
Physica Scripta. Vol. T25, 17-25, 1989. 

Defect Migration in Solids: Microscopic Calculation of 
Diffusion Rates 
A. M. Stoneham 

Theoretical Physics Division B424.4, Harwell Laboratory, Didcot, Oxfordshire OX1 1 ORA, UK 

Received April 6, 1988; accepted June 22, 1988 

Abstract 

Diffusion includes some of the commonest processes on an atomic scale, in 
which uncorrelated atomic jumps bring about changes in solids. The many 
predictions of activation energies characterising the temperature dependence 
of diffusion have high accuracy when good interatomic potentials are known, 
and a continually improving accuracy from direct quantal calculations. 
Much more is needed to find the absolute rate at some temperatures. Recent 
work for both classical and quantum diffusion shows that rates too can be 
estimated with respectable accuracy. Such calculations highlight basic 
problems of solid-state defect physics. They also offer predictions of tech- 
nological value for diffusion rates in cases where the timescale or physical 
conditions are too hard for direct experiment. This talk will discuss (a) 
various ways of obtaining absolute rates, (b) rates of cation diffusion in 
oxides and their implications for the so-called Compensation rule (c) issues 
of charge state in oxides and semiconductors, (d) transients in diffusion, as 
for recombination-enhancement in semiconductors or the motion of short- 
lived species, and (e) quantum diffusion of hydrogen in metals. 

1. Introduction: The phenomena of solid-state processes 

My topic is one of the most basic of processes on an atomic 
scale by which change can occur in solids, and my main 
concern is the theoretical prediction of the rates of such 
processes. 

Diffusion provides a link to the commercial exploitation of 
science, a feature which was remarked on in the very first 
studies in 1684: Boyle [l], noting the way sulpher could “soak 
into the pores of copper” to “give it a durable colour” such 
that a copper coin changed its colour to gold with “the 
former stamp, that was impressed on the coin, continuing 
visible”, decided it was best to leave out the precise details of 
his experiments “because of the bad use that may be made of 
it”.  This also provides an early example of the threat to good 
science of the wrong sort of application. The practical role of 
diffusion is now widespread (see Ref. [2]) for an interesting 
range of early studies), occurring in the oxidation of metals 
or of silicon, the doping of semiconductors (either directly by 
diffusion or by the anneal of implants), the undesirable 
electromigration in aluminium interconnects, or oxygen 
exchange in gas sensors or in ceramic superconductors. The 
importance of predictive theory lies partly in the way that 
irreversible phenomena and solid state processes are under- 
stood, and partly in complementing experiment to cover 
those regimes (e.g., extremes of temperature or pressure, or 
timescales which may vary from the geologically long to the 
exceptionally short) which are necessary technologically but 
inconvenient experimentally. 

Boyle’s observations were possible because the diffusion 
rate was just right to show striking effects on a timescale 
practical for experiment. It is worth emphasising just how 
widely diffusion rates can vary: the same class of process can 
encompass the so-called “superionic” conduction in solid 

electrolytes and geological dating. Observed diffusion rates 
vary over nearly twenty orders of magnitude (and indeed over 
11 orders [3] for at least one single system, Si : 0) so that it is 
a formidable task to predict the rate correctly for a real 
system to within experimental error. 

This difficulty can be seen from the first of the major 
phenomenological rules of diffusion, the Arrhenius law: 

where Xis the diffusion coefficient D ,  or the mobility ,U, or the 
conductivity, or the jump rate r of some atom; E is an 
activation energy and the prefactor X, may have some slow 
temperature dependence (indeed must do so for certain of 
these quantities if the Nernst-Einstein relation between 
mobility and diffusion coefficient holds [4]; see also [5 ] ) .  
The form of eq. (1) is known to theorists as a well-known 
observation and to experimenters as a fully-established 
prediction. It does have exceptions, of course: behaviour 
will be more complex if there are several parallel processes 
(or a hierarchy of processes); certain related processes may 
show rates which are power laws with temperature. Yet the 
Arrhenius expression (1) is central to any discussion of dif- 
fusion rates, and the link between theory and experiment 
is usually achieved through the two characteristic parameters 
E and X,. 

There is a second general rule, less well-known and less 
clear-cut. It concerns the relationship between the activation 
energy E and the prefactor X, in a range of related processes 
(e.g. perhaps for equivalent processes in a range of oxides of 
the same structure, though the rule is surprisingly wide- 
spread). The “Compensation” or Meyer-Neldel [6] Rule is: 

X = X ,  exp [ -  E / k T ]  (1) 

X ,  = X, exp (E/kT,)  (2) 
In (X,) = A + BE (3) 
i.e., large activation energies (which would give low rates) 
tend to be compensated by large prefactors (which raise the 
rates) [17]. Again, qualification is needed; as for (l) ,  a single 
mechanism should operate in each case; moreover, what 
“related” processes are allowed is not too well defined. Nor 
should the rule be forced by data selection, even if uninten- 
tional, as when only those data are included which can be 
collected in a convenient time (like a working day; see [8] for 
a more subtle variant). That the rule is not universal is 
conveniently illustrated by work on a-Si : H prepared at 
various deposition temperatures [9]. The dark conductivity 
showed a compensation rule if the samples were fully annealed 
after illumination but - even in the same samples - showed 
no sign of compensation if they had been fully optically- 
irradiated before measurement. 

The Arrhenius rule ( l ) ,  supplemented to some degree by 
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equations (2, 3) is the basis for the systematic description of 
diffusion, and gives the source of data for modelling on an 
atomic scale. Theoretically, there are several key ideas, which 
include the relationship between diffusion and molecular 
reaction rates and some classes of non-radiative transition. I 
shall concentrate on the way that the rate of diffusion can be 
calculated; indeed, more specifically, I shall concentrate on 
the prediction of the basic jump rates, so as to avoid the extra 
complications like combining jump probabilities to give 
more-directly observed properties, or the numbers of diffusing 
particles, or geometric factors [4, IO]. Some of the broader 
issues will emerge, like the status of the Arrhenius and Com- 
pensation rules, the situations for which transient behaviour 
is important, and the circumstances in which classical descrip- 
tions are not enough and it is necessary to return to the 
Schrodinger equation. 

2. Approaches to absolute rates 
2.1. General issues 

Diffusion theory raises problems of several distinct sorts, 
including scientific questions such as: 

(I) Issues of basic statistical physics, like the origin of 
macroscopic irreversibility from reversible microscopic 
equations [ 1 1, 121. The idea of ergodicity (so that the system, 
if left to itself for a sufficient length of time, would pass 
through every dynamical state consistent with its energy; time 
averages are then equivalent to ensemble averages) is another 
basic issue, which is not true for some important systems, e.g., 
an assembly of harmonic oscillators. 

(11) Problems of idealised systems, like the ideas of 
“friction”within Kramers’ theory [13, 141, or the use of a 
single reaction coordinate for a particle coupled to a heat 
bath (cf. [ I  5]), the other coordinates treated as friction. Here 
there are implied assumptions about energy transfer between 
modes and about dephasing (see later), and there are further 
issues if there are bath frequencies slower than the hopping 
frequency or its equivalent; 

(111) Aspects of special systems, like the existence or not of 
diffusion in some one-dimensional systems [ 16, 171; 

(IV) Questions of quantum physics, notably the status of 
the common view that quantal effects occur only through 
hR,ikT factors (i.e., in statistics and, by implication, not in 
dynamics) so that the classical limit h + 0 and the high 
temperature limit T + LC are the same [18]. 

(V) Questions of whether the electrons need be considered 
in detail, beyond their involvement in determining the total 
energy (which, incidentally, need not be single-valued) as a 
function of nuclear coordinates [19]. 

Points IV and V will emerge again later. I shall assume any 
problems under 1-111 have been solved, and I shall concen- 
trate on the best available atomistic models for which serious 
comparison with experiment is possible. Morover, I shall 
note some issues of applied science, involving situations 
where the system of interest is not chosen for the convenience 
of the theorist. 

2.2. Simple reference systems 
Two simple examples of diffusion suffice for many of the 
points to be made. One is the diffusion of an impurity inter- 
stitial, with negligible host lattice diffusion (though, of 
course, the interstitial and host interact stongly). The second 
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is vacancy diffusion, in which an atom or ion makes a jump 
into a vacant site from one of the neighbour sites. For either 
system, we shall need to define an energy surface, in practice 
the adiabatic surface (i.e., for each position of the diffusing 
particle, all other atoms are allowed to relax to their static 
equilibrium positions) for each of many positions of the 
diffusing particle as it moves from one site to another. We 
shall also wish to identify (and quantify) the saddle point on 
this path, and define a “reaction coordinate” Q which follows 
a favourable route from one site to the next (choosing this 
favourable route is not easy, cf. [20-221, nor is it necessarily 
simply related to the most important atomic motions of 
diffusion). Further, we shall need to know about the thermal 
motions of the atoms, at least the harmonic vibrations about 
selected points, and sometimes even more information about 
vibrational eigenstates. 

2.3. Molecular dynamics 
This is the most direct way to study atomic motion, and of 
great importance. The classical equations of motion are inte- 
grated numerically for some large cell of atoms (perhaps 
several hundred per cell) with periodic boundary conditions. 
Diffusion jumps are rare events in thermal equilibrium for 
most systems, so ingeneous ways are used to deduce jump 
rates. Molecular dynamics has real advantages in investi- 
gating particular aspects, like “return jumps”, in which a 
particle passes through the saddle point (or saddle surface) 
only to return immediately [23,24], or transient processes (see 
Section 5 here), or situations in which the barriers are small, 
so the separation of atomic motion into vibration and dif- 
fusion is hard. It is also especially helpful if the jump mech- 
anism is not obvious. However, there are some aspects which 
are best done by the other methods I shall be discussing, 
notably (a) when one wants an activation energy - i.e. a 
temperature dependence - accurately over a wide tempera- 
ture range, since the statistics become poor for lower tem- 
peratures and (b) if one wants to use the energy calculation 
beyond the simpler ones, e.g., the shell model to describe 
ionic systems, since there is a significant cost penalty. For- 
tunately, molecular dynamics and other approaches are com- 
plementary and also in agreement in those cases which have 
been tested [24, 251. 

2.4. Rice-Slater dlwamical theory [26, 271 
Suppose the reaction coordinate Q can be regarded as 
dynamically independent*. How often does one find the 
system with Q > Qs and dQ/dT > 0, with Q, the saddle 
point and the sign of dQ/dt corresponding to motion toward 
a new final site? 

With certain working assumptions, e.g., that the energy 
surface is harmonic on each side of the saddle point, this can 
be related to the “first passage” problem; hence, with some 
generalisation [4,28-301 to an expression for the jump rate of 
the form: 

* In a harmonic solid, the normal modes are dynamically independent, 
i.e. the (non-diffusive) vibrational motion can be described in terms of 
uncoupled harmonic oscillators. However, any chosen motion (e.g., of one 
atom or in the reaction coordinate Q) is usually not dynamically indepen- 
dent, even though the coordinate may be convenient to describe some 
process. The distinction between normal modes and reaction coordinates 
is of great importance. often hidden in one-mode models. 
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in which ( E )  is simply proportional to the energy associated 
with the reaction coordinate, scaled here to be kTfor thermal 
equilibrium, and I-, is an average of vibrational frequencies 
for the (defect) lattice. There are two corollaries. First, any 
“first passage” theory will yield a jump rate bounded by the 
highest lattice frequency, and this is usually confirmed by 
experiment (H in liquid Fe may be an exception, but one 
assumes the jump frequency bound is still good though jumps 
are longer than usual [31]). In simple cases the frequency 
prefactor r, might be expected to have the same bound, 
though experiment often disagrees (so for interstitial 0 in Si 
[3], the prefactor is about 500 times greater than the highest 
vibrational frequency for Arrhenius behaviour over eleven 
orders or magnitude). The second corollary is that this pic- 
ture presumes negligible transfer of energy between degrees 
of freedom, a reasonable assumption for some of the mol- 
ecular reactions for which the description was devised. If a 
fixed amount of energy SE can be added in excess of the k T  
value in thermal equilibrium (see Section 5) then ( E )  

becomes k T  + SE, leading to non-Arrhenius behaviour. 

2.5. Reaction rate theory and Vineyard theory 
The original ideas of Marcelin, generalised in several ways by 
Hirschenfelder, Wigner, and others [32-341, concentrate on a 
system in thermal equilibrium. For the system of classical 
particles, the probability of some particular combination of 
momenta and positions is defined in thermal equilibrium 
(with assumed boundary conditions, usually constant vol- 
ume) for each such configuration. How the system reached 
that state is not asked: when one talks of the relative popu- 
lations of “ground” and “saddle-point” states, there is no 
assumption about the path used, merely more general 
assumptions like ergodicity [ 121 (so that, for instance, there is 
no selection rule preventing the saddle point being reached 
from a chosen initial state) and that the rate of transfer of 
energy between degrees of freedom is never a limiting step 
(the opposite assumption to dynamical theory), an assumption 
usually adequate for solids (not always, cf the phonon bottle- 
neck [35]) but not always so for molecules. In this approach, 
one concentrates on a plane (which need not be the saddle 
plane) and looks at the flux of those particles moving across the 
plane in a particular direction (there will be fluxes in both direc- 
tions of course, balancing on average in thermal equilibrium). 

These ideas yield a rate which, in general terms, includes 
three factors: a population factor, i.e., the probability that the 
system is close to the saddlepoint (more strictly to the saddle 
hypersurface in the phase space of the system); a flux factor 
describing the motion near the saddle point; and an efficiency 
factor, allowing for transient motions which cross the barrier 
without being countable as jumps [25]; in our cases we should 
expect the efficiency factor to differ from unity by only a few 
percent if the guidelines from ref [25] apply. The practical 
version of reaction rate theory is that of Vineyard [36], who 
assumed locally-harmonic energy surfaces. In the initial state 
(and the equivalent final state) the normal modes have fre- 
quencies v,; at the saddlepoint the real frequencies are vi, 
there being at least one imaginary frequency. The key fre- 
quency which enters the jump rates is: 

N I N - I  

Note that, at this level, these are products over modes. 

If one mode needs special treatment (perhaps because of 
some anharmonicity which does not mix modes) this can be 
handled separately. Clearly an practical application of eq. (5) 
needs a technique for the accurate prediction of at least a 
representative sample of frequencies v, v’ [37, 381. Note too 
that if even one v’ is small, as when the energy surface normal 
to the jump path at the saddle point is especially flat, then r’ 
may have a very high value. This is not the explanation of 
the high prefactors mentioned earlier but (as for vacancy 
diffusion in MgO) a sign that one should go beyond Vineyard 
theory [21]. 

2.6. Polaronic and similar mechanisms 
So far it has been implied that the saddle point in the adiabatic 
energy surface is the key to the jump process. Yet this is not 
always so, and especially when quantum, tunnelling can 
occur. Here, if the quantum particle is light (and so faster- 
moving than other atoms) the coincidence state has anal- 
ogous significance [39,40]. In the simplest cases the activation 
energy is the strain energy needed to move the host atoms 
from their positions relaxed about the initial site (from 
the self-trapping distortion in some cases) to a geometry in 
which the light particle would have equal energy at either site. 
This description is important in the quantum diffusion of 
hydrogen (Section 6), as well as in the motion of small 
polarons (Section 4). 

3. Cation mobility in MgO 
3.1. Experiment 

MgO is a typical ceramic, similar in many respects to the even 
commoner alumina, a high melting-point oxide with appli- 
cations ranging from relatively coarse technology to being a 
high-quality thin-film dielectric for microelectronics and the 
substrate on which have been prepared to specimens of the 
new superconductors with the highest critical currents yet 
achieved. It is also simple oxide, having the NaCl structure, 
and it is ionic in a well-defined sense [41] in which one may 
concentrate on closed-shell ions Mgz+ and 0’-. Whilst single 
crystals are easily grown, most diffusion data are complicated 
by the role of impurities, notably C, Fe and possibly H. Yet, 
as Sempolinski and Kingery showed [42], the mobility p ( T )  
of the cation vacancy can be measured near 1400” C. This, in 
turn, can be expressed in terms of the probability T(T) per 
unit time that one of the ( N  = 12) neighbouring Mg2+ ions 
jumps into the vacancy: 

p ( T )  = [Na2/31[e/kTlr(T)  (6) 
with a the nearest neighbour distance. Direct analysis of the 
experimental data yields an activation energy 2.3 & 0.2 eV at 
1400°C and a value of the prefactor r, of 210 & 80THz, 
a value which needs comment when compared with the 
maximum lattice frequency of around 20 THz. 

3.2. Some basic relationships 
The explanation of the value of r needs two types of general 
relation, one algebraic and the others thermodynamic. The 
algebraic component is simple. Suppose that in an activated 
process with rate A exp ( -  E/kT) the activation energy 
decreases with temperature, perhaps because thermal expan- 
sion causes a lowering of energy barriers, or (for electronic 
transport in amorphous crystals) because the Fermi level 
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shifts with temperature: 

A exp (-E/kT) = A exp ( - [ E "  - ctkT]/kT) 

= [ A  exp (a)]  exp ( -  Eo/kT). (7) 

Experiment will measure A exp ( x ) ,  not A :  there is no way to 
separate the two from observation along. It may make sense 
to choose A from the maximum lattice frequency; if so, the 
prefactor observed will still be A exp (2) and may be much 
larger: high prefactors suggest (as will be discussed) acti- 
vation energies decreasing with temperature. Many authors 
describe xk as an entropy. This can be useful, though it  is only 
A exp ( x )  which is defined, not A and c( separately, so 
(contrary to recent assertions) there is no significance what- 
soever in the temperature T = Eo/ctk. However, there may be 
correlations between E" and U, and these offer a way of 
describing the Compensation rule. The temperature depen- 
dence of the activation energy can, of course, be more com- 
plicated than linear, and indeed some complex behaviour 
near phase transitions has been described. 

The thermodynamic relationships [43, 441 can make these 
qualitative arguments more precise. Experimentally, the 
concern is with constant pressure Gibbs free energies g,. 
Theoretically, i t  is usually easier to estimate constant volume 
(or strictly constant lattice parameter) quantities; moreover, 
Vineyard theory works with a constant volume ensemble. 
The key expressions for the enthalpy h, and entropy sp are 
these, where in each case the second form assumes the 
thermal expansion is sensibly linear in temperature for the 
regime of interest: 

h,, = U P  - TV(dY/dT),(df/dV), @a) 

5 u,,(O) + T'(ds,/dV),(dV/dT), (8b) 

S, = S I  - (dV/dT),(df/dV), (9a) 

z s,(O) - (dV/dT),{(du,/dV), - 2T(ds,/dV),) (9b) 

The fact that 17, has as its leading term u,(O) is the reason 
for the relative success of those many calculations which 
merely estimate the zero-temperature internal energy. For 
a vibrational entropy, however, the constant pressure and 
constant volume forms may differ greatly, even in sign [44]. 
The correction from the volume dependence of U,, through 
thermal expansion can be large. analogous to the term in x 
mentioned above. 

3.3. E.uplicit calculations for  MgO 
In all the calculations to be described, the energy surfaces 
are obtained using the shell model [45] with interatomic 
potentials obtained from perfect crystal data only [46]. For 
ionic crystals this approach is both accurate and convenient; 
further, because of major, widely used codes (see [48]; the 
main examples are the Harwell HADES [47] and SHEOL 
[38, 441 codes used for the calculations described here, or 
the Harwell,/SERC CASCADE code) the approach is both 
efficient and economical. 

The strategy of the calculation is shown in the Fig. 1 .  We 
can usefully discuss the results in parallel with an earlier 
treatment by Sangster and Stoneham [37, 221 who concen- 
trated on u v ,  s,, and (duv/dV),, i.e., the leading terms in the 
earlier expressions, and evaluated (with some generalisation) 
the Vineyard expression for the prefactor in the jump rate. 
They predicted a migration energy of 2.26 eV, agreeing well 
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Fig. I. Flowchart for calculations of the diffusion jump rate: classical case. 

with experiment, the associated activation volume ( -  37% of 
the atomic volume) and the implied value of a (2.46 using the 
experimental thermal expansion, 1.53 with their theoretical 
value) being reasonable. The Vineyard prefactor was, how- 
ever, surprisingly large: 32.9THz, more than the 20THz 
maximum lattice frequency. This is precisely the problem 
mentioned earlier: the energy surface at the saddle point 
(shown in [22]) is rather flat near the saddle point. However, 
as noted earlier, the way the Vineyard expression splits 
into a product over modes can be exploited. Sangster and 
Stoneham did this in two ways: by direct use of the energy 
surface (an approach improved in 114.51) and by a simple 
analytical expression. Since the flat region is local, the 
potential getting much harder as one moves from the 
jump path near the saddle point, i t  suffices to replace these 
harder regions by infinite walls. This yields a correction 
erf (E'il'kT)' *, where Es is the strain energy in the soft mode 
to just reach the wall. The correction given approximately is 
0.76 k 0.1; the fuller treatment gives 0.72. 

The following table shows just how well these calculations 
do work. Despite their sensitivity (for the rate depends 
exponentially on calculated parameters) the jump rates at 
quite high temperatures are predicted to within the limits of 
experimental error. 

3.4. Implications ,for other systems 
We may now use these calculations for cation motion in 
MgO to understand several other systems. First, we remarked 
that an activation energy which fell rapidly with temperature 
(e.g., from thermal expansion of the host, giving large x )  

Table I. Jump rate, jump rate prefactor and activation energj, 
for MgO 

Theory [37] Theory [49] Experiment [42] 

51, THz 23 12 19 F 7 
(without exp (2)) 
t;" eV 2.26 2.14 2.3 * 0.2 
r ( 1 4 0 0 0 ~ )  4.34 x 10- 1.48 x 10' 2.84 x IO'  
jumps sec 
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Table 11. Compensation: cation motion in the alkaline earth 
oxides [#9] 

MgO CaO SrO BaO 

small in effect [56]; quadrupole terms are another matter [57], 
and seem to be significant in understanding differences from 
one host to another (the effects are from the host ion quad- 
rupoles, rather than those of the diffusing particle). 

Prefactor 31.29 20.55 11.60 6.51 

THz 
Eo e” 2.14 1.87 1.68 1.48 

r, exp (4 

suggested a high prefactor ( A  exp (a)). Even without explicit 
calculation, one might guess that expansion should have a 
strong effect on the oxygen interstitial in silicon, where the 
prefactor is so much larger than the highest frequency: for 
Si : 0, the interstitial is associated with (but displaced from) 
the bond-centre position, and the geometry (and hence bond 
angles and jump distance) and energy are likely to be sensitive 
to sensitive to expansion. Perhaps more important, we can see 
how it  is that prefactors might bear little relation to simple 
“ballistic” or “approach frequency” pictures, and can be 
much larger [50] or much smaller [51] than those imply. 

Secondly, we may remark on the Meyer-Neldel rule. 
The simplest explanation merely supposes that u,(O) and 
(du,/d V ) T  correlate, i.e., that large barriers imply large 
deformations along the jump path, and that these are relieved 
effectively by expansion. This can be made quantitative [49] 
for a series of alkaline earth oxides (see Table 11). 

Thirdly, we have noted the flatness in the saddle plane 
normal to the jump path. This can be regarded as a move 
towards a bifurcated path as routes somewhat away from the 
direct one becomes favoured. Indeed, for the Fe3+ in MgO, 
bifurcation does occur ([22, 521; ref 22 shows the energy 
surface), and such behaviour seems typical for 3 +  ions in 
MgO. Bifurcation makes it hard to apply the dynamical 
theory, since the reaction coordinate is not unique; moreover, 
we note that dynamical theory gives rather poor values for 
the MgZ6 jump rate in MgO too. Molecular dynamics and 
Vineyard theory, however are found to agree well [24]. 

Fourthly, one severe test of diffusion dynamics is the 
isotope effect. Without going into details the rather complete 
knowledge of frequencies and their dependence on ionic 
masses suffice [53] to give good estimates of the so-called 
kinetic energy factor, 6K. Implicit here is the assumption that 
the potential energy surface does not depend on isotope, an 
assumption which will need to be questioned in discussing 
quantum effects. 

Finally, we may remark on the differences in going to the 
transition metal oxides like COO or NiO, with the same 
crystal structure. These differences take several forms [52]: 

(a) The cation can exist in several charge states, notably 
the 3 +  and perhaps the + states, i.e., as small polarons 
which themselves hop from site to site in a diffusive motion; 

(b) There is usually a cation deficiency, so that more 
complex defects involving cation vacancy clusters can occur 
[54, 551 

(c) For a 3 + ion near a cation vacancy, the energetically 
favoured site is the (200) second neighbour, not the (1 10) first 
neighbour, so that diffusion of 3 + ions involves correlated 
polaron and ion motion (see Section 4); 

(d) There are additional terms in the expression for the 
energy, beyond those in the shell model. The crystal field 
splitting and Jahn Teller terms are recognised, but usually 

4. Charge states and related matters 

Comments in the last section drew attention to the differences 
in behaviour between 3 + species, like Fe3+, and 2+ species 
like Fe2+,  even when diffusing by the same vacancy mech- 
anism. We may relate these differences to other cases in 
oxides and semiconductors. We begin with the transition 
metal oxides MnO, FeO, COO, NiO, which readily go non- 
stoichiometric ( F e 0  especially to a degree that defect clusters 
must be considered). Diffusion jumps are possible by a 
variety of combinations of purely ionic and purely electronic 
jumps [see [50] for examples). Moreover, the energy surface is 
no longer single-valued: for given nuclear positions, there are 
various ways of disposing the electronic carriers over the ions. 
In particular, an ion stable as 2+ next to a vacancy might be 
more stable as 3 +  at the saddle point. Such multi-valued 
energy surfaces raise questions of ergodicity unless tran- 
sitions between them are effective. Consideration shows two 
main types of transition between surfaces: (i) Equilibria 
between the alternative electronic energy surfaces established 
at the stable site; (ii) “Ballistic” transitions with charge state 
changes (transitions occuring between energy surfaces) as the 
diffusing ion moves towards the saddle point (this is an odd 
but common type of description; in reaction rate theory the 
question does not arise, since we assert an equilibrium with- 
out needing to worry about rates of certain special processes, 
and especially electronic processes). For transition metal 
oxides the hopping integrals are large enough for both 
processes to appear possible; for the A1 interstitial in silicon 
[57] and for Fermi level effects on dislocation motion in 
silicon (see [58]), (i) alone seems a reasonable description 
from known carrier capture rates and populations. 

It is known from doping studies that charged defects 
dominate silicon self-diffusion at high temperatues [59]; this 
does not depend on the question of which species is mobile: 

l000K (lower 1670 K (higher 
temperatures) temperatures) 

It is also well known that silicon self-diffusion appears to 
have a very high entropy, x 10 k, and this has led to much 
speculation. The 10k cannot come easily from vibration 
alone (e.g., soft saddle-point modes) partly because, as 
discussed for MgO, the apparent enhancement is misleading; 
also, whilst it is easy to imagine a very soft mode for some 
particular lattice parameter, silicon self-diffusion is observed 
at constant pressure, so the unit cell size changes with tem- 
perature. Nor is it adequate to say the several types of self- 
interstitial offer enough ( N  say) alternative paths for a con- 
figurational entropy term to give 10 k: even if the degeneracy 
were exact (it is not) the degeneracy would contribute the 
inadequate In ( N )  factor. Complex defects (“extended inter- 
stitials”) have been proposed too [60], but specific models 
which work [61] are yet to be identified. The most obvious 
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explanation makes a direct link between the entropy and the 
charge state change. The rise in importance of the charged 
species is presumably partly a result of the changes in electron 
and hole concentrations; these in turn depend on the band 
gap. The band gap itself is strongly temperature-dependent 
(0.6 eV fall from 0 K to the melting point, i.e., dEjdT of about 
6 k), and it is natural to assume the major part of the I O  k 
in self-diffusion comes simply from the band gap change. The 
conclusion is that any theory which fails to predict this band 
gap change will also fail to predict the entropy for self- 
diffusion. 

5. Transients in diffusion 

Both the classical and quantal cases discussed so far refer to 
jump rates in thermal equilibrium. The equilibrium is not 
static, of course, as every particle continually changes its 
position and velocity. However, two notable cases of non- 
equilibrium behaviour occur, for which transient behaviour 
matters: 

(1) When extra energy is suddenly made available locally, 
as in recombination-enhanced diffusion, in which an electron 
and hole recombine at a site and, in one possible process the 
electronic energy released gives a “phonon kick” to a particle. 
This is a gentler process than radiation damage, with energies 
of 1-2 eV typically involved. 

( 2 )  When the particle number is not conserved, as for 
muon or exciton diffusion, where there are at least three 
timescales, namely (a) that for self-trapping, i.e., establishing 
the substantial local distortion, (b) diffusive hopping, and 
(c) the decay of the particle. 
I shall discuss ( I )  only here; for ( 2 )  see [62]. 

Recombination enhanced diffusion is of real practical 
importance for semiconductor systems, since it speeds up 
degradation of devices like semiconductor lasers when they 
are in use, rather than merely on the shelf (for references to 
198 1 see [63]) .  

Discussions of the phenomenon (e.g., [64]) have normally 
been along these lines. Suppose normal thermal hopping 
occurs at a rate A exp ( -  E / k T ) .  If the recombination energy 
available per event is R,  then the effective activation energy is 
reduced to E’ = E - 4R because the thermal fluctuations 
have to overcome an effective lower barrier. Here 4 is an 
“efficiency factor” depending on how well the phonon kick 
(determined by the gradients of the electronic energy surfaces) 
and the reaction path (determined by the ground state energy 
surfaces) correspond, etc. The prefactor A will be altered too 
by some factor defining the fraction of time for which the 
excitation is available as enhanced local motion, and will 
depend on the intensity I of excitation. Overall, there will be 
a new term AID exp (-[E - 4 R ] / k T ) ,  still thermally 
activated. With some qualifications (e.g., 4 has to be quite 
large, even > 1 at times, and may have to be big too) this 
description works quite well. 

The problem lies in the efficiency factors 4 and p. High 
efficiencies mean little loss of coherent motion in the reaction 
coordinate. Now reaction coordinates are rarely dynamically- 
independent normal modes, as assumed in simple models. If 
they were, the lack of energy loss would lead us to Rice-Slater 
dynamical theory. This would indeed predict a change in rate, 
but not in the Arrhenius form: the vibrational energy in the 
key mode changes to give a rate AP’I exp ( -  E/[kT  + @RI). 
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Fig. 2. Flowchart for the calculation of the diffusion jump rate: quantum 
case. (Note this is given for low temperatures, for which thermal expansion 
can be ignored.) 

Such behaviour is indeed seen for molecules. To resolve this 
problem for solids, molecular dynamics seems essential. The 
only study appears to be [65],  examining the consequences of 
a phonon kick on interstitial motion. The statistics for 
their results did not, however, allow the two expressions 
mentioned to be distinguished, but sufficed to identify several 
other points. One was that the direction of the phonon kick 
and of the reaction path had to be matched well for reason- 
able efficiency. Another point was the striking effect of 
phonon dispersion (for most simple models assume a single 
frequency): coherent motion in the reaction coordinate is 
damped with a characteristic time which is short. If the mean 
frequency is ( w  ) and if we usef = [( w 2 )  - ( ( w )  as 
a measure of the dispersion, then the efficiency a did not 
exceed exp ( -  2f)  and the motion will be damped after a few 
(typically n /2 f )  vibrations in the reaction coordinate. 

6. Quantum diffusion of light interstitia1s:hydrogen in metals 

Quantum diffusion and clasical diffusion differ in concepts as 
well as in the statistics used [18, 661. Some changes are 
obvious: zero-point motion will modify the local distortion 
near a light interstitial in a way which depends on isotope 
mass; light interstitials will have discrete energy levels, not a 
continuum up to some saddle point, etc. But the use of the 
Schrodinger equation instead of Newton’s laws of motion 
means that the dynamics of the diffusing particle, not just 
statistics, are changed: the correspondence principle ( h  -+ 0) 
is not equivalent to high temperatures ( T  + a) as it would 
be if statistics alone (involving just hsZjkT) were significant. 
Moreover, the saddle-point configuration loses its special 
significance. Just as in polaron theory the analogue (like 
the coincidence configuration, cf Section 2) is distinct. This 
was recognised initially by Flynn and Stoneham [40], whose 
approach is discussed in relation to more recent methods 
shortly. 

The idea that the classical saddle point is no longer suf- 
ficient has also been exploited in an interesting molecular 
dynamics simulation by Gillan [67]. Current quantum simu- 
lations do not permit direct calculation of the jump rate but, 
in the spirit of classical reaction rate theory, another similar 
type of estimate is possible. One seeks the probability that the 
interstitial has equal weight on initial and final sites, in the 
spirit of the coincidence site picture, but using quantum 
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molecular dynamics and classical interatomic potentials. This 
probability can be compared with that for the classical saddle 
point, so that a crossover between mechanisms may be ident- 
ified. There are, of course, implicit assumptions (I shall note 
later some contributions to quantum diffusion which this 
method misses) but it is a very promising general approach. 
Like other molecular dynamic methods, it has the advantage 
of finding the diffusion mechanism without necessarily being 
told it in advance. 

Some of the alternative ideas of the pioneering study in 
[40] will be needed in describing later treatments. First, in a 
crystal with translational symmetry, the eigenstates will have 
the same translational symmetry and, one might assume, 
would be delocalised. The hopping transitions in diffusion, 
however, presume localised states. This problem is resolved 
when the local lattice distortion due to the interstitial is 
recognised: the deformation effectively immobilises the 
particle to give “sensibly-localised” states between which 
transitions can occur. These are, of course, vibronic states in 
which both the site of the interstitial ( p )  and any phonon 
variables (v) must be specified. The relevant jump rate observed 
can be expressed in terms of component jumps o,.(v, v’) by 
averaging over initial vibrational states and summing over all 
final states: 

w,, = ( ~ v , o , , ( { v ) ,  {V”T (10) 

Diffusion - i.e., the incoherent motion of interest here - 
occurs whenever Wis dominated by those processes ({v}, {v’} 
not identical) which redistribute energy over the vibrational 
degrees of freedom. These ideas are fairly general. Flynn and 
Stoneham [40] made additional working approximations in a 
theory which generalised small polaron methods. The key 
assumptions for hydrogen in bcc metals were: 

A: The usual Born-Oppenheimer approximation that 
electrons follow nuclei adiabatically; 

B: An adiabatic approximation that separates the rapid 
hydrogen motion from the sluggish motion of the host metal 
nuclei (like Nb or Ta); 

C: A linear coupling approximation, so that hydrogen 
displaces the neighbouring atoms without changing modes or 
frequencies; 

D: (for bcc hosts only) the Condon approximation that a 
(hydgrogen) tunnelling matrix element is independent of the 
positions of the host atoms. 
The limitations of these assumptions were discussed in some 
detail in the early papers [18, 40, 661. Yet they allowed 
analytical results to be derived, and these results were in 
striking agreement with many experiments: they pointed to 
links between activation energies and volumes of solution, 
to the differences between bcc and fcc hosts, to the Zener 
relations, at least a partial explanation of the isotope effect, 
and a successful description of the curvature of the Arrhenius 
plot for bcc hosts without introducing extra parameters. 

Neverthless, the story was not complete; some of the 
assumptions (especially B, C ,  D, though even A proves 
inadequate in some situations [19]) are questionable or worse, 
and the method does not lend itself too well either to the use 
of the best interatomic potentials or to extensions to systems 
other than light interstitials. Many papers made improve- 
ments in specific aspects, usually at the expense of some 
complexity. Schober and Stoneham [68, 691 realised that 
there were advantages in an embedded cluster model, exploit- 

ing the fact that the degrees of freedom for which the assump- 
tions are worst are highly-localised local modes (e.g., of H) or 
resonances (e.g., of host atoms neighbouring H) involving 
only a few atoms. Again the jump rate can be calculated by 
explicitly summing the contributions to eq. (lo), the contri- 
butions being obtained by (a) the calculation of (harmonic) 
initial and final vibronic wavefunctions for an assumed 
interatomic potential (including the self-trapping distortion 
at each site) by explicit calculation of the modes for a cluster 
of up to 21 atoms; (b) the calculation of the component 
probabilities o as transitions induced by that part of the 
Hamiltonian not diagonalised; (c) thermal average and 
summation, as in eq. (10); (d) correction for sundry points, 
like the changes in the jump of the displacements of atoms 
outside the cluster, and the several ways in which anharmonic 
corrections must be incorporated. 

This approach avoids the previous restrictive assumptions 
and, moreover, can be extended to heavy interstitials too. 
Further, the individual contributions of specific processes 
({v}, {v’}) can be identified. Thus at lower temperatures 
(say 50-250 K) the transitions are mainly those without the 
excitation of local mode quanta. At higher temperatures 
transitions with local mode excitation (e.g., from vL = 0 to 
v t  = 1) become important; in due course transitions between 
excited vibronic states (e.g., vL = 1 to v t  = 1) become 
dominant. This is in qualitative accord with the simpler 
occurence probability approach, and is the source of the 
“knee” in D ( T ) ,  the change in Arrhenius energy around 
250 K. 

The explanation of the “knee” from local mode excitation 
is different from the quantal-classical transition suggested by 
Gillan [67], whose approach includes only symmetric initial 
and final states (and different again from generalisations of 
the curvature of the Arrhenius plot from Flynn-Stoneham 
theory (e.g., [70, 711)). The several explanations are not 
contradictory (Le., all could contribute) and direct com- 
parison is hard because different interatomic potentials were 
used. However, the quantum molecular dynamics approach 
does not give the rate directly, and does omit transitions for 
which the initial and final states are not equivalent (e.g., those 
with vL = 0 to v; = 1) which do seem important in the 
embedded cluster approach. 

The Schober-Stoneham results make several predictions, 
though any detailed comparisons with experiment must 
recognise the limited accuracy of the interatomic potentials, 
to which the predictions are very sensitive. The rates and 
qualitative trends of activation energy with temperature and 
with isotope are in respectable agreement with experiment. 
The tunnel frequency for Nb : H can also be compared with 
that observed for Nb:O,  H. Here one can measure the 
“undressed” value J from internal friction data [71] and the 
“dressed” value J exp (- S )  with polaron corrections from 
neutron data [72]. The prediction of 0.01 meV (which does 
not correct for the nearby oxygen) for the dressed value is 
rather less than the observed 0.2 meV, but the dressing factor 
of 0.15 is reasonable. The errors are arguably mainly from the 
limitations of the potentials, in line with the great sensitivity 
noted in earlier work [69]. 

7. Conclusions 

The major conclusion is that it is possible to predict the rates 
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of key solid state processes, and not merely their character- 
istic energies. Let us look back at what the important features 
are. The most convenient route involves (a) some algorithm 
for predicting an energy surface, i.e., the energy for any 
desired positions of nuclei, and (b) the solution of a dynamical 
problem (at least vibrational frequences, sometimes vibra- 
tional wavefunctions, and occasionally the integration of 
the equations of motion). The algorithm for the energy 
must be good enough to give constant pressure results - 
including entropies - and to give the relative energies of 
different charge states well. There will usually be other 
thermodynamic and kinetic relationships needed to relate 
results to experiment. 

For the present paper the energy surface has been obtained 
from interatomic potentials which, of course, can be based on 
various levels of use of the Schrodinger equation. For ionic 
crystals, the shell model is especially convenient (though not 
so conveniently for molecular dynamics, which restricts the 
use of that method) and of high demonstrated accuracy. For 
metals other than simple metals and for semiconductors there 
is no model of comparable accuracy yet, and one should be 
cautious about some simplistic analyses. 

What emerges from this work is the realisation that, in the 
best cases, diffusion rates can be predicted at least as well as 
they can 5e measured. This seems to be true even when there 
are quantum effects in the dynamics, and provides a basis for 
understanding some of the successes and failures of the main 
empirical rules of diffusion. This understanding and ability to 
make quantitative predictions is important when one notes 
the range of phenomena of broader interest to which these 
ideas apply: to the extreme conditions of temperature and 
pressure involved in geophysics and in studies related to 
reactor safety, to engineering on the nanometer scale and the 
direct observations of diffusion jumps by scanning tunnelling 
microscopy, and indeed to open systems (where there are 
further complexities [73]) including biological processes 
where there can be circumstances in which theory has advan- 
tages over experiment alone. 
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