchers including Bernanke

and Mihov (1998), Clarida et al. (1998) and McCallum and Nelson (2000). Since our

model embodies the foreign monetary policy instrument, the US is taken as the foreign

country when we estimate the policy rule for the UK, Canada and Japan. The UK, on

the other hand, is considered as the foreign country when we evaluate the policy rule for

the US. The exchange rate appears in our model within a forward looking framework as

suggested in Svensson (2000).

14The domestic inflation is more relevant when estimating the policy rule for closed economy.
15Taylor (1993)used linear de-trending to compute the output gap series whereas Taylor (1999b)employed

HP filter for computation of output gap series
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The data are collected from the international financial statistics (IFS) database pub-

lished by the International Monetary Fund(IMF). The 12-month forward exchange rate

for the UK is accessed from the bank of England data sources whereas for the US, Canada

and Japan data are obtained form the datastream database.

2.4 Discussion of Results

In what follows, we present for each country several different variants of Equation (2.10)

in Tables2.1–2.4 where we use four quarter ahead forecast horizon to proxy the forward

looking variables. We must note that while our main results are based on the sample

covering the time period 1979q1-2007q4, for robustness check, we also estimate all models

by extending the time period up to 2010q4. Results from this set are reported in Appendix

A of the chapter 2. This exercise allows us to observe the changes in responsiveness of

monetary policy after the time period of 2007.

Table 2.1 presents results for Canada, Table 2.2 for Japan, Table 2.3 for the UK and

Table 2.4 for the US. Each table provides estimates for six different models by following a

specific to general approach. The first column presents results for a simple forward looking

Taylor rule without the assumption of both asymmetry and open economy where policy

makers are assumed to have quadratic loss function. In columns 2, we allow central banks

to follow asymmetric preferences with respect to both inflation rate and output gap but we

assume closed economy. Next, column 3 introduces open economy framework and relaxes

the assumption of asymmetry for both inflation rate and output gap. In column 4 and 5,

we still allow for the open economy framework, while the model in column 4 relaxes the

assumption of asymmetry for inflation only, that in column 5 relaxes the assumption of

asymmetry only for output gap. The last column depicts results for the full open economy

model (Equation (2.10)) which assumes that the policy makers use an asymmetric loss

function with respect to both inflation and output gap.

2.4.1 General Observations

We have three sets of key results. First, we observe that the monetary policy aims to

stabilize the economic environment by reacting to inflationary pressures driven by both

domestic and foreign factors. That is the central bank not only reacts to movements in

expected inflation but also to movements in real exchange rate and foreign interest rate.

Second, we provide empirical evidence that central banks have asymmetric preferences

concerning the positive or negative deviation of inflation and output gap, respectively.

We show that the central bank reacts more strongly to positive deviations of inflation

from its target level than to negative deviations from the target. Furthermore, although

our findings generally confirm that that the policy makers dislike negative output gap,
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there are some instances that the policy makers respond to positive output gap. We

interpret this observation as that the central bank is mainly concerned about inflation

and considers a positive output gap as an indicator of future inflation. Third, our findings

provide evidence towards the importance of the use of an open economy framework in

discussing monetary policy rules. Our claim is not only due to the significance of foreign

policy variables in Equation (2.10) but it is also because of sign changes on the asymmetry

parameters beyond our expectations as the open economy assumption is relaxed.

2.4.2 Bank of Canada

Table 2.1 provides our results for Canada. In all columns of this table, as expected, we

observe that the impact of expected output gap and expected inflation (captured by ϕ1

and ϕ2, respectively) on the monetary policy rule is positive and significant. In fact, the

impact of expected inflation is greater than unity indicating that an increase in expected

inflation leads to a more than one-for-one increase in the nominal interest rate. This find-

ing implies that the model is stable and has a unique equilibrium.

When we turn to inspect the coefficients that capture the presence of asymmetric pref-

erences of the policy makers regarding inflation and output gap, we arrive at the following

observations. In column 2 when we assume a closed economy framework, the coefficient

of inflation volatility is negative and significant. However, the sign of inflation volatility

is not according to expectations. The change in sign may be due to the absence of the

open economy elements from the models, suggesting that the closed economy framework

is not desirable. In column 5, this parameter is significant and positive when we relax the

assumption of asymmetry with respect to the output gap and introduce the open econ-

omy framework. Column 5 and column 6 of Table 1 shows that the coefficient of inflation

volatility (ϕ5) is positive and significant. This observation provides further support to the

view that the bank of Canada (BOC) is inflation averse. This is so because the significance

of inflation volatility implies that the marginal cost of inflation will increase as inflation

deviates from its target level. Thus, inflation uncertainty will induce a prudent behavior

on the part of BOC which sets the interest rate accounting both for the expected inflation

and its uncertainty. In doing so BOC increases nominal interest rate more than is required

by the expected inflation.

As we explore the output gap asymmetry coefficient, results for the closed economy

model presented in column 2, show that the coefficient takes a negative and significant

sign at the 1% level. This is consistent with the view that central banks under-predict

growth to reduce inflationary pressure. However, the evidence of negative ϕ5 points to

the direction of misspecification error which might be driven by the strong assumption of

Canada being a close economy. When we turn to column 4, which relaxes the assump-
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tion of inflation asymmetry, the coefficient of output gap volatility becomes positive and

significant at the 10% level. Although positive output gap asymmetry is not consistent

with our expectations and the significance level is rather weak, this observation provides

support for the view that the main focus of BOC is to keep inflation below target. In this

context, one can argue that BOC considers output gap as a predictor of inflation. In our

final specification, in column 6, we observe that the coefficient of output gap volatility is

positive but insignificant.

We next focus on the impact of real exchange rate and that of real foreign interest

rate on domestic monetary policy. The table shows that the coefficient associated with

real exchange rate is negative (ϕ3 < 0) and that with the real foreign interest rate is

positive (ϕ4 > 0) in all the specifications presented in columns 3-6. These two coefficients

play a key role in identifying the type of policy rule pursued by the central bank (i.e.

active or passive). To have the above sign structure, inspecting the components of ϕ3 and

ϕ4, we should have (α2β2 + α3β2 − β3) > 0, (α3β2) < 0 and (α3β2 + β3) > 0. These

requirements suggest that the central bank follows an active monetary policy where the

nominal interest rate must increase more in proportion to the expected inflation which

changes as a consequence of movements in the foreign policy variables. In particular, note

that the first term of (α2β2 +α3β2−β3) captures the reaction of domestic interest rate to

expected inflation and to output changes. The remaining two terms reflect the impact of

real exchange rate changes on output gap and inflation. The positive sign associated with

the third component above ((α3β2 + β3) > 0), which appears as the numerator of (ϕ4),

implies that the total impact (current and expected) of real exchange rate on inflation is

positive. However, to obtain (α2β2 + α3β2 − β3) > 0 we must have (α2β2) > (α3β2 − β3).

Thus, an expected depreciation will increase current and expected inflation but it will

also increase nominal interest rate above expected inflation. This is consistent with the

coefficient of expected inflation being above one in all columns (ϕ2 > 1)

In conclusion, we provide results for both the closed economy framework ( where the

model lacks the asymmetry effects as well as the open economy elements ) and the open

economy model where central bank pertains asymmetric references with respect to both

of its target variables. In that sense the results of former case presents the standard model

where policy makers use quadratic loss function. Although the coefficient estimates appear

to be reasonable, the standard model is misspecified in the light of the Wald tests which

verifies joint significance of inflation and output gap volatilities as well as open economy

variables.
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2.4.3 Bank of Japan (BOJ)

We, next, focus on the estimates for the bank of Japan which are presented in Table 2.2.

In line with those findings reported in the literature, the coefficients of both expected

inflation and expected output gap are positive and significant in all the specifications pre-

sented in Table Table 2.2.16 Similar to BOC, the monetary policy adopted by BOJ satisfy

the Taylor principle as the estimated coefficient of expected inflation is greater than 1

(ϕ2 > 1). This finding implies that the model is stable and has a unique equilibrium.

When we turn to the influence of output gap volatility and inflation volatility on the

policy measure (presented in columns 2-5), we find that both measures exert a significant

impact. Interestingly, we should note that BOJ reacts more when output overshoots its

long run target than when it falls short of it, as captured by the positive sign of the output

gap volatility coefficient. Hence, the interest rate is tightened more in periods of expansion

as compared to easing of the interest rate when output contracts by the same magnitude.

We argue that this observation is an outcome of the fact that Japan experienced a stag-

nant economy in most of the period under investigation. Particularly, results in column

2 for the closed economy case show that BOJ under-predict both expected inflation and

output growth but at the same time BOJ follows an active monetary policy by fighting

rather than accommodating inflation. This is consistent with the inflation averse policy

followed by the BOJ prior to the financial crisis in the early 90s and after the long-lasting

stagnation following the burst of the real estate bubble.17

Different from the case of Canada, in column 2, we observe that inflation volatility

exerts a negative and significant effect on the policy rule . These findings suggest that an

increase in inflation volatility leads to a reduction whereas an increase in output volatility

causes an increase in the interest rate. However, it should be noted that the total impact

of inflation and output gap uncertainty on nominal interest rate is positive (ϕ5 +ϕ6 > 0).

Considering the implication of the estimates on the parameters of the model given in Equa-

tions (2.1-2.10), we argue that policy makers at BOJ are more concerned about inflation

undershooting its target than overshooting it. In column 4 when we relax he assumption

of inflation uncertainty and introduce an open economy framework, we see that the asym-

metry parameter of output gap is still positive. These findings can be explained taking

into account the long deflationary period that Japan went through in the 90s which still

16See for instance (Miyao, 2000, 2002) and Clarida et al. (2000).
17BOJ followed an expansionary monetary policy in the late 80s to mitigate the effects of Yen’s ap-

preciation. The expansionary monetary policy accompanied with current account surplus led to excess
liquidity in the financial system fueling asset prices. To counteract inflationary pressure the BOJ doubled
the bank rate. The increase in the bank rate led to the burst of assets prices and increase the number of
loan defaults. The by-product of loan defaults was a long-lasting stagnation.
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affects her economy.18 In particular, Miyao (2000) argue that the Japanese economy ex-

perienced a stagnation after the bubble economy burst.19 This led to a substantial decline

in the short term interest rates such as the discount rate and call money rate to push the

economy back to its long run track. In column 5, once we exclude the impact of output

gap volatility the asymmetry parameter of inflation turns positive (ϕ5 > 0).

Moving on to explore the impact of the real exchange rate and the real foreign interest

rate on domestic monetary policy, presented in columns 3-6, we see that the coefficients

associated with these two variables (ϕ3 and ϕ4, respectively) take the expected signs as

they are both positive and significant at the 1% level in all models. This finding suggests

that currency depreciation will lead the central bank to increase the interest rate as a loss

in the value of the currency induces inflationary pressures on the economy. Likewise, the

domestic interest rate follows the movement in the foreign interest rate.

It is also worth noting that we conduct the Wald test and verify that inflation and

output gap volatility coefficients are significantly different from zero. This observation sug-

gests that the Bank of Japan has asymmetric preferences towards movements in inflation

and output. Also, we perform a Wald test to test the significance of open economy vari-

ables. The Wald test verifies the significant role of exchange rate and foreign interest rate.

Thence, we can conclude that BOJ conduct monetary policy by taking into consideration

the international factors.

2.4.4 Bank of England (BOE)

Table 2.3 presents our results for the UK. In columns 1-6, we see that the impact of ex-

pected output gap and expected inflation is positive. In particular, the impact of expected

inflation on interest rate is positive (ϕ2 > 1) and stronger than that of the expected output

gap suggesting that the model is stable and has a unique equilibrium.

We next observe that the impact of inflation and output gap volatility on domestic

interest rate is positive and negative, respectively. The estimates appear as statistically

significant in all the models presented in column 2-column 6. Accounting for the effects

of uncertainty concerning the state variables, it appears that the BOE tend to adopt a

precautionary policy regarding the behavior of inflation as the signs associated with ϕ2

and ϕ5 are both positive and greater than one. While at the same time BOE, as depicted

by the coefficients ϕ1 and ϕ6 under-predict output gap and respond less than one-for-one

to output gap changes. In this context, our findings suggest that the BOE will increase the

interest rate above the conditional mean of inflation but the under-prediction of output-

18Bec et al. (2002) found similar results for France where the deflationary pressures were weighted more
than the inflationary pressures.

19Japan experienced a bubble economy following the strong economic boom in the late 80s as the asset
prices increased substantially.
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growth will lead to low interest rate which is preferred in periods of recession. In doing so,

we argue that the BOE aims to strengthen its anti-inflationary credibility. Thus, although

the BOE is inflation averse, it responds to real economic activity independently of its

concerns about inflation. In all the models, the sign of output gap asymmetry is positive

at the 10% significance level. Although this observation might be due to the restrictions

imposed on the model, it is possible that the positive sign is reflecting that the BOE use

output gap as an indicator to forecast inflation.

As we inspect the effects of the exchange rate and the foreign interest rate, column 3-

column 6, we see that the results are similar to that of Japan. The expected real exchange

rate has a positive and sizable impact on the UK interest rate (ϕ3 > 0) reflecting the

response of monetary policy to changes in real exchange rate. In addition, the real foreign

interest rate has a positive (ϕ4 > 0) and significant impact on domestic interest rate.20

Yet, the size of this coefficient is smaller than that associated with the real exchange rate.

In that context, the results presented in column 6 provide further support to the view that

the BOE accounts for changes in the monetary policy of the US.

The Wald test statistics show that inflation and output gap volatility coefficients are

significantly different from zero providing further evidence that the Bank of England has

asymmetric preferences. Also, the Wald test confirms the significance of exchange rate

and foreign interest rate. Therefore, we have significant evidence in favor of open economy

framework for the UK monetary policy formation.

2.4.5 The Federal Reserve (FED)

Last, we focus on results for the US which we report in Table 2.4. Overall, signs of the

associated variables estimated for the US are similar to that of Canada. In column 1- col-

umn 6, we find that expected output gap (ϕ1) and expected inflation (ϕ2) have a positive

impact on the domestic interest rate. However, in several models, the coefficient associated

with the expected inflation is low, in the vicinity of unity or smaller, except for the model

where we assume closed economy with quadratic loss function. Although the coefficient

estimates of the expected inflation that we report in columns 1-6 could raise questions

about the stability of the model, arguments carried out in Lubik and Schorfheide (2004)

as well as in Bullard and Mitra (2002), and Lubik and Marzo (2007a) point out that equi-

librium is a system property which depends on the linkages between the parameters of the

Taylor rule and of the structural parameters.21 Thus, a low inflation coefficient should

20Similar findings are documented by Clarida et al. (1998) regarding the effect of German interest rate
on the UK monetary policy when Germany was used as the foreign country. Clarida et al. (1998) show
that one percent increase of German interest rate induce 60 basis points rise in the British interest rate.

21Clarida et al. (2000) show that if the policy rule includes only current level of inflation (i.e. it =
ϕ0 + ϕ2Etπt) then determinancy requires ϕ2 > 1. Alternatively, Bullard and Mitra (2002) and Lubik and
Marzo (2007a) show that if the policy rules includes forward looking values of inflation and output gap (i.e.
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be interpreted with caution and should not be taken as evidence for indeterminacy. More

concretely, in column 1, the coefficient of expected inflation is marginally above one but

the total response of interest rate to inflationary pressure is well above one (ϕ2 +ϕ5 > 1);

there is no evidence of indeterminacy in the full model. However, in columns 3-5 where

we gradually remove the assumption of asymmetry, the coefficient associated with infla-

tion variability is estimated to be insignificant while the coefficient of expected inflation

is below one. In this case, one can suggest that there is evidence of indeterminacy which

might be an outcome of specification error.

Next, we inspect the coefficients that capture the presence of asymmetric preferences

of the policy makers regarding inflation and output gap. The estimates are presented in

column 2 and column4-column6 of Table 2.4. In column 2 when we have a closed economy

model, we observe that the signs for both asymmetries are opposite to our expectation. In

column 4, where we incorporate international factors into our specifications and exclude

the role of inflation asymmetry, we observe a negative coefficient of output gap volatility.

This finding suggests that FED is more cautious about the negative output gap. however,

when we relax the assumption of output gap volatility and maintains the open economy

scenario, we still observe that the unexpected response of central bank towards inflation

variation around its target level. These findings may indicate the specifications error.

In column6 of this Table, we find that both measures exert a significant impact on the

policy rule pursued by the FED with expected signs. We observe that inflation volatility

has a positive impact on the domestic interest rate suggesting that the FED increases the

interest rate to achieve a stable economic environment. Moreover, as in the earlier cases,

the positive and statistically significant association between the volatility of inflation rate

and the domestic interest rate suggests that the response of the FED is asymmetric with

respect to changes in the inflation rate. In other words, the FED puts more weight to

the upward swings of inflation from the target than the downward swings. This finding is

consistent with earlier research such as Dolado et al. (2004) and Bec et al. (2002) among

others who provide an evidence in favor of asymmetric preference of central bank with

respect to inflation rate for the post 1979 period. These authors argue that a nonlinear

policy rule for the post 1983 period reasonably portrays the US policy preferences.22

We also find that the volatility of output gap is negative and statistically significant

at the 1% level. This indicates that the FED is more responsive to output contractions

rather than to expansions similar to the case of UK and Canada. In other words, output

it = ϕ0 +ϕ1Etyt+1 +ϕ2Etπt+1) then determinacy is achieved if 0 ≤ ϕ1 <
1
α2
, and max{1− 1−β

β2
ϕ1, 0} <

ϕ2 < 1 + 2 1+β
β2α2

− 1+β
β2

holds.
22However, we must also note that Surico (2007a) and Surico (2003) document a statistically insignificant

response of federal funds rate towards squared inflation and conclude that the preferences of central bank
towards inflation are not asymmetric.
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contractions induce relatively more loosening of the interest rate than an increase in inter-

est rate induced by output expansions of the same size. This finding is in line with Surico

(2007a) who argues that an output contraction is more important than an expansion in

implementation of asymmetric monetary policy rules for the US.

When we inspect the coefficients associated with the exchange rate and the foreign

real interest rate (ϕ3 and ϕ4, respectively), we see that these coefficients follow the pat-

tern that we observed for Canada (column 3-6).23 The coefficient associated with the real

exchange rate is negative (ϕ3 < 0) and that with the real foreign interest rate is positive

(ϕ4 > 0). Similar to the case of Canada, these findings suggest that the FED follows an

active monetary policy where the nominal interest rate increases more than in proportion

to an increase in the expected inflation which changes as a consequence of movements

in the foreign policy variables. Thus, an expected depreciation will increase current and

expected inflation but it will also increase nominal interest rate above expected inflation.

Overall, although the closed economy model results are reasonable in terms of the sign

and size of the coefficient estimates (the coefficient of expected inflation is positive and

greater than 1), the model is too naive as the Wald tests reject the null that the coefficients

of asymmetric preferences and of foreign variables are not significantly different from zero.

2.5 Conclusions

In this paper we construct an analytical model to investigate the optimal policy rule of

a central bank with an asymmetric loss function subject to an open economy forward

looking New Keynesian macroeconomic framework. We then estimate the policy rule that

we obtain from the above framework along with a number models which we formulate

imposing restrictions on the original model. The empirical investigation is carried out on

quarterly data for four industrialized countries—Canada, Japan, the UK and the US. The

data cover the period between 1979q1-2007q4.

Our empirical results can be summarized in three main categories. First, we provide

evidence that the central banks in our study follow an active monetary policy as they

account for the impact of foreign policy variable. More concretely, central banks carefully

consider the impact that real exchange rate have on output and inflation while setting

the interest rate. Our investigation also provides evidence that central banks increase the

nominal interest rate more than one-for-one to a change in expected inflation. Overall,

estimated coefficients provide support that the models we estimate are stable except for

some cases when we discuss the behavior of the FED where the estimated expected inflation

coefficient is less than one. Although this could be a result of the omitted variables in that

specific case, some researchers (including Lubik and Schorfheide (2004), Bullard and Mitra

23Recall that we take the UK as the foreign country for the case of US.
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(2002), and Lubik and Marzo (2007a)) point out that equilibrium is a system property

which depends on the interrelations between the parameters of the Taylor rule and those

of the structural model.

Second, we find evidence suggesting that all central banks whose policy choices we

investigate in this paper have asymmetric preferences for their target variables. In par-

ticular, we find that the inflation volatility coefficient is positive suggesting that central

banks change the nominal interest rate more when inflation exceeds the target level rather

than when it falls below. When we look at the presence of asymmetry associated with the

output gap we are confronted with differing reactions. Although we expect to see that a

central bank should be more concerned when output gap falls below the target, for some

cases we find that the central bank can be more reactionary during periods of positive

output gap. We address this observation arguing that the central banks may be inflation

averse and may take a positive output gap as an indicator of future inflation. Third, in

line with the first finding, foreign variables have a significant impact on domestic mone-

tary policy. This view is based not only on the significant effect of the real exchange rate

and foreign real interest rate on domestic monetary policy but also on the closed economy

models. We find that once we relax the open economy assumption, the sign of asymmetry

parameters change providing evidence of specification error which might be driven by an

omitted variable problem.

Overall, the findings we present here help us better understand the behavior of policy

makers who have an asymmetric response towards inflation and/or output gap under an

open economy framework. Yet, for future research, we believe that it would be fruitful to

model and empirically investigate the interest rate smoothing hypothesis by implementing

a framework as in this paper. We also think that expanding the set of countries under

investigation can broaden our understanding. Finally, in line with the recommendation of

Lubik and Schorfheide (2007) one can pursue a multivariate approach by estimating the

entire structural model using system GMM. Although, Lubik and Schorfheide (2007) argue

that full-information maximum likelihood exploit cross-equation restrictions, Ruge-Murcia

(2007a) show that limited information procedures are more robust to model mispecifica-

tion. Ruge-Murcia (2007a) show that GMM and simulated method of moment deliver

more precise estimates than maximum likelihood. Thus, it would be useful to extend the

current study employing system GMM approach to account for the recommendations of

both Lubik and Schorfheide (2007) and Ruge-Murcia (2007a).
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Figure 2.1: Testing the Forecast Bias
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Figure 2.2: Recursive Forecasts
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Appendix A: Monetary Policy Rules Estimates for the time
period 1979-2010
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Chapter 3

Does the Source of Uncertainty Matter for the TFP
Growth?: Evidence from Emerging Economies

3.1 Introduction

Uncertainty has become one of the central issues in both theoretical and empirical lit-

erature since Friedman (1977) documented that high inflation not only leads to high

uncertainty but also dampens growth through allocative inefficiency. A significant con-

tribution to the empirical literature in this field is by Kydland and Prescott (1982) and

Long Jr and Plosser (1983). They present the idea of the unification of business cycle

models and growth theory to investigate the factors behind economic fluctuations. Both

of these studies conclude that technological shocks are the main driving force of output

fluctuations. In a similar vein, King et al. (1988) merge the endogenous growth and real

business cycle models and report that short-run fluctuations in production may impact

the path of output for a long time period.

Thenceforth, a considerable attention has been paid to explore the link between macroe-

conomic uncertainty and the state of the economy measured by output growth (See, e.g.,

Abel (1983), Kormendi and Meguire (1985), Levine and Renelt (1992), Gregory and Head

(1999), Ventura and Zeidan (2000), and Fountas and Karanasos (2007) among others).

However, the existing empirical findings are conflicting. For instance, Ramey and Ramey

(1995) explain that advanced commitment of firms to their technology leads to a nega-

tive relationship between growth and volatility. Their finding is based on the argument

that in post volatility times, firms produce at lower level. Judson and Orphanides (1999)

stress upon the significance of time dimension while examining the link between volatility

and growth. Grier and Perry (2000) point out that the nature of shocks, such as real or

nominal, plays an important role while examining their impact on growth. Furthermore,

Imbs (2007) argues that the impact of uncertainty on growth depends on many factors.

For instance, the irreversibility of investment results in a negative relationship between

business cycle uncertainty and endogenous growth. In contrast, precautionary savings and

high returns to investment may help in establishing a positive link between growth and its

volatility. On the other hand, a large number of empirical studies report that endogenous

growth models potentially maintain both positive and negative relationship depending on

the nature of shocks and model parametrization (See, e.g., Aghion et al. (1998), Jones

et al. (1999), Turnovsky and Chattopadhyay (2003), and Blackburn and Pelloni (2004)

among others).

The studies focusing on the aggregate level relationship only present the tip of the
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iceberg and may not scrutinize the underlying mechanism between growth and volatility.

As a consequence, the focus of the empirical research has been shifting from aggregate

output growth to the components of growth such as total factor productivity (hereafter

TFP) growth.1 Thus, several recent studies such as Comin (2006), Aghion et al. (2009),

and Oikawa (2010) among others have emphasized the determinants of labor productivity

or TFP growth. Also, most recent studies have explored this relationship either at indus-

try or at firm level (See, e.g., Imbs (2007) and Comin and Mulani (2009)).

On theoretical grounds, Comin (2000) is the first who have systematically formalized

the relationship between productivity and volatility. He explains that uncertainty leads

to adoption and diffusion of new technologies and accelerates TFP growth by shifting the

investment from inflexible capital to flexible capital. Oikawa (2010) also establishes the

theoretical basis for the relationship between productivity and volatility. In contrast to

Comin (2000), Oikawa (2010) presents a different mechanism through which uncertainty

affects the growth. He base his argument on firms’ optimization behavior and concludes

that uncertainty enforces firms to invest more in R&D activities which results in knowl-

edge accumulation. Thus, the economy experiences a low level of productivity growth in

the short-run but enjoys the benefit of high productivity growth in the long run.

On the empirical side, Dixit and Pindyck (1994) find that uncertainty associated with

government expenditures affect productivity growth negatively through investment chan-

nel. Leahy and Whited (1996) argue that uncertainty affects the efficiency of capital.

However, the extent of the impact depends on whether the capital is flexible or inflexible.

More recent contributions include Miller and Upadhyay (2000) and Berument et al. (2011).

Another strand of empirical literature focuses on the decomposition of aggregate volatil-

ity of growth into different components such as sector and country level.2 In this regard,

the recent contribution is made by Koren and Tenreyro (2007). Specifically, they decom-

pose aggregate volatility into sector and country level, and also incorporate the covariance

between country and sector specific shocks. Other studies such as Kose et al. (2003) and

Imbs (2007), however, examine how uncertainty emanating from different sources such as

sectoral, country, regional, and global level is contributing to growth at aggregate and

sector level.3

1There are two important components of growth explained by endogenous growth models namely,
TFP growth and factor accumulation growth. As it is argued by Solow (1956) that a significantly large
proportion of output growth is based on TFP while factor accumulation attributes only a minor share.
Similarly, Hall and Jones (1999) explain that the cross national differences in human capital are not because
of the per capita income but the main source of these differences is TFP growth. Moreover, Ramey and
Ramey (1995), too, show that the volatility affects growth through the low technology adoption and not
through accumulation of capital

2The earlier studies include Stockman (1988), Costello (1993), and Norrbin and Schlagenhauf (1990).
These studies use factor augmented model to decompose the components of aggregate volatility

3Kose et al. (2003) analysis is based on aggregate growth whereas Imbs (2007) focuses on the manufac-
turing industries value-added growth
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Decomposing uncertainty into different categories helps us to understand the underly-

ing mechanism generating uncertainty and to formulate a policy to overcome its impact.

Therefore we investigate how uncertainty stemming from different source determines the

TFP growth of manufacturing industries of sixteen emerging economies covering the time

period 1971-2008.4 We use the ratio of industry output to total manufacturing sector out-

put, ratio of country investment to its GDP, and world inflation rate to generate a proxy

for industry specific, country specific, and global uncertainty, respectively. To generate

a proxy for uncertainty, we estimate a first order autoregressive model for each type of

uncertainty separately for all industries in the sample countries and over the selected time

period. Next, we use translog production function to compute the TFP growth which is

considered more efficient in contrast to the Cobb-Douglas production function. Finally,

to examine the impact of each type of uncertainty on the TFP growth, we employ the

dynamic panel data estimator: robust two-step system GMM approach.

Our study differs from the existing empirical work in various aspects. To the best of

our knowledge, there is no existing empirical work to analyze how and to what extent

uncertainty impacts TFP growth, particularly for manufacturing industries of developing

countries.5 We categorize uncertainty originating from industry, country, and world level

and estimate the individual impact of each source of uncertainty on TFP growth. By

doing so, we differ from Imbs (2007) in two aspects: (a) we estimate the impact of each

type of uncertainty individually, (b) we conduct our analysis for the TFP growth instead

of output growth of manufacturing industries. Therefore, we would be able to determine

the unique impact of each source of uncertainty in contrast to their combined impact on

the TFP growth.

In addition to scrutinize the direct impact, we also examine the conditional impact of

uncertainty on the TFP growth. This is done by identifying the impact of uncertainty

through other factors such as industry size, factor intensity level of industries, and the level

series of each type of uncertainty. Therefore, we not only present the empirical evidence

on the direct (own) impact but also on the indirect (conditional) impact of uncertainty

emanating form different sources on the TFP growth. Finally, we present the total im-

pact of each type of uncertainty on TFP growth by combining the direct and conditional

impact. This exercise provides a detailed evidence on the TFP-uncertainty link which has

been overlooked by the existing literature.

Our findings suggest that uncertainty plays a significant role in determining the TFP

4The countries which we use in our empirical investigation are: Chile, Chez Republic, Cyprus, Egypt,
Hungary, India, Indonesia, Malaysia, Malta, Mexico, New Zealand, Philippines, Poland, Singapore, Sri
Lanka, Turkey.

5However, there is some evidence showing the impact of different forms of volatility for growth both at
aggregate and disaggregate levels.
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growth. Moreover, the impact of each type of uncertainty on the TFP growth differs from

each other. Specifically, we find that uncertainty associated with industry output and

country investment affects the TFP growth positively. This indicates that higher industry

and country specific uncertainty leads to an increase in the TFP growth. This finding is

consistent with Imbs (2007) and Kose et al. (2003). In contrast, we provide an evidence

of a negative impact of global uncertainty on the TFP growth which suggests that higher

world inflation imposes a cost on the TFP growth.

We also present estimates on the conditional impact of each type of uncertainty on the

TFP growth. We provide evidence that the industry specific uncertainty impact becomes

stronger whereas the impact of country and global level uncertainty becomes weaker as

the industry size increase. Turning to the conditional impact through factor intensity,

the industry and country specific uncertainty has stronger impact for capital intensive in-

dustries whereas the negative impact of global uncertainty strengthens for relatively high

capital intensive industries. Finally, the positive impact of industry specific uncertainty

becomes weaker as industry output increases. Similarly, country specific uncertainty ex-

hibits a weaker impact at higher level of country investment. Also, we find that there is a

decrease in the negative impact of world uncertainty at higher levels of world inflation rate.

The rest of the paper is structured as follows: Section 3 discusses the existing em-

pirical literature and how our study differs from the existing research on the impact of

uncertainty on the TFP growth. Section 4 presents the empirical model. Section 5 explains

the econometric framework to carry out empirical estimation, data and data sources, vari-

able computation, and summary statistics. Section 6 is devoted to the discussion of the

empirical results. Finally, Section 7 concludes.

3.2 Literature Review

As pointed out by Solow (1956), a significant contribution to output growth is attributed

to the TFP growth. Later, Hall and Jones (1999) also argue that TFP growth is the main

driving force of cross country income differences. However, there is little empirical work

which explores the role of uncertainty in TFP growth is only trivial.

Several researchers have investigated the factors that affect the TFP growth. For in-

stance, Harris et al. (1999) claims a positive effect of human capital, innovations and trade

openness whereas a negative impact of inflation on the TFP growth. Miller and Upadhyay

(2002) also report a negative impact of export volatility and inflation whereas a positive

impact of trade openness on TFP growth. In addition, they show that the impact of R&D

is conditional on the market structure and technology regime. In a same vein, Scarpetta

and Tressel (2002) conclude that the impact of R&D expenditures on the TFP growth
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is conditional on the market structure and technology regimes. Aiyar and Feyrer (2002)

provide an evidence of a positive relationship between human capital development and

the TFP growth. Cororaton et al. (1999) and Ferrett (2004) show a positive relationship

between foreign direct investment and the TFP growth. Relatively more recently, em-

pirical studies conclude financial depth as an important determinant of the TFP growth

(See, e.g., Tadesse (2005), Jeong and Townsend (2005), Beck et al. (2000), and Akinlo

(2005)). Jajri and Ismail (2007) state that capital-labor ratio is an important factor for

labor productivity growth as it measures the level of technology in an industry.

There are only few studies that investigate the impact of uncertainty on TFP growth.

For example, Comin (2000) argues that a rise in uncertainty induces the replacement of old

capital with flexible capital (such as information technology capital) which in turn results

in higher productivity growth after the so called productivity slowdown. The finding is

based on the assumption that productivity growth is higher with flexible capital relative

to the old capital.

Aghion et al. (2009) test the impact of uncertainty, measured as exchange rate volatil-

ity, on the TFP growth through financial development. Their findings suggest that the

impact of exchange rate uncertainty depends on the level of financial development in a

country. Particularly, they show that the negative impact of exchange rate uncertainty

weakens as the level of financial development increases. Similarly, Comin and Mulani

(2009) analyze the productivity growth at the aggregate and firm level by presenting the

evolution of the first and the second moments of productivity growth through the endoge-

nous growth model. They report an ambiguous impact of R&D innovations on the TFP

growth. However they observe a decline in the aggregate volatility in response to R&D

innovations.

Oikawa (2010) studies the relationship between firm-level uncertainty and aggregate

TFP growth for manufacturing sector of the USA in the absence of macroeconomic uncer-

tainty. He argues that uncertainty stimulates R&D activities which lead to the accumu-

lation of knowledge capital and delivers a positive impact on output growth in the long

run. The short-run impact, however, remains negative. At the aggregate level, Berument

et al. (2011) measure macroeconomic instability by estimating volatilities of inflation, trade

openness, and financial market depth. They find a positive and statistically significant

impact of inflation uncertainty on the TFP growth, whereas the impact of uncertainty in

financial depth on the TFP growth is negative. Distinctively, Gregory and Head (1999)

empirically evaluate the common and country specific components of TFP growth, invest-

ment, and current account by using dynamic factor model for G7 countries. The common

and country specific fluctuations postulate a positive impact on TFP growth in all coun-

tries with few exceptions.
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There is lack of evidence on the impact of uncertainty on TFP growth, particularly

at industry and firm level. However, there is large number of studies which examine the

impact of uncertainty on growth. ( See, e.g., Ramey and Ramey (1995), Lee (2010),

Blackburn and Pelloni (2004), Bredin and Fountas (2009), and Ventura and Zeidan (2000)

among others). Other studies examine the multi-faceted relationship between growth and

volatility by investigating the role of different types of uncertainty in determining output

growth, both at aggregate and sector level. For instance, Kose et al. (2003) and Koren

and Tenreyro (2007) investigate the impact of different factors such as sector, country, and

regional uncertainties on the output growth volatility. On the other hand, Imbs (2007)

examine the impact of uncertainty originating from different sources on manufacturing sec-

tor value added growth. He shows that there is a positive impact of sectoral uncertainty

on sector value added growth and a negative impact of aggregate volatility on aggregate

growth.

The review of the existing empirical work suggests that most of the research is still

confined to empirically evaluating the determinants of TFP growth. There is little evi-

dence on how uncertainty affects the TFP growth. We aim to investigate the link between

different types of uncertainty and TFP growth of manufacturing industries of emerging

economies. In this regard, we not only estimate the direct but also the conditional impact

of each type of uncertainty on TFP growth. However, we know relatively less how uncer-

tainty affects the TFP growth particularly at sector level. Therefore, our study aims at

bridging this gap in the existing empirical literature by exploring the nature and origin of

potential uncertainties affecting the TFP growth.

3.3 The Model

As mentioned earlier, our study has a broader perspective as we investigate the link

between different measures of uncertainty and the TFP growth. Our work is distinct on

the following grounds. First, we aim to empirically evaluate the role of different levels

of uncertainty for the TFP growth.6 Second, we incorporate each source of uncertainty

individually to capture their unique impact on the TFP growth. Third, we also estimate

the conditional impact of each source of uncertainty through different factors affecting the

TFP growth. Fourth, we focus on a sample of emerging economies which is not considered

by the researchers so far. The main reason for selecting this sample is that emerging

economies in our sample are rapidly growing and liberalizing to achieve a compatible

economic system.7 Finally, differing from the existing literature, we employ robust two-

6 There is enormous number of studies focused on the link between growth and volatility at macro and
micro level see e.g., Ramey and Ramey (1995), Kose et al. (2003), Imbs (2007), and Koren and Tenreyro
(2007) among others.

7In contrast, most of the studies focus on the OECD countries whereas the OECD countries have
already reached to the steady state level of development where their growth rate is stable. Therefore there
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step system GMM which allows us to account for endogeneity and the problem of generated

regressors.

3.3.1 Baseline Specification

We use global, country, and industry specific uncertainty measures to carry out our inves-

tigation. The empirical model takes the following form:

TFPij,t = φ0 +φ1TFPij,t−1 +βg(σ
2
π)t−1 +βc(σ

2
I )i,t−1 +βs(σ

2
y)ij,t−1 +ψXij,t+fij +ζt+εij,t

(3.1)

where i , j and t denote countries, industries, and time indicators. TFPij,t indicates

the total factor productivity growth in industry j of country i and at time t. The lagged

dependent variable (TFPij,t−1) accounts for the persistence of the TFP growth among

industries. (σ2π)t captures global uncertainty which is constant across all the countries

and industries, (σ2I )i,t refers to country specific uncertainty which remains constant across

industries in country i, and (σ2y)ij,t denotes the industry specific uncertainty affecting in-

dustry j in country i at time t. Xij,t and Cj,t represents industry specific and country

specific control variables, respectively. β′s measure the impact of global, country and in-

dustry specific uncertainty on TFP growth. The subscripts s, c, and g refers to industry

specific, country specific, and global uncertainty. These denominations through out the

analysis will remain same to indicate industry, country, and global uncertainty. εijt is the

disturbance term.

To proxy the uncertainty at industry level, existing studies have used manufactur-

ing sector value added, output growth, and R&D investment (See, e.g., Imbs (2007), and

Moomaw and Williams (1991) among others). Since UNIDO data do not provide any infor-

mation on sales of industries whereas R&D data are not available for emerging economies,

we use industry output to compute industry specific uncertainty.8

For country specific uncertainty, Kose et al. (2003) suggest various factors such as

aggregate investment level, output growth, size of country relative to world (measured

country’s GDP relative to the US GDP), and the monetary policy of the respective coun-

try. However, Ramey and Ramey (1995) instrumented output volatility by fiscal policy

shocks. Similarly, Fatás and Mihov (2003) argue that aggregate shocks mainly arise from

exogenous fiscal policy shocks. Moreover, Koren and Tenreyro (2007) compute various

sources of volatility in GDP by the breakdown of the value added per worker of country

in to the sum of value added of different sectors. We use country’s investment ratio to its

may not be enough margin for the uncertainty to impact their TFP growth.
8We also proxy industry specific uncertainty by using the ratio of industry value added to total man-

ufacturing value added as a robustness check and results remain same. Both, industry output and value
added, measure the impact of economies of scale on the TFP growth. See e.g. Moomaw and Williams
(1991).

47



GDP to proxy country specific uncertainty.

Turning to the global uncertainty, Kose et al. (2003) suggested wold inflation, world

oil prices and the output of major oil exporting countries as the potential source of uncer-

tainty for output growth of a country. We, here, employ growth rate of world CPI to to

generate a proxy for global uncertainty.

We also incorporate the underlying series of each type of uncertainty in Equation

(3.1). Equation (3.1) takes the following form:

TFPij,t = φ0 + φ1TFPij,t−1 + βπ(π)t−1 + βg(σ
2
π)t−1 + βI(I)t−1 + βc(σ

2
I )i,t−1

+ βy(y)ij,t−1 + βs(σ
2
y)ij,t−1 + ψXij,t + fij + ζt + εij,t (3.2)

where βπ, βI , and βy, measure the impact of world inflation rate, country investment

ratio to GDP, and industry’s output ratio to total manufacturing sector output on the

TFP growth, respectively.

3.3.2 Sources of Uncertainty and Conditioning Factors

This section describes the uncertainty impact on the TFP growth through other factors

affecting the TFP growth. By doing so, we are not only able to measure the direct im-

pact of uncertainty but also the indirect impact of uncertainty on the TFP growth. This

enables us to understand that how the impact of uncertainty varies through changes in

other factors which may influence the TFP growth. For this purpose, we use industry size,

factor intensity level of industries, and the underlying series of each type of uncertainty.

These variables are used as conditioning factors for the above mentioned measures of un-

certainty. Moreover, this exercise permits us to compute the total effect of uncertainty

which is comprised of both the unconditional and conditional effect.

First, we estimate uncertainty impact through industry size. Industry size is measured

as the total number of employees in industries.9 In order to evaluate whether the uncer-

tainty has varying impact due to size differentials across industries, we use the interaction

between industry size and our selected sources of uncertainty. This interaction term iden-

tifies whether the impact of uncertainty on the TFP growth varies when industry size

9Imbs (2007) measured industry size as the share of employment in total employment and also the
share of value addition in total value addition. Whereas Demir and Caglayan (2012) has incorporated the
industry size as a control variable and measured it as the log of real total assets. Guariglia (2008) used
the size interactions with cash flow to capital stock in order to identify the impact on investment across
industry size. She computed three different quartiles of industry size to present the impact of cash flow
across small, medium, and large industries.
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changes.

TFPij,t = φ0 + φ1TFPij,t−1 + βπ(π)t−1 + βg(σ
2
π)t−1 + αgs(σ

2
π × size)t−1

+ βI(I)i,t−1 + βc(σ
2
I )i,t−1 + αcs(σ

2
I × size)i,t−1 + βy(y)ij,t−1 (3.3)

+ βs(σ
2
y)ij,t−1 + αss(σ

2
y × size)ij,t−1 + ψXij,t + fij + ζt + εij,t

where αgs, αcs, and αss are the coefficients attached to the interaction of industry size

with global, country, and industry specific uncertainty, respectively. These coefficients

measure the conditional impact of each type of uncertainty on the TFP growth through

industry size. Further it also illustrates how the uncertainty impact on the TFP growth

varies as the industry size changes across industries and over time.

Second, we estimate the impact of uncertainty through factor intensity of industries.

Imbs (2007) emphasized that sector specific factor intensity is an important determinant of

sectoral growth rate. Moreover, Bernard and Jensen (2001) explain that the trade theories

suggest using capital to output ratio as measure of factor intensity. Following these studies,

we, too, measure factor intensity as capital-labor ratio in industry j of country i and at

time t. When we augment Equation (3.2) with a variable measuring factor intensity and

also its interaction with each measure of uncertainty, we obtain the following specification:

TFPij,t = φ0 + φ1TFPij,t−1 + φ2FIij,t + βπ(π)t + βg(σ
2
π)t + αgf (σ2π × FI)t + βI(I)i,t

+ βc(σ
2
I )i,t + αcF (σ2I × FI)i,t + βy(y)ij,t + βs(σ

2
y)ij,t + αsf (σ2y × FI)ij,t (3.4)

+ ψXij,t + fij + ζt + εij,t

where αgf , αcf , and αsf are the coefficients attached to the interaction of factor inten-

sity with global, country, and industry specific uncertainty, respectively. The estimates for

these coefficients measure the indirect impact of uncertainty on the TFP growth i.e., how

the uncertainty impact on the TFP growth varies as factor intensity level of industries

changes. FIij,t represents factor intensity level of industries, φ2 measures the impact of

impact of factor intensity (capital-labor ratio) on TFP growth of manufacturing indus-

tries.

Third, to empirically investigate whether the level of underlying source of uncertainty

have any significant influence on the relationship between uncertainty and the TFP growth,

we introduce an interaction between each type of uncertainty with its own underlying series

namely, world inflation rate, ratio of country investment to its GDP, and industry output

ratio to manufacturing sector output. This helps us identifying whether the impact of

uncertainty is different on different levels of their respective series. This is captured in the
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following model:

TFPij,t = φ0 + φ1TFPij,t−1 + βπ(π)t−1 + βg(σ
2
π)t−1 + αgπ(σ2π × π)t−1

+ βI(I)i,t−1 + βc(σ
2
I )i,t−1 + αcI(σ

2
I × I)i,t−1 + βy(y)ij,t−1 (3.5)

+ βs(σ
2
y)ij,t−1 + αsy(σ

2
y × y)ij,t−1 + ψXij,t + fij + ζt + εij,t

where αgπ, αcI , and αsy are the coefficients attached to the interaction of each un-

certainty measure with its own level series. The estimates for these coefficients measure

the indirect impact of uncertainty on the TFP growth i.e., how uncertainty impact on the

TFP growth varies as their own level series changes across countries and over time.

3.4 Estimation Technique

The models presented in Equations (3.1–3.5) contains the lagged dependent variable which

can be correlated with the error term. Moreover, all of our models contain uncertainty

measures which are considered to be measured with error. As pointed out by Hendry et al.

(1984) and Pagan and Ullah (1988) that the presence of generated regressors in estimation

and statistical inference may lead to some problems. According to Hendry et al. (1984)

although one may overcome these problems by using instrumental variables approach, the

use of lagged observations as instruments may not be possible when an endogenous vari-

able is function of the entire history of available data.

Given these problem, we employ robust two step dynamic panel data (DPD) estimator,

system GMM approach to estimate our models. This approach is developed by Arellano

and Bover (1995) and further extended by Blundell and Bond (1998). The key feature of

this approach is that it uses a system of two equations one in the first differenced form

whereas the other in levels. By adding the second equation, additional instruments can

be obtained. Thus, the variables in levels in the second equation are instrumented with

their own first differences which increases the efficiency gains significantly. Therefore in

system GMM, the model is estimated in levels as well as in first differences. In addition,

time invariant regressors can still be included in the system GMM which would disappear

in difference GMM. Since all instruments for the level equations are assumed to be or-

thogonal to the fixed effects, particularly to all time invariant variables, therefore it will

not effect the estimates for the other regressors.

To test the validity of the instruments, Hansen (1982) proposed a test for the join

validity of the instruments in any standard GMM estimation. We use the Hansen (1982)

J-statistics for over identification to confirm the robustness of instruments. The J-statistics

is asymptotically distributed as χ2 with degrees of freedom equal to the number of overi-

dentifying restrictions. The Hansen test works under the null of “the instruments are
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jointly exogenous”. Therefore a higher p-value will ensure the validity of instruments as

a group.

Moreover, we test for the second order serial correlation by implementing the Arel-

lano and Bond (1991) test for autocorrelation. The Arrelano-Bond test tests the null

of “no autocorrelation” and asymptotically follows a standard normal distribution. The

dynamic panel data model generally exhibits a first order serial correlation. However, for

instruments to be strictly exogenous the residuals should not carry a second order serial

correlation.

3.4.1 Total Factor Productivity Growth and its Components

There are two major approaches to measure efficiency: labor productivity and total factor

productivity. We compute TFP growth to proxy the efficiency in manufacturing indus-

tries.10 We estimate the total factor productivity growth by employing the stochastic

frontier production function approach.

Aigner et al. (1977) and Meeusen and van den Broeck (1977) proposed stochastic

frontier production function as follows.

yij,t = f(xij,t, β, t)e
(vij,t)e(−uij,t) (3.6)

where yij,t is the output produced by the jth manufacturing industry in ith country at time

t, xij,t is the input vector, the vector of technology parameter is denoted by β, t is the

time index, and exhibits the technical change, vij,t is the random error which represents

the measurement error, and all other unobservable factors outside the control of firm.

This is assumed to be normally distributed with N(0, σ2). On the other hand, uij,t > 0

is the output oriented technical inefficiency. It is one sided error term and represents the

non-zero truncation of normal distribution with a positive mean (µ) and variance N(σ2u).

It can be modeled as follows:

uij,t = ηtuij = e−η(t−T )uij , i = 1, ....I; j = 1, .....J ; t = 1, ...., T (3.7)

Where, η is the unknown parameter which indicates the rate of change of technical

inefficiency whereas ui, the non negative random variable is the technical inefficiency effect

10Total factor productivity growth defined as the increase in output not explained by the input used in the
production process. There is a large number of studies advocating the importance of TFP growth regarding
the long-term growth process. Solow (1956) stated that long run growth in per capita income must be the
outcome of TFP growth with in a country. He argued that cross-country per capita income differences
may be driven by the cross country technological differences. Similarly, Griliches (1996) claims that the
productivity growth is the main explanation for the output growth. Later, Klenow and Rodŕıguez-Clare
(1997) and Hall and Jones (1999) also document similar findings and state that a substantial differences
between per capita income between rich and poor countries is attributed to the TFP growth differences in
these countries. More recently, Comin et al. (2006) confirms that the cross-country technological differences
are five times higher than cross country differences in per capital income. Moreover he explained that
technology and income are positively associated.
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of the jth production unit of country i in the last year of the data set.11 Furthermore, a

positive value of η refers to the fact that industries will improve their technical efficiency

whereas the reverse is true for the negative value of η. In addition, if η = 0 then technical

efficiency is constant over time.

3.4.2 Estimation of TFP

We use translog production function to compute the TFP growth. There are two main

reasons to prefer translog production function over the Solow residual approach for com-

puting the TFP growth. First, it incorporates the idiosyncratic shocks which are useful

while investigating the determinants of technical efficiency and therefore the TFP growth.

Second, translog production function allows us to decompose the TFP growth into its

components which enables us to compute TFP growth based on the extended information

set. The functional form of the stochastic frontier production function in the translog

form is as follows:

yij,t = φ0 + φllij,t + φkkij,t + φtt+ 0.5ϑll(lij,t)
2 + 0.5ϑkk(kij,t)

2 (3.8)

+ 0.5ϑtt(t)
2 + ϑlk(lij,t)(kij,t) + ϑtl(lij,t)(t) + ϑtk(kij,t)(t) + (νijt + uij,t)

where yij,t refers to natural logarithm of industry output, lij,t represents natural loga-

rithm of industry labor input, kij,t explains the capital input, and t represents time trend.

This specification allows us to estimate both the technological progress and technical

efficiency. We should note that if all ϑts are equal to zero then the technical progress will

be zero. Also the translog production function will reduced to Cobb Douglas function if

all the ϑ′s are equal to zero. The distribution of technical inefficiency effect (uijt), is taken

to be non negative truncation of the normal distribution N(µ, σ2u).

Sharma et al. (2007) explain TFP growth as the sum of three main components namely,

technical efficiency, technical progress, and the scale effect. The translog production func-

tion enables us to compute these components as follows:

Technical efficiency is defined as the ratio of actual output to the potential output

determined by the production frontier, therefore

TEij,t = e(−uij,t)|εij,t (3.9)

Similarly, the rate of technical progress can be explained as

TPij,t =
∂(yijt)

∂t
= φt + ϑtt(t) + ϑtl(lijt) + ϑtk(kijt) (3.10)

11 Mandal and Madheswaran (2012) explain ui as the technical inefficiency effects in earlier periods are
deterministic exponential function of the inefficiency effects for the corresponding forms in the final period
(uij,t − uij) given the data for the jth production unit are available in the final period.
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The scale component will be calculated as follows:

SE = (rts− 1)× [(
εl
rts

)(∆l) + (
εk
rts

)(∆k)] (3.11)

whereas, rts = εk + εl.

The output elasticities with respect to both inputs i.e., labor and capital are:

εl = ϑl + ϑkl(kijt) + ϑll(lijt) + ϑlt(t) (3.12)

εk = ϑk + ϑkl(lijt) + ϑkk(kijt) + ϑkt(t) (3.13)

Finally, by summing these components we obtain the TFP growth for manufacturing

industries of selected sample countries.

TFP = TE + TP + SE (3.14)

3.4.3 Generating Uncertainty

There are several methods proposed in the literature to compute uncertainty. The stan-

dard deviation of residuals of the underlying series as a proxy for uncertainty is rela-

tively more common in existing studies. For instance, Aizenman and Marion (1999) and

Turnovsky and Chattopadhyay (2003) have utilized the standard deviations of the resid-

uals of the autoregressive processes of the logarithm of the GDP to compute uncertainty.

Whereas, Comin and Mulani (2009) used centered standard deviation of 10 consecutive

annual growth rate of the series. Another common approach to measure uncertainty is to

compute moving average standard deviation of the underlying series. As this method gives

equal weights to all the observations at each interval which may increase the probability

of serial correlation. Therefore, it is not considered a preferred measure of uncertainty.

Some existing studies have used the conditional variance computed from GARCH models

to gauge the uncertainty. However, GARCH based specifications are more common in

the literature where the series are of high frequency such as quarterly or monthly. In

addition, the GARCH process generates uncertainty by taking all the industries/countries

collectively. This process is unable to isolate the unobservable shocks related to one series

while computing the volatility of another series in the sample.

We estimate a first order autoregressive model to generate the residuals for the un-

derlying series across each industry for the time period 1971-2008.12 One-period ahead

residuals are saved for each industry. Later, using one period ahead residuals, we compute

the cumulative-volatility of the underlying series. In particular, the cumulative volatility

12We prefer using AR(1) process to generate the residuals. We did not run a family of autoregressive
series to select the appropriate model as for the annual data with a limited time series observations a
higher order AR process may not generate consistent measure of uncertainty. Similar practice is adopted
by Aizenman and Marion (1999)
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for the year 1972 is computed by calculating the standard deviation of the residuals from

the AR(1) model of the respective series that uses the data for the year 1972 and 1971.

We repeat this process to construct the cumulative volatility for all the years in the sam-

ple(see, e.g., Aizenman and Marion (1999) and Turnovsky and Chattopadhyay (2003) for

further detail). All the variables which we use to construct the uncertainty are normalized.

This transformation of variables will make the unit free and allows us to conduct a cross

industry and cross country analysis.

To compute the industry specific uncertainty we use industry output ratio to the total

manufacturing sector output. Similarly, industry value-added is taken as the ratio of total

manufacturing sector value-added. To generate a proxy for country-specific uncertainty,

we use the ratio of investment to GDP. Finally, world inflation rate is used to generate a

proxy for global uncertainty.

3.4.4 Data and Data Sources

We use an extensive annual data set which is accessed from various different sources. We

use three-dimensional panel data covering the period 1971-2008, eighteen industries of the

manufacturing sector, and sixteen emerging economies. The data on industry level output,

value added, employment, wages and salaries, and gross fixed capital formation are taken

from United Nation Industrial Development Organization (UNIDO) database. We use

two-digit International standard industrial classification (ISIC) Revision 3 classification to

select manufacturing industries.

We ensure that at least 10 industries for the selected countries and minimum 10 years

of data on each industry is available. The selected number of industries remains constant

over time and across counties. The panel combining the countries, industries and time

observations is unbalanced with some industries containing more observations than others.

Although, the original dataset provide information for 28 manufacturing industries, we

focus on eighteen of them to avoid a large number of missing observations in the data.

Following the previous literature, we deflate the industry level variables by using the

producer price index.13 The data on aggregate investment as a percentage of GDP, GDP

growth, income size of each country relative to the USA are accessed from the Penn World

Tables version 7.0. In addition, world inflation measured as the annual percentage change

in the log CPI is obtained from International Financial Statistics (IFS) database published

by International Monetary Fund (IMF).

13Industry specific price deflators for the selected sample of countries are not available
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3.4.5 Summary Statistics

Before empirical analysis, we present summary statistics of uncertainty measures and its

correlations with the TFP growth. Table 3.1 portrays the correlation among sources of

uncertainty and the TFP growth. The correlation estimates reflect a positive association

of the TFP growth with industry and country specific uncertainty whereas negative cor-

relation is observed with global uncertainty. Koren and Tenreyro (2007) also report a

considerable variability in the correlation between country specific and sector specific risk

fr a large sample of countries. Imbs (2007), too, verifies that manufacturing industries

growth is positively correlated with sector specific volatilities. However, country specific

volatility has negative impact on manufacturing industries growth. Stockman (1988) find

a positive and significant relationship of sectoral and national disturbances for the perfor-

mance of manufacturing industries of European countries. Also, they state that sectoral

disturbances have relatively stronger impact. We also observe that the correlation is more

stronger for the country and industry specific uncertainty with the TFP growth whereas

the it is weaker for global uncertainty and the TFP growth. The other selected variables

present a blurry picture of the nature of relationship with the TFP growth. The impact

of uncertainty through its own level series is statistically significant only for industry and

world level uncertainties.

The impact of uncertainty through industry size shows that only country specific uncer-

tainty maintains a significant correlation with the TFP growth. Surprisingly, uncertainty

through factor intensity has an insignificant correlation with the TFP growth across all

measures of uncertainty. Finally, the correlation between TFP growth and the industry

size itself is negative and statistically significant. This implies that industry size affects

TFP growth negatively. In contrast, factor intensity and TFP growth maintains a statis-

tically significant and positive correlation. This implies that capital intensive industries

grow faster than the labor intensive industries.

The table also provides estimates on the mean, standard deviation and 10th, 50th, and

90th percentiles of variables used in the estimation. The mean value as well as the dis-

persion of the uncertainty is increasing as we move from industry specific uncertainty, to

country specific uncertainty, and from country specific uncertainty to global uncertainty.

In addition, the mean value of factor intensity is lower than the mean value of industry

size but there is large dispersion in the former relative to the latter.

3.4.5.1 TFP Estimates

In order to carry out the empirical investigation, we compute the TFP growth, as shown in

Equation (3.9). Table 3.2 displays the estimates of TFP growth and its components. The
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estimates show that the scale component of the TFP growth has the lowest mean value

whereas the highest mean value is observed for technical efficiency component. Giving

a more closer look, we can observe that the mean value of technical efficiency is higher

than TFP growth. The reason for this finding is the negative average technical progress

over the selected time period. Whereas the mean value of scale effect is lowest. The dis-

persion, in contrast, is highest in the TFP growth followed by technological progress and

technical efficiency. These observations specify that over time and across industries, tech-

nical efficiency, the ratio of actual output to the potential output, has improved whereas

the technological progress has deteriorated. Since improvement in the technical efficiency

is significantly higher than deterioration in the technological progress therefore the TFP

growth on average has shown a moderate positive mean value.

Output elasticity with respect to both inputs, namely labor and capital are reported

in the last two rows of Table 3.2. We observe that output is more elastic with respect to

capital . However, the output elasticity with respect to labor has shown more variation

in contrast to the dispersion in capital elasticity of output. Notably, the mean value of

returns to scale appears as less than one which means that on average the industries follow

decreasing returns to scale over the selected time period.

In sum, we can conclude that, on average, there is a modest growth of TFP in man-

ufacturing industries of the selected emerging economies. Moreover, the TFP growth is

mainly derived by the technical efficiency as it is obvious from the findings reported in

Table 3.2.

3.5 Empirical Results

We first present the direct impact of each type of uncertainty on the TFP growth. Having

established the impact of each source of uncertainty individually, we, next, evaluate the

productivity-uncertainty link conditional on different factors such as the industry size,

factor intensity and the underlying source of uncertainty. The control variables included

in the model are industry size, real GDP growth, and trend variable which throughout all

specifications remain same.

We report the diagnostics tests in Panel B of each table to evaluate the model perfor-

mance. The J statistics for all specifications indicates the acceptance of null hypothesis

which verifies the orthogonality of our selected set of instruments. The Arellano and Bond

(1991) test for autocorrelation rejects the presence of second order serial correlation in all

models.
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3.5.1 Uncertainty-Productivity Link

Table 3.3 reports the empirical estimates based on Equation (3.1) and Equation (3.2).

Specifically, column 1 of Table 3.3 reports the empirical estimates of the effect of uncer-

tainty emanating from different sources on the TFP growth. We find that the lagged TFP

growth attains a negative coefficient. This negative coefficient indicates the low produc-

tive industries convergence towards high productive industries. This finding is consistent

with the existing literature (see, e.g., Imbs (2007) and Aghion et al. (2009) among others).

The speed of convergence is observed as 10 percent and statistically significant at the one

percent significance level.

Notably, the estimates from this model suggest a significant impact of all the sources

of uncertainty on the TFP growth. The impact of industry specific uncertainty is re-

markably higher than country and world specific uncertainties. Moreover, the impact

of industry specific uncertainty is positive implying that the lagged industry level output

volatility leads to higher productivity growth in manufacturing industries. Comin and Mu-

lani (2009) also observe a positive impact of firm specific uncertainty on the TFP growth.

They proxy firm level uncertainty through the variance of growth rate of sales. Similarly,

Imbs (2007) reports a positive impact of manufacturing industries uncertainty, measured

as the standard deviation of the value-added, on manufacturing industries’ value-added

growth. Oikawa (2010) explains that high volatility is associated with more expenditures

on research and development which consequently increases the TFP growth in following

years.

We next turn to evaluate the impact of country specific uncertainty on the TFP growth.

The marginal impact of country specific uncertainty is positive impact on TFP growth.

Pindyck (1991) explains two important characteristics of investment expenditures. First,

most of the investment expenditures are irreversible. The irreversibility in investment ex-

penditures makes it sensitive towards various shocks e.g, future prices, future interest rate

and most importantly the uncertainty in the cost and timing of investment itself. Second,

the investment projects can be delayed. This enables industries to wait for the new infor-

mation to arrive in the market. Therefore, uncertainty in the previous year may lead to

delay of investment projects to the next year which resultantly raise the TFP growth for

the current year. This finding is consistent with Kose et al. (2003).

Last, we observe that global uncertainty portrays a negative impact on the TFP growth

of manufacturing industries. This result is consistent with the existing literature which

argues that inflation dampens the TFP growth as there is a cost attached with higher

inflation.14

14Some existing studies report the negative impact of domestic inflation on the TFP growth. See,
e.g., Miller and Upadhyay (2000) observed a negative impact of inflation volatility on the TFP growth for

57



The results presented in Table 3.3 portrays the general impact of uncertainty on TFP

growth in manufacturing industries of emerging economies. Based on our findings from the

baseline model, we can state that the industry related uncertainty in relation to country

and global uncertainties has a stronger impact on TFP growth.

3.5.2 Uncertainty-Productivity Link and the Underlying Source

Turning to column 2 in Table 3.3, which combines uncertainty measures and the level

effect of uncertainty measures, we observe that uncertainty measures exert similar impact

on TFP growth as in column 1. We also observe the negative and statistically significant

coefficient of lagged dependent TFP growth. This implies that low productive industries

catch up with high productive industries in emerging economies.

The impact of industry specific uncertainty is positive and significant at the 5% sig-

nificance level. However, the magnitude of this impact has reduced in comparison to the

findings in column 1 but still it remains the major source of uncertainty for TFP growth.

In addition, the impact of the lagged industry output ratio to total manufacturing sector

output is positive and significant at the 1% significance level. This explains that industries

with higher economies of scale tend to achieve higher TFP growth.

Moving to the role of country specific uncertainty, we observe a positive and statisti-

cally significant impact on TFP growth. The magnitude of country specific uncertainty

has marginally increased relative to results in column 1. Also, country investment ratio to

country GDP pertains a positive impact on the TFP growth of manufacturing industries.

Last, not only inflation uncertainty but also inflation itself has a negative and statistically

significant impact on TFP growth.

It is important to note that the magnitude of the impact of each type of uncertainty

differs from each other. Industry specific uncertainty has greater impact in comparison to

country and world level uncertainties in both specification presented in Table 3.3. This

finding, though, is in contrast with Kose et al. (2003) as their results assert that world

factors are more important for advanced and developed economies whereas country factors

are more dominant for developing countries. However, they perform a cross country anal-

ysis whereas our analysis is based on manufacturing industries. Moreover, our findings can

be justified on the grounds that our data set contains fast growing emerging economies

for which world factors can be equally important as country specific factors due to their

extensive integration with the world economy.

In sum, we conclude that the impact of uncertainty on TFP growth remains similar

not only in terms of their size but also the direction of impact remains unchanged when

middle income countries. Bruno and Easterly (1998) find that inflation exerts a negative impact on growth.
However, Bredin and Fountas (2009) find an insignificant impact of inflation uncertainty on output growth.
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we control for the level series of uncertainties emanating from different sources.

3.5.3 Uncertainty-Productivity Link Under Conditioning Factors

Having established the direct impact of each type of uncertainty on TFP growth, we

examine the conditional impact of uncertainty on TFP growth. For this purpose, we in-

vestigate whether different types of uncertainty affect TFP growth through other factors

that influence TFP growth. In addition to this, we explore the total impact of each type

of uncertainty on TFP growth i.e., we combine the direct and the indirect impact of un-

certainty.

Following the existing empirical work such as Imbs (2007) and Comin and Mulani (2009),

we consider three factors: industry size, factor intensity, and the level series of the under-

lying source of uncertainty.

3.5.3.1 Uncertainty-Productivity Link and Industry Size

Our first conditioning variable is industry size. We investigate whether uncertainty im-

pact on TFP growth changes as industry size alters. For this purpose, we introduce an

interaction term between industry size and each measure of uncertainty. This interaction

captures the conditional impact of uncertainty on the TFP growth through industry size.

We measure industry size as the log of total number of employees.15 Table 3.4 presents the

findings based on this specification given in Equation (3.3). The lagged TFP growth main-

tains a statistically significant and negative coefficient indicating convergence in low and

high productive manufacturing industries. The industry, country, and global uncertainty

is statistically significant and maintains the expected signs. Similarly, the level effect of

each source of uncertainty also carries the expected signs and significance level.

The industry specific uncertainty conditional on the industry size is positive and statis-

tically significant. This implies that in times of industry specific uncertainty, an increase

in industry size will lead manufacturing industries to attain higher TFP growth.

In contrast, the conditional impact of country specific uncertainty through industry

size on TFP growth is negative and statistically significant. This suggests that large in-

dustries experience decrease in TFP growth in times of country specific uncertainty. This

finding can be justified on the grounds that risk in country investment may dwindle the

growth rate of the economy which leads to lower the demand of long-term investment.

This further reduces the productivity growth across the economy as well as in industries

particularly industries with large number of employees. Notably, the direct impact of

15There are various measures of size such as Comin and Mulani (2009) used total real sales, Imbs (2007)
measured industry size as share of employment in total employment or through share of value addition in
total value addition. Whereas Demir and Caglayan (2012) measured firm size as the real total assets in
log form.
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the country specific uncertainty is positive whereas the indirect impact is negative. This

explains that the impact of investment uncertainty is positive but as the industry size

increases the positive impact of investment uncertainty weakens. On the other hand, the

magnitude of the direct impact is higher than the magnitude of the indirect impact. This

concludes that the net effect of investment uncertainty is positive though decreasing.

The estimates of global uncertainty conditional on industry size appears as positive

and maintains a statistically significant impact on TFP growth of manufacturing indus-

tries. This implies that large industries experience an increase in TFP growth given there

is global uncertainty. The rationale for this effect is as follows: large industries are able to

explore international markets to earn higher profits and therefore maintains higher TFP

growth in relation to small industries.

3.5.3.2 Uncertainty-Productivity Link and Factor Intensity

In this subsection, we examine the impact of each type of uncertainty conditional on the

factor intensity level of industries. We measure factor intensity as the ratio of capital

to labor in each industry. We conduct this analysis in two steps. At the first step, we

incorporate factor intensity measure in our baseline model ( given in Equation (3.2)) and

estimate its impact on TFP growth. Having established the impact of factor intensity

on TFP growth, we next turn to examine how the impact of uncertainty on TFP growth

varies as the level of factor intensity changes. For this purpose, we introduce an interaction

between each measure of uncertainty and factor intensity. Table 3.5 reports these results.

The direct effect of each source of uncertainty is similar to the findings aforementioned.

Moreover, results reported in Table 3.5 also provide evidence of productivity convergence

among low and high productive manufacturing industries.

The first column of Table 3.5 clearly indicates a statistically significant and positive

impact of factor intensity on TFP growth. This implies that industries with higher capital-

labor ratio attains higher TFP growth. This finding is consistent with Imbs (2007), who

studies the impact of factor intensity for value added growth of manufacturing industries

and reported a positive link between capital-labor ratio and value-added growth.

In the next step, when we interact the factor intensity with each measure of uncer-

tainty, we find that the interaction of industry specific uncertainty with factor intensity is

positive and statistically significant at the 5% significance level. This implies that when

there is industry uncertainty, industries experience higher TFP growth given an increase

in the capital-labor ratio. The rationale of this finding is that as the capital labor ratio

increases, industries become more efficient and thus attain higher TFP growth.

Similar to the findings of industry specific uncertainty, we observe a positive and sig-

nificant impact of country specific uncertainty on TFP growth through factor intensity.
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In other words, capital intensive industries experience an increase in TFP growth when

there is country specific uncertainty.

In contrast, the conditional impact of global uncertainty through factor intensity is

negative and statistically significant. This negative impact indicates that under uncer-

tainty in global economy, industries experience a decrease in TFP growth as the level

of factor intensity increases. This finding can be rationalized as: higher world inflation

will increase the cost of production, through the import of technological products, which

dampens TFP growth of industries with high capital-labor ratio.

3.5.3.3 Uncertainty-Productivity Link and the Underlying Source of Uncer-

tainty

We investigate the impact of each type of uncertainty on TFP growth through its own

level series. Thus, we interact each source of uncertainty with its own level series namely

industry output ratio to manufacturing output, country investment ratio to GDP, and

world inflation rate. The estimates are reported in Table 3.6.

The conditional impact of industry specific uncertainty through industry output is

negative and statistically significant. This implies a decline in TFP growth in response to

industry uncertainty as the share of industry output in total manufacturing sector output

increases. Since output growth measures economies of scale therefore the negative condi-

tional impact may refers to dis-economies of scale at a higher level of output.

Similar finding is observed for country specific uncertainty conditional on its own level

series i.e., country investment ratio to GDP. The interaction term on country specific un-

certainty and country investment ratio to GDP is negative and statistically significant.

This finding shows that When there is macroeconomic uncertainty, industries experience

low TFP growth as the level of aggregate investment to GDP ratio increases.

Last but not the least, the conditional impact of world uncertainty on TFP growth

through world inflation rate attains a positive and statistically significant impact. The

negative sign of this interaction shows inflation uncertainty is in line with the fact that

under global uncertain environment, industries will experience an increase in TFP growth

at higher level of world inflation. Although higher inflation fluctuations put a cost on

industries but it also provide opportunities to gain higher profit through export earnings

therefore industries which are rightly able to avail this chance they can manage to acquire

a higher level of TFP growth.

3.5.4 Total Impact in Uncertainty-Productivity Linkage

Having explained the unconditional and conditional impact of each source of uncertainty

on TFP growth separately, we next move to compute the total impact of uncertainty em-
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anating from different sources on TFP growth. To calculate the total effect, we compute

the total derivative of TFP growth Equations (3.1–3.5) with respect to all uncertainty

measures separately. In order to gauge the uncertainty impact across different levels of

conditioning factors i.e. industry size, factor intensity, and the level series of each uncer-

tainty measure, we compute the total effect at the 25th, 50th, 75th, and 90th percentiles

of the respective conditioning variable. By doing so, we report the ∂TFP
∂σ2 for industry

size, factor intensity, and own series of uncertainty measures in Table 3.7, Table 3.8, and

in Table 3.9, respectively. In addition to the calculation of total effect, we plot the total

effect with respect to each source of uncertainty conditional on factors mentioned earlier.

Figures 3.1–3.9 presents the plot of total effect of each type of uncertainty on TFP growth

with respect to all the conditioning factors.

Table 3.7 lays the total effect of uncertainty with respect to industry size. Panel A, B,

and C explain, respectively, the total impact of industry, country, and global uncertainty

based on industry size. The total impact of industry uncertainty is positive and statisti-

cally significant across all percentiles of industry size. As we move to higher percentiles

of industry size, the magnitude of the total impact increases. Therefore, we can conclude

that as industry size increases, industries experience an increase in TFP growth in times

of industry specific uncertainty.

Further, Figure 3.1 display the total effect of industry specific uncertainty with respect

to industry size. The industry specific uncertainty has a positive impact on TFP growth

and the impact is increasing moderately when we move towards higher percentiles of in-

dustry size. The figure augments our earlier findings of the positive impact of industry

specific uncertainty on TFP growth conditional on the industry size.

Panel B of Table 3.7 reports the total effect of country specific uncertainty on TFP

growth through industry size. The total impact of country specific uncertainty is statis-

tically significant only at 25th and 50th percentiles of industry size. The total impact of

country specific uncertainty on TFP growth decreases as industry size increases. Figure

3.2 supports our findings aforementioned in Table 3.7 that the country specific uncertainty

leads to an increase in the TFP growth but as the industries get larger in size, the mag-

nitude of the impact is weakens.

The total impact of global uncertainty on TFP growth through industry size is pre-

sented in panel C of Table 3.7.We observe a statistically significant and negative total

impact on TFP growth across different percentiles of industry size. The estimates sug-

gest that as the industry size increases, the global uncertainty leads to decrease in TFP

growth. Figure 3.3 also confirms that as we move towards the upper tail of the percentiles

of industry size, the negative impact of global uncertainty weakens.
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Next, Table 3.8 reports the total effect of uncertainty originating from different sources

across different levels of factor intensity. The total impact of industry specific uncertainty

is positive and statistically significant across all percentiles of factor intensity. Moreover,

the magnitude of the impact is higher as we move to the upper tail of percentiles of factor

intensity. This implies that factor intensive industries experience a larger increase in TFP

growth in the presence of industry specific uncertainty. Also, Figure 3.4 displays an in-

crease in the TFP growth in presence of industry uncertainty across different percentiles of

factor intensity. The impact becomes stronger as factor intensity increases. This implies

that factor intensity reinforces the positive impact of industry specific uncertainty on TFP

growth.

Similar observations are reported in panel B of Table 3.8 that displays the total impact

of country specific uncertainty through factor intensity. The estimates are positive and

statistically significant for all percentiles of factor intensity. This identifies that industries

with higher capital-labor ratio experience an increase in TFP growth in the presence of

country specific uncertainty. Figure 3.5 further supports this finding as the total impact

of country specific uncertainty is positive for TFP growth and increasing with respect to

factor intensity. This positive impact becomes stronger as we reach to the 70th percentile

of factor intensity.

When we turn to discuss the total effect of global uncertainty, given in panel C of Table

3.8, we observe that the total effect is negative across all percentiles of factor intensity

and also statistically significant. Moreover, there is a monotonic decline in the magnitude

of the impact as we move from lower to higher percentiles of factor intensity. Hence,

relatively high capital intensive industries experience larger decrease in TFP growth when

there is global uncertainty. Figure 3.6 shows that the global uncertainty causes a decline

in TFP growth across all percentiles of factor intensity. However, the negative impact of

uncertainty strengthens as the level of factor intensity increases in manufacturing indus-

tries. There is a sharp increase in the negative impact of global uncertainty at the 70th

percentile of factor intensity.

Finally, Table 3.9 presents the total impact of uncertainty through the underlying series

of each type of uncertainty. The total impact of industry specific uncertainty, presented in

Panel A of Table 3.9, is positive and statistically significant at all percentiles of industry

output. However, the magnitude of the impact is decreasing as we move towards the up-

per tail of the percentile distribution. This explains that the positive impact of industry

specific uncertainty weakens, as the industry output increases. This result supports our

earlier findings that the industry uncertainty has a positive impact on TFP growth but

at higher levels of industry output we observe dis-economies of scale. Figure 3.7 confirms

our findings of the total impact of industry specific uncertainty on TFP growth. We can
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observe a positive but decreasing effect of industry specific uncertainty on TFP growth.

Panel B of Table 3.9 shows the total impact of country specific uncertainty on TFP

growth through different percentiles of aggregate investment ratio to GDP. The estimates

of total impact of investment uncertainty are statistically significant only at 75th and 90th

percentiles. Figure 3.8 shows that country specific uncertainty impact on TFP growth is

positive for the 10th and 20th percentiles but turns negative at and above the 25th per-

centile, though decreasing through out. A possible explanation for this finding could be

that at higher levels of country investment, country specific uncertainty may induce in-

dustries to invest less and save more which leads to low TFP growth.

The total impact of global uncertainty through world inflation rate on TFP growth is

shown in panel C of Table 3.9. The estimates are negative for the first three percentiles

of world inflation rate and turns positive at and above the 80th percentile. Moreover, the

total effect is statistically significant only for the first two percentiles of world inflation

rate. This result can be justified as at or above a certain level of inflation the industries

may exploit the increase in world prices for earning higher profits through export earnings.

Last but not the least, Figure 3.9 indicates that global uncertainty pertains both neg-

ative and positive impact on TFP growth. The impact is negative up to 80th percentile

of world inflation rate. However, as the world inflation rate crosses the 80th percentile,

the impact of global uncertainty on TFP growth turns in to positive.

3.5.5 Robustness Check

We also estimate the models presented in (3.1) and Equation (3.5). by using same indica-

tor of uncertainty at all levels, i.e. output growth at industry, country and world level. In

doing so, we compute uncertainty of industry output ratio to sectoral output to measure

the impact of industry specific uncertainty on TFP growth. To estimate the impact of

country specific uncertainty, we compute conditional variance of country GDP growth.

Finally, we compute conditional variance of World GDP growth to estimate the impact

of global uncertainty on TFP growth of manufacturing industries of emerging economies.

The results are reported in table 3-A–3-A.3 of Appendix A of chapter 3.

We observe that industry and country specific uncertainty maintains a positive impact

on the TFP growth. However, the impact of global uncertainty has turned to positive

when we change the proxy of global uncertainty. Also, the major source of uncertainty

varies between industry and country specific uncertainty.

Turning to the conditional impact of each type of uncertainty, we observe that the pos-

itive impact of industry specific uncertainty strengthens as the size of industry increases.

Similarly, the positive impact of country specific uncertainty is more stronger for larger

industries. Uncertainty in world GDP not only has a direct positive impact on the TFP

64



growth of manufacturing industries of emerging economies but also the impact becomes

more stronger as the size of industries increases.

when we augment the baseline model with factor intensity, we observe as in the main

findings that capital intensive industries have higher TFP growth relative to labor in-

tensive industries. The conditional impact of uncertainty through factor intensity show

that the positive impact of industry specific uncertainty strengthens as the capital labor

ratio increases. Similar to our main results, we find that country specific uncertainty has

positive impact on TFP growth of manufacturing industries, however, the positive impact

of uncertainty weakens as industries become more capital intensive. Global uncertainty

affects the TFP positively, however, this positive impact weakens as the industries turn

to be more capital intensive.

Finally, when we turn to investigate the conditional impact of each type of uncertainty

through their own level series, we have the following observations. The direct impact of

industry, country, and global uncertainty is positive and statistically significant. However,

the conditional impact of each type of uncertainty through their own level series appears

as negative and statistically significant.

The estimates presented in the robustness check reveal that not only the source of

uncertainty matters but also the proxy of uncertainty for each source plays an important

role while determining the TFP growth of manufacturing industries of emerging economies.

3.6 Conclusions

This paper explores the link between the TFP growth and uncertainty originating from

different sources such as global, country, and industry level. To this end, we utilize indus-

try level data for sixteen emerging economies covering the time period 1971-2008. Our

empirical investigation employs the robust two-step system GMM estimation technique

which effectively controls for endogeneity and measurement error in generated regressors.

We investigate the impact of three different types of uncertainty which can potentially af-

fect the manufacturing industries’ TFP growth. We measure industry specific uncertainty

by computing the cumulative variance of the ratio of industry output to manufacturing

sector output. Country specific uncertainty is measured as the cumulative variance of

ratio of aggregate investment to GDP. Finally, global uncertainty is proxied by the cumu-

lative variance of world inflation rate. We, then, estimate the TFP growth by employing

a translog production function approach. In our empirical specifications, we control for

industry size, factor intensity, country’s real GDP, and year dummies which are known to

affect the TFP growth.

To carry out our empirical investigation, we use an extensive data set accessed from

various data sources. We use three dimensional panel data covering the period 1971-2008,
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sixteen emerging economies and eighteen industries of their respective manufacturing sec-

tor. We use the UNIDO database published in 2011 to obtain the data on two-digit ISIC

revision 3 classification for the manufacturing sector. Moreover, for global and country

specific variables, we use the IFS database published by the IMF and the Penn World

Tables version 7.0. To avoid a large number of missing values, we ensure that there should

be at least 10 industries for the selected countries and minimum 10 years of data on each

industry are available.

Based on the GMM estimation technique, our findings can be summarized as follows:

The direct impact of uncertainty varies across different measures of uncertainty. We find

that industry and country specific uncertainty have a positive impact on TFP growth.

However, the magnitude of the impact of industry specific uncertainty is higher than that

of country specific uncertainty. Global uncertainty, in contrast, leads to a decline in TFP

growth.

The conditional impact of industry specific uncertainty through industry size is posi-

tive and statistically significant. This implies that is as the size of industry increases, the

impact of industry specific uncertainty strengthens. In contrast, the converse is true for

the impact of country level uncertainty on TFP growth when it is interacted with industry

size. The conditional impact of global uncertainty through industry size is positive. By

combining the unconditional and conditional impact, we observe that the negative impact

of global uncertainty weakens as industry size increases.

Second, when we use interaction between each measure of uncertainty and the factor

intensity level of industries, we observe that the impact of industry and country specific

uncertainty is positive and get stronger as the factor intensity increases: as industries

become more capital intensive, TFP growth will increase if there is country and indus-

try specific uncertainty. In contrast, the conditional impact of global uncertainty on the

TFP growth is negative and statistically significant. In other words, as the capital-labor

ratio increases, TFP growth diminishes in presence of global uncertainty. Third, uncer-

tainty impact through its own level series provides evidence that the impact of industry

and country specific uncertainty is negative for TFP growth. We can conclude that TFP

growth diminishes as industry output increases under industry uncertainty. Similarly, In

times of country uncertainty, the TFP growth decreases as country investment increases.

Our results provide evidence that there is a significant role of each type of uncertainty

in determining the TFP growth. This suggest that all potential sources of uncertainty

must be considered by researchers and policy makers otherwise the results would be bi-

ased. In addition, uncertainty also indirectly effects TFP growth through other factors

such as industry size, capital labor ratio, and their own level series. Therefore the policy

makers and industries must consider the direct and the indirect channels through which
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uncertainty can affect TFP growth.
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Table 3.2: Summary Statistics of TFP growth and its Components

Mean, Standard Deviations, and Percentile Distribution

Variables Mean Std.Dev P10 P50 P90

TFP Growth 0.1300 0.246 -0.035 0.089 0.350
Technical Efficiency 0.140 0.157 0.043 0.089 0.024
Returns to Scale 0.894 0.294 0.536 0.870 1.296
Scale Effect 0.006 0.187 -0.116 0.001 0.138
Technical Progress -0.015 0.030 -0.048 -0.168 0.023
ξK 0.523 0.196 0.309 0.495 0.771
ξL 0.372 0.313 -0.001 0.351 0.797

Note: This table presents the percentile distribution of TFP growth and its components. These
summary statistics are computed for three dimensional panel based on 18 manufacturing industries of
16 emerging economies over the time period 1971-2008. ξK and ξL indicate capital and labor elasticities
of output across industries.
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Table 3.3: Unconditional Impact of Uncertainty on TFP Growth

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 1 Model 2

Coeff. Std.Err. Coeff. Std.Err.

TFPij,t−1 -0.104 (0.038)*** -0.114 (0.037)***
σ2(Output)ij,t−1

0.031 (0.273)** 0.012 (0.005)**

σ2(Investment)ij,t−1
0.012 (0.005)** 0.019 (0.006)***

σ2(W.Inflation)t−1
-0.012 (0.002)*** -0.024 (0.003)***

Outputij,t−1 0.004 (0.001)***
Investmenti,t−1 0.003 (0.001)**
W.inflationt−1 -0.111 (0.056)**
RGDP i,t−1 0.001 (0.000)** -0.003 (0.000)***
Sizeijt 0.075 (0.036)** 0.066 (0.000)***
Trend -0.003 (0.000)*** -0.006 (0.001)***
Constant 0.294 (0.049)*** 0.416 (0.144)***

Panel B: Diagnostic tests

Observations 6,100 5,565
AR(2) 1.180 1.070
p-value 0.238 0.283
J-statistic 281.210 279.050
p-value 0.633 0.621

Note:

TFPij,t = φ0 + φ1TFPij,t−1 + βs(σ
2
y)ij,t−1 + βc(σ

2
I )i,t−1 + βg(σ

2
π)t−1 + ψXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations.
This table presents the estimates for the impact of three different sources of uncertainty i.e. global,
country and industry level uncertainty on TFP growth. The dependent variable is TFP growth of
the 18 manufacturing industries in 16 emerging economies and covering the time period over 1971-
2008. Model 1 estimates the impact of uncertainty originating from different sources on TFP growth
whereas Model 2 presents the estimates of uncertainty as well as their level series. One period lagged
values of the first difference of independent variables are used as instruments for equations in level
whereas for differenced equations, second - fourth lag of independent variables are used as instruments.
Panel B reports the diagnostics test. J statistics is used to test the instruments validity whereas the
autocorrelation in first differenced residuals is tested through the Arellano-Bond, AR(2) test. RGDPL
(Real GDP at country level), Size(Industry size), and Year Dummies are the control variables. ***,
**, and * indicate significance at 1%, 5%, and 10% level, respectively. Standard errors are displayed in
parenthesis which are robust to the presence of serial correlation and heteroskedasticity within panels.
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Table 3.4: Impact of Uncertainty on the TFP Growth: Conditional on Industry
Size

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 1

Coeff. Std.Err.

TFPijt−1 -0.108 (0.035***)
σ2(Output)ij,t−1

0.004 (0.001)***

σInvestmenti,t−1 0.009 (0.004)**

σW.Inflationt−1 -0.008 (0.003)***
Outputij,t−1 0.008 (0.003)***
Investmenti,t−1 0.004 (0.001)**
W.Inflationt−1 -0.211 0.054
Size× σ2Outputij,t−1 0.001 (0.000)***

Size× σ2Investmenti,t−1 -0.0004 (0.000)***

Size× σ2W.Inflationt−1 0.0003 (0.0000)*

RGDP it -0.007 (0.002)
Sizeijt 0.138 (0.053)***
Trend 0.003 (0.002)*
Constant 0.134 (0.069)***

Panel B: Diagnostic tests

Observations 5,636
AR(2) 1.21
p-value 0.226
J-statistic 277.430
p-value 0.349

Note:

TFPij,t = φ0 + φ1TFPij,t−1 + βπ(π)t−1 + βg(σ
2
π)t−1 + αgs(σ

2
π × size)t−1

+ βI(I)i,t−1 + βc(σ
2
I )i,t−1 + αcs(σ

2
I × size)i,t−1 + βy(y)ij,t−1

+ βs(σ
2
y)ij,t−1 + αss(σ

2
y × size)ij,t−1 + ψXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations.
This table presents the estimates for the impact of three different levels of uncertainty i.e. global,
country and industry level uncertainty on the TFP growth conditional on industry size. The dependent
variable is the TFP growth of the 18 manufacturing industries in 16 emerging economies and covering
the time period over 1971-2008. The estimates shows the impact of uncertainty originating from
different sources through industry size on TFP growth. One period lagged values of the first difference
of independent variables are used as instruments for equations in level whereas for differenced equations,
second - fourth lag of independent variables are used as instruments. Panel B reports the diagnostics
test. J statistics is used to test the instruments validity whereas the autocorrelation in first differenced
residuals is tested through the Arellano-Bond, AR(2) test. RGDPL (Real GDP at country level),
Size(Industry size), and Year Dummies are the control variables. ***, **, and * indicate significance
at 1%, 5%, and 10% level, respectively. Standard errors are displayed in parenthesis which are robust
to the presence of serial correlation and heteroskedasticity within panels. within panels.
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Table 3.5: Conditional Impact of Uncertainty on TFP Growth:Factor Intensity

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 4 Model 4a

Coeff. Std.Err. Coeff. Std.Err.

TFPij,t−1 -0.107 (0.040) 0.139 (0.062)**
FIij,t−1 0.002 (0.001)** 0.001 (0.000)***
σ2(Output)ij,t−1 0.006 (0.250)** 0.007 (0.002)***

σ2( Investment)i,t−1 0.008 (0.004)** 0.007 (0.004)*

σ2(W.Inflation)t−1 -0.013 (0.003)*** -0.009 (0.003)***

Outputij,t−1 0.546 (0.221)** 0.005 (0.002)**
Investmenti,t−1 0.003 (0.001)** 0.003 (0.001)*
W.Inflationt−1 -0.109 (0.051)*** -0.009 (0.003)***

FI × σOutputij,t−1 0.003 (0.000)***

FI × σInvestmentij,t−1 0.003 (0.000)***

FI × σW.Inflationij,t−1 -0.002 (0.000)***

RGDP i,t -0.003 (0.001)*** -0.002 (0.000)**
Sizeij,t 0.082 (0.034)** 0.081 (0.034**)
Trend -0.002 (0.0001)* -0.001 (0.001)
Constant 0.243 (0.084)*** 0.181 (0.080)**

Panel B: Diagnostic tests

Observations 6,100 6,100
AR(2) 1.130 0.600
p-value 0.257 0.551
J-statistic 279.220 260.080
p-value 0.353 0.156

Note:

TFPij,t = φ0 + φ1TFPij,t−1 + φ2FIij,t + βπ(π)t + βg(σ
2
π)t + αgf (σ2

π × FI)t + βI(I)i,t

+ βc(σ
2
I )i,t + αcF (σ2

I × FI)i,t + βy(y)ij,t + βs(σ
2
y)ij,t + αsf (σ2

y × FI)ij,t

+ ψXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations.
This table presents the estimates for the impact of three different levels of uncertainty i.e. global,
country and industry level uncertainty on the TFP growth conditional on industry size. The dependent
variable is the TFP growth of the 18 manufacturing industries in 16 emerging economies and covering
the time period over 1971-2008. Model 1 presents the estimates of baseline model while incorporating
the impact of factor intensity on TFP growth whereas Model 2 presents the estimates of each source of
uncertainty through factor intensity on TFP growth. One period lagged values of the first difference of
independent variables are used as instruments for equations in level whereas for differenced equations,
second - fourth lag of independent variables are used as instruments. Panel B reports the diagnostics
test. J statistics is used to test the instruments validity whereas the autocorrelation in first differenced
residuals is tested through the Arellano-Bond, AR(2) test. RGDPL (Real GDP at country level),
Size(Industry size), and Year Dummies are the control variables. ***, **, and * indicate significance
at 1%, 5%, and 10% level, respectively. Standard errors are displayed in parenthesis which are robust
to the presence of serial correlation and heteroskedasticity within panels.
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Table 3.6: Impact of Uncertainty on the TFP Growth: Conditional on the
Respective Level Series

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 1

Coeff. Std.Err.

TFPijt−1 -0.103 (0.034)***
σ2(Output)ijt−1

0.005 (0.001)***

σ2(Investment)i,t−1
0.033 (0.017)**

σ2(W.Inflation)t−1
-0.014 (0.005**)

Outputij,t−1 0.005 (0.001)***
Investmenti,t−1 0.040 (0.022)*
W.Inflationt−1 0.068 (0.062)

Outputij,t−1 × σOutputij,t−1 -0.002 (-0.001)**

Investmenti,t−1 × σInvestmenti,t−1 -0.002 (0.001)***

W.Inflationt−1 × σW.Inflationt−1 0.002 (0.001)**
RGDP i,t -0.011 (0.006)*
Sizeij,t -0.038 (0.022)*
Trend -0.011 (0.004)***
Constant 0.416 (0.144)***

Panel B: Diagnostic tests

Observations 6,047
AR(2) 1.270
p-value 0.203
J-statistic 266.110
p-value 0.231

Note:

TFPij,t = φ0 + φ1TFPij,t−1 + βπ(π)t−1 + βg(σ
2
π)t−1 + αgπ(σ2

π × π)t−1

+ βI(I)i,t−1 + βc(σ
2
I )i,t−1 + αcI(σ

2
I × I)i,t−1 + βy(y)ij,t−1

+ βs(σ
2
y)ij,t−1 + αsy(σ2

y × y)ij,t−1 + ψXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations.
This table presents the estimates for the impact of three different levels of uncertainty i.e. global,
country and industry level uncertainty on the TFP growth conditional on industry size. The dependent
variable is the TFP growth of the 18 manufacturing industries in 16 emerging economies and covering
the time period over 1971-2008. This table presents the estimates for the impact of each source
of uncertainty through their own level series on TFP growth. One period lagged values of the first
difference of independent variables are used as instruments for equations in level whereas for differenced
equations, second - fourth lag of independent variables are used as instruments. Panel B reports the
diagnostics test. J statistics is used to test the instruments validity whereas the autocorrelation in
first differenced residuals is tested through the Arellano-Bond, AR(2) test. RGDPL (Real GDP at
country level), Size(Industry size), and Year Dummies are the control variables. ***, **, and * indicate
significance at 1%, 5%, and 10% level, respectively. Standard errors are displayed in parenthesis which
are robust to the presence of serial correlation and heteroskedasticity within panels.

73



Table 3.7: Percentiles of Total Effect of Uncertainty Conditional on the Indus-
try Size

Panel A: Industry-Specific Uncertainty

P25 P50 P75 P90

PIndustrySize 8.684 9.938 11.144 12.133
FOD 0.015 0.017 0.018 0.019
S.E (0.003)*** (0.004)*** (0.004)*** (0.005)***

Panel B: County-Specific Uncertainty

PIndustrySize 8.684 9.938 11.144 12.133
FOD 0.011 0.010 0.006 -0.002
S.E (0.004)*** (0.004)** (0.004) (0.004)

Panel C: World-Specific Uncertainty

PIndustrySize 8.684 9.938 11.144 12.133
FOD -0009 -0.008 -0.006 -0003
S.E (0.003)*** (0.003)*** (0.003)** (0.003)

Note: The time period for estimation is 1971-2008. ***, **, and * indicate significance at 1%, 5%, and
10% level, respectively. PIndustrySize represents the percentile distribution of Industry Size measured
as log of total number of employees in manufacturing industries of selected countries. FOD indicates
Total derivative of dependent variable with with respect to each source of uncertainty. S.E shows
Standard errors given in parenthesis.

Table 3.8: Percentiles of Total Effect of Uncertainty Conditional on Factor
Intensity

Panel A: Industry-Specific Uncertainty

P25 P50 P75 P90

PFactorIntensity 21.195 51.944 141.714 682.088
FOD 0.007 0.008 0.011 0.012
S.E (0.002)*** (0.002)*** (0.002)*** (0.003)***

Panel B: County-Specific Uncertainty

PFactorIntensity 21.195 51.944 141.714 682.088
FOD 0.008 0.008 0.012 0.031
S.E (0.004)* (0.004)** (0.004)*** (0.006)***

Panel C: World-Specific Uncertainty

PFactorIntensity 21.195 51.944 141.714 682.088
FOD -0.012 -0.016 -0.030 -0.113
S.E (0.002)*** (0.002)*** (0.004)*** (0.018)***

Note: The time period for estimation is 1971-2008. ***, **, and * indicate significance at 1%, 5%,
and 10% level, respectively. PFactorIntensity represents the percentile distribution of factor intensity
measured as capital-labor ratio in the manufacturing industries of selected countries. FOD indicates
Total derivative of dependent variable with with respect to each source of uncertainty. S.E shows
Standard errors given in parenthesis.
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Table 3.9: Percentiles of Total Effect of Uncertainty Conditional on the Un-
derlying Source of Uncertainty

Panel A: Industry-Specific Uncertainty

P25 P50 P75 P90

PIndustryOutput 1.693 2.826 6.815 14.023
FOD 0.005 0.004 0.003 0.002
S.E (0.001)*** (0.001)*** (0.001)** (0.114)**

Panel B: County-Specific Uncertainty

PCountryInvestment 17.715 2.572 24.434 36.541
FOD -0.0002 -0.008 -0.019 -0.036
S.E (0.007) (0.007) (0.008)** (0.013)***

Panel C: World-Specific Uncertainty

PWorldInflation 5.264 25.313 82.991 90.541
FOD -0.013 -0.009 -0.001 0.001
S.E (0.005)** (0.004)* (0.004) (0.004)

Note: The time period for estimation is 1971-2008. ***, **, and * indicate significance at 1%, 5%, and
10% level, respectively. PIndustryOutput, PCountryInvestment, PWorldInflation represents the percentile
distribution of industry output, Country investment, and world inflation, respectively. FOD indicates
Total derivative of dependent variable with with respect to each source of uncertainty. S.E shows
Standard errors given in parenthesis.
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Figure 3.1: Industry Specific Uncertainty through Industry Size
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Figure 3.2: Country Specific Uncertainty through Industry Size
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Figure 3.3: World-Specific Uncertainty through Industry Size
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Figure 3.4: Industry-Specific Uncertainty through Factor Intensity
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Figure 3.5: Country-Specific Uncertainty through Factor Intensity
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Figure 3.6: World-Specific Uncertainty through Factor Intensity
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Figure 3.7: Industry-Specific Uncertainty through Output
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Figure 3.8: Country-Specific Uncertainty through Investment
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Figure 3.9: World-Specific Uncertainty through W.Inflation

−.
03

−.
02

−.
01

0
.0

1

To
ta

l E
ffe

ct
 o

f w
or

ld
−L

ev
el

 U
nc

er
ta

in
ty

10 20 30 40 50 60 70 80 90

Percentiles of WCPI

Estimate 95% Confidence Interval

 
Dependent Variable: TFPG

 

World−Specific Uncertainty Impact through WCPI

80



Appendix A: Alternative Measures of Global, Country and
Industry Level Uncertainty

Table 3-A: Unconditional Impact of Uncertainty on TFP Growth

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 1 Model 2

Coeff. Std.Err. Coeff. Std.Err.

TFPij,t−1 -0.110*** (0.037) -0.120*** (0.037)
σ2(Output)ij,t

0.036** (0.018) 0.039*** (0.015)

σ2(GDP )ij,t
0.012** (0.007) 0.061 (0.428)

σ2(WGDP )t
0.042** (0.019) 0.012*** (0.004)

Outputij,t−1 0.062*** (0.326)
GDPi,t−1 0.011* (0.006)
WGDPt−1 0.045** (0.020)
Sizeijt 0.053** (0.019) 0.074 (0.051)
Constant 0.292 (0.034) -0.003*** (0.036)

Panel B: Diagnostic tests

Observations 6,298 6,298
AR(2) 1.060 0.950
p-value 0.290 0.341
J-statistic 269.300 256.310
p-value 0.501 0.141

Note: Panel A of the table reports the estimates obtained from robust two-step System-GMM es-
timations. This table presents the estimates for the impact of three different levels of uncertainty
i.e. global, country and industry level uncertainty on the TFP growth. The dependent variable is
the TFP growth of the 18 manufacturing industries in 16 emerging economies and covering the time
period over 1971-2008. Model 1 estimates the impact of uncertainty originating from different sources
on the TFP growth whereas Model 2 presents the estimates of the uncertainty as well as their level
series. The one period lagged values of the first difference of the independent variables are used as
instruments for the equations in levels whereas for the differenced equations, the second -fourth lag of
the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is
used to test the instruments validity whereas the autocorrelation in first differenced residuals is tested
through the Arellano-Bond, AR(2) test. RGDPL(Real GDP at country level), Size(Industry size), and
Trend are the control variables. ***,**, and * indicate level of significance at 1%, 5%, and 10% level
of significance, respectively. Standard errors are displayed in the parenthesis which are robust to the
presence of serial correlation and heteroskedasticity within panels.
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A.1 Alternative Measures of Global, Country and Industry Level
Uncertainty

Table 3-A.1: Indirect Impact of Uncertainty on the TFP Growth: Conditional
on Industry Size

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 1

Coeff. Std.Err.

TFPijt−1 -0.132*** (0.037)
σ2(Output)ij,t−1

0.021*** (0.009)

σGDPi,t−1 0.003** (0.001)

σWGDP
t−1 -0.007** (0.003)
Outputij,t−1 0.004* (0.002)
GDPi,t−1 -0.006 (0.004)
WGDPt−1 0.020*** 0.005
Size× σ2Outputij,t−1 0.009*** (0.004)

Size× σ2GDP i,t−1 0.007*** (0.003)

Size× σ2WGDP t−1 0.001*** (0.0000)

Sizeijt 0.086*** (0.053)
Constant 0.134* (0.046)

Panel B: Diagnostic tests

Observations 6,298
AR(2) 0.850
p-value 0.396
J-statistic 263.650
p-value 0.495

Note: Panel A of the table reports the estimates obtained from robust two-step System-GMM estima-
tions. This table presents the estimates for the impact of three different levels of uncertainty i.e. global,
country and industry level uncertainty on the TFP growth conditional on industry size. The dependent
variable is the TFP growth of the 18 manufacturing industries in 16 emerging economies and covering
the time period over 1971-2008. Model 1 estimates the impact of uncertainty originating from different
sources on the TFP growth whereas Model 2 presents the estimates of the uncertainty as well as their
level series. The one period lagged values of the first difference of the independent variables are used as
instruments for the equations in levels whereas for the differenced equations, the second -fourth lag of
the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is
used to test the instruments validity whereas the autocorrelation in first differenced residuals is tested
through the Arellano-Bond, AR(2) test. RGDPL(Real GDP at country level), Size(Industry size), and
Trend are the control variables. ***,**, and * indicate level of significance at 1%, 5%, and 10% level
of significance, respectively. Standard errors are displayed in the parenthesis which are robust to the
presence of serial correlation and heteroskedasticity within panels.
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A.2 Alternative Measures of Global, Country and Industry Level
Uncertainty

Table 3-A.2: Conditional Impact of Uncertainty on TFP Growth:Factor In-
tensity

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 4 Model 4a

Coeff. Std.Err. Coeff. Std.Err.

TFPij,t−1 -0.107 (0.040) 0.130*** (0.038)
FIij,t−1 0.002** (0.001) 0.008** (0.003)
σ2(Output)ij,t−1 0.628** (0.250) 0.009** (0.004)

σ2(GDP )i,t−1 0.008** (0.004) 0.013* (0.007)

σ2(WGDP )t−1 -0.013*** (0.003) 0.047* (0.026)

Outputij,t−1 0.546** (0.221) 0.003*** (0.001)
Investmenti,t−1 0.003** (0.001) -0.005 (0.004)
W.Inflationt−1 -0.109*** (0.051) 0.015*** (0.005)

FI × σOutputij,t−1 0.007* (0.003)

FI × σGDPij,t−1 -0.004** (0.001)

FI × σWGDP
ij,t−1 -0.002*** (0.001)

Sizeij,t 0.082** (0.034) 0.103** (0.042)
Constant 0.243*** (0.084) 0.014** (0.052)

Panel B: Diagnostic tests

Observations 6,100 6,298
AR(2) 1.130 0.940
p-value 0.257 0.349
J-statistic 279.220 263.170
p-value 0.353 0.468

Note: Panel A of the table reports the estimates obtained from robust two-step System-GMM estima-
tions. This table presents the estimates for the impact of three different levels of uncertainty i.e. global,
country and industry level uncertainty on the TFP growth conditional on industry size. The dependent
variable is the TFP growth of the 18 manufacturing industries in 16 emerging economies and covering
the time period over 1971-2008. Model 1 estimates the impact of uncertainty originating from different
sources on the TFP growth whereas Model 2 presents the estimates of the uncertainty as well as their
level series. The one period lagged values of the first difference of the independent variables are used as
instruments for the equations in levels whereas for the differenced equations, the second -fourth lag of
the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is
used to test the instruments validity whereas the autocorrelation in first differenced residuals is tested
through the Arellano-Bond, AR(2) test. RGDPL(Real GDP at country level), Size(Industry size), and
Trend are the control variables. ***,**, and * indicate level of significance at 1%, 5%, and 10% level
of significance, respectively. Standard errors are displayed in the parenthesis which are robust to the
presence of serial correlation and heteroskedasticity within panels.
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A.3 Alternative Measures of Global, Country and Industry Level
Uncertainty

Table 3-A.3: Indirect Impact of Uncertainty on the TFP Growth: Conditional
on the Respective Level Series

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Model 1

Coeff. Std.Err.

TFPijt−1 -0.137*** (0.037)
σ2(Output)ijt−1

0.003*** (0.001)

σ2(GDP )i,t−1
0.012* (0.001)

σ2(WGDP )t−1
0.073** (0.033)

Outputij,t−1 0.004*** (0.002)
Investmenti,t−1 0.003** (0.001)
W.Inflationt−1 0.028 (0.021)

Outputij,t−1 × σOutputij,t−1 -0.016** (-0.007)

Investmenti,t−1 × σGDPi,t−1 -0.009** (0.004)

W.Inflationt−1 × σWGDP
t−1 -0.015 (0.012)

Sizeij,t 0.091** ( 0.040 )
Constant -0.054 (0.062)

Panel B: Diagnostic tests

Observations 6,298
AR(2) 0.800
p-value 0.422
J-statistic 267.550
p-value 0.479

Note: Panel A of the table reports the estimates obtained from robust two-step System-GMM estima-
tions. This table presents the estimates for the impact of three different levels of uncertainty i.e. global,
country and industry level uncertainty on the TFP growth conditional on industry size. The dependent
variable is the TFP growth of the 18 manufacturing industries in 16 emerging economies and covering
the time period over 1971-2008. Model 1 estimates the impact of uncertainty originating from different
sources on the TFP growth whereas Model 2 presents the estimates of the uncertainty as well as their
level series. The one period lagged values of the first difference of the independent variables are used as
instruments for the equations in levels whereas for the differenced equations, the second -fourth lag of
the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is
used to test the instruments validity whereas the autocorrelation in first differenced residuals is tested
through the Arellano-Bond, AR(2) test. RGDPL(Real GDP at country level), Size(Industry size), and
Trend are the control variables. ***,**, and * indicate level of significance at 1%, 5%, and 10% level
of significance, respectively. Standard errors are displayed in the parenthesis which are robust to the
presence of serial correlation and heteroskedasticity within panels.
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Chapter 4

TFP Convergence: Explaining the Role of Volatility

4.1 Introduction

The theoretical and empirical debate on convergence has been a pertinent element of the

growth literature. A wide range of empirical research based on Neo-classical growth mod-

els has centralized the role of capital accumulation in explaining the cross country income

differences and convergence (Mankiw et al., 1992, Bernard and Jones, 1996c). However,

later studies suggest that cross country growth and productivity differences are not com-

pletely due to the differences in human and physical capital (Keller (2000), Hall and Jones

(1999), and Bernard and Jones (1996c)).

Endogenous growth models given by Romer (1986), Lucas (1988), and Romer (1990)

advocate endogenous technological change as an important determinant of growth. In this

regards, further empirical contribution is carried out by Aghion and Howitt (1992), Howitt

(2000), Grossman and Helpman (1991), Klenow and Rodriguez-Clare (2005), and Córdoba

and Ripoll (2008). Grossman and Helpman (1991) and Rivera-Batiz and Romer (1991), in

particular, argue that technological change plays a dominant role in the long run growth.

Similarly, Romer (1993), Parente and Prescott (1994), and Bernard and Jones (1996c) also

stress upon the importance of technological development. Also, these studies explain that

technology diffusion across countries leads towards faster growth and more importantly

for convergence among countries. Specifically, Bernard and Jones (1996c) state that the

role of technology in explaining the relative income levels is crucial for convergence process

but it has been ignored and misguided in the empirical literature.

By linking international trade and neoclassical growth model, Ben-David (1993) and

Barro and Mankiw (1995) among others introduce an open economy framework of the neo-

classical growth model. These studies specifically emphasize on the significance of interna-

tional trade, capital flows and technology transfer in convergence process. A noteworthy

empirical contribution in this perspective is Coe and Helpman (1995) which introduced

the role of technology transfer through the trade channel in TFP convergence. Following

studies such as Griffith et al. (2004), Cameron et al. (2005), and Madsen (2008) also con-

firm the hypothesis presented in Coe and Helpman (1995). They conclude that in an open

economy framework, the economy’s productivity levels are not only determine by its own

innovation activities but also by the innovation activities of its trading partners. Several

researchers including Coe et al. (1997), Frantzen (2000), Guellec and Van Pottelsberghe

de la Potterie (2001), Lumenga-Neso et al. (2001), del Barrio-Castro et al. (2002), Crespo
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et al. (2004), and Guellec and Van Pottelsberghe de la Potterie (2004) conclude a signifi-

cant contribution of technological spillover in the convergence process. In contrast, Keller

(1998) and Kao et al. (1999) among others do not support the hypothesis that technology

spillover is important for the convergence of TFP growth.

Recent researchers not only explain the role of technological diffusion in determining

the TFP growth but these studies also estimate the impact of technological development

in TFP convergence. In this regard, empirical studies estimate the relationship between

country TFP growth and its initial distance from the technological frontier. In other words,

they estimate the relative TFP level of non-frontier country with respect to the frontier

country (See, e.g., Bernard and Durlauf, 1991, 1996). Much of the earlier empirical focus is

devoted towards aggregate TFP convergence. However, to understand the major source of

TFP convergence at the aggregate level, recent studies divert their investigation towards

TFP convergence at the sector level, particularly at manufacturing sector. Bernard and

Jones (1996a) state that empirical research should focus on industry-specific particularly

manufacturing industries’ productivity convergence.

Therefore, we investigate how technological transmission from a frontier country affects

the TFP growth of manufacturing industries of emerging economies over the time period

1981-2008. Our study has three distinctive features in relations to the existing empirical

literature. First, we select large trading partners of the USA among emerging economies

as non-frontier countries. We select emerging economies instead of widely used sample of

OECD countries. Bernard and Jones (1996a) and Keller (2000) report that the conver-

gence analysis for developing economies can bring more interesting findings related to the

TFP convergence. Moreover, they also specify that the convergence hypothesis test for the

developing countries would help in understanding new facets of the convergence process.

We conduct our empirical analysis for the sample of five Asian emerging economies.

Second, to the best of our knowledge, there is no empirical research which has analyzed

the impact of uncertainty of technology diffusion on TFP growth and its convergence. We

compute uncertainty in the imports of technological products and estimate its impact on

TFP growth of the manufacturing industries of selected non-frontier countries. In addition

to investigate direct impact of uncertainty of technology diffusion, we also examine the

conditional impact of uncertainty on TFP growth. For doing so, we use an interaction be-

tween technology diffusion and its uncertainty. The interaction, in this case, captures how

uncertainty impact on TFP growth changes when the level of technology diffusion changes.

In addition to this, we also estimate the conditional impact of relative TFP level (TFP

gap) in the following two ways: (i) the conditional impact of TFP gap through technology

diffusion which is estimated by an interaction between TFP gap and technology diffusion.

In this case, we aim to investigate how technology diffusion affects the process of TFP
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convergence among the frontier and non-frontier countries. (ii) The conditional impact of

TFP gap through uncertainty of technology diffusion. For this purpose, we interact TFP

gap with uncertainty of technology diffusion. This exercise permits us to evaluate whether

uncertainty of technology diffusion improves or deteriorates the convergence process. In

other words, we scrutinize, how the convergence process takes place at different levels of

uncertainty of technology diffusion. Third, having established the direct and conditional

impact of the uncertainty of technology diffusion and TFP gap, we compute and plot the

total effect of both of these variables for TFP convergence.

We take the USA as the frontier country whereas five trading partners of the USA

among Asian emerging economies are considered as non-frontier countries. We measure

technology diffusion by using industry specific technological products import of non-

frontier countries from the frontier country. In addition, industry value added, capital

stock generated through perpetual inventory method and total number of employees of

manufacturing industries of non-frontier countries are used to compute TFP level as well

as TFP growth. Similar to the existing literature, we augment our baseline model of

TFP convergence with other factors affecting the TFP growth of non-frontier countries.

The control variables include capital-labor ratio and real wage growth rate which remains

same across all the estimation models.1 We also use second measure of technology dif-

fusion which is industry specific total imports of non-frontier countries from the frontier

country.

Before carrying out the empirical investigation, we compute the TFP level by employ-

ing the superlative index number approach proposed by Caves et al. (1982b) and Caves

et al. (1982a). To generate the proxy of uncertainty of technology diffusion, we use first

order autoregressive model of technology import for all manufacturing industries over the

selected time period. Finally, to empirically estimate the impact of technology diffusion

and its uncertainty on the TFP growth and convergence process, we implement the dy-

namic panel data estimator, two step system GMM approach.

Our empirical findings suggest a significant evidence of convergence among manufac-

turing industries of the frontier and non-frontier countries for both samples of non-frontier

countries. We observe a significant impact of technology diffusion on TFP growth of

emerging economies. Also, we find that technology diffusion triggers TFP convergence

process among frontier and non-frontier countries over the selected sample period. In con-

trast, the uncertainty of technological products’ import lead not only to a decline in the

TFP growth but also it results in divergence of TFP of manufacturing industries of the

1The yearly data on human capital and R&D expenditure for the selected emerging economies is not
available, therefore our model lacks the information on these two factors affecting the TFP growth and
convergence process.
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frontier and non-frontier countries.

The rest of the paper is organized as follows: Section 3 discusses the existing empiri-

cal literature, its weaknesses and how our study differs from the existing research on the

impact of technology diffusion on TFP growth. Section 4 presents the empirical model,

explains the data, data sources, and variable construction. Section 5 is devoted to the

discussion of the empirical results. Finally, section 6 concludes.

4.2 Literature Review

Since the seminal contribution of Romer (1986) and Romer (1990), most of the empirical

research endogenize the technological development in growth models. The recent growth

models, therefore, not only advocates the importance of innovative research activities but

also report international trade as an important mechanism for productivity gains (Gross-

man and Helpman (1991) and Russell and Kumar (2002)). Researchers such as Dowrick

and Nguyen (1989), Dougherty and Jorgenson (1996), Dougherty and Jorgenson (1997),

Wolff (1991), and Dollar and Wolff (1994) have also interpreted the process of technolog-

ical catch-up. Since TFP is the closest measure for technology, these researchers examine

whether countries have been converging in terms of TFP levels or not.

Later, a large number of studies stress upon the role of international trade particu-

larly imports in determining TFP growth. This research classifies international trade as

the mechanism of technology diffusion towards technologically lagging countries. These

studies include Coe and Helpman (1995), Coe et al. (1997),2 Ben-David (1996), Keller

(1996), Keller (1998) among others. Coe and Helpman (1995), in particular, explain that

countries with higher trade openness experience larger productivity gains from the tech-

nological development of their trading partners. Particularly, the gains are stronger for

small open economies. Similarly, Aghion and Howitt (1992), by following the schum-

peterian type models, state that overall research activities in an economy determine the

expected growth rate of the economy.

Wolff (1991) states that countries lagging behind in technological advancements should

exhibit rapid growth in the technology to catch-up with the leader country. He empiri-

cally support the existence of convergence among G7 countries while taking the USA as

the benchmark country. However, Bernard and Jones (1996a) find weak evidence of con-

vergence of the TFP or labor productivity among the manufacturing sector of 14 OECD

economies. In the similar vein, Bernard and Jones (1996c) state that the traditional

approaches overstate the role of capital accumulation and under-emphasized the role of

2Coe and Helpman (1995), Coe et al. (1997), and Park (1995) used the country level data which as
identified by Keller (2002) is incapable of capturing the diversity of sectoral trade for evaluating the impact
of international trade on the TFP growth in importing countries particularly when we consider the case of
developing countries.
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technological diffusion in explaining the convergence hypothesis. In addition, they argue

that the role of technology is even more important when we consider the convergence

hypothesis at the sector level particularly for the manufacturing sector.

Gouyette and Perelman (1997) evaluate the productivity performance measured through

two components of TFP growth, namely technological change and efficiency change. Their

study based on the manufacturing industries of 13 OECD countries does not present ev-

idence for catching up in manufacturing industries. Cameron et al. (1998) present the

convergence among manufacturing industries of the UK and the leader country, USA.

Also, their results portray that productivity gap from the benchmark country has signif-

icant impact on the TFP growth of the UK manufacturing industries. Moreover, their

study confirms the significant impact of trade openness on the TFP convergence of man-

ufacturing industries of both countries.

Researchers support the hypothesis that the technology diffusion favors the TFP

growth and convergence of technologically lagging countries. However, the empirical lit-

erature has not examine how this impact is different for developing relative to developed

countries. Keller (2000) document that technology diffusion form the leader country may

have different implications for developed and developing countries depending on two im-

portant factors: domestic R&D expenditures and import composition. He considers these

two factors crucial for determining whether technology diffusion from leading country

contributes more relative to the domestic technology innovations in the TFP growth of

lagging countries. Moreover, he verifies that the domestic innovation has larger impact on

TFP growth of OCED countries relative to technology diffusion from the average foreign

country whereas the reverse implies for developing countries. Similarly, Keller (2002) sup-

ports the findings that domestic, both inter and intra industry, innovations contributes

more than any foreign source of technology diffusion i.e. R&D of foreign industries or

technological products import for large OECD manufacturing industries.

Differing form other studies, Scarpetta and Tressel (2002) present a new dimension

of technological convergence. They argue that the process of innovation and adoption

of technology depends on the underlying market conditions and institutions affecting the

labor and product market functioning. They identify a significant affect of technological

gap on the TFP growth of manufacturing industries of selected OECD countries which

suggests the presence of technological catch-up in most of these industries. Russell and

Kumar (2002) estimate the world wide production frontier and relative efficiency levels

for all economies by employing a non-parametric approach. They claim that technological

catch-up reflects the movement towards the frontier country by adopting their technologies

which reduces the technical and allocative gap.

At the aggregate level, Miller and Upadhyay (2002) support the argument built by
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Bernard and Jones (1996c) that technology diffuses from developed to developing coun-

ties which facilitates the convergence process. Their findings provide a strong evidence

of TFP convergence for low and middle income countries. In addition, the evidence of

σ-convergence is only observed for high income countries whereas for low income countries

the evidence is mixed.

Stehrer and Wörz (2003) argue that there is difference in the catching up of countries

based on their regional classifications and also on types of industries. Their findings in-

dicate productivity convergence in the medium-low-tech and medium-high-tech industries

of East Asian countries whereas it is lowest for the low-tech industries of these countries.

In the case of OECD, the convergence is more prominent in the low-tech industries. In

addition to this, they state a significant link between trade and technological catch-up.

Another strand of literature focuses on estimating the role of domestic as well as

foreign innovations measured through R&D expenditures. This literature explains that

research innovations facilitate the productivity growth of technologically lagging countries

via two channels: direct and indirect. Through direct channel, R&D activities in domestic

industries provide opportunities for innovations. Through indirect channel, R&D activ-

ities accelerate the process of technology diffusion by improving the absorptive capacity

of industries to adopt and imitate the existing technology of the leading countries. Both

of these channels facilitate TFP convergence among leader and lager countries. In this

regards, Griffith et al. (2004) provide the evidence of significant direct and indirect impact

of R&D activities in convergence of OECD countries towards the technological leader. On

the similar grounds, Cameron et al. (2005) highlight two important factors for the TFP

growth in countries lagging in the technological development namely, domestic innova-

tions and technology transfer from the frontier country. By empirically estimating long

run equilibrium error correction model of productivity growth, they provide evidence of a

statistically significant adjustment towards the long run steady state equilibrium. More-

over, they identify that international trade plays a significant role in the convergence of

TFP growth among manufacturing industries of the UK and the USA. Deliktas and Bal-

cilar (2005) assess the catch-up and convergence for the transition economies and conclude

that the transition economies are well below the frontier.

Madsen (2007) reports a statistically significant and positive impact of domestic and

foreign knowledge on the TFP growth of 16 OECD countries. He does not find any sig-

nificant evidence that the relationship between foreign knowledge and the TFP growth is

driven by the trade openness. In contrast, Madsen (2008) reports a mixed impact of the

domestic knowledge on the TFP growth whereas the world knowledge pertains a statisti-

cally significant impact on the TFP growth through the channel of imports. Moreover, he

does not find a significant impact of trade openness on the TFP growth of selected OECD
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economies. More recently, Lee (2009) investigate the role of international factors such as

international trade and FDI in the long run convergence process of manufacturing indus-

tries of 25 OECD countries. He argues that both of these international factors attribute

to the diffusion of knowledge. By applying the panel unit root methodology, his study

provide evidence of a significant role of trade and FDI in the productivity convergence

of sample countries. However, the speed of convergence is higher for the trade related

productivity in contrast to the FDI related productivity convergence. By using the error

correction model, Mc Morrow et al. (2010) support the catching-up process taking place

between the EU-US manufacturing industries. Moreover, a significant contribution by the

technological advancement in the leader country is also observed for the TFP growth of

the follower countries.

Overall, the review of literature not only explains the importance of domestic fac-

tors such as capital accumulation and research innovations but also provides an evidence

of the significant role of international factors, particularly, international trade of interme-

diate goods in TFP growth and convergence. Another important implication which can

be drawn from the existing research is that the quality of domestic institutions is crucial

in enhancing the innovative activities. However, the existing studies have not considered

the impact of uncertainty, particularly uncertainty attached to international factors on the

TFP growth and convergence process. It is important to incorporate the role of uncer-

tainty not only in determining the TFP growth but also to assess how and to what extent

it effects the convergence process among technologically lagging and leader countries.

In addition to this , much of the empirical investigation is undertaken for the TFP con-

vergence of manufacturing industries of OCED economies towards a leader country. How-

ever, OECD is mainly comprised of developed economies where most of the economies

pertains relatively higher TFP growth in manufacturing industries. Less developed or

developing countries, as explained by Bernard and Jones (1996c), may provide more inter-

esting findings regarding the TFP convergence at sectoral level. Therefore, we aim to fill

this gap in the literature by incorporating the role of uncertainty of technology diffusion

in determining the TFP growth and its convergence. Given that, we examine the conver-

gence analysis for emerging economies which has not been considered earlier. Therefore,

we can provide empirical findings which can compliment earlier research.

4.3 Theoretical Framework

Building on the existing empirical studies, we consider an autoregressive distributed lag

(ADL) model to capture the adjustment towards the long run equilibrium point between

TFP growth of the frontier and non-frontier countries. Nicoletti and Scarpetta (2003),

91



Griffith et al. (2004), Cameron et al. (2005), and Mc Morrow et al. (2010) among others

employ an ADL (1 1) specification by assuming no persistence of TFP growth of non-

frontier countries with its own lagged values. Differing from this practice, we assume an

ADL (2 2) specification which is relatively more flexible as it not only allows the contem-

poraneous but also the lagged effect of TFP growth of the frontier country on TFP growth

of non-frontier countries.3

As Bernard and Jones (1996a), Bernard and Durlauf (1996), Griffith et al. (2004), and

Cameron et al. (2005) document that TFP growth in countries which lacks technological

development is not only determine by domestic innovation but also by technology transfer

from the technologically advanced countries. Since the data on domestic innovation ( mea-

sured as the R&D expenditures) is not available for the selected non-frontier countries, we

proxy the impact of domestic innovation through the lagged TFP growth of manufacturing

industries of these countries. The ADL (2 2) model takes the following form.

TFP nonfrontier
ijt = α0 + α1TFP

nonfrontier
ijt−1 + α2TFP

nonfrontier
ijt−2 + β0TFP

frontier
jt

+ β1TFP
frontier
jt−1 + β2TFP

frontier
jt−2 + λXij,t + υij,t (4.1)

We perform a linear transformation on the above model under the assumption of

long run homogeneity of the equilibrium relationship.4 ( see e.g., Banerjee et al. (1990)

and Banerjee et al. (1993) for further detail). This assumption dictates a proportional

relationship of productivity growth in the frontier and non-frontier countries at the long

run equilibrium point. Hence, we can write the above expression as follows:

∆TFP nonfrontier
ijt = α0 + γ0∆TFP

nonfrontier
ijt−1 + γ1∆TFP

frontier
jt + γ2∆TFP

frontier
jt−1

− Ω0

(
TFP nonfrontier

ijt−2

TFP frontier
jt−2

)
+ λXij,t + fij + ζt + εij,t (4.2)

Subscript j denotes number of industries, i denotes number of countries, t refers to

number of years. ∆TFP indicates the total factor productivity growth in industry j of

country i and at time t. γ0 = (α1 − 1), γ1 = β0, γ2 = (β0 + β1) and Ω0 = (β0+β1+β2

α2+α1−1 ) and

υij,t = fij + ζt + εij,t which represents the country-industry fixed effect, year fixed effects

and serially uncorrelated error, respectively.

3An ADL (1 1) specification is based on the one period lagged values of both the dependent and
independent variables whereas in ADL (2 2) specification, take two lags of dependent and independent
variables.

4 The linear transformation leads to derivation of various other models e.g., Sargan (1964), Hendry
and Anderson (1977), and Davidson et al. (1978) have used the ADL (1 1) specification to derive the
error correction term and describe it as a way to capture the adjustment towards a long run equilibrium
point between a dependent and independent variable which is deviated from an equilibrium point from the
dependent variable.
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∆TFP nonfrontier
ijt denotes the total factor productivity growth in emerging economies

which are classified here as non-frontier countries. ∆TFP nonfrontier
ij,t−1 is the lagged TFP

growth which measures the persistence of TFP growth among manufacturing industries

of non-frontier countries over the selected time span. Thus, γ0 captures the link between

TFP nonfrontier
ijt and technological developments in the previous year taken place in non-

frontier countries.

The coefficient γ1 and γ2 measure the contemporaneous and the lagged effect of TFP

growth in the frontier country (∆TFP frontier
jt ) on the TFP growth of non-frontier coun-

tries. Finally, (
TFPnonfrontier

ijt−2

TFP frontier
jt−2

) captures TFP level in manufacturing industries of non-frontier

countries relative to the TFP level in manufacturing industries of the frontier country.5

The coefficient of the relative TFP level (Ω) captures the impact of efficiency gap on

the TFP growth of non-frontier countries. Since the lager country experiences lower TFP

growth relative to the frontier country, the (Ω) is expected to be negative for a non-frontier

country to remain at the steady state level (see, e.g., Griffith et al. (2004)). This dictates

that farthest the country lies from the benchmark country, negative and smaller will be

the coefficient, and greater will be the potential for efficiency gain (see, e.g., Cameron

et al. (2005) and Griliches and Lichtenberg (1984a)).

Cameron et al. (2005) state that the TFP in sector j of non-frontier countries lies at

an equilibrium distance behind the frontier country such that at the steady state equilib-

rium, the TFP growth in manufacturing industries of frontier and non-frontier countries

will be equal to each other. They explains that the relative TFP at the steady-state equi-

librium depends on the innovation in both countries as well on the speed of technology

transfer from the frontier to non-frontier country. In addition, Coe and Helpman (1995)

and Madsen (2007) explain that import of intermediate goods from the frontier country

facilitates the process of faster TFP growth.6 Hence, to estimate the impact of technology

diffusion, we incorporate the import of technological products from the frontier country

into Equation (4.2). The model then takes the following form:

∆TFP nonfrontier
ijt = α0 + γ0∆TFP

nonfrontier
ijt−1 + γ1∆TFP

frontier
jt + γ2∆TFP

frontier
jt−1

− Ω0

(
TFPGapijt−2

)
+ ψ0Techijt−1 + λXij,t + fij + ζt + εij,t (4.3)

This specification is similar to Nicoletti and Scarpetta (2003), Griffith et al. (2004),

5Banerjee et al. (1990) explain this term as the adjustment towards the long run equilibrium point.
Furthermore, this term represents the existence of long run co-integrating relationship between the TFP
of each non-frontier country and TFP of the frontier country.

6 A substantial number of studies emphasized the role of international trade in the diffusion of technol-
ogy. These studies presents various mechanisms through which trade can impact the productivity growth
in lager countries. Most notable mechanism are the diffusion of technology and competition. See, e.g.,
Ben-David and Loewy (1998), Edwards (1998), Frankel and Romer (1999), and Lawrence and Weinstein
(1999).
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Cameron et al. (2005), and Mc Morrow et al. (2010) among others. Techijt−1 repre-

sents technology diffusion and measured as the ratio of technological products’ import, of

non-frontier countries from the frontier country, to the value added.

Differing from these studies, we augment equation (4.2) with a measure of uncertainty

of technology diffusion and estimate its impact on the TFP growth and convergence of

manufacturing industries of non-frontier and frontier countries. This helps us to under-

stand how the effect of technology diffusion changes in presence of the uncertainty of

technology diffusion.

Further, we also estimate a secondary channel through which uncertainty of technology

diffusion and TFP gap affects TFP growth of non-frontier countries. For this purpose,

we augment the model given in Equation (4.3) with following interaction terms: (i) inter-

action between uncertainty of technology diffusion with the level of technology diffusion.

This approach allows us to evaluate how uncertainty affects TFP growth of non-frontier

countries at different levels of technology diffusion. (ii) interaction between TFP gap

and technology diffusion. This interaction identifies whether TFP convergence changes

at different levels of technology diffusion from the frontier towards non-frontier countries.

(iii) interaction between TFP gap and uncertainty of technology diffusion. This captures

changes in TFP convergence through different levels of uncertainty. Hence, our model

takes the following form.

4TFP nonfrontier
ijt = α0 + γ0 4 TFP nonfrontier

ijt−1 + γ1 4 TFP frontier
jt + γ2 4 TFP frontier

jt−1

− Ω0

(
TFPGapijt−2

)
+ ψ0Techij,t−1 + ψ1σ

Tech
ij,t−1 + ψ2Techij,t−1 × σTechij,t−1

(4.4)

+ ψ3Techij,t−2 × TFPGAPij,t−2 + ψ4σ
Tech
ij,t−2 × TFPGAPij,t−2 + λXij,t

+ fij + ζt + εij,t

The term σTradeijt−1 measures the own impact of technology diffusion uncertainty on the

TFP growth of non-frontier countries. Whereas Techijt−1×σTechijt−1 specify how the impact

of technology diffusion’s uncertainty changes conditional on the level of technology diffu-

sion. TFPGAPij,t−2 × Techij,t−2 identifies the impact of TFP convergence through different

levels of technology diffusion on TFP growth of non-frontier countries. We expect the

coefficient of the interaction of technological trade and the relative TFP level as nega-

tive which indicates that trade of technological products between frontier and non-frontier

countries support the convergence process. Finally, TFPGAPij,t−2 × σTechijt−2 indicates uncer-

tainty augmented TFP convergence. Alternatively, this term captures the TFP conver-

gence in manufacturing industries of non-frontier and frontier countries at different levels

of uncertainty.
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4.3.1 Computation of Relative TFP

By following the existing literature such as Nicoletti and Scarpetta (2003), Griffith et al.

(2004), and Cameron et al. (2005), we compute TFP growth in industry j of ith country

using a superlative index number approach proposed by Caves et al. (1982b) and Caves

et al. (1982a). This approach allows the flexibility in specification for computing the

productivity growth. Cameron et al. (2005) explain that this methodology is consistent

with the translog production function and TFP measure through index number approach.

We prefer superlative index number approach to compute TFP growth in this chapter

instead of using translog production function approach itself due to two reasons. (i)

Translog production function approach only estimates the TFP growth whereas superlative

index number approach allows us to compute the TFP level of each respective country in

addition to compute the TFP growth. (ii) superlative index number approach enables us

to compute the relative level of TFP of each country with respect to the frontier country.

This is the distinctive characteristic of this approach which enables us to compute the

relative TFP levels or TFP gap of each non-frontier country with respect to the frontier

country. Jorgenson and Nishimizu (1978) initiate the computation of international TFP

comparison by using multilateral translog production function. However, to compute the

relative levels of TFP, they have used Caves et al. (1982a)’s superlative index number

approach as we have followed to compute the relative TFP levels. Moreover, the translog

production function approach introduced by Jorgenson and Nishimizu (1978) uses dummy

variable of foreign country to introduce the technological differences. Therefore it is more

appropriate for the time series analysis with bilateral trade. Our study is based on three-

dimensional panel data where frontier country is repeating and introducing dummy will

lead to the problem of repeated time observations and dummy variable trap. Also, it

is more flexible than the simple Cobb-Douglas production function. We compute TFP

growth in non-frontier countries as follows:

ln

(
Aij,t
Aij,t−1

)
= ln

(
Yij,t
Yij,t−1

)
− ᾱij,tln

(
Lij,t
Lij,t−1

)
− (1− ᾱij,t) ln

(
Kij,t

Kij,t−1

)
(4.5)

where Yij,t indicates the real value added of industry j in country i at time t in constant

international dollars. Lij,t denotes labor input in industry j of country i at time t measured

as the total number of employees. Kij,t denotes the physical capital in industry j of country

i at time t measured in constant international dollars. ᾱij,t indicates (αij,t + αij,t−1)/2,

the average labor share in industry j of country i for the period t and t− 1. As Cameron

et al. (2005) argue that labor share at industry level are highly volatile which can lead

to a measurement error in αij,t. Following Harrigan (1999), αij,t can be computed as the
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function of capital-labor ratio and a country industry constant as follows:7

αij,t = ϑij + ξjln

(
Kij,t

Lij,t

)
(4.6)

The fitted values from this equation are then used as the labor share in the computation

of TFP. Next, we employ the superlative index number technique to compute the relative

TFP of manufacturing industries in non-frontier and frontier countries. Thus TFP level

in manufacturing industries of non-frontier countries relative to manufacturing industries

of frontier country is expressed as below:

ln

(
Aij,t
AFj,t

)
= ln

(
Yij,t
YFj,t

)
− α̃ij,tln

(
Lij,t
LFj,t

)
− (1− α̃ij,t) ln

(
Kij,t

KFj,t

)
(4.7)

where α̃ij,t represents (αij,t+αFj,t)/2, average share of labor in value added of industry j of

frontier and non-frontier countries. An intuition for this computation is given by Easterly

et al. (2003) that this index explains the TFP level across industries and countries if the

labor cost is same across all industries in the frontier and non-frontier countries.

4.3.2 Generating a proxy for Uncertainty

There are several methods proposed in the literature to compute a proxy for uncertainty.

The standard deviation of residuals of the underlying series as a proxy for uncertainty is

relatively common in the literature. For instance, Turnovsky and Chattopadhyay (2003)

have utilized the standard deviation of the residuals of the autoregressive processes of the

logarithm of GDP to compute uncertainty. Aizenman and Marion (1999), too, measure

the uncertainty as the standard deviation of the residuals of the autoregressive processes of

variables of interest. Whereas, Comin and Mulani (2009) used centered standard deviation

of 10 consecutive annual growth rate of the series.

Another common approach to generate a proxy of uncertainty is to compute moving

average standard deviation of the underlying series. However this method is criticized

as it gives equal weights to all the observations at each interval which may lead to high

serial correlation. Some existing studies have used the conditional variance computed from

GARCH models to gauge the uncertainty. GARCH based specifications are more common

in the literature where the series are of high frequency such as quarterly or monthly. In

addition, the GARCH process generates uncertainty by taking all the industries/countries

collectively. Thus, this process cannot isolate the unobservable shocks related to one series

while computing the volatility of another series in the sample.

Following Aizenman and Marion (1999) and Turnovsky and Chattopadhyay (2003),

we estimate a first order autoregressive model to generate the residuals for the industry

specific imports of technological products and industry specific total imports across each

7This strategy is implemented by Nicoletti and Scarpetta (2003) and Griffith et al. (2004) among others.
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industry for the time period 1981-2008.8 One-period ahead residuals are saved for each

industry. Later, using one period ahead residuals, we compute the cumulative-volatility

of the underlying series. In particular, the cumulative volatility for the year 1982 is

computed by calculating the standard deviation of the residuals from the AR(1) model of

the respective series that uses the data for the year 1982 and 1981. We repeat this process

to construct the cumulative volatility for all the years in the sample.

4.3.3 Generating the Capital Stock

To compute the capital stock by using gross fixed capital formation series, we employ

perpetual inventory method. For this purpose, we first compute the initial capital stock

which is calculated as a ratio of the gross fixed capital formation in 1980 to the sum

of the annual geometric growth rate of output of each industry over the selected time

period.9 and the depreciation rate of capital. We assume a constant depreciation rate of

5% (See, Easterly et al. (2003)). Having obtained the initial capital stock for 1980, we

compute capital stock series by following the perpetual inventory method, Kt = Kt−1 +

GFCFt(1− δ). Where δ is the depreciation rate set to 5%.

4.3.4 Empirical Issues

Our models presented in Equation (4.3) – Equation (4.4) contain uncertainty of technology

diffusion and TFP growth which are generated regressors. As pointed out by Hendry et al.

(1984) and Pagan and Ullah (1988) that generated regressors in estimation and statistical

inference may be problematic. To overcome this problem, we employ dynamic panel data

(DPD) estimator, two step system GMM approach to estimate our models given in equa-

tions (4.3) to (4.4). This approach is developed by Arellano and Bover (1995) and further

extended by Blundell and Bond (1998). The key feature of this approach is that it uses a

system of two equations one in first differenced form whereas the other in levels. Therefore

in system GMM, the model is estimated in levels as well as in first differences. In addition,

time invariant regressors can still be included in the system GMM which would disappear

in the difference GMM. Since all instruments for the level equations are assumed to be

orthogonal to fixed effects, particularly to all time invariant variables, it will not effect the

estimates for the other regressors.

We use time dummies in all of our estimated specification to tackle the problem of

non-stationarity in the level equation. For doing so, we follow Bond et al. (2001) who

argue that including time dummies is equivalent to transforming the variables into devia-

8We prefer using AR(1) process to generate the residuals. We did not run a family of autoregressive
series to select the appropriate model as for the annual data with a limited time series observations, a
higher order AR process may not generate consistent measure of uncertainty. Similar practice is adopted
by Aizenman and Marion (1999)

9We have computed the geometric mean (g) as [(
GFCFstartyear
GFCFendyear

)1/N − 1]
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tions from time means.

To test the validity of the instruments, we use the Hansen (1982) J-statistics for over

identification to confirm the robustness of instruments. The J-statistics is asymptotically

distributed as χ2 with degrees of freedom equal to the number of overidentifying restric-

tions. The Hansen test works under the null of “the instruments are jointly exogenous”.

Therefore a higher p-value will ensure the validity of instruments as a group.

Moreover, we test for the second order serial correlation by implementing the Arellano

and Bond (1991) test for autocorrelation. This test works under the null of “no autocor-

relation” and asymptotically follows a standard normal distribution. The dynamic panel

data model generally exhibits a first order serial correlation. However, for instruments to

be strictly exogenous the residuals should not carry a second order serial correlation.

4.3.5 Data and Data Sources

We use an extensive data set which is accessed from various data sources. We use 3-

dimensional panel data covering the time period 1981-2008, eighteen industries of the

manufacturing sector, and five emerging economies. The data on industry level output,

value added, employment, wages and salaries, and gross fixed capital formation are taken

from the United Nation’s Industrial Development Organization (UNIDO) database. We

use two-digit International Standard Industrial Classification (ISIC) Revision 3 classifica-

tion for manufacturing sector with twenty-eight industries.

We ensure, by following the standard practice, that there should be at least 10 indus-

tries for the selected countries and minimum 10 years of data on each industry is available.

The selected number of industries remains constant over time and across counties. The

panel combining countries, industries and time observations is unbalanced with some in-

dustries containing more observations than others. To avoid a large number of missing

observations we drop some industries. Therefore, the final number of industries for which

we conduct our empirical analysis is eighteen.

To measure the impact of technology diffusion, we use data on industry specific imports

of technological products from the frontier country. For this purpose we use the following

Standard International Trade Classification (SITC) for high technology products: chem-

icals and related products (SITC section 5), machinery and transport equipment (SITC

section 7), professional and scientific instruments (SITC section 8.7).10 In addition to this,

we also use industry specific total imports of the selected emerging economies from the

frontier country as a second measure of technology diffusion.

We match the SITC classification with ISIC classification. For this purpose, we use

SITC data on three digit industries to match the data with the 2-digit ISIC categories.

10see, e.g., Madsen (2008).

98



The major decomposition of the SITC data was in the “food and live animals” and “to-

bacco”. We drop the item code which represents the trade of “live animals” in the SITC

categories and include the item codes which represents the trade of “beverages” to make

it compatible with the ISIC classification of “food and beverages”. This is done as we

separate the SITC classification of “beverages and tobacco” in to two separate parts to

make tobacco an independent classification just as in the ISIC classification. By following

the similar scheme, we match other classification codes of SITC and ISIC to be compatible

with each other. Data on industry specific import are accessed from the United Nation’s

commodity trade database.

We deflate industry level variables by using the producer price index (see, e.g., Imbs

(2007)).11 The data on PPI is accessed from International Financial Statistics (IFS)

database by International Monetary Fund (IMF) published in 2012. We normalize the

industry specific import of technological products and total industry specific import by

the value added of the respective industry.

4.3.6 Summary Statistics

Table 4.1 presents the summary statistics of variables which are used in the estimation

process. The mean value of the TFP level of non-frontier countries is lower than that of

the frontier country. These estimate reveal that TFP level of non-frontier countries lies

below the TFP level of the frontier country. However, the rate of TFP growth is higher

in case of non-frontier countries which indicates catch-up of manufacturing industries of

frontier and non-frontier countries. Lederman et al. (2005) also report a decreasing TFP

gap among of south American countries towards the USA. Derviş (2012) reports catchup

of emerging economies towards advanced economies. Lee (2009) also report productivity

convergence in manufacturing industries of twenty-five OECD countries. Miller and Upad-

hyay (2002) provide ranks of TFP levels for a large sample of developed and developing

countries based on different approaches. They find USA as the leading country whereas

the TFP levels of other countries varies across different approaches to measure TFP levels.

The dispersion in the TFP growth is extremely high for the case of non-frontier countries.

TFP gap (measured as relative TFP level of non-frontier to the TFP level of frontier

country) is negative which shows that non-frontier countries experience low TFP levels

in manufacturing industries relative to the frontier country. Similarly, we can observe a

negative capital stock gap and value added gap which indicates that the level of capital

stock and value added is also lower in non-frontier country.

Moreover, the average value of capital stock in manufacturing industries of non-frontier

countries is higher than the average value of the number of employees. Whereas, we ob-

11The data on industry specific price deflators for the selected sample of countries is not available.
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serve higher dispersion for number of employees across manufacturing industries and over

the selected time period. In addition, Table 4.1 reports the percentiles of the selected

variables. The TFP growth is negative at the lowest percentile whereas as it turns to pos-

itive as we move towards higher percentiles of TFP growth in manufacturing industries of

frontier and non-frontier countries. It is important to note that through out the percentile

distribution, TFP growth in non-frontier countries remain higher than the TFP growth of

the frontier country.

Table 4.2 presents the growth and relative TFP levels of manufacturing industries of all

the selected non-frontier countries. We can observe that highest TFP growth is obtained

by manufacturing industries of Philippines followed by and Indonesia and Singapore, re-

spectively. The lowest positive TFP growth is maintained by manufacturing industries of

Malaysia. On the other hand, the highest dispersion is observed in the TFP growth of

manufacturing industries of Indonesia followed by Philippines, respectively.

Moving towards the relative TFP levels (TFP gap), we can observe that the largest

gap between the TFP growth of manufacturing industries is for India whereas the lowest

TFP gap is observed for manufacturing industries of Singapore. In contrast the largest

variation in TFP gap is observed for manufacturing industries of Phillipines and lowest

is reported for manufacturing industries of India followed by Singapore and Malaysia,

respectively.

4.4 Empirical Results

At the first step, we examine the relationship between TFP growth in manufacturing

industries of frontier and non-frontier countries without incorporating the role of tech-

nological transmission and its uncertainty. Having established this relationship, we next

evaluate the role of technology diffusion, its uncertainty and other factors affecting TFP

growth in manufacturing industries of selected non-frontier countries. We use capital-labor

ratio, and real wage growth rate as control variables in all empirical specifications. It is

important to note that through out our empirical estimation, the USA remains as the

frontier country.

The specifications presented in Equations (4.3–4.4) are estimate five emerging economies.

Column 2 of Tables 4.3– 4.4 report the estimates based on first measures of technology

diffusion, i.e., import of technological products ratio to value added. In addition, we also

estimate each specification by taking an alternative measure of technology diffusion i.e.

industry specific total import from the frontier country. Columns 3 of Tables 4.3– 4.4

display the estimates based on this alternative measure of technology diffusion.

We report diagnostic tests in Panel B of each table to evaluate the model performance.

The J statistics for all specifications indicates the acceptance of null hypothesis which ver-
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ifies the orthogonality of our selected set of instruments. The Arellano and Bond (1991)

test for autocorrelation rejects the presence of second order serial correlation in all models.

4.4.1 Productivity Convergence

Table 4.3 presents the results of baseline specification described in Equation (4.3). Particu-

larly, column 2 displays the empirical estimates based on the proxy of technology diffusion

measured as technological products import ratio to industry value added. Column 3 shows

the results for display the estimates based on alternative measure of technology diffusion.

We observe that the coefficient of the lagged TFP growth of non-frontier countries attains

a negative sign and it is statistically significant at the 1% significance level. This negative

coefficient indicates that low productive industries catch-up with high productive indus-

tries of non-frontier countries. The speed of convergence in these manufacturing industries

is observed as 0.144%. Notably, the speed of convergence is very for the manufacturing

industries of these emerging economies with the manufacturing industries of the USA. One

important reason could be that the sample of five emerging economies include only those

countries which are geographically located in the same region.

To identify the impact of technological development in the frontier country on the TFP

growth of non-frontier countries, we augment our model with both the contemporaneous

and lagged values of TFP growth of manufacturing industries of the frontier country. The

coefficient attached to the contemporaneous and the lagged values of TFP growth of fron-

tier country is positive and statistically significant. This specify that TFP growth in the

frontier county leaves a positive impact on the TFP growth of manufacturing industries

of non-frontier countries (col 2). The magnitude of the contemporaneous effect is higher

than the lagged effect of TFP growth in manufacturing industries of the frontier country.

However, we observe an insignificant lagged effect of TFP growth of the frontier country.

To estimate the impact of imports as a measure of technology diffusion, we use in-

dustry specific import of technological products of non-frontier countries from the frontier

country. The coefficient of the technology diffusion is positive and statistically significant

at the 5% level of significance. This result supports the findings of earlier studies which

also report the positive impact of technology transfer from the frontier country on the

TFP growth of non-frontier countries.

Next, we turn to observe the impact of TFP gap (TFPGapijt−2) on TFP growth of manu-

facturing industries of non-frontier countries.12The coefficient attached to the relative TFP

levels or TFP gap is negative and statistically significant at the 5% significance level. The

12We employ Fisher test for panel unit root to test the order of integration between the TFP level of
frontier and non-frontier countries. The test statistics reveal that both the series are integrated of order
one. This is inline with the earlier studies which proposed that the relative TFP level should be integrated
of order one.
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negative coefficient confirms the TFP convergence in manufacturing industries of frontier

and non-frontier countries. We can conclude based on this finding that countries which

lies further behind the frontier have more potential of efficiency gain and therefore they

will converge at faster rate towards the frontier country. Notably, the speed of catchup

is three-times higher for the sample of five non-frontier counties which are geographically

located in the same region.

4.4.2 Direct Impact of Uncertainty of Technology Diffusion

Having established the impact of technology diffusion and the relative TFP level, we now

examine how the impact of technology diffusion and TFP gap changes when the model

is augmented with the uncertainty of the technology diffusion. Table 4.4 presents the

empirical estimates based on the specification given in Equation (4.4).

Column 2 verifies the initial results as we find a statistically significant and negative

coefficient of the lagged value of the TFP growth of non-frontier countries. Moreover, this

specification also indicates that the TFP growth in manufacturing industries of the fron-

tier country maintains a positive and statistically significant impact on the TFP growth of

non-frontier countries. Similar to the above, we observe a statistically significant impact

of relative TFP level on TFP growth of manufacturing industries of non-frontier coun-

tries. This verifies a statistically significant convergence of TFP among manufacturing

industries of the frontier and non-frontier countries. We observe a moderate decline in

the speed of convergence. This states that uncertainty of the technology diffusion has an

indirect negative impact on the speed of convergence of these five non-frontier countries.13

The coefficient of the industry specific technology diffusion is positive but statistically

insignificant. The coefficient of uncertainty of technology diffusion (σTradeij,t ) is negative and

statistically significant at the 5% significance level. This negative impact dictates that the

uncertainty of technological products reduces TFP growth in manufacturing industries of

non-frontier countries.

From the results reported in Table 4-A, we observe that uncertainty of industry specific

imports not only itself has a negative impact on the TFP growth of non-frontier countries

but also weakens the speed of TFP convergence in manufacturing industries of the fron-

tier and non-frontier countries. Also, it eliminates the positive impact of the technology

diffusion for non-frontier countries.

13Table 4-A in Appendix A presents the estimates where Equation (4.3) is estimated by considering only
the impact of uncertainty of technology diffusion. The uncertainty of technology diffusion is negative and
lowers TFP growth persistence in manufacturing industries of non-frontier countries
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4.4.3 Conditional Impact of Uncertainty of Technology Diffusion

Table 4.4 also reports the empirical estimates where we interact technology diffusion with

its uncertainty. This is termed as conditional impact of uncertainty through different

levels of technology diffusion. We observe that the coefficient of the interaction term is

positive and statistically significant for non-frontier countries. This finding refers that

the conditional impact of uncertainty through channel of technology diffusion is positive.

When we combine the direct and conditional impact of the uncertainty of technology

diffusion, we find that uncertainty of technology diffusion has negative impact on the TFP

growth. However, the negative impact decreases as the level of technological diffusion

increases from the frontier country. In other words, the negative impact of the uncertainty

weakens as the technology diffusion increases.14

4.4.4 TFP Convergence through Channel of Transmission and Uncertainty

Turning to the conditional impact of TFP gap through technology diffusion which is cap-

tured by the interaction between TFP gap and the measure of technology diffusion and

termed in Equation (4.4) as (TFPGAPij,t−2 × Techij,t−2), we observe that the coefficient of this

interaction term is negative and statistically significant. This negative coefficient shows

that non-frontier countries’ import from the frontier country helps in the adjustment pro-

cess towards the long run equilibrium point. Alternatively, we observe that the technology

diffusion strengthens the process of TFP convergence.

By combining the direct and conditional impact of TFP gap, we observe TFP conver-

gence in manufacturing industries of the frontier and non-frontier countries and the rate of

convergence increase as the technology diffusion increases. Alternatively, we can conclude

that the technology diffusion triggers the rate of TFP convergence. 15

Next, we move towards the conditional impact of TFP gap through uncertainty of

technology diffusion which is captured through the interaction between TFP gap and

uncertainty of technology diffusion (σ2,T echij,t−2 × TFPGAPij,t−2). The coefficient is statistically

significant and positive. This reveal that uncertainty leads to divergence of TFP in man-

ufacturing industries of frontier and non-frontier countries. By combining the direct and

conditional impact of TFP gap through uncertainty, we find that the TFP convergence

decreases as the level of uncertainty increases.

14Table 4-A.1 in Appendix A1 report the empirical results when we augment Equation (4.3) with with
uncertainty of technology diffusion and an interaction term of technology diffusion and is uncertainty.
This table indicates that if we only keep the direct and conditional impact of uncertainty of technology
diffusion, the direction of impact does not change. Therefore, our findings are consistent across different
specifications

15In Appendix A2, Table 4-A.2 presents the empirical results excluding the conditional impact of TFP
gap through uncertainty of technology diffusion. We observe that technology diffusion strengthens the
convergence process which is depicted through a negative coefficient of the interaction term of technology
diffusion and TFP gap.
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4.4.5 Robustness Check: Alternative Channel of Transmission

We also estimate specifications given in Equations (4.3–4.4) by using industry specific

total imports from the frontier country as an alternative measure of technology diffusion.

column 3 of Tables 4.3– 4.4 present these results. In all the results based on industry spe-

cific total imports, we find a statistically significant and negative coefficient of the lagged

TFP growth of non-frontier countries. This finding states that there is convergence among

the low and high productive industries of non-frontier countries. Moreover, in all of our

specifications, we find a significant and negative coefficient of the relative TFP levels. This

finding suggests that in both of our samples, there is significant adjustment towards the

long run equilibrium point.

The direct impact of total industry specific import from the frontier country on the

TFP growth of non-frontier countries is statistically significant and positive. However, the

magnitude of the impact of total industry specific imports is higher than the impact of

the technological products import.

Finally, the impact of uncertainty of total import is larger than the impact of un-

certainty of technological products’ imports from the frontier country, though remain

negative. In addition, we estimate the secondary channel of the effect through which un-

certainty affects the TFP growth. The conditional impact of uncertainty is positive and

statistically significant. This implies that the negative impact of uncertainty weaken at

higher levels of technology diffusion.16

This robustness check implies that the technological products’ imports play more im-

portant role in the technology diffusion from the frontier towards non-frontier countries.

Also, TFP convergence is higher in the case of industry specific technological products

import as compared to industry specific total imports.17

4.4.6 Total Impact of Changes in Uncertainty and TFP Gap

In addition to evaluating the marginal impact, both unconditional and conditional, we

also compute the total effect of both uncertainty and TFP gap on the TFP growth of non-

frontier countries. To compute the total impact, we calculate the total derivative of the

TFP growth Equation (4.4) with respect to uncertainty of technology diffusion and TFP

gap. We compute total effect at the 25th, 50th, 75th, and 90th percentiles of conditioning

variables. We report first order derivative with respect to uncertainty of technology diffu-

sion and TFP gap. Also, we plot the total effect of both uncertainty and TFP gap which

is displayed in Figure 4.3.

16Table 4-A, 4-A.1, and 4-A.2 report some additional estimates to support that our findings are robust
across various specifications

17For the sake of brevity, we do not report the estimates of total effect of uncertainty of industry specific
total imports. However, they are available from author upon request.

104



Table 4.5 reports the total effect conditional on technology diffusion. Panel A reports

the total impact of uncertainty of technology diffusion on TFP growth of non-frontier coun-

tries conditional on the industry specific technology diffusion. The total impact of uncer-

tainty remains positive and statistically significant across all the percentiles of technology

diffusion. Also the positive impact strengthens as we move towards higher percentiles

of technology diffusion. This finding is confirmed from the empirical estimates given in

table 4 where we can observe that the direct negative impact of uncertainty of technology

imports (-0.012) is lower than the indirect positive impact of uncertainty (0.039). This

suggests that the positive impact outweigh the negative impact of uncertainty of techno-

logical products’ import. Figure 4.1 display the total impact of uncertainty of technology

diffusion which also confirms that uncertainty impact on TFP growth throughout remains

positive and it becomes stronger at higher levels of technology diffusion.

Next, We turn to evaluate the total effect of TFP gap on the TFP growth of non-frontier

countries conditional on technology diffusion. The computed total effect is presented in

panel B of Table 4.5. We can observe from that the total impact of TFP gap is negative

and statistically significant across all percentiles of technology diffusion. Moreover, the

magnitude of this impact is increasing as we move towards the upper tail of percentile dis-

tribution of technology diffusion. This finding is further strengthened by Figure 4.2 which

depicts a monotonically decreasing impact of TFP gap on TFP growth of non-frontier

countries. Thus it suggests an improvement in the convergence process at higher levels of

technology diffusion.

Finally, we examine the total impact of TFP gap through various levels of technology

diffusion uncertainty. Table 4.6 reports these estimates. We observe that the total im-

pact of TFP gap through uncertainty of technology diffusion is positive and statistically

significant across all percentiles of uncertainty of technology diffusion. This implies that

uncertainty of technology diffusion leads to TFP divergence in manufacturing industries

of non-frontier and frontier countries. Figure 4.3 also portrays that as the uncertainty of

technology diffusion increases, the rate of TFP divergence increases.

In conclusion, our findings suggest a significant evidence of TFP convergence among

manufacturing industries of the frontier and non-frontier countries. Moreover, we also

report the evidence that the rate of convergence is higher for the countries which are geo-

graphically located in the same region. Also, uncertainty not only has a significant direct

impact but it also effects the TFP growth through the second channel.
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4.5 Conclusions

A growing body of empirical literature has focused on the importance of international

linkages particularly international trade in the convergence process among countries with

different levels of productivity. The recent empirical literature argues that international

trade helps in diffusion of knowledge and technology from technologically advanced coun-

ties towards technologically lagging countries. This diffusion process helps in improving

the TFP growth and thus convergence among these countries.

In this study, we investigate the long run convergence of TFP growth of manufacturing

industries of five emerging economies. To do so, we use data for manufacturing industries

of these large emerging economies over the time period 1981-2008. We use the USA as

the frontier country and empirically test whether the technology transfer from the USA

towards emerging economies improves the TFP growth and the convergence process. Fur-

thermore, we empirically test the impact of uncertainty of industry specific technological

products’ imports on the TFP growth of non-frontier countries.

We employ an extensive data set to carry out our empirical investigation. We use a

three dimensional panel dataset covering the period 1981-2008, five emerging economies

and eighteen manufacturing industries. We use UNIDO database to obtain the data on

the two digit ISIC revision 3 classification for the manufacturing sector. In addition to

this, we use UN commodity trade database to obtain the data on the industry specific

technological products’ import. Further, we match ISIC codes with SITC codes to make

the data compatible with ISIC classification of two-digit industries.

We compute relative TFP level of non-frontier countries with respect to frontier coun-

try by using superlative index number approach. To estimate the long run dynamics of

TFP growth of non-frontier countries, we use the dynamic panel data estimator, two step

system GMM.

Our empirical results provide a significant evidence that there is convergence among

manufacturing industries of the frontier and non-frontier countries. Also, we report a

statistically significant and positive impact of international transmission of technology on

the TFP growth of the non-frontier countries. However, there is negative impact of uncer-

tainty of imports on the TFP growth. We report that the negative impact of uncertainty

decreases as the level of technology diffusion increases. Particulary at the 50th percentile

of technology imports the negative impact of uncertainty turns in to positive. In the sim-

ilar vein, we conclude that the technology diffusion facilitates the convergence process of

TFP growth of manufacturing industries of the frontier and non-frontier countries.

Collectively, we can conclude that there is significant direct and conditional role of tech-

nological diffusion in the convergence process. Moreover, the uncertainty impact weakens
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at the higher level of technology diffusion. Our findings contribute in to the existing

literature by providing the evidence on how uncertainty affects the TFP growth and its

convergence through direct and indirect channel. Moreover, we also provide evidence of

the direct and indirect impact of technology diffusion in the convergence process. A future

research could be based on implementing this analysis on the firm level data for an ex-

tended number of countries. Moreover, the role of factor intensity gap can also be explored

in the TFP convergence among the non-frontier and frontier countries.
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Table 4.1: Summary Statistics of Selected Variables

Variables Mean Std.Dev P10 P50 P90

TFPnonfrontier 1.526 0.925 0.458 1.545 2.460
TFP frontier 2.215 0.903 1.126 2.291 3.319
TFP gap -0.692 1.348 -2.192 -0.878 0.883
∆TFPnonfrontier 0.055 0.184 -0.061 0.028 0.138
∆TFP frontier 0.011 0.096 -0.034 0.016 0.061
Tech.Import 20.431 4.696 1.214 4.689 15.376
K.Stocknonfrontier 17.630 0.028 16.292 17.630 18.975
Employmeenonfrontier10.692 2.735 9.764 10.712 11.721
V Anonfrontier 16.485 22.966 15.317 16.327 17.348
K.Stockgap 3.102 1.805 2.047 3.103 4.315
Employeegap 2.763 174.50 1.947 2.896 3.847
V Agap 4.035 0.703 3.224 4.248 5.149

Note: This table presents the summary statistics of variables used in empirical estimation. The statistics are based on
the sample of five large trading partners of the USA among the emerging economies in Asia. These countries include India,
Indonesia, Malaysia, Philippines, and Singapore. The time period under consideration ranges from 1981-2008. The variables with
the subscript of ‘non-frontier’ refers to the statistics of selected emerging economies whereas variables with the subscript of ‘gap’
indicates gap between the non-frontier and frontier country for indicated variables. Tech.Import is used for the technological
good’s import. K.Stock, Employee, VA denote capital stock, number of employees and value added in manufacturing industries
of emerging economies(non-frontier countries)
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Table 4.2: TFP Growth and TFP Gap of Emerging Economies

Countries
TFP Growth TFP Gap
Mean Std.Dev. Mean Std.Dev.

India 0.037 (0.154) -1.293 (1.076)
Indonesia 0.101 (0.235) -0.898 (1.202)
Malaysia 0.024 (0.158) -0.442 (1.159)
Philippines 0.110 (0.224) -0.845 (1.376)
Singapore 0.036 (0.154) -0.082 (1.124)

Note: This table presents the Mean and Standard Deviation of the TFP growth and TFP gap(relative
TFP) between frontier and all the selected non-frontier countries. These countries include India,
Indonesia, Malaysia, Philippines, and Singapore. The time period under consideration ranges from
1981-2008.
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Table 4.3: GMM Estimates of the TFP Growth Convergence and Technological
Diffusion

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Tech. Import Total Import

Coeff. Std.Err. Coeff. Std.Err.

TFP gapij,t−1 -0.144 (0.055** -0.063 (0.031)**

TFPnonfrontierij,t−1 -0.213 (0.069)*** -0.130 (0.064)**

TFP frontierij,t 0.590 (0.211)*** 0.335 (0.190)*

TFP frontierij,t−1 0.242 (0.233) 0.242 (0.113)**

Tech.Diffusionij,t−1 0.019 (0.009)** 0.089 (0.039)**

Wagesnonfrontierij,t−1 0.248 (0.123)** 0.311 (0.113)***

FIij,t−1 0.118 (0.071)* 0.052 (0.022)***

Constant -0.952 (0.516)* -0.353 (0.161)**

Year Fixed Effects Yes Yes

Panel B: Diagnostic tests

Observations 789 789
J − Stat 67.070 59.880
p− value 0.248 0.656
AR(2) -1.540 -0.330
p− value 0.590 0.742

Note:

4TFP nonfrontier
ijt = α0 + γ0 4 TFP nonfrontier

ijt−1 + γ1 4 TFP frontier
jt + γ2 4 TFP frontier

jt−1

− Ω0

(
TFPGapijt−2

)
+ ψ0Techijt−1 + λXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations. This table presents the
estimates on the TFP convergence between the USA and selected non-frontier countries. Also, it repots the impact of the
technology diffusion (measured as the technological goods imports ratio to value added) on the TFP growth of the non-frontier
countries over the time period 1981-2008 . The dependent variable is TFP growth of eighteen manufacturing industries in the
selected sample of non-frontier countries. Column 2 covers the estimates of the TFP convergence based on the first measure
of technological diffusion i.e. industry specific imports of technological goods. Column 3 repeats the same exercise by using
the alternative measure of technological diffusion. i.e. total imports of manufacturing industries. The sample of five emerging
economies India, Indonesia, Malaysia, Philippines, and Singapore. The one period lagged values of the first difference of the
independent variables are used as instruments for the equations in levels whereas for the differenced equations, the second-fifth
lag of the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is used to test
instruments validity whereas autocorrelation in first differenced residuals is tested through the Arellano-Bond, AR(2) test. Real
wages growth rate and capital-labor ratio of industries are used as control variables. ***,**, and * indicate level of significance
at the 1%, 5%, and 10% level of significance, respectively. Standard errors are displayed in the parenthesis which are robust to
the presence of serial correlation and heteroskedasticity within panels.

110



Table 4.4: GMM Estimates of the Conditional TFP Convergence, Conditional
Uncertainty of Technology Diffusion

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Tech. Imports Total Imports
Coeff. Std.Err. Coeff. Std.Err.

TFP gapij,t−1 -0.134 (0.062)** -0.071 (0.042)*

TFPnonfrontierij,t−1 -0.224 (0.076)** -0.121 (0.069)*

TFP frontierij,t 0.581 (0.235)** 0.329 (0.171)*

TFP frontierij,t−1 0.226 (0.154) 0.149 (0.156)

Tech.Diffusionij,t−1 0.051 (0.041) 0.090 (0.155)

σ2,T echij,t−1 -0.012 (0.004)*** -0.101 (0.047)**

Tech× σ2,T echij,t−1 -0.028 (0.016)* -0.027 (0.015)*

Techij,t−2 × TFPGapij,t−2 -0.016 (0.008)* -0.006 (0.009)

σ2,T echij,t−2 × TFP
Gap
ij,t−2 0.065 (0.032)** -0.035 (0.021)

Wagesnonfrontierij,t−1 0.337 (0.167)** 0.136 (0.059)**

FIij,t−1 0.167 (0.077)** 0.061 (0.035)*

Constant -1.023 (0.529)* 0.061 (0.035)*

Year Fixed Effects Yes Yes

Panel B: Diagnostic tests

Observations 701.000 789.000
J − Stat 62.030 58.240
p− value 0.740 0.896
AR(2) -0.700 -0.320
p− value 0.486 0.752

Note:

4TFP nonfrontier
ijt = α0 + γ0 4 TFP nonfrontier

ijt−1 + γ1 4 TFP frontier
jt + γ2 4 TFP frontier

jt−1

− Ω0

(
TFPGapijt−2

)
+ ψ0Techijt−1 + ψ1σ

Tech
ijt−1 + ψ2Techij,t−1 × σTechij,t−1

+ ψ3Techij,t−2 × TFPGAPij,t−2 + ψ4σ
Tech
ijt−2 × TFPGAPij,t−2 + λXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations. This table presents the
estimates on the TFP convergence between the USA and selected non-frontier countries. Also, it repots the impact of the
technology diffusion (measured as the technological goods imports ratio to value added)on the TFP growth of the non-frontier
countries over the time period 1981-2008 . The dependent variable is TFP growth of eighteen manufacturing industries in the
selected sample of non-frontier countries. Column 2 covers the estimates of the TFP convergence based on the first measure
of technological diffusion i.e. industry specific imports of technological goods. Column 3 repeats the same exercise by using
the alternative measure of technological diffusion. i.e. total imports of manufacturing industries. The sample of five emerging
economies India, Indonesia, Malaysia, Philippines, and Singapore. The one period lagged values of the first difference of the
independent variables are used as instruments for the equations in levels whereas for the differenced equations, the second-fifth
lag of the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is used to test
instruments validity whereas autocorrelation in first differenced residuals is tested through the Arellano-Bond, AR(2) test. Real
wages growth rate and capital-labor ratio of industries are used as control variables. ***,**, and * indicate level of significance
at the 1%, 5%, and 10% level of significance, respectively. Standard errors are displayed in the parenthesis which are robust to
the presence of serial correlation and heteroskedasticity within panels.
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Table 4.5: Percentiles of Total Effect:Conditional on Technology Diffusion

Panel A: Total Effect of Technology Diffusion’s Uncertainty

PTechImports 0.753 1.937 6.166 15.927 36.931

F.O.D -0018 0023 0.366* 1.278** 2.858**
S.E (0.056) (0.068) (0.219) (0.629) (1.437)

Panel B: Total Effect of Industry Specific TFP Gap

PTechImports 0.753 1.937 6.166 15.927 36.931
F.O.D -0.167*** -0.187*** -0.259*** -0.424*** -0.780***
S.E (0.050) (0.051) (0.065) (0.121) (0.260)

Note: Panel A of the table reports the computation of the total effect of uncertainty of technology dif-
fusion conditional on the level of technological diffusion. Panel A of the table reports the computation
of the total effect of the TFP gap conditional on the technology diffusion. The dependent variable
is the TFP growth of the eighteen manufacturing industries in the selected sample of five emerging
economies in Asia. These countries include India, Indonesia, Malaysia, Philippines, and Singapore.
The time period for estimation is 1981-2008. ***,**, and * indicate level of significance at the 1%,
5%, and 10% level of significance, respectively. F.O.D indicates first order derivative of dependent
variable with respect to uncertainty of industry-specific technology diffusion and TFP gap. S.E shows
Standard errors given in parenthesis.

Table 4.6: Percentiles of Total Effect:Conditional on Technology Diffusion Un-
certainty

Total Effect of Industry Specific TFP Gap

P10 P25 P50 P75 P90

PUncertainty 0.683 1.491 2.154 3.134 3.983
F.O.D 0.168 0.551* 0.864* 1.328** 1.730**
S.E (0.144) (0.319) (0.466) (0.684) (0.873)

Note: Panel A of the table reports the computation of the total effect of TFP gap conditional on
the technology diffusion uncertainty. The dependent variable is the TFP growth of the eighteen
manufacturing industries in the selected sample of emerging economies. These countries include India,
Indonesia, Malaysia, Philippines, and Singapore. The time period for estimation is 1981-2008. ***,**,
and * indicate level of significance at the 1%, 5%, and 10% level of significance, respectively. F.O.D
indicates first order derivative of dependent variable with respect to uncertainty of industry-specific
technological goods’ imports. S.E shows Standard errors given in parenthesis.
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Figure 4.1: Uncertainty Impact of Technology Imports
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Figure 4.2: TFP Gap Convergence Through Technology Diffusion
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Figure 4.3: TFP Gap Convergence Through Technology Diffusion Uncertainty
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Appendix A: Empirical Estimates based on Technological
Diffusion

Table 4-A: GMM Estimates of the TFP Growth Convergence, Conditional
Uncertainty, and TFP Gap through Technological Diffusion

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Tech. Imports Total. Imports
Coeff. Std.Err. Coeff. Std.Err.

TFP gapij,t−1 -0.116 (0.045)** -0.053 (0.023)**

TFPnonfrontierij,t−1 -0.156 (0.070)** -0.140 (0.067)**

TFP frontierij,t 0.502 (0.166)*** 0.473 (0.200)**

TFP frontierij,t−1 0.222 (0.205) 0.098 (0.138)

ImportTechnologyij,t−1 0.025 (0.013)* 0.020 (0.010)*

σ2,T echij,t−1 -0.006 (0.003)** -0.008 (0.005)*

Wagesnonfrontierij,t−1 -0.046 (0.058) 0.400 (0.130)***

FIij,t−1 0.174 (0.054)*** 0.053 (0.025)**
Constant -1.187 (0.377)** -0.409 (0.168)**
Year Fixed Effects Yes Yes

Panel B: Diagnostic tests

Observations 789.000 789.000
J − Stat 66.430 65.900
p− value 0.799 0.888
AR(2) -0.420 -0.460
p− value 0.677 0.648

Note:

4TFPnonfrontier
ijt = α0 + γ0 4 TFP

nonfrontier
ijt−1 + γ1 4 TFP

frontier
jt + γ2 4 TFP

frontier
jt−1

− Ω0

(
TFP

Gap
ijt−2

)
+ ψ0Techijt−1 + ψ1σ

Tech
ijt−1 + λXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations. This table presents the
estimates on the TFP convergence between the USA and selected non-frontier countries. Also, it repots the impact of the
technology diffusion (measured as the technological goods imports ratio to value added)on the TFP growth of the non-frontier
countries over the time period 1981-2008 . The dependent variable is TFP growth of eighteen manufacturing industries in the
selected sample of non-frontier countries. Column 2 covers the estimates of the TFP convergence based on the first measure
of technological diffusion i.e. industry specific imports of technological goods. Column 3 repeats the same exercise by using
the alternative measure of technological diffusion. i.e. total imports of manufacturing industries. The sample of five emerging
economies India, Indonesia, Malaysia, Philippines, and Singapore. The one period lagged values of the first difference of the
independent variables are used as instruments for the equations in levels whereas for the differenced equations, the second-fifth
lag of the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is used to test
instruments validity whereas autocorrelation in first differenced residuals is tested through the Arellano-Bond, AR(2) test. Real
wages growth rate and capital-labor ratio of industries are used as control variables. ***,**, and * indicate level of significance
at the 1%, 5%, and 10% level of significance, respectively. Standard errors are displayed in the parenthesis which are robust to
the presence of serial correlation and heteroskedasticity within panels.
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A.1 Empirical Estimates based on Technological Import

Table 4-A.1: GMM Estimates of the TFP Growth Convergence, Conditional
Uncertainty, and TFP Gap through Technological Diffusion

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Tech.Imports Total.Imports
Coeff. Std.Err. Coeff. Std.Err.

TFP gapij,t−1 -0.141 (0.055)** -0.065 (0.030)**

TFPnonfrontierij,t−1 -0.246 (0.084)*** -0.158 (0.078)**

TFP frontierij,t 0.400 (0.195)** 0.454 (0.211)**

TFP frontierij,t−1 0.091 (0.272) 0.167 (0.144)

ImportTechnologyij,t−1 0.022 (0.011)** 0.040 (0.021)*

σ2,T echij,t−1 -0.013 (0.006)** -0.042 (0.020)**

Tech× σ2,T echij,t−1 0.081 (0.039)** -0.025 (0.009)***

Wagesfrontierij,t−1 0.260 (0.104)** 0.417 (0.131)***

FIij,t−1 0.232 (0.083)*** 0.054 (0.031)*
Constant -1.500 (0.512)*** -1.432 (0.211)**
Year Fixed Effects Yes Yes

Panel B: Diagnostic tests

Observations 789.000 789.000
J − Stat 57.100 67.380
p− value 0.582 0.750
AR(2) -0.600 -0.440
p− value 0.549 0.659

Note:

4TFPnonfrontier
ijt = α0 + γ0 4 TFP

nonfrontier
ijt−1 + γ1 4 TFP

frontier
jt + γ2 4 TFP

frontier
jt−1

− Ω0

(
TFP

Gap
ijt−2

)
+ ψ0Techijt−1 + ψ1σ

Tech
ijt−1 + ψ2Techij,t−1 × σ

Tech
ij,t−1 + λXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations. This table presents the
estimates on the TFP convergence between the USA and selected non-frontier countries. Also, it repots the impact of the
technology diffusion (measured as the technological goods imports ratio to value added)on the TFP growth of the non-frontier
countries over the time period 1981-2008 . The dependent variable is TFP growth of eighteen manufacturing industries in the
selected sample of non-frontier countries. Column 2 covers the estimates of the TFP convergence based on the first measure
of technological diffusion i.e. industry specific imports of technological goods. Column 3 repeats the same exercise by using
the alternative measure of technological diffusion. i.e. total imports of manufacturing industries. The sample of five emerging
economies India, Indonesia, Malaysia, Philippines, and Singapore. The one period lagged values of the first difference of the
independent variables are used as instruments for the equations in levels whereas for the differenced equations, the second-fifth
lag of the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is used to test
instruments validity whereas autocorrelation in first differenced residuals is tested through the Arellano-Bond, AR(2) test. Real
wages growth rate and capital-labor ratio of industries are used as control variables. ***,**, and * indicate level of significance
at the 1%, 5%, and 10% level of significance, respectively. Standard errors are displayed in the parenthesis which are robust to
the presence of serial correlation and heteroskedasticity within panels.
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A.2 Empirical Estimates based on Technological Diffusion

Table 4-A.2: GMM Estimates of the TFP Growth Convergence, Conditional
Uncertainty, and TFP Gap through Technological Diffusion

Panel A: Estimation Results: Dependent Variable: TFP Growth

Regressors.
Tech.Imports Total.Imports
Coeff. Std.Err. Coeff. Std.Err.

TFP gapij,t−1 -0.112 (0.055)** -0.071 (0.033)**

TFPnonfrontierij,t−1 -0.203 (0.087)** -0.114 (0.067)*

TFP frontierij,t 0.537 (0.226)** -0.047 (0.256)

TFP frontierij,t−1 0.042 (0.205) 0.222 (0.103)**

ImportTechnologyij,t−1 -0.086 (0.052) 0.036 (0.021)*

σ2,T echij,t−1 -0.012 (0.004)*** -0.063 (0.031)**

Tech× σ2,T echij,t−1 0.039 (0.021)* -0.039 (0.002)

Tech× TFPGapij,t−1 -0.020 (0.009)** -0.040 (0.017)**

Wagesnonfrontierij,t−1 -0.115 (0.122) 0.257 (0.113)**

FIij,t−1 0.252 (0.105)** 0.065 (0.031)**
Constant -1.575 (0.661)** -0.476 (0.207)**
Year Fixed Effects Yes Yes

Panel B: Diagnostic tests

Observations 789.000 789.000
J − Stat 60.760 58.310
p− value 0.865 0.878
AR(2) -0.470 0.150
p− value 0.636 0.877

Note:

4TFP nonfrontier
ijt = α0 + γ0 4 TFP nonfrontier

ijt−1 + γ1 4 TFP frontier
jt + γ2 4 TFP frontier

jt−1

− Ω0

(
TFPGapijt−2

)
+ ψ0Techijt−1 + ψ1σ

Tech
ijt−1 + ψ2Techij,t−1 × σTechij,t−1

+ ψ3Techij,t−2 × TFPGAPij,t−2 + λXij,t + fij + ζt + εij,t

Panel A of the table reports the estimates obtained from robust two-step System-GMM estimations. This table presents the
estimates on the TFP convergence between the USA and selected non-frontier countries. Also, it repots the impact of the
technology diffusion (measured as the technological goods imports ratio to value added)on the TFP growth of the non-frontier
countries over the time period 1981-2008 . The dependent variable is TFP growth of eighteen manufacturing industries in the
selected sample of non-frontier countries. Column 2 covers the estimates of the TFP convergence based on the first measure
of technological diffusion i.e. industry specific imports of technological goods. Column 3 repeats the same exercise by using
the alternative measure of technological diffusion. i.e. total imports of manufacturing industries. The sample of five emerging
economies India, Indonesia, Malaysia, Philippines, and Singapore. The one period lagged values of the first difference of the
independent variables are used as instruments for the equations in levels whereas for the differenced equations, the second-fifth
lag of the independent variables are used as instruments. Panel B reports the diagnostics test. J statistics is used to test
instruments validity whereas autocorrelation in first differenced residuals is tested through the Arellano-Bond, AR(2) test. Real
wages growth rate and capital-labor ratio of industries are used as control variables. ***,**, and * indicate level of significance
at the 1%, 5%, and 10% level of significance, respectively. Standard errors are displayed in the parenthesis which are robust to
the presence of serial correlation and heteroskedasticity within panels.
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Chapter 5

Summary and Conclusions

This dissertation presents an empirical investigation on three important macroeco-

nomic areas. The first study of this dissertation estimates the optimal policy reaction

function accounting for asymmetric preferences concerning the fluctuations of inflation

and output gap for their respective targets. We also allow optimal policy to respond to

expected changes in real exchange rate.

We estimate optimal reaction function using quarterly data of four central banks

namely, Canada, Japan, the UK, and the US over the period 1979q1-2007q4. Our es-

timates provide significant evidence in favor of asymmetric behavior of all the central

banks towards changes in target variables i.e., inflation rate and output gap. This implies

that central banks weigh the negative and the positive deviations of inflation and output

gap from their respective targets differently. Specifically, we find that the coefficient of

inflation volatility is positive suggesting that central banks change the nominal interest

rate more when inflation exceeds the target level rather than when it falls below. Further,

we also observe central banks have asymmetric preferences towards negative and positive

deviations of output gap from its target. Although we expect to see that a central bank

should be more concerned when output gap falls below the target, for some cases we find

that the central bank can be more reactionary during periods of positive output gap. We

address this observation arguing that the central banks may be inflation averse and may

take a positive output gap as an indicator of future inflation. Further, we have found

significant evidence that central banks pursue an active monetary policy as they increase

the interest rate for more than one-to-one change in expected inflation.1We also observe

that foreign policy variables have a significant impact on domestic monetary policy.2 This

view is based not only on the significant effect of real exchange rate and foreign real in-

terest rate on domestic monetary policy but also on estimates of various closed economy

models. We find that once we relax the open economy assumption, the sign of asymmetry

parameters changes providing evidence of specification error, which might be driven by

an omitted variable problem. Our empirical results suggest that domestic monetary au-

thorities need to observe the changes in foreign monetary policy to avoid sudden capital

inflows or outflows, which can further lead to exchange rate disturbances.

1Researchers such as Kydland and Prescott (1977), Barro and Gordon (1984), Blanchard and Fischer
(1989), and Taylor (1993) have provided evidence on the effectiveness of monetary policy.

2Despite large number of studies on monetary policy asymmetries, there is lack of evidence on the
asymmetric behavior of central banks in an open economy framework. Studies such as Ball (1999b),
Svensson (2000), Leitemo et al. (2002), Leitemo and Söderström (2005), Dolado et al. (2005), and Adolfson
et al. (2008) among others analyze the response of monetary policy towards changes in the international
factors.
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while this chapter has contributed in many important aspects to the literature of opti-

mal monetary policy, there are yet some unexplored areas that could be further examined

to provide a worthwhile extension to the existing work. We believe that it would be fruitful

to model and empirically investigate the interest rate-smoothing hypothesis implementing

a framework as in this paper. Also, expanding the set of countries under investigation

can broaden our understanding. Finally, in line with the recommendation of Lubik and

Marzo (2007b) one can pursue a multivariate approach by estimating the entire structural

model using system GMM. Although,Lubik and Marzo (2007b) argue that full-information

maximum likelihood exploits cross-equation restrictions, Ruge-Murcia (2007b) shows that

limited information procedures are more robust to model misspecification. Ruge-Murcia

(2007b) shows that GMM and simulated method of moment deliver more precise estimates

than maximum likelihood. Thus, it would be useful to extend the current study employ-

ing system GMM approach to account both for the recommendations of Lubik and Marzo

(2007b) and Ruge-Murcia (2007b).

Chapter three of this dissertation examines the role of different types of uncertainty

on TFP growth of manufacturing industries of emerging economies over the period 1971-

2008. A large number of studies empirically evaluate the impact of aggregate uncertainty

on macroeconomic performance. However, there is not enough empirical evidence on how

uncertainty originating from different sources affects TFP growth of manufacturing indus-

tries. Therefore, we estimate the impact of uncertainty stemming from industry, country,

and world level on TFP growth. To proxy uncertainty, we have computed the time-

varying measure of each type of uncertainty by using an AR (1) model. More concretely,

we compute industry-specific uncertainty as the cumulative variance of industry-specific

output ratio to manufacturing sector output, country-specific uncertainty as the cumula-

tive variance of country investment ratio to country GDP, and world uncertainty as the

cumulative variance of world inflation rate. We also estimate the impact of uncertainty on

TFP growth conditional on other factors such as industry size, factor intensity, and the

level series of each type of uncertainty. Hence, we not only instigate the direct impact of

uncertainty on TFP growth but also the conditional impact.

To carry out our empirical estimation, we employ a two-step system GMM approach.

Our empirical results suggest a statistically significant impact of each source of uncer-

tainty on TFP growth. We have found that the impact of industry and country-specific

uncertainty is positive whereas the impact of world uncertainty is negative on TFP growth.

This implies that uncertainty forces industries towards more research and development ac-

tivities. This increases the shock absorption capacity of industries: therefore TFP growth

in following years will increase. This finding suggests that manufacturing industries need

to increase their R&D activities in order to maintain a positive TFP growth in times of
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industry and country-specific uncertainty.

The empirical estimates of conditional impact of uncertainty through industry size

show that as industry size increases, the positive impact of industry-specific uncertainty

increases. However, the positive impact of country-specific uncertainty weakens as the

industry size increases. Also, the negative impact of world uncertainty increases for larger

industries. Turning towards the conditional impact of each type of uncertainty through

factor intensity, we find that as factor intensity level increases, the positive impact of

industry-specific uncertainty increases. Notably, the positive impact of country-specific

uncertainty strengthens at higher levels of factor intensity. In contrast, the negative im-

pact of world uncertainty monotonically increases as factor intensity increases. This find-

ing suggests that inflation has more adverse impact on industries with higher capital-labor

ratio.

The conditional impact of industry-specific uncertainty through manufacturing indus-

tries’ output indicates that there is monotonic decrease in the positive impact of industry-

specific uncertainty as we move on higher levels of industry output. The conditional impact

of country-specific uncertainty through investment indicates that as the level of country

investment increases the positive impact of country-specific uncertainty weakens. Finally,

the interaction of world uncertainty with world inflation rate has shown a positive sign,

which identifies that the negative impact of world uncertainty weakens at a higher level

of world inflation.

Chapter three has pointed out the significant impact of industry, country, and world

uncertainty on the TFP growth of manufacturing industries of emerging economies. This

finding suggests that not only the domestic but also the international source of uncer-

tainty influences the TFP growth. Therefore manufacturing industries, while making the

investment decision, need to adopt measures that have built-in shock-resisting capacity

particularly when the industries are confronted with negative shocks (either domestic or

international). The empirical results from chapter three have also indicated that for in-

dustries with higher capital-labor ratio, the negative impact of global uncertainty is lower.

This may suggest that manufacturing industries that lack the capital investment, may

have to invest to increase physical capital relative to labor.

This chapter contributes to the existing literature in various aspects, yet we believe this

analysis could be further extended as follows: In the third chapter, the focus of our anal-

ysis is to empirically evaluate the role of different types of uncertainties on TFP growth

of manufacturing industries. As TFP growth is the sum of three different components

namely, technical progress, technical efficiency, and scale component. It would be useful

to conduct an in-depth analysis of how different types of uncertainty affect these compo-
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nents of TFP growth separately. Another extension to the present work could be done by

estimating the impact of different sources of uncertainty on labor productivity. Finally,

future research could be directed to examine the impact of different types of uncertainty

on TFP growth of manufacturing industries under different classifications.

There is a growing body of literature that has explored the role of technology diffusion

in convergence but overwhelmingly the focus of these studies remains the convergence

among advanced economies or more precisely the OECD economies. There is not enough

evidence on how and to what extent the technology diffusion has helped developing coun-

tries in their convergence process towards technological leader countries. Therefore, in

the fourth chapter of this dissertation, we estimate the role of technology diffusion in

the convergence process of manufacturing industries of emerging economies classified as

non-frontier countries. Moreover, differing from the existing research, we also empirically

test the impact of uncertainty of technology diffusion on TFP growth of manufacturing

industries. Also, we test the convergence across different levels of technology diffusion and

its uncertainty. This is examined by using an interaction of TFP gap with technology

diffusion and its uncertainty. This interaction identifies whether technology diffusion (un-

certainty of technology diffusion) strengthens (weakens) the convergence process. In doing

so, we utilize three dimensional panel data of sixteen emerging economies and eighteen

manufacturing industries over the period 1981-2008.

We compute TFP growth of manufacturing industries by employing superlative index

number approach. Later, we compute TFP level of manufacturing industries of non-

frontier countries relative to TFP level of manufacturing industries of the frontier country.

This computation shows that manufacturing industries of non-frontier countries maintains

low TFP levels relative to manufacturing industries of the frontier country. To carry out

our empirical investigation, we have applied a two step system GMM estimator developed

by Blundell and Bond (1998).

Our empirical estimates have confirmed that the further the country lies behind the

technological frontier, the higher will be its growth and thus the faster will be the speed

of convergence. Further, we observe a positive and statistically significant impact of tech-

nology diffusion on TFP growth of non-frontier countries. However, the uncertainty of

technology diffusion, which we have computed through an AR(1) process of technology

diffusion, has shown a negative impact on TFP growth. The conditional impact of tech-

nology diffusion uncertainty through technology diffusion appears as positive. This im-

plies,though, that uncertainty has a negative impact on TFP growth; but as the level of

technology diffusion increases, this negative impact of uncertainty weakens monotonically.

While estimating the impact of TFP gap through technology diffusion, our results have

confirmed earlier empirical findings that at higher levels of technology diffusion, the rate
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of convergence is higher. In contrast, we observe that uncertainty pertains a negative

impact on TFP growth. Also, the negative impact strengthens at higher levels of uncer-

tainty. Overall, our findings assist us to understand the convergence process in emerging

economies particularly while taking uncertainty into consideration. This leads us to draw

some important implications not only for manufacturing industries of these countries but

also for effective policy formation.

Empirical results of chapter four help to identify the extent to which uncertainty af-

fects TFP growth. In particular, we have computed the conditional impact of uncertainty

through technology diffusion, which has identified the threshold level of technology diffu-

sion where the negative impact of uncertainty turns to positive. This finding is of particular

importance for industries that lie below or at the margin of the threshold point. Also, our

findings suggest that uncertainty leads to divergence of TFP growth and it increases the

technology gap between manufacturing industries of non-frontier and frontier countries.

Since uncertainty attached to international trade involves many other international fac-

tors most importantly exchange rate changes, which are out-of-bounds of industries and

more of the concern of the foreign exchange market. This implies that industries may

plan strategies that increase their risk absorption capacity or help them to minimize the

adverse effects of uncertainty not only related to trade but also to other macroeconomic

shocks.

The empirical results of this chapter also suggest that manufacturing industries of

emerging and developing countries not only focus on their own innovative technologies

but also they should learn from the technological developments in advanced economies

particularly the technology frontier. Also, they need to take into consideration to what

extent the convergence process is sensitive with respect to technology diffusion and more

importantly its uncertainty.

The analysis can be extended by including more emerging economies or developing

countries and dividing them according to regional classification. It would be worthwhile

to incorporate the role of macroeconomic uncertainty particularly exchange rate fluctua-

tions and macroeconomic policies such as fiscal policy and monetary policy.

We have only taken the USA as the frontier country whereas one of the worthwhile

contributions could be to identify the technology frontier among the emerging economies

based on their TFP growth and then estimate the convergence process in these countries.

This analysis will assist in understanding whether the emerging economies are converg-

ing towards the technology leader within their own group or not. We have carried out

our analysis for overall manufacturing industries while a fascinating addition would be

to investigate convergence of each industry of non-frontier countries with the respective

industry of the frontier country. This extension may help to identify industries that are
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slow in the convergence process and thus these industries can specifically be improved

through proper measures.

This dissertation has attempted to empirically contribute to the existing literature

in various aspects. However, we have highlighted some points that could be explored and

thus provided a detailed and in-depth analysis. This will complement earlier studies as

well as reinforce our understanding not only on a deeper but also a wider scale.
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