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Abstract

This thesis is organized as follows: In chapter 1 generalized Langevin equations
are presented as a class of stochastic differential-integral equations obtained by an
application of the Zwanzig projection formalism.

The starting point is a statistical mechanical model describing a macroscopic
system that interacts with a heat bath consisting of a large number of independent
harmonic oscillators. The coupling between system and bath is assumed to be
linear in the bath variables, but arbitrary in the system variables. This allows for an
explicit integration of the bath equations of motion yielding an effective equation
for the system. Stochasticity is introduced by the assumption that at some initial
time, the bath variables are drawn at random from a canonical distribution.

In chapter 2 thermodynamic- and Markovian limits of generalized Langevin
equations are studied. This investigation makes it possible to draw some interest-
ing connections between generalized Langevin equations and stochastic differen-
tial equations and points in the direction of future research.

The last two chapters constituting the appendix are dedicated to the formal
development of convergence theorems for stochastic processes that are necessary
to handle the thermodynamic limits discussed in chapter 2. Apart from very few
exceptions, all proofs are explicitly carried out.
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Chapter1
Generalized Langevin Equations

In 1908, Paul Langevin proposed the following heuristic equation in order to de-
scribe Brownian motion, i.e. the motion of a particle in a fluid due to collisions
with the molecules of the fluid ([1]):

Ṗt =−6πaη/m Pt +ξ (t). (1.1)

Here Pt is the momentum of the particle at time t, a the radius of the particle
and η the viscosity of the fluid. Langevin himself explained ξ (t) to be a rapidly
fluctuating random function which is required to obey

〈Ptξ (t)〉= 0 ∀t,

where 〈.〉 denotes an "ensemble average“ not further defined. From a modern
viewpoint, 〈.〉 denotes expectation values with respect to the Wiener measure (see
below) and ξ (t) can be identified with Gaussian white noise

〈ξ (t)〉= 0 ∀t
〈ξ (t)ξ (t ′)〉= 12πaη kBT δ (t− t ′)

where kB is the Boltzmann constant and T is the temperature of the fluid.
Equation (1.1) successfully provided a complementary picture to Einstein’s

and Smoluchovsky’s description of Brownian motion in terms of diffusion equa-
tions (Einstein 1905, Smoluchovsky 1906), but it took quite some time before
the underlying notions of stochastic processes (Wiener 1923, Kolmogorov 1938)
and especially of stochastic differential equations (Ito, Stratonovich) were well
understood mathematically.

As a first step, in 1923 Norbert Wiener showed the existence of a stochastic
process W with the following properties:
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(i) At some initial time t0 = 0, the process is zero with probability one:

W0 = 0;

(ii) The sample paths t→Wt are continuous with probability one;

(iii) Wt has independent increments with

Wt−Ws ∼N (0, t− s) for 0≤ s < t.

This Wiener process proved very useful in the theory of Brownian motion in the
sense that its sample paths constitute asymptotic solutions to the Langevin equa-
tion:

If the Brownian particle is at rest at time zero (i.e. P0 = 0), then after t >>
m/6πaη it approaches a stationary state described by the equation

Pt =
∫ t

0
ξ (t ′)dt ′ (1.2)

which has the solution ([7], p.80f)

Pt =
√

12πaη kBT Wt .

Notice that we did not write

Ṗt = ξ (t)

instead of (1.2) because the Wiener process is nowhere differentiable ([7], p.68).
For the same reason, (1.1) is not well-defined mathematically. But if we write
symbolically

ξ (t)dt =
√

12πaη kBT dWt

in the sense of (1.2), we may recast (1.1) into the following integral equation:

Pt−P0 =−s
∫ t

0
Pt ′dt ′+

√
2smkBT

∫ t

0
dWt ′. (1.3)

with s = 6πaη/m. The second integral in (1.3) is understood as Riemann-Stieltjes
integral over the Wiener measure dW associated with the Wiener process and a
trivial example of an Ito- or Stratonovich stochastic integral. Consequently, (1.3)
is a prototypical case of a stochastic differential equation (SDE) - its solution is
called Ornstein-Uhlenbeck process.
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Remark (Notation of (generalized) Langevin equations). In the following, we
adopt the convention of symbolically writing (generalized) Langevin equations
like (1.1) instead of the associated, more rigorous integral equations like (1.3).

As mentioned at the beginning, the Langevin equation (1.1) is a heuristic equa-
tion. It took quite a long time until it was given a solid foundation in Hamiltonian
mechanics. The main idea of the works of Ford, Kac and Mazur ([2]) as well as
Zwanzig ([4]) and much later Caldeira and Leggett ([6]) that addressed this prob-
lem is contained in the following program, which is attributed to Josiah Willard
Gibbs, and taken from [2]:

(i) Solve the equations of motion of the mechanical system consisting of a
Brownian particle coupled to heat bath. The solution consists of expressions
for the coordinates and momenta at time t in terms of the initial coordinates
and momenta.

(ii) Assume the initial coordinates and momenta of the heat bath to be distributed
according to some statistical distribution, e.g. that of the canonical ensem-
ble.

(iii) Show that the coordinate and momentum of the Brownian particle, as func-
tions of time, will then represent stochastic processes (whose statistical prop-
erties arise from the initial distribution of the heat bath) of the kind familiar
from standard theories.

While in [2] and [6] one of the primary aims was to develop a theory of quantum
Brownian motion by studying a quantum Langevin equation, the scope of [4] is
somewhat different:

By considering more general couplings between system and heat bath than
in [2], [6], Zwanzig obtained equations that show many features of the Langevin
equation (such as the fluctuation-dissipation relation) and indeed contain it as a
special case, but have a much richer structure. Therefore he called them general-
ized Langevin equations.

Assumption A.1 (Classicality). The framework of this thesis is non-relativistic
classical statistical mechanics. That is the reason why you will not find any h̄ or
c apart from the ones you just read.

This chapter is dedicated to the derivation of generalized Langevin equations
loosely following [4]. The starting point is the following situation: An arbitrary
system S with characteristic timescale τS is brought in contact with a heat bath B
(timescale τB). If τS >> τ >> τB, then after a time τ the bath is in approximate
equilibrium with respect to the system which effectively did not change in the
meantime. This state will be denoted initial state, and the initial time is set to 0.
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1.1 Hamiltonian and Equations of Motion
Remark (Generalized dynamics). Due to compactness of notation and greater gen-
erality, coordinates and momenta will be treated on equal footing and masses will
be set equal to 1 which amounts to a suitable rescaling of coordinates. That is,
the state of the system is collectively described by a vector X , and similarly the
state of the bath is described by a vector Y . If necessary, the standard form of
Hamiltonian dynamics can be regained by setting

X =
(
Q,P

)T

Y =
(
q1, . . .qn, p1, . . . pn

)T
,

where Q = (Q1, . . .Qd) etc. if d is the physical dimension and n is the number of
components constituting the heat bath. This setting corresponds to the following
representation of symplectic matrices:

CX =

(
0 1d
−1d 0

)
(1.4)

CY =

(
0 1nd
−1nd 0

)
, (1.5)

where 1z is the unit matrix of size z.

Remark (Dimension). To simplify the following calculations, the dimension d will
be set equal to 1 - it is straightforward to regain the full expressions if necessary.

We start with writing the total Hamiltonian H as a sum of the system Hamilto-
nian HS and a remainder Hamiltonian HR which collects bath-, interaction- and
counterterms:

H(X ,Y ) =: HS(X)+HR(X ,Y ). (1.6)

Assumption A.2 (Hamiltonian structure).

• HS(X) is an arbitrary Hamiltonian.

• HR is given by the following quadratic form:

HR(X ,Y ) :=
1
2
[Y −a(X)]T K [Y −a(X)], (1.7)

where K is a symmetric positive definite matrix
and a(X) is a vector-valued function.
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By performing a suitable orthogonal transformation in the bath space and subse-
quent rescaling, K may always be written in the following form:

K :=
(

Ω2 0
0 1n

)
(1.8)

with Ω := diag(ω1, . . .ωn). Consequently, the bath Hamiltonian (which is the
X-independent part of HR) has the following standard representation:

HB(Y ) :=
1
2

Y T KY =
1
2

n

∑
j=1

(p2
j +ω

2
j q2

j). (1.9)

We see that the heat bath consists of n independent harmonic oscillators with
eigenfrequencies ω1, . . .ωn.

Assumption A.3 (Structure of the coupling). The coupling a(X) can be written
as a product in the following way:

a(X) := γ0 Γ(Ω) G(X) (1.10)

where γ0 is a function of n,

Γ(Ω) :=
(

Γq(Ω) 0
0 Γp(Ω)

)
(1.11)

is a matrix-valued function of the eigenfrequencies and

G(X) :=
(

G1(X)
G2(X)

)
(1.12)

is an arbitrary function of the system variables X.

Identifying the interaction Hamiltonian HI as that term of HR that depends both
on X and Y we have

HI(X ,Y ) :=−1
2
[a(X)T KY +Y T Ka(X)]

=−Y T Ka(X)

=−γ0

n

∑
j=1

[ω2
j Γq(ω j)q jG1(X)+Γp(ω j)p jG2(X)]. (1.13)

We notice that each oscillator couples to the system in the same way. The remain-
ing term

HSI(X) :=
1
2

a(X)T Ka(X)=
γ2

0
2

n

∑
j=1

[ω2
j Γq(ω j)

2G1(X)2+Γp(ω j)
2G2(X)2] (1.14)

5



can be understood as self-interaction Hamiltonian and serves as a counterterm: If
HSI was not present,

• one can immediately see that HR would not be positive;

• an unphysical renormalization of the generalized force would arise (see be-
low).

Finally, we write down the equations of motion:

Ẋ =CX ∇X(HS +HR) =V (X)−CXW̃ (X)K[Y −a(X)] (1.15)
Ẏ =CY ∇Y (HR) =CY K[Y −a(X)], (1.16)

where ∇X and ∇Y denote gradients with respect to X and Y and the following
abbreviations are used:

• V (X) :=CX ∇X HS (the generalized force);

• W̃ (X) := ∇X aT (X).

The time evolution of the states X and Y described by the equations of motion will
be considered from 0 to 0 < T < ∞ where T is arbitrary.

1.2 Zwanzig Projection Formalism
We start with solving the equation of motion for the heat bath (1.16) while treating
a(X) as an external field. Since different times are involved, every expression
is labelled by the time it has to be evaluated at. By the method of variation of
parameters we find

Yt = exp(t CY K)Y0−
∫ t

0
dt ′ exp(t ′CY K)CY K a(Xt−t ′)

and via integration by parts

Yt−a(Xt) = exp(t CY K)[Y0−a(X0)]+
∫ t

0
dt ′ exp(t ′CY K)

d
dt ′

a(Xt−t ′).

Next we insert this result into the equation of motion for the system (1.15) and
use the chain rule

d
dt ′

a(Xt−t ′) =−W̃ T (Xt−t ′)Ẋt−t ′

6



to obtain

Ẋt =V (Xt)+
∫ t

0
dt ′CXW̃ (Xt)K exp(t ′CY K)W̃ T (Xt−t ′)Ẋt−t ′ (1.17)

−CXW̃ (Xt)K exp(t CY K)[Y0−a(X0)].

This integral-differential equation has the following interesting structure:

• The first term on the r.h. side only depends on the actual state of the system
(i.e. is local in time) and is the usual generalized force term (it is the only
term remaining if the coupling is set to zero).

• The second term depends on the history of the state of the system X from 0
to t and is therefore called memory function.

• The third term depends on the actual state of the system and the initial values
of bath and system.

Remark (Self-interaction). If the self-interaction term HSI is disregarded , (1.17)
becomes

Ẋt = Ṽ (Xt)+
∫ t

0
dt ′CXW̃ (Xt)K exp(t ′CY K)W̃ T (Xt−t ′)Ẋt−t ′ (1.18)

−CXW̃ (Xt)K exp(t CY K)[Y0−a(X0)]

with

Ṽ (Xt) :=V (Xt)−CXW̃ (Xt)Ka(Xt),

so neglecting HSI amounts to a renormalization of the generalized force. Espe-
cially, considering the important case of an affine coupling

a(Xt) = AXt +b, (1.19)

where A is an arbitrary, but nonzero matrix and b is an arbitrary vector in the bath
space, we have

W̃ (Xt) = ∇X aT (Xt) = AT .

Consequently, the only remaining term in (1.18) that depends both on the state of
the system Xt and the coupling is CX AT KAXt . If self-interaction is included, this
term would not be present thus making the coupling translationally invariant.
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Remark (Orthogonal dynamics). If we first solve the Hamiltonian equation for
the system (1.15) and then plug the solution into the Hamiltonian equation of
the heat bath (1.16), we obtain an equation that describes the so-called orthogonal
dynamics of the total system (consisting of system and heat bath). This orthogonal
dynamics equation together with equation (1.17) is completely equivalent to the
original Hamiltonian equations.

However, the point is that because we assume the bath Hamiltonian to be
quadratic and the interaction Hamiltonian to be linear in the bath variables (look-
ing at the equations of motion, this corresponds to a linear response of the bath to
the system), equation (1.17) becomes quite simple.

On the other hand, since both the system Hamiltonian HS and the part of the
coupling that depends on the state of the system G(X) are (almost) arbitrary, it is
not clear whether there even exists an analytical solution to equation (1.15), and
consequently to the resulting orthogonal dynamics equation.

This is the reason why orthogonal dynamics will not be considered here any
further.

Remark (Operator language). It is possible to generalize our discussion by intro-
ducing projection operators acting on the Liouville operator associated with the
total Hamiltonian; equation (1.17) and the orthogonal dynamics equation then ap-
pear as projections of the Liouville equation onto the system and bath subspaces,
respectively, and instead of a partial integration, the Dyson decomposition (Dyson
1949) is used to obtain the typical structure of the resulting equations.

But here we are following the original approach by Zwanzig [4], since it allows
for explicit calculations.

To put the following into a more transparent form, we now define

• W (X) := ∇X GT (X) = γ
−1
0 W̃ (X)Γ−1,

• L(t) := γ2
0 ΓK exp(t CY K)Γ,

• F(t) := γ0 ΓK exp(t CY K)[Y0−a(X0)].

Then we have (ΓT = Γ)

Ẋt =V (Xt)+
∫ t

0
dt ′CXW (Xt)L(t ′)W

T
(Xt−t ′)Ẋt−t ′−CXW (Xt)F(t). (1.20)

1.3 Stochasticity
The aim of this chapter is to derive generalized Langevin equations, that is a class
of equations of motion describing the time evolution of the state of a macroscopic
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system that is subject to diffusive and randomly fluctuating forces with micro-
scopic origin. Consequently, they should especially contain stochastic terms,
which we have not encountered in our derivation so far.

Assumption A.4 (Initial distribution of the bath variables). At t = 0 the heat
bath is in thermal equilibrium with respect to the initial state of the system.

Hence if the bath temperature is given by (kBβ )−1, where kB is the Boltz-
mann constant, the values of the collective bath variable Y0 are drawn from the
following canonical distribution (X0 is held fixed):

Y0 ∼ exp[−βH(X0,Y0)]∼ exp[−βHR(X0,Y0)]. (1.21)

This allows us to define expectation values in the following way:

〈A〉 :=
∫
R2n A exp[−βHR(X0,Y0)] dY0∫
R2n exp[−βHR(X0,Y0)] dY0

. (1.22)

By a short calculation we obtain the mean and autocovariance of the process F(t),
which we call from now on noise source:

〈F(t)〉= 0, (1.23)

〈F(t)FT (t ′)〉= β
−1L(t− t ′). (1.24)

In order to obtain (1.24), the following identity was used:

K−1[exp(t CY K)]T = exp(−t CY K)K−1,

which can be verified by a series expansion of the exponential. Since

• F(t) is linear in [Y0−a(X0)] which has a Gaussian distribution and

• its autocovariance 〈F(t)F(t ′)〉 is time-translation invariant,

it is a (mean zero) stationary Gaussian process; therefore it is completely de-
scribed by equations (1.23) and (1.24).

Especially interesting is equation (1.24) relating the noise source F(t) with
L(t): viewed as a general form of the fluctuation-dissipation relation, it gives L(t)
the meaning of a generalized friction coefficient.

Remark (Components of Y0). Recall that the heat bath is modelled by n indepen-
dent harmonic oscillators represented by the components of Y and each of them
couples to the system individually; as a consequence, the bath and interaction
Hamiltonians can be expressed as sums over the bath index j = 1 . . .n, where
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each summand corresponds to the bath or interaction Hamiltonian of one distinct
oscillator (compare (1.9), (1.13)).

The same is true for the self-interaction Hamiltonian (compare (1.14)); be-
cause of (1.21) and HR =HB+HI+HSI , this especially means that the components
of Y0 are statistically independent and obey a Gaussian distribution:

q0, j ∼ exp[−β

2
ω

2
j (q0, j− γ0Γq(ω j)G1(X0))

2] and

p0, j ∼ exp[−β

2
(p0, j− γ0Γp(ω j)G2(X0))

2]

for all j = 1 . . .n. We can put this result into the following, more useful form:

q0, j = γ0Γq(ω j)G1(X0)+β
−1/2

ω
−1
j ξ j and (1.25)

p0, j = γ0Γp(ω j)G2(X0)+β
−1/2

η j, (1.26)

where ξ j and η j are mutually independent sequences of i.i.d. (independent, iden-
tically distributed) random variables distributed according to a standard normal
distribution. We write

ξ j,η j ∼N [0,1].

Since the initial coordinates and momenta of the oscillators composing the heat
bath are statistically independent stochastic variables, it is reasonable to assume
that the oscillator frequencies are also independent random variables.

Assumption A.5 (Frequency distribution). The oscillator frequencies ω j
( j = 1 . . .n) are uniformly distributed in [0,na],

ω j = na
ν j, ν j i.i.d., ν1 ∼U [0,1] (1.27)

for some a ∈ (0,1).

This means that with increasing number of oscillators n, the oscillator spectrum
becomes increasingly broad and dense (since a < 1). As a consequence of the
assumed distribution, the mean spectral density is defined as

∆ω :=
na

n
= na−1. (1.28)

Remark (Notation of probabilities and expectation values). The process Xt is de-
fined on a 3n-dimensional probability space that is either generated by the 2n
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components of Y0 together with (ω1, . . .ωn) or by (ξ1, . . .ξn,η1, . . .ηn,ν1, . . .νn)
(compare equations (1.25),(1.26) and (1.27)).

In the following we will generally refer to the second set of generating ran-
dom variables. Especially, probabilities and expectation values with respect to
the ν-, ξ - or η-components only or some combination of them (like ξ - and η-
components) will be denoted P and E with subscript, for instance Pν , Eν or Eξ η .
Expectation values with respect to Y0 (denoted 〈.〉) will not be used any further.

1.4 Generalized Langevin Equations
In fact, (1.20) together with (1.23), (1.24) already has the structure we expect from
generalized Langevin equations. To put the result into a more transparent form,
we are going to determine the representation of the noise source F(t) and friction
coefficient L(t) in terms of ξ , η and ω and plug the result into (1.20). Recall that
the friction coefficient is given by

L(t) := γ
2
0 ΓK exp(t CY K)Γ

and the noise source by

F(t) := γ0 ΓK exp(t CY K)[Y0−a(X0)],

where the matrices K, CY and Γ have been defined as (see also (1.8), (1.5) and
(1.11)):

CY =

(
0 1n
−1n 0

)
K =

(
Ω2 0
0 1n

)
Γ =

(
Γq 0
0 Γp

)
with Ω := diag(ω1, . . .ωn). Let us first look at the expression exp(t CY K). Noting
that

(CY K)2 =−
(

Ω 0
0 Ω

)2

,

we have for any l ∈ N

(CY K)2l = (−1)l
(

Ω 0
0 Ω

)2l

and

(CY K)2l+1 = (−1)l
(

Ω 0
0 Ω

)2l+1(
Ω 0
0 Ω

)−1

CY K
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and consequently

exp(t CY K) =
∞

∑
l=0

t l

l!
(CY K)l

=
∞

∑
l=0

[
t2l

(2l)!
(CY K)2l +

t2l+1

(2l +1)!
(CY K)2l+1]

=
∞

∑
l=0

[
(−1)lt2l

(2l)!

(
Ω 0
0 Ω

)2n

+
(−1)lt2l+1

(2l +1)!

(
Ω 0
0 Ω

)2l+1( 0 Ω−1

−Ω 0

)
]

=

(
cos(Ωt) Ω−1 sin(Ωt)
−Ωsin(Ωt) cos(Ωt)

)
.

Therefore

K exp(t CY K) =

(
Ω2 cos(Ωt) Ωsin(Ωt)
−Ωsin(Ωt) cos(Ωt)

)
.

We arrive at the following expression for the friction coefficient:

L(t) = γ
2
0

(
Γ2

qΩ2 cos(Ωt) ΓqΓpΩsin(Ωt)
−ΓqΓpΩsin(Ωt) Γ2

p cos(Ωt)

)
. (1.29)

Recall that (trigonometric) functions of Ω are defined by their power series; Con-
sequently, since Ω is diagonal, this is also true for any functions of Ω. For in-
stance,

Γ
2
qΩ

2 cos(Ωt) = diag(Γ2
q(ω1)ω

2
1 cos(ω1t), . . .Γ2

q(ωn)ω
2
n cos(ωnt)).

In a similar way we obtain the noise source; it is given by

F(t) = γ0β
−1/2



Γq(ω1)ω1[cos(ω1t)ξ1 + sin(ω1t)η1]
...

Γq(ωn)ωn[cos(ωnt)ξn + sin(ωnt)ηn]
Γp(ω1)[cos(ω1t)ξ1− sin(ω1t)η1]

...
Γp(ωn)[cos(ωnt)ξn− sin(ωnt)ηn]


. (1.30)

By using the trigonometric identities

cos(α±β ) = cos(α)cos(β )∓ sin(α)sin(β )
sin(α±β ) = sin(α)cos(β )± cos(α)sin(β ),
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one may check the validity of the fluctuation-dissipation relation

Eξ η [F(t)FT (t ′)] = β
−1L(t− t ′), (1.31)

which is true for every choice of oscillator frequencies. Let us next make use of
the fact that although W (X) = ∇X G(X)T is a 2× 2n-matrix, the first n columns
respectively the second n columns are identical; this allows us to write

CXW (Xt)F(t) =CW (Xt)Zn(t)

with the 2×2-matrix

W (X) := ∇X
(
G1(X),G2(X)

)
(1.32)

and the 2-vector

Zn(t) := γ0β
−1/2

(
∑

n
j=1 Γq(ω j)ω j[cos(ω jt)ξ j + sin(ω jt)η j]

∑
n
j=1 Γp(ω j)[cos(ω jt)ξ j− sin(ω jt)η j]

)
(1.33)

which we call forcing. Analogously, rewrite the integrand of the memory function
in (1.20):

CXW (Xt)L(t)W
T
(Xt−t ′)Ẋt−t ′ =CXW (Xt)Kn(t)W T (Xt−t ′)Ẋt−t ′

with the memory kernel

Kn(t) := (1.34)

γ
2
0

(
∑

n
j=1 Γ2

q(ω j)ω
2
j cos(ω jt) ∑

n
j=1 Γq(ω j)Γp(ω j)ω j sin(ω jt)

−∑
n
j=1 Γq(ω j)Γp(ω j)ω j sin(ω jt) ∑

n
j=1 Γ2

p(ω j)cos(ω jt)

)
.

Summarizing, generalized Langevin equations obtained by the Zwanzig projec-
tion formalism have the following structure:

Ẋt =V (Xt)+
∫ t

0
dt ′CXW (Xt)Kn(t ′)W T (Xt−t ′)Ẋt−t ′−CXW (Xt)Zn(t). (1.35)
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Chapter2
Thermodynamic- and Markovian
Limits

In the last chapter we applied the Zwanzig projection formalism to the equations
of motion of a classical Hamiltonian system consisting of a distinguished particle
(the system) and n harmonic oscillators (the heat bath). The coupling between
system and heat bath was assumed to be linear in the bath variables Y , but rather
general with respect to the system variables X (assumptions A.2 and A.3).

Further we assumed that at some initial time t = 0, the bath variables Y0 are
distributed according to a canonical distribution with temperature (kBβ )−1 (as-
sumption A.4) and that the oscillator frequencies ω j, j = 1 . . .n are uniformly dis-
tributed over the interval [0,na] where a ∈ (0,1) (assumption A.5).

This procedure (compare with the first two steps of the Gibbs-program men-
tioned at the beginning of the last chapter) yielded a class of stochastic differential-
integral equations for the particle’s position and momentum which we called gen-
eralized Langevin equations. The following structure was obtained:

Ẋt =V (Xt)+
∫ t

0
dt ′CXW (Xt)Kn(t ′)W T (Xt−t ′)Ẋt−t ′−CXW (Xt)Zn(t) (2.1)

where

CX =

(
0 1
−1 0

)
is the symplectic matrix in X-space,

V (X) =CX ∇X HS(X) =

(
∇PHS(X)
−∇QHS(X)

)

14



is the generalized force or Hamiltonian vector field generated by HS and

W (X) = ∇X G(X) =

(
∇QG1(X) ∇QG2(X)
∇PG1(X) ∇PG2(X)

)
(2.2)

contains information about the coupling between system and bath (compare A.3).
The memory kernel

Kn(t) =

γ
2
0

(
∑

n
j=1 Γ2

q(ω j)ω
2
j cos(ω jt) ∑

n
j=1 Γq(ω j)Γp(ω j)ω j sin(ω jt)

−∑
n
j=1 Γq(ω j)Γp(ω j)ω j sin(ω jt) ∑

n
j=1 Γ2

p(ω j)cos(ω jt)

)
is a 2× 2-matrix-valued stochastic process defined on the probability space gen-
erated by the random variables

ν j i.i.d., ν1 ∼U [0,1].

Recall that ω j = naν j ∀ j and a ∈ (0,1). Kn(t) further depends on the size of the
heat bath n and the frequency-dependent part of the coupling Γ(Ω) (compare A.3).
The forcing

Zn(t) := γ0β
−1/2

(
∑

n
j=1 Γq(ω j)ω j[cos(ω jt)ξ j + sin(ω jt)η j]

∑
n
j=1 Γp(ω j)[cos(ω jt)ξ j− sin(ω jt)η j]

)
.

is a 2-dimensional zero-mean stationary Gaussian process defined on the proba-
bility space generated by the mutually independent random variables

ν j i.i.d., ν1 ∼U [0,1],
ξ j i.i.d., ξ1 ∼N (0,1),
η j i.i.d., η1 ∼N (0,1).

Zn(t) also depends on the size of the heat bath n and the frequency-dependent part
of the coupling Γ(Ω). The memory kernel and the forcing are related through the
fluctuation-dissipation relation

Eξ η [Zn(t)ZT
n (t
′)] = β

−1Kn(t− t ′) (2.3)

which follows directly from (1.31).
In this chapter, we will study the limiting behaviour of (2.1) with respect to

two situations:

(i) The size of the heat bath n grows to infinity (thermodynamic limit). This af-
fects the memory kernel Kn(t) and the forcing Zn(t) whose thermodynamic limits
will be denoted K(t) and Z(t). Consequently 2.1 becomes

Ẋt =V (Xt)+
∫ t

0
dt ′CXW (Xt)K(t ′)W T (Xt−t ′)Ẋt−t ′−CXW (Xt)Z(t). (2.4)

15



(ii) Assuming (i), the coupling between system and heat bath (more precisely, the
components of Γ(Ω) and G(X)) is chosen in such a way that the memory function∫ t

0
dt ′CXW (Xt)K(t ′)W T (Xt−t ′)Ẋt−t ′

becomes local in time. This corresponds to a Markovian limit of the stochastic
process described by (2.4).

2.1 Thermodynamic Limits of Memory Kernel and
Forcing

In order to simplify notation, we introduce the following quantities:

gq(ω) := ωΓq(ω) (2.5)
gp(ω) := Γp(ω). (2.6)

Next we define an effective coupling constant:

γ := n
1−a

2 γ0 = (∆ω)−1/2
γ0. (2.7)

where the second equality is just (1.28). The reason for this choice will become
apparent below. Using (2.5), (2.6) and (2.7), the memory kernel and the forcing
become

Zn(t) = γ β
−1/2(∆ω)1/2

(
∑

n
j=1 gq(ω j)[cos(ω jt)ξ j + sin(ω jt)η j]

∑
n
j=1 gp(ω j)[cos(ω jt)ξ j− sin(ω jt)η j]

)
(2.8)

and

Kn(t) = (2.9)

γ
2
∆ω

(
∑

n
j=1 g2

q(ω j)cos(ω jt) ∑
n
j=1 gq(ω j)gp(ω j)sin(ω jt)

−∑
n
j=1 gq(ω j)gp(ω j)sin(ω jt) ∑

n
j=1 g2

p(ω j)cos(ω jt)

)
.

In the following, we will study the limiting behaviour of Kn and Zn for n→∞. We
could do this separately for any component. However, since the components have
a very similar structure, it is very convenient to restrict our investigations to the
(1,1)-component of Kn respectively the 1-component of Zn: in that sense, set for
the moment

gp(ω j)≡ 0

16



and consider the 1-dimensional problem

Zn(t) = γ β
−1/2(∆ω)1/2

n

∑
j=1

gq(ω j)[cos(ω jt)ξ j + sin(ω jt)η j]

Kn(t) = γ
2
∆ω

n

∑
j=1

g2
q(ω j)cos(ω jt)

where, by a slight abuse of notation, Zn and Kn have been identified with their
non-zero components. One finds that in the limit n→ ∞, if gq is positive and
bounded with bound c1 such that

gq(ω)≤ c2 ω
−λ for some c2 > 0 and λ > 1/2,

then Kn(t) converges to the integral

K(t) := γ
2
∫

∞

0
g2

q(ω) cos(ω t) dω

ν-almost surely and Zn(t) converges to the stationary Gaussian process Z(t) de-
fined by

Eξ ηZ(t) = 0

Eξ η [Z(t + s) Z(s)] = β
−1K(t)

ν-almost surely and ξ ,η-weakly in C [0,T ] (T is arbitrary, but finite). The detailed
proof can be found in the appendix, where γ has been set to 1 and gq is denoted
by g, for simplicity (cf. theorems A.2.1 and B.4.1).

Remark (Renormalization of the coupling constant). Now we can see that the in-
troduction of an effective coupling constant γ was necessary to avoid divergencies
in the limit n→ ∞. This is a simple case of renormalization.

As mentioned above, very similar calculations and proofs can be carried through
for the remaining components of Kn and Zn. Therefore it is natural to impose the
following assumption:

Assumption A.6 (Bounds on frequency coupling). gq and gp are positive and
bounded with bound c1 respectively c2 such that

gq(ω)≤ c3 ω
−λ for some c3 > 0 and λ > 1/2 (2.10)

gp(ω)≤ c4 ω
−µ for some c4 > 0 and µ > 1/2. (2.11)
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As a result, in the limit n→ ∞ the memory kernel (2.9) converges to

K(t) = γ
2
( ∫

∞

0 g2
q(ω)cos(ωt)dω

∫
∞

0 gq(ω)gp(ω)sin(ωt)dω

−
∫

∞

0 gq(ω)gp(ω)sin(ωt)dω
∫

∞

0 g2
p(ω)cos(ωt)dω

)
(2.12)

ν-almost surely and in L2[0,T ] or pointwise. Also, the forcing (2.8) converges to
a stationary Gaussian process Z(t) with zero mean and autocovariance

Eξ η [Z(t + s) ZT (s)] = β
−1K(t) (2.13)

ν-almost surely and ξ ,η-weakly in C [0,T ].

2.2 Markovian Limit
In this section, we are looking for conditions such that (2.4) becomes local in time.
Obviously, this can only be the case for all t if each component of

Λ(t, t ′) :=W (Xt)K(t ′)W T (Xt−t ′) (2.14)

is either identically zero or proportional to the Dirac delta distribution δ (t ′), since
then the integral term in (2.4) only contributes at time t. Calculating the compo-
nents of Λ(t, t ′) by inserting (2.2) and (2.12) into (2.14) shows that it is sufficient
to require

Assumption A.7 (Markov condition on coupling).

gq(ω)≡ dq (2.15)
gp(ω)≡ dp (2.16)

where dq,dp are constants, and

{G1(X),G2(X)}t,t ′ = 0 ∀t, t ′ (2.17)

where

{A(X),B(X)}t,t ′ =∇QA(X) |X=Xt ∇PB(X) |X=Xt′ −∇QB(X) |X=Xt ∇PA(X) |X=Xt′

(2.18)

is a generalization of the Poisson bracket (which corresponds to t = t ′). In order to
see that this is true we will first calculate the components of K(t) assuming (2.15)
and (2.16). We have∫

∞

0
exp(iωt)dω =

∫
∞

−∞

θ(ω)exp(iωt)dω =

√
π

2

(
δ (t)+

i
π

pv
1
t

)
(2.19)
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where θ(t) is the Heaviside step function and pv denotes the principal value.
Equality in (2.19) has to be understood in a distributional sense; in the last step
the symmetric convention of the Fourier transform is adopted. By taking real and
imaginary parts∫

∞

0
cos(ωt)dω = ℜ[

∫
∞

0
exp(iωt)dω] =

√
π

2
δ (t)∫

∞

0
sin(ωt)dω = ℑ[

∫
∞

0
exp(iωt)dω] =

1√
2π

pv
1
t

and setting for the sake of simplicity dq = dp = (π

2 )
1/4 we obtain

K(t) = γ
2
(

δ (t) pv 1
πt

−pv 1
πt δ (t)

)
. (2.20)

Because of (2.13) we see that the components of the forcing Z1(t) and Z2(t) be-
come white noise processes with nonvanishing correlation (i, j = 1,2):

Eξ ηZi(t) = 0 ∀i (2.21)

Eξ η [Z
i(t)Zi(t ′)] = β

−1
γ

2
δ (t− t ′) ∀i (2.22)

Eξ η [Z
i(t)Z j(t ′)] = β

−1
γ

2pv
1

π(t− t ′)
∀i 6= j (2.23)

ν-almost surely. If we use (2.20) and (2.17) in (2.14) we obtain

Λ(t, t ′) = γ
2
δ (t ′)W (Xt)W (Xt−t ′)

T = γ
2
δ (t ′)W (Xt)W (Xt)

T . (2.24)

This eventually proves the validity of assumption A.7: It was only due to (2.17)
that the off-diagonal terms of (2.20) cancelled out. Finally we can determine the
Markovian generalized Langevin equations

Ẋt =V (Xt)+ γ
2CXW (Xt)W T (Xt)Ẋt−CXW (Xt)Z(t). (2.25)

There are four major possibilities of choosing G1(X) and G2(X) such that
(2.17) is fulfilled:

(i) G1(X) = G2(X).

(ii) G1(X) = e1 where e1 is a constant.

(iii) G2(X) = e2 where e2 is a constant.

(iv) G(X) = AX +b where A is a 2×2-matrix with det(A) = 0 and b is a constant
2-vector.
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Remark (Interpretation as Stochastic Differential Equations). Since the compo-
nents of the forcing Z1(t) and Z2(t) are correlated, (2.25) cannot be associated
with a 2-dimensional stochastic differential equation in the Ito- or Stratonovich
sense for this would require Z(t) = (Z1(t),Z2(t))T to be a 2-dimensional Gaus-
sian white noise process with stochastically independent components.

The only way to associate (2.25) with a 1-dimensional stochastic differential
equation is to set all but one components of W (Xt) to zero. This corresponds
to the cases (ii) and (iii) with the additional requirement that the non-constant
component of G(X) only depends on either Q or P.

Consider for instance the situation G2(X) = e2,G1(X) = S(Q) where e2 is a
constant and S(Q) is an arbitrary function of Q. The two components of (2.25)
become

Q̇ = ∇PHS(X)

Ṗ =−∇QHS(X)− γ
2(∇QS(Q))2Q̇−∇QS(Q)Z1(t)

while we have from (2.21) and (2.22)

Eξ ηZ1(t) = 0

Eξ η [Z
1(t)Z1(t ′)] = β

−1
γ

2
δ (t− t ′).

For the special case S(Q) = Q and HS(X) = P2

2 we obtain an equation which is up
to constant factors similar to the original Langevin equation (1.1).
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AppendixA
Thermodynamic Limit of the Memory
Kernel

The memory kernel was defined as

Kn(t) :=
n

∑
j=1

g2(ω j) cos(ω j t) ∆ω (A.1)

with ∆ω ≡ na−1

on the probability space generated by the random variables

ν j := n−a
ω j, ν j i.i.d., ν1 ∼U [0,1] (A.2)

for some a ∈ (0,1).
In this chapter of the appendix, I will study the limit n→ ∞ of the memory

kernel on a finite time interval [0,T ] which turns out to exist ν-almost surely and
which is given by

K(t) :=
∫

∞

0
g2(ω) cos(ω t) dω. (A.3)

While the first section is dedicated to the derivation of a general proving tool
related to almost sure convergence and includes rather simple textbook-proofs
(compare for instance [9]), the second section carries out the actual proof of
Kn(t)

a.s.−−→ K(t) ∀t following closely [13] and concludes with some interesting re-
marks.

A.1 Criterion for Almost Sure Convergence
Based on the Borel-Cantelli-lemma and Chebyshev’s inequality, a useful criterion
for almost sure convergence of a sequence of random variables is derived.
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A.1.1 Almost sure convergence
Let (Ω,F ,P) be a probability space and {Xn : n ∈N} a sequence of random vari-
ables. Almost sure convergence of the sequence to the random variable X is de-
fined as follows:

Definition A.1.1 (Almost sure convergence).

Xn→ X almost surely (Xn
a.s.−−→ X) for n→ ∞ (A.4)

⇐⇒ P(ω ∈Ω | Xn(ω)→ X(ω) for n→ ∞) = 1,

where “→“ on the right hand side means convergence in the sense of ordinary
calculus:

Definition A.1.2 (Convergence in Rn).

Xn(ω)→ X(ω) for n→ ∞

⇐⇒ ∀ε > 0 ∃N = N(ε,ω) : ∀n > N |Xn(ω)−X(ω)|< ε (A.5)
(ω fixed).

Now define

An(ε) := {ω ∈Ω | |Xn(ω)−X(ω)| ≥ ε}

and its limes superior

A(ε) := An(ε) i.o.≡
∞⋂

N=1

∞⋃
n=N

An(ε)

where "i.o." means "infinitely often". This allows for an equivalent definition of
a.s. convergence:

Lemma A.1.1 (Almost sure convergence 2).

Xn
a.s.−−→ X for n→ ∞ ⇐⇒ P(A(ε)) = 0 ∀ε > 0. (A.6)

Proof. Convert the ε/δ -statement into set language using
⋂

and
⋃

. Look at the
complementary set and replace ε by m−1. Since its measure P(

⋂
∞
m=1 A(m−1)) is

bounded from below by P(A(m−1)) ∀m > 0 and from above by ∑
∞
m=1P(A(m−1))

due to σ -additivity, the result follows.
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A.1.2 Borel-Cantelli-Lemma and Chebyshev’s inequality
To estimate the r.h. side of (A.6), the first part of the Borel-Cantelli-Lemma is very
useful, especially in combination with a version of Chebyshev’s inequality.

Lemma A.1.2 (Borel-Cantelli 1).
∞

∑
n=1

P(An)< ∞⇒ P(An i.o.) = 0 (A.7)

Proof. First notice that
⋃

∞
n=N An is a decreasing function in N and therefore A =⋂

∞
N=1

⋃
∞
n=N An its limit for N→∞. By continuity of the measure we have P(A) =

limN→∞P(
⋃

∞
n=N An) ≤ limN→∞ ∑

∞
n=N P(An) = 0, where the last step is possible

due to the assumption of the lemma.

Lemma A.1.3 (Generalized Chebyshev’s inequality). Let g : R+→R+ be strictly
increasing. Then

P(|X | ≥ a)≤ E(g(|X |))
g(a)

∀a > 0. (A.8)

where E denotes the expectation value associated with P.

Proof. Define A := {h(X)≥ a}, h : R→ R+, a > 0;
⇒ h(X)≥ aIA with IA being the index function of A. Taking the expectation value
on both sides and setting h(X) = g(|X |) yields the result.

A.1.3 A useful criterion for almost sure convergence
Putting the pieces together, we arrive at a very useful criterion for a.s. conver-
gence:

Theorem A.1.1 (Almost sure convergence criterion).

∃b ∈ N :
∞

∑
n=1

E(|Xn−X |b)< ∞⇒ Xn
a.s.−−→ X (A.9)

Proof. First bound the summands in Lemma A.1.2 for An = An(ε) by virtue of
the generalized Chebyshev’s inequality with the expectation of g(|Xn−X |) =
|Xn−X |b , b ∈ N; then if there exists a b s.t. the sum converges, due to the com-
parison test and the lemmata A.1.2 and A.1.1 the result follows.

Remark. For stochastic processes X(t) in time t, it is necessary to specify how
|Xn(t)−X(t)| in the definition of a.s. convergence shall be understood. Later on,
I will consider the cases of pointwise convergence in time and convergence in L2

on a finite interval [0,T ].
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A.2 Thermodynamic Limit of the Memory Kernel
In this section, I will use the criterion introduced in the preceding section to show
that for a sufficiently bounded coupling g(ω), in the thermodynamic limit the
memory kernel converges almost surely to a simple integral. The proof follows
closely Kupferman et al. [13]. Moreover, the optimal rate of convergence is esti-
mated and a heuristic introduction to the Monte-Carlo-approximation of integrals
is given (following [10]), thus providing a different view on the result.

A.2.1 Almost sure convergence of the memory kernel
First I will derive upper bounds for the individual summands and their expectation
values from quite general assumptions on g(ω).

Lemma A.2.1 (Upper bounds on the summands and their expectations). Suppose
that g is a positive bounded real-valued function with bound c1 such that

g(ω)≤ c2 ω
−λ for some c2 > 0 and λ > 1/2. (A.10)

Let t ∈ R. Define

h(ω, t) := g2(ω)cos(ω t), (A.11)

µn(t) := n−a
∫ na

0
h(ω, t)dω, a ∈ (0,1). (A.12)

Then h and µn are bounded from above by

|h(ω, t)| ≤min(c2
1,c

2
2ω
−2λ )≡ h∗(ω), (A.13)

|µn(t)| ≤ [c2
1 +

c2
2

2λ −1
]n−a ≡ µ

∗
n , (A.14)

∀ t ∈ R.

Proof. (A.13) is clear since g is positive and |cos(.)| is bounded by 1. To prove
(A.14), first use the triangle inequality and (A.13). Next, define ω0 := (c2

c1
)1/λ

(this is the point where the two bounds on g coincide) and split the integral in the
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following manner:∫ na

0
min(c2

1,c
2
2ω
−2λ )dω =

∫
ω0

0
c2

1 dω +
∫ na

ω0

c2
2ω
−2λ dω

≤
∫

ω0

0
c2

1 dω +
∫

∞

ω0

c2
2ω
−2λ dω

=


∫ ω0

0 c2
1 dω +

∫
∞

1 c2
2ω−2λ dω +

∫ 1

ω0

c2
2ω
−2λ dω c1 ≥ c2

∫
∞

ω0
c2

2ω−2λ dω +
∫ 1

0 c2
1 dω +

∫
ω0

1
c2

1 dω c1 < c2

≤


∫ ω0

0 c2
1 dω +

∫
∞

1 c2
2ω−2λ dω +

∫ 1

ω0

c2
1 dω c1 ≥ c2

∫
∞

ω0
c2

2ω−2λ dω +
∫ 1

0 c2
1 dω +

∫
ω0

1
c2

2ω
−2λ dω c1 < c2

= c2
1 +

c2
2

2λ −1

using that ω−2λ is strictly decreasing and the definition of ω0.

Theorem A.2.1 (Convergence of the memory kernel). Let ν j be i.i.d. (indepen-
dent and identically distributed) and ν1∼U [0,1] (uniformly distributed on [0,1])
and let ω j = naν j, a ∈ (0,1). Under the assumptions of Lemma A.2.1, the mem-
ory kernel (A.1) converges for n→ ∞ to the function (A.3) ν-almost surely and{

in L2[0,T ]
pointwise on [0,∞)

with respect to t.

Proof. Because

EνKn(t)=
n

∑
j=1

n−a
∆ω

∫ na

0
g2(ω j) cos(ω j t) dω j =

∫ na

0
g2(ω) cos(ω t) dω (A.15)

implies EνKn(t)→ K(t) uniformly with respect to t ∈ [0,∞), it is sufficient to
show that ν-almost surely

Kn(t)−EνKn(t)→ 0

{
in L2[0,T ]
pointwise on [0,∞)

. (A.16)

Here, Eν denotes the expectation value with respect to the probability measure
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induced by (ν1, . . .νn). For instance,

Eν f (ν1, . . .νn) =
∫ 1

0
· · ·
∫ 1

0
f (ν1, . . .νn) dν1 . . .dνn

= n−na
∫ na

0
· · ·
∫ na

0
f (n−a

ω1, . . .n−a
νn) dω1 . . .dωn.

In the following, I will restrict myself to the second case, thus omitting the t-
dependence of the occurring functions which makes the proof more transparent.
The first case can be obtained quite easily mutatis mutandis.

In order to show (A.16), according to Theorem A.1.1 it is sufficient to find an
integer b such that the sequence

σn := Eν |Kn−EνKn|2b

is summable (the replacement b→ 2b is due to convenience). Using the definitions
of h(ω) and µn as given in Lemma A.2.1 and omitting the absolute value because
there is an even number of factors, one can rewrite the sequence as

σn = ∆ω
2b Eν

∣∣∣∣∣ n

∑
j=1

[h(ω j)−µn]

∣∣∣∣∣
2b

= ∆ω
2b Eν

2b

∏
i=1

n

∑
ji=1

[h(ω ji)−µn]

or equivalently, defining the centered joint moments of degree 2b as

Vj1, j2,... j2b := Eν

2b

∏
i=1

[h(ω ji)−µn], (A.17)

σn = ∆ω
2b

n

∑
j1=1
· · ·

n

∑
j2b=1

Vj1, j2,... j2b. (A.18)

Now look at the (multi-)index set J := { j1, j2, . . . j2b}: Each (trivial) equivalence
relation ji ∼ jk ⇐⇒ ji = jk on J induces a partition J/∼. In total, there exist B2b
partitions of J where B2b is the Bell number which only depends on the cardinality
of J which is 2b. Quite obviously, the multiple sum ∑

n
j1=1 · · ·∑n

j2b=1 can be split
into B2b terms each of which contains only those elements with certain indices
equal to each other and not equal to the rest (this is exactly the aforementioned
partition).

For example, take 2b = 3 (for the sake of the argument, here b is no integer):

∑
a,b,c

= ∑
a=b=c︸ ︷︷ ︸

k=1

+ ∑
a=b6=c

+ ∑
a=c6=b

+ ∑
b=c6=a︸ ︷︷ ︸

k=2

+ ∑
a6=b6=c︸ ︷︷ ︸

k=3
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where the terms were arranged by introducing the index k as the number of distinct
indices in J (here, J = {a,b,c}). Notice that the number of terms corresponding
to a given k does only depend on 2b and especially not on the cardinality of the
index set of any index.

Now, regroup the sum in (A.18) similar to the example by the number of dis-
tinct indices k (which runs from 1 to b because each index has to occur at least
twice due to the independence of h(ωi) and h(ω j) for i 6= j). Because of the total
symmetry of Vj1, j2,... j2b , there are nk equal terms for each k (recall that each index
runs from 1 to n) which I call Vk and which look like

Vk =
k

∏
r=1

1
na

∫ na

0
[h(ω)−µn]

mr dω

where m1,m2, . . . ,mk≥ 2 and m1+m2+ · · ·+mk = 2b. Now use (A.13) and (A.14)
to bound Vk in the following way:

|Vk| ≤
k

∏
r=1

(
1
na

∫ na

0
[h∗(ω)−µ

∗
n ]

mr dω) (A.19)

=
k

∏
r=1

mr

∑
lr=0

(
mr

lr

)
(µ∗n )

mr−lrn−a
∫ na

0
[h∗(ω)]lr dω)

≤
k

∏
r=1

(
M
na ) = (

M
na )

k

where M is a constant. Going from the second to the third line is possible since
when lr is zero, the summand goes like (n−a)mr and mr ≥ 2. When lr > 0 the
integral in the summand is convergent (for n→ ∞), so the summand goes to zero
at least as fast as n−a.

In total one arrives at

σn ≤ D(∆ω)2b
b

∑
k=1

nkn−ak (A.20)

≤ En2b(a−1)nb(1−a) = Enb(a−1)

where D and E are constants and the sum could be bounded because the summand
is increasing with k. Now, for b > (1−a)−1, σn is summable.

A.2.2 Remarks
Remark (Optimal convergence). To estimate a rate of convergence of Kn to K
(t-dependence omitted), look at the mean squared convergence. Because of the
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triangle inequality we have

Eν |Kn−K|2 ≤ Eν |Kn−EνKn|2 + |K−EνKn|2

(notice that the second term on the r.h. side is non-random). The first term on the
r.h. side, which is nothing but the variance of Kn, can be estimated in the following
way:

VarνKn = n∆ω
2Varν [g2(ω)cos(ω)]≤ n2a

n
1
na

∫ na

0
g4(ω) dω ≤C1∆ω

where C1 is the value of the integral which is finite due to the assumptions on g
(cf. equation (A.10)).

The second term can be bounded using (A.15) and again (A.10):

|K−EνKn| ≤
∫

∞

na
g2(ω) dω ≤

∫
∞

na

(
c2

ωλ

)2

dω =
c2

2
2λ −1

1
na(2λ−1)

.

Together we have

Eν |Kn−K|2 ≤ C1

n1−a +
C2

n2a(2λ−1)
. (A.21)

Notice that both terms of the asymptotic bound have a nonpositive exponent but
while the first exponent becomes less negative with increasing a and fixed λ , the
opposite is the case with the second term. Therefore, an estimate for optimal
convergence is given by equating the two exponents which yields

a = [1+2(2λ −1)]−1. (A.22)

Remark (Connection with Monte-Carlo-integral approximation). The result of the
preceding subsection may be shown in a different way which is intuitionally more
satisfying: The memory kernel

Kn(t) =
n

∑
j=1

g2(ω j) cos(ω j t) ∆ω

can be viewed as a Monte-Carlo-approximation of the integral

K(t) :=
∫

∞

0
g2(ω) cos(ω t) dω.

To make that clear, I will give a short introduction to the Monte-Carlo-integral ap-
proximation (cf. [10], where also Mathematica R©-implementations are available).
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• In ordinary calculus, the Mean Value Theorem for Integrals states that the
mean value of a function f over an interval [a,b] ∈ R can be expressed as
the function value at an intermediate point c given that f is continuous on
[a,b]:

f ∈ C [a,b]⇒∃c ∈ [a,b] :
1

b−a

∫ b

a
f (x) dx = f (c)

• Now replace the r.h. side by an average of f over n points equally spaced
over [a,b]:

1
b−a

∫ b

a
f (x) dx≈ 1

n

n

∑
k=1

f (ck) with

ck = a+
b−a

n
(k− 1

2
) and k = 1,2, . . .n.

The error of this Composite Midpoint Rule decreases (for f ∈C 2[a,b]) with
n−2 (without proof ).

• Finally, averaging f over n randomly distributed points yields the so called
Monte-Carlo-approximation of the integral, which however only converges
with n−1/2 (the proof relies on the central limit theorem and will not be
given here).
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AppendixB
Thermodynamic Limit of the Forcing

In this chapter of the appendix, the limit n→ ∞ of the forcing

Zn(t) := β
−1/2

n

∑
j=1

g(ω j)[ξ j cos(ω jt)+η j sin(ω jt)](∆ω)1/2 (B.1)

with ∆ω ≡ na−1, ω j = na
ν j, a ∈ (0,1),

defined on the probability space generated by the mutually independent random
variables

ν j i.i.d., ν1 ∼U [0,1], (B.2)
ξ j i.i.d., ξ1 ∼N (0,1), (B.3)
η j i.i.d., η1 ∼N (0,1) (B.4)

is studied.
In that respect, let Eξ η denote expectation values with respect to the Gaussian

measure associated with (ξ ,η) = (ξ1,ξ2, . . . ,η1,η2, . . .). For processes f that
only depend on finitely many components (ξ1, . . .ξn,η1 . . .ηn) this reduces to

Eξ η f (ξ1, . . .ξn,η1 . . .ηn)

= (2π)−n
∫
R
· · ·
∫
R

f (ξ1, . . .ξn,η1 . . .ηn)

exp[−1
2
(ξ 2

1 + · · ·+ξ
2
n +η

2
1 + · · ·+η

2
n )] dξ1 . . .dξn dη1 . . .dηn.

Zn(t), or more precisely its continuous version (→ next section), is shown to con-
verge to a stationary Gaussian process Z(t) with mean zero and autocorrelation
function

Eξ η [Z(t + s)Z(s)] = β
−1
∫

∞

0
g2(ω) cos(ω t) dω = β

−1K(t), (B.5)
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where K(t) is the limit of the memory kernel (derived in the previous section) in
accordance with the fluctuation-dissipation theorem, almost surely in ν , weakly in
ξ and η and ξ ,η-a.s. uniformly on [0,T ] with finite T . The proof of the above-
mentioned statement (as given in [13]) heavily relies on a theorem for weak con-
vergence of (sample path-)continuous stochastic processes supposedly first pub-
lished by Gikhman and Skorokhod ([3] p. 450, see also [8] p. 98); this suggests
the following structure of this chapter:

Starting with the theorem of Kolmogorov-Chentsov (with minor modifications,
the proof is taken from [14]) to provide a necessary criterion for the existence
of continuous sample paths (section B.1), I will turn to the characterization of
stochastic processes in terms of their (finite-dimensional) distributions and laws
in order to introduce the notion of weak convergence (section B.2; compare [5]
and [12], although the latter is only available in German editions). The theorems
of Prokhorov, Arzelà-Ascoli and finally Gikhman-Skorokhod (compare [12], [8]
and [3]) will provide a criterion for weak convergence of continuous stochastic
processes (section B.3).

Only then I will give the proof of the introductory statement (section B.4).

B.1 Kolmogorov-Chentsov theorem
Consider a real-valued stochastic process X = {Xt : t ∈ I} on (Ω,F ,P) with a
continuous index set I = [0,T ]∈R. Let E denote the expectation value associated
with P.

Definition B.1.1 (Kolmogorov’s continuity condition). If there exist positive con-
stants α , β and C such that

E |Xt−Xs|α ≤C |t− s|1+β ∀ s, t ∈ I, (B.6)

then X is said to fulfill Kolmogorov’s continuity condition.

This definition almost always comes together with the following theorem:

Theorem B.1.1 (Kolmogorov-Chentsov). A real-valued stochastic process X on
I = [0,T ] that fulfills (B.6) has a continuous version X on I, i.e.

t 7→ X t is continuous on I almost surely, (B.7)

∀t ∈ I, Xt = X t almost surely. (B.8)

Moreover, if γ < β/α , then for every compact subset K ⊆ I

max
s 6=t∈K

∣∣X t−X s
∣∣

|t− s|γ
< ∞ almost surely. (B.9)
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Remark. Of course, (B.9) (Hölder-continuity of the extended sample paths Xt)
implies (B.7) (continuity of the extended sample paths X t) for K = I.

Remark. Actually it is sufficient to consider only an arbitrary countable dense
subset D ⊂ I (see proof); for similar reasons, I need not be closed. In that case,
the index set of X has to be substituted by the closure D = I (this does not change
the almost sure statements (B.7) and (B.8)). Similarly, I in (B.9) will become I.

Proof. The main idea of the proof is quite frequently used, but here I will basically
follow the argumentation line of [14]. Without loss of generality, I will set T = 1
to simplify matters.

Consider the set D of all rationals in I = [0,T ] = [0,1] which is obviously
countable and dense in I (for general countable dense subsets D′ ∈ I the follow-
ing is true mutatis mutandis). Each point in D can be described by its binary
coordinate of the form k/2m (0 < k < 2m) and therefore D =

⋃
∞
m=1 Lm where

Lm =
⋃

0<k<2m k/2m is the dyadic level. Let further x(t) be a real-valued func-
tion on D and suppose that for γ > 0 and C < ∞,

|x(s)− x(t)| ≤C |s− t|γ (B.10)

for all neighboring pairs in the same dyadic level Lm.
Now for each point t ∈ D = I = I there is a point sm(t) ∈ Lm within distance

2−m (if there are two, choose one). Clearly, sm(t) → t for m → ∞ and since
|sm+1(t)− sm(t)| ≤ 2 ·2−m we have due to (B.10)

|x(sm+1(t))− x(sm(t))| ≤ 2C2−γm,

so for any t, x(sm(t)) is a convergent Cauchy-sequence with the limit

x(t) := lim
m→∞

x(sm(t)). (B.11)

For t ∈ D, x(t) coincides with x(t) by construction. Moreover, using the triangle
inequality one can estimate the distance of the mth element of the sequence to the
limit:

|x(t)− x(sm(t))| ≤
∞

∑
k=m
|x(sk+1(t))− x(sk(t))| ≤ 2C

∞

∑
l=0

(
2−γ
)l+m

=C′′ 2−γm

where C′′ is only a function of γ (and especially not a function of t).
Now choose distinct points s, t ∈ D = I = I; obviously there exists some m̂ =

m(s, t) such that

2−m̂−1 ≤ |s− t|< 2−m̂.
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Since the distance between u and sm̂(u) is itself bounded by 2 ·2−m̂ ∀u, again due
to the triangle inequality we have

|sm̂(s)− sm̂(t)| ≤C′′′2−m̂

and because of (B.10)

|x(sm̂(s))− x(sm̂(t))| ≤C′′′′2−γm

since sm̂(s) ∈ D ∀s and so x(sm̂(s)) = x(sm̂(s)) ∀s. In total, one gets

|x(s)− x(t)|
≤ |x(s)− x(sm̂(s))|︸ ︷︷ ︸

≤C′′2−γm̂

+ |x(sm̂(s))− x(sm̂(t))|︸ ︷︷ ︸
≤C′′′′2−γm̂

+ |x(sm̂(t))− x(t)|︸ ︷︷ ︸
≤C′′2−γm̂

≤ (2C′′+C′′′′)2−γm̂ ≤C′ |s− t|γ , (B.12)

so x(t) on D extends to a Hölder-continuous function x(t) on I with the same
Hölder-exponent γ .

Now, the cardinality of Lm grows like

#Lm ∼ 2m

(for I closed this is exact). Take two neighboring points s, t in Lm (that is, |s− t|=
2−m); due to (B.6) and Markov’s-inequality we have

P(|Xt−Xs| ≥C |t− s|γ)≤ E(Xt−Xs)
α

C |t− s|γα

≤ |t− s|1+β−γα

= 2−m−mβ+mγα

Since the number of neighboring pairs grows like 2m, we have

P(Bm)≤C′2−mβ+mγα with (B.13)
Bm := {|Xt−Xs| ≥C |t− s|γ for some neighboring s, t ∈ Lm}.

Since α > 0 and β > 0 by assumption, one can choose γ so small that−β +γα <
0. Then due to the Borel-Cantelli-lemma we have

∞

∑
m=1

P(Bm)< ∞→ P(Bm i.o.) = 0
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which means that with probability one, Bm occurs for only finitely many m; hence
with probability one

|Xt−Xs| ≤C |t− s|γ

for neighboring points s, t in the same dyadic level (due to P(X = x) = 0 for con-
tinuous random variables, ≤ can be written instead of <). This, in turn, completes
the proof because from the last equation (which is nothing but (B.10)) (B.12) fol-
lows.

B.2 Stochastic Processes and Weak Convergence
Sample space measures associated with stochastic processes are introduced and
discussed within the context of weak convergence.

B.2.1 Stochastic processes and measures
Given a real-valued stochastic process X on the probability space (Ω,F ,P) with
index set I (i.e. a map X : I ×Ω→ R s.t. ∀t ∈ I, the projection Xt : Ω→ R is
F/R-measurable, where R is the Borel-σ -algebra over R), several measures are
associated with X .

(i) For each t ∈ I, the projection or coordinate variable Xt : Ω→ R induces a
measure called distribution at t on R:

Definition B.2.1 (Distribution at t). Given a stochastic process X = {Xt : t ∈ I}
on an index set I, the distribution of X at a point t ∈ I is the pushforward-measure

µt(A) := P(ω ∈Ω | Xt(ω) ∈ A), A ∈R (B.14)

where R is the Borel-σ -algebra over R.

(Ω,F )
Xt //

P

��

(R,R)

µt

||
(R,R)

(ii) If finitely many points in I are considered, the previous definition generalizes
in the following way:
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Definition B.2.2 (Finite-dimensional distributions). Given a stochastic process
X = {Xt : t ∈ I} on an index set I, the finite-dimensional distributions or joint
distributions are the pushforward-measures

µK(H) := P(ω ∈Ω | (Xt1(ω), . . . ,Xtk(ω)) ∈ H), H ∈Rk, (B.15)

where K = (t1, . . . , tk) is a k-tuple of distinct points in I with k ∈ N finite and Rk

is the Borel-σ -algebra over Rk.

(Ω,F )
(Xt1, . . . ,Xtk) //

P

��

(Rk,Rk)

µK

{{
(R,R)

Remark. The finite-dimensional distributions do not characterize the process com-
pletely:

Given {µK : K ⊂ f inite I} such that two consistency conditions are met - namely,
invariance of µK under permutations of the set K and µK(H) = µK

⋃
{tk+1}(H×R)

-, then Kolmogorov’s existence theorem guarantees the existence of a probability
space and a stochastic process associated with the given finite-dimensional distri-
butions, but not their uniqueness.

(iii) Also, regarding X as random function X : Ω→RI , one can define the law of
X assigning a probability to each sample path:

Definition B.2.3 (Law of a stochastic process). The law of a real-valued process
X on (Ω,F ,P) with index set I is the pushforward-measure

µI(B) := P(ω ∈Ω | X(ω) ∈ B), B ∈RI (B.16)

where RI is the cylindrical σ -algebra (explanation see below).

(Ω,F )
X //

P

��

(RI,RI)

µI

{{
(R,R)
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Remark. Remember that X : I×Ω→ R can be rewritten (by the means of curry-
ing) in two ways:

* On the one hand, it is defined as a map I → RΩ, where RΩ consists of the
projections Xt : Ω→ R.

* On the other hand, X can be understood as a map Ω→ RI , where RI is the
space of sample paths X(ω) : I→ R.

Now, instead of the projections or coordinate variables Xt : Ω→R, one often uses
their pushforwards by X : Ω→ RI , which are functionals on RI:

Zt : ×i∈I Ri ≡ RI → R
X(ω) 7→ Xt(ω)

(RI,RI)

Zt

""
(Ω,F )

Xt //

X

OO

(R,R)

This is useful because the original process {Xt : t ∈ I} and the coordinate-variable
process {Zt : t ∈ I} obviously have the same finite-dimensional distributions (see
definition). Accordingly, identifying the event space Ω with the space of sample
paths RI defines the canonical representation of a process.

Pulling back the domain of the finite-dimensional distributions by Zt yields the
cylinder sets (ω omitted):

Definition B.2.4 (Cylinder sets).

C(H,K) = {X ∈ RI | (Zt1(X), . . . ,Ztk(X)) ∈ H} (B.17)

= {X ∈ RI | (Xt1, . . . ,Xtk) ∈ H},

where again K = (t1, . . . , tk) is a k-tuple of distinct points in I (with k ∈ N finite)
and H ∈Rk.

Let now

RI
0 := {C(H,K) : K ⊂ f inite I} (B.18)
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be the class of all cylinder sets which is an algebra (easily proved) but not a σ -
algebra. Accordingly, the finite-dimensional distributions define a premeasure on
RI which is not an actual measure but is only finitely additive. Let now

RI := σ(RI
0) (B.19)

be the σ -algebra generated by RI
0 (i.e. the minimal σ -algebra over the product

state space RI containing RI
0). Since RI - which is called cylindrical σ -algebra -

obviously is also generated by the sets

C(A) = {X ∈ RI | Zt(X) ∈ A} (B.20)

= {X ∈ RI | Xt ∈ A},

the coordinate-variable process {Zt : t ∈ I} is µI-measurable on (RI,RI) and RI is
identical with the Borel σ -algebra of RI equipped with the topology of pointwise
convergence.

(iv) Finally, in many cases the sample paths of stochastic processes are required
to be continuous (the previous section provides a sufficient criterion for that) - this
condition is a special case of separability:

Definition B.2.5 (Separability of a stochastic process). A real-valued process
{Xt : t ∈ I} on (Ω,F ,P) is called separable if and only if there exist a count-
able dense subset T ⊂ I and a set D ∈ F with measure zero (P(D) = 0) such
that

∀t ∈ I ∀ω /∈ D ∃tn ∈ T : tn→ t ∧ Xtn(ω)→ Xt(ω). (B.21)

Explicitly, almost all sample paths of a separable process are determined by a
countably infinite amount of points which are dense in I (and dense in R for con-
tinuous processes).

Therefore it is natural to consider only a separable subspace (in the following
denoted by S) of the sample space RI together with the cylindrical σ -algebra RI

restricted to S. Very often, S is also a metric space, thus demanding the consis-
tency condition that the Borel-σ -algebra on S (denoted B(S)) is measurable with
respect to RI |S.

Especially, if RI is restricted to the space of continuous functions on the interval
I C (I) with metric d∞(X ,Y ) := supt∈I |Xt−Yt | (also known as classical Wiener
space), it turns out that since C (I) is also complete, the cylindrical σ -algebra on
C (I) (generated by the cylinder sets restricted to C (I)) coincides with the Borel-
σ -algebra generated by the topology of uniform convergence on C (I):
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Due to completeness every sphere belongs to the cylindrical σ -algebra:

{x; sup
t
|x(t)−α(t)| ≤ r}=

∞⋂
k=1

{x; |x(tk)−α(tk)| ≤ r},

where α(t) is an arbitrary continuous function and {tk} is an arbitrary sequence
everywhere dense on I ([3], p. 448f). But due to separability, the spheres are a
basis for the Borel-σ -algebra over C (I).

Accordingly, the law of a continuous stochastic process is defined as follows:

Definition B.2.6 (Law of a continuous stochastic process). The law of a real-
valued process X on (Ω,F ,P) with index set I and a.s.-continuous sample paths
is the pushforward-measure

µC(B) := P(ω ∈Ω | X(ω) ∈ B), B ∈B(C (I)) (B.22)

where B(C (I)) is the Borel-σ -algebra on C (I).

(Ω,F )
X //

P

��

(C (I),B(C (I)))

µC

zz
(R,R)

For real-valued stochastic process with sample paths in a general complete sepa-
rable metric space (i.e. a Polish space) the following obvious modifications apply:

Definition B.2.7 (Law of a stochastic process with a Polish sample space). The
law of a real-valued process X on (Ω,F ,P) with index set I and sample paths in
a Polish space S is the pushforward-measure

µP(B) := P(ω ∈Ω | X(ω) ∈ B), B ∈B(S) (B.23)

where B(S) is the Borel-σ -algebra on S.

(Ω,F )
X //

P

��

(S,B(S))

µP

{{
(R,R)
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Remark. Due to the additional structure of the sample space S (especially metric
and separability), any functional on S that is continuous w.r.t. the metric dS is also
a random variable on (S,B(S)).

B.2.2 Weak convergence of measures
Basic to all notions of weak convergence is the following definition:

Definition B.2.8 (Weak convergence of measures). A sequence of finite measures
µn is said to converge weakly to a finite measure µ on the Borel-σ -algebra B(S)
over a metric space S if for any continuous bounded function f ∈ Cb(S)

lim
n→∞

∫
S

f dµn =
∫

S
f dµ. (B.24)

Then the following equivalent notions of weak convergence can be given:

Lemma B.2.1 (Portmanteau-lemma). (B.24) is equivalent to:

limsup
n→∞

µn(A)≤ µ(A) ∀ closed sets A⊂ S (B.25)

liminf
n→∞

µn(A0)≥ µ(A0) ∀ open sets A0 ⊂ S (B.26)

lim
n→∞

µn(A) = µ(A) ∀A ∈B(S) : µ(∂A) = 0, (B.27)

where ∂A := A\A0 denotes the boundary of A.

Proof. The proof is based on [3], p. 446f, [12], p. 385f and [5], p. 289; dS denotes
the metric on S.

• (B.24) → (B.25) Let A ⊂closed S be arbitrary but non-zero (otherwise the
proof is trivial) and let ε > 0. Then there exist a number k ∈ N and a corre-
sponding open superset of A

Uk := {x ∈ S : dS(x,A)<
1
k
}

such that µ(Uk)< µ(A)+ ε . Further define a function f : S→ R by

f (x) := max(1− k dS(x,A),0),

which is bounded and continuous (check triangle inequality) and satisfies
χA ≤ f ≤ χUk (where χ is the characteristic function or index function).
Hence

limsup
n→∞

µn(A)≤ limsup
n→∞

∫
S

f dµn =
∫

S
f dµ ≤ µ(Uk)< µ(A)+ ε
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for all ε and therefore

limsup
n→∞

µn(A)≤ µ(A).

• (B.25)↔ (B.26) Take complements.

• (B.26) → (B.27) Let A ∈B(S) and A (respectively A0) denote its closure
(respectively interior). Due to (B.26) (and consequently, (B.25)) we have

µ(A0)≤ liminf
n→∞

µn(A0)≤ liminf
n→∞

µn(A)

≤ limsup
n→∞

µn(A)≤ limsup
n→∞

µn(A)≤ µ(A),

thus for all sets of continuity of the measure µ (i.e. {A : µ(∂A) = 0}), we
have limn→∞ µn(A) = µ(A).

• (B.27)→ (B.25) Let B be an arbitrary closed Borel-set. The open supersets

Bδ := {x ∈ S : dS(x,B)< δ}

have disjoint boundaries for different values of δ > 0, so due to σ -additivity
at most countably many of the boundary sets can have a strictly positive
measure. Therefore one can find a sequence δk such that Bδk

→ B for k→∞

and the sets Bδk
are sets of continuity of the measure µ . Consequently,

limsup
n→∞

µn(B)≤ limsup
n→∞

µn(Bδk
) = µ(Bδk

).

For k→ ∞, this yields for any closed Borel-set B

limsup
n→∞

µn(B)≤ µ(B).

• (B.25)→ (B.24) Now for any f ∈ Cb(R), assume without loss of generality
that 0 < f (x)≤ 1 ∀x ∈ S. For k ≥ 1 fixed, define

B j := {x ∈ S :
j
k
≤ f (x)} for j = 0, . . . ,k.

Then the following integral approximation by simple functions holds:

k

∑
j=1

j−1
k

µ(B j−1∩Bc
j)≤

∫
f dµ ≤

k

∑
j=1

j
k

µ(B j−1∩Bc
j).
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Using

µ(B j−1∩Bc
j) = µ((Bc

j−1)
c∩Bc

j) = µ((Bc
j−1∪B j)

c)

= 1−µ(Bc
j−1)−µ(B j) = µ(B j−1)−µ(B j)

and µ(Bk) = 0, µ(B0) = 1 after some standard sum manipulations (splitting,
redefining indices) yields

1
k

k

∑
j=1

µ(B j)≤
∫

f dµ ≤ 1
k
+

1
k

k

∑
j=1

µ(B j).

Since the B j are closed, we have

limsup
n→∞

∫
f dµn ≤ limsup

n→∞

{1
k
+

1
k

k

∑
j=1

µn(B j)}

≤ 1
k
+

1
k

k

∑
j=1

µ(B j)≤
1
k
+
∫

f dµ.

Taking the limit k→ ∞ and combining with the analog statement for − f
instead of f (recall that limsup(−x) =− liminf(x)) finally yields (B.24).

If the metric space S is assumed to be a Polish space (recall that this means that
S is complete and separable), there is an additional characterization of weak con-
vergence in terms of weak compactness.

Definition B.2.9 (Weak compactness of measures). A sequence of finite measures
µn on S is said to be weakly compact if every subsequence of it contains a weakly
convergent subsequence of finite measures.

Remark. Actually it should read weakly sequentially compact, but it turns out (this
is a consequence of the after next theorem) that if S is Polish, there is a natural
metric on the space of finite measures on S (the so-called Prokhorov-metric) and
hence the notions are equivalent.

The formulation of the following theorem as well as the proof are to some extent
taken from [3], p. 446f.

Theorem B.2.1 (Weak convergence and weak compactness). For a sequence of fi-
nite measures µn to converge weakly to some finite measure µ on S, it is necessary
and sufficient that the sequence is weakly compact and that limn→∞ µn(A) = µ(A)
for all A belonging to some algebra B0 such that σ(B0) = B(S).
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Proof. Besides [3], compare also with the preceding proof (lemma B.2.1).

• Necessity: A weakly convergent sequence is clearly weakly compact. Be-
cause of (B.27), it remains to be shown that the sets of continuity of the
measure µ (which form an algebra A ) generate the algebra B(S). The argu-
ment is very similar to the one given in the proof of (B.27)→ (B.25): Only
countably many spheres around a given point can have positive boundary
measure (otherwise since the boundaries are disjoint and any sphere con-
tains infinitely many boundary sets of smaller spheres, due to σ -additivity
the latter would have infinite measure), so σ(A ) contains all spheres; since
it is itself contained in B(S) by assumption and B(S) is the minimal σ -
algebra containing all spheres, σ(A ) = B(S) follows.

• Sufficiency: Choose an arbitrary weakly convergent subsequence µnk of µn
having the limit µ . Like in the proof of the Portmanteau-lemma, (B.26)→
(B.27), we have

µ(A0)≤ liminf
nk→∞

µnk(A)≤ limsup
nk→∞

µnk(A)≤ µ(A),

for A∈B(S) and by hypothesis, limnk→∞ µnk(A)= µ(A) for A∈B0. There-
fore, for all sets A in B0,

µ(A0)≤ µ(A)≤ µ(A). (B.28)

Since (B.28) is also satisfied for the limit of a monotonic sequence whose
elements individually satisfy (B.28) (easily proven), the collection of sets
that satisfy (B.28) is a monotone class containing B0 and hence especially
contains σ(B0) = B(S). Especially for the sets of continuity A ∈ A we
have

µ(A) = µ(A)

by definition; but since A generates B(S), this result is general.

The following definition introduces a property of measures called tightness; its
importance mainly lies in the fact that for finite measures on Polish spaces, tight-
ness is equivalent to weak compactness (theorem of Prokhorov), thus providing a
premise for weak convergence according to theorem B.2.1.

Definition B.2.10 (Tightness of measures). A sequence of measures µn on S is
called tight if
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(i) for all x ∈ S

sup
n

µn(x)< ∞, (B.29)

(ii) for any ε > 0 there exists a compact subset Kε of S such that

sup
n

µn(S\Kε)< ε. (B.30)

Remark. For probability measures, (B.30) is obviously equivalent to

sup
n

µn(Kε)> 1− ε. (B.31)

Furthermore, in that case (B.29) can be omitted since probability measures are
finite per definition.

Theorem B.2.2 (Prokhorov). Let µn be a tight sequence of probability measures
on the metric space S with Borel-σ -algebra B(S). Then µn is weakly compact (in
the sense of B.2.9). Moreover, if S is complete and separable, then (B.31) is also
necessary.

Proof. Since the proof is quite involved, it is omitted here. It can be found for
instance in [12], p.393ff or [3], p.441ff.

B.2.3 Weak convergence of stochastic processes
Consider a sequence Xn of real-valued stochastic processes and a real-valued pro-
cess X with index set I having sample paths in a Polish space S with Borel-σ -
algebra B(S). Their laws will be denoted by µP,n and µP, their finite-dimensional
distributions by µK,n and µK respectively. The actual definition of weak conver-
gence of stochastic processes is very simple:

Definition B.2.11 (Weak convergence of stochastic processes). The processes Xn
converge weakly to the process X if and only if the laws µP,n converge weakly to
µP according to definition B.2.8.

Now, making use of the theorems formulated in the preceding subsection yields
the following result:

Theorem B.2.3 (Weak convergence of stochastic processes and tightness). With
Xn and X defined as above, Xn converges weakly to X if and only if

• the finite-dimensional distributions µK,n converge to µK and
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• the sequence of laws µP,n is tight.

Proof. Because of the theorems B.2.1 and B.2.2 it remains to be shown that con-
vergence of the finite-dimensional distributions is equivalent to limn→∞ µP,n(A) =
µP(A) for all A belonging to some algebra B0 such that σ(B0) = B(S). Take
B0 = RI

0; σ(B0) = σ(RI
0) = RI = B(S) is just the consistency condition men-

tioned after definition B.2.5, and µP,n and µK,n (as well as µP and µK) coincide on
RI

0 per definition.

B.3 Tightness and Continuity
In this section, a theorem for weak convergence of stochastic processes in classical
Wiener-space (cf. [3], p. 450f) will be proven (without loss of generality, S =
C [0,1]). The idea is to reexpress the tightness condition of theorem B.2.3 in
terms of continuity properties of the associated stochastic processes.

Definition B.3.1 (Pre-compactness). A subset A ⊂ X of a complete metric space
X is called pre-compact if all sequences in A contain a convergent subsequence.

Remark. The closure of a pre-compact set is of course compact.

Recall the following theorem for functions in C [0,1] relating uniform bound-
edness and equicontinuity with pre-compactness:

Theorem B.3.1 (Arzelà-Ascoli). A subset A of functions in C [0,1] is pre-compact
if and only if

(i) ∃M < ∞ : supt∈[0,1] |ωt | ≤M ∀ω ∈ A (uniform boundedness),

(ii) limδ→0 supω∈A νω(δ ) = 0 (equicontinuity),

where νω(δ ) is the modulus of continuity in ω ∈ C[0,1]. In classical Wiener-
space (C [0,1] equipped with the metric of uniform convergence d∞), νω(δ ) is
defined by

νω(δ ) := sup
|s−t|<δ

|ωs−ωt | (B.32)

and (i) (uniform boundedness) can be replaced by

(iii) supω∈A |ω0|< ∞ (boundedness at 0).
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Proof. The second statement is easily proven ([8], p. 97): Since νω(δ )→ 0 for
δ → 0 (a consequence of equicontinuity), there is an N ∈ R such that

sup
ω∈A

νω(
1
N
)< 1

and therefore for all 0≤ t ≤ 1 we have

|ωt | ≤ |ω0|+
N

∑
i=1

∣∣ωit/N−ω(i−1)t/N
∣∣≤ sup

ω∈A
|ω0|+N sup

ω∈A
νω(

1
N
) = M.

The converse direction (uniform boundedness to boundedness at 0) is of course
trivial.

Proving the sufficiency of uniform boundedness and equicontinuity for pre-
compactness requires a diagonalization argument (compare [5], p. 292f):

Take an enumeration {ti, i ∈ N} of Q[0,1] and an arbitrary sequence ω j, j ∈
N in A. Set ωi, j := ω

j
ti . Due to uniform boundedness of A, the sequence ω1, j

is bounded and therefore contains a convergent subsequence denoted by ω1,n1, j

(Bolzano-Weierstraß-theorem). Next, look at ω2,n1, j ; by the same argument, it
contains a convergent subsequence which will be denoted ω2,n2, j .

Now, continuing inductively, one arrives at ωi,ni, j with the properties that it is
convergent for each i and that ni, j is a subsequence of ni−1, j. Set nk := nk,k; obvi-
ously, the sequence ni,ni+1, . . . is contained in ni, j and hence ωi,nk is convergent
for all i since finitely many elements do not change the limit. For simplicity, put
ω.,k := ω.,nk .

To prove that A has compact closure it remains to be shown that ω.,k converges
for any t ∈ [0,1], not just for t ∈ Q[0,1]. This is achieved in a standard way: By
equicontinuity, for any ε > 0 there exists a δ > 0 such that∣∣ωt,k−ωt ′,k

∣∣≤ ε

3
whenever

∣∣t− t ′
∣∣< δ ;

because Q[0,1] is dense in [0,1], for any point t ′ ∈ [0,1] and any δ > 0 there exists
a point t ∈Q[0,1] such that |t− t ′|< δ . Thus∣∣ωt ′,k−ωt ′,k′

∣∣≤ ∣∣ωt ′,k−ωt,k
∣∣+∣∣ωt,k−ωt,k′

∣∣+∣∣ωt,k′−ωt ′,k′
∣∣≤ 2ε

3
+
∣∣ωt,k−ωt,k′

∣∣ ;
since ωt,k is Cauchy, for k,k′ sufficiently large we have∣∣ωt,k−ωt,k′

∣∣< ε

3

and together∣∣ωt ′,k−ωt ′,k′
∣∣≤ ε.
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Therefore ωt ′,k is Cauchy for all t ∈ [0,1] (thus converging pointwise) and equicon-
tinuous, together implying uniform convergence. Summarizing, every sequence
in A contains a convergent subsequence, making A pre-compact in the topology
of uniform convergence.

Conversely, suppose that A is pre-compact. If A is unbounded (in the uniform
norm), it contains a sequence with monotonely increasing and unbounded norm;
but since norm convergence is necessary for convergence, this sequence cannot
have convergent subsequences.

If A is not equicontinuous, there is an ε > 0 such that for all δ there exist
t, t ′ ∈ [0,1] and ω ∈ A such that |t− t ′|< δ , but |ωt−ω ′t |> ε . Especially, for the
sequence δn := 1

n there are tn, t ′n ∈ [0,1] and ω.,n ∈ A such that |tn− t ′n| < 1
n , but∣∣ωt,n−ωt ′,n

∣∣> ε . Take one such sequence ω.,n; by assumption, it is not equicon-
tinuous and therefore not convergent in the uniform metric, the same is especially
true for its subsequences. This is a contradiction to the pre-compactness of A.

The characterization of compact sets in C [0,1] by uniform boundedness and
equicontinuity (Arzelà-Ascoli theorem) now allows for a reformulation of tight-
ness of measures on C [0,1] (cf. [3] p. 449f, [8] p. 97f):

Theorem B.3.2 (Tightness of probability measures on the space of continuous
functions). A sequence of probability measures µn on C [0,1] is tight if and only
if the following two conditions hold for all n:

(i) for each η > 0 there is a number B such that

µn(ω ∈ C [0,1] : sup
t∈[0,1]

|ωt |> B)≤ η , (B.33)

(ii) for each ε > 0,η > 0, there exists a δ > 0 such that

µn(ω ∈ C [0,1] : νω(δ )≥ ε)≤ η . (B.34)

Proof. If µn is tight, then for each η > 0 there is a compact set K such that
µn(K)> 1−η for all n. But, by the Arzelà-Ascoli theorem, for all ω ∈ K there is
a B≥ supt∈[0,1] |ωt | and hence

µn(ω ∈ C [0,1] : sup
t∈[0,1]

|ωt |> B)≤ µn(KC)≤ 1− (1−η) = η .

Similarly, given ε > 0,η > 0 select δ > 0 such that supω∈K νω(δ )< ε . Then

µn(ω ∈ C [0,1] : νω(δ )≥ ε)≤ µn(KC)≤ η .
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Conversely, given η > 0, choose B such that

µn(ω ∈ C [0,1] : sup
t∈[0,1]

|ωt | ≤ B)≥ 1− η

2

and δε such that

µn(ω ∈ C [0,1] : νω(δε)< ε)≥ 1−2−(1+
1
ε
)
η .

For K being the closure of

{ω : sup
t∈[0,1]

|ωt | ≤ B}∩
∞⋂

1
ε
=1

{ω : νω(δε)< ε}

we have µn(K)≥ 1−η for all n.

Together with theorem B.2.3 we have:

Theorem B.3.3 (Weak convergence of continuous stochastic processes). Let Xn =

{X (n)
t : t ∈ [0,1]} and X = {Xt : t ∈ [0,1]} be stochastic processes defined on a

common probability space (Ω,F ,P) with a.s. continuous sample paths and sup-
pose that the finite dimensional distributions of Xn converge to those of X. Xn
converges weakly to X if and only if for each ε > 0

lim
δ→0

sup
n

P(ω ∈Ω | νXn(ω)(δ )≥ ε) = 0. (B.35)

Proof. Since δ in (B.35) is independent of n (this turns out to be a consequence of
equicontinuity), the limit can be taken after the supremum and (B.35) is equivalent
to

∀n, lim
δ→0

P(ω ∈Ω | νXn(ω)(δ )≥ ε) = 0 (B.36)

since P of course cannot be negative.

• Necessity: If Xn converges weakly to X , the sequence µP,n is tight (theorem
B.2.3) and consequently (B.34) holds. Take the limit δ → 0.

• Sufficiency: Suppose that (B.36) holds. Given an arbitrary η > 0, it is al-
ways possible to find a δ > 0 such that

P(ω ∈Ω | νXn(ω) ≥ ε)≤ η

for all n. But this is just (B.34).

47



On the other hand, since the finite-dimensional distributions of Xn converge
by assumption, they must be bounded; especially, for any η > 0 there exists
a B such that

P(ω ∈Ω | sup
t∈[0,1]

∣∣∣X (n)
t (ω)

∣∣∣> B)≤ η

for all n which is (B.33).

If the metric on C [0,1] is specified to d∞ (classical Wiener-space), one finally
arrives at the following theorem:

Theorem B.3.4 (Gikhman-Skorokhod). Let Xn and X be stochastic processes de-
fined on a common probability space (Ω,F ,P) with sample paths in classical
Wiener-space. Suppose that the finite dimensional distributions of Xn converge
to those of X and that the processes Xn fulfill Kolmogorov’s continuity condition
(B.6) individually. Then Xn converges weakly to X.

Proof. The proof (first given by [3], p. 450f) is in some points related to the one
given for Kolmogorov-Chentsov’s theorem. Since C [0,1] with d∞ is separable,
switch with advantage from [0,1] to the set of rationals on [0,1]. Also, since the
proceeding is identical, the index n will be suppressed until the final result.

Using again the dyadic representation, the oscillation over δ ≥ |t− s|

νX(δ ) = sup
|t−s|≤δ

|Xt−Xs|

can be estimated for δ = 21−k (k fixed) by

νX(δ )≤ 2 sup
j2−k<i2−m<( j+1)2−k

∣∣∣Xi2−m−X j2−k

∣∣∣ ,
where suprema over i, j ∈ N and m > k are taken. For j2−k < i2−m < ( j+1)2−k,
write

i2−m = j2−k +
r

∑
ν=1

2−mν where k < m1 < m2 < · · ·< mr ≤ m;

further define α(µ) := ∑
µ

ν=1 2−mν . Then

Xi2−m−X j2−k =
r

∑
µ=1

X j2−k+α(µ)−X j2−k+α(µ−1)
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and therefore, since suprema over i and m (respectively µ and r) are taken,

νX(δ )≤ 2
∞

∑
m=k+1

sup
0≤h≤2m−1

∣∣X(h+1)2−m−Xh2−m
∣∣ .

For a given ε > 0, take δ = 2−k+1 so small (i.e. k so large) that ∑
∞
m=k+1

1
m2 < ε

2 ;
then

P(νX(δ )> ε)≤
∞

∑
m=k+1

P( sup
0≤h≤2m−1

∣∣X(h+1)2−m−Xh2−m
∣∣> 1

m2 )

≤
∞

∑
m=k+1

2m−1

∑
h=0

P(
∣∣X(h+1)2−m−Xh2−m

∣∣> 1
m2 )

≤
∞

∑
m=k+1

m2α
2m−1

∑
h=0

E
∣∣X(h+1)2−m−Xh2−m

∣∣α
≤

∞

∑
m=k+1

m2α2mC2−m(1+β ) =C
∞

∑
m=k+1

m2α

2mβ

where Chebyshev’s inequality and (B.6) were used. This bound goes to zero with
δ → 0 uniformly with respect to n yielding (B.35).

B.4 Thermodynamic Limit of the Forcing
The theorem of Gikhman and Skorokhod introduced in the preceding section will
be used to prove an important limit theorem (cf. [13]) for the forcing term of the
Mori-Zwanzig-Langevin equation.

Theorem B.4.1 (Weak convergence of the forcing). Suppose that g is a positive
bounded real-valued function with bound c1 such that

g(ω)≤ c2 ω
−λ for some c2 > 0 and λ > 1/2. (B.37)

Recall that under those assumptions, the memory kernel

Kn(t) :=
n

∑
j=1

g2(ω j) cos(ω j t) ∆ω (B.38)

with ∆ω ≡ na−1 and ω j := na
ν j, ν j i.i.d., ν1 ∼U [0,1]

converges to

K(t) :=
∫

∞

0
g2(ω) cos(ω t) dω (B.39)
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ν-almost surely in the limit n→ ∞ for some a ∈ (0,1) (see preceding chapter).
But also, the forcing term

Zn(t) := β
−1/2

n

∑
j=1

g(ω j)[ξ j cos(ω jt)+η j sin(ω jt)](∆ω)1/2, (B.40)

where ξ j i.i.d., ξ1 ∼N (0,1), η j i.i.d., η1 ∼N (0,1),

which is a zero-mean stationary Gaussian process with autocovariance function
Eξ η [Zn(t+s) Zn(s)] = β−1Kn(t) ν-almost surely, converges to the zero-mean sta-
tionary Gaussian process Z(t) with autocovariance function Eξ η [Z(t+ s) Z(s)] =
β−1K(t) ν-almost surely and ξ ,η-weakly in C [0,T ].

Proof. First check if Z(t) has a.s.-continuous sample paths. On that purpose, use
α = 2 in (B.6): then there should exist γ,C > 0 such that

C |t|1+γ
!
≥ Eξ η |Z(t + s)−Z(s)|2 = 2 |K(0)−K(t)| ;

but this follows from the assumptions on g(ω).
Next, check if the finite-dimensional distributions of Zn converge to those of Z

ν-almost surely. This is clear since, due to the Gaussian nature of Zn and Z, they
are completely characterized by the means Eξ η [Zn] = 0 respectively Eξ η [Z] = 0
(which holds ν-almost surely) and the autocovariance functions Kn respectively
K, which converge ν-almost surely as proven in the preceding chapter.

According to theorem B.3.4, it remains to be shown that Kolmogorov’s con-
tinuity condition (B.6) holds for Zn ν-almost surely. To that end, choose θ ∈
(0,2λ −1]∩ (0,2] and b ∈ N such that bθ = 1+ γ for some γ > 0. Then

Eξ η |Zn(t + s)−Zn(s)|2b = (2b−1)!!(Eξ η |Zn(t + s)−Zn(s)|2)b

= 2b(2b−1)!! |Kn(t)−Kn(0)|b

= 22b(2b−1)!!

∣∣∣∣∣ n

∑
j=1

g2(ω j)sin2(
1
2

ω jt)∆ω

∣∣∣∣∣
b

≤ 22b(2b−1)!!(
n

∑
j=1

g2(ω j)

∣∣∣∣12ω jt
∣∣∣∣∆ω)b

= 2b(2−θ)(2b−1)!! |t|bθ (
n

∑
j=1

g2(ω j)ω
θ
j ∆ω)b

≤ [2b(2−θ)(2b−1)!!Mb] |t|1+γ .

Going from the first to the second line uses the Gaussian nature of the process and
its stationarity; further, in the forth line the estimate sin2(x) ≤ |x|θ was used. Fi-
nally, since θ ≤ λ − 1

2 , g̃(ω j) := ω
θ

2 g(ω j)≤ c2 ω
θ

2−λ meets the condition (B.37),
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and hence Kn(0) with g replaced by g̃ converges ν-almost surely to∫
∞

0
g̃2(ω) dω ≤M < ∞.

This completes the proof since g̃2 and consequently M is positive.
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