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Preface

Now when the work is done, and the thesis is written, I can look back and
reflect on how it evolved into the present form: The thesis is organised into three
parts. Part 1, is concerned with a short introduction to spatially homogenous cos-
mology and the application of methods from the mathematical theory of dynamical
systems in this research field, which builds a branch of mathematical cosmology.
These techniques are then applied in part 2 to analyse the dynamics of a certain
class of spatially homogenous cosmologies (locally rotationally symmetric Bianchi
type VIII) with anisotropic matter. Part 3 deals with a tutorial on how to plot the
solutions of the evolution equations encountered in part 2 as flow diagrams with
the computer algebra system Maple.

Part 2 represents the core of the thesis. It contains all the results which to
achieve was the declared aim specified by the theme of the thesis. It is a reprint of
my research article Dynamics of locally rotationally symmetric Bianchi type VIII
cosmologies with anisotropic matter which was published by Springer in 2012 in
the journal General Relativity and Gravitation. As research article, part 2 is thus
clearly addressed to active researchers in the field of spatially homogenous cosmol-
ogy.

In contrast to this I addressed part 1 to a master student who has had a stan-
dard course on General Relativity, and is actually starting to become acquainted
with the field of spatially homogenous cosmology. I therefore did not attempt
to write as rigorously as possible, but rather made an effort to give a good first
overview to the topic and to shed light on the central theme. After the lecture
of part 1, so my goal, the above student should then have a good idea of the in-
troduced concepts, and should be prepared to understand the content of part 2 at
least along general lines. Furthermore he should be equipped and encouraged for
further reading. To ease the latter, I have added some descriptive text to each piece
of literature in the bibliography of part 1 that, so I hope, should help the reader
with the orientation.

There are thorough introductory textbooks on spatially homogenous cosmology
in the literature. However these usually assume a certain level of familiarity with
concepts from semi-Riemannian geometry like isometries or Lie derivatives, or with
Lie groups and Lie algebras, which my hypothetical student may not bring with
him. In choosing the topics and the above explained style of presentation I thus
attempted to complement the literature. For instance, for summarising the mathe-
matical framework of General Relativity in chapter 2 I used an abstract, coordinate
free approach. On one hand, this is not the way of presentation in most standard
courses on General Relativity. On the other hand however, in my personal opinion
this is beneficial for a demonstrative development of the concepts of symmetries
of spacetime (chapter 3). For the same reasons I also incorporated a section on
Lie group theory (section 2 of chapter 3) and put some effort in first developing the
concepts of symmetries of spacetime in an intuitive fashion, to then go over to the
more abstract description in terms of Lie groups.

vii



viii PREFACE

Clearly none of the material presented in part 1 is new, and since most of it is
standard, I did not cite a reference at every corner, but rather wrote an extended
section for references and further reading at the end of this part to not break the
text flow.

When working on the theorems derived in part 2, I used the computer algebra
system Maple often as a tool to compare my analytical results with the numerical
once which I displayed as flow diagrams in Maple. The evolution equations of part 2
depend on parameters. To get a better feeling on how the solutions change with
these parameters I created a code in which I could vary their values in a quick
and intuitive way, and where I could directly see the change in the flow plots as a
reaction to the change in the parameters. My supervisor encouraged me to present
this interactive flow plots in my thesis. I was more than satisfied to follow this
suggestion, incorporated a tutorial on how to create interactive flow diagrams with
Maple as part 3 of my thesis, and supplemented it with a Maple file with working
examples.

I hope that I was able to reach my goals, so that part 1 is helpful for students
to get started with spatially homogenous cosmology, that part 2 is of interest to
researchers in the field and that part 3 is useful for those who search for an adequate
way to visualise the solutions of parameter dependent dynamical systems. If this
is the case or not is to be judged by the readers, to who I would be thankful for
their feedback.

Vienna, September 2012

Gernot Heißel
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CHAPTER 1

Introduction

With his theory of General Relativity, published in 1916, Einstein gave com-
pletely new insight to the physical nature of space, time and gravitation. In General
Relativity space and time are unified as spacetime which is no longer viewed as rigid
concept that merely tells when and where physics takes place, but rather is subject
to physical dynamics itself. Spacetime interacts with its matter content: Matter
causes spacetime to curve which in turn causes matter to move; which in detail is
dictated by the Einstein equation. As the central object is spacetime itself, Gen-
eral Relativity is not only suited to describe gravity in isolated systems, like the
gravitational attraction between celestial bodies, but also allows for a dynamical de-
scription of the evolution of the universe, so of spacetime as a whole. Hence General
Relativity triggered the advent of modern physical cosmology. Soon several exact
cosmological solutions of the Einstein equation were published, the most important
of them being the Friedmann-Lemâıtre-Robertson-Walker (short Friedmann) fam-
ily of solutions, which model spatially homogenous, isotropic and expanding (or
contracting) universes. These models still form the basis of the current standard
model of cosmology.

In the standard model, the universe is assumed to possess the spatially homoge-
nous isotropic geometry described by the Friedmann solutions as a first approxi-
mation. Structures like galaxies are explained to have formed due to perturbations
of that symmetry. During most of the evolution of the universe the matter content
is modelled as a perfect fluid, which exhibits spatial homogeneity and isotropy as
well. Altogether the standard model takes a typically physical approach to model
reality, starting with an idealised case and modelling the details on top. Never-
theless one can ask to which extent this approach is valid: Is a universe that is
‘almost Friedmann’ at one time necessarily ‘almost Friedmann’ in the past and fu-
ture as well? Are the Friedmann solutions really stable under small perturbations
of isotropy and homogeneity? Attempts to answer these questions have been made
by analysing the role of the Friedmann models within broader classes of spatially
homogenous cosmologies, which need not necessarily be isotropic: In general the
component Einstein equations form a system of non-linear partial differential equa-
tions for the gravitational field, with one time and three spatial degrees of freedom,
and as such cannot be solved exactly. In the case of spatial homogenous cosmolo-
gies (for sufficiently simple matter contents) the high symmetry allows to eliminate
the spatial degrees of freedom, and to formulate these equations as an autonomous
system of ordinary differential equations in time. Though still not solvable exactly,
equations of this kind can be rigorously analysed by applying the mathematical
theory of dynamical systems. This allows to give qualitative statements for entire
classes of solutions, e.g. their past and future asymptotic dynamics.

These analyses have shown many interesting aspects of cosmology, for instance:
A Friedmann universe can represent an intermediate or asymptotic state for certain
classes of spatially homogenous cosmologies. A spatially homogenous universe may
emerge from a highly anisotropic state which isotropises more and more towards
the future and approaches Friedmann geometry. Other solutions may be close to

1



2 1. INTRODUCTION

Friedmann for a long intermediate time period but highly anisotropic towards both
past and future.

Recent research in the field of spatially homogenous cosmology is mainly con-
cerned with two major aspects: First, there is a conjecture that spacetime close
to generic singularities, i.e. to black holes or the big bang, can be described by
the evolution equations of spatially homogenous cosmologies. Research at the one
hand attempts to proof this conjecture or to support it by heuristic or numerical
arguments. On the other hand, research attempts to use this conjecture, presuming
it to be true, to draw conclusions for a better understanding of black hole or big
bang physics. Second, until recent years research in spatially homogenous cosmol-
ogy has focused on vacuum spacetimes or universes whose matter content can be
described by a perfect fluid. Current research moves over to more general matter
contents, which for instance allow for anisotropic pressures. One particular example
is collisionless matter (i.e. Vlasov matter) which is believed to be very well suited
for a global description of the galaxies in the universe. Among other contents, the
present thesis contributes to this latter branch of current research in spatially ho-
mogenous cosmology:

The following text is organised in three parts: Part 1 is concerned with a short
introduction to spatially homogenous cosmology and the use of methods from the
mathematical theory of dynamical systems in this research field. It aims to assist
the reader who is just starting to become acquainted with spatially homogenous
cosmology to get a good overview and to become familiar with the basic ideas and
concepts. After the lecture of part 1 the reader should then be able to read and
understand part 2 at least along general lines. Part 2 is a reprint of my research
article Dynamics of locally rotationally symmetric Bianchi type VIII cosmologies
with anisotropic matter which was published by Springer in 2012 in the journal
General Relativity and Gravitation. It deals with the analysis of one particular class
of spatially homogenous cosmologies. The therefor chosen matter contents are in
general anisotropic and comprise a larger family of models in which for instance also
perfect fluids are contained as special cases. The results allow to draw conclusions
on how the grade of anisotropy of the matter content effects the past and future
asymptotic evolution of these models. Part 3 gives a tutorial on how to visualise
the solutions of the evolution equations examined in part 2 in an interactive flow
diagram with the computer algebra system Maple. The such produced diagrams
allow the user to see a change in the behaviour of the solutions as a direct reaction
to the change in the matter parameters, where one of them essentially gives the
grade of matter anisotropy. They are therefore well suited to clearly represent the
complex space of solutions, and most notably to present the physical conclusions
which were drawn out of the analysis in a comprehensible fashion. Part 3 is also
supplemented by a Maple file, which has the same content than presented in this
part, with working examples.
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CHAPTER 2

Spacetime and gravitation

The main purpose of this chapter is to define the mathematical tools that are
used to introduce the notions of symmetries of spacetime in chapter 3. These
are mainly the concepts of diffeomorphisms (especially one-parameter Lie groups
of diffeomorphisms), tangent maps and Lie derivatives treated in section 3, and
in particular the notion of an isometry given in definition 6 in section 4. The
rest of this chapter embeds these concepts into their natural context in smooth
manifold theory and semi-Riemannian geometry, making it a brief introduction to
the mathematical backgrounds of General Relativity tailored to the purposes of
this text.

1. Smooth manifolds

The mathematical concept that underlies spacetime in General Relativity is a
certain kind of smooth manifold. A precise definition of this term can be given as
follows:

Definition 1. smooth manifoldsA smooth manifold Σ is a Hausdorff space endowed with a
complete (or maximal) atlas.

The elements of Σ are called points. That Σ is Hausdorff means that it is a
topological space where for each two points in Σ there exist disjoint neighbourhoods
of these points. So intuitively speaking no pair of distinct points is ‘arbitrarily
close’ to each other. This gives a manifold the character of a continuum of points,
as one would intuitively expect to be true for spacetime. That Σ is equipped with
a complete atlas means that the whole manifold can be patched with coordinate
systems over subsets of Σ, called charts, that have a smooth overlap. charts, coordinate

systems
More precisely,

a chart is a pair (U , η), consisting of some open subset U of Σ and a map η : U → Rn,
called the coordinate system of the chart. Two charts (U , η) and (V, ζ) for that
U ∩ V 6= ∅ have a smooth overlap iff both maps ζ ◦ η−1 and η ◦ ζ−1 are smooth
(C∞). Intuitively that means that coordinates can be assigned to each point p ∈ Σ.
The number n of coordinates needed to do so is called the dimension of the manifold.
This gives a manifold the feature that it ‘looks like’ Rn in the neighbourhood of any
point, and in connection with the smoothness condition allows one to do calculus
on this structure. A schematic of the notion of overlapping charts is depicted in
figure 1.

2. Smooth tensor fields

Having defined a basic underlying structure, the next thing to do is to define
useful maps with it: smooth functionsA function f : Σ→ R is called a smooth function on Σ iff it’s

coordinate expression f ◦ η−1, where η is a coordinate system, is smooth (C∞) in
the sense of ordinary calculus. The set of all such functions is denoted by F(Σ).

tangent vectors,
tangent spaces

A tangent vector to Σ at p is a function vp : F(Σ) → R that is R-linear and
Leibnizian. The set of all tangent vectors to a point p is denoted by Tp(Σ) and
forms a vector space over R. It is called the tangent space to Σ at p. cotangent spaces,

covectors
Each tangent

5



6 2. SPACETIME AND GRAVITATION

Σ

U

V

Rn

η(U)

η(U∩V)
Rn

ζ(V)
ζ(U∩V)

ζ◦η−1

η◦ζ−1

η ζ

Figure 1. Two overlapping charts (U , η) and (V, ζ) on a manifold
Σ. The overlap is smooth iff both maps ζ ◦ η−1 and η ◦ ζ−1 are
smooth.

space Tp(Σ) gives rise to yet another vector space, the cotangent space Tp(Σ)∗ to
Σ at p. It is defined as the set of all linear functionals ωp : Tp(Σ) → R on Tp(Σ),
called covectors, or 1-forms at p. The following definition generalises the notion of
vectors and covectors:

Definition 2.tensors Let r and s be nonnegative integers, not both zero. A tensor of
type (r, s) at a point p of a smooth manifold Σ is an R-multilinear functional

Ap : Tp(Σ)∗ × · · · × Tp(Σ)∗︸ ︷︷ ︸
r-times

×Tp(Σ)× · · · × Tp(Σ)︸ ︷︷ ︸
s-times

→ R.

tensor spaces The tensor space of type (r, s) at p is denoted by T
(r,s)
p (Σ) and forms a vector

space over R. In particular T
(0,1)
p (Σ) = Tp(Σ)∗, and T

(1,0)
p (Σ) can be identified

with Tp(Σ) by interpreting a tangent vector vp as a functional Tp(Σ)∗ → R that
maps a covector ωp to the real number vp(ωp) := ωp(vp).

smooth tensor fields In General Relativity, physical quantities are described by smooth tensor fields

on spacetime: A tensor field A on a smooth manifold Σ is a map Σ→ ⋃
p∈Σ T

(r,s)
p (Σ)

that assigns to each point p a tensor Ap of type (r, s) at p. Smooth tensor fields can
be defined as follows: A vector field v is smooth iff the function v(f) : Σ→ R defined
by v(f)(p) := vp(f) is smooth for any smooth function f ∈ F(Σ). A covector field
or 1-form ω is smooth iff the function ω(v) : Σ→ R defined by ω(v)(p) := ωp(vp) is
smooth for any smooth vector field v. Smooth tensor fields of type (r, s) are then
defined straight forwardly. The set of all smooth tensor fields of type (r, s) on Σ

is denoted by T (r,s)(Σ). From the R-multilinearity of an Ap ∈ T (r,s)
p (Σ) it follows

that an A ∈ T (r,s)(Σ) is F(Σ)-multilinear. One can also define smooth tensor fields
on an open subset U ⊂ Σ in the same way than they are defined on the whole of Σ.

local basis of smooth
vector fields

A local basis of smooth vector fields on an open subset U ⊂ Σ is a set of
smooth vector fields {ea}na=1 such that the set of members

{
(ea)p

}n
a=1

at each

point p ∈ Σ spans T
(1,0)
p (Σ), where n = dim(Σ). The corresponding dual basis field

is defined as the set of 1-forms {εa}na=1 such that εa (eb) = δab , and spans T
(0,1)
p (Σ).

components of tensor
fields

A smooth tensor field A of type (r, s) on U can then be written as an expansion
in these bases, where the components are given by the action on the basis fields
Aa1...ar b1...bs = A (εa1 , . . . , εar , eb1 , . . . , ebs) and are smooth functions on U .
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commutators of
vector fields

Two smooth vector fields v and w on Σ give rise to a new vector field [v, w]
called their commutator, which is defined by [v, w](f) := (v ◦w)(f)− (w ◦ v)(f) for
f ∈ F(Σ). Being again a smooth vector field, the commutator of two local basis
fields ea and eb can itself be expanded in this basis,

(1) [ea, eb] = γcabec, commutation
functionswhere here and henceforth the Einstein summation convention is used (summation

over repeated upper and lower indices from 1 to n). The components γcab are called
the commutation functions of the local basis {ea}na=1. Given any three smooth
vector fields u, v, w, they satisfy the Jacobi identity

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0. Jacobi identity

contractionsThere is an operation Cij called contraction over i, j that maps smooth ten-
sor fields of type (r, s) to smooth tensor fields of type (r − 1, s − 1) defined by
Cij(A) (. . . , ω, . . . , v, . . . ) := A (. . . , εa, . . . , ea, . . . ), where εa is inserted in the ith

1-form argument, and ea in the jth vector field argument, and the Einstein sum-
mation convention is used. Hence the components of Cij(A) in a local basis are

given by Cij(A)a1...ar−1

b1...bs−1
= A...a......a.... The indices i, j on C are thus not to

be confused with tensor components; they merely indicate over which arguments
the contraction is acting.

3. Diffeomorphisms, tangent maps and Lie derivatives

The following definitions will turn out to be particularly useful in the treatment
of symmetries of spacetime in chapter 3:

diffeomorphismsA smooth bijection φ : Σ→ Σ that has a smooth inverse is called a diffeomor-
phism on Σ, where smoothness is defined via the coordinate expression η ◦ φ ◦ ζ−1

of φ in some coordinate systems η and ζ. tangent mapsA diffeomorphism induces linear maps

φ(r,s)
p : T (r,s)

p (Σ)→ T
(r,s)
φ(p) (Σ)

Ap 7→ φ(r,s)
p (Ap)φ(p)

between tensors of type (r, s) at a point p and tensors of type (r, s) at φ(p), called
the tangent map of type (r, s) of φ at p (see also figure 4 in chapter 3). Thereby
the respective actions on a tangent vector vp and on a covector ωp are defined by
(the square brackets are set for easier readability)

φ(1,0)
p (vp)φ(p) (f) := vp(f ◦ φ) with f ∈ F(Σ),

φ(0,1)
p (ωp)φ(p)

(
vφ(p)

)
:= ωp

([(
φ−1

)(1,0)

φ(p)

(
vφ(p)

)]
p

)
with vp ∈ T (1,0)

p (Σ).

This generalises to the action on arbitrary tensors of type (r, s) as follows:

φ(r,s)
p (Ap)φ(p)

(
ωφ(p), . . . , vφ(p), . . .

)
:=

Ap

([(
φ−1

)(0,1)

φ(p)

(
ωφ(p)

)]
p
, . . . ,

[(
φ−1

)(1,0)

φ(p)

(
vφ(p)

)]
p
, . . .

)
It is convenient to unify all these maps to a single tangent map φ̃ that acts on the
union of all tensor spaces to Σ at all points, and let it also act pointwise on tensor
fields. This brings a tremendous simplification in notation with it since the points
of application are omitted. However for the understanding of the tangent map it is
necessary to keep track with the pointwise definition above.

one-parameter
Lie group of
diffeomorphisms,
flows

Let now {φλ}λ∈R be a one-parameter Lie group of diffeomorphisms, or flow,
on Σ. This means that the action of all group elements φλ on a point p ∈ Σ
defines a smooth, parameterised curve φλ(p) : R → Σ, called the orbit of p under
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p

q

rξp

ξq

ξr

Σ

φλ(p)

φλ(q)

φλ(r)

Figure 2. The action of the elements of a one-parameter
Lie group of diffeomorphisms, or flow, {φλ}λ∈R on a point p ∈ Σ
defines a parameterised curve φλ(p) in the manifold. This gives
rise to a tangent vector ξp which is tangent to this curve at p.
Pointwise, the group thus gives rise to a vector field ξ on Σ.

the flow {φλ}λ∈R, where the group elements obey the abelian multiplication law
φδ ◦ φλ := φδ+λ. From the latter it follows that φ0(p) = p and that φ−1

λ = φ−λ.
This orbit gives rise to a tangent vector ξp tangent to this curve at p given by

ξp(f) := df(φλ(p))
dλ

∣∣
λ=0

, for f ∈ F(Σ). The orbit of a neighbouring point q that

doesn’t lie on φλ(p) defines a neighbouring curve and a tangent vector ξq tangent
to this curve at that point in the same way. The orbit of a point r that does lie
on the curve φλ(p) recovers the same curve, but with a translated parametrisation,
and gives rise to a tangent vector ξr at that point. Pointwise, a flow {φλ}λ∈R
gives thus rise to a smooth vector field ξ whose members lie tangent to the orbits.
All of the above said is depicted in figure 2.local flows A local one-parameter Lie group of
diffeomorphisms, or local flow, on some open subset U ⊂ Σ is defined analogously,
for λ ∈ (−ε, ε) ⊂ R. It turns out that any smooth vector field locally corresponds
to a local flow. Conversely, any smooth vector field generates a local flow in the
neighbourhood of any point. One can use these notions to define the rate of change
of a smooth tensor field A when one moves the point of application p along the flow
generated by a smooth vector field ξ:

Definition 3.Lie derivatives Let {φλ}λ∈(−ε,ε) be a local flow on an open neighbourhood U of
a point p on a smooth manifold Σ, which is generated by a smooth vector field ξ.
Let φ̃λ be the induced tangent map of φλ. Let further A be a smooth tensor field of
type (r, s) on Σ. The Lie derivative of A with respect to ξ at p is given by

Lξ (A)p := lim
λ→0

[
φ̃−1
λ

(
Aφλ(p)

)]
p
−Ap

λ
,

and defines a tensor of type (r, s) at p. The pointwise extension Lξ(A) defines a
smooth tensor field of type (r, s) on Σ.

One can show that Lv(w) = [v, w] for smooth vector fields v and w.

4. Semi-Riemannian geometry

Geometry on a smooth manifold starts by endowing it with a structure called
metric, that measures lengths and angles on it:

Definition 4.metrics A metric g on a smooth manifold Σ is a symmetric nondegen-
erate tensor field of type (0, 2) on Σ of constant signature.
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That g is symmetric means that g(v, w) = g(w, v) for any two smooth vector
fields v and w. Nondegeneracy means that if g(v, w) = 0 for all w then this implies
that v = 0. The latter is equivalent to the statement that the component matrix
of g in any basis has an inverse. The signature of the metric is defined as the
tuple of signs of the eigenvalues of g. Definition 4 implies that each member gp of

g defines a (pseudo-)scalar product on the corresponding tangent space T
(1,0)
p (Σ),

which measures the lengths of tangent vectors at p and angles between them. A
smooth manifold with a metric defined on it is given it’s own name:

Definition 5. semi-Riemannian
manifolds

A semi-Riemannian manifold (Σ, g) is a smooth manifold Σ that
is endowed with a metric g. (The manifold is called Riemannian iff the signature
of g consists of positive signs only, i.e. when g is positive definite.)

type changing,
raising and lowering
indices

In a semi-Riemannian manifold the metric provides a natural way to uniquely
identify a smooth vector field v with a 1-form v∗ and vice versa, via g(v, w) = v∗(w).
In component notation this equation reads gabv

awb = vbw
b where vb denotes the

components of v∗. Because of that, this operation is also called the lowering of
an index. Analogously one can raise an index with the inverse metric which has
components gab. These operations can be extended to raise and lower an index
of a smooth tensor field of arbitrary type. In the coordinate free language, when
raising an index, a smooth tensor field of type (r, s) is mapped to a smooth tensor
field of type (r + 1, s − 1) which contains the same information than the original
field. An analogous statement holds for lowering an index. The metric thus allows
to effectively change the type of a smooth tensor field. Furthermore, with this
the operation of contraction Cij over a 1-form and a vector field argument can

be extended to contractions Cij , Cij over two arguments of the same type. For
instance, when A is a smooth tensor field of type (1, 2), the contraction C12(A)
defines a smooth vector field with components C12(A)a := gbcAabc.

An important class of maps on a semi-Riemannian manifold consists of those
that leave the metric invariant (see also figure 4 in chapter 3):

Definition 6. isometriesLet (Σ, g) be a semi-Riemannian manifold. A diffeomorphism
φ on Σ is called an isometry iff it leaves the metric invariant in the sense that

φ̃(g) = g or equivalently φ̃−1(g) = g.

From a mathematical perspective, semi-Riemannian geometry is traditionally
described as the study of objects that are invariant under all isometries of a semi-
Riemannian manifold in an appropriate sense. The most important of these for
General Relativity is the Riemann curvature tensor field, whose definition requires
a further structure on the manifold that generalises the divergence and directional
derivative of ordinary vector calculus to smooth manifolds. The basic properties of
these notions are carried over to smooth manifolds in the following definition:

Definition 7. connectionsA connection on a smooth manifold Σ is a map ∇ : T (1,0)(Σ)2 →
T (1,0)(Σ) that is (i) F(Σ)-linear in the first argument, (ii) R-linear in the second ar-
gument and obeys the Leibniz rule (iii) ∇(v, fw) = v(f)w+f∇(v, w), for f ∈ F(Σ)
and v, w ∈ T (1,0)(Σ).

covariant derivativesThe smooth vector field ∇(v, w) is also written ∇v(w) and called the covariant
derivative of w with respect to v. It gives the rate of change of w in the direction
of v. The Lie derivative defined in definition 3 also gave such a rate of change,
but despite it satisfies properties (ii) and (iii) of definition 7, it does not satisfy
property (i) and thus fails to serve as the desired generalisation of the directional
derivative of ordinary vector calculus.

The covariant derivative can be generalised to act on smooth tensor fields of
arbitrary type: First, it’s action on smooth functions f ∈ F(Σ) is defined by
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∇v(f) := v(f). Then the action on 1-forms ω ∈ T (0,1)(Σ) is defined by requiring
the Leibniz rule ∇v(ω(w)) = ∇v(ω)(w) + ω (∇v(w)) for all v ∈ T (1,0)(Σ). Finally,
the action on arbitrary smooth tensor fields A ∈ T (r,s)(Σ) is defined by imposing
the Leibniz rule

∇v(A(ω, . . . , v, . . . )) = ∇v(A)(ω, . . . , v, . . . ) +A (∇v(ω), . . . , v, . . . ) + . . .

+A (v, . . . ,∇v(w), . . . ) + · · · .
A connection is called torsion free iff∇v(w)−∇w(v) = [v, w].Riemann connection One can show that

on a semi-Riemannian manifold (Σ, g) there exists a unique torsion free connection
∇, called the Riemann or Levi-Civita connection of (Σ, g) that is compatible with
the metric in the sense that ∇v(g) = 0 for all v ∈ T (1,0)(Σ). This implies that
∇u(g(v, w)) = g (∇u(v), w) + g (v,∇u(w)) for u, v, w ∈ T (1,0)(Σ). Hence with
respect to the Riemann connection the rate of change in the value of the metric in
any direction only depends on the rate of change of the vector field arguments.

Equiped with the Riemann connection, one can now give the definition of the
above mentioned Riemann curvature tensor field:

Definition 8.Riemann curvature Let (Σ, g,∇) be a semi-Riemannian manifold with Riemann

connection. The smooth tensor field Riem : T (0,1)(Σ)×T (1,0)(Σ)3 → F(Σ) of type
(1, 3) defined by

Riem( . , w, u, v) := (∇u ◦ ∇v)(w)− (∇v ◦ ∇u)(w)−∇[u,v](w)

is called the Riemann curvature field on Σ.

Riem gives a measure of the local curvature of the manifold. In General Rela-
tivity, gravitation is described via the curvature of spacetime. However it is not the
full Riemann curvature that enters the field equation of General Relativity, but it’s
contractions:Ricci and scalar

curvature
Ric := C1

2 (R) is called the Ricci curvature field, and R := C12(Ric)
the scalar curvature field on Σ. In component equations the components of Ric
are usually denoted by Rab and the components of the Riemann curvature field by
Rabcd, since there is no danger of confusion.

5. General Relativity in a nutshell

Spacetime is a four dimensional semi-Riemannian manifold with Riemann con-
nection (M, g,∇) where the metric g has signature (− + ++). Gravitation is im-
posed by the Einstein equation

(2)Einstein equation Ric− R

2
g = T, in components Rµν −

R

2
gµν = Tµν ,

where Ric and R denote the Ricci and scalar curvature fields of M respectively, and
T the stress-energy tensor field of the matter content. The left hand side of this
equation gives a measure of local spacetime curvature, while the right hand side
gives a measure of the local energy density of the matter content. Matter causes
spacetime to curve which in turn causes matter to move. This is how gravitation
is described in General Relativity, the theory of spacetime and gravitation.

General Relativity is most elegantly viewed and formulated in the above covari-
ant language, where physical quantities are described by tensor fields on spacetime,
and gravitation is imposed by a single and simple tensor field equation. This reflects
the essence of the theory most clearly and directly, and emphasises that there is no
unique way to globally distinguish between space and time in General Relativity.

foliations of
spacetime

Yet in practice it is often useful to give up the aesthetics of the covariant point
of view and think of spacetime M as being sliced up into a one parameter family
{Σt} of three-dimensional spacelike hypersurfaces. The union of all slices thereby
recovers the whole spacetime. It is also said, that the slices foliate spacetime; cf.
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M

Σ′0

Σ′1

Σ′2

Σ′3

t

Σ0

Σ1

Σ2

Σ3

Figure 3. The three-dimensional spatial slices Σt and Σ′t both
foliate the spacetime M . One space dimension is suppressed for
representability.

figure 3. The Einstein equation can then be written as a system of constraint and
evolution equations for the three-dimensional geometric quantities on the slices: On
the one hand the intrinsic geometry of the slices is governed by the spatial metricspatial metric γ
on them. To be able to reconstruct the full metric, one however also needs to know
how the slices are embedded in spacetime. A measure of this is given by the rate
of change of the spatial metric γ when one moves the point of application along
the lines normal to the slices. Hence in terms of the Lie derivative (definition 3 in
section 3) this quantity can be defined by

(3) extrinsic curvaturek := −1

2
Lnγ,

where n denotes a smooth vector field normal to the slices of unit length. It
is called the extrinsic curvature of the spatial slices. foliation adapted

bases
In a basis adapted to the

foliation, in which the time and spatial basis fields lie normal and tangent to the
slices respectively, the (component) Einstein equations (2) can then be written as
a constrained system of partial differential equations for the (spatial) components
γij and kij of the spatial metric and extrinsic curvature of the slices. This is called
the 3+1 formulation of the Einstein equations (or of General Relativity) which is
particularly well explained for example in the Books [1, chapter 2] or [2, chapter 2]
on numerical relativity.

As stated above, there is no unique way to foliate a given spacetime. However,
in the cases where the underlying spacetime admits certain symmetries, a natural
and particularly useful foliation is often at hand, which leads over to the next
chapter:





CHAPTER 3

Symmetries of spacetime

Since this thesis deals with cosmological models that show certain symmetries,
the concepts of these symmetries need to be properly defined, which is the purpose
of this chapter. Section 1 starts from the intuitive notions of the important sym-
metries of homogeneity and isotropy, and defines them mathematically with help
of the concepts of isometries and Lie derivatives, which were defined in chapter 2.
After a formal treatment on Lie groups and Lie algebras in section 2 these symme-
tries are then redefined in the language of these mathematical theories in section 3.
The reason for this is that the classification and treatment of spatially homogenous
cosmologies rests on this Lie group structure that underlies the symmetries, which
will be discussed in chapter 5.

If not stated differently, from now on the term manifold will always refer to a
semi-Riemannian manifold with Riemann connection. Also functions, tensor fields,
etc. will always understood to be smooth in the respective sense. A vector will
always refer to a tangent vector at some point.

1. Intuitive notions of homogeneity and isotropy

intuitive notion of
homogeneity

What does it mean when a spacetime, or a manifold Σ in general, admits a
certain symmetry? For the for this text most important symmetry of homogeneity
an intuitive statement would be that a manifold is homogenous iff it ‘looks the same’
at every point. But what is meant here by ‘looks the same’? In a semi-Riemannian
manifold this phrase can only refer to the local geometry, which is specified by the
metric. Thus a manifold is homogenous iff it’s local geometry, and therefore it’s
metric, is the same at every point; it is not a function of it’s point of application.
This implies that the components of the metric are independent of the coordinates
in any basis. The notion of isometries defined in definition 6 in chapter 2 provides a
way to give a precise definition in a coordinate free fashion: Let φ be an isometry on
Σ that maps a point p into a point φ(p) as depicted in figure 4. Then by definition 6

one has φ̃ (gp)φ(p) = gφ(p) or equivalently φ̃−1
(
gφ(p)

)
p

= gp. By the definition of

the tangent map in section 3 of chapter 2 this precisely expresses that the metric is
the same at these two points. Consequently homogeneity can be defined as follows:

Definition 9. homogeneity definedA manifold Σ is homogenous iff for each two points p, q ∈ Σ
there exists an isometry that maps p into q.

Homogeneity Killing fields,
Killing vectors

is an example of a continuous symmetry. For those it is often
useful to work with an infinitesimal concept of symmetries, the Killing fields: The
notion of a one-parameter Lie group of diffeomorphisms, or flow, generated by a
vector field, was discussed in section 3 of chapter 2. A vector field ξ on a manifold Σ
is called a Killing field of Σ iff it generates a one-parameter Lie group of isometries,
or Killing flow. A member ξp of a Killing field ξ is called a Killing vector. Intuitively
speaking, the Killing vectors point in the direction of the symmetry, in which the
metric stays the same. This intuition can be made mathematically precise: By

13



14 3. SYMMETRIES OF SPACETIME

Σ

p

φ(p)

φ

Figure 4. The diffeomorphism φ on Σ maps the point p into the
point φ(p). The induced tangent map φ̃ maps tensors of type (r, s)
at p into tensors of type (r, s) at φ(p). φ is an isometry between

these two points iff φ̃ (gp)φ(p) = gφ(p), which states that the metric

is the same at these two points.

definitions 6 and 3 in chapter 2 it follows that ξ is a Killing field iff

(4) Lξ(g) = 0,Killing equation

which is called the Killing equation. This indeed states that the rate of change of
the metric in the direction of a Killing field, by means of the Lie derivative, is zero.
Since the Killing field generates the Killing flow and vice versa, it contains the same
symmetry information than the flow itself. Homogeneity in terms of Killing fields
means then the following:

Proposition 1.homogeneity in terms
of Killing vectors

A manifold Σ is homogenous iff each of it’s tangent spaces

T
(1,0)
p (Σ) is spanned by Killing vectors.

In other words, in a homogenous manifold, at each point there are Killing
vectors that point in each direction and have all kind of lengths.

Apartintuitive notion of
isotropy

from homogeneity also the continuous symmetry of isotropy is of major
importance to cosmology. What does it mean when a manifold is isotropic around
a point? An intuitive statement would be that this is the case iff ‘seen from that
point’ the manifold ‘looks the same’ in all directions. Clearly a mathematically
precise formulation can again be given in terms of isometries:

Definition 10.isotropy defined A manifold Σ is isotropic around a point p ∈ Σ iff for each two

vectors vp, wp ∈ T (1,0)
p (Σ) there exists an isometry φ on Σ such that (i) φ(p) = p

and (ii) φ̃(vp)p = wp.

Σ is called isotropic iff it is isotropic around any point of it.

Statement (i) expresses that, unlike for homogeneity, to check for isotropy
around p one does not compare the geometry at different points, but only the
geometry at p. Statement (ii) means that any vector at p can be mapped into
any other vector at p by some tangent map of an isometry that satisfies (i); cf.
figure 5. This precisely expresses that there is no geometrically preferred direction
at p.Killing fields of

isotropies
A precise formulation of isotropy around a point in terms of Killing fields can

for example be found in [3, p 378], but from (i) it is already clear that a Killing
field ξ that corresponds to an isotropy around p must vanish at that point; ξp = 0.

Itisotropy implies
homogeneity,

maximal symmetry

can be shown that isotropy (around every point) implies homogeneity, but not
vice versa. An isotropic (and homogenous) manifold is also said to be of maximal
symmetry, a term which will be justified in section 3.
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Σ
φ(p)=p

φ̃(vp)p=wp

vp

φ̃

Figure 5. An isometry φ that corresponds to isotropy around a
point p ∈ Σ has the ability to keep this point invariant; φ(p) = p.
Furthermore it’s tangent map has the ability to map each vector vp
at this point into any other vector wp at this point; φ̃(vp)p = wp.

2. Lie groups and Lie algebras

The previous section discussed the continuous symmetries of homogeneity and
isotropy starting from the intuitive notions. Mathematically these could then be
defined equivalently in terms of Killing flows (one-parameter Lie groups of isome-
tries) or of the corresponding Killing fields that generate these flows. This can be
generalised to a formulation of continuous symmetries in the language of higher
dimensional Lie groups and their corresponding Lie algebras. These formal discus-
sions will not be of importance for the understanding of the Friedmann cosmologies
in chapter 4, but will be crucial for the treatment and classification of spatially
homogenous cosmologies in chapter 5. This section deals with the necessary tools
from Lie group theory which are then applied to the discussion on symmetries of a
manifold in section 3:

Lie groups and Lie algebras are separately defined as follows:

Definition 11. Lie groupsA smooth manifold G is called a Lie group iff it also has the
algebraic structure of a group, such that the maps f(g, h) := gh of group multiplica-
tion and i(g) := g−1 of inversion are both smooth for all g, h ∈ G. (Here gh denotes
the multiplication of g with h in the group sense, and g−1 the inverse element of
g.)

Definition 12. Lie algebrasA Lie algebra (over R) is a vector space G (over R) together

with an algebraic product [ . , . ]G : G2 → G called Lie bracket that is (i) anti-
symmetric, (ii) R-linear in both arguments and (iii) satisfies the Jacobi identity
[u, [v, w]G ]G + [w, [u, v]G ]G + [v, [w, u]G ]G = 0 for all u, v, w ∈ G.

Next is to show how a Lie group naturally gives rise to a Lie algebra: Let G
be an n-dimensional Lie group and g, h ∈ G. left translationsThe map lg : G → G defined by
lg(h) := gh is called the left translation by g on G and is a diffeomorphism. A
vector field v on G that satisfies

(5) l̃g(v) = v left invariant vector
fields

(pointwise l̃g (vh)gh = vgh) for all g ∈ G is called left invariant. From the linearity

of the tangent map (section 3 of chapter 2) it is clear that the set G of all left
invariant vector fields on G forms a vector space over R. Moreover one can show
([4, Lemma 19.1]) that the commutator of two left invariant vector fields is again
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left invariant; l̃g([v, w]) = [v, w] for v, w ∈ G and [ . , . ] the vector field commutator
(section 2 of chapter 2). Hence G is not only a vector space but also a Lie algebra
with the commutator as Lie bracket.Lie algebra of a

Lie group
G is called the Lie algebra of the Lie group G.

It can be brought in one-to-one correspondence with the tangent space T
(1,0)
e (G)

to G at the identity element e by observing that each v ∈ G is uniquely determined

by it’s member ve at the identity since vg = l̃g (ve)g for all g ∈ G. Hence dim(G) =

dim
(
T

(1,0)
e (G)

)
= dim(G) = n. One can then choose a basis {ea}na=1 of G and

calculate the commutation functions (1), which in this case are actually constants
since G forms a vector space;

(6) [ea, eb] = Ccabec , with Ccab ∈ R.structure constants

The Ccab are called the structure constants of G in the basis {ea}na=1 and transform
like the components of a tensor field of type (1, 2) under a change of basis in G.
They fully characterise the algebraic properties of the Lie algebra G, and since G is
endowed with the Lie group G, also encode the essential properties of G.

Rightright translations translations rg are defined analogously to left translations by rg(h) := hg
and also define diffeomorphisms on G. Consequently a vector field ξ on G is called
right invariant iff

(7) r̃g(ξ) = ξright invariant vector
fields

for all g ∈ G. Likewise the set of all right invariant vector fields on G forms a
Lie algebra g as well. Let now ξ be a right invariant vector field which generates
the flow {φλ}λ∈R. Since ξ is right invariant, it holds that rg ◦ φλ = φλ ◦ rg. This
equation can be understood to be the ‘finite version’ of (7), of which (7) represents
the ‘infinitesimal version’. Defining h(λ) := φλ(e) one then has

φλ(g) = (φλ ◦ rg)(e) = (rg ◦ φλ)(e) = rg(h(λ)) = h(λ)g = lh(λ)(g).

right invariant vector
fields generate left

translations

Hence φλ can be identified with lh(λ), and since {φλ}λ∈R is generated by a right
invariant vector field ξ, this means that right invariant vector fields are the genera-
tors of left translations. From (5) and definition 3 in chapter 2 this can equivalently
be expressed as

(8) Lξ(v) = [ξ, v] = 0

for v and ξ left and right invariant, respectively. This means that a left invariant
vector field does not change in the direction of a right invariant vector field in the
sense of the Lie derivative.

Given a basis {ea}na=1 of G with structure constants Ccab, one can show ([5,
section 7.2] or [6, section 6.3]) that there is always a basis {ξa}na=1 of g with structure
constants −Ccab;

(9) [ξa, ξb] = −Ccabξc.equivalence of the
Lie algebras of left
and right invariant

vector fields

In fact for this to hold, the two bases merely have to coincide at the identity e ∈ G.
In this sense g is equivalent to G.

Both the notions of left and right invariance, can be extended straight forwardly
to tensor fields of type (r, s). In analogy to (8), a left invariant tensor field A then
satisfies the equation

(10) Lξ(A) = 0,

for a right invariant vector field ξ.
A Lie group can act on a manifold in the following way:
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Definition 13. Lie group action on a
manifold

Let G be a Lie group with identity element e, and Σ be a
smooth manifold. An action of G on Σ is a map

ϕ : G× Σ→ Σ,

(g, p) 7→ ϕ(g, p) ≡ ϕg(p)
such that (i) ϕe(p) = p and (ii) ϕgh(p) = (ϕg ◦ ϕh)(p) for all g, h ∈ G and p ∈ Σ.

group orbitsThe set ϕG(p) := {ϕg(p)|g ∈ G} ⊂ Σ is called the orbit of p under G. It
is the set of all points which can be ‘reached’ from p via the group action of G.

transitive actionG is said to act transitively on Σ iff the orbit of some point (⇔ of all points)
covers Σ; that is, iff ϕG(p) = Σ for some (⇔ for all) p ∈ Σ. Clearly in this
case necessarily dim(G) ≥ dim(Σ). simply and multiply

transitive action
A transitive action where dim(G) = dim(Σ) is

called simply transitive (also regular), a transitive action where dim(G) > dim(Σ)
is called multiply transitive. In the case of a simply transitive action, the group
action is necessarily free; (in fact simply transitive ⇔ free and transitive). That is,
ϕg(p) = ϕh(p) implies g = h. Hence then, given any two points p, q ∈ Σ there is
one and only one g ∈ G such that ϕg(p) = q. A simply transitive action thus allows
to identify G with Σ in the following way: An arbitrary p ∈ Σ can be identified
with the identity of G by ϕe(p) = p. Any other q ∈ Σ can then be identified with a
unique g ∈ G via ϕg(p) = q. As a consequence, tensor fields on G can be identified
with tensor fields on Σ.

3. Symmetries in the language of Lie groups and Lie algebras

This section now applies the results from Lie group theory of section 2 to the
discussion on symmetries of a manifold: This is done by observing that given a
manifold Σ, the set of all isometries on Σ forms a Lie group G and the set of all
Killing fields associated with these isometries forms a corresponding Lie-Algebra g.
Furthermore per definition 6, G acts on the underlying manifold Σ. From the above
discussion, one can then readily express homogeneity in the language of Lie groups:

Proposition 2. homogeneity in the
language of
Lie groups

A manifold Σ is homogenous iff it’s group of isometries acts
transitively on Σ.

Let now Σ be a homogenous manifold, dim(Σ) = n and dim(G) = dim(g) = m.
In the case when the action is simply transitive (n = m) the manifold has no further
symmetries in addition to homogeneity. isotropy subgroupOn the other hand, when the action is
multiply transitive (n < m) then there exist rotational symmetries in addition,
since then there exists a subgroup I ⊂ G of dimension m − n, called the isotropy
subgroup of G, that leaves each point in Σ invariant; ϕI(p) = p for all p ∈ Σ. This
can most easily be seen by taking a look at the Killing vectors: A basis {ξa}ma=1

of g consists of m linearly independent vectors in g. However in this case m > n.
Hence at each point p ∈ Σ, m−n of these basis vectors must be zero, and as argued
in section 1 these Killing vectors correspond to rotational symmetries around that
point, and consequently so does each element of I acting on it. By calculating the
maximum number of independent Killing fields one can show ([3, section 13.1]) that

(11) m ≤ n(n+ 1)/2 and m− n ≤ n(n− 1)/2.

Isotropy in the language of Lie groups thus means the following:

Proposition 3. isotropy in the
language of
Lie groups

A manifold Σ of dimension n is isotropic iff it’s group of
isometries admits an isotropy subgroup of dimension n(n− 1)/2.

As already mentioned in section 1, an isotropic manifold is automatically ho-
mogenous. So when equality holds for the right equation of (11) it automatically
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also holds for the left equation of (11).maximal symmetry Thus an isotropic (and homogenous) man-
ifold possesses the maximum number of independent killing vector fields, which
justifies the predicate ‘maximally symmetric’ already given to such a manifold in
section 1.local rotational

symmetry
A manifold whose isotropy subgroup is of dimension 1 is said to be locally

rotationally symmetric (LRS). Intuitively speaking, such a manifold is rotationally
symmetric around one and only one axis at each point.

In the light of this picture of symmetries in the language of Lie groups, the
notion of a Killing flow on Σ given in section 1 simply represents a one parameter
subgroup of the isometry group G of Σ, which explains why already some Lie group
terminology was used beforehand.

two cases of
homogenous

manifolds,
homogeneity

subgroup

Given a homogenous manifold Σ with isometry group G there are two pos-
sibilities: Either G admits a subgroup H ⊂ G of homogeneity that acts simply
transitively on Σ, or not. In the former case the group action of G on Σ can be
simply or multiply transitive, in the latter case it is necessarily multiply transitive.
The important case for this text is the former one, in which a homogeneity subgroup
H exists. Let now Σ be of this kind. Then H can be identified with Σ as described
at the end of section 2 by picking an arbitrary point as the identity. Furthermore,
an isometry φ ∈ H that acts on Σ can be identified with a left multiplication lφ
on H. Hence the tensor fields on Σ which are invariant under these isometries, in
particular the metric, can be identified with left invariant tensor fields on H. The
generators of these isometries, the Killing fields corresponding to H, can be iden-
tified with the generators of the left translations, the right invariant vector fields.
The latter can also be seen by noting that for the case of the metric, equation (10)
can be identified with the Killing equation (4). Hence the Lie algebra h of Killing
fields on Σ (corresponding to H) can be identified with the Lie algebra of right
invariant vector fields on H.



CHAPTER 4

Friedmann cosmology

The purpose of this chapter is to introduce qualitative analytical methods to
analyse the dynamics of spatially homogenous cosmologies on the example of the
highly symmetric Friedmann models, which can also be solved exactly (for simple
matter contents). Section 1 discusses the possible different geometries of the Fried-
mann cosmologies. Section 2 then discusses the Friedmann evolution equations, and
summarises how they can be solved exactly in the case when the matter content
is modelled as perfect fluid with linear equation of state. The qualitative analysis
is then performed in section 3, which will be generalised to more general spatially
homogenous cosmologies in chapter 5.

1. The geometry of the Friedmann cosmologies

In the standard model of cosmology it is assumed that the universe can be mod-
elled to be highly symmetric as a first approximation: The Friedmann spacetime
M admits a foliation {Σt} such that each slice Σt is a space of maximal symmetry
(homogenous and isotropic). cosmological

principle
This is also called the cosmological principle, which

on the one hand rests on observational data, and is on the other hand very con-
venient from the philosophical point of view (of science). Furthermore, the high
degree of symmetry restricts the form of the possible solutions for the metric to a
simple family:

It is quite intuitive, that a maximally symmetric manifold, such as each slice
Σt of a Friedmann spacetime, is a manifold of constant (Riemann) curvature. If
this was not the case, then one could always expose a geometrically preferred point
or direction, in contradiction to the cosmological principle. This is formally shown
for example in [5, p 94]. the three

qualitatively different
spaces of constant
curvature

Furthermore, for a three dimensional Riemannian man-
ifold such as each Σt, there are but three qualitatively different geometries that
admit such constant curvature. These are determined by the signs of their cur-
vature: There are the three-spheres with positive curvature, flat space with zero
curvature and the three-hyperboloids with negative curvature. These geometries
are diagrammed in figure 6. In a basis adapted to the foliation the Friedmann

(a) spherical (b) flat (c) hyperbolic

Figure 6. The three qualitatively different spaces of constant cur-
vature as embeddings in a higher dimensional space, where one
spatial coordinate is held constant for representability.

19
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metric can then be written in one of the forms

(12)Friedmann metrics g = −dt2 + a(t)2


dr2 + sin r2 (dθ2 + sin θ2dφ2) , spherical

dx2 + dy2 + dz2 , flat

dr2 + sinh r2(dθ2 + sin θ2dφ2) , hyperbolic

.

Here the spatial part is written in spherical, Cartesian and hyperbolic coordinates
respectively. The function a is called scale function and determines the overall
length scale of the spatial metric, as well as the magnitude of the spatial curvature
in the spherical and hyperbolic cases. Clearly by the cosmological principle the
scale function can be a function of time only and must be independent of the
spatial coordinates.

Theopen and closed
Friedmann

cosmologies

spherical Friedmann cosmologies are also said to be closed, since the spa-
tial slices Σt are compact, so space is finite. The flat and hyperbolic Friedmann
cosmologies are said to be open, since in these cases the slices Σt are not bound, so
space is infinite; cf. figure 6.

2. The dynamics of the Friedmann cosmologies

In the previous section it was discussed that imposing the cosmological princi-
ple on spacetime restricts the possible solutions of the Einstein equation to three
qualitatively different cases determined by the sign of the Riemann curvature of
the spatial slices Σt in a foliation adapted to the symmetries. Furthermore, for
each of these cases, the only degree of freedom left in the metric is the scale func-
tion a. From the form of the Friedmann metrics (12) it is also clear that the sign
of the curvature cannot change during the evolution of a Friedmann model: A
Friedmann model that is spherical at one instant of time remains spherical during
it’s whole evolution. Determining the dynamics of a specific Friedmann cosmology
therefore reduces to finding a function a, such that (12) is subject to the Einstein
equation (2):

To get the evolution equations one then has to calculate the left hand side
of the Einstein equation (2) and equate it to the stress-energy tensor T of the
matter content of the universe. Usually the matter is modelled as a perfect fluid,
[Tµν ] = diag(−ρ, p, p, p). Here ρ denotes the energy density and p the pressure
of the fluid. As shown for example in [5, section 5.2], the (component) Einstein
equations (2) then reduce to the Friedmann equations

(13)Friedmann equations
ȧ2

a2
=
ρ

3
− k

a2
and

ä

a
= −1

6
(ρ+ 3p) , with k =


1 , spherical

0 , flat

−1 , hyperbolic

.

These imply the conservation equation

(14) ρ̇ = −3
ȧ

a
(ρ+ p),

which is often useful as an auxiliary equation. The dot denotes derivatives with
respect to coordinate time t. For the case when the fluid obeys a linear equation
of state p = wρ, with w = const, the Friedmann equations (13) can be solved for
a; cf. [5, p 101 and table 5.1] for the cases of dust (w = 0) and radiation (w = 1

3 ).

Solutions for w > − 1
3 then look qualitatively as sketched in figure 7.

spatial expansion and
contraction

As stated above, the scale factor a specifies the overall spatial length scale: The
distance between two points in space that are at rest with respect to the spatial
coordinates is proportional to a(t). In particular as shown in figure 7, all Friedmann
cosmologies with w > − 1

3 start with a(0) = 0, and hence from a singular state of
the metric, where loosely speaking the distance between any two points in space
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t

a

k=1

k=0

k=−1

Figure 7. A sketch of solutions of the Friedmann equations for
the spherical (k = 1), flat (k = 0) and hyperbolic (k = −1) case
for w > − 1

3 .

is zero. This singularity is referred to as the big bang. Then, for the open (flat
and hyperbolic) Friedmann cosmologies a is strictly monotonically increasing for
all t > 0. In contrast for the closed (spherical) Friedmann cosmologies a is at
first strictly monotonically increasing until it attains a maximum. After that, a is
strictly monotonically decreasing until it vanishes again. Hence the open Friedmann
cosmologies describe forever expanding universes, while the closed Friedmann cos-
mologies describe universes which expand until a state of maximal spatial volume,
after which they contracts again down to ‘zero size’. This recollapse to another
singular state that occurs in the evolution of the spherical Friedmann cosmologies
is referred to as the big crunch.

3. A qualitative analysis of the Friedmann dynamics

Although the Friedmann equations can be solved exactly for perfect fluids with
linear equation of state, many of the interesting qualitative features of the evolu-
tion of these models can be read out from the Friedmann equations (13) and the
conservation equation (14) without solving; cf. [5, p 98–100]. This section deals
with such a qualitative analysis, however using a method following the discussion
in [7, section 2.3], that can readily be generalised for the analysis of more general
spatially homogenous cosmologies, which will be discussed in chapter 5:

In order to rewrite the evolution equations in the desired way, one defines the
variables

(15) Hubble scalar,
deceleration
parameter and
expansion-normalised
energy density

H :=
ȧ

a
, q := − äa

ȧ2
and Ω :=

ρ

3H2
.

H is called the Hubble scalar, and gives a measure of the rate of expansion of the
underlying universe. q is called the deceleration parameter, and gives a measure of
the deceleration of the expansion. Ω is simply the expansion-normalised (or Hubble-
normalised) energy density, which is often referred to as the density parameter. H
has the dimension of time−1 while both q and Ω are dimensionless. Differentiating
H with respect to time and using q yields Ḣ = −(1+q)H2 as an evolution equation
for H. The considerations shall again be restricted to a perfect fluid with linear
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k=−1 k=0 k=1

Ω0 1

Figure 8. Flow diagram for the qualitative evolution of the
Friedmann cosmologies for perfect fluids with p = wρ and w > − 1

3 .

equation of state; p = wρ. Then by differentiating Ω with respect to time and
using the conservation equation (14), one analogously arrives at Ω̇ = (−3(1 +w) +
2(1 + q))ΩH as an evolution equation for Ω. Finally using the second Friedmann
equation (13), one finds that q is related to Ω by q = 1+3w

2 Ω.rescaled time With this, and

after defining a rescaled, dimensionless time variable τ through d
dτ := 1

H
d
dt the two

evolution equations above become

(16)rescaled evolution
equations

H ′ = −
(

1 +
1 + 3w

2
Ω
)
H and Ω′ = (1 + 3w)(Ω− 1)Ω,

where here and henceforth the prime denotes derivatives with respect to rescaled
time τ . These equations can be seen as the rescaled evolution equations, being
equivalent to the Friedmann equations (13). However unlike the system (13), the
system (16) is decoupled; there is no H appearing in the equation for Ω. Also, the
equation for H has dimension time−1 while the equation for Ω is dimensionless.

To solve for the metric components exactly, one would need to solve the full
system (16). However it suffices to focus on the equation for Ω when one is merely
interested in the major qualitative features of the solutions to this system. In fact
for this, one does not even have to solve this equation exactly. A qualitative analysis
is sufficient. This can best be seen by visualising the qualitatively different solutions
of this equation in a flow diagram, which is shown in figure 8:

the state space Assuming a non-negative energy density ρ, the possible values that Ω can attain
is the non-negative part of the real line. This is also called the state space of the
differential equation.fixed point solutions Restricting again to the case w > − 1

3 one then finds that
this equation has two static solutions, Ω = 0 and Ω = 1, for which Ω′ = 0. The
corresponding points in the diagram are called fixed points, since for instance if
Ω = 1 at one instant of time during the evolution, then Ω = 1 during the whole
evolution. Static solutions are therefore also called fixed point solutions.generic solutions Solutions
for which Ω′ 6= 0 are called generic solutions. This is because for a solution of
this type, an initial value can be out of an open subset of the state space, and
does not need to be fine tuned as it has to be for the fixed point solutions. For
Ω ∈ (0, 1) one has Ω′ < 0. Hence for a solution with initial value in this range, Ω
is strictly monotonically decreasing with (rescaled and coordinate) time. By the
uniqueness theorems of the theory of ordinary differential equations, these solutions
approach the value Ω = 1 asymptotically into the past (τ → −∞) and Ω = 0
asymptotically into the future (τ → ∞), however never reach these values. Hence
for these solutions the matter appears to thin out with the evolution, and solutions
of this type therefore seem to correspond to the open, forever expanding Friedmann
cosmologies. In contrast, for Ω ∈ (1,∞) one has Ω′ > 0 so that the matter density
appears to diverge with the evolution. Accordingly solutions of this kind seem to
correspond to the closed, recollapsing Friedmann cosmologies. However one has
to take care with these assumptions, since Ω only denotes the rescaled, Hubble-
normalised energy density. To check how the actual energy density ρ evolves, one
would also have to bring in information from the equation for H. Yet one can also
convince oneself more easily that the above claims are indeed true by observing
that the first Friedmann equation (13) can be expressed in terms of Ω as

Ω− 1 =
k

H2a2
,
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from which it is clear that

(17) Ω < 1⇔ k = −1, Ω = 1⇔ k = 0 and Ω > 1⇔ k = 1.

In summary the qualitative analysis has shown that among the generic Friedmann
cosmologies there are two qualitatively different types regarding their evolution:
There are the open, hyperbolic, forever expanding models for Ω ∈ (0, 1)⇒ k = −1,
and the closed, spherical, expanding and recollapsing models for Ω ∈ (1,∞)⇔ k =
1. Furthermore there are two non-generic fixed point solutions, one of which is
the flat Friedmann model for Ω = 1 ⇔ k = 0. The other non-generic solution for
Ω = 0⇒ k = −1 corresponds to Friedmann vacuum models and is hyperbolic. The
choice of taking Ω as the dynamical variable also allows for a further physical inter-
pretation: critical densityFrom (17) and the above results one sees that for a Friedmann universe
to recollapse it needs a large enough energy density, such that the gravitational pull
of the matter can stop the expansion of the universe. If the energy density is too
small, the gravitational pull is too weak, and the universe will expand forever. The
boarder value Ω = 1 is thus also called the critical density.

Certainly one does not get out more from the qualitative analysis than from
the exact solutions. However many facets of the qualitative behaviour of solutions
appear more clearly and directly in the qualitative formalism. Yet the true ad-
vantage lies in the fact that the underlying evolution equations do not need to
be exactly solvable for the qualitative methods to be applicable. The Friedmann
equations for perfect fluids with linear equation of state are exactly solvable due
to the high symmetry of these models. But when one relaxes the symmetry, and
considers more general spatially homogenous models which need not necessarily be
spatially isotropic, the corresponding evolution equations are not exactly solvable
in general. Then one is tied to either numerics or to qualitative analytical methods.
The application of the latter to these models is the subject of the next chapter.





CHAPTER 5

Spatially homogenous cosmology

This final chapter of part 1 now makes use of the preparations of the previous
chapters to arrive at a discussion on the subject of spatially homogenous cosmology.
Section 1 treats the modern way to classify these models by means of the underlying
Lie group of isometries. In section 2 it is explained how one can choose a basis which
is adapted to the underlying Bianchi symmetry, in which the component Einstein
equations take the appropriate form of a constrained system of ordinary differential
equations, which is subject of section 3. Section 4 then deals with a qualitative
analysis of these equations, thereby generalising the techniques applied in section 3
of chapter 4 to analyse the Friedmann cosmologies.

1. Classification of spatially homogenous cosmologies

With help of the preparatory work of chapter 3 a precise definition of what is
meant by a spatially homogenous spacetime or cosmology is readily at hand:

Definition 14. spatially homogenous
spacetimes

A spacetime M is called spatially homogenous iff it admits a
foliation {Σt} such that each spatial slice Σt is homogenous. A spatially homogenous
spacetime that is subject to the Einstein equation is called a spatially homogenous
cosmology.

The general spatially homogenous solution to the Einstein equation is not ex-
act. Exact solutions can only be found for special cases such as the Friedmann
cosmologies investigated in chapter 4. Hence when investigating general spatially
homogenous solutions, one is either tied to numerics or to qualitative analytical
methods, where the latter is on which this text focuses. Although the symmetry
of spatial homogeneity is of course restrictive, the class of such models is still vast.
To tackle the problem of getting insight into the qualitative features of generic
spatially homogenous solutions one thus first wishes to classify these models into
qualitatively different kinds by their spatial geometry. For the special case of the
Friedmann models, the high symmetry (i.e. maximal symmetry on spatial slices)
allowed to achieve such a classification simply by the sign of the spatial curvature;
cf. section 1 of chapter 4. For general spatially homogenous spacetimes, a successful
classification has been given by classifying the Lie group of isometries. Since this
group underlies the symmetries, this classification yields a division into ‘different
kinds’ of spatial homogeneity:

By the above definition and proposition 2, in a spatially homogenous spacetime
M the group of isometries G on M acts transitively on the spatial slices Σt. Bianchi- and

Kantowski-Sachs
spacetimes

The
class of spatially homogenous spacetimes splits then up into the class of Bianchi
spacetimes, for which this group admits a subgroup H of homogeneity which acts
simply transitively on the slices, and into the class of Kantowski-Sachs spacetimes,
for which no such subgroup exists. In the latter case the group action on the
slices is necessarily multiply transitive. In fact for the Kantowski-Sachs spacetimes,
G is four dimensional: It can be shown that a five dimensional Group implies
the existence of a six dimensional one, and a six dimensional group possesses a
homogeneity subgroup. Since by (11), a six dimensional isometry group acting on

25
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class A B
type I II VI0 VII0 VIII IX V IV VIh VIIh

n1 0 + 0 0 - + 0 0 0 0
n2 0 0 + + + + 0 0 + +
n3 0 0 - + + + 0 + - +

Table 1. The classification of the Bianchi spacetimes into ten
different types according to the signature (n1, n2, n3) of the sym-
metric part nkl of the independent components of the structure
constants of the Lie algebra of homogeneity h. In class A the
matrix of independent structure constants is purely symmetric, in
class B this is not the case.

three dimensional slices means maximal symmetry (i.e. Friedmann), the isometry
group of Kantowski-Sachs spacetimes can only have dimension four. Kantowski-
Sachs spacetimes are therefore locally rotationally symmetric.

The case of main interest for this text is that of the Bianchi spacetimes. For
these the homogeneity subgroup H can be identified with the homogenous spatial
slices Σt in the way described at the end of section 2 of chapter 3.Bianchi classification A further
classification of the Bianchi models by their spatial geometry can thus naturally
be achieved by classifying their Lie group of homogeneity H: The easiest way to
perform this is to actually classify the associated Lie algebra of Killing fields h
on the homogenous slices, which can be identified with the Lie algebra of right
invariant vector fields on H. Since h generates H, and vice versa H gives rise to h,
this is essentially equivalent. As described in section 2 of chapter 3, the algebraic
properties of h are fully encoded in the structure constants −Ckij in some basis
{ξi}3i=1 of h, which are given by [ξi, ξj ] = −Ckijξk. (The minus sign is conventional.)
The natural and probably easiest way to classify H is thus to classify the structure
constants of h, which is usually performed in the following way:

The structure constants are antisymmetric in the lower two indices since the
algebraic product, the vector field commutator, is antisymmetric. Hence for fixed k,
[Ckij ] forms an antisymmetric 3× 3-matrix, whose three independent components
can be written in a row [Dkl] (for fixed k). This can formally be achieved by a
multiplication with the total antisymmetric symbol εijl;

Dkl = Ckijε
ijl , with εijl :=


1 , (ijl) even permutation of (123)

−1 , (ijl) odd permutation of (123)

0 , else

.

Therefore, the nine independent components Ckij are equally well encoded in a two
index object Dkl.Bianchi class A & B The modern Bianchi classification then differs between Bianchi

class A, for which Dkl is symmetric, and Bianchi class B where this is not the case.
Let nkl denote the symmetric part of Dkl.Bianchi types Each class is then further divided into

different types according to the signature, i.e. the signs of the eigenvalues, of [nkl].
Under the line this yields a classification of the Bianchi spacetimes into ten types
which are listed in table 1 in the modern nomenclature. (For the classification
of class B some more words would be appropriate, for which it is referred to [7,
section 1.5.1].)
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2. Symmetry adapted bases

The existence of a foliation in spatially homogenous slices Σt suggests the choice
of an adapted basis, in which the components of the metric, and therefore the
Einstein equations, take a particularly simple form. An example of this was given
by the Friedmann metrics (12) in chapter (4). In this section it is shown how one
can adapt a frame to the symmetries of a Bianchi spacetime of particular type:

foliation adapted
bases

Clearly at first the frame should be adapted to the foliation with the slices Σt of
spatial homogeneity. This means that the basis field in time direction e0 is chosen
to be of unit length and normal to the slices, and the spatial basis fields {ei}3i=1

tangent to the slices everywhere. The metric components then have the form

[gµν ] =

[
1 0
0 [gij ]

]
.

Bianchi type adapted
bases

Second one wishes to choose the spatial basis fields such that it adapts to the un-
derlying Bianchi symmetry. The goal is to reflect this symmetry in the properties
of the spatial basis fields, and to therefore also mirror them in the spatial metric
components. The Bianchi type is specified by the structure constants of the Lie al-
gebra of Killing fields h on the slices, which can be identified with the Lie algebra of
right invariant vector fields on H, and H can itself be identified with the slices. The
equivalence of the Lie algebras of left and right invariant vector fields discussed in
section 2 of chapter 3 then suggests to choose a spatial basis which corresponds to a
basis of left invariant vector fields on H. Choosing this basis such that (6) and (9)
hold, i.e. such that the spatial basis admits the same structure constants (modulo
the sign) than the Lie algebra of homogeneity h which specifies the Bianchi type.
Hence such a basis mirrors the Bianchi symmetry as desired.

When additional symmetries are present to spatial homogeneity, one would also
attempt to adapt the frame to them, such that also these symmetries are reflected
in the components of the metric. LRS adapted basisFor instance in a locally rotationally symmetric
Bianchi spacetime, one would choose the frame such that two components of the
metric coincide; e.g. g22 = g33. There are however cases where it is not possible to
choose the frame such that both gij and nij have this form; cf. [8, chapter 5].

3. The Einstein equations of Bianchi cosmologies

In a Bianchi type adapted basis, spatial homogeneity is manifest in the spatial
metric components gij by the fact that they depend on time only, and not on the
spatial coordinates. By (3) the same holds for the components of the extrinsic
curvature kij on the spatial slices. Therefor in an adapted basis, and for simple
matter models like perfect fluids with linear equation of state, the Einstein equations
for Bianchi cosmologies reduce to a constrained autonomous system of ordinary
differential equations. Writing the m independent components of gij and kij in a
column x ∈ Rm, the evolution equations can be written as

(18) the Einstein
equations as a
dynamical system

ẋ = f(x) , with f : Rm → Rm.

An equation of this kind (with f partially differentiable (C1)) is also called a dy-
namical system on Rm. (It should however be mentioned, that the term ‘dynamical
system’ is also often given a more general meaning.) Dynamical systems theory is
a rich and well developed branch of mathematics and provides rigorous analytical
methods for a qualitative analysis of these kind of equations. One example of a
dynamical system analysis was already given in section 3 of chapter 4 when investi-
gating the qualitative dynamics of the Friedmann cosmologies. The right equation
of (16), which was subject to this analysis, represents a dynamical system on R.
For more general spatially homogenous models the system is generally of higher
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dimension. A sketch of the techniques to analyse a higher dimensional dynamical
system is subject of the next section. The remainder of the present section deals
with the preparation of the evolution equations for this analysis, which is a di-
rect generalisation of the steps performed in section 3 for the Friedmann evolution
equations:

First, one defines new dynamical quantities which are standard cosmological
parameters and/or bring the equations into suitable shape. One of these would
be the Hubble scalar H, or a related quantity that scales with H, which gives a
measure of the overall rate of spatial expansion. Let [H, x̃]T ∈ Rm denote these
quantities. The next step is then to define the expansion-normalised (or Hubble
normalised) quantities y := x̃/H. Additionally, one defines the rescaled time τ via
d
dτ = 1

H
d
dt . The original evolution equations (18) can then be expressed as a lower

dimensional (reduced) dynamical system in the rescaled variables, and a decoupled
evolution equation for H;

(19)rescaled or reduced
dynamical system

and decoupled
equation for H

y′ = f̃(y) and H ′ = f(H,y),

with f̃ : Rm−1 → Rm−1 and f : R → R. The prime denotes derivation with
respect to rescaled time τ . The evolution of y is decoupled from the other evolution
equation since f̃ is independent of H. Hence, for a qualitative analysis where one
is not interested in details concerning the overall rate of expansion, it suffices to
restrict to the rescaled dynamical system.

4. Qualitative analysis of Bianchi cosmologies

This section gives a sketch on how to analyse the reduced evolution equations
(left equation of (19)) of Bianchi cosmologies qualitatively with methods from dy-
namical systems theory. The analysis is thereby performed at the simple example
of Bianchi type I with a perfect fluid with linear equation of state, p = wρ, with
w ∈

(
− 1

3 , 1
)
. The goal is to draw a qualitative flow diagram in analogy to the one

that was found for the Friedmann models (figure 8), and to interpret it in cosmo-
logical terms. The idea is not to reach this goal in the quickest and most elegant
way. Far more the emphasis is put on presenting the techniques from dynamical
systems in a general fashion:

The two dimensional reduced dynamical system for Bianchi type I with perfect
fluids with linear equation of state, p = wρ, where w ∈

(
− 1

3 , 1
)
, is given by

(20)the reduced
dynamical system

Σ′+ = −(2− q)Σ+ and Σ′− = −(2− q)Σ−,
where the deceleration parameter q is given by

q =
1 + 3w

2
+

3

2
(1− w)(Σ2

+ + Σ2
−).

The quantities Σ+ and Σ− represent the independent components of the expansion-
normalised rate of shear tensor; cf. [7, (1.27), (6.2) and (6.8)]. They can be
thought of as determining the grade of anisotropy in the geometry, where the origin
Σ+ = Σ− = 0 corresponds to an isotropic case. In addition to the evolution
equations the Einstein equations dictate the constraint

(21)the constraint Ω = 1− Σ2
+ − Σ2

−,

where Ω := ρ
3H2 is the expansion-normalised energy density, and is assumed to be

non-negative. It should be stressed that the system (20) is non-linear and therefore
not exactly solvable for generic initial conditions.

the state space As the first step in the qualitative analysis, one needs to identify the state space.
That means one needs to find the possible range of the dynamical quantities such
that the constraints are satisfied, and such that all stays in accordance with any
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Σ+

Σ−

BI

(a) Identify the state space.

Σ+

Σ−

BI

F

K=∂BI

(b) Find the fixed points.

Σ+

Σ−

BI

F

K=∂BI

(c) Determine the local stability
properties of the fixed points.

Σ+

Σ−

BI

F

K=∂BI

(d) After finding or excluding pe-
riodic solutions, draw the flow dia-
gram.

Figure 9. A sketch of the typical steps taken in a dynamical
system analysis on the example of Bianchi type I.

additional assumptions on the variables. In the present case, the constraint (21)
together with the assumption that Ω ≥ 0 restricts the state space BI to the points
(Σ+,Σ−) within the circle Σ2

+ + Σ2
− = 1; cf. figure 9a. From the constraint (21) it

is clear that points on the boundary ∂BI of the state space correspond to vacuum
states (Ω = 0).

fixed pointsThe next step is to find the fixed point solutions of the dynamical system which
are characterised by y′ = f̃(y) = 0. These are static solutions in the state space
since a solution that attains the value of a fixed point during one instant of time has
this value during the whole evolution. This however does not imply that the metric
corresponding to a fixed point solution stays constant with time: The equation
for H (right equation of (19)) can still account for dynamics in the sense of an
overall rate of expansion or contraction. In the present example one finds from (20)
that there is one isolated fixed point F at the origin, and that each point on the
boundary ∂BI is a fixed point as well; cf. figure 9b. This circle of fixed points is
called the Kasner circle, and is denoted by K; cf. [7, section 6.2.2].

The regularity property f̃ ∈ C1 of a dynamical system allows to approximate
the system close to a fixed point y∗ by

(22) linear approximation
at a fixed point

y′ ≈ Df̃(y∗)(y − y∗),
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where Df̃ denotes the derivative matrix (Jacobi matrix) of f̃ . As an equation, (22)
is called the linear approximation of the dynamical system at the fixed point y∗.
At least for the generic type of fixed point (i.e. for hyperbolic fixed points; cf. [7,
definition 4.9]), the flow of the linearisation indeed approximates the flow of the
full system in a neighbourhood of the fixed point. This is the statement of the
famous Hartman-Grobman theorem; cf. [7, section 4.3.2] or [9, section 2.8]. Linear
systems are well known and exactly solvable; cf. [9, chapter 1].local stability

properties of the
fixed points

For the analysis of
the full dynamical system it suffices however to know about the qualitative features
of (22), i.e. about the stability properties. These are encoded in the eigenvalues of

Df̃ at the fixed point: For instance, if all these eigenvalues have negative (positive)
real parts, then the solutions approach the fixed point asymptotically into the past
(future), and the fixed point is called a sink (source). In the context of the full
system this then holds for the local flow in some neighbourhood of the fixed point.
In the present example the eigenvalues of Df̃ at F have both the value − 3

2 (1−w),

which is negative for w ∈
(
− 1

3 , 1
)
. Hence F is a local sink in BI. Picking the fixed

point [0, 1]T on the Kasner circle K one finds a positive eigenvalue corresponding
to an eigenvector in Σ−-direction. The second eigenvalue is zero and corresponds
to an eigenvector in Σ+-direction, which is intuitively clear since the neighbouring
points in these direction are fixed points as well. The symmetry of the system (20)
tells that the analog holds for each point on the Kasner circle, such that all points
on K play the role of a local source in BI. At this point in the analysis one would
ideally know about the local stability properties of all the fixed points in the state
space, and would arrive at a state of the flow diagram as in figure 9c for the present
example, in which the local flow is qualitatively known in a neighbourhood of each
fixed point.

What is left to do is to determine the qualitative shape of the flow between
the fixed points.periodic solutions There could be other structures than fixed points inside the
state space, like periodic solutions (closed solution curves), which are approached
by generic solutions asymptotically into the past or into the future. If present,
one would have to find these structures, and attempt to find their local stability
properties as well, which is not always trivial. Luckily in many cases there is no
such additional structure. Dynamical systems theory provides several theorems
to exclude their presents, e.g. the monotonicity principle; cf. [7, theorem 4.12].
In the present example the existence of periodic orbits inside BI can be excluded,
and hence the only possibility for a solution curve is to approach a point on K
asymptotically into the past, and to approach F asymptotically into the future;
cf. figure 9d. One should note that, due to the uniqueness theorems of ordinary
differential equations, these solutions however never reach K or F . For the same
reason, solution curves cannot cross each other, which in particular often simplifies
this last step of drawing the solution curves when the system is two dimensional.

In this example one could have directly seen from (20) that the solution curves
are straight lines through the origin, and would just have had to determine the
direction of the flow to arrive at the final plot diagram. This would however not
have served the purpose of demonstrating the general techniques of a dynamical
system analysis.past and future

asymptotics
In general one does not get out information about the actual shape

of the solution curves inside the state space, but merely information about their
past and future asymptotics, which is also called the α- and ω-limit set of a solution,
which are typically fixed points. The physical solution that corresponds to a fixed
point can usually be given exact by involving the equation for H. In the present
example one then finds that F corresponds to the flat Friedmann solution (12).
(Recall that the origin corresponds to an isotropic case.) One can thus immediately
draw interesting physical conclusions from the plot of the flow diagram 9d: A
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Bianchi type I cosmology (with a perfect fluid out of the chosen class) is past
asymptotically to an anisotropic vacuum (Kasner) solution, and future asymptotic
to a flat Friedmann solution. Hence these cosmologies isotropise towards the future.





References and further reading

The list below not only contains references to citations within part 1, but also
represents a collection of literature that was useful to me to study the required
mathematics and physics, and for typing the thesis. As such it is clearly not a
complete list of the literature available. Never the less I want to provide the in-
terested reader with more information on these sources, and give some personal
recommendations for further reading. I therefore added some descriptive text to
each item in the list below.

When writing part 1, the books [7], [4], [5] and [10] served as main references
and sources for inspiration to me. For chapter 2 I mainly used [4] and [10]. Both
books focus on an abstract, coordinate free point of view and choose the same ap-
proach to semi-Riemannian geometry, which I then adopted here in this text. For
writing section 1 of chapter 3 I mainly used [5], but for example also [3]. [4] along
with [5] were also very useful to me for writing the content of section 2 of that
chapter. For writing section 3 of chapter 3 I then mainly worked with [7]. The
latter source was also my main source for writing section 3 of chapter 4 and large
parts of chapter 5.

For further reading on dynamical systems theory I can highly recommend the
short introduction by R Tavakol; chapter 4 Introduction to dynamical system in [7].
For the reader who wants a thorough mathematics textbook on this topic I recom-
mend [9].

[1] Alcubierre M: Introduction to 3+1 Numerical Relativity; International Series of Monographs

in Physics – 104 ; Oxford University Press (2008).

A textbook on numerical relativity which contains a detailed discussion on foliations in it’s

chapter 2 The 3+1 formalism. It is hence, just as [2], well suited for further reading on this
topic which was only briefly touched in section 5 of chapter 2. In addition to that, this book

contains a very good short introduction to General Relativity in it’s chapter 1 Brief review

of general relativity.

Cited on pages 11, 33

[2] Baumgarte TW, Shapiro SL: Numerical Relativity: Solving Einstein’s Equations on the
Computer, Cambridge University Press (2010).

A textbook on numerical relativity which contains a detailed and nicely illustrated discussion

on foliations in it’s chapter 2 The 3+1 decomposition of Einstein’s equations. It is hence, just

as [1], well suited for further reading on this topic which was only briefly touched in section 5
of chapter 2.

Cited on pages 11, 33

[3] Weinberg S: Gravitation and Cosmology: Principles and applications of the General Theory

of Relativity, John Wiley & Sons, Inc. (1972).

This book by Weinberg is an often cited standard physics textbook on General Relativity.
It stays in contrast to most other standards in that it deliberately takes a particularly non-
geometric approach to the theory. It thereby sheds light on many aspects of the theory that are

not treated in most other textbooks, and greatly complements the literature. Index notation

is used throughout the book. Of particular interest for part 1 is it’s chapter 13 Symmetric
spaces, which comprises a very detailed discussion on Killing fields, homogenous manifolds,

isotropic manifolds and maximally symmetric manifolds. The presentation of these topics is
however, in the fashion of the whole book, with little emphasis on geometric aspects.

Cited on pages 14, 17, 33

33



34 References and further reading

[4] Szekeres P: A course in modern mathematical physics: groups, Hilbert space and differential

geometry, Cambridge University Press (2004).

An excellent textbook on modern mathematical physics which gives a rigorous overview on

many topics. It makes use of a modern notation and chooses a state of the art approach
to the mathematics. It’s chapters 7 Tensors, 15 Differential geometry and 18 Connections

and curvature serve as an excellent reference to chapter 2. It’s chapter 19 Lie groups and

Lie algebras greatly supplements chapter 3.

Cited on pages 15, 33, 34

[5] Wald RM: General Relativity, The University of Chicago Press (1984).

One of the standard physics textbooks on General Relativity. It is divided into two parts.
Part 1. Fundamentals gives a thorough introduction to General Relativity and the under-

lying mathematics. The approach to semi-Riemannian geometry is thereby similar to those

presented in [10] and [4], adopting an abstract, geometric point of view, with some differ-
ences in the way in which the concept of connections is introduced. Wald also uses a different,

abstract index notation. Part 2. Advanced topics is then devoted to more specific aspects of

the theory and also contains a section (7.2 ) on Spatially homogenous cosmology. Together
with it’s Appendix C. Maps of manifolds, Lie Derivatives, and Killing Fields this book thus

serves as a good reference to all topics discussed in part 1.

Cited on pages 16, 19, 20, 21, 33

[6] Ryan MP, Jr; Shepley LC: Homogeneous relativistic cosmologies; Princeton Series in
Physics; Princeton University Press (1975).

This is still a standard textbook on spatially homogenous cosmology. The style is rigorous
and self contained. The book gives many proofs, some of which are hard to find anywhere

else in the literature.

Cited on page 16

[7] Wainwright J, Ellis GFR (editors): Dynamical Systems in Cosmology, Cambridge University

Press (1997).

This is the actual standard introductory textbook to the branch of cosmology that deals with
dynamical systems techniques. The book goes far beyond of what I introduced in part 1, and

is thus excellently suited for further reading. When writing section 3 of chapter 4, I adopted

the discussion of section 2.3 Qualitative analysis (of the Friedmann dynamics) of this book.
It’s chapter 4 Introduction to dynamical systems gives an excellent short introduction to

dynamical systems theory, which contains all the concepts and theorems which are essential

to the purpose, and gives references to other sources for the proofs. Section 1.2 Symmetries
of space-time of the book is a good reference to section 3 of chapter 3. Section 1.5 Bianchi
cosmologies of the book is a good reference to sections 1, 2 and 3 of chapter 5.

Cited on pages 21, 26, 28, 29, 30, 33

[8] Heinzle JM: Bianchi models and generic spacelike singularities; Habilitation, Universität
Wien (2010).

The first part of this Habilitation gives a summary to the formal basics of Bianchi cosmol-
ogy. It greatly complements the literature by pointing out many details on topics like local

rotational symmetry, or adapted frames of reference, which can hardly be found anywhere
else.

Cited on page 27

[9] Perko L: Differential Equations and Dynamical Systems, second edition; Texts in applied

Mathematics 7, Springer-Verlag (1996).

A thorough mathematics textbook on dynamical systems theory which I can highly recom-

mend to the reader who is interested in a deeper study of this interesting branch of modern

mathematics. It contains all the proofs to the theorems, and many illustrative examples.

Cited on page 30, 33

[10] O’Neill B: Semi-Riemannian geometry, with applications to Relativity; Pure and Applied
Mathematics, Elservier/Academic Press (1983).

A thorough mathematics textbook on the subject of the title with an emphasis on an abstract

and coordinate free approach. It goes way beyond of what is needed for part 1 and thus serves

not only as a good reference to chapter 2 and parts of chapter 3, but also as a very good



References and further reading 35

book for further reading for the one who is interested in a deeper study of the mathematics.

Cited on pages 33, 34





Part 2

Dynamics of locally rotationally
symmetric Bianchi type VIII

cosmologies with anisotropic matter



Remark

The content of this part is a reprint of my research article Dynamics of lo-
cally rotationally symmetric Bianchi type VIII cosmologies with anisotropic matter
published by Springer in 2012 in the journal General Relativity and Gravitation:
Volume 44, Issue 11 (2012), Page 2901-2922 ; DOI 10.1007/s10714-012-1430-8. It
is online available at http://www.SpringerLink.com/content/362128k038173qt2.

http://www.springerlink.com/content/362128k038173qt2


Gen Relativ Gravit
DOI 10.1007/s10714-012-1430-8

RESEARCH ARTICLE

Dynamics of locally rotationally symmetric Bianchi type
VIII cosmologies with anisotropic matter

Gernot Heißel

Received: 22 March 2012 / Accepted: 17 July 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper is a study of the effects of anisotropic matter sources on the
qualitative evolution of spatially homogenous cosmologies of Bianchi type VIII. The
analysis is based on a dynamical system approach and makes use of an anisotropic
matter family developed by Calogero and Heinzle which generalises perfect fluids
and provides a measure of deviation from isotropy. Thereby the role of perfect fluid
solutions is put into a broader context. The results of this paper concern the past and
future asymptotic dynamics of locally rotationally symmetric solutions of type VIII
with anisotropic matter. It is shown that solutions whose matter source is sufficiently
close to being isotropic exhibit the same qualitative dynamics as perfect fluid solutions.
However a high degree of anisotropy of the matter model can cause dynamics to differ
significantly from the vacuum and perfect fluid case.

Keywords Spatially homogenous cosmology · Anisotropic matter ·
Dynamical systems

1 Introduction and motivation

For spatially homogenous (SH) spacetimes the Einstein-matter equations for a large
variety of matter sources reduce to an autonomous system of ordinary differential equa-
tions in time. Thus the mathematical theory of dynamical systems can be applied to gain
insights into the qualitative behaviour of SH solutions. This approach has been used in
mathematical cosmology, e.g. to address questions relevant for observational cosmol-
ogy, in particular concerning the role the Friedmann solutions play in the more general
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context of SH cosmologies that are not spatially isotropic in general. On the other hand
the interest in SH models is nourished by the believe that the dynamics of SH cosmolo-
gies towards the initial singularity is crucial for the understanding of the behaviour of
more general spacetimes close to singularities; cf. [1] and references therein.

Less is known about SH solutions with matter sources more general than perfect
fluids. Calogero and Heinzle have developed a matter family naturally generalising
perfect fluids that contains large classes of anisotropic matter sources and is suited
for a dynamical system analysis. It includes a measure of the deviation from isotropy
and thus allows to investigate the role of perfect fluid solutions in the more general
context of solutions with anisotropic matter. The SH cosmologies considered were of
Bianchi type I, and locally rotationally symmetric (LRS) types I, II and IX; cf. [2,3].
While dynamical system analyses with specific anisotropic matter sources have been
carried out before, the approach by Calogero and Heinzle can be regarded as a first
step towards a systematic study of the effects of anisotropic matter to the qualitative
dynamics of SH cosmologies.

This paper is concerned with the analysis of SH cosmologies of LRS Bianchi type
VIII with anisotropic matter. In Sect. 2 the basic features of the anisotropic matter
family are stated, and the state space and evolution equations for LRS type VIII are
given. The dynamical system analysis is performed in Sect. 3, where some technical
details on the analysis of the flow at infinity are contained in the appendix. The results
are given and discussed in Sect. 4, where the main result is formulated in Theorem 1
and Corollaries 1 and 2. As a small byproduct, the results cover the future asymptotics
for perfect fluids with p = wρ and w ∈ (− 1

3 , 0), which might fill a little gap in the
literature. Section 5 is concerned with an extension of the formalism to treat Vlasov
matter dynamics with massive particles.

Part of the material needed in Sects. 2, 3 and 5 has already been presented in [3]
or [4] to analyse LRS Bianchi types I, II and IX. At these points in the text, only the
crucial steps and results are quoted from there.

2 The LRS Bianchi type VIII setup

In a frame (dt, ω̂1, ω̂2, ω̂3) adapted to the symmetries, an LRS Bianchi class A metric
has the form

4g = −dt ⊗ dt + g11(t) ω̂1 ⊗ ω̂1 + g22(t) (ω̂2 ⊗ ω̂2 + ω̂3 ⊗ ω̂3).

In type VIII, dω̂i = − 1
2ε jkl n̂i j ω̂k ∧ ω̂l , with [n̂i j ] ≡ diag(−1, 1, 1). Greek indices

denote spacetime components while Latin indices label spatial components w.r.t. the
adapted frame. The metric will be subject to the Einstein equations—without cosmo-
logical constant—in geometrised units (8πG = c = 1), cf. [3, Eq. 2].

2.1 The anisotropic matter family

For a perfect fluid that is non-tilted with respect to dt , the components of the stress–
energy tensor are [T µ

ν] = diag(−ρ, p, p, p), where ρ and p denote the energy
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density and pressure of the fluid. It is an isotropic matter model since the eigenvalues
of [T i

j ] are all equal. When p = wρ with w = const, the fluid is said to obey a linear
equation of state.1

The matter models considered in this paper form a family of models generalising
perfect fluids with linear equation of state. This family of models is described in detail
in [3, section 3]. (However is should be mentioned that several of the involved variables
have already been used earlier, like s in [5].) In the following, a brief description tailored
to the present purposes is given:

The components of the stress–energy tensor are [T µ
ν] = diag(−ρ, p1, p2, p2)

where the energy density ρ (assumed to be positive) and the isotropic pressure
p := ∑

i pi/3 obey a linear equation of state p = wρ, with w = const. Defin-
ing the dimensionless rescaled principal pressures as wi := pi/ρ it is clear that
w = ∑

i wi/3, which in turn implies that w1 and w2 are not independent once w is
given. As a consequence of the Einstein equations and some basic assumptions on the
matter family given in [3, section 3], w2 (and thus w1) is a function of the quantity
s := g22

∑
i gii ∈ (0, 1

2 ). Clearly, s gives a measure of anisotropy of the spatial met-

ric components while w2 encodes the anisotropy of the matter content.2 The simple
example of isotropic matter corresponds to w1 = w2 = w. Also, note that s → 0
and s → 1

2 correspond to g22 → ∞ (or g11 → 0) and g11 → ∞ (or g22 → 0)
respectively, i.e. to a singular metric. A basic assumption is that the limit of w1 for
s → 1

2 coincides with the limit of w2 for s → 0, i.e. that w1(
1
2 ) = w2(0). Hence one

can define an anisotropy parameter

β := 2
w − w2(0)

1 − w
(1)

that provides a measure of deviation from an isotropic matter state in the extremal
cases where the metric is singular. Note that β = 0 corresponds to matter models that
behave like a perfect fluid close to singularities.

The analysis in Sect. 3 will show that the qualitative dynamics of LRS Bianchi
type VIII solutions does not depend on the whole function w2 but merely on the value
w2(0) where the metric is singular. Thus any two matter models of the anisotropic
matter family that share the same parameters w and β also share the same qualitative
dynamics, even if they have different functions wi (s). Accordingly, β serves as the
parameter to investigate the influence of the anisotropy of the matter on the dynamics,
even though it gives a precise measure of the anisotropy only close to singularities.
Therefore, in the context of the qualitative analysis of the dynamics of solution that
follows, a specific class of matter models is simply characterised by a pair (w, β) in
the parameter space

P :=
(

−1
3
, 1

)
× R.

1 For example, w = 0 corresponds to dust and w = 1
3 to radiation.

2 In [3] w2(s) is called anisotropy function and denoted by u(s).
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Here w is restricted to (− 1
3 , 1) since the primary interest is in matter models that

obey the standard energy conditions [6, pp. 218–220]: The weak energy condition
corresponds to wi ≥ −1. The strong energy condition requires the weak energy
condition to hold and w ≥ − 1

3 . The dominant energy condition is |wi | ≤ 1. Therefore,
by (1), for the energy conditions to hold, one has to restrict β to [max(−2, − 1+w

1−w ), 1];
cf. [3, table 2 in section 3.4]. The dominant energy condition is only marginally
satisfied when β(w) takes the boundary values. The parameter space P and the subset
for which the energy conditions are satisfied is depicted in Fig. 3 together with the
bifurcation lines which will be explained in Sect. 3.

2.2 The Einstein equations as a dynamical system

LRS Bianchi types VIII and IX share the same evolution equations which have been
derived in detail in [3]. This subsection gives a brief outline:

Due to spatial homogeneity, the Einstein equations for LRS type VIII with the above
matter source are a constrained autonomous system of ordinary differential equations
in t for the components of the spatial metric gi j and the extrinsic curvature ki j . This
system is then written in terms of quantities that are standard cosmological parame-
ters and/or bring the equations into suitable shape. These quantities are the Hubble
scalar H := − 1

3 (k1
1 + 2k2

2), the shear variable σ+ := 1
3 (k1

1 − k2
2) and the quantity

m1 := √
g11/g22. Finally these are divided by the variable D :=

√
H2 − 1/(3g22) >

0 to obtain the normalised variables (HD, (+, M1) := (H, σ+, m1)/D. In [3] this
normalisation has been taken in lieu of the Hubble normalisation [7, section 5.2]
mainly because it yields a compact LRS type IX state space. Although this is not
the case for LRS type VIII, the normalisation with D still has favourable prop-
erties. For example the type III form of flat spacetime which will turn out to be
crucial for generic future asymptotic solutions (cf. Sect. 4) is a fixed point solu-
tion in this formulation; cf. Table 1. Also, as already stated, LRS types VIII and IX
share the same evolution equations in this formulation, why many results from [3]
on LRS type IX can directly be carried over to the analysis of LRS type VIII. It
should also be mentioned that variables of this kind have already been used earlier;
cf. [8].

The resulting representation of the Einstein equations for anisotropic matter filled
LRS Bianchi type VIII spacetimes is then given by the dynamical system




HD
(+
M1




′

=




−(1 − H2
D)(q − HD(+)

−(2 − q)HD(+ − (1 − H2
D)(1 − (2

+) + M2
1

3 + 3)(w2(s) − w)

M1
(
q HD − 4(+ + (1 − H2

D)(+
)




(2)
which represents the evolution equations, and the Hamiltonian constraint

) + (2
+ + M2

1

12
= 1. (3)
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The quantity ) := ρ
3D2 denotes the normalised energy density and q := 2(2

+ +
1+3w

2 ) the deceleration parameter. The prime denotes derivatives with respect to
rescaled time; (·)′ := 1

D
∂
∂t (·). Note that the definitions of M1 and D imply that s

can be regarded as a function of HD and M1, s = (2 − 3 1−H2
D

M2
1

)−1. Therefore (2)

is a closed system once w2(s) is prescribed through the ‘equation of state’ of the
anisotropic matter.

2.3 The state space XVIII

The LRS type VIII state space is determined by the Hamiltonian constraint (3) and
the relation

1 − H2
D = − 1

3D2g22
< 0, (4)

which follows directly from the definition of D: Since ρ is assumed to be positive (cf.
Sect. 2.1) it follows by definition that ) > 0. And since also M1 > 0 by definition,

it then follows from the Hamiltonian constraint that (2
+ < 1 and (2

+ + M2
1

12 < 1.
The inequality 1 − H2

D < 0 implies that the state space is the union of two disjoint
sets: HD > 1 corresponds to positive H and hence to forever expanding universes,
while HD < −1 corresponds to forever contracting universes. However, since (2) is
invariant under the reflection (t, HD, (+) → −(t, HD, (+) it suffices to restrict to
the expanding case. Accordingly the LRS Bianchi type VIII state space is defined as

XVIII :=








HD
(+
M1


 ∈ R3

∣∣∣∣HD ∈ (1, ∞),(+ ∈ (−1, 1), M1 ∈ (0,

√
12(1 − (2

+))



 ,

which forms the tunnel-like structure depicted in Fig. 1. The boundary subsets of XVIII
are VVIII,BIII and S+, which correspond to ) = 0, M1 = 0 and HD = 1, respectively.
LRS type VIII vacuum solutions thus lie in VVIII while solutions in S+ and BIII are of
Bianchi types II and III respectively; cf. [3, sections 9.2 and the first remark in 10.1].

Fig. 1 The state space XVIII and its boundary subsets
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S∞, which corresponds to HD → ∞, is of course not a boundary, but one can think
of it as boundary in a compactified version of the state space; cf. Appendix 6.

In this formulation LRS type IX cosmologies are subject to the same evolution
Eq. (2). However there is a sign change in the relation (4) leading to a different state
space XIX for which HD ∈ (−1, 1). Figuratively speaking XIX builds the tunnel
connecting XVIII with the second disjoint LRS type VIII set. Hence both XVIII and
XIX share the boundary S+. Cf. [3, section 9].

There are two challenges in connection with the analysis of the dynamical system
(2) in XVIII. First, XVIII is not compact. Hence one has to perform a careful analysis of
the ‘flow at infinity’. In the present case it will be shown that there do not exist orbits
that emanate from or escape to infinity. Second, the dynamical system (2) does not
extend to the line LI in ∂XVIII for that HD = 1 and M1 = 0 since s(HD, M1) has no
limit when LI is approached from XVIII.3 The analogous problem occurs in the context
of LRS type IX, where it was overcome by introducing another set of coordinates that
give regular access to this part of the boundary by ‘blowing up’ LI; cf. [3, section
10.2]. This method can be adapted to the LRS type VIII case by applying the same
coordinate transformation. However the corresponding state space is again different:

2.4 The state space YVIII

The coordinate transformation used to analyse LI is

1 − H2
D = 2r cos θ, M2

1 = 3r sin θ, (+ unchanged, (5)

where r ≥ 0 and θ ∈ [π
2 , π ]. Thereby, XVIII is transformed to the state space

YVIII :=








r
θ

(+


 ∈ R3

∣∣∣∣r ∈
(

0,
4(1 − (2

+)

sin θ

)
, θ ∈

(π

2
, π

)
, (+ ∈ (−1, 1)





which is depicted in Fig. 2. From (5) one has the following correspondences between
subsets of X VIII and YVIII:

XVIII ∼ YVIII, VVIII ∼ VY
VIII, BIII ∼ BY

III ∪ X I , S+ ∼ SY
+ ∪ X I , LI ∼ X I.

(6)
S∞ corresponds to a line at infinity in the context of YVIII. Furthermore, (5) defines a
diffeomorphism between X VIII\LI and YVIII\X I, from which it follows that the flows
in these sets are topologically equivalent. In particular,

XVIII ∼= YVIII, VVIII ∼= VY
VIII, BIII ∼= BY

III and S+
∼= SY

+ . (7)

3 However s(HD, M1) has limits when LI is approached from BIII or S+; cf. Sects. 3.2 and 3.3.
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Fig. 2 The state space YVIII and its boundary subsets

In contrast, the coordinate transformation performs a blowup of the line LI to the
two-dimensional set XI defined by setting r = 0. It can be identified with the LRS
Bianchi type I state space; cf. [3, section 10.2]. With (5), s can be regarded as a function
of θ alone. Therefore s has a limit as r → 0, which implies that the dynamical system,
when expressed in the coordinates (r, θ,(+), extends regularly to XI.

Finally, note that since s(θ) is a bijection on [π
2 , π ] one can as well choose s as

coordinate instead of θ ; hence the two labels on the axis in Fig. 2.

3 The dynamical system analysis

Whenever possible the analysis is carried out in the coordinates (HD, (+, M1), which
is in all sets except XI. However the final results presented in Sect. 4 have to be
interpreted in the context of the state space YVIII since the system (2) is not regular in
X VIII, which prevents a complete global analysis in the original state space.

Since the matter parameters w and β enter the evolution equations everywhere
except in the vacuum boundary and at infinity, cf. Sects. 3.1 and 3.5, their values
determine the qualitative properties of the flow. For instance there are fixed points
that only occur in the state space iff (w, β) is in a certain subset of P. Similarly,
fixed points may have different local stability properties depending on (w, β). The
curves β(w) ∈ P dividing P into these subsets corresponding to qualitatively different
dynamics shall be called bifurcation lines. These fixed points and bifurcation lines
will be found in the subsequent subsections. The exact solutions corresponding to the
fixed points are summarised in Table 1. These have been given in [3, appendix A] for
all fixed points but D. For D, one just needs to insert the coordinates into [3, Eq. 99].
The corresponding isotropic cases to these solutions can be found in [7, section 9.1].
The bifurcation lines are plotted in Fig. 3.

3.1 Analysis in VVIII

The dynamical system in VVIII is obtained by setting ) = 0 in (2) and using (3):

[
HD
(+

]′
=

[
(1 − H2

D)(HD − 2(+)(+
(1 − (2

+)
(
2 + (1 − (2

+) + (HD − (+)2)
]

(8)
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Table 1 The exact solutions corresponding to the fixed points

Fixed points Corresponding solution Type Vacuum

T, T-, T+ Taub Kasner I !
Q, Q-, Q+ Non-flat LRS Kasner I !
R-, R+ A type I anisotropic matter solution I

F Flat Friedmann I

C+ Generalisation of Collins-Stewart II

P Generalisation of Collins (VI−1) III

D Type III form of flat spacetime III !

Fig. 3 The bifurcation diagram in the parameter space P. The shaded region (including P⊃) marks the
subset for which the energy conditions are satisfied

There are three fixed points in VVIII, T := [1, −1]T, Q := [1, 1]T and D := [2, 1]T;
cf. Table 1. The eigenvectors and eigenvalues of the linearisation of (8) at the fixed
points determine their local stability properties. One finds4

T :
[

6
12

] [
1 0
0 1

]
, Q :

[
2

−4

] [
1 0
0 1

]
and D :

[−3
−6

] [
1 −2
0 1

]
,

so T is a source, Q is a saddle repelling in HD direction and D is a sink in VVIII.

4 Here and henceforth the notation follows the pattern P :
[
λ1
λ2

] [
v1, v2

]
where λi and vi denote the i th

eigenvalue and eigenvector of the linearisation of the dynamical system at P .
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Fig. 4 The flow in VVIII

Fig. 5 α(γ ) ⊆ network(T-, T+, Q+, Q-). ω(γ ) = D, possibly ∂XI

Fig. 6 α(γ ) ⊆ network(T-, T+, Q+, Q-). ω(γ ) = D, possibly ∂XI

It is proven in Appendix 6.1 that there are exactly two more fixed points at infinity,
T∞ = [∞, −1]T and Q∞ = [∞, 1]T. The stability properties then follow directly
from (8): First, (′

+ > 0 in VVIII. Second, for HD > 2 (and thus at infinity), H ′
D ! 0

for (+ " 0. Hence T∞ and Q∞ play the role of saddles for the flow in VVIII given in
Fig. 4.

To interpret this as flow in VY
VIII, note that the fixed point T in VVIII corresponds

to the closure of the line T- → T+ in VY
VIII. Since T- and T+ turn out to act as a source

and a saddle in VY
VIII in all cases respectively, cf. Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16 and 17, the orbits in VY
VIII have the form T- → D.
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Fig. 7 α(γ ) = cycle(T-, T+, Q+, Q-). ω(γ ) = P

Fig. 8 α(γ ) = cycle(T-, T+, Q+, Q-). ω(γ ) = D

Fig. 9 α(γ ) = T-. ω(γ ) = D

Fig. 10 α(γ ) = T-. ω(γ ) = P
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Fig. 11 α(γ ) = T-. ω(γ ) = P

Fig. 12 α(γ ) = T-. ω(γ ) = D

Fig. 13 α(γ ) = T-. ω(γ ) = P

Fig. 14 α(γ ) = T-. ω(γ ) = R-
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Fig. 15 α(γ ) = T-. ω(γ ) = D

Fig. 16 α(γ ) = T-. ω(γ ) = D

Fig. 17 α(γ ) = T-, possibly network(T+, Q+, F). ω(γ ) = D

3.2 Analysis in BIII

The dynamical system in BIII is obtained from (2) by setting M1 = 0(⇔ s = 0) and
using (1):

[
HD
(+

]′
=

[ −(1 − H2
D)

(
2 − 3

2 (1 − w)(1 − (2
+) − HD(+

)

−(1 − (2
+)

(
(1 − H2

D) + 3
2 (1 − w)(HD(+ + β)

)
]

=: f (HD, (+)

(9)
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This system has at least three and at most five fixed points in BIII depending on
(w, β) ∈ P, namely

T- :=
[

1
−1

]
, Q- :=

[
1
1

]
, D =

[
2
1

]
, R- :=

[
1

−β

]
and

P :=




2+3β(1−w)√
(1−3w)2+6β(1−w)

1+3w√
(1−3w)2+6β(1−w)


 ;

cf. Table 1. Clearly R- is a fixed point inBIII (and different from T-, Q-) iff β ∈ (−1, 1).
The conditions HD|P > 1 and (+|P < 1 entail that P is in BIII iff β > β-(w) := 2w

1−w

and (w, β) 2∈ P⊃, where P⊃ refers to the small ⊃-shaped subset of P bounded by

β±(w) := −1±
√

−3+(1−3w)2

3(1−w) ; cf. Fig. 3. Under these conditions the square root in the
coordinates of P is automatically real and (+|P > 0.

The eigenvectors and eigenvalues of the linearisation Df(HD, (+) at T-, Q-, D and
R- determine their local stability properties. One finds

T- :
[

6
3(1−w)(1−β)

] [
1 0
0 1

]
, D :

[ −3
3β(1 − w) − 6w

] [
1 1−3w

1−2w+β(1−w)

0 1

]
,

Q- :
[

2
3(1−w)(1+β)

] [
1 0
0 1

]
, R- :

[
3β2(1−w)+1+3w+2β

− 3
2 (1 − w)(1 − β2)

] [
3β2(1−w)+5+3w+4β
(1−β2)(3β(1−w)+4)

0
1 1

]
.

Therefore, in BIII, T- is a source for β < 1 and a saddle repelling in HD direction
for β > 1, Q- is a saddle repelling in HD direction for β < −1 and a source for
β > −1, D is a sink for β < β-(w) and a saddle attracting in HD direction for
β > β-(w) and R- is a sink ∀(w, β) ∈ P⊃ and a saddle attracting in (+ direction
∀(w, −1 < β < 1) ∈ P\P⊃.

The eigenvalues λ± of D f |P are given in terms of trace and determinant by

2λ± = tr D f |P ±
√

(tr D f |P )2 − 4 det D f |P , (10)

where

det D f |P = 9(1 − w)
(
3β2(1 − w) + 1 + 3w + 2β

)(
β(1 − w) − 2w

)

(1 − 3w)2 + 6β(1 − w)
, (11)

tr D f |P = − 3(1 − w)(1 + 2β)√
(1 − 3w)2 + 6β(1 − w)

, (12)

which are real whenever P exists in BIII because the square root in (12) appears in
the coordinates of P as well. Further, tr D f |P < 0 and det D f |P > 0 whenever P is
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in BIII.5 Hence the real part of (10) is always negative, whether the eigenvalues are
real or complex, so P is a sink in BIII whenever present. The eigenvalues are real for
β ∈ (β-(w), β∗

- (w)]; cf. Fig. 3.
In order to perform the analysis of the flow in the full state space XVIII in Sect. 3.5,

it is also necessary to know the local stability of P in the direction of M1. From (2) one
has (ln M1)

′|P = −3(+|P , which is negative so that P is attracting in the direction
of M1. This implies that P is a local sink in X VIII.

It is shown in Appendix 6.1 that there are exactly two more fixed points at infin-
ity, T∞ = [∞, −1]T and Q∞ = [∞, 1]T. Their stability properties then follow
straightforwardly from (9). For HD sufficiently large, f (HD, (+) ≈ [−H3

D(+,

H2
D(1 − (2

+)]T. Hence, (′
+ > 0 and H ′

D ! 0 for (+ " 0, which implies that

T∞ and Q∞ play the role of saddles for the flow in BIII.
For the cases where P does not exist in BIII, the information suffices to draw the

corresponding qualitative flow diagrams. When P exists in BIII, periodic orbits encir-
cling this fixed point could in principle be present. However numeric investigations
strongly suggest that this is not the case. In any case, the main results of this paper are
not affected by this open question; cf. Sect. 4.

The resulting qualitative dynamics in BIII in dependence of (w, β) ∈ P is depicted

in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 as flows in BY
III together with the

flows in SY
+ and X I. The latter two subsets will be discussed next.

3.3 Analysis in S+

S+ is the common boundary of the state spaces XVIII and XIX of LRS types VIII and
IX. It has been analysed in detail in [3, section 10.1]. The bifurcation lines β = ±2,
β+(w) and β∗

+ (w) result from this analysis. The former correspond to the local stability
properties of the fixed point R+, and the latter two to those of C+; cf. Table 1. The

results are depicted in Sect. 4 as flows in SY
+ together with the flows in BY

III and X I.

3.4 Analysis in X I

The flow in X I has been analysed in detail in [3, section 10.2]. The only new bifurcation
line in Fig. 3 resulting from this analysis is β = 0 which corresponds to the local
stability properties of the Friedmann point F ; cf. Table 1. However the qualitative
dynamics in X I is also associated with the bifurcation lines β = ±1 and β = ±2.

The results are depicted in Sect. 4 together with the flows in BY
III and SY

+ .

5 To see the first inequality, note from Fig. 3 that β > − 1
2 when P is in BIII. To see the second inequality,

note that setting the middle and last factor in the numerator of (11) to zero corresponds to the bifurcation
line β±(w) and β-(w), respectively.

123

52



LRS Bianchi type VIII cosmologies with anisotropic matter

3.5 Analysis in X VIII and S∞

The full system (2) does not have any fixed points in XVIII. Furthermore, as shown
in Appendix 6.2 there are only the already know fixed points T∞ = [∞, −1, 0]T and
Q∞ = [∞, 1, 0]T at infinity. Their stability properties then follow straightforwardly
from (2): For HD sufficiently large, rhs(2) ≈ [−H3

D(+, H2
D(1−(2

+), −H2
D(+M1]T.

Hence (′
+ > 0, H ′

D ! 0 for (+ " 0 and M ′
1 ! 0 for (+ " 0, which implies that

T∞ and Q∞ play the role of saddles for the flow in X VIII. Viewing infinity as the
boundary S∞ in a compactified version of the state space, T∞ is a source and Q∞ is
a sink in S∞, hence all orbits in S∞ are of the form T∞ → Q∞.

An important consequence is that there is no orbit in XVIII that emanates from or
escapes to infinity. Hence each orbit in XVIII lies in a compact subset. The following
lemma concludes this section. It will also be used to localise the α- and ω-limit sets
[7, p. 99 Def 4.12] in the next section; cf. [7, p. 91 Def 4.7] for the term ‘invariant set’:

Lemma 1 Let γ be an orbit in YVIII. Then both, α(γ ) and ω(γ ), is a non-empty,

compact and connected invariant subset of YVIII. Furthermore, α(γ ) ⊆ SY
+ ∪X I and

ω(γ ) ⊆ BY
III ∪ X I.

Proof First, since each orbit in XVIII lies in a compact subset, so does by (5) each
orbit in YVIII. The first statement of the lemma then follows from [7, p. 99 Thm 4.9].

Second, consider the function Z5 : XVIII ∪ VVIII → R given by

Z5 := HD M
1
3

1

(H2
D − 1)

2
3

> 0 with Z ′
5 = −4(+ + (1 + 3w))

2HD
Z5 ≤ 0.

One can check that Z ′′
5 |(+=)=0 = 0 and Z ′′′

5 |(+=)=0 < 0 in XVIII, which
means that Z5 is strictly monotonically decreasing along the flow in XVIII. Hence
the monotonicity principle [7, p. 103 Thm 4.12] implies that the limit sets lie in
BIII ∪ S+. Moreover, since Z5 → 0 = inf(Z5) when one approaches BIII and
Z5 → ∞ = sup(Z5) when one approaches S+, the monotonicity principle implies
α(γ̃ ) ⊆ S+ and ω(γ̃ ) ⊆ BIII for all orbits γ̃ in XVIII. In the context of YVIII this means

that α(γ ) ⊆ SY
+ ∪ X I and ω(γ ) ⊆ BY

III ∪ X I; cf. (6). 67

4 Results and discussion

Finally all information obtained in Sect. 3 can be collected to identify the α- and ω-limit
sets of generic orbits γ ∈ YVIII, and hence the past and future asymptotic dynamics of
generic LRS Bianchi type VIII cosmologies, for all qualitatively different anisotropic
matter cases:
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4.1 Identification of the limit sets

Figure 3 shows that there are 13 qualitatively different cases.6 These cases are listed
in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17, which show, for each case, a
plot of the bifurcation diagram where the corresponding subset of P is shaded and a

representative flow diagram in the set SY
+ ∪ X I ∪ BY

III, on which the limit sets lie by
Lemma 1. Solid (dashed) lines represent generic (non-generic) orbits in the respective
boundary subset. A filled (empty) circle on a fixed point indicates that it attracts (repels)
orbits in the respective orthogonal direction.7 Heteroclinic cycles and networks are
represented by thick lines. The axes with two labels emphasise the diffeomorphisms
(7) and the bijection between s and θ ; cf. Sect. 2.4.

By Lemma 1, the limit sets are non-empty, compact and connected invariant subsets

of YY
VIII. This leaves fixed points, heteroclinic cycles and heteroclinic networks as

candidates for the limit sets in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17.
A single fixed point is an (α-) ω-limit set of generic orbits γ ∈ YVIII iff it (repels)

attracts orbits from a three dimensional neighbourhood in YVIII; e.g. a (source) sink.
These can easily be identified from the figures. In the cases of Figs. 9, 10, 11, 12, 13,
14, 15, and 16, fixed points are the only possible generic limit sets. Furthermore, these
cases exhibit just one source and sink respectively, which implies that these are the
past/future attractors [7, p. 100 Def 4.13].

Figures 5, 6, 7, 8 and 17 show a heteroclinic cycle or network each, and hence
additional candidates for limit sets. In Figs. 7 and 8 the cycle is the past attractor since

there is no other candidate for a generic α-limit set in SY
+ ∪ X I, and as proven in

Sect. 3.5 α(γ ) is non-empty. Note that since the cycle is not in BY
III ∪ X I it cannot be

an ω-limit set. The same line of arguments shows that in Figs. 5 and 6 the past attractor
is a subset of the heteroclinic network.

In Fig. 17, the heteroclinic network could be an α-limit set in addition to T-. Analo-
gously, in Figs. 5 and 6, the heteroclinic cycle ∂XI could be an ω-limit set in addition to
D and P , respectively. The nontrivial task of directly tackling the stability properties
of these structures is omitted here. They are however taken into account as further
candidates for generic limit sets in these three cases. Note that Fig. 17 is the only one
of these three cases where the energy conditions can be satisfied; cf. Sect. 2.1 and
Fig. 3.

4.2 The main results

Finally one arrives at the main theorem and its corollaries:

Theorem 1 The α- and ω-limit sets of generic orbits γ ∈ YVIII of the dynamical
system (2) with parameters (w, β) ∈ P, is given as stated in the captions of Figs. 5, 6,

6 The bifurcation lines β∗
- (w) and β∗

+ (w) only specify if the fixed points C+ and P are local stable nodes

or foci in SY
+ and BY

III respectively, which is irrelevant for identifying the limit sets.
7 The colour coding of T∞ and Q∞ makes only sense in the context of XVIII. The fixed points in ∂XI are
not colour coded since the orthogonal directions are represented in the figures.
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7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17. These describe the past and future asymptotic
dynamics of LRS Bianchi type VIII cosmologies with anisotropic matter of the family
defined in Sect. 2.1.

Proof Cf. Sect. 4.1. 67
Vacuum and perfect fluid cases LRS Bianchi type VIII vacuum solutions are past
asymptotic to T- and future asymptotic to D.

Generic LRS Bianchi type VIII solutions with a non-tilted perfect fluid where p =
wρ and w ∈ (− 1

3 , 1) are past asymptotic to T-, future asymptotic to P for w ∈ (− 1
3 , 0)

and to D for w ∈ [0, 1).

The vacuum part follows from Sect. 3.1; cf. Fig. 4. For the perfect fluid cases, recall
from Sect. 2.1 that they correspond to the line β = 0 in P. They are therefore contained
in Theorem 1 as special cases.8 The only bifurcation line intersecting β = 0 is β-(w)

at w = 0 which yields the two qualitatively different perfect fluid cases, see Figs. 12
and 13, respectively. The statement on the future asymptotics for w ∈ (− 1

3 , 0) might
fill a little gap in the literature. The other results are known: The past asymptotics has
been given in [9, table 4 and figure 4], the future asymptotics for vacuum in [10, Prop
8.1] and the future asymptotics for perfect fluids with w ∈ [0, 1) in [11, Thm 3.1].

Comparison of the vacuum and perfect fluid cases with all cases of Theorem 1
shows that the dynamics with anisotropic matter differs from the vacuum and perfect
fluid cases in Figs. 5, 6, 7, 8, 14 and perhaps 17. More precisely, the past asymptotic
dynamics differs in all cases where β ≥ 1, i.e. in the cases of Figs. 5, 6, 7 and 8.
Additionally, depending on whether or not the heteroclinic network in Fig. 17 is a
generic α-limit set, the past asymptotics could also differ in the case when β ≤ −2;
cf. the discussion at the end of Sect. 4.1. The future asymptotic dynamics differs when
(w, β) ∈ P⊃, i.e. in the case of Fig. 14. Additionally, depending on whether or not the
heteroclinic cycle ∂XI in Figs. 5 and 6 is a generic ω-limit set, the future asymptotics
could also differ in the cases when β ≥ 2; cf. the discussion at the end of Sect. 4.1.
The strongest implications of this represent the main results of this paper stated in the
following corollaries:

Corollary 1 (past asymptotics) The past asymptotic dynamics of generic LRS Bianchi
type VIII cosmologies with anisotropic matter can differ significantly from that of the
vacuum and perfect fluid cases. In particular, the approach to the initial singularity is
oscillatory in the cases depicted in Figs. 5, 6, 7 and 8.

Corollary 2 (future asymptotics) The future asymptotic dynamics of generic LRS
Bianchi type VIII cosmologies with anisotropic matter can differ significantly from
that of the vacuum and perfect fluid cases. Note in particular the case depicted in
Fig. 14.

For completeness it is necessary to elaborate on the remark at the end of Sect. 3.2
concerning the possible occurrence of periodic orbits around P in BY

III: such orbits
are not observed numerically. However, their occurrence could change certain details

8 The fact that β = 0 is itself a bifurcation line, which is related to the stability of the Friedmann point, is
not relevant for the asymptotic dynamics.
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in Theorem 1, adding further ω-limit candidates in the cases where P is in BY
III. On

the other hand, Corollary 1 would be completely untouched and Corollary 2 even
strengthened by the occurrence of such periodic orbits.

4.3 Physical interpretation of the results

An interesting observation is that there is a neighbourhood of the line β = 0 in P
for which the corresponding asymptotic dynamics is identical to that of the perfect
fluid cases. Hence the perfect fluid solutions are robust under small perturbations of
a vanishing anisotropy parameter. For the past asymptotics to differ from that, β even
needs to be so high that the dominant energy condition is only marginally satisfied.

The specialisation of the results to the cases for which the energy conditions are
satisfied is obtained by restricting β to [max(−2, − 1+w

1−w ), 1]; cf. Sect. 2.1. This cor-
responds to the shaded region in Fig. 3, and thus rules out the cases of Figs. 5 and 6.
All other cases contain values (w, β) for which the energy conditions are satisfied.

However, it should be pointed out that the cases represented by Figs. 7 and 8 only
satisfy the energy conditions for β = 1, and the case of Fig. 17 only for w ≥ 1

3
and β = −2, i.e. for (w, β) in one-dimensional subsets of P for which the dominant
energy condition is only marginally satisfied. Consequently, in these cases the energy
flow is necessarily lightlike asymptotically toward the singularity. A special example
is given by collisionless (Vlasov) matter with massless particles, which as shown in
[3, section 12.1] falls into the class of matter models with (w, β) = ( 1

3 , 1).
In any case, the statements of Corollaries 1 and 2 remain true under the restriction

to matter satisfying the energy conditions.
This concludes the main results on the anisotropic matter analysis. Section 5 is

concerned with an extension of the present formalism to treat LRS type VIII dynam-
ics with Vlasov matter with massive particles, which does not a priori fit into the
anisotropic matter family considered so far.

5 Extension of the formalism to treat Vlasov matter dynamics
with massive particles

It was stated in Sect. 4.3 that Vlasov matter with massless particles falls into the class
of matter models described in Sect. 2.1 with parameters (w, β) = ( 1

3 , 1). This is
shown in [3, section 12.1]. However, as stated there, for Vlasov matter with massive
particles the relation p = wρ is non-linear. In [4], Calogero and Heinzle extended
their formalism to treat Vlasov matter dynamics with massive particles in the case
of LRS type IX. Since types VIII and IX are analogous in this formulation, and in
particular share the same evolution equations, this extension of the formalism can be
adopted to LRS type VIII without difficulties:

Following [4, section 3], the dynamical system representing the LRS type VIII
Einstein-Vlasov system is given by the system (2) and the additional equation

l ′ = 2HDl(1 − l). (13)
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The additional variable l := (det g)1/3

1+(det g)1/3 ∈ (0, 1) corresponds to a length scale of
the spatial metric. The rescaled principal pressures are functions of l and s. Their full
expressions are given in [4, Eq. 13] from which it follows that

(w, β)|l=0 =
( 1

3 , 1
)

and (w, β)|l=1 = (0, 0). (14)

The LRS type VIII state space for Vlasov matter dynamics is given by XVIII×(0, 1).
The dynamical system can be analysed as follows: By (13), l is strictly monotoni-

cally increasing along orbits in X VIII ×(0, 1). The monotonicity principle thus implies
that α(γ ) ⊆ X VIII × {0} and ω(γ ) ⊆ X VIII × {1}.9 Hence, the search for the limit
sets can be restricted to these boundary subsets:

From (14), the flow in X VIII × {0} is equivalent to the flow for anisotropic matter
with parameters ( 1

3 , 1); cf. Fig. 8. Hence the cycle(T-, T+, Q+, Q-) is the past attractor
of the flow in XVIII × (0, 1), since this cycle is the only candidate for an α-limit set
for generic orbits. Also from (14), the flow in X VIII × {1} is equivalent to the flow
for anisotropic matter with parameters (0, 0), i.e. to that for dust; cf. Fig. 12. Hence
D is the future attractor of the flow in XVIII × (0, 1), since this fixed point is the only
candidate for an ω-limit set for generic orbits.

l = 0 corresponds to Vlasov dynamics with massless particles; cf. [4, section 3].
Hence the result states that Vlasov matter with massive particles behaves like Vlasov
matter with massless particles asymptotically to the past, and like dust asymptotically
to the future. This thereby also completes the results of [5] regarding the forever
expanding Einstein-Vlasov LRS Bianchi models.
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Institute for Mathematical Physics in Vienna in summer 2011.

6 Appendix: fixed points at infinity

To find the fixed points of (2), (8) and (9) at infinity, a method presented in [12, 3.10]
is adopted in a slightly modified way:

6.1 In two dimensions

Consider a two-dimensional system

[
HD
(+

]′
=

[
P(HD, (+)

Q(HD, (+)

]

9 One can use the same arguments as in Sect. 3.5 and Appendix 6 for each l = const hypersurface to prove
that all orbits can be trapped in a compact subset of R4.
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Fig. 18 Projection onto the
‘Poincaré cylinder’

where P and Q are polynomials of degree n and m in HD respectively, satisfying
n ≤ m + 1. One can write this system as

Q(HD, (+)dHD − P(HD, (+)d(+ = 0, (15)

where however the information about the direction of the flow is lost. Next the
HD coordinate is formally compactified by projecting the state space onto the
‘Poincaré cylinder’ as depicted in Fig. 18. The corresponding coordinate transfor-
mation (HD, (+) → (X, (+, Z) : X2 + Z2 = 1 is given by HD = X

Z . Applying this
to (15) and multiplying by Zm+2 yields

Zm+1 Q(X/Z , (+)dX − Zm+2 P(X/Z , (+)d(+ − X Zm Q(X/Z , (+)dZ = 0,

(16)
which defines a flow on the ‘Poincaré cylinder’; cf. [12, p. 267]. Points at infinity in

the original state space correspond to points on the ‘equator’ X = 1, Z = 0 on the
‘Poincaré cylinder’. Furthermore, evaluating (16) with X = 1, Z = 0 gives the flow
on the ‘equator’, which corresponds to the flow at infinity,

(
Zm Q(X/Z , (+)

)∣∣
X=1,Z=0dZ = 0. (17)

Note that the first two terms of (16) vanish since they are at least proportional to Z .
This is not true however for the third term of (16). From (17), for (Zm Q)|X=1,Z=0 2= 0
it follows that dZ = 0, which corresponds to trajectories through a regular point on
the ‘equator’, where the sign of (Zm Q)|X=1,Z=0 determines the flow direction. Fixed
points on the ‘equator’ correspond to solutions of (Zm Q)|X=1,Z=0 = 0; cf. [12, p.
268 Thm 1]. Solving this equation for Q in the context of (8) and (9) yields (+ = ±1
for the fixed points at infinity in VVIII and BIII respectively, i.e. T∞ := [∞, −1]T and
Q∞ := [∞, 1]T.

6.2 In three dimensions

The generalisation to three or more dimensions is straightforward; cf. [12, p. 277 ff].
Consider a three dimensional system




HD
(+
M1




′

=




P(HD, (+, M1)

Q(HD, (+, M1)

R(HD, (+, M1)



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where P, Q and R are polynomials of degree l, n and m in HD respectively, satisfying
n + 1 ≥ l ≤ m + 1. One can write this system as

Q(HD, (+, M1)dHD − P(HD, (+, M1)d(+ = 0

R(HD, (+, M1)dHD − P(HD, (+, M1)dM1 = 0, (18)

where however the information about the direction of the flow is lost. Again the
HD coordinate is formally compactified by means of a projection on the ‘Poincaré
cylinder’, i.e. by a coordinate transformation (HD, (+, M1) → (X, (+, M1, Z) :
X2+Z2 = 1 given by HD = X

Z . Applying this to (18), multiplying by Zm+2 and Zn+2

respectively and evaluating the resulting expressions at the ‘equator’ X = 1, Z = 0
yields

(
Zm Q(X/Z , (+, M1)

)∣∣
X=1,Z=0dZ = 0

(
Zn R(X/Z , (+, M1)

)∣∣
X=1,Z=0dZ = 0.

Trajectories through a regular point on the ‘equator’ corresponds to dZ = 0, where
the flow direction is determined by the signs of

(
Zm Q(X/Z , (+, M1)

)∣∣
X=1,Z=0 and(

Zn R(X/Z , (+, M1)
)∣∣

X=1,Z=0. Fixed points on the ‘equator’ correspond to solutions
of the system of equations {(Zm Q)|X=1,Z=0 = 0, (Zn R)|X=1,Z=0 = 0}. Solving this
for Q and R in the context of (2) yields (+ = ±1, M1 = 0 for the fixed points at
infinity in XVIII, i.e. T∞ := [∞, −1, 0]T and Q∞ := [∞, 1, 0]T.
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Part 3

Plotting interactive flow diagrams
with Maple



Remark

This part is supplemented by a Maple document with the same content as
presented here and working examples. It is available online; [1]. The document
was written in Maple 15. The compatibility with other Maple versions cannot be
guaranteed.



CHAPTER 6

Some basic Maple

This chapter serves as a short introduction to the computer algebra system
Maple with a focus on the commands and features that are needed to create inter-
active flow diagrams, which is then the subject of chapter 7. Section 1 serves to get
familiar with the Maple surface. After a discussion of some Maple commands in
section 2, section 3 discusses the use of the basic tools to create interactive features
in Maple documents, embedded components.

1. The Maple surface

Figure 10 shows the Maple surface with an open document which is displayed
in the main window. Here the user can type in text and math input, and Maple
displays the output of executed commands. By default Maple displays math in
a fashion close to handwriting, which is Maple internally called 2D-math. On the
contrary the more classical code-like fashion to display commands is called 1D-math
and can be used optionally. For instance the 1D-math input

1D- versus 2D-mathsin(1/sqrt(x-1)) corresponds to sin

(
1√
x− 1

)
in 2D-math. In this text I will present all Maple code in 2D-math, with little
exceptions where 1D-math is required. All math input is case sensitive. If one
wishes to suppress the output of a maple command one has to end it with a colon.
Several inputs can be collected in a single execution group, which are then all
evaluated together. Here one has to end each input except for the last one with
either a colon or a semicolon, where the semicolon would indicate that the output
of the respective input shall be displayed. One can also split up inputs into two or
more lines by pressing [alt]+[enter]. The toolbar at the top of the document offers
buttons to choose between math and text input and offers several layout options.

palletsThe toolbar on the left contains a list of palettes. Each palette contains clickable
items. For instance the ‘Expression’ palette contains clickable templates for often
used math expressions, while the ‘Components’ palette contains tools for embedding
interactive features into the document; cf. section 3.

The toolbar at the top of the Maple window contains shortcuts for frequently
used features, like saving files or executing the document.

2. Some basic commands

assigning and
clearing variables

A colon followed by an equation sign is used to assign values to variables. For
instance the command β := 2.5 assigns the value 2.5 to the variable β, but one
could also assign other types of data to a variable, such as a matrix or a text
string. To clear a single variable one can assign the respective text string to it, e.g.
by β := ‘β’. The restart command clears the internal memory (for instance all
assignments to variables) such that Maple behaves essentially as if just started. So
it is common praxis to begin a maple document with this command to ensure that
no complications occur due to prior executed code.
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Figure 10. The Maple surface.

The syntax for most mathematical commands is oriented close to mathematical
handwriting: Multiplication can be entered with either a space or with the *-key,
in which case it is displayed as a dot; a b or a · b. A map f that maps an x to an
f(x) is defined with the syntax f := x → f(x), where the arrow is typed as ->.
Derivatives can be entered in several ways, for instance for functions f : R → R
very simple with the prime notation; f ′(x).sets, lists and

sequences
A set is entered by {. . . , . . . , . . . }. An

ordered set is in Maple called a list, and is entered like a set, just with square
brackets; [. . . , . . . , . . . ]. The nth element of a list A can be addressed by An. The
seq command is often useful to create sets or lists. For instance the command
[seq(3n, n = 1..3)] would create the list [3, 6, 9]. As an additional option a step size
for n can be given to the seq command. The graph of a function f : R → R can
be plotted with plot(f(x), options).the Maple help Maple provides a very good help system. One
can call the help page of a specific command, say plot, directly from the document
by executing the code ?plot.

The most basic commands are available in Maple straight away.packages More spe-
cific commands are organised in packages. To use them one has to either load
the command from the package, load the whole package or address the package
together with the command. For instance with(plots) would load the whole plots
package while with(plots, display) would just load the display command from this
package. Without loading the package or the command, it can be used with the
syntax plots:-display or alternatively plots[display]. For some older packages, like
DEtools, only the latter syntax works. It should be noted that there are packages
which are not compatible with each other.

procedures Maple also offers the user to create his own commands, called procedures, with
the proc command. For example, the following code would define a new command
lineplot with two arguments k and d, that would plot the graph of the straight line
kx+ d:

restart :
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lineplot := proc(k, d)

local x, y :

plot(k x+ d, x = −10..10, y = −10..10, thickness = 2, colour = grey)

end proc:

local variables within
procedures

The local command therein is used to declare x and y as local variables within the
procedure. This ensures that no problems occur when the same variables are also
used outside of the procedure for other purposes. Save programming of procedures
therefore means to declare all internally used variables that should not interfere
with the rest of the document as local.

3. Embedded components

Maple offers a variety of interactive components that can be embedded in the
document. components palletThey can be found in the ‘Components’ palette in the toolbar on the
left. As a demonstrative example should serve the plot of the line x + d in a plot
component where the offset d is adjustable with a slider component:

For this one first has to add the components to the document by clicking on
the respective icons in the palette. component

properties
The properties of each component can be set

by right clicking on it and choosing ‘Component Properties...’ from the appearing
drop-down menu. The properties can then be set in the respective opening window;
cf. figure 11.

Figure 11. The properties windows of the slider and plot components.

Most options are self-explanatory. For instance names can be assigned to the
components. Here they shall be called COMPslider and COMPplot respectively. In
the present example the graph in the plot component is supposed to react on a
change of the slider position. The respective code must therefore be entered in the
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code window that appears after clicking the ‘Edit...’ button of the ‘Action When
Value Changes’ property of the slider component; cf. figure 12.

Figure 12. The code for the slider’s ‘Action when value changes’.

The code is thereby placed between the lines use DocumentTools in and end

use; and can be entered in 1D-math only. Each input except for the last has to
be ended with a semicolon or colon.GetProperty and

SetProperty
The first command line in figure 12 reads

out the current slider position and assigns this value to the variable d by use of the
GetProperty command. The second line then draws the plot in the plot component
by use of the SetProperty command. The lineplot command used therein is the
procedure defined at the end of section 2. After saving the code by clicking ‘Ok’,
the plot reacts to the adjustments of the slider in the desired manner. An example
plot is shown in figure 13.

Figure 13. The plot component shows a plot of the line x + d,
where d is adjusted with the slider component.

action when clicked An interesting feature of the plot component is it’s ‘Action When Clicked’
property; cf. figure 11. For a demonstration the previous example shall be modified
such that the plotted line goes through the point in the plot on which is clicked.
The respective code is shown in figure 14:
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Figure 14. The code for the plot’s ‘Action When Clicked’.

clickx and clicky
properties

The position at which the plot was clicked is read out from the clickx and
clicky property of the plot component, and stored in the variables cx and cy. The
value of d is still read out from the slider component. Together these variables
then serve to compute the slope k of the line, after which the line can be plotted
as before. The pointplot is added to mark the clicked point by a dot. Since the
plot shall still react on adjustments of the slider, the code of figure 14 must also
be entered for the slider’s ‘Action When Value Changes’. An example plot of the
resulting interactive graph is shown in figure 15. the ‘Execute click

and drag code’ tool
It is important to note that, in

order to perform a click that executes the ‘Action When Clicked’, one has to use
the ‘Execute click and drag code’ tool . It can be found in the toolbar above the
code window when the plot is selected.

Figure 15. The plot component shows a plot of the line kx + d
that goes thought the point on which the plot was clicked last
(black dot), and where d is adjusted with the slider component.





CHAPTER 7

Plotting flow diagrams

This chapter now shows how to plot flow diagrams of dynamical systems in
Maple. Section 1 introduces the DEplot command and shows how to plot simple
flow diagrams with it. Section 2 then shows how one can draw interactive flow dia-
grams by making use of embedded components, which were introduced in section 3
of the previous chapter.

1. Simple flow diagrams

Maple offers a very simple and convenient way to plot a flow diagram with the
DEplot command which is contained in the DEtools package. I should however
outline that there are other possibilities to plot flow diagrams as well. In fact the
DEplot command is not ideal in the matter of computing efficiency when drawing
interactive plots or animations. Other approaches are more efficient; cf. [2]. For
the present purposes it is however easily fast enough and has the advantage of being
the most simple way, where only one command is needed. To plot a flow diagram
with DEplot the command has to be fed arguments as follows:

the DEplot
command

DEplot(dynamical system, dynamical quantities, time range, options)

The first argument is the dynamical system entered as a list or set of ordinary
differential equations. The second argument is a list or set of the dynamical quan-
tities, while the third argument fixes the range of the time variable over which the
system shall be integrated. All following arguments are optional. The simple use
of the command shall be demonstrated by means of the dynamical system ((8) in
part 2) [

HD

Σ+

]′
=

[
(1−H2

D)(HD − 2Σ+)Σ+

(1− Σ2
+)
(
2 + (1− Σ2

+) + (HD − Σ+)2
)]

in the state space VVIII given by HD ∈ (1,∞) and Σ+ ∈ (−1, 1); cf. figure 1 and
section 3.1 in part 2. vector plotsThe following code then produces the vector plot depicted in
figure 16:

restart : with(DEtools,DEplot) :

DSV :=
[
H ′(τ) = (1−H2) (H − 2Σ) Σ,

Σ′(τ) = (1− Σ2)
(
2 + (1− Σ2) + (H − Σ)2

) ]
:

Options := color = black, arrows = curve, axes = boxed, labels = [HD,Σ+] :

DEplot(DSV , [H(τ),Σ(τ)], τ = −1..1, H = 1..5,Σ = −1..1, Options)
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Figure 16. A vector plot of the flow in VVIII.

The arrows point in the direction of the flow at a grid of points in the state space
and already give a good impression on how the flow lines look and where fixed
points are located, especially when the option arrows = curve or arrows = comet
is used.

adding flow lines,
initial conditions

However one would also want to add actual flow lines to this plot. For this one
has to give initial conditions as an additional argument to the DEplot command
right after the argument for the time range. These have to be entered in the form
of a set or list of lists. For instance [[H(0) = 2,Σ(0) = 0], [H(0) = 4,Σ(0) = 0]]
would draw two flow lines through these initial points for τ in the entered range.
(When initial conditions are entered, the use of the variables with their subscripts,
i.e. HD and Σ+, would cause an error.) The following code then produces the plot
depicted in figure 17 where the initial data points are distributed along the straight
line that goes from the upper left to the lower right corner of the plot region:

InitCond := [seq(H(0) = i,Σ(0) = −.5i+ 1.5, i = 1..4.75, .25)] :
Options2 := Options, numpoints = 500, linecolour = grey, obsrange = false :

DEplot(DSV , [H(τ),Σ(τ)], τ = −1..1, InitCond,H = 1..5,Σ = −1..1, Options2)

Figure 17. A vector plot with flow lines of the flow in VVIII.
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The numpoints option can be used to adjust the accuracy to which the solution
curves are integrated. A too low value would lead to edgy lines. High values in turn
produce smooth flow lines but also increase the computational costs. The obsrange
option specifies if the integration of a solution should be stopped once the solution
curve has left the plot region. The default is true. In this case it is set to false
since there are flow lines which return to the plot region. The plot in figure 17 is
to be compared with the analytical result; cf. figure 4 in part 2.

2. Interactive flow diagrams

Except for the system in the vacuum boundary VVIII, part 2 dealt with systems
that depend on the matter parameters (w, β) out of the parameter space P :=(
− 1

3 , 1
)
×R. In these cases one could of course draw flow diagrams as described in

section 1 for fixed parameter values. However to investigate how the flow changes
with the parameters one would like to have an interactive flow diagram in which
the parameters would be adjustable in an intuitive fashion, and where one would
directly see the change in the flow in reaction of a change of the parameters. This
can be achieved by the use of embedded components which were introduced in
section 3 of chapter 6.

The goal of this section is to create an interactive flow diagram of both the
system ((9) in part 2)[

HD

Σ+

]′
=

[
−(1−H2

D)
(
2− 3

2 (1− w)(1− Σ2
+)−HDΣ+

)
−(1− Σ2

+)
(
(1−H2

D) + 3
2 (1− w)(HDΣ+ + β)

)]
in the Bianchi III boundary BIII specified by HD ∈ (1,∞) and Σ+ ∈ (−1, 1), and[

M1

Σ+

]′
=

 M1

(
3
2 (1− w)Σ2

+ − 4Σ+ + 1+3w
2

(
1− M2

1

12

))
M2

1

6 (2− Σ+)− 3
2 (1− w)

(
1− Σ2

+ − M2
1

12

)(
Σ+ − β

2

)
in the boundary S] given by M1 ∈

(
0,
√

12(1− Σ2
+)
)

and Σ+ ∈ (−1, 1). The latter

system is obtained from the full system ((2) in part 2) for HD = 0. The result
should be in the fashion of the analytical results; cf. figures 5 to 17 of Part 2.

setting up the
components

Clearly two plot components are needed that displays the flow plots. They shall
be called COMPflowB and COMPflowS respectively. The parameters could for exam-
ple be adjusted with two sliders. A more fancy way however is to use a second plot
component which displays a part of the parameter space P, and to use it’s ‘Action
When Clicked’ to pick a value for (w, β). This shall be named COMPparameters.
The plot of P shall also display the bifurcation lines which correspond to qualita-
tively different flows on BIII and S]; cf. figure 3 of part 2. The relevant bifurcation
lines are ±1, β±(w) and β[(w) for the flow in BIII, as well as ±2 and β](w) for the
flow in S]. These have to be plotted in COMPparameters each time COMPparameters
is clicked. code to plot the

bifurcation lines
Hence it is smart to prepare the respective code in procedures to keep

the necessary code in the 1D-math environment of the ‘Action When Clicked’ to a
minimum:

restart :

BifurcLinesB := proc()

local w,Options,Options1, Options2 :

Options := thickness = 2, colour = black, labels = [‘w’, ‘β’] :
Options1 := Options, view = [−1/3..1,−3..3], discont = true :
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Options2 := w = −1/3..− .2, Options :

plots:-display

(
plot

([
−1, 1, 2w

1−w

]
, Options1

)
,

plot

([
seq

(
−1+σ

√
−3+(1−3w)2

3 (1−w) , σ = [−1, 1]

)]
, Options2

))
end proc:

BifurcLinesS := proc()

local w,Options :

Options := thickness = 2, colour = grey,
labels = [‘w’, ‘β’], view = [−1/3..1,−3..3] :

plot

([
−2, 2,

8−2
√

(3(1−w))2+4(1+3w)

3(1−w)

]
, w = −1/3..1, Options

)
end proc:

code to plot the
flow diagrams

Equally the process of plotting the flow diagrams shall be prepared as procedures
that takes the values of w and β as arguments:

FlowP lotB := proc(w, β)

local DSB,H,Σ, τ , InitCond,Options :

InitCond := [seq([H(0) = i, Sigma(0) = −.5 i+ 1.5], i = 1..4.75, .25)] :
Options := colour = black, arrows = curve, axes = boxed,

labels = [‘HD’, ‘Σ+’)], numpoints = 500,
linecolour = grey, obsrange = false :

DSB :=
[
H ′(τ) = −(1−H(τ)2)

(
2− 3

2 (1− w) (1− Σ(τ)2)−H(τ) Σ(τ)
)
,

Σ′(τ) = −(1− Σ(τ)2)
(
(1−H(τ)2) + 3

2 (1− w) (H(τ) Σ(τ) + β)
) ]

:

with(DEtools,DEplot) :
DEplot(DSB, [H(τ),Σ(τ)], τ = −1..1, InitCond,H = 1..5,Σ = −1..1, Options2)

end proc:

FlowP lotS := proc(w, β)

local DSS,M,Σ, τ , InitCond,Options :

InitCond := [seq([M(0) = i/3, Sigma(0) = 0], i = −10..1)] :
Options := colour = black, arrows = curve, axes = boxed,

labels = [‘−M1’, ‘Σ+’)], numpoints = 500, linecolour = grey :

DSS :=
[
M ′(τ) = M(τ)

(
3
2 (1− w)Σ(τ)2 − 4Σ(τ) + 1+3w

2

(
1− M(τ)2

12

))
,

Σ′(τ) = M(τ)2

6 (2−Σ(τ))− 3
2 (1−w)

(
1− Σ(τ)2 − M(τ)2

12

)(
Σ(τ)− β

2

) ]
:
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plots:-display
(
DEplot(DSS, [M(τ),Σ(τ)], τ = −1..3,

InitCond,M = −
√

12..0,Σ = −1..1, Options),

plots:-implicitplot(M = −
√

12(1− Σ2),

M = −
√

12..0,Σ = −1..1, colour = black, thickness = 2)
)

end proc:

code to mark the
clicked point

To provide the possibility to read the chosen value of (w, β) from the plot of P,
the clicked point shall be marked by a dot and trace lines. This is prepared in yet
another procedure:

TraceClick := proc(cw, cb)

local cpoint, clines,Options, w, β :

Options := w = −1/3..1, β = −3..3, colour = black :
cpoint := plots:-pointplot([cw, cb], colour = black) :
clines := plots:-implicitplot([w = cw, β = cb], Options) :

plots:-display(cpoint, clines) :

end proc:

code for the ‘Action
When Clicked’

What is left to do is to type the code for the ‘Action When Clicked’ of COMPpara-
meters, where the above procedures are called; cf. figure 18:

Figure 18. The code for the ‘Action When Clicked’ of the plot of P.

Figures 19 to 24 show example plots of the resulting interactive flow diagram.
These are to be compared with the analytical results in figures 5 to 17 of part 2.
Since the Maple plots do not contain the flow in the Bianchi I boundary XI, there
are two cases less here than in part 2.
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(a) corresponds to figure 5 of part 2 (b) corresponds to figure 6 of part 2

Figure 19. Example plots of the interactive flow diagram. The
labels refer to the corresponding diagrams of the analytical results
in part 2, of which the respective plot is a representative.
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(a) corresponds to figure 7 of part 2 (b) corresponds to figure 8 of part 2

Figure 20. Example plots of the interactive flow diagram. The
labels refer to the corresponding diagrams of the analytical results
in part 2, of which the respective plot is a representative.
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(a) corresponds to figure 9 of part 2 (b) corresponds to figure 10 of part 2

Figure 21. Example plots of the interactive flow diagram. The
labels refer to the corresponding diagrams of the analytical results
in part 2, of which the respective plot is a representative.
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(a) corresponds to figure 11 and 13 of part 2 (b) corresponds to figure 14 of part 2

Figure 22. Example plots of the interactive flow diagram. The
labels refer to the corresponding diagrams of the analytical results
in part 2, of which the respective plot is a representative.
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(a) corresponds to figure 12 and 15 of part 2 (b) corresponds to figure 16 of part 2

Figure 23. Example plots of the interactive flow diagram. The
labels refer to the corresponding diagrams of the analytical results
in part 2, of which the respective plot is a representative.
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Figure 24. Example plot of the interactive flow diagram. This
plot is a representative of the analytical result of figure 17 of part 2.
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Abstract

This thesis is organised in three parts: Part 1 is concerned with a short in-
troduction to spatially homogenous cosmology and the use of methods from the
mathematical theory of dynamical systems in this research field. It aims to help
the reader who is just starting to become acquainted with spatially homogenous
cosmology to get a good overview and to become familiar with the basic ideas and
concepts. After the lecture of part 1 the reader should then be able to read and
understand part 2 at least along general lines. Part 2 is a reprint of my research ar-
ticle Dynamics of locally rotationally symmetric Bianchi type VIII cosmologies with
anisotropic matter which was published by Springer in 2012 in the journal General
Relativity and Gravitation. It deals with the analysis of one particular class of
spatially homogenous cosmologies. The therefor chosen matter contents are in gen-
eral anisotropic and comprise a larger family of models in which for instance also
perfect fluids are contained as special cases. The results allow to draw conclusions
on how the grade of anisotropy of the matter content effects the past and future
asymptotic evolution of these models. Part 3 gives a tutorial on how to visualise
the solutions of the evolution equations examined in part 2 in an interactive flow
diagram with the computer algebra system Maple. The such produced diagrams
allow the user to see a change in the behaviour of the solutions as a direct reaction
to the change in the matter parameters, where one of them essentially gives the
grade of matter anisotropy. They are therefore well suited to clearly represent the
complex space of solutions, and most notably to present the physical conclusions
which were drawn out of the analysis in a comprehensible fashion. Part 3 is also
supplemented by a Maple document, which has the same content than presented
in this part, with working examples.
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Zusammenfassung (German abstract)

Diese Arbeit besteht aus drei Teilen: Teil 1 gibt eine kurze Einleitung in die
räumlich homogene Kosmologie und in die Anwendung von Methoden aus der math-
ematischen Theorie der dynamischen Systeme auf diesem Gebiet. Sie ist an den
Leser gerichtet der gerade damit beginnt sich mit der räumlich homogenen Kos-
mologie vertraut zu machen, und soll ihm helfen einen guten Überblick über dieses
Gebiet zu erlangen, und die grundlegenden Ideen und Konzepte zu verstehen. Nach
der Lektüre von Teil 1 sollte es dem Leser dann möglich sein Teil 2 zu lesen und
zumindest im Kern zu verstehen. Teil 2 ist ein Abdruck meines Aufsatzes Dynam-
ics of locally rotationally symmetric Bianchi type VIII cosmologies with anisotropic
matter welcher 2012 von Springer in der Zeitschrift General Relativity and Grav-
itation veröffentlicht wurde. Er befasst sich mit der Analyse einer bestimmten
Klasse von räumlich homogenen kosmologischen Modellen. Die hierfür gewählten
Materieinhalte sind im allgemeinen anisotrop, und umschließen eine größere Familie
von Modellen in der etwa auch ideale Flüssigkeiten als Spezialfall enthalten sind.
Die Resultate erlauben es Schlüsse darüber zu ziehen in welcher Weise sich der Grad
der Anisotropie des Materieinhaltes auf die asymptotische Dynamik in der fernen
Vergangenheit und Zukunft auswirkt. Teil 3 gibt eine Anleitung zur Visualisierung
der Lösungen der in Teil 2 behandelten Bewegungsgleichungen in einem interak-
tivem Flussdiagramm mit dem Computer Algebra System Maple. Die so erstellten
Diagramme erlauben es dem Benutzer eine Änderung im Verhalten der Lösungen
als direkte Reaktion auf eine Änderung der Materieparameter wahrzunehmen, von
denen einer im Wesentlichen den Grad der Anisotropie bestimmt. Sie eignen sich
daher sehr gut dazu den komplexen Lösungsraum übersichtlich darzustellen und vor
allem auch um die aus der Analyse gezogenen physikalischen Schlüsse verständlich
zu präsentieren. Teil 3 ist zudem durch ein Maple Dokument ergänzt, welches den
Inhalt dieses Teils mit ausführbaren Beispielen wiedergibt.
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