
1. Phys. F: Met. Phys. 13 (1983) 2427-2436. Printed in  Great Britain 

Strain-induced interaction energies between hydrogen atoms 
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Abstract. We have made quantitative calculations of the elastic interactions between 
interstitial hydrogen atoms in Pd metal. These calculations use the Harwell HADES code, and 
hence go beyond the usual harmonic models. Results have been obtained for several 
potentials and, where appropriate, agree well with those of previous workers. W e  find (i) that  
the absolute values are sensitive to assumptions for the potentials, suggesting caution in the 
prediction of thermodynamic properties, and (ii) that there are significant few-body terms not 
included in the usual approaches. These extra terms will affect the equilibrium structure. for 
example by removing the symmetry between fractional occupancies 0 and ( I  - 0). and may 
lead to  the initial nucleation of metastable structures during hydrogenation. The present 
results suggest that corner-sharing tetrahedra are favoured. 

1. Introduction 

I t  is convenient to begin with a question of vocabulary, since not all workers adopt a 
consistent convention for the terms ‘energy’, ‘potential’ and ‘interaction’. The total energy 
E T o T  (not calculated in this paper) is not just the sum of one-electron eigenvalues, but it 
includes nuclear-nuclear terms and corrections for double-counted electron-electron 
interactions. The variation of EToT as a function of atomic positions is represented by a 
sum of two-body potentials, e.g. Pd-H potentials, often obtained empirically in a 
convenient analytic form. The total energy, calculated including lattice relaxation io 
equilibrium, can also be expressed in terms of the site occupancies only (i.e. not involving 
the precise distorted geometric positions), and this defines the H-H interactions which are 
used in the simulation of phase diagrams. These points are discussed further by Stoneham 
(1983). Here we shall use two-body potentials to show the existence of significant few-body 
interactions. 

It is widely recognised that there are important elastic interactions between hydrogen 
interstitials in metals and metal hydrides. These are a natural consequence of the 
distortions each hydrogen atom produces and which are directly observed. In dilute 
solutions, the excess chemical potential of H, p i ,  decreases, i.e. it becomes more 
exothermic, with increasing hydrogen concentration, r( = H/Pd). Brodowsky (1 965) 
attributed this decrease to strain-induced (direct) attractive interactions solely between 
nearest-neighbour H atoms. Alefeld (1972), on the other hand, discussed the way in which 
the volume expansion, accompanying H dissolution in metals, gives rise to a substantial 
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indirect, image contribution to the elastic interaction energy. Subsequently, Wagner and 
Horner (1974) and Horner and Wagner (1974) showed how the lattice theory of defects 
could be used to calculate the direct and indirect elastic interactions, and Dietrich and 
Wagner (1979) have calculated both for the Pd-H system. They also note that the elastic 
interactions by themselves are insufficient to account for the whole of the observed 
decrease in p i  in this particular system. Electronic interactions must also be considered, 
and both they and Khan er a1 (1981) have attempted to calculate these. 

In  the Horner-Wagner calculation of the direct elastic interaction the host lattice is 
assumed to be harmonic, the metal-hydrogen interaction is assumed to be linear, and only 
pairwise interactions between H atoms are considered. One assumption is especially 
important, namely that the interactions are pairwise: the interaction between any two 
hydrogen atoms is assumed to be independent of any other nearby hydrogen atoms. 
Wagner ( 1  978) has attempted to justify the neglect of any many-body interactions and 
changes in force constants. 

In  the present work, a computer simulation model has been used to calculate the strain- 
induced interaction energies. These simulations have the advantages over analytical 
methods for central pairwise calculations that assumptions regarding the force constants 
are unrestricted and that defect clusters may be considered just as readily as pairs so that 
the presence of any many-body effects is readily discernible. A primary aim was to test the 
accuracy of the assumptions made by Horner and Wagner. A secondary aim is to note the 
role of pairwise and non-pairwise interactions in phase structure and phase transitions. 
Pair interaction energies were used by Dietrich and Wagner (1979) in a Monte Carlo 
calculation of the configurational partition function for Pd-H alloys. This determines the 
equilibrium structure. However, non-pairwise interactions are particularly important when 
a new phase is nucleating or when order is developing. The structures which are favoured 
for small nucleation clusters may differ from the final ordered equilibrium forms. 

2. Model and potentials 

2.1. Techniques for lattice relaxation 

The calculations were made with the HADES computer program, which was designed to 
calculate the energies of defects and defect aggregates in ionic materials by using the shell 
model. Detailed descriptions of the model and program are available elsewhere (Lidiard 
and Norgett 1972, Catlow and Norgett 1976). The essential nature of the calculation is 
that lattice displacements and energies are evaluated explicitly in the region immediately 
surrounding the defect (region I) where most of the distortion occurs. The harmonic 
approximation is not assumed. The energy of this region is minimised by an extremely 
efficient method in order to find the optimum configuration. Far from the defect (region 11) 
the crystal is treated in the harmonic approximation, its relaxation energy being obtained 
from the product of the forces due to the distortion of the inner region and the 
displacements of the atoms in region 11. In order to ensure a smooth transition of the 
calculated displacements by the two different methods of calculation in the two regions, the 
displacements for the inner part of region I1 are evaluated explicitly, the remaining outer 
part being treated as a continuum. For the results reported in the present work the ‘crystal’ 
contained approximately 1500 atoms with approximately 450 atoms in the explicit region. 
These choices were found to give a satisfactory compromise between the increasing 
insensitivity of the calculated relaxation energies to the increasing size of region I and the 
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concomitant increase in computing time. As is desirable in this type of calculation the sizes 
of the regions were kept constant for the different defect aggregates considered. 

The difference between the total potential energy of the crystal in the unrelaxed and 
relaxed states gives the total relaxation energy. The total interaction energy is given by the 
difference between the relaxation energy of the defect cluster of size N atoms and N times 
the single-defect relaxation energy. 

The HADES program can be used for ‘metals’ if a very large harmonic coupling 
constant between core and shell is used so that no ionic polarisation due to the relative 
displacement of core and shell is permitted to take place. 

2.2.  Interatomic potentials 

The ideal metal-metal interatomic potential should reproduce all those properties of the 
perfect crystal which are determined by the total energy function of atomic positions. In 
practice, empirical potentials are usually derived by fitting to a selection of experimental 
results, e.g. cohesive energy, elastic constants, vacancy and stacking fault energies, etc 
(Johnson 1973, Stoneham and Taylor 1981). A ‘total’ potential which holds the metal in 
equilibrium at the correct lattice parameter may be derived or, alternatively, a ‘core’ 
potential may be obtained which describes only energies at constant volume. The ‘core’ 
potential by itself does not give the correct equilibrium condition; a volume-dependent 
energy term must also be incorporated. Clearly the metallic nature of a solid is partly 
associated with the electron-gas terms and their volume dependence. When one uses a 
‘total’ potential the metallic nature is only implicit. 

A simple central two-body ‘total’ potential implies the validity of Cauchy’s relation, 
C,, = C,, , between the elastic moduli, whereas this is known to be invalid for Pd. This 
problem may be overcome by using a ‘core’ potential, if the complementary Cauchy 
pressure is used in the volume-dependent term. One such ‘core’ potential has been derived 
for Pd by Baskes and Melius (1979). However. its use in the present work would have 
entailed giving similar attention to the volume-dependent term in the Pd-H interaction and 
this, in turn, would have meant evaluating only the structural contribution to the forces 
exerted by the H impurity. It seemed more straightforward, therefore, to retain a ‘total’ 
Pd-H potential and this then necessitated a ‘total’ Pd-Pd potential. Subsequently, it was 
found that the interaction energies between H atoms were to a large extent independent of 
the Pd-Pd interatomic potential chosen, so long as the potential describes the elastic 
properties approximately. Thus the choice of a ‘total’ potential is not considered to be a 
serious limitation of the present calculations, and such a choice also enabled a direct 
comparison of the computer simulation results with those of Dietrich and Wagner (1979) 
and of Johnston and Sholl ( 1  980) for the relaxation energies in this system. Their harmonic 
lattice calculations are equivalent to using a restricted form of a ‘total’ potential. 

The Pd-Pd potentials calculated by van Heugten (1979) from fitting the phonon 
dispersion curve were used. The three potentials given by him, which are tabulated in the 
compilation of Stoneham and Taylor (1 98 l),  differ in the number of neighbours considered 
in the fitting process. Most of the present calculations were carried out using the potential 
based on nearest neighbours only and all the results reported here refer to this potential. It 
gives elastic constants which differ by no more than a few per cent from the experimental 
values for Pd. We shall ignore any dependence of the Pd-Pd potentials on hydrogen 
concentration. 

In the same spirit, we have chosen total potentials for the Pd-H interaction, even 
though there are some indirect (Wagner 1978) and delocalised (Stoneham 1983) terms 
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whose magnitude is hard to estimate. Three different Pd-H potentials were used. All were 
based on the harmonic result (Hardy 1960, 1968; see also Eshelby 1956, Temkin 1970, 
Stoneham 1975) relating defect formation volume to defect forces: 

1 
3 8  

A V = -  1 F:R~ 
where the defect forces F,* are evaluated at the relaxed configuration of metal atoms 
initially at the perfect lattice sites Ri .  Schober and Ingle (1980) have discussed the 
consequences of breakdown of the harmonic approximation. In our case, where we have to 
postulate suitable forces, any difficulties of this sort will simply affect the extent to which 
the predictions agree from model to model. 

Potential 1 was based on a model where constant forces are assumed to act on nearest- 
neighbour Pd atoms only, this being the model adopted in the calculations of both Dietrich 
and Wagner (1979) and Johnston and Sholl (1980). From available data for the Pd-H 
system, the dipole strength, P, was calculated to be 3.15 eV, which is equivalent to a 
force F ,  of 0.809 eV A-' at the metal atom sites. These values come from the values 
A V= 2.80 A3 atom-' (Peisl 1978) and B = 18.053 x 10" Pa (Salama and KO 1980). 

Potential 2 was also a constant force model but the forces were assumed to act on both 
the first and second nearest Pd neighbours. The forces on the second nearest neighbours 
were assumed, quite arbitrarily, to be one quarter of that acting on the nearest neighbours. 
With the same dipole strength the forces at the unrelaxed sites were calculated as 
F, =0.513 and F, = O x 8  eV A-'. 

Potential 3 was of the Born-Mayer form, + = A  exp(-R/P). With this potential there is 
the opportunity to use the optical mode frequency as a parameter in giving further 
information about the Pd-H potential. The chosen potential was assumed to give forces 
acting on nearest-neighbour Pd atoms only. It is readily shown that a classical harmonic 
oscillator vibrating in a 'breathing' octahedral cage will do so with a frequency given by 

m 

where the first and second derivatives of U are evaluated at the unrelaxed positions. Using 
the optical mode frequency obtained by Drexel et a1 (1976) and by matching the single- 
defect relaxation energy with that obtained from potential 1, the following potential was 
obtained (in eV for R in A): 

@ =  12.36 exp(-R/0.6068). (3) 

This potential gives slightly different displacements, and hence different forces, at the 
relaxed positions from those calculated using potential 1. It follows, therefore, that the 
defect volume is also slightly different from that which was used in calculating potential 1. 

All three potentials were cut off at a distance which exceeded the appropriate 
neighbour distance. 

3. Results and discussion 

3.1. Single H atom 

The three potentials gave the following relaxation energies for a single H atom at an 
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octahedral site: 

potential 1 (meV) 133.6 

potential 2 (mev) 60.4 

potential 3 (mev) 133.8. 

The way in which potential 3 was chosen ensures a value close to that for potential 1. The 
result for potential 1 may be compared with the value of 161 meV obtained by Johnston 
and Sholl ( 1  980) from a harmonic lattice calculation. The differences are due mainly to the 
slightly lower dipole strength used here. Our relaxation energy, 133.6 meV, scaled by the 
square of the ratio of their value of P to ours, (3.5 eV/3.15 eV)’, gives 164.9 meV, close to 
the value of Johnston and Sholl. 

The sensitivities of these relaxation energies, and those for pairs and clusters given 
below, to details of the Pd-H potential are sufficient in themselves to emphasise that, 
although data relevant to the Pd-H system were used in deriving the interatomic 
potentials, it would be unrealistic to believe that the present calculations are quantitatively 
applicable to the actual Pd-H system. 

In the calculation of the homogeneous contribution to the elastic free energy the effect 
of volume changes on the relaxation energy is of interest. Using potential 1, for which the 
defect forces are the same in each case, the following effects were found: 

lattice parameter (A) 
3.80 145.3 

3.89 133.6 

4.00 119.9 

relaxation energy (meV) 

Clearly the relaxation energy is lower as the cell volume R,,,, increases. We can express the 
results approximately as 

2 In E,,,/% In i2,,,, 2-1.24. 

Since the relaxation energy is inversely proportional to a lattice force constant K MPd w 2 ,  
and since one expects 3 In w/13 In R,,,, to be given by the Griineisen constant, - y ,  we might 
have anticipated 

2 In E,,,/% In R,,,, ‘v + 2y. 

The predicted relaxation energy changes correspond to 7%-0.62. This is sensible in 
magnitude; the unexpected negative sign presumably comes from some feature of van 
Heutgen’s potential. 

3.2. Pairs of H atoms 

The results for various pair interaction energies, calculated from the three Pd-H potentials, 
are shown in table 1. The results of Dietrich and Wagner (1979) are also shown for 
comparison with those obtained from potential 1, both as given originally and scaled to 
compensate for different choices of dipole strength. The differences between the two sets of 
results are due principally to the different choices of the dipole strength, but some of the 
differences result from whether or not the harmonic approximation is used for the Pd-Pd 
potential. 
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Table 1. H-H pair interaction energies (in meV) calculated from different Pd-H interatomic 
potentials. The separation vector for the pairs is expressed in units of aj2.  The results in 
parentheses scale values from Dietrich and Wagner (1979) by (3.1/3.5)2 to compensate for a 
different choice of dipole tensor. Negative values are attractive. 

Pair vector Potential 1 Dietrich and Wagner (1979) Potential 2 Potential 3 

I .  1.0 - 10.93 - 16.04( - 13.0) 
2 . 0 . 0  + 21.45 +26.31(+21.3)  

2, 2 .0  + 7.03 + 6.82( + 5 . 5 )  
3, 1.0 + 4.47 + 1.84( + 1.5) 
2, 2. 2 + 3.23 + 2.83( 2.3) 

2. I ,  1 - 2.83 - 10.37( - 8.4) 

- 24.8 -37.21 
+ 2.51 + 9.84 
+ 3.04 +0.15 
+ 3.35 + 6.74 

The sensitivity of the calculated interaction energies to the Pd-H potential chosen, even 
to the extent of changing the sign of the interaction energy, is apparent from the results in 
table 1. This again emphasises the need for caution in taking calculated interaction energies 
reported in the literature and applying them quantitatively to a specific system. 

A direct H-H interaction energy is readily incorporated into the HADES program. Its 
influence on the strain-induced interaction energies discussed above was examined briefly. 
The H-H potential was estimated from knowledge of the difference between the observed 
values for ,U; and an estimate of the total elastic energy. It was found that, by using this 
potential, the direct forces between H atoms are so small compared with those in the H-Pd 
interaction that the influence on the calculated defect energies is negligible. This validates 
the superposition of strain-induced elastic and chemical interaction energies in the 
evaluation of pairwise interaction energies to be used in, for example, a Monte Carlo 
calculation. As discussed above, the main problem lies in the quantitative accuracy and 
significance of the calculated strain-induced interaction energies. The direct H-H 
interaction has a distinct and important role in site exclusion, by ensuring that only one 
hydrogen atom occupies a specific interstitial site and possibly preventing occupation of 
other near-neighbour sites by hydrogen atoms. 

3.3. H atom clusters 

Small clusters are of interest both because they control nucleation of ordered phases during 
hydrogenation and because of their role in hydride thermodynamics. The cluster variation 
method (CVM) appears to be a most satisfactory approximation for calculating the 
thermodynamic properties of alloys (Kikuchi 1978). An approximate combinatorial 
formula is used for calculating the entropy which is based on larger basic figures (clusters) 
than used in pairwise schemes. The cluster energies can be calculated on the basis of pairs 
or, alternatively, distinct clusters may be given distinct energies, thereby enabling many- 
body interactions to be introduced into the internal energy. The tetrahedron approximation 
has been used for FCC solutions (Kikuchi and Sat0 1974) and this would be an appropriate 
choice for the Pd-H system where the interstitial sites form a FCC sublattice. Accordingly, 
some calculations were carried out in order to see whether many-body effects in the elastic 
interactions are apparent in the basic tetrahedron, built up of nearest-neighbour pairs, and 
whether such effects also show up if the tetrahedron is taken as the basic unit. The results 
are shown in table 2. 

We can see immediately that there are significant non-pairwise interactions. In  quite a 
few cases these excess terms are larger than the interaction between two hydrogen atoms at 
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Table 2. Actual calculated and sum of calculated pairwise interaction energies from 
potential 1 (in meV) of clusters related to tetrahedra. Geometries are chosen to give 
neighbours at ( I  IO) or equivalent spacings where possible. Negative values are attractive. 
Case A: actual interactions attractive, with attraction enhanced over pairwise value. 
Case B: actual interactions attractive, but with attraction reduced relative to the pairwise 
value. Case C :  actual interactions repulsive, but less repulsive than with pairwise interactions. 

Defect 

~ ~~ ~~ 

Approximate 
excess of Actual 

Number Pairwise Actual interaction actual over 
of interaction interaction energy per pairwise per 
atoms energy (meV) energy (meV) H atom (meV) H atom (mev) 

1 ,  I ,  0 pair 

Case A 
Equilateral triangle 

( 1  I O )  edges 
Isosceles triangle 

(two ( 1  IO) and one 
(200) edges) 

Tetrahedron with ( 1  IO)  
edges 

Octahedron (( I I O )  edges) 
Two tetrahedra with 

shared edges 
Two tetrahedra with 

shared corners 
Four tetrahedra, 

tetrahedrally arranged, 
sharing one corner 

Corners and face centres 
of (200) edged cube 

Case B 
Linear (200) triad 

Case C 
Square ((200) edges 

+ central atom) 
Cross ((200) axes) 
Cube ((200) edges) 
Inscribed squares 

(( 200) inner edges. 
(220) outer edges) 

+ central atom 
Inscribed square 

2 

3 

3 

4 

6 
6 

7 

13 

14 

3 

5 

5 
8 
8 

9 

- 10.93 

- 32.67 

- 0.4 1 

- 65.34 

- 66.8 I 
- 82.39 

- 115.17 

- 161.82 

-42.37 

-21.86 

56.41 

113.92 
354.68 

40.54 

82.62 

- 10.93 

- 34.84 

- 1.6 

-71.8 

- 102.77 
- 114.78 

- 172.68 

- 324.64 

-241.46 

- 17.12 

50.4 1 

100.37 
303.48 

20.76 

50.78 

- 5.46 

- 11.61 

-0.53 

- 17.95 

- 17.13 
- 19.13 

- 24.67 

- 24.97 

- 17.2 

- 5.70 

10. I 

20. I 
37.9 

2.6 

5.6 

- 

- I  

- 0.4 

- 1.6 

-6  
- 5  

- 8  

- 12.5 

- 14.2 

+ 1.6 

- 1.2 

- 2.7 
- 6.4 
- 2.5 

- 3.5 

their closest separation. Further, the non-pairwise terms are usually attractive. In all but 
one case the binding energy is increased or the repulsion diminished. In no case is the sign 
of the interaction changed and in no case is a repulsion enhanced. The few-body terms 
become rather more important as the cluster size N increases. Initially this occurs for 
purely combinational reasons: for N particles there are N(N - 1)/2 pairwise interactions 
and N ( N  - 1)(N- 2)/6 three-particle terms. Once the cluster size exceeds the range of the 
interaction, the ratio will level off, of course. 

One striking result, which needs further investigation, has implications for the 
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nucleation of a new phase. We can see that the clusters comprising tetrahedra with shared 
corners are especially stable. For both the seven cluster (two tetrahedra) and the thirteen 
cluster (four tetrahedra), bindings of almost 25 meV per H atom are predicted. This 
stability will come as no surprise to those familiar with oxide defect structures (for a 
summary, see Catlow and Stoneham 1981). The basic tetrahedral unit has more modest 
binding (around 18 meV per H atom), close to the corresponding energies for quite 
different clusters like octahedra. Because of possible competition between simple clusters, 
there may be a nucleation barrier to growth of a corner-sharing tetrahedra phase because 
the isolated tetrahedral unit is less strongly stabilised. 

3.4.  Concentrated solutions 

The elastic interaction energies presented for pairs and clusters refer to what is essentially 
the infinitely dilute solution. In the calculation of the partition function for concentrated 
solutions it is desirable to know how these interaction energies vary with concentration. It 
is clear from the cluster results given above that the presence of many other H atoms 
influences the ability of the metal atoms to relax. When all the interstitial sites are occupied 
the local relaxations, and hence the ‘direct’ elastic interactions, must be zero, there being 
only a homogeneous contribution to the elastic energy. Thus elastic interaction energies, 
whether based on pairs, tetrahedra, etc, will be expected to decrease as the defect 
concentration is increased. 

As the hydrogen concentration changes, there are two distinct effects. One, from the 
volume change, is independent of the precise arrangement of the hydrogen atoms. For 
PdH,, one could consider every interstitial site as being filled with a ‘fractional’ hydrogen 
atom giving a homogeneous system of the right volume. The second term is the 
configuration-dependent elastic term obtained by redistributing ‘fractional’ hydrogen 
atoms to give an ‘alloy’ with empty and full sites as components. The configuration- 
dependent term is obtained from our HADES calculations. Limiting forms of the 
configuration-dependent term, simpler in some respects, are also given by Froyen and 
Herring ( 1  982), Eshelby ( 1  955) and Hardy ( 1  960). The configuration-dependent elastic 
energy has the form N6( 1 - 6)Eo for N sites with fractional occupancy 6. This has the limit 
discussed already as 6- 1 ; it is also symmetrical, in the occupancies of the two species, i.e. 
6 for hydrogen atoms or (1  - 6 )  for vacancies. This symmetry will be lacking in more 
general models. 

4. Conclusions 

A computer simulation of the short-range, strain-induced interactions between H atoms in 
Pd has been carried out. The interatomic potentials used in this simulation are ‘total’ 
potentials, similar to that used in an analytical treatment by Horner and Wagner and 
applied by Dietrich and Wagner to the Pd-H system. The computer simulation does not 
have the same restrictions imposed as are present in the analytical approach. 

It has been found that the elastic interaction energies are very sensitive to the chosen 
form of the Pd-H interatomic potential, even when the different potentials have been 
derived from the same experimental input data. Since there is no way of knowing which is 
the best potential, little reliance can be placed on the quantitative significance of such 
interaction energies. There is a great need to have accurate information about the 
metal-hydrogen interactions. There is some evidence (Browne 1982, Browne and 
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Stoneham 1983) that metal-hydrogen potentials have reasonable transferability, so that 
new types of experimental data can be used in modelling potentials. 

One important result is that the interaction energies of clusters of H atoms cannot be 
regarded as the sum of the pairwise interactions, i.e. many-body effects are present. This is 
also true when the tetrahedron is taken as the basic unit, as favoured by our calculations. 
Likewise, the interaction energies derived for isolated defect aggregates in the pure metal 
lattice cannot be expected to be appropriate for use in concentrated solutions. The presence 
of other H atoms and clusters will have a marked effect on the total strain-induced 
interaction energy. 

These conclusions raise serious doubts about the use of concentration-independent 
interaction energies, whether based on pairs or larger units, in configurational models of 
Pd-H and other interstitial alloys. 
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