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 Projects were conducted to determine effects of diet and aging periods on inherent 

beef flavor characteristics by relating biochemical constituents of meat, consumer 

acceptability, and lexicon flavor notes of two different muscles.  Prediction equations 

were also created.   Warm-season grasses caused increased concentrations of moisture, 

heme iron, and zinc in L. dorsi steaks.  Aging 28 d instead of 7 d caused increased pH, 

carbohydrate, and heme and non-heme iron concentrations in B. femoris steaks.  Warm-

season grasses caused decreased concentrations in a majority of fatty acids, specifically 

when supplementation was not provided.  Few differences were observed with cool-

season grasses.  Provision of wet distillers grains with solubles (WDGS) as a 

supplemental energy source minimized a majority of effects.  Aging longer than 7 d 

tended to dissipate desirability differences in both muscles.  Finishing on WDGS, 

especially after supplementing with WDGS, caused declines in several consumer panel 

scores in L. dorsi steaks.  Warm-season grasses were most detrimental towards consumer 

panel scores in B. femoris steaks.  The least desirable flavor notes were associated with 

warm-season grasses most of which were improved with supplementation in both 

muscles.  Clearly, grass type is important for both flavor development and consumer 



 

 

preference.  Even though several of the meat principle components were found to 

significantly influence consumer panel and lexicon flavor note scores, the regression 

coefficients were small.  Several regression coefficients between lexicon notes and 

consumer panel scores were not only significant, but also large suggesting they may be 

good predictors of consumer acceptability.  A majority of the lexicon flavor notes were 

shown to be altered by diet and aging.  Grazing on cool-season grasses, or supplementing 

while being grazed on warm-season grasses, can alter flavor notes to create a product that 

is highly desirable to consumers. Providing supplementation, finishing on an all corn diet, 

and aging the meat also promoted desirable flavors.   

 

Keywords:  Aging, beef, diet, flavor, forages, supplementation          
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INTRODUCTION 

 Consumers rely on flavor to evaluate a beef eating experience.  Great flavor will 

cause a consumer to deem their eating experience as pleasurable and elicits many 

pleasurable emotions that will cause them to remember their meal.   

 There are many different biochemical components that help determine the flavor 

profile of a specific piece of meat.  The maillard reaction is an important component of 

flavor development.  It involves a reaction between the carbonyl groups of reducing 

sugars (carbohydrates) and amino acids in the presence of heat, as well as the degradation 

of fat.  If the concentration of reducing sugars or specific types of amino acids were 

altered, then the flavor of a product would also be altered.  In addition, many different 

fatty acids are associated with specific flavor notes, both desirable and undesirable.    

 Animal diet can have a significant impact on flavor development.  Grass types, as 

well as the composition, vary among different geographical locations.  Some of these 

variations can alter the biochemical components of the muscle.  While grazing, it is 

common to supplement cattle to ensure their energy requirements are being met.  Wet 

distillers grains with solubles (WDGS) are often one form of grain-based 

supplementation.  By the addition of this grain source, the biochemical components of the 

meat may be changed which could later lead to flavor differences in the meat. 

 After the grazing period, most cattle are finished on a high concentrate diet.  

Although corn is the most common concentrate used, WDGS are often included as an 

economical alternative.  Inclusion of a different grain source may cause many changes in 

the meat, both biochemical and flavor related. 
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 As meat is aged, differences in flavor profile may also occur.  Even within the 

same carcass, there can be profound differences between different muscles.  Therefore, a 

study was conducted to investigate how flavor and the constituents that influence flavor 

are affected in two different muscles from cattle fed two different forages post-weaning, 

with or without supplemental energy, and finished on either a corn or WDGS diet.  After 

varying the diets in this way, along with a simulated retail display, flavor differences 

were identified and the biochemical components responsible for these differences were 

quantified.    

Objectives 

1.  Evaluate production factors (post-weaning forage grazing, energy supplementation 

during grazing, and finishing diets) associated with development of desirable endogenous 

beef flavor. 

2.  Assess the effects of aging on flavor of different muscles. 

3.  Relate biochemical constituents of muscle to specific flavor notes using the beef 

lexicon. 

4.  Assess relationships between production factors, biochemical constituents, the flavor 

lexicon and consumer flavor desirability. 
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LITERATURE REVIEW 

Consumers and beef flavor  

 Humans recognize flavor using five different receptors:  sweet, salty, sour, bitter, 

and umami. Umami is the taste receptor responsible for recognizing meaty, savory, and 

delicious notes in food, such as those found in beef steaks (Cattleman’s Beef Board and 

National Cattleman’s Beef Association, 2010).  Out of all the different palatability 

characteristics of meat, flavor is often the one attribute that most people rely on for a 

pleasurable eating experience.  Reicks (2006) had consumers rate the importance of 

tenderness, juiciness, flavor, product consistency, ease of preparation, nutritional value, 

natural, organic, and price per pound.  Consumers consistently rated the attribute of 

flavor to be the most important factor to them when they were purchasing a beef steak or 

roast.     

   Flavor is so important that studies have shown consumers are willing to pay more 

for a more flavorful steak.  In a study conducted by Umberger et al. (2002), consumers 

sampled and evaluated cuts of beef from different USDA quality grades, production 

practices, and countries of origin.  Consumers were willing to pay considerably more for 

cuts they had identified as having a pleasurable flavor.  Consumers that had a stronger 

flavor preference also had a larger bid differential.  Feuz and Umberger (2001) also 

learned that consumers were willing to pay significantly more for beef that had a 

pleasurable flavor.  In their study, consumers were willing to pay $1.30 or more per 

pound for a steak they thought had a good flavor when compared to a less desirable steak.  

In some cases, consumers were willing to pay up to $1.63 more per pound.    
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 Similarly, Platter et al. (2003) showed that even the smallest change in consumer 

sensory ratings, which included flavor, can have drastic effects on overall acceptance of a 

steak.  Using a 9-point hedonic scale (1 = like extremely and 9 = dislike extremely), they 

found that when consumer flavor ratings decreased from a 3 to a 5 the probability of that 

steak being rated as acceptable also decreased rapidly, from >85% to <10%.  When it 

comes to beef flavor, consumers know what they want and are willing to pay for it.   

Beef Flavor 

 Out of all the different palatability characteristics of meat, flavor tends to be one 

of the most important.  As discussed earlier, Umberger et al. (2002) determined that 

consumers were willing to pay considerably more for cuts they had identified as having a 

pleasurable flavor, meaning flavor is often an attribute that most people use to rate an 

eating experience.  There are many components of meat that contribute to the flavor 

development. 

 The formation of ‘meat’ flavors is due to the Maillard reaction, a reaction that 

occurs when amino acid compounds react with the carbonyl groups of reducing sugars in 

the presence of heat, and the degradation of fats while cooking (Mottram, 1998, Calkins 

and Hodgen, 2007).  Mottram (1998) stated that the reducing sugars, in particular ribose, 

and amino acids that react in the Maillard reaction are water-soluble precursors for flavor.  

The main water-soluble precursors are free amino acids, peptides, nucleotides, other 

nitrogenous compounds, free sugars, sugar phosphates, and nucleotide-bound sugars.  

The products that are formed from the Maillard reaction can be changed into furfural, 

furanone derivatives, hydroxyketones, and dicarbonyl compounds, all of which all 
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contribute to meat flavor.  These intermediates can then react with other volatiles in 

different reactions which will create more and different flavor compounds.   

Amino Acids 

 The water-soluble components of meat, such as amino acids and carbohydrates, 

contribute to the development of a ‘meaty’ flavor in animal tissue (Koutsidis et al., 2008).  

Elmore and Mottram (2006) and Macy et al. (1964a, b) also discovered that amino acids 

may be of importance to meat flavor.  Macy et al. (1964a, b) revealed that all twenty 

amino acids are prevalent in beef.  When beef is cooked, concentrations of taurine and 

alanine decreased while histidine and methionine increased. The increases in 

concentration were due to the hydrolosis of carnosine and/or anserine while the decreases 

were due to the compounds themselves being broken down.  Other amino acids degraded 

during cooking included glutamic acid, glycine, lysine, serine, cysteine, methionine, 

leucine, and isoleucine.  Elmore and Mottram (2006) and Macy et al. (1964a, b) 

speculated that the products of degradation were partly responsible for the browning of 

meat, as well as the resulting flavors and odors, which holds true to what is known about 

the Maillard reaction.         

Carbohydrates 

 Just like for free amino acids, Macy et al. (1964a, b) also stated that 

carbohydrates, another water-soluble component, may be very important potential flavor 

precursors due to their function in the Maillard reaction.  In their research, Macy et al. 

(1964b) found that glucose is the most prevalent carbohydrate in meat with fructose and 

ribose present in smaller amounts.  Further studies showed that fructose was the most 
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stable to heating while ribose was the most labile.  They deduced that the products 

resulting from reducing sugars and amino acids reacting with each other in the Maillard 

reaction may be important in browning and flavor development.                 

Cysteine and Ribose 

 The Maillard reaction occurs when amino acids and carbohydrates react with 

each.  One of the most important interactions in the Maillard reaction is the one between 

the amino acid cysteine and the carbohydrate ribose.  When cysteine and ribose react 

with each, under heating, lots of aromatic volatiles are formed (Farmer et al., 1989).  The 

major component of these is sulphur-containing heterocyclic compounds, such as thiols 

and thiopenes.  There are several thiols that possess meaty odor characteristics including 

3-mercapto-2-methyl-2,3-dihydrothiophene, 2-ethylbenzenethiol, and pyrazine 

methanethiol, 2-methyl-3-furanthiol, Bis(1-mercaptoethyl)sulfide to name a few (Maga, 

1976).   

 Two degradation products that were found in high volumes were 2-methyl-3-

furanthiol and 2-furanmethanethiol.  Both of these compounds are known to be important 

parts of aroma volatiles for beef and meat (Gasser and Grosch, 1988).  Gasser and Grosch 

also reported that Bis(2-methyl-3-furyl)disulfide, the disulfide of 2-methyl-3-furanthiol, 

possesses a meat-like odor.  Other compounds that were revealed by Farmer et al. (1989) 

when cysteine reacted with ribose included several 2-acylthiophenes, dihydro-3(2H)-

thiophenone and its 2-methyl derivative, thiazole, several alkylthiazoles, and 3,5-

dimethyl-1,2,4-trithiolane.  All of the aforementioned compounds are also known to exist 
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in the volatiles of cooked beef and meat and contribute to the meaty aroma (van Straten 

and Maarse, 1983).   

 When Farmer et al. (1989) added phospholipid to the reaction of cysteine and 

ribose, there was an increase in meaty aroma, showing that phospholipid is also important 

for aroma production in the Maillard reaction.  Not only did phospholipid increase the 

intensity of meaty aroma, but it also increased the amount of compounds that create a 

meaty aroma, like the ones listed previously.  There are many other volatiles present in 

this reaction that contribute to the overall meat flavor, but only the ones that are specific 

to a meaty, beefy, or roasted flavor have been discussed.  

Fatty Acids  

 Although the water-soluble compounds are responsible for the ‘meaty’ flavor, 

lipids produce the species-specific flavor (Koutsidis et al., 2008).  When lipids are broken 

down during cooking, the fatty acids (FA) within the lipids create unique flavor profiles.  

Larick and Turner (1990) and Melton et al. (1982) were able to identify specific FA that 

promoted a desirable cooked beef flavor when their presence was increased as well as FA 

that promoted off-flavors in beef.   

 For example, a study conducted by Larick and Turner (1990) found myristic acid 

(C14:0), myristoleic acid (C14:1), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic 

acid (C18:0), and oleic acid (C18:1) to be significantly (P < 0.05), positively correlated to 

cooked beef fat flavor.  Melton et al. (1982) also showed that palmitoleic acid (C16:1) 

and oleic acid (C18:1) were positively correlated (P < 0.05) with cooked beef fat flavor, 

as well as heptadecenoic acid (C17:1).  Conversely, pentadecanoic acid (C15:0), linolenic 
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acid (C18:3), and arachidonic acid (C20:4) were negatively correlated (P < 0.01) with 

cooked beef fat flavor.  As levels of FA increased in beef, the cooked beef fat flavor 

decreased.  Also, stearic acid (C18:0) was negatively correlated (P < 0.001) with cooked 

beef fat flavor (Melton et al., 1982), which is opposite of what Larick & Turner (1990) 

reported.   

 Not all of the flavors that FA create are pleasant.  Heptanoic acid, octanoic acid 

(C8:0), nonanoic acid, and decanoic acid are significantly (P < 0.05) correlated with 

grassy flavor in ground beef (Larick et at., 1987).  Melton et al. (1982) discovered that 

C15:0, stearic acid (C18:0), linolenic acid (C18:3), and arachidonic acid (C20:4) were all 

associated with milky-oily, sour, and fishy flavors.  They also found that C20:1 was 

positively correlated to sour flavor and C19:1 was positively correlated to fishy flavor.  

Conversely, myristoleic acid (C14:1), palmitoleic acid (C16:1), heptadecenoic acid 

(C17:1), and oleic acid (C18:1) were all negatively correlated to milky-oily, sour, and 

fishy flavors (P < 0.05).  Higher levels of these FA would be only desirable when they 

decrease the incidence of other, less desirable off-flavors.   

 Levels of myristoleic acid (C14:1) and palmitoleic acid (C16:1) increased the 

incidence of liver flavor (P < 0.05), but increasing levels of stearic acid (C18:0) 

decreased (P < 0.001) the incidence (Melton et al., 1982).  Jenschke et al. (2008) also 

showed other fatty acids in the subcutaneous fat of cattle that were related to liver flavor.  

They reported that C18:2(n-6t) was inversely related (P = 0.04) while C20:1(n-9) and 

CLA 9c, 11t were directly related (P < 0.05) to liver flavor.  An additional study by 

Jenschke et al. (2007a) found that as the content of both C20:2(n-6) and C20:5 increased, 
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the frequency of liver-like off flavor also increased.  In contrast, as both C20:3(n-6) and 

C22:5 increased, the frequency of liver-like off flavor decreased.   

 It appears that at first, stearic acid is not associated with liver off flavor, but as it 

becomes more unsaturated it begins to change.  The type of change all depends on the 

location of the double bond.  Stearic acid (C18:0) is converted to oleic acid (C18:1) 

which becomes linoleic acid (C18:2) by an enzyme in ruminant animals.  If the double 

bonds in linoleic acid are in the conjugated 9cis, 11trans position they will continue to be 

unrelated to liver off flavor.  However, if one of the double bonds is in the n-6trans 

location then the compound tends to be linked with liver off flavor (Jenschke et al., 

2008).  According to Smith et al. (2006), the enzyme Δ
9
 desaturase is the enzyme 

responsible for converting saturated fatty acids (SFA) into monounsaturated fatty acids 

(MUFA).  Δ
9
 desaturase is encoded by the stearoyl coenzyme A desaturase gene, which 

can also convert MUFA into polyunsaturated fatty acids (PUFA).  It is due to the Δ
9
 

desaturase enzyme and the stearoyl coenzyme A desaturase gene working together that 

converts trans-vaccenic acid acid (C18:1trans-11)  into its C18:2cis-9,trans-11 isomer.  

Therefore, if one could control the expression of both the Δ
9
 desaturase is encoded by the 

stearoyl coenzyme A desaturase gene, they could also control the prevalence of liver off 

flavor.   

 Hundreds of volatiles that are responsible for meat flavor have been identified 

from the degradation of lipid.  Most of them are aliphatic hydrocarbons, aldehydes, 

ketones, alcohols, carboxylic acid, esters, and some aromatic compounds (Mottram, 

1998).  Different volatiles create different flavor notes that are present in meat.  Farmer 
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and Patterson (1991) identified several volatiles that contributed to the meaty and roasted 

flavor of meat.  Yancey et al. (2006) identified several volatiles that caused a more 

intense livery off-flavor as their content in a sample increased.  All of these compounds 

are derived from the fatty acid components of the lipid.  By manipulating the FA content, 

a more desirably flavored beef product may be created.  A study focusing on how various 

diets can affect FA profiles and flavor is needed.  

Minerals   

 Few have studied the effects of minerals on beef flavor.  One study saw that as 

sodium concentrations increased, so did the intensity of liver-like off flavor, but only 

minimally (Jenschke et al., 2007a).  The same study also showed that zinc was associated 

with stronger off-flavor intensity while phosphorous and calcium were associated with 

lower off-flavor intensity.  The magnitude of the effects were minimal.   

 Of all the minerals, iron has been the one researched most.  Yancey et al. (2006) 

determined that an increase in total iron content in a meat sample paralleled the amount 

of livery off-flavor (P < 0.05).  This relationship was only observed in certain muscles.  

In contrast, Jenschke et al. (2007a) found an increase in occurred iron content with lower 

intensities of off-flavors (P < 0.001), although the contribution was minimal.  Yancey et 

al. (2006) also saw significant positive correlations between myoglobin content and 

livery off-flavor (P < 0.05).  This correlation was present in all muscles sampled.   

 When beef was cooked, non-heme iron content increased (Schricker and Miller, 

1983).  The increase was believed to be due to the breakdown of heme iron in 
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hemoglobin and myoglobin.  Perhaps the increased amount of non-heme iron contributes 

to the livery off-flavor by catalyzing oxidation.        

pH 

 The ultimate pH of beef may also have an effect on flavor notes.  Meynier and 

Mottram (1995) reported different flavor notes were observed when pH changed.  For 

example, when the pH was at 4.5 their glycine and lysine model systems had a caramel-

like aroma.  When the pH was increased it changed to a roasted aroma.  Similarly, at a 

pH of 4.5 the cysteine model had what was described as a strong sulphurous and 

unpleasant aroma.  The aroma became more roasted-meat-like at higher pH values.  

Moreover, Meynier and Mottram (1995) found that all of the Maillard reaction products 

were strongly affected by pH.  Increasing the pH change an unpleasant aroma and make it 

more desirable.   

Animal Diets 

Forage feeding 

 Many components of meat affect its flavor, but the diet of the animal can 

manipulate these components and therefore change the flavor of the beef.  This 

manipulation begins with the type of forage cattle graze post-weaning before they enter a 

feedlot.  Grazing on sorghum sudangrass caused the flavor of ground beef to have more 

of a sweet and gamey aftertaste, but less of a sour and cooked beef fat flavor (P < 0.05) 

than cattle grazed on fescue-clover (Larick and Turner, 1990).  The researchers believed 

that these flavor differences were due to changes in phospholipid composition and the 

fatty acid profiles of the neutral lipids.     
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 When Larick et al. (1987) grazed cattle on three different grasses the cattle grazed 

on tall fescue had lower hot carcass weights, smaller ribeyes, less backfat, lower quality 

grades, and lower numeric yield grade (P < 0.05).  Levels of the volatiles heptanal, 

hexanoic acid, 2-tridecanone, phyt-1-ene, octadecane, phytane, neophytadiene, phyt-2-

ene, diene isomer, and dihydrophytol were all higher in samples from the fescue 

treatment than other grass treatments (P < 0.05).  In addition, all of those volatiles, except 

for hexanoic acid, were also positively correlated (P < 0.05) to grassy flavor in ground 

beef samples.  Cattle were finished on the same diet for the same amount of time, so 

finishing diet should not have had an effect.  It can be assumed that beef from cattle fed 

fescue had a much stronger grassy flavor than the beef from the other grazing treatments 

due to the increased amount of certain volatiles. 

 Jenschke et al. (2008) fed cattle from two different sources, South Dakota and 

Nebraska, several diets consisting of high or low levels of alfalfa hay, corn stalks, or corn 

silage.  They found that adding corn silage or corn stalks to a finishing diet significantly 

(P = 0.01) lowered levels of C16:0 than the control (no roughage inclusion, 30% wet 

distillers grains with solubles (WDGS)) diets.  When fed low amounts of alfalfa and corn 

stalks there were greater amounts of C18:1(n-9) and lower amounts of C18:2(n-6) (P < 

0.05) compared to the control, high levels of alfalfa, high levels of corn stalks, and both 

levels of corn silage.  Low alfalfa also caused lower levels of C20:4(n-6) and C22:5(n-3) 

compared to all other diets (P < 0.05). Diets low in alfalfa and/or corn stalks had the 

greatest amount of MUFA compared to the control, high levels of alfalfa, high levels of 

corn stalks, and all levels of corn silage.  All levels of corn silage had the greatest amount 
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of PUFA and omega-6 FA (P < 0.05) compared to the control, both levels of alfalfa, and 

both levels of corn stalks. 

 When cattle were fed low amounts of corn stalks, three times as many sensory 

panelists noticed a liver-like off flavor, in comparison to all the other diets (Jenschke et 

al., 2008).  They reported significant correlations between certain fatty acids and liver-

like off flavor, with increased amounts of 20:1(n-9) and CLA 9c, 11t and decreased 

amounts of 18:2(n-6t) causing an increased amount of off flavor. 

 Conversely, beef from cattle fed high amounts of corn stalks received some of the 

lowest percentages of panelists that could identify a bloody off-flavor in the meat 

(Jenschke et al., 2008).  Other diets that created some of lowest percentages of panelists 

that could identify a bloody off-flavor in the meat were the control diet (no roughage 

inclusion of any type), high amounts of alfalfa, and diets containing both high and low 

amounts of silage.  Diets low in alfalfa had the highest percentage of panelists that could 

identify a bloody off-flavor in the meat compared to all other diets.  In all three studies 

(Larick et al., 1987, Larick and Turner, 1990, and Jenschke et al., 2008) different grasses 

were fed but the results were the same:  forage type affected flavor, some more than 

others.  From this it is evident that forage type fed to cattle post-weaning can affect flavor 

desirability.   

Supplementation 

 While grazing cattle on grass, it is common to supplement cattle so their energy 

and/or protein requirements are met.  The effects of supplementing on beef flavor have 

not been thoroughly examined.  Kiesling et al. (2011) grazed cattle on predominantly 
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fescue grass.  Half of the cattle were offered soyhulls-dried distillers grains with solubles 

and the other half were offered ground corn-dried distillers grains with solubles as 

supplementation.  Overall, there were no carcass differences (hot carcass weight, ribeye 

area, 12
th

 rib fat thickness, kidney, pelvic, and heart fat, and marbling score) due to 

supplementation.  Cattle that were offered soyhulls-dried distillers grains with solubles 

had a higher conjugated linoleic acid content and omega-3:omega-6 ratio though (P < 

0.0001).  This shift in FA profile may be sufficient to affect beef flavor.   

 Mandell et al. (1997) also found that supplementation can manipulate FA profiles.  

Their cattle were fed a high-moisture corn diet with protein supplementation.  The 

supplementation included 0, 5, or 10% fish meal during the finishing phase.  Total 

saturated FA, MUFA, and PUFA were unaffected by the addition of fish meal 

supplementation (P > 0.10) and 18:0 and 20:4(n-6) were decreased by it (P < 0.04).  

Earlier, it was discussed how these two FA can affect flavor, although conflicting reports 

of the effect of 18:0 on beef flavor have been reported (Larick and Turner, 1990, Melton 

et al., 1982).  20:4(n-6) decreased cooked beef fat flavor, so perhaps it is a good thing 

that fish meal supplementation decreased its content.  They also found that omega-3 FA 

increased while omega-6 FA decreased when fish meal is supplemented at 10% (P < 

0.05), which agrees with Kiesling et al. (2011).  Some omega-6 FA can increase the 

occurrence of livery off-flavor (Jenschke et al., 2008).   

 Shand et al. (1998) experimented with supplementation and evaluated how it 

affected eating quality.  In their study, cattle were supplemented either wet brewers grain 

or a wheat-based wet distillers grain during both the background and finishing phase.  
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The results for beef flavor intensity, flavor desirability, and off flavor intensity were not 

different between the different supplementation diets or the control diet (P > 0.64), which 

was absent of supplementation.  None of the three diets significantly affected the FA 

profiles (P > 0.05) of the lean.   

 All three studies (Kiesling et al., 2011, Mandell et al., 1997, and Shand et al., 

1998) showed how supplementing cattle can affect carcass traits and FA profiles.  Today, 

distillers grains have become an economical feed source and are often used for 

supplementation during grazing.  However, more research is needed to evaluate the 

effects of using distillers grains for supplementation on beef flavor. 

Finishing diet 

 Diets fed in a finishing lot may also be a factor in determining beef quality and 

flavor.  Even though a concentrate like corn has been fed for ages, feeding it in different 

ways can still cause changes in meat quality.  When Larick and Turner (1989) fed corn in 

very different production systems, confinement vs. grain-on-grass, both marbling and 

USDA quality scores increased when cattle were fed grain-on-grass (P < 0.05).  Within 

the neutral lipid layer, feeding grain-on-grass increased the content of 18:2, 18:3, and 

total PUFA (P < 0.05) compared to confinement feeding.  There was no effect on FA in 

the phospholipid layer (P > 0.05).  As discussed in previous sections, 18:3 has been 

found to both decrease cooked beef fat flavor and increased sour and fishy flavors in 

beef.  By increasing its content, the flavor of beef could be negatively affected.  The same 

study also compared corn to wheat as the grain component.  There were no differences 

between the two diets for carcass characteristics or FA profiles in both the neutral and 
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phospholipid layers (P > 0.05).  These findings are important because they show that 

wheat is just as good of a grain source in finishing diets as corn from the perspective of 

FA composition.  

 In many regions of the country barley is often chosen as a concentrate for 

finishing diets.  Busboom et al. (2000), Jeremiah et al. (1998), and Miller et al. (1996)  all 

reported that feeding barley created no differences in flavor intensity, flavor desirability, 

and off-flavors when compared to corn (P > 0.05).  Miller et al. (1996) also reported no 

differences in FA profiles as well (P > 0.05).  Both Busboom et al. (2000) and Jeremiah 

et al. (1998) did notice differences in specific flavor attributes.  Beef from cattle fed 

barley had significantly more incidents of metallic (Busboom et al., 2000) and bloody 

(Jeremiah et al., 1998) aromas (P < 0.05).  For aftertaste, barley diets created lower 

intensities of browned flavors (Busboom et al., 2000) and higher incidents (P < 0.05) of 

livery, bloody, and metallic flavors (Jeremiah et al., 1998), but all other aroma and flavor 

attributes were not different from each other (P > 0.05).  Given that these are the only 

attributes affected out of 20 attributes studied, their significance does not seem great.  It 

would appear that feeding barley during the finishing phase, just like wheat, is just as 

good for flavor as a finishing ration of corn.   

 Distillers grains (DG) are an economical choice for a finishing ration and are 

widely included in diets.  When new feedstuffs are fed to cattle, their effect on carcass 

characteristics and palatability must be investigated.  When DG are included in finishing 

diets differences in carcass composition begin to occur.  Depenbusch et al. (2009) fed 

dried corn distillers grains with solubles (DDGS) consisting of either a 0, 15, 30, 45, 60, 
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or 75% inclusion level for 148 days.  The 12
th

-rib fat thickness decreased as DDGS 

inclusion levels increased (P = 0.05) but diet had no effect on marbling score or USDA 

yield grades (P > 0.17).  They also recorded that the number of carcasses grading USDA 

Select increased as inclusion levels of DDGS increased (P = 0.02).   

 The SFA and MUFA concentrations were not different (P > 0.30, Depenbusch et 

al., 2009).  As DDGS inclusion levels increased, levels of C15:0, C17:0, and C10:5n-3 

linearly decreased (P < 0.05).  Conversely, total CLA and CLA 10-trans 12-cis increased 

linearly (P < 0.05), but all other isomers of CLA remained the same.  This shows that 

feeding DDGS to cattle increases levels of CLA.  Linoleic acid (C18:2n-6cis), total n-6 

FA, and total PUFA increased (P = 0.01).  Ratios of PUFA:SFA and n-6:n-3 also 

increased with increasing levels of DDGS in the diet.  Senaratne (2009) compared corn-

based diets to diets including WDGS and also found that WDGS inclusion increases total 

PUFA concentrations as well as ratios of PUFA:SFA.   

 The increased levels of PUFA could lead to increased lipid oxidation rates which 

could also lead to an increased prevalence of off flavors.  Beef flavor intensity was 

strongest in beef from cattle fed either 45 or 60% DDGS and was the least for cattle fed 

no DDGS (P = 0.03, quadratic).  This would mean the feeding cattle diets containing 

DDGS could actually help improve a good beef flavor.  Also, no differences were 

discovered in off-flavor intensity between dietary treatments (P > 0.16).   

 Senaratne (2009) compared an all corn-based diet to one including 40% wet 

distillers grains with solubles (WDGS).  Senaratne (2009) found no differences in off-

flavor, metallic, sour, oxidized, livery, bitter, or charred flavors due to WDGS inclusion 
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in the diet (P > 0.05).  However, after 7 d of retail display, feeding WDGS caused a more 

livery flavor in the meat (P = 0.05) which was not present before.  The formation of a 

livery flavor came about after the meat was allowed to oxidize for 7 d. 

 Jenschke et al. (2007b) performed a similar study and fed cattle diets with an 

inclusion of 0, 10, 20, 30, 40, or 50% WDGS, for 125 days.  Samples of M. rectus 

femoris were collected, because of their use as an indicator of off flavor, and prepared for 

sensory analysis.  Jenschke et al. (2007b) concluded that diet had no effect on off-flavor 

intensity, liver-like flavor, or metallic flavor (P = 0.47, 0.07, and 0.73 respectively).  It 

should be noted that liver-like off flavor due to treatment was approaching significance 

(P = 0.07).  Also, Jenschke et al. (2007b) samples were stored under vacuum and were 

used immediately upon opening of the package.  Since they were never part of a retail 

display and were constantly stored in air tight packages, oxidation was never allowed to 

occur.  This could explain the lack of livery and off-flavors.  Researchers did find that the 

0 and 10% WDGS diets had the highest incidence of liver-like off flavor while the 30 and 

50% diets had the lowest.  These findings agree with those of Depenbusch et al. (2009) 

who also saw that certain off-flavors are not due to feeding DG. 

 The effects of feeding WDGS or DDGS compared to corn have been studied by 

many other researchers with similar results.  Other researchers have continued the work 

to see how WDGS and DDGS compare to each other.  Both Gill et al. (2008) and 

Kinman et al. (2011) fed cattle diets consisting of steam-flaked corn, steam-flaked corn 

with DDGS, and steam-flaked corn with WDGS.  Similar to Depenbusch et al. (2009), 

Gill et al. (2008) found that there was an increase in the amount of PUFA to SFA when 
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any kind of DG with solubles were included in the diet (P = 0.04).  In contrast, Kinman et 

al. (2011) saw no differences in FA profile due to DG type (P > 0.23).     

 Taste panelists for Gill et al. (2008) perceived no difference in sensory values for 

flavor due to diets, however there was a larger percent of panelists overall unpleased with 

samples from both DG diets than the control steam-flaked corn diet (P = 0.01).  The 

inclusion rate for both the DDGS and WDGS fraction was only 15%.  Both Jenschke et 

al. (2007b) and Depenbusch et al. (2009) concluded that off-flavors are not due to DG, 

yet in this study researchers found that consumers do not care for beef from DG fed 

cattle.  One explanation for the difference could be the fact that the DG used in this study 

was from both corn and barley.  Both Jenschke et al. (2007b) and Depenbusch et al. 

(2009) used only corn DG so perhaps the addition of the barley DG could have been 

enough to change the consumers’ perception of flavor acceptability.   

 Sensory evaluations for Kinman et al. (2011) showed that differences in livery 

flavor detectability between the different DG (P = 0.34).  Even though Gill et al. (2008) 

did not study livery flavor directly, they did find that samples from DG treatments were 

less desirable.  It could be hypothesized that the undesirability could be due to off flavors 

such as liver taste.  Also, Kinman et al. (2011) fed WGDS at 10, 20, and 30% inclusion 

levels but only fed DDGS at the 10% level.  Perhaps if they had also fed DDGS at 20 and 

30% inclusion levels they would have had more differences in more of the attributes.  

Given the contrasts in all the studies, more research needs to be conducted to determine 

what the effect of feeding DG to cattle is on flavor acceptability, and what fatty acids and 

other compounds are responsible for those effects.    
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Aging 

 Aging of beef may also be responsible for some flavor differences.  As meat ages, 

lipids (i.e. FA) are oxidized, creating unique flavors.  In two studies, two very different 

types of aging were employed.  Smith et al. (1978) dry aged whole right sides of beef 

carcasses for up to 28 days and Campo et al. (1999) wet aged strip loin steaks 

individually for up to 21 days.  Smith et al. (1978) found that dry aging up to 11 d 

significantly (P < 0.05) increased flavor desirability.  Campo et al. (1999) also observed 

that flavor intensity increased as aging increased (P < 0.01), but both studies agreed that 

after 11 d of aging flavor scores remained the same (P > 0.05).   

 Unfortunately, aging of meat does not always create only good flavors.  In some 

cases, it can magnify the off flavors too.  Senaratne et al. (2010) fed cattle 0 and 40% 

inclusion levels of WDGS with and without vitamin E supplementation.  When steaks 

were not aged in a retail display there were no differences in off flavors between them.  

However, after steaks were aged in retail display for 7 d, steaks from cattle fed 40% 

WDGS had a significantly higher off/livery flavor ratings than steaks from cattle fed 0% 

WDGS, despite vitamin E supplementation (P < 0.05), as can be seen in Figure 1 (page 

26).  It is interesting that differences in flavor were observed after the meat had been aged 

in a retail display for 7 d.   

  As the meat ages, flavor compounds are being broken down and changed 

resulting in the different flavor profiles.  One of the compounds being degraded is lipid.  

In some cases, lipid oxidation can create a very pleasing flavor profile and in other cases, 

like the one just studied, it can create off flavors.  Similar to the previous study, Hodgen 
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et al. (2007) found that a liver-like flavor becomes more prevalent as lipids oxidize.  

They believed this was due to increased amounts of pentanol, hexanal, hexanol, 1-octen-

3-ol, and nonal which are both associated with liver-like aromas and products of lipid 

oxidation.   

Muscles 

 Different muscles are known to vary in flavor.  Rhee et al. (2004) compared 

various attributes of eleven beef muscles, including flavor intensity.  The Longissimus 

dorsi had the highest rating for beef flavor intensity, while the Psoas major had the 

lowest.  Differences between muscles were not much, but they were still enough for 

consumer to tell a difference.  McKeith et al. (1985) conducted a similar study and also 

ranked the Longissimus dorsi as one of the most desirable cuts on a flavor basis.  In 

contrast, the Psoas major was also highly desirable, along with the Infraspinatus and the 

Rectus femoris.  Of the eleven muscles they evaluated, the Pectoral and Adductor 

received the lowest flavor desirability scores.  Similarly, Carmack et al. (1995) found that 

the Psoas major received some of the highest flavor intensity scores while the Pectoralis 

profundis and the Infraspinatus were ranked near the bottom.  They also ranked the 

flavor intensity of the Longissimus muscle somewhere in the middle.  This is completely 

different to what both Rhee et al. (2004) and Mckeith et al. (1985) discovered in their 

studies.          

  Unlike all the previous studies, Sullivan and Calkins (2011) had completely 

differing results.  Their evaluation of published research showed no significant flavor 

differences between the Longissimus, Psoas major, and Infraspinatus muscles (P > 0.05).  
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This means that, based solely on flavor, the Longissimus muscle is no more desirable than 

the Psoas major and the Infraspinatus.     

 Instead of looking at overall desirability, Meisinger et al. (2006) studied the 

intensity of off-flavor in shoulder clods and knuckles.  The Infraspinatus had the lowest 

off-flavor intensity rating (P < 0.05) with one of the lowest in amounts of panelists that 

could detect a sour, metallic, or oxidized flavor and the highest for fatty flavor.  

Conversely, the Vastus lateralis had the most off-flavor intensity ratings (P < 0.05) with 

one of the highest amounts of panelists that could detect a sour, charred, or oxidized 

flavor (P < 0.05).  When one muscle from a carcass was determined to have an off-flavor, 

then most of the other muscles in the carcass were also found to have an off-flavor.  

Certain off-flavors are unique to individual animals and do not appear to be caused by 

other elements in the muscle, such as pH and heme iron content.    

 As discussed earlier, both FA profile and amino acid content can determine how 

beef will taste.  The flavor of all muscles is not affected the same way by FA changes.  

Dryden and Maechello (1970) fed cattle of similar age and breed the same diet until a 

final weight of 430 kg was attained.  After harvesting, the Triceps brachii, Longissimus 

dorsi (between the 9
th

 and 12
th

 ribs), and posterior section of the Semimembranosus were 

collected and analyzed.  The Longissimus dorsi’s flavor was enhanced most (P < 0.05) by 

oleic acid (18:1).  Oleic acid (C18:1) was not significantly correlated to flavor, good or 

bad, in the other two muscles tested (P > 0.05).  Similarly, Iso18:0 favorably affected 

flavor (P < 0.01) in the Triceps brachii, but not the Longissimus dorsi or the 

Semimembranosus(P > 0.05).  When looking at how diet and FA profiles can affect the 
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flavor desirability of beef, it is clearly also very wise to examine different muscles so one 

can truly comprehend the complete relationship.  

 Ma et al. (1961) evaluated the differences in free amino acids between nine 

different beef muscles.  The Longissimus dorsi and the Psoas major had a larger content 

of leucine-isoleucine than the Semitendinosus.  In addition, they found threonine in the 

Longissimus dorsi muscle but it appeared to be absent in the Semitendinosus.   

Beef Lexicon 

 There are many ways to evaluate beef flavor, but one of the newest methods 

available to researchers is the beef lexicon.  In simplicity, a beef lexicon is hundreds of 

words that are used to describe different beef flavor notes (Drake and Civille, 2002).  

Beef flavor is not made up of simply one flavor, but rather a mixing and merging of 

several different ones.  The identification of flavor notes is usually determined through 

the use of trained panelists.   

 Several universities have developed their own beef flavor lexicons.  Adhikari et 

al. (2011) described in detail how the lexicon at Texas A&M University in College 

Station, TX was developed.  First, 176 beef samples varying in muscle, USDA Quality 

Grade, animal age, gender, meat age, diet, and packaging system were used.  These 

samples were cooked to five different end temperatures using six different cooking 

methods.  In some samples, they were even able to induce warmed-over flavor conditions 

as well as spoiled meat.  For their panel, six panelists were chosen who underwent 120 hr 

of training as well as 1,200 hr of testing.  Panelists were only told that the samples were 
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being used to develop a beef flavor lexicon.  The panelists were uninformed about all 

other treatments; such as muscle, animal diet, or cooking method.   

 During sampling, panelists wrote a list of all the flavor notes they were able to 

detect.  Then, the group engaged in a discussion that allowed the panelists to precisely 

define and agree on all the flavors and aromas present.  Through their testing, their 

lexicon was able to identify 38 descriptors (Figure 2, page 27), including the five tastes 

(bitter, salty, sour, sweet, and umami), for beef flavor, as well as categorizing some of 

these descriptors into major attributes present in beef.   

 Other universities have created their own lexicons.  Maughan et al. (2011) at Utah 

State developed a beef lexicon.  Although they were able to identify the five tastes, their 

panel identified just 13 different descriptors.  There were several differences in the 

researcher’s methods that could account for the identification of fewer descriptors.  First, 

all samples were from the same muscle and only one packaging system was employed.  

In addition, all steaks were cooked using the same cooking method and to the same 

endpoint temperature.  Unlike Adhikari et al. (2011), panelists for Maughan et al. (2011) 

only received 50 hr of training and only received a total of six samples at the time of 

testing.  Panelists for Adhikari et al. (2011) evaluated 176 samples over 36 sessions.  The 

shorter training, fewer samples, and reduced variability between the samples could 

account for such a low number of descriptors being identified.  Currently, the Adhikari et 

al. (2011) beef flavor lexicon is the most comprehensive one known.         
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Conclusion 

 As can be seen, not only do consumers base eating satisfaction on flavor, they are 

also willing-to-pay more for a product they deemed as having a desirable flavor.  Few 

studies have investigated how the interaction of various post-weaning forage feeding 

strategies, with or without supplementation, and different finishing on flavor.  Therefore, 

we propose to investigate how flavor and the constituents that influence flavor are 

affected in two different muscles from cattle fed two different forages post-weaning, with 

or without supplemental energy, and finished on either a corn or WDGS diet.  Varying 

the diets in this way, along with a simulated retail display, allows study to identify flavor 

differences and evaluation of biochemical components responsible for these differences.    
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Figure 1. Frequency of livery-flavor identified by panelists of 7-days aged strip loins (m. 

longissimus lumborum) steaks from animals fed diets containing 0%, 40% WDGS with 

or without E supplementation during simulated retail display conditions (Senaratne et al., 

2010). 

 
a,b

Means in the same graph with different superscripts significantly differ (P ≤ 0.05). 

 

 

 

 

 

  

0

2

4

6

8

10

0 7 0 7

No E E

F
re

q
u

en
cy

 o
f 

L
iv

er
y
 

ta
st

e,
 %

 

0% WDGS

40% WDGS

a 

b 

a 

b 

a a 
b b 



27 

 

 

Figure 2. Definitions and References for beef flavor attributes (Adhikari et al., 2011). 
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MATERIALS AND METHODS 

STUDY 1 

The role of post-weaning forage, energy supplementation, finishing 

diets, and aging on the color and biochemical constituents of beef 
 

Diets 

 All protocols performed in this study were approved by the University of 

Nebraska-Lincoln Institutional Animal Care and Use Committee.  Cattle were fed in a 

2x2x2 factorial design.  Crossbred steers (n = 64) were backgrounded on either warm-

season grasses (i.e. bluestem and switch grass) at the Barta Ranch in Western Nebraska 

or on cool-season (i.e. brome and bluegrass) pastures in Ithaca, NE for 177 d, shortly 

after weaning.  Within each pasture, half of the cattle were supplemented (0.6 kg 

WDGS/kg body weight/ day) for energy using wet distillers grains with solubles 

(WDGS).  After the grazing period was completed, all cattle were transported to the 

University of Nebraska-Lincoln’s research feedlot in Ithica, NE.  While in the feedlot, 

half of each pasture and supplementation treatment was finished on an all corn diet while 

the other half were fed corn with WDGS at a 35% inclusion rate (DM basis).  Cattle were 

on feed for 119 days and fed to an average live weight of 1,427 lbs.      

Harvest  

 At the end of the feedlot period, cattle were harvested at the Greater Omaha 

Packing plant in Omaha, NE.  Forty-eight carcasses grading either USDA Choice (n = 

43) or USDA Select (n = 5), 6 from each treatment combination, were selected.  Two 

carcasses that were grazed on warm-season grass without supplementation and were 
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finished on WDGS graded USDA Select, while one carcass from cattle that were grazed 

on warm-season grasses with supplementation and finished on corn, grazed on cool-

season grasses without supplementation and finished on corn, and grazed on cool-season 

grass with supplementation and finished on WDGS graded USDA Select.  All of the 

other carcasses from all dietary treatment combinations graded USDA Choice.  Strip 

loins (Longissimus dorsi; IMPS #180, NAMP, 2007) and bottom round flats (Biceps 

femoris; IMPS #171B, NAMP, 2007) were collected from each side of the carcass (n = 12 

muscles/treatment).  Only ten L. dorsi muscles were collected from the cool-season grass, 

supplementation provided, and finished on WDGS treatment because two L. dorsi 

muscles (one from each side) were lost within Greater Omaha Packing Plant.  Subprimals 

from the left side of the carcass were aged in a vacuum package for 7 d while subprimals 

from the right side were aged in a vacuum package 28 d at 2°C.  Upon fabrication, 5 

steaks were cut anterior to posterior from each subprimal.    

Sample Collection 

 The first steak, cut 1.25 cm thick, was used for all lab analyses.  The second steak, 

also 1.25 cm thick, was used as a back-up for lab analyses.  Both steaks were vacuumed 

packaged and frozen at -20°C for approximately 2 months.  Before any lab procedures 

were conducted, all lab steaks had any subcutaneous fat and epimysial tissue removed 

and were cut into cubes.  The cubes were flash frozen in liquid nitrogen, powdered using 

a Waring blender (Waring Commercial, model 51BL32, Torring, CT), and stored at -

80°C for several weeks until further lab analyses.  All lab analyses were conducted on 

powdered samples.  Fat, protein, ash, amino acid, and mineral analysis were only 
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conducted on 7 d aged steaks while pH, moisture, non-heme iron, heme iron, and total 

carbohydrate analysis were conducted on both 7 and 28 d aged steaks.         

 The third steak, cut 2.54 cm thick, was placed on a Styrofoam tray, wrapped with 

PVC overwrap film, and placed under simulated retail display for 7 d for use by the beef 

lexicon panel.  Objective color and subjective discoloration were measured daily while in 

the retail display.  Steaks 4 and 5 were cut 2.54 cm thick, placed on a Styrofoam tray, 

wrapped with PVC overwrap film, and placed in a retail display case at 2°C for 7 d.  Two 

steaks were used for consumer panels.  Strip loin steaks were packaged as two steaks per 

tray.  Steaks on the same tray were from animals that received identical feeding 

treatments so as to prevent any possible contamination or influence.  At the end of retail 

display, steaks were vacuumed packaged and frozen at -20°C for two months until further 

use. 

Retail Display 

All of the trays were displayed on a table in a 2°C cooler and were constantly 

exposed to warm white fluorescence lighting (PHILIPS F32T8/TL741 ALTO 700 Series, 

32 WATT B7, Royal Philips Electronics, Amsterdam, Netherlands) at 1000 to 1800 lux 

in order to simulate retail display conditions.  Every day, packages were randomly 

relocated to minimize any effects due to location.  After 7 days, steaks were vacuumed 

packaged and frozen until further analysis.   

Color 

 Objective color was measured using a Minolta Chromometer CR-400 (Shanghai, 

China) set at a D65 light source and 2° observer with an 8 mm diameter measurement 
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area.  The L*, a*, and b* values were recorded using an average of six readings per steak.  

Readings were taken at 24 h intervals for 8 d.  Subjective discoloration was evaluated 

based on percentage of surface discoloration (0% indicating no discoloration and 100% 

indicating complete discoloration of the entire steak) by five trained panelists.  

 On one of the retail display days, objective color was recorded as X, Y, and Z 

instead of L*, a*, and b*.  Values were converted to L*, a*, and b* using a CIE color 

calculator (http://www.brucelindbloom.com/index.html?ColorCalcHelp.html).  For the 

calculator Scale XYZ was selected, Ref. White was set as D65, RGB model was set as 

CIE RGB, and Adaptation was set as XYZ scaling.  In order to verify the calculator, 

several readings on different solid colored pieces of paper in varying temperatures were 

recorded using the using a Minolta Chromometer CR-400 and both the L*, a*, and b* 

and the X, Y, and Z scores from the Minolta were compared to the calculator’s results.    

pH 

 To determine ultimate pH, duplicate 10 g powdered samples from each steak were 

homogenized with 90 mL of double distilled water for 30 sec using a Polytron 

homogenizer (POLYTRON Kinimatica CH-6010, Switzerland) set at 10,800 rpm.  A stir 

bar was added to the homogenized samples and placed on a stir plate so the sample would 

be continually mixed during the pH readings.  The pH was determined using an Orion 4 

STAR pH ISE Bench-top meter (Thermo Electron Corporation, Waltham, MA) calibrated 

using a 7.0 and 4.0 buffer.  The pH probe was rinsed with double distilled water and 

wiped dry with a Kimwipe (Kimberly-Clark Professional, Roswell, GA) between every 

sample.  
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Proximate Analysis 

 Moisture and ash were determined using duplicate 2 g samples and analyzed on a 

LECO Thermogravimetric Analyzer (LECO Corporation, model 604-100-400, St. 

Joseph, MI).  Below are the setting used:   

Name Covers RampRate RampTime StartTemp EndTemp 

Moisture Off 6 d/m :17 min 25 C 130 C 

Ash Off 20 d/m :30 min 130 C 600 C 

 

Name Atmosp FlowRate HoldTime Const.Wt. Const.Wt. Time 

Moisture N High 00 min 0.05% 09 min 

Ash O High 00 min 0.05% 09 min 

 

Crucible density was set at 3.00, cover density was set at 3.00, and sample density was 

set at 1.00.  The calculations used to determine moisture and ash content were as follows: 

 Equations 

 Initial Wt.    W [Initial] 

 Moisture    ((W[Initial] - W[Moisture])/W[Initial])*100 

 Ash     (W[Ash]/[Initial]) * 100 

 Ash Dry Basis   E[Ash] * (100/(100-E[Moisture])) 
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 Fat was measured using triplicate 2 g samples (inside of  Whatman #2 filter paper 

packets) and extracted with anhydrous ether as described by the soxhlet procedure 

(AOAC, 1990).  Samples were loaded into soxhlet tubes and the boiling flasks were filled 

with 400 mL of ether.  The soxhlet tubes were next fitted onto the boiling flasks, the 

entire apparatus was fitted into the condenser, water supply to condenser turned on, and 

heating element turned on.  After 48 hrs, burners were turned off and the ether was 

allowed to cool completely.  After the soxhlet tubes and boiling flasks were disconnected, 

samples were allowed to dry under a fume hood for 2 hr in order to remove any 

remaining ether in the samples before being placed into a drying oven set at 105 ° C 

overnight.  The following calculation was used to determine % fat in the samples: 

( (Original weight including filter paper and paper clip-Fat extracted sample 

weight)/Sample Wt)*100)-% Moisture=% Fat 

Protein was determined by difference. 

Total Carbohydrates 

 Samples were prepared by homogenizing 0.5 g of powdered meat with 20 mL of 

80% ethanol in a 50 mL centrifuge tube in duplicates in order to extract the 

carbohydrates.  Samples were then stored in a 2°C cooler until further testing, at least one 

hour later.  Upon analysis, tubes were centrifuged at 783 RCF (g) for 5 min.  A 1 mL 

aliquot of sample containing <0.1 mg/mL of total carbohydrates was removed and added 

to a new tube following the procedures of Dubois et al. (1956).  To the new tubes, 50 μL 

of 80% phenol and 2.5 mL of concentrated sulfuric acid were added and vortexed 



34 

 

 

immediately.  After 10 min, samples were moved to a cool water bath for 10 to 25 min.  

After samples were cooled, they were read on a spectrophotometer at 490 nm.   

 Sugar concentrations were estimated using a standard curve and then correcting 

for dilutions.  The curve was prepared by mixing a stock solution of about 0.1 mg/ml 

glucose standard at varying concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0 mL, respectively) 

with varying amounts of double distilled water (1.0, 0.8, 0.6, 0.4, 0.2, and 0 mL, 

respectively).  Standard samples were then prepared and read the same way as described 

above.   

Non-heme Iron 

 The procedures described by Rhee and Ziprin (1987) were used to determine non-

heme iron concentrations.  Duplicate 5 g samples of powdered meat were mixed with a 

0.2 mL of NaNO2 solution (0.39% w/v) and 15 mL of a 40% TCA-HCL (1:1) acid 

solution, vortexed, and placed in a water shaker bath set at 65°C for 20 h.  After 

incubation, samples were allowed to cool to room temperature for 1 h.   

 Approximately 1 mL aliquots of the liquid phase were removed and mixed with 5 

mL of a color reagent (20:20:1 double distilled deionized water:saturated sodium acetate 

solution:bathophenathroline disulfonate reagent).  To create a liquid phase without a 

color reagent blank, 1 mL aliquot of the liquid phase was mixed with 5 mL of a 21:20 

double distilled deionized water:sodium acetate solution.  Both a reagent blank and a 

liquid phase blank were created.  The reagent blank was made by adding 5 mL of the 

same color reagent listed above to 1mL of the TCA-HCL acid mixture.  The liquid phase 

blank was created by adding 5 mL of the 21:20 double distilled deionized water:sodium 
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acetate solution to 1 mL of the TCA-HCL acid solution.  All 4 new mixtures were 

vortexed, centrifuged (Sorvall SE-12 rotor and Sorvall RC 5B centrifuge, Dupont Co., 

Wilmington, DE) at 7,045 RCF (g), and read at 540 nm using a Cary 100 Varian 

UV/Visual Spectrophotometer (Varian Instruments, Sugarland, TX).     

 Readings were compared against a standard curve.  The curve was prepared using 

an iron stock standard (Sigma) and was mixed with the TCA-HCL acid solution at 

varying concentrations (0.5, 1.0, 1.5, 2.5, 3.5, and 4.5 μg/mL) to total 25 mL.  Standard 

samples were then mixed with 5 mL of the color reagent, vortexed, centrifuged, and read 

at 540 nm.   

To determine total non-heme iron, first final absorbance of each sample was 

calculated by subtracting the absorbance of the incubated liquid phase without color 

reagent from the absorbance of the incubated liquid phase with color reagent.  Final 

concentration was calculated by subtracting the intercept of the standard curve from the 

final absorbance and dividing it all by the slope of the standard curve.  Finally, non-heme 

iron concentration was calculated as follows:                                                                                              

μg non-heme Fe/g meat = concentration (μg/mL) x 
                            

  
      

Heme Iron 

 The procedures described by Hornsey (1956) and Lee et al. (1998) were used to 

determine heme iron concentration.  Duplicate 2 g powdered meat samples were mixed 

with double distilled water, based on sample moisture percentage, so that the total 

volume of water in the sample was equal to 0.72 mL, or 72% moisture.  About 8.1 mL of 

acetone and 0.2 mL of hydrochloric acid were next added.  All tubes were kept in test 
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tube trays wrapped in aluminum foil to reduce light exposure.  The sample was 

homogenized using a Polytron homogenizer at 10,800 rpm for 15 sec.  Samples were 

immediately filtered through #2 Whatman filter paper (90 mm in diameter) and into a 

new tube which was also kept in a test tube rack wrapped in aluminum foil.  The filtrate 

was immediately read on a spectrophotometer at 640 nm. 

 In order to determine total amount of heme iron, total pigment (mg/kg) was 

calculated by multiplying the absorbance of the sample by 680.  Total heme iron (mg/kg) 

was then calculated by multiplying the total pigment by 8.82 and dividing it all by 100 

(Lee et al., 1998). 

Minerals and Amino Acids 

 About 5 g powdered samples in 50 mL centrifuge tubes were sent to Ward 

Laboratories, Inc. in Kearney, NE for mineral analysis.  Atomic absorption spectroscopy 

was used to quantify the minerals following the procedures of Ward and Gray (1994).   

 Powdered 5 g samples in 50 mL centrifuge tubes were sent to 

AAA Service Laboratory, Inc. in Damascus, OR for amino acid analysis following the 

procedures of Moore and Stein (1949), Roach and Gehrke (1970), Simpson et al. (1976), 

Stanford (1963), and Keutmann and Potts (1969).  After arrival at AAA Service 

Laboratories, samples were weighed, dried and hydrolyzed (1:2,000, v/v) in 6 N HCl/2% 

phenol at 110°C for 22 h.  Next, the hydrolysate was dried and a sampling injected onto a 

Hitachi L8900 Amino Acid Analyzer with post-column-ninhydrin derivatization.  

Norleucine was added to the samples to act as an internal control.    

 



37 

 

 

Statistical Analysis 

All data were analyzed as a 2x2x2x2 factorial arrangement split plot design within 

a randomized complete design using the Mixed procedure in SAS (Version 9.2, SAS 

Institute Inc., Cary, NC, 2006). The experimental unit was the individual animal and the 

model included grass, supplementation, finishing diet and age as fixed effects.  The least 

square means procedure with the probability of difference (pdiff) option was used for 

mean separation with significance determined at P < 0.05 levels.  Whenever there was a 

three- or four-way interaction, the LSmeans were reanalyzed using the GLIMMIX 

procedure with the slicediff option in order to more accurately study differences.   

 

STUDY 2 

The role of post-weaning forage, energy supplementation, finishing 

diets, and aging on the fatty acid profile of beef 
 

The samples for this study were collected and prepared as described in the materials and 

methods for Study 1. 

Fatty Acids 

 Fats were extracted following the procedures of Folch et al. (1957).  Four g of 

powdered meat samples were mixed with 5 mL of 2:1 chloroform:methanol solution, 

vortexed, and allowed to sit at room temperature for 1 h.  Homogenized samples were 

filtered through #2 Whatman paper into new tubes, mixed with 2 mL of 0.74% KCl 

solution, vortexed, purged with nitrogen gas, and kept in a -20°C freezer overnight.  The 
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next day, the top aqueous phase was removed and 2 mL of the lower phase was collected 

and dried down by constant nitrogen gas purging at 60°C.  

Samples were separated into neutral and phospholipid layers following the 

procedures described by Carr et al. (2005).  Dried samples were plated onto aluminum 

thin layer chromatography plates (Silica Gel 60 w/o indicator, Catalog No.: M5547-7, 

Thermo Fisher Scientific Inc.), placed in a tank with a 75:25:2 hexane:diethyl ether:acetic 

acid solution, and allowed to run until the solution had travelled to the top of the plate, 

approximately 45 min.  Upon completion, the plates were removed from the tanks and the 

solvent was allowed to evaporate.  The dried plates were stained with a primilin dye (5mg 

of primulin in 100 mL of acetone\water (80\20)) and the neutral and phospholipid regions 

were identified and marked under a blacklight.  The regions of interest were cut out, 

folded up, and placed in a glass tube.  In order to extract the lipids off of the plates, the 

neutral lipid samples were submerged in 100% chloroform and the phospholipid samples 

were submerged in 100% methanol.  Samples were placed in a 4°C cooler for 45 min to 

extract the fatty acids.  

After extraction, the folded up plates were removed from the tube and the 

remaining solutions were dried at 60°C under constant nitrogen gas purging.  Once 

samples were dried, lipids were saponified into fatty acid methyl esters following the 

procedures described by Morrison and Smith (1964) and Metcalfe et al. (1996).  To 

prepare samples, 0.5 mL of 0.5 M NaOH in methanol was added, samples were vortexed, 

and then placed in a 100°C oven.  After 5 min, samples were removed from the oven, 

mixed with 0.5 mL of 14% boron trifluoride in methanol, vortexed, and placed back into 
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the oven for an additional 5 min.  After heating, 1 mL of hexane and 1 mL of a saturated 

salt solution were added. The samples were mixed on a vortex and centrifuged for 5 min 

at 1000 x g.  The top phase was removed, about 1 mL of solution, and placed in a gas 

chromatography vial for analysis.  Since the phospholipid samples contained less fatty 

acids, they were dried at 60°C under constant nitrogen gas purging and mixed with 100 

μL of hexane to concentrate the sample.  Gas chromatography (Hewlett-Packard Gas 

Chromatograph – Agilent Technologies, model 6890 series, Santa Clara, CA) was used to 

determine fatty acid content using a Chrompack CP-Sil 88 (0.25 mm x 100 m) column 

using Helium as the carrier gas with a flow rate of 1.1 mL/min.  The injector temperature 

was held at 270°C and the detector temperature was 300°C.  Fatty acids were identified 

by comparing retention times and peaks with known standards.   

To get exact concentrations of each FA, additional thin layer chromatography 

plates were made separating the neutral and phospholipid layers using around 100 μL of 

sample.  This time the plates were stained using iodine and scanned using a scanner and 

saved as a JPG file.  In order to improve clarity, brightness and contrast of each plate JPG 

was adjusted (-60 and 60 respectively) and resaved as a TIFF.Bitmap uncompressed file.  

The areas on the plates were measured, as a percent, using Quantity One 1-D Analysis 

Software (Bio-Rad, Hercules, CA) and identified as neutral lipid, phospholipid, or other.  

To calculate the mg/100 g of meat for each FA in each layer, the total fat percentages 

attained for each sample from proximate analysis was converted to grams of fat per 100 g 

of meat.  That value was multiplied by the percentage of the neutral and phospholipid 

layers, and converted to mg of neutral or phospholipid per 100 g of meat.  From there the 
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percentage of each individual FA in each layer was multiplied by their respective value 

and the mg of each FA per 100 g of meat was attained.   

Statistical Analysis 

All data were analyzed as a 2x2x2x2 factorial arrangement split plot design within 

a randomized complete design using the Mixed procedure in SAS (Version 9.2, SAS 

Institute Inc., Cary, NC, 2006). The experimental unit was the individual animal and the 

model included grass, supplementation, and finishing diet as fixed effects.  The least 

square means procedure with the probability of difference (pdiff) option was used for 

mean separation; with significance determined at P < 0.05 levels.  Whenever there was a 

three-way interaction, the LSmeans were reanalyzed using the GLIMMIX procedure with 

the slicediff option in order to more accurately study differences.   

 

STUDY 3 

The role of post-weaning forage, energy supplementation, finishing 

diets, and aging on beef flavor and acceptability 
 

The samples for this study were collected and prepared as described in the materials and 

methods for Study 1. 

Consumer Panel 

All consumer and lexicon panels were approved by the Institutional Review 

Board and all panelists signed a consent form.  Consumer panels were conducted in 

Houston, Texas and Olathe, Kansas (n = 120 per location). Consumers were recruited 

using existing consumer data banks and random phone solicitation. Consumers were 
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selected that eat beef at least three times per week, range in age from 21 to 65, with an 

approximately equal balance of males and females, and a range in income.  

 In each city, consumer panels were conducted over two days, with the first day 

evaluating Longissimus dorsi steaks and the second day evaluating Biceps femoris steaks.  

Different consumers evaluated each muscle type.  Steaks from each animal were 

evaluated at both locations.  Panels were conducted with three sessions per day and 20 

consumers per session.  Five consumers evaluated each steak and treatment order was 

randomized and allocated to consumer using an incomplete block design.  Each consumer 

evaluated eight steaks in a session.     

Steaks were cooked on a Hamilton Beach Health Smart grill (model 31605A, 

Hamilton Beach/ Proctor-Silex, Inc., Southern Pines, NC) to an internal temperature of 

70°C.  Consumers evaluated each sample using 9-point hedonic (1=dislike extremely, 

9=like extremely) and intensity scales (1=none or extremely bland, 9=extremely intense) for 

overall like, overall flavor like, beefy flavor like and intensity, and grilled flavor like and 

intensity. 

Beef Flavor Lexicon 

 An expert, trained descriptive attribute sensory panel with over 23 cumulative 

years of experience in evaluating beef flavor and aromas was used.  This panel was one 

of the three panels used to validate the Beef Lexicon at Texas A&M University (Philips 

et al., 2010; Miller, 2010).  The panel underwent ballot development, training and 

validation sessions to assure consistent rating and identification of individual aroma and 

flavor attributes.  Attributes were classified as major and minor notes.  This provides a 
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standardized, defined reference guide for determining and measuring aroma and flavor in 

beef.   

During training and testing, steaks were cooked the same way described for 

consumer panels.  Aromas and flavor aromatics were evaluated using the Spectrum® 

Universal 16-point scale where 0 = none and 15 = extremely intense (Meilgaard et al., 

2007).  Traits evaluated were brown, bloody, fat, metal, liver, green hay, umami, overly 

sweet, sweet, sour, salty, bitter, sour aroma, barnyard, burnt, heated oil, chemical, apricot, 

asparagus, cumin, floral, beet, chocolate, green grass, musty, medicinal, petroleum, 

smoked/charred, smoked wood, spoiled, dairy, buttery, cooked milk, sour milk, 

refrigerator stale, warmed over, soapy, painty, fishy, and cardboardy.  

Statistical Analysis 

All data were analyzed as a 2x2x2x2 factorial arrangement split plot design within 

a randomized complete design using the Mixed procedure in SAS (Version 9.2, SAS 

Institute Inc., Cary, NC, 2006). The experimental unit was the individual animal and the 

model included grass, supplementation, finishing diet and age as fixed effects.  The least 

square means procedure with the probability of difference (pdiff) option was used for 

mean separation; with significance determined at P < 0.05 levels.  Whenever there was a 

three- or four-way interaction, the LSmeans were reanalyzed using the GLIMMIX 

procedure with the slicediff option in order to more accurately study differences.  The 

demographic survey for the consumer panel was analyzed using the frequency procedure 

to determine frequencies.   
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STUDY 4 

The use of biochemical constituents and beef flavor lexicon results to 

predict consumer flavor ratings 

 

 
The samples analyzed and used in this study were collected, prepared, and analyzed in 

the materials and methods for Studies 1, 2, and 3. 

Statistical Analysis 

In order to determine regression coefficients, the biochemical constituents of the 

meat were separated into five distinct groupings:  neutral lipid fatty acids, phospholipid 

fatty acids, minerals, amino acids, and composition (pH, moisture, fat, protein, ash, total 

carbohydrates, and cooking loss).  Each individual grouping was analyzed using the 

principle component procedure in SAS.  The first two principle components were 

identified and associations for each were determined.  All of the newly identified 

principle components were merged into one file along with the consumer panel and 

lexicon data files.  Three different analysis were conducted to determine the regression 

coefficients of the principle components of the biochemical constituents for the consumer 

panel results, the principle components of the biochemical constituents for the lexicon 

results, and the lexicon results for the consumer panel results using the regression 

procedure.   
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Abstract 

 The objective of this study was to determine how color and biochemical 

constituents of meat are altered when diet and aging periods are varied.  Crossbred steers 

(n = 64) were allowed to graze on warm or cool-season grasses, without or with energy 

supplementation of wet distillers grains with solubles (WDGS), and were finished on 

corn or 35% WDGS.  Six carcasses from each treatment (n = 48) that graded USDA 

Choice or Select were identified and Longissimus and Biceps femoris (B. femoris) 

muscles from each side of each carcass were collected and aged under vacuum for 7 and 

28 d.  Samples were analyzed for proximate composition, pH, cooking loss, and heme 

and non-heme iron content, amino acid, and mineral content.  Finishing on WDGS and 

aging 28 d caused the most amount of discoloration (P = 0.02) in Longissimus dorsi (L. 

dorsi) steaks (75%) at the end of retail display.  No differences in discoloration for B. 

femoris steaks was observed until the end of retail display time where grazing on warm-

season grasses and not supplementing caused higher (P = 0.01) scores than grazing on 

cool-season grasses and not supplementing for both 7 d (30% vs. 20%) and 28 d (75% vs. 

52%) aged product.   For both L. dorsi and B. femoris steaks, aging 28 d increased pH 

values (P < 0.0001) as compared to 7 d aged product.  Warm-season grass increased (P = 

0.04) moisture content (70.67% to 71.62%), decreased magnesium (0.033 vs. 0.029), and 

increased zinc concentration (37.46 vs. 42.21) in L. dorsi steaks (P < 0.03) as compared 

to cool-season grasses.  Also in L. dorsi steaks, supplementation decreased (P = 0.03) 

protein (21.24% to 20.75%) and a three-way interaction between grass type, 

supplementation, and finishing diet (P = 0.04) was observed in ash content.  Corn-
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finished cattle had a higher heme iron content (P = 0.003) when grazed on warm-season 

versus cool-season grasses (7.98 vs. 7.11) in L. dorsi steaks.  Carbohydrates increased (P 

= 0.0003) in B. femoris steaks when aged 28 d as compared to 7 d.  A three-way 

interaction (P =0.05) between grass type, supplementation, and aging period influenced 

non-heme iron content in B. femoris steaks.  Glycine content was influenced (P = 0.05) 

by grass type, supplementation, and finishing diet interaction in B. femoris steaks.  When 

not supplemented, phosphorous levels were higher (P = 0.04) when finished on WDGS 

instead of corn (0.23 vs. 0.21) in B. femoris steaks.  The remaining components not 

discussed were unaffected by diet and aging period.  Grass type caused the most 

biochemical changes in meat.   

Keywords:  Aging, beef, biochemical constituents, diet, forages, supplementation 

 

Introduction 

 The diet of beef cattle can influence many of the biochemical constituents in 

meat.  This influence begins with the type of forage cattle are grazed on post-weaning 

and before they enter a feedlot.   

 Larick and Turner (1990) fed three different grass types (tifleaf pearl millet, 

sorghum-sudangrass, or fescue-clover) to cattle.  Even though they saw differences in in 

fat thickness and yield grade, no differences (P < 0.05) were found in moisture or fat 

content in meat from these animals.  Grasses vary in both variety and composition and 

some tend to lack important nutrients.  Because of this it is common to supplement with 

grain during the background phase.  When Srinivasan et al. (1998) supplemented cattle 
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while on grass, protein, fat, and ash remained unchanged but moisture content decreased 

(P < 0.05).  In addition, an increase (P < 0.05) in potassium content as well as a decrease 

in iron content was also reported.   

 Varying finishing diets also alters the composition of beef.  Driskell et al. (2011) 

found that the flat iron steaks (Supraspinatus) from cattle fed wet distillers grains with 

solubles (40% DM basis) had an increased sodium content while in petite tenders (Teres 

major) thiamin content increased and manganese content decreased (P < 0.03) compared 

to animals fed an all corn diet.  In addition, L* values decreased and a* and b* values 

decreased (P < 0.04) in steaks from cattle fed distillers grains (Gill et al., 2008).    

 The objective of this study was to identify changes in beef composition in two 

different muscles from cattle fed two different forages post-weaning, with or without 

supplemental energy, finished on either a corn or wet DGS (WDGS) diet, and aged for 7 

or 28 d.  By varying the diets in this way, along with a simulated retail display, 

compositional differences may be identified.    

Materials and Methods 

Diets 

 All protocols performed in this study were approved by the University of 

Nebraska-Lincoln Institutional Animal Care and Use Committee.  Cattle were fed in a 

2x2x2 factorial design.  Crossbred steers (n = 64) were backgrounded on either warm-

season grasses (i.e. bluestem and switch grass) at the Barta Ranch in Western Nebraska 

or on cool-season (i.e. brome and bluegrass) pastures in Ithaca, NE for 177 d, shortly 

after weaning.  Within each pasture, half of the cattle were supplemented with 0.6 kg 
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WDGS/kg body weight/ day for energy.  At the end of the grazing period, all cattle were 

transported to the University of Nebraska-Lincoln’s research feedlot in Ithaca, NE.  

While in the feedlot, half of each pasture and supplementation treatments were finished 

on an all-corn diet while the other half were fed corn with WDGS at a 35% inclusion rate 

(DM basis).  Cattle were on feed for 119 days and fed to an average live weight of 1,427 

lbs.           

Harvest 

 At the end of the feedlot period, cattle were transported and harvested at the 

Greater Omaha Packing (Omaha, NE).  Forty-eight carcasses grading either USDA 

Choice (n = 43) or USDA Select (n = 5), 6 from each treatment combination, were 

selected.  Strip loins (Longissimus dorsi; IMPS #180, NAMP, 2007) and bottom round 

flats (Biceps femoris; IMPS #171B, NAMP, 2007) were collected from each side of the 

carcass.  Only ten L. dorsi muscles were collected from the cool-season grass, 

supplementation provided, and finished on WDGS treatment because two L. dorsi 

muscles (one from each side) were lost in the packing plant.  All subprimals from the left 

side of the carcass were aged under vacuum for 7 d while subprimals from the right side 

were aged under vacuum 28 d at 2°C.  After aging, 5 steaks were cut from each 

subprimal upon fabrication.    

Sample collection 

 The first steak, cut 1.25 cm thick, was used for all lab analyses.  The second steak, 

also 1.25 cm thick, was used as a back-up for lab analyses.  Both steaks were vacuumed 

packaged and frozen at -20°C for approximately 2 months.  Before any lab procedures 
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were conducted, all lab steaks had any subcutaneous fat removed and were cut into cubes.  

Next, the cubes were flash frozen in liquid nitrogen, powdered using a Waring blender 

(Waring Commercial, model 51BL32, Torring, CT), and stored at -80°C until needed for 

further lab analyses.  All lab analyses were conducted on powdered samples.  Fat, 

protein, ash, amino acid, and mineral analysis were only conducted on 7 d aged steaks 

while pH, moisture, non-heme iron, heme iron, and total carbohydrate analysis were 

conducted on both 7 and 28 d aged steaks.         

The third steak, cut 2.54 cm thick, was placed on a Styrofoam tray, wrapped with 

PVC overwrap film, and placed under simulated retail display for 7 d.  Objective color 

and subjective discoloration scores were recorded daily while in the retail display.  L. 

dorsi steaks were packaged as two steaks per tray and B. femoris steaks were one per 

tray.  Steaks on the same tray were from animals that received identical feeding 

treatments so as to prevent any possible contamination or influence.  At the end of retail 

display, steaks were vacuumed packaged and frozen until further use.   

Retail display   

 All of the steaks were displayed on a table in a 2°C cooler and were constantly 

exposed to warm white fluorescence lighting (PHILIPS F32T8/TL741 ALTO 700 Series, 

32 WATT B7, Royal Philips Electronics, Amsterdam, Netherlands) at 1000 to 1800 lux 

in order to simulate retail display conditions.  Every day, packages were randomly 

relocated to minimize any effects due to location.  After 7 d, steaks were vacuumed 

packaged and frozen (-20°C) until further analysis.   
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Color 

 Objective color was measured using a Minolta Chromometer CR-400 (Shanghai, 

China) set at a D65 light source and 2° observer with an 8 mm diameter measurement 

area.  The L*, a*, and b* values were recorded using an average of six readings per steak.  

Readings were taken at 24 h intervals for 8 d.  Subjective discoloration was evaluated 

based on percentage of surface discoloration (0% indicating no discoloration and 100% 

indicating complete discoloration of the entire steak) by five trained panelists.  

pH   

 To determine ultimate pH, duplicate 10 g powdered samples from each steak were 

homogenized with 90 mL of double distilled water using a Polytron homogenizer 

(POLYTRON Kinimatica CH-6010, Switzerland).  The pH was determined using an 

Orion 4 STAR pH ISE Bench-top meter (Thermo Electron Corporation, Waltham, MA) 

calibrated using a 7.0 and 4.0 buffer.  The pH probe was rinsed with double distilled 

water and wiped dry with a Kimwipe between every sample.  

Proximate Analysis 

 Moisture and ash were measured using a LECO Thermogravimetric Analyzer 

(LECO Corporation, model 604-100-400, St. Joseph, MI) and fat was measured by ether 

extraction using the Soxhlet procedure (AOAC, 1990).  Protein was determined by 

difference.   

Total Carbohydrates   

Samples were prepared by homogenizing 0.5 g of powdered meat with 20 mL of 

80% ethanol in a 50 mL centrifuge tube in duplicates.  Samples were stored in a 2°C 
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cooler until further testing, at least one hour later.  Upon analysis, tubes were centrifuged 

at 783 RCF (g) for 5 min.  A 1 mL aliquot of sample containing <0.1 mg/mL of 

carbohydrate was removed and added to a new tube following the procedures of Dubois 

et al. (1956).  To the new tubes, 50 μL of 80% phenol and 2.5 mL of concentrated 

sulfuric acid were added and vortexed immediately.  After 10 min, samples were moved 

to a cool water bath for 10 to 25 min.  After samples were cooled, they were read on a 

Cary 100 Varian UV/Visual Spectrophotometer (Varian Instruments, Sugarland, TX) at 

490 nm.   

 Carbohydrate concentrations were estimated using a standard curve and then 

correcting for dilutions.  The curve was prepared by mixing a stock solution of about 0.1 

mg/ml glucose standard at varying concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0 mL, 

respectively) with varying amounts of double distilled water (1.0, 0.8, 0.6, 0.4, 0.2, and 0 

mL, respectively).  Standard samples were prepared and read the same way as the 

samples above.   

Non-heme Iron 

 The procedures described by Rhee and Ziprin (1987) were used to determine non-

heme iron concentrations.  Duplicate 5 g powdered samples were mixed with 0.2 mL of 

NaNO2 solution (0.39% w/v) and 15 mL of 40% (1:1) trichloroacetic acid:hydrochloric 

acid (TCA-HCL) acid solution, vortexed, and placed in a water shaker bath set at 65°C 

for 20 h.  After incubation, samples were allowed to cool to room temperature for 1 h.   

 Approximately 1 ml aliquots of the liquid phase were removed and mixed with 5 

mL of a color reagent (20:20:1 double distilled deionized water:saturated sodium acetate 



59 

 

 

solution:bathophenathroline disulfonate reagent).  To create a liquid phase without a 

color reagent blank, a 1mL aliquot of the liquid phase was mixed with 5 mL of a 21:20 

double distilled deionized water:sodium acetate solution.  Both a reagent blank and a 

liquid phase blank were also created.  All 4 mixtures were vortexed, centrifuged (Sorvall 

SE-12 rotor and Sorvall RC 5B centrifuge, Dupont Co., Wilmington, DE), and read at 

540 nm using the spectrophotometer.     

 Readings were compared against a standard curve created using an iron stock 

standard (Sigma) mixed with the TCA-HCL acid solution at varying concentrations (0.5, 

1.0, 1.5, 2.5, 3.5, and 4.5 μg/mL) to total 25 mL.  Standard samples were then mixed with 

5 mL of the color reagent, vortexed, centrifuged, and read at 540 nm.   

Final absorbance of each sample was calculated by subtracting the absorbance of 

the incubated liquid phase without color reagent from the absorbance of the incubated 

liquid phase with color reagent.  Next, final concentration was calculated by subtracting 

the intercept of the standard curve from the final absorbance and dividing it all by the 

slope of the standard curve.  Finally, non-heme iron was calculated as follows:                                                                                              

μg non-heme Fe/g meat = concentration (μg/mL) x 
                            

  
      

Heme Iron 

 Samples were prepared following the procedures described by Hornsey (1956) as 

modified by Lee et al. (1998).  Duplicate 2 g samples of powdered meat were mixed with 

8.1 mL of acetone and 0.2 mL of hydrochloric acid.  All tubes were kept in test tube trays 

wrapped in aluminum foil to reduce light exposure.  The sample was homogenized using 

a Polytron homogenizer at 10,800 rpm for 15 sec.  Samples were immediately filtered 
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through #2 Whatman filter paper (90 mm in diameter) and into a new tube which was 

also kept in a test tube rack wrapped in aluminum foil.  The filtrate was immediately read 

on a spectrophotometer at 640 nm. 

 In order to determine total amount of heme iron, total pigment (mg/kg) was 

calculated by multiplying the absorbance of the sample by 680.  Total heme iron (mg/kg) 

was calculated by multiplying the total pigment by 8.82 and dividing it all by 100 

(Hornsey, 1956 and Lee et al., 1998). 

Minerals and Amino Acids 

 Mineral composition was determined by Ward Laboratories, Inc. in Kearney, NE.  

Atomic absorption spectroscopy was used to quantify the minerals following the 

procedures of Ward and Gray (1994). 

 Amino acid composition was determined by AAA Service Laboratory, Inc. in 

Damascus, OR.  A Hitachi L8900 Amino Acid Analyzer with post-column-ninhydrin 

derivatization was used to quantify amino acids following the procedures of Moore and 

Stein (1949), Roach and Gehrke (1970), Simpson et al. (1976), Stanford (1963), and 

Keutmann and Potts (1969). 

Statistical Analysis 

All data were analyzed as a 2x2x2x2 factorial arrangement split plot design within 

a randomized complete design using the Mixed procedure in SAS (Version 9.2, SAS 

Institute Inc., Cary, NC, 2006). The experimental unit was the individual animal and the 

model included grass, supplementation, finishing diet and age as fixed effects.  The least 

square means procedure with the probability of difference (pdiff) option was used for 
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mean separation; with significance determined at P < 0.05 levels.  Whenever there was a 

three- or four-way interaction, the LSmeans were reanalyzed using the GLIMMIX 

procedure with the slicediff option in order to more accurately study differences.   

Results and Discussion 

 The carcass characteristics within each dietary treatment combination can be seen 

in Table 1.  Marbling scores were not significant (P > 0.05) from each other between 

treatment combinations.  This was the intent so as to eliminate any differences that may 

have occurred due to marbling.  Hot carcass weights, ribeye areas, 12
th

 rib fat 

thicknesses, and calculated yield grades were also not different (P > 0.05) between 

dietary treatment combinations.   

Color 

L. dorsi Steaks 

 There were no differences in discoloration between treatments until day 6 of retail 

display.  At day 6, finishing cattle on WDGS and aging the meat 28 d caused a higher 

level (P = 0.02) of discoloration, 54%, than any other finishing diet and aging period 

combination (Figure 1).  At day 7, aging the beef for only 7 d caused lower discoloration 

than aging 28 d, regardless of finishing diet.  Within aging for 28 d, finishing cattle on 

WDGS still caused a higher percent discoloration (P = 0.02) than finishing on corn (75% 

vs. 46%).  Koger et al.  (2010) showed that when DGS are added to the finishing diet 

total polyunsaturated fatty acids (PUFA) concentrations increased.  The PUFA are known 

to be more susceptible to oxidation.  Oxidation of the meat causes oxidation of the 

pigment, meaning an increased level of metmyoglobin so it is not unexpected for steaks 



62 

 

 

from animals finished on WDGS to have higher discoloration scores at the end of the 

retail display. 

 The L* scores were more influenced by grass type and finishing diet over the 

period of retail display (P = 0.03, Figure 2).  Starting at day 0 of retail display, when 

cattle were finished on WDGS, grazing them on warm-season grass caused lower L* 

scores (P = 0.03) than if they were grazed on cool-season grass (41.42 vs. 42.48).  This 

difference was only seen on day 0 of retail display though.  Starting at day 3 of retail 

display, grazing on warm-season grasses caused lower scores (P = 0.03) than grazing on 

cool-season grass, but only when finished on corn (41.47 vs. 42.49).  The difference 

remained for retail display day 4 (41.97 vs. 43.13), dissipated at days 5 (41.77 vs. 42.72) 

and 6 (42.72 vs. 43.51), and returned at day 7 (42.49 vs. 43.50).  One reason for the 

differences at day 0 of retail display could be due to the steaks equilibrating to the 

environment.  Before the steaks were fabricated they were aged in an oxygen free 

environment.  At day 0 they are being exposed to oxygen for the first time which could 

have caused the differences.  When there were differences, they were mostly due to grass 

type and finishing diet was less influential.  Kinman et al. (2010) also found no 

differences in L* values due to finishing diets that compared corn and WDGS.  The 

difference in elevation between the two different grass type pastures is about 3,000 feet.  

The cattle grazing on warm-season grasses were at the higher elevation and a different 

altitude.  Those cattle on the warm-season grass may produce more blood cells in order to 

accommodate for the thinner air at that elevation.  With increased red blood cell content 

there will also be a higher hemoglobin and myoglobin content.  The higher myoglobin 
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content could explain why the meat from cattle grazed on warm-season grasses was 

darker.       

 There was a significant (P = 0.04) four-way interaction between retail display 

day, grass type, finishing diet, and aging period for a* values.  In order to better 

understand the data, a slicediff was used to separate the means based on aging period.  

Within the 7 d aging period, there were no differences (P > 0.05) between any grass type 

and finishing diet combination during any of the retail display days (Figure 3).  After 28 

d of aging, grazing cattle on warm-season grasses caused higher a* values  (P = 0.04) 

than grazing on cool-season grass when finished on WDGS (25.45 vs. 24.09, Figure 4) on 

day 1 of retail display.  After day 1 of retail display, there were no differences between 

any grass type and finishing diet combinations until day 7 of retail display.  On day 7 of 

retail display for product aged 28 d, finishing on WDGS after being grazed on cool-

season grasses caused lower scores (P =0.04) than when cattle were finished on corn after 

being grazed on both warm-season (18.04 vs. 19.63) and cool-season grasses (18.04 vs. 

19.49).  Over time the reducing agents in meat decrease, so meat that has been aged 28 d 

will have less reducing agents than meat aged 7 d.  Since there are less reducing agents 

present, oxidation occurs at a faster rate and myoglobin will be converted to 

metmyoglobin faster, therefore changing a* values.   

 Similarly, for b* values there was a significant (P = 0.01) four-way interaction 

between retail display day, grass type, finishing diet, and aging period for a* values.  

Again, a slicediff was used to separate the means based on aging period.  Only days 0 and 

1 of retail display showed any differences between dietary combinations for 7 d aged 
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product.  On day 0, grazing on warm-season grasses caused higher b* values (P = 0.01) 

than cool-season grasses (Figure 5) when finishing on WDGS (11.64 vs. 10.80).  On day 

1 these dietary combinations were no longer different from each other (P > 0.05), but 

grazing on cool-season grasses and finishing on WDGS caused significantly (P < 0.05) 

higher b* scores than grazing on warm-season grasses and finishing on corn (11.73 vs. 

10.94).  After day 1, all differences dissipated.  In contrast, Gill et al. (2008) saw higher 

b* values when cattle were finished on corn compared to DGS (P = 0.04).  Since in this 

study grass type was also part of the interaction, Gill et al.’s (2008) lack of variation in 

grass type could explain why their findings were different.   

 Product aged 28 d had a very similar pattern (Figure 6).  Day 1 of retail display 

was the only day there were any differences between dietary combinations with both 

grazing on warm-season grasses and finishing on WDGS and grazing on cool-season 

grasses and finishing on corn both having higher b* values (P < 0.05) than grazing on 

cool-season grasses and finishing on WDGS (11.77 and 11.83 vs. 10.90, respectively).  

Again, after day 1 of retail display all differences between dietary combinations 

dissipated.  The differences at only day 1 and day 0 in the previous results could be due 

to the meat going from an oxygen free environment to an environment where oxygen is 

now available.  Again, it may have just taken a couple of days for the meat to equilibrate 

to the environment.  For both a* and b* values, even though there is a four-way 

interaction, grass type appears to have the most influence on the scores with warm-season 

grasses causing higher scores (P < 0.05).      
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B. femoris steaks 

 Discoloration scores for B. femoris steaks were significantly (P = 0.01) affected 

by a four-way interaction between retail display day, grass type, supplementation, and 

aging period.  Means were separated by aging period in order to better understand the 

data.  Within the 7 d aging period, scores were not different (P > 0.05) from each other 

until the last day of retail display (Figure 7).  When no supplementation was provided, 

steaks from cattle grazed on warm-season grasses had a higher percent of discoloration 

(P < 0.05) than steaks from cattle grazed on cool-season grasses (29.78% vs. 19.52%) on 

day 7 of retail display. 

 Similarly, there were no differences between dietary combinations until days 6 

and 7 of retail display for 28 d aged product.  On day 6, grazing on warm-season grasses 

with no supplementation caused the highest amount of discoloration (51.13%) than any 

other grass type and supplementation combination (P < 0.05, Figure 8).  On day 7, 

grazing on warm-season grasses without supplementation was not different (P > 0.05) 

from grazing on cool-season grasses with supplementation (74.77% vs. 69.30%), but both 

combinations had higher discoloration scores than any other grass type and 

supplementation combination. Clearly there are compounds in the grass that, in 

combination with supplementation type, are causing the myoglobin in the meat to oxidize 

and become metmyoglobin at different rates.  One of these compounds could be vitamin 

A.  Vitamin A is an antioxidant, so if the warm-season grass was lacking vitamin A, this 

could explain the higher discoloration scores.     
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 On days 0, 1 and 3 of retail display aging product 7 d caused lower L* scores (P < 

0.0001) then when steaks were aged 28 d (43.49 vs. 44.32, 42.57 vs. 43.31, and 41.16 vs. 

41.78, respectively, Figure 9).  After day 3, L* scores were not different between aging 

periods.  Even though 7 d aged product had lower L* scores at first, meaning they were 

darker, after 3 days the 7 d aged product eventually lightened up and became were not 

different from 28 d aged product.  Logically, it would have been expected for the meat to 

start off at the same L* values and then become different from each other, with the 28 d 

aged steaks having lower L* scores, as the end of the retail display neared.  It may have 

taken the steaks 3 days to equilibrate to the new environment containing oxygen and that 

is why the differences in scores are first seen.     

 Three different two-way interactions significantly (P < 0.05) affected a* scores.  

First, during every day of retail display 7 d aged product had significantly higher (P < 

0.0001) a* scores, i.e. were more red, than 28 d aged product (Figure 10).  In addition, at 

days 5, 6, and 7 of retail display finishing cattle on corn caused higher a* scores (P = 

0.03) than finishing on WDGS (Figure 11).  Gill et al. (2008) also found that finishing 

cattle on DGS caused lower a* values compared to finishing on corn (P = 0.01).  This 

may indicate that finishing cattle on WDGS with solubles causes the myoglobin to 

oxidize faster causing the lower redness values seen near the end of the retail display, as 

also seen in the L. dorsi steaks.  The last interaction to influence a* values was between 

supplementation and finishing diet (P = 0.03) with no supplementation and finishing on 

WDGS causing lower scores than both no supplementation and finishing on corn (19.13 
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vs. 20.20) and receiving supplementation and finishing on WDGS (19.13 vs. 20.09, 

Figure 12).   

 A three-way interaction between retail display day, grass type, and aging period 

significantly (P = 0.04) affected b* values.  There were no differences on days 0 and 1, 

but on day 2 of retail display grazing on both warm- and cool-season grasses and aging 

the product for 7 d caused higher values then when cattle were grazed on warm-season 

grasses and the product was aged for 28 d (10.55 and 10.29 vs. 9.66, respectively, Figure 

13).  On days 3 and 4 all 7 d aged product had higher scores than all 28 d aged product 

regardless of grass type.  On day 5 differences shifted again with 7 d aged product that 

was grazed on cool-season grasses having higher scores than 28 d aged product that was 

grazed on warm-season grasses (9.27 vs. 8.72).  After day 5 of retail display there were 

no differences between any of the grass type and aging period combinations.  Even 

though the interaction was between grass type and aging period, on days 2, 3, and 4 of 

retail display it appears that aging period is the major contributing factor with 7 d aged 

product always having higher scores, therefore being more yellow in pigment, than 28 d 

aged product.  Again, this could be due to the myoglobin having more advanced 

oxidation than 7 d aged product. 

pH 

L. dorsi and B. femoris Steaks 

 The pH for L. dorsi steaks was unaffected by any of the feeding regimens (Table 

2), but aging for 28 d increased pH values (P < 0.0001) when compared to 7 d aging 

(5.57 vs. 5.28, Table 3).  B. femoris steaks were similar with pH values increasing (P < 
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0.0001) with longer aging periods (5.65 vs. 5.39).  Shand et al. (1998) also reported that 

pH was unaffected by such dietary components as supplementation and finishing diets 

composed of DGS.  

Proximate analysis 

L. dorsi Steaks 

 For ash content there was a three-way interaction between grass-type, 

supplementation, and finishing diet so a slicediff was used to separate the means based on 

grass type.  Within warm-season grass grazing, not supplementing and finishing on 

WDGS caused ash content to be the highest (2.20%) compared to any other 

supplementation and finishing diet combination (P = 0.04, Figure 14).  Within cool-

season grass grazing, supplementing and finishing on WDGS caused the ash content to be 

higher than if they weren’t supplemented and finished on WDGS (2.22 vs. 1.65).   

 Table 4 shows how grazing cattle on a cool-season grass and finishing on WDGS 

caused the lowest moisture content (69.86%) compared to all other grass type and 

finishing diet combinations (P = 0.02).  Larick and Turner (1990) and Mills et al. (1992) 

also grazed cattle on several different types of grasses and forages, but found that there 

were no differences in moisture content between them.  The difference in finding could 

be due to the types of grasses fed, in that perhaps their grass types were not at different 

from each other as the ones used in this study.  However, the difference was only seen 

when finishing on WDGS so perhaps that grass and finishing diet combination could 

have also caused the differences.  
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  Supplementation caused protein content to decrease (20.75 vs. 21.24) as opposed 

to no supplementation (P = 0.03).    Both fat content and cooking loss were not affected 

by any of the diet regimens.  Shand et al. (1998) also showed that both supplementation 

and finishing diets, with or without DGS, also had no effect on fat or cooking loss. There 

was a tendency for the interactions between grass type and supplementation (P = 0.07) 

and the interaction of grass type and finishing diet (P = 0.08) to influence fat content. 

B. femoris Steaks 

 Ash, fat, and protein content were all unaffected by main effects in the diet, as can 

be seen in Table 2.  This is in contrast to Srinivasan et al. (1998) who found that when 

cattle are supplemented while on grass protein content decreased (P < 0.05) in 

Semimembranosus muscles, which are also located in the round.  Instead of WDGS, 

Srinivasan et al. (1998) used cracked corn to supplement their cattle.  The difference in 

composition between supplementation types could explain the differences in proximate 

analysis.   

 There was a three-way interaction between grass-type, supplementation, and 

finishing diet for moisture content (Figure 15).  A slicediff was used to separate the 

means based on grass-type.  Within warm-season grass grazing, finishing on WDGS 

caused a higher moisture content (P = 0.03) than finishing on corn when supplementation 

was not provided (72.28% vs. 70.98%).  When supplementation was provided, there were 

no differences between finishing diets.  When grazing on cool-season grasses there were 

no differences between any of the supplementation and finishing diet combinations.  It 

can be perceived that the difference in moisture content may be mainly due to grass type 
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since there were no differences within cool-season grasses but there were within warm-

season grass.  Even though there were differences within warm-season grasses, the 

addition of supplementation was able to deter any differences.   

 The interaction between supplementation and finishing diet had a tendency to 

influence protein content of muscle (P = 0.08), with supplementing and finishing on corn 

appearing to decrease protein compared to all other supplementation and finishing diet 

combinations, 19.12 (supplemented and finished on corn) vs. 19.56 (not supplemented 

and finished on corn), 19.24 (not supplemented and finished on WDGS), and 

19.46(supplemented and finished on WDGS).  In addition, the three-way interaction 

between grass type, supplementation, and finishing diet had a tendency to change fat 

content (P = 0.08).  In this instance, it appeared that finishing on WDGS after being 

grazed on a warm-season grass with no supplementation drastically reduces fat content 

compared to all other diet combinations, 5.62 (warm-season grass grazing with no 

supplementation, WDGS finish) vs. 7.49 (warm-season grass grazing with no 

supplementation, corn finish), 6.78 (warm-season grass grazing with supplementation, 

corn finish), 6.79 (warm-season grass grazing with supplementation, WDGS finish), 6.13 

(cool-season grass grazing with no supplementation, corn finish), 6.70 (cool-season grass 

grazing with no supplementation, WDGS finish), 7.36 (cool-season grass grazing with 

supplementation, corn finish), and 6.52(cool-season grass grazing with supplementation, 

corn finish).  Cooking loss was also unaffected by diet and aging, however there was a 

tendency for the interaction of supplementation and finishing diet to influence it (P = 

0.07). 
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Total Carbohydrates 

L. dorsi and B. femoris Steaks 

 Diet had no effect on total carbohydrate composition for both L. dorsi and B. 

femoris steaks (P > 0.05, Table 2).  However, the interaction between grass type and 

finishing diet did have the tendency (P = 0.06) to influence carbohydrate concentration 

for L. dorsi steaks.  Aging period did significantly (P = 0.0003) affect carbohydrate 

concentration in B. femoris steaks with 28 d aging periods causing a higher concentration 

than 7 d aging (1.00 vs. 0.81, Table 3).  As the meat ages the moisture content decreases 

as can be seen in Table 3 for the L. dorsi steaks (P = 0.02) with a tendency for the same 

in the B. femoris steaks (P = 0.08).  When the moisture content decreases other 

components, such as carbohydrate, will become more concentrated.  

Minerals and Amino acids 

L. dorsi Steaks 

 The amino acid profile was unaffected by any dietary components or their 

combinations (Table 5).  The interaction between supplementation and finishing diet had 

a tendency (P = 0.07) to influence potassium concentration while grass type and diet 

tended to influence copper lever (P = 0.09), but no dietary combinations significantly (P 

< 0.05) altered any other minerals, as can be seen in Table 5.  Grazing on a warm-season 

grass decreased magnesium concentrations (291.67 vs. 326.67) and increased zinc 

concentrations (42.29 vs. 37.46) significantly (P < 0.03, Table 6).  In addition, grazing on 

a warm-season grass had the tendency (P = 0.06) to decrease sulfur content.  The warm-

season grasses tend to have higher zinc and lower sulfur concentrations than cool-season 
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grasses (Muller, 2003 and Reid et al., 1988).  This could explain some of the differences 

seen.     

B. femoris Steaks  

 There was a three-way interaction between grass-type, supplementation, and 

finishing diet for glycine concentration (P = 0.05, Table 7).  In order to better analyze the 

differences, a slicediff was used to separate out the means by grass-type.  Within warm-

season grass grazing there were no differences (P > 0.05).  When cattle were grazed on 

cool-season grasses, providing supplementation and finishing on a WDGS diet caused the 

lowest glycine concentration (6.52) when compared to all other supplementation and 

finishing diet combinations (Figure 17).     

 As seen in Table 8, finishing cattle on corn increased (P = 0.04) histidine levels 

compared to WDGS (6.12 vs. 5.75) while providing supplementation caused proline 

levels to decrease (6.97 vs. 6.64, P = 0.05).  Finishing on corn tended to increase both 

lysine and arginine levels when compared to WDGS (P < 0.08).  All other amino acids 

were unaffected by any other dietary components or combinations (Table 7). 

 B. femoris steaks from cattle finished on WDGS had higher phosphorus content 

(P = 0.04) in the meat when not supplemented as opposed to supplemented (2,266.67 vs. 

2,058.33, Table 9).   In contrast, Driskell et al. (2011) did not see any differences in 

phosphorous levels in the meat when they compared corn and WDGS finishing diets.  

They could not have seen the same results though because they examined the 

Infraspinatus and Teres major muscles instead of the B. femoris.   
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 There were tendencies for grass type and finishing diet to alter calcium (P = 0.06), 

supplementation and finishing diet to alter sodium (P = 0.06), and grass type to alter both 

magnesium and sulfur (P = 0.07).  When comparing other research, it has been found that 

there are differences in mineral content between grasses.  Specifically, warm-season 

grasses tend to have higher concentrations of magnesium and lower concentration of 

calcium and sulfur compared to cool-season grasses (Muller, 2003 and Reid et al., 1988).  

This could explain why grass type had the tendencies to alter the mineral content in the 

meat.  All other minerals were unaffected by any other dietary components or 

combinations (Table 7).  When supplementing, Srinivasan et al. (1998) saw increased 

levels of potassium and decreased levels of iron concentrations in Semimembranosus 

muscles.  They used cracked corn to supplement, which could account for the differences. 

Non- and heme iron 

L. dorsi Steaks 

 No dietary regimen and aging period combinations influenced non-heme iron 

content (Table 2).  When cattle were finished on corn, grazing them on a warm-season 

grass first caused higher heme iron concentration than grazing on cool-season grass (P = 

0.003), 7.98 vs. 7.11 (Table 4).  Even though no dietary regimens affected total iron 

concentrations, as seen above, apparently grass type and finishing diets were sufficient to 

still affect heme iron concentrations.  As described previously, the warm-season grass 

pastures used in this study were at a higher altitude than the cool-season grass pastures.  

At the higher altitudes there will be more red blood cells and hemoglobin produced in 

order to compensate for the atmosphere.  The increase in hemoglobin would then also 
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cause an increase in heme iron.  Medeiros et al. (1988) also found that steaks from cattle 

grazed at higher altitudes contained more heme iron than steaks from cattle grazed at 

lower altitudes.     

B. femoris Steaks  

 There was a three-way interaction between grass-type, supplementation, and age 

for non-heme iron content.  A slicediff was used to separate the means based on grass-

type.  Within warm-season grass grazing, when the animals were supplemented, 28 d 

aged product had a higher non-heme iron concentration (P = 0.05) than 7 d aged product 

(3.36 vs. 2.13, Figure 16).  Within cool-season grass grazing, 28 d aged product, from 

both not supplemented and supplemented cattle, had higher non-heme iron concentrations 

than 7 d not supplemented product (3.02 and 2.83 vs. 1.70, respectively).  Aging steaks 

28 d caused the concentration of heme iron to be significantly (P = 0.0001) higher than 7 

d aged steaks (10.58 vs. 9.54, Table 3).  Again, this is probably due to water being 

exuded from the meat and therefore other components become more concentrated.   

 In conclusion, grass-type was a major contributor in determining the biochemical 

composition of L. dorsi steaks, with warm-season grasses causing increased 

concentrations of moisture and zinc.  In contrast, a longer aging period had an 

overwhelming effect on the biochemical components of B. femoris steaks.  Aging 28 d 

instead of 7 d caused increased concentrations of pH, carbohydrates, and non-heme and 

heme iron most likely due to water being lost and other components becoming more 

concentrated.   
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 Overall, grass type and aging were found to have the most effect on the 

biochemical constituents of meat.  This shows that the grass type cattle grazed after 

weaning can still cause a residual effect on the meat composition even after finishing on a 

high concentrate diet.  In most cases, the addition of supplementation was able to even 

out the effects and remove any differences due to grass type.  The differences due to 

aging can most likely be attributed to moisture loss.      
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Figures and Tables 
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Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 1. The effect of the interaction between day, finishing diet, and aging period on 

 % discoloration for L. dorsi steaks (P = 0.02). 
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Means within the same  retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 2. The effect of the interaction between retail day, grass type, and finishing diet 

 on L* values of L. dorsi steaks (P = 0.03). 
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Figure 3. The effect of the interaction between retail display day, grass type, finishing 

diet, and aging period on a* values within 7 d age for L. dorsi steaks (P = 0.04) 
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Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

 

Figure 4. The effect of the interaction between retail display day, grass type,  

finishing diet, and aging period on a* values within 28 d age for L. dorsi steaks  

(P = 0.04) 
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ab

Means within the same retail day with different superscripts are significantly (P < 0.05) different 
 

Figure 5. The effect of the interaction between retail display day, grass type,  

finishing diet, and aging period on b* values within 7 d age for L. dorsi steaks  

(P = 0.01). 
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ab

Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 6. The effect of the interaction between retail display day, grass type,  

finishing diet, and aging period on b* values within 28 d age for L. dorsi steaks  

(P = 0.01). 
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ab

Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 7. The effect of the interaction between retail display day, grass type, 

supplementation, and aging period on % discoloration within 7 d age for B. femoris 

steaks (P = 0.01). 
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abc

Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 8. The effect of the interaction between retail display day, grass type, 

supplementation, and aging period on % discoloration within 28 d age for B. femoris 

steaks (P = 0.01). 
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ab

Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 9. The effect of the interaction between retail day and aging period on L* values 

of B. femoris steaks (P < 0.0001). 
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ab

Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 10. The effect of the interaction between retail day and aging period on a* values 

of B. femoris steaks (P < 0.0001). 
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ab

Means within the same  retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 11. The effect of the interaction between retail day and finishing diet on a*  

values of B. femoris steaks (P = 0.03). 
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ab

Means with different superscripts are significantly (P < 0.05) different 

 

Figure 12. The effect of the interaction between supplementation and finishing diet on a* 

values of B. femoris steaks (P = 0.03). 
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ab

Means within the same retail day with different superscripts are significantly (P < 0.05) different 

 

Figure 13. The effect of the interaction between retail day, grass type, and aging period 

on b* values of B. femoris steaks (P = 0.04). 
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ab

Means within the same grass type with the different superscripts are significantly (P < 0.05) different 

 

Figure 14. The effect of the interaction between grass type, supplementation, and 

finishing diet on the LS means of ash content when separated by grass type for L. dorsi 

steaks (P = 0.04). 
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ab

Means within the same grass type with the different superscripts are significantly (P < 0.05) different 

 

Figure 15. The effect of the interaction between grass type, supplementation, and 

finishing diet on the LS means of moisture content when separated by grass type for B. 

femoris steaks (P = 0.04). 
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ab

Means within the same grass type with the different superscripts are significantly (P < 0.05) 

 different 

 

Figure 16. The effect of the interaction between grass type, supplementation, and aging 

period on LS means of non-heme iron content when separated by grass type for B. 

femoris steaks (P = 0.05). 
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ab

Means within the same grass type with the different superscripts are significantly (P < 0.05) different 

 

Figure 17. The effect of the interaction between grass type, supplementation, and 

finishing diet on the LS means of glycine content when separated by grass type for B. 

femoris steaks (P = 0.05). 
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Table 1.  The effect of grass type, supplementation, and finishing diet on carcass characteristics 

 

Warm-Season Grass 

 

Cool-Season Grass 

   

 

No Supplementation 

 

Supplementation 

 

No Supplementation 

 

Supplementation 

  
  Corn WDGS

x
   Corn WDGS   Corn WDGS   Corn WDGS   SEM P-Value 

HCW, lbs 370.15 382.80 

 

401.67 421.82  405.83 413.26  433.49 437.20  8.54 0.65 

Marbling
y
 605 517 

 

585 592 

 

577 597 

 

617 627 

 

32 0.25 

REA, cm
2
 88.26 90.97  88.26 97.94  87.61 88.58  93.68 91.61  3.23 0.28 

12
th

 Rib Fat, cm 1.22 1.27  1.32 1.50  1.55 1.57  1.55 1.75  0.15 0.98 

CYG
z
 2.92 2.93   3.28 3.13   3.56 3.61   3.50 3.82   0.23 0.53 

x
WDGS = Wet distillers grains with solubles 

y
Marbling score: 700 = MD, 600 = MT, 500 = SM 

z
Calculated Yield Grade = 2.5 + (2.5 *12

th
 rib fat, in) - (0.32*REA, in

2
) + (0.2*estimated KPH, %) + 0.0038*HCW, lb) 

9
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Table 2.  The influence of diet and age on the P-values of the pH, proximate analysis, carbohydrate, cooking loss, non-heme iron, and heme iron content of L. dorsi and B. 

femoris steaks 

 

P-Value 

Trait Grassx Supp 

Grass

XSupp Diet 

Grass

XDiet 

SuppX

Diet 

Grass

XSupp

XDiet Age 

Grass

XAge 

SuppX

Age 

Grass

XSupp

XAge 

DietX

Age 

Grass

XDiet

XAge 

SuppX

DietX

Age 

Grass

XSupp

XDiet

XAge 

L. dorsi 

               pH 0.06 0.24 0.37 0.16 0.73 0.49 0.14 <0.0001 0.10 0.81 0.78 0.38 0.45 0.48 0.19 

Moisture, % 0.01 0.13 0.11 0.59 0.02 0.39 0.52 0.02 0.75 0.76 0.52 0.61 0.83 0.85 0.54 

Ash, % 0.53 0.74 0.04 0.09 0.41 0.99 0.04 NAy NA NA NA NA NA NA NA 

Fat, % 0.20 0.14 0.07 0.66 0.08 0.75 0.75 NA NA NA NA NA NA NA NA 

Protein, % 0.46 0.03 0.95 0.59 0.44 0.83 0.64 NA NA NA NA NA NA NA NA 

Total Carbohydrates, 

mg/mL  0.16 0.22 0.54 0.76 0.06 0.16 0.58 0.15 0.61 0.72 0.89 0.82 0.73 0.48 0.86 

Cooking Loss, % 0.95 0.89 0.90 0.67 0.14 0.16 0.70 0.82 0.46 0.97 0.32 0.43 0.82 0.98 0.36 

Non-Heme Iron, μg/g 

meat  0.41 0.80 0.64 0.92 0.82 0.65 0.69 0.57 0.65 0.51 0.15 0.95 0.50 0.89 0.17 

Heme Iron,mg/kg 0.49 0.004 0.45 0.79  0.003 0.62 0.58 0.11 0.49 0.60 0.73 0.85 0.62 0.34 0.91 

                B. femoris 

               
pH 0.99 0.69 0.13 0.44 0.53 0.80 0.76 <0.0001 0.11 0.86 0.63 0.39 0.18 0.84 0.09 

Moisture, % 0.22 0.32 0.13 0.50 0.43 0.25 0.03 0.08 0.73 0.74 0.18 0.37 0.59 0.98 0.70 

Ash, % 0.78 0.52 0.31 0.51 0.24 0.33 0.53 NA NA NA NA NA NA NA NA 

Fat, % 0.98 0.41 0.75 0.25 0.38 0.80 0.08 NA NA NA NA NA NA NA NA 

Protein, % 0.30 0.58 0.18 0.96 0.26 0.08 0.20 NA NA NA NA NA NA NA NA 

Total Carbohydrates, 

mg/mL  0.99 0.84 0.62 0.84 0.72 0.98 0.91     0.0003 0.80 0.76 0.40 0.50 0.60 0.60 0.79 

Cooking Loss, % 0.39 0.43 0.19 0.56 0.71 0.07 0.37 0.10 0.72 0.72 0.41 0.33 0.30 0.76 0.21 

Non-Heme Iron, μg/g 

meat  0.28 0.77 0.47 0.30 0.06 0.26 0.94 0.01 0.68 0.79 0.05 0.92 0.81 0.21 0.99 

Heme Iron, mg/kg 0.83 0.68 0.53 0.57 0.09 0.51 0.79     0.0001 0.43 0.64 0.34 0.87 0.26 0.27 0.47 
xGrass = Grass type, Supp = Supplementation, Diet = Finishing diet, Age = Aging period 
yNA = Not applicable, aging period was not tested for these factors 
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Table 3.  The effect of grass type, supplementation, finishing diet, and aging period on the LS means scores of pH, proximate analysis, carbohydrate, 

cooking loss, non-heme iron, and heme iron content for L. dorsi and B. femoris steaks 

 

Grass Type 

  

Supplementation 

  

Finishing Diets 

  

Aging Period 

 

Trait 

Warm-

season 

Cool-

season SEM 

 

No Yes SEM 

 

Corn WDGS
x
 SEM 

 

7 d 28 d SEM 

L. dorsi 

               pH 5.46 5.39 0.03 

 

5.45 5.40 0.03 

 

5.45 5.40 0.03 

 

  5.28
b
   5.57

a
 0.03 

Moisture, % 71.19
a
 70.34

b
 0.23 

 

71.02 70.52 0.23 

 

70.86 70.68 0.23 

 

71.14
a
 70.39

b
 0.23 

Ash, % 1.80 1.88 0.090 

 

1.82 1.86 0.09 

 

1.73 1.95 0.09 

 

NA
y
 NA NA 

Fat, % 5.67 6.38 0.400 

 

5.60 6.45 0.40 

 

5.90 6.15 0.40 

 

NA NA NA 

Protein, % 20.91 21.07 0.150 

 

21.24
a
 20.75

b
 0.15 

 

21.05 20.93 0.15 

 

NA NA NA 

Total Carbohydrates, 

mg/mL  0.81 0.75 0.040 

 

0.81 0.76 0.04 

 

0.78 0.79 0.04 

 

 0.75
b
  0.81

a
 0.03 

Cooking Loss, % 14.73 14.78 0.630 

 

14.69 14.82 0.63 

 

14.95 14.56 0.63 

 

14.86 14.65 0.63 

Non-Heme Iron, μg/g 

meat  2.34 2.15 0.210 

 

2.27 2.21 0.21 

 

2.25 2.23 0.21 

 

  2.31   2.18 0.16 

Heme Iron, mg/kg 7.66 7.50 0.220 

 

7.23
b
 7.92

a
 0.22 

 

7.55 7.61 0.22 

 

  7.39
b
   7.77

a
 0.16 

                B. femoris 

               pH 5.52 5.52 0.03 

 

5.53 5.52 0.03 

 

5.54 5.51 0.03 

 

  5.39
b
   5.65

a
 0.03 

Moisture, % 71.70 71.37 0.19 

 

71.67 71.40 0.19 

 

71.44 71.63 0.19 

 

71.78 71.29 0.19 

Ash, % 2.18 2.22 0.10 

 

2.25 2.16 0.10 

 

2.16 2.25 0.10 

 

NA NA NA 

Fat, % 6.67 6.68 0.32 

 

6.49 6.86 0.32 

 

6.94 6.41 0.32 

 

NA NA NA 

Protein, % 19.25 19.44 0.13 

 

19.40 19.29 0.13 

 

19.34 19.35 0.13 

 

NA NA NA 

Total Carbohydrates, 

mg/mL  0.91 0.91 0.04 

 

0.91 0.90 0.04 

 

0.91 0.90 0.04 

 

  0.81
b
   1.00

a
 0.04 

Cooking Loss, % 20.02 20.83 0.67 

 

20.05 20.80 0.67 

 

20.15 20.70 0.67 

 

21.21 19.64 0.67 

Non-Heme Iron, μg/g 

meat  2.81 2.50 0.20 

 

2.62 2.70 0.20 

 

2.80 2.51 0.20 

 

  2.29
b
   3.02

a
 0.20 

Heme Iron, mg/kg 10.09 10.03 0.19   10.00 10.11 0.19   9.98 10.13 0.19     9.54
b
 10.58

a
 0.19 

x
WDGS = Wet

 
distillers grains with solubles 

y
NA = Not applicable, aging period was not tested for these factors 

ab
Means within the same treatment and the same row with different superscripts are different (P < 0.05) 
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Table 4. The effect of grass type and finishing diet on the LS means of pH, 

proximate analysis, carbohydrate, cooking loss, non-heme iron, and heme 

iron content for L. dorsi steaks 

 

Warm-season 

Grass 

 

Cool-season 

Grass 

  
Trait Corn WDGS

x
   Corn WDGS   SEM 

pH 5.48 5.44 

 

5.42 5.36 

 

0.04 

Moisture, % 70.89
a
 71.50

a
  70.83

a
 69.86

b
  0.34 

Ash, % 1.64 1.96 

 

1.82 1.93 

 

0.13 

Fat, % 6.04 5.29 

 

5.76 7.00 

 

0.57 

Protein, % 20.89 20.94 

 

21.22 20.93 

 

0.22 

Total 

Carbohydrates, 

mg/mL  0.77 0.86 

 

0.79 0.72 

 

0.04 

Cooking Loss, % 14.25 15.21 

 

15.65 13.92 

 

0.92 

Non-Heme Iron, 

μg/g meat  2.38 2.3 

 

2.13 2.16 

 

0.24 

Heme Iron, 

mg/kg 7.98
a
 7.33

ab
   7.11

b
  7.88

ab
   0.24 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment combination and the same row with 

different superscripts are different (P < 0.05) 
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Table 5.  The influence of diet and age on the P-values of the amino acids and minerals in L. 

dorsi steaks 

 P-Value 

Trait Grass
x
 Supp 

GrassX

Supp Diet 

GrassX

Diet 

SuppX

Diet 

GrassX

SuppX

Diet 

Amino Acids, mg/g 

       Aspartic Acid 0.11 0.51 0.83 0.13 0.33 0.95 0.72 

Threonine 0.17 0.59 0.89 0.15 0.34 0.92 0.89 

Serine 0.23 0.53 0.81 0.29 0.44 0.85 0.77 

Glutamic Acid 0.27 0.88 0.93 0.23 0.33 0.79 0.84 

Proline 0.19 0.76 0.45 0.39 0.39 0.59 0.45 

Glycine 0.30 0.75 0.26 0.60 0.65 0.55 0.25 

Alanine 0.15 0.69 0.68 0.25 0.35 0.86 0.81 

Valine 0.11 0.57 0.81 0.13 0.33 1.00 0.62 

Methionine 0.21 0.14 0.19 0.16 0.30 0.10 0.53 

Isoleucine 0.11 0.71 0.80 0.13 0.32 0.93 0.77 

Leucine 0.12 0.60 0.92 0.14 0.35 0.93 0.84 

Tyrosine 0.12 0.60 0.80 0.10 0.44 0.97 0.83 

Phenylalanine 0.13 0.61 0.92 0.16 0.40 0.92 0.82 

Histidine 0.64 0.64 0.75 0.83 0.46 0.89 0.61 

Lysine 0.13 0.69 0.84 0.13 0.36 0.95 0.93 

Arginine 0.11 0.77 0.73 0.19 0.31 0.86 0.73 

Total 0.12 0.80 0.69 0.14 0.42 0.71 0.89 

        Minerals, mg/kg 

       Calcium 0.12 0.83 0.57 0.61 0.39 0.35 0.57 

Phosphorous 0.11 0.54 0.37 0.95 0.15 0.73 0.61 

Potassium 0.06 0.36 0.39 0.66 0.20 0.07 0.76 

Magnesium 0.03 0.26 0.92 0.53 0.53 0.68 0.68 

Zinc 0.002 0.22 0.74 0.91 0.67 0.35 0.95 

Iron 0.79 0.80 0.58 0.83 0.40 0.12 0.27 

Manganese 0.64 0.97 0.32 0.14 0.71 0.97 0.14 

Copper 0.40 0.58 0.94 0.32 0.09 0.54 0.52 

Sulfur 0.06 0.66 0.92 0.44 0.27 0.22 0.66 

Sodium 0.28 0.33 0.33 0.14 0.64 0.64 0.57 

x
Grass = Grass type, Supp = Supplementation, Diet = Finishing diet 

 



 

 

 

 

 

Table 6.  The effects of grass type, supplementation, and finishing diet on the LS means scores of minerals in L. dorsi steaks 

 

Grass Type 

  

Supplementation 

  

Finishing Diets 

 

Trait 

Warm-

season Cool-season SEM   No Yes SEM   Corn WDGS
x
 SEM 

Minerals, mg/kg 

           
Calcium 254.17 290.83 16.45 

 

275.00 270.00 16.45 

 

266.67 278.33 16.45 

Phosphorous 2054.17 2102.50 20.97 

 

2087.50 2069.17 20.97 

 

2079.17 2077.50 20.97 

Potassium 3220.83 3498.33 104.30 

 

3291.67 3427.50 104.30 

 

3391.67 3327.50 104.30 

Magnesium 291.67
b
 326.67

a
 11.37 

 

300.00 318.33 11.37 

 

304.17 314.17 11.37 

Zinc 42.29
a
 37.46

b
 1.01 

 

39.00 40.75 1.01 

 

39.95 39.80 1.01 

Iron 120.33 130.08 26.11 

 

120.63 129.78 26.11 

 

129.04 121.37 26.11 

Manganese 1.13 0.94 0.28 

 

1.04 1.03 0.28 

 

1.33 0.73 0.28 

Copper 1.69 1.41 0.24 

 

1.45 1.64 0.24 

 

1.71 1.38 0.24 

Sulfur 2012.50 2060.00 17.52 

 

2041.67 2030.83 17.52 

 

2045.83 2026.67 17.52 

Sodium 533.33 550.83 11.42   550.00 534.17 11.42   554.17 530.00 11.42 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment and the same row with different superscripts are different (P < 0.05) 

 

 

1
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Table 7.  The influence of diet and age on the P-values of the amino acids and mineral  in B. 

femoris steaks 

 P-Value 

Trait Grass
x
 Supp 

GrassX

Supp Diet 

GrassX

Diet 

SuppX

Diet 

GrassX

SuppX

Diet 

Amino Acids, mg/g 

       Aspartic Acid 0.62 0.19 0.25 0.12 0.54 0.85 0.40 

Threonine 0.67 0.19 0.28 0.10 0.46 1.00 0.49 

Serine 0.85 0.21 0.35 0.10 0.47 0.98 0.44 

Glutamic Acid 0.96 0.14 0.36 0.11 0.45 0.99 0.45 

Proline 0.86 0.05 0.55 0.16 0.70 0.34 0.10 

Glycine 0.81 0.03 0.44 0.23 0.77 0.18 0.05 

Alanine 0.78 0.12 0.36 0.11 0.57 0.72 0.23 

Valine 0.59 0.21 0.24 0.14 0.70 0.84 0.25 

Methionine 0.52 0.85 0.73 0.26 0.48 0.39 0.56 

Isoleucine 0.54 0.17 0.23 0.11 0.62 0.95 0.33 

Leucine 0.71 0.23 0.29 0.10 0.55 0.96 0.41 

Tyrosine 0.68 0.17 0.17 0.11 0.68 0.88 0.44 

Phenylalanine 0.78 0.24 0.26 0.11 0.59 0.91 0.45 

Histidine 0.87 0.47 0.76 0.04 0.53 0.56 0.37 

Lysine 0.68 0.22 0.29 0.09 0.55 0.93 0.45 

Arginine 0.70 0.10 0.25 0.08 0.56 0.85 0.38 

Total 0.80 0.18 0.34 0.10 0.53 0.93 0.39 

        Minerals, mg/kg 

       Calcium 0.14 0.83 0.29 0.52 0.06 0.29 0.52 

Phosphorous 0.18 0.32 0.39 0.71 0.80 0.04 0.62 

Potassium 0.27 0.54 0.33 0.31 0.87 0.73 0.22 

Magnesium 0.07 0.53 1.00 1.00 0.53 0.53 0.21 

Zinc 0.52 0.18 0.33 0.67 0.38 0.22 0.53 

Iron 0.30 0.07 0.73 0.43 0.31 0.90 0.36 

Manganese 0.80 0.14 0.32 0.14 1.00 0.80 0.80 

Copper 0.34 0.67 0.36 0.58 0.45 0.19 0.28 

Sulfur 0.07 0.85 0.20 0.71 1.00 0.20 0.35 

Sodium 0.43 1.00 1.00 0.69 0.69 0.06 0.24 

x
Grass = Grass type, Supp = Supplementation, Diet = Finishing diet 

 

 

 



 

 

 

 
Table 8.  The effect of grass type, supplementation, and finishing diet on the LS means scores of amino acids and mineral content of B. 

femoris steaks 

 

Grass Type 

  

Supplementation 

  

Finishing Diets 

 

Trait 

Warm-

season 

Cool-

season SEM   No Yes SEM   Corn WDGS
x
 SEM 

Amino Acids, 

mg/g 

           
Aspartic Acid 16.79 16.99 0.28 

 

17.15 16.62 0.28 

 

17.20 16.57 0.28 

Threonine 7.83 7.92 0.14 

 

8.00 7.75 0.14 

 

8.04 7.71 0.14 

Serine 6.43 6.45 0.11 

 

6.54 6.34 0.11 

 

6.57 6.31 0.11 

Glutamic Acid 26.42 26.46 0.47 

 

26.94 25.94 0.47 

 

26.99 25.89 0.47 

Proline 6.79 6.82 0.11 

 

6.97
a
 6.64

b
 0.11 

 

6.92 6.69 0.11 

Glycine 7.15 7.20 0.12 

 

7.37
a
 6.98

b
 0.12 

 

7.28 7.07 0.12 

Alanine 9.53 9.60 0.16 

 

9.75 9.38 0.16 

 

9.76 9.38 0.16 

Valine 9.11 9.23 0.16 

 

9.31 9.03 0.16 

 

9.34 9.00 0.16 

Methionine 4.57 4.30 0.29 

 

4.40 4.48 0.29 

 

4.67 4.20 0.29 

Isoleucine 8.49 8.62 0.15 

 

8.70 8.41 0.15 

 

8.73 8.39 0.15 

Leucine 14.88 15.02 0.26 

 

15.18 14.73 0.26 

 

15.26 14.64 0.26 

Tyrosine 6.54 6.61 0.11 

 

6.69 6.46 0.11 

 

6.71 6.44 0.11 

Phenylalanine 7.81 7.87 0.14 

 

7.95 7.73 0.14 

 

8.00 7.68 0.14 

Histidine 5.92 5.95 0.13 

 

6.00 5.87 0.13 

 

6.12
a
 5.75

b
 0.13 

Lysine 16.50 16.66 0.29 

 

16.83 16.33 0.29 

 

16.93 16.23 0.29 

Arginine 12.27 12.38 0.20 

 

12.57 12.08 0.20 

 

12.58 12.06 0.20 

Total 167.05 168.09 2.93 

 

170.36 164.78 2.93 

 

171.09 164.05 2.93 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment and the same row with different superscripts are different (P < 0.05) 

 

 

 

1
0
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Table 9. The effects of the interaction between supplementation and finishing 

diet on the LS means of amino acids and minerals for B. femoris steaks 

 

No Supplementation 

 

Supplementation 

  
Trait Corn WDGS

x
   Corn WDGS   SEM 

Amino Acids, 

mg/g 

       Aspartic Acid 17.43 16.88 

 

16.98 16.27 

 

0.40 

Threonine 8.17 7.84 

 

7.91 7.58 

 

0.19 

Serine 6.67 6.41 

 

6.48 6.21 

 

0.15 

Glutamic Acid 27.49 26.38 

 

26.48 25.4 

 

0.67 

Proline 7.01 6.93 

 

6.83 6.45 

 

0.16 

Glycine 7.36 7.38 

 

7.20 6.76 

 

0.17 

Alanine 9.90 9.60 

 

9.62 9.15 

 

0.23 

Valine 9.46 9.17 

 

9.22 8.83 

 

0.22 

Methionine 4.81 3.98 

 

4.53 4.42 

 

0.41 

Isoleucine 8.88 8.53 

 

8.58 8.25 

 

0.21 

Leucine 15.08 14.68 

 

15.44 14.60 

 

0.37 

Tyrosine 6.83 6.54 

 

6.58 6.34 

 

0.16 

Phenylalanine 8.10 7.81 

 

7.89 7.56 

 

0.19 

Histidine 6.13 5.87 

 

6.11 5.63 

 

0.18 

Lysine 17.20 16.47 

 

16.66 15.99 

 

0.41 

Arginine 12.80 12.33 

 

12.37 11.79 

 

0.29 

Total 173.69 167.03 

 

168.48 161.07 

 

4.14 

        Minerals, 

mg/kg 

       Calcium 283.33 291.67 

 

300.00 266.67 

 

19.58 

Phosphorous 2100.00
ab

 2266.67
a
 

 
2175.00

ab
 2058.33

b
 

 

66.46 

Potassium 3825.00 3675.00 

 

4041.67 3733.33 

 

225.04 

Magnesium 308.33 316.67 

 

308.33 300.00 

 

13.18 

Zinc 45.75 47.56 

 

45.53 41.86 

 

2.18 

Iron 168.25 94.25 

 

308.83 254.58 

 

80.75 

Manganese 1.08 0.67 

 

1.67 1.08 

 

0.33 

Copper 1.38 1.54 

 

1.74 1.36 

 

0.20 

Sulfur 1966.67 2041.67 

 

2016.67 1975.00 

 

44.49 

Sodium 591.67 641.67   633.33 600.00   21.08 

x
WDGS = Wet distillers grains with solubles 

 
ab

Means within the same row with different superscripts are different 

(P < 0.05) 
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Abstract 

 The objective of this study was to determine how the fatty acid profiles of meat 

are altered when diet and aging periods are varied.  Crossbred steers (n = 64) were grazed 

on warm or cool-season grasses, without or with energy supplementation from wet 

distillers grains with solubles (WDGS), and were finished on corn or 35% WDGS.  Six 

carcasses from each treatment (n = 48) that graded USDA Choice or Select were 

identified and Longissimus dorsi and Biceps femoris muscles from each side of each 

carcass were collected and aged under vacuum 7 and 28 d.  Samples were analyzed for 

fatty acid (FA) content (mg/100 g of meat) in the neutral and phospholipid layers.  In the 

neutral layer of L. dorsi steaks, warm-season grass grazing without supplementation 

lowered  C17:0, C17:1, C18:1, C18:2TT, total unsaturated FA, and total monounsaturated 

FA (MUFA) concentrations (P < 0.05) compared to cool-season grass when not receiving 

supplementation (29.03 vs. 44.05, 22.64 vs. 35.79, 848.22 vs. 1,261.53, 1.19 vs. 4.65, 

1,045.30 vs. 1,607.48, and 1,013.53 vs. 1,545.75, respectively) and warm-season grass 

alone also lowered C18:1t, C18:1v, C18:2TT, C18:2, C20:1, and total polyunsaturated 

FA  concentrations (P < 0.006).  The phospholipid layer was only minimally affected by 

dietary components with supplementation causing lower concentrations of C18:3 and 

C20:5 (P < 0.05) compared not supplementing (7.57 vs. 10.88 and 13.09 vs. 21.19, 

respectively).  In the neutral lipids layer of B. femoris steaks not supplementing and 

finishing on corn caused decreased concentrations (P < 0.05) of C14:0, C14:1, C15:0, 

C16:0, C17:0, C17:1, C18:1, total saturated FA, total unsaturated FA, and total MUFA 

were lower than when finished on WDGS (89.37 vs. 55.06, 33.30 vs. 19.48, 17.31 vs. 
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10.91, 867.17 vs. 517.94, 48.27 vs. 30.97, 53.33 vs. 30.94, 348.04 vs. 240.94, 1,558.94 

vs. 1,060.05, 1,375.10 vs. 857.17, 1,952.46 vs. 1,330.93, and 1,905.19 vs. 1,285.39, 

respectively) within warm-season grass grazing.  Similar to L. dorsi steaks, few dietary 

components had an effect on FA in the phospholipid layer.  Finishing diet had the 

greatest effect with corn causing increased (P < 0.05) concentrations of C16:1, C18:1, 

C18:1v, C22:6, and total MUFA over WDGS (11.93 vs. 7.38, 110.82 vs. 78.05, 40.57 vs. 

26.84, 2.84 vs. 0.73, and 233.07 vs. 185.12, respectively).  Grazing on warm-season 

grasses also shifted the FA profile, but provision of a supplementation may prevent the 

changes.  

Keywords:  Beef, diet, fatty acids, forages, supplementation 

 

Introduction 

 The diet of beef cattle can alter the fatty acid profile of meat.  This alteration 

begins with the type of forage cattle are grazed on post-weaning and before they enter a 

feedlot.  Jenschke et al. (2008) fed cattle different forage diets and found that fatty acid 

(FA) profiles were highly influenced by it.    

 While grazing, it is common to supplement cattle to ensure that they are getting 

enough energy and protein.  Kiesling et al. (2011) and Mandell et al. (1997) discovered 

that certain types of supplementation can alter FA profiles, especially conjugated linoleic 

acid (CLA) content and omega-3:omega-6 ratios.  Each researcher used different types of 

supplementation, including not supplementing at all, and both found that fatty acid 

profiles can be altered.       



 108 

 

 

 Diets fed in a finishing lot may also be a factor in determining beef composition.  

Distillers grains (DG) as a finishing ration are a more economical choice for producers 

and are often included.  When Driskell et al. (2009) fed dried corn distillers grains with 

solubles (DDGS) FA profiles changed as inclusion levels of DDGS increased.  Similarly, 

Gill et al. (2008) also saw that FA profiles could be affected by finishing cattle on DG 

instead of corn.    

 This research was conducted to investigate how fatty acids are affected in two 

different muscles from cattle fed two different forages post-weaning, with or without 

supplemental energy, and finished on either a corn or wet DGS (WDGS) diet.    

Materials and Methods 

Diets 

 All protocols performed in this study were approved by the University of 

Nebraska-Lincoln Institutional Animal Care and Use Committee.  Cattle were fed in a 

2x2x2 factorial design.  Crossbred steers (n = 64) were backgrounded on either warm-

season grasses (i.e. bluestem and switch grass) at the Barta Ranch in Western Nebraska 

or on cool-season (i.e. brome and bluegrass) pastures in Ithaca, NE for 177 d, shortly 

after weaning.  Within each pasture, half of the cattle were supplemented with 0.6 kg 

WDGS/kg body weight/ day for energy.  At the end of the grazing period, all cattle were 

transported to the University of Nebraska-Lincoln’s research feedlot in Ithaca, NE.  

While in the feedlot, half of each pasture and supplementation treatments were finished 

on an all-corn diet while the other half were fed corn with WDGS at a 35% inclusion rate 
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(DM basis).  Cattle were on feed for 119 days and fed to an average live weight of 1,427 

lbs.           

Harvest 

 At the end of the feedlot period, cattle were transported and harvested at the 

Greater Omaha Packing (Omaha, NE).  Forty-eight carcasses grading either USDA 

Choice (n = 43) or USDA Select (n = 5), 6 from each treatment combination, were 

selected.  Strip loins (Longissimus dorsi; IMPS #180, NAMP, 2007) and bottom round 

flats (Biceps femoris; IMPS #171B, NAMP, 2007) were collected.  Only five L. dorsi 

muscles were collected from the cool-season grass, supplementation provided, and 

finished on WDGS treatment because one L. dorsi muscle was lost within Greater Omaha 

Packing Plant. All subprimals were aged under vacuum for 7 d.  Upon fabrication, one 

steak was cut from each subprimal.    

Sample collection 

 One steak, cut 1.25 cm thick, was used for all lab analyses.  Steaks were 

vacuumed packaged and frozen at -20°C for approximately 2 months.  Before any lab 

procedures were conducted, all lab steaks had any subcutaneous fat removed and were 

cut into cubes.  Next, the cubes were flash frozen in liquid nitrogen, powdered using a 

Waring blender (Waring Commercial, model 51BL32, Torring, CT), and stored at -80°C 

until needed for further lab analyses.  All lab analyses were conducted on powdered 

samples.   
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Fatty Acids 

 Fats were extracted following the procedures of Folch et al. (1957).  Four gram 

powdered meat samples were mixed with 10 mL of 2:1 chloroform:methanol solution, 

vortexed, and allowed to sit at room temperature for 1 h.  Homogenized samples were 

filtered into new tubes, brought to 15 mL with 2:1 chloroform:methanol solution, mixed 

with 2 mL of 0.74% KCl solution, vortexed, purged with nitrogen gas, and kept in a -

20°C freezer overnight.  The next day, the top aqueous phase was removed and 2 mL of 

the lower phase was collected and dried down at 60°C under constant nitrogen gas 

purging.  

Samples were separated into neutral and phospholipid layers following the 

procedures described by Carr et al. (2005).  The neutral and phospholipid regions of 

interest were isolated using thin layer chromatography plates (Silica Gel 60 w/o indicator, 

Catalog No.: M5547-7, Thermo Fisher Scientific Inc.) and isolated.  The neutral lipid 

samples were submerged in chloroform and the phospholipid samples were submerged in 

methanol to extract the lipids.  Samples were stored in a 2°C cooler for 45 min.  

After incubation the solutions were dried at 60°C under constant nitrogen gas 

purging.  Once dried, the fatty acid methyl esters were prepared following the procedures 

described by Morrison and Smith (1964) and Metcalfe et al. (1996).  Gas 

chromatography (Hewlett-Packard Gas Chromatograph – Agilent Technologies, model 

6890 series, Santa Clara, CA) was used to determine fatty acid content using a 

Chrompack CP-Sil 88 (0.25 mm x 100 m) column using Helium as the carrier gas with a 

flow rate of 1.1 mL/min.  The injector temperature was held at 270°C and the detector 
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temperature was 300°C.  Fatty acids were identified by comparing retention times and 

peaks with known standards.   

To get exact concentrations of each FA, additional thin layer chromatography 

plates were made separating the neutral and phospholipid layers.  This time the plates 

were stained using iodine, and the areas on the plates were measured, as a percent, using 

Quantity One 1-D Analysis Software (Bio-Rad, Hercules, CA).  To calculate the mg/100 

g of meat for each FA in each layer, the total fat percentages attained for each sample 

from proximate analysis was converted to grams of fat per 100 g of meat.  That value was 

multiplied by the percentage of the neutral and phospholipid layers, and converted to mg 

of neutral or phospholipid per 100 g of meat.  From there the percentage of each 

individual FA in each layer was multiplied by their respective value and the mg of each 

FA per 100 g of meat was attained.   

Statistical Analysis 

 All data were analyzed as a 2x2x2x2 factorial arrangement split plot design within 

a randomized complete design using the Mixed procedure in SAS (Version 9.2, SAS 

Institute Inc., Cary, NC, 2006). The experimental unit was the individual animal and the 

model included grass, supplementation, and finishing diet as fixed effects.  The least 

square means procedure with the probability of difference (pdiff) option was used for 

mean separation; with significance determined at P < 0.05 levels.  Whenever there was a 

three-way interaction, the LSmeans were reanalyzed using the GLIMMIX procedure with 

the slicediff option in order to more accurately study differences.  
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Results and Discussion 

L. dorsi Steaks 

 It was decided to separate the neutral and phospholipid layers because the 

composition between the lipid layers tends to be different.  The phospholipid layer 

contains more unsaturated fatty acids (Bowyer et al., 1963) and therefore is more prone to 

oxidation than the neutral lipid layer.  Also, the phospholipid layer tends to have a higher 

turnover rate.  Due to these reasons it is important to investigate the effect of diet on each 

layer. 

 Tables 1 and 2 show the P-values for how dietary treatments affect FA in the 

neutral and phospholipid layer, respectively.  The FA C14:1, C17:0, C17:1, C18:1, 

C18:2TT, total UFA, and total monounsaturated fatty acids (MUFA) were all affected by 

an interaction between grass type and supplementation in the neutral lipid layer.  Grazing 

on warm-season grass and not supplementing created the lowest concentrations (P < 

0.05) for all of the aforementioned FA.  However, concentrations for most of the FA 

when supplementation was provided while grazing on warm-season grasses increased 

significantly (P < 0.05).  Clearly, warm-season grasses caused a shift to occur in FA 

profiles that can easily be altered by the addition of supplementation with WDGS.  This 

effect is echoed in the main effects with warm-season grass grazing causing significantly 

lower concentrations of C18:1t, C18:1v, C18:2TT, C18:2, C20:1, and total 

polyunsaturated fatty acids (PUFA) than cool-season grass grazing.  All of the effects on 

FA in the phospholipid layer were minimal, granting, however that supplementation did 

decrease concentrations of C18:3 and C20:5 (P < 0.05). 
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 Looking at all of the effects separately, when supplementation was not provided, 

grazing on a warm-season grass caused lower C17:0, C17:1, C18:1, C18:2TT, total UFA, 

and total MUFA (P < 0.05) concentrations (mg/100 g of meat) in the neutral lipid layer 

compared to grazing on cool-season grasses (29.03 vs. 44.05, 22.64 vs. 35.79, 848.22 vs. 

1,261.53, 1.19 vs. 4.65, 1,045.30 vs. 1,607.48, and 1,013.53 vs. 1,545.75, respectively, 

Table 3).  Within warm-season grass grazing, providing supplementation resulted in 

higher C14:1, 17:1, 18:1, 18:2TT, total UFA, and total MUFA concentrations (P < 0.05) 

than not supplementing (23.16 vs. 14.33, 33.48 vs. 22.64, 1,279.40 vs. 848.22, 3.61 vs. 

1.19, 1,045.30 vs. 1,584.17, and 1,013.53 vs. 1,531.32, respectively).   

 When examining the interaction between supplementation and finishing diet the 

highest concentrations (5.67) of C18:3 occurred when cattle were supplemented and 

finished on a WDGS diet (P = 0.02, Table 5) as opposed to all other supplementation and 

finishing diet combinations.  Mandell et al. (1997) reported a lot more differences when 

supplementation was provided while on a finishing diet.  Although they did not report 

any differences in C18:3 concentrations, they did find that supplementing decreased 

concentrations of C18:0 and C20:4 and increased C20:5 and C22:6.  Those differences 

were not observed in the present study.  However, in this study supplementation was only 

provided during the grazing period.  The difference of when supplementation was 

provided could explain the differences in FA profiles with the interaction of finishing diet 

and supplementation. 

 When examining dietary components individually, grass type had the most 

influence over FA concentrations (Tables 1 and 2).  In the neutral lipid layer, grazing on a 
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cool-season grass instead of a warm-season grassed increased concentrations of C10:0 

(1.68 vs. 0.96), C18:1t (88.21 vs. 49.02), C18:1v (34.27 vs. 24.65), C18:2tt (4.45 vs. 

2.40), C18:2 (52.88 vs. 36.68), C20:1 (18.05 vs. 11.33), and total PUFA (61.22 vs. 42.31) 

(P < 0.05, Table 6).  Providing supplementation increased concentrations (P = 0.05) of 

C12:0 (2.03 vs. 1.28), but finishing diet had a greater effect.  Finishing on an all-corn diet 

instead of a diet with WDGS caused lower concentrations (P < 0.005) of C18:1t (53.56 

vs. 83.67), C18:2 (35.22 vs. 54.34), C18:3 (2.70 vs. 4.42), and total PUFA (40.67 vs. 

62.86).  As percentage inclusion of DGS in the finishing diet increased, so did 

concentrations of C18:2 (total) and total PUFA for Depenbusch et al. (2009), which was 

also found in this study.  In contrast, Kinman et al. (2011) did not see any change in total 

PUFA between finishing on corn or corn with DGS.  Depenbusch et al. (2009) did not 

report any differences in C18:1 and C18:3 concentrations, unlike what was reported in 

this study. 

 The phospholipid layer reacted quite differently and was not as affected by diet.  

Not providing supplementation while grazing on a cool-season grass caused the highest 

concentrations of C18:3 (P = 0.007) as opposed to providing supplementation (13.14 vs. 

5.75) or grazing on warm-season grass without supplementation (13.14 vs. 8.61, Table 4).  

Grazing on a warm-season grass instead of a cool-season grass caused a lower 

concentration (P = 0.03) of C17:1 (3.42 vs. 7.27), but grass type affected no other FA 

(Table 7).  Part of the reason for why the phospholipid layer was not as affected by diet 

could be due to the turnover rate.  As stated previously, it is believed that the 

phospholipid layer has a faster turnover rate of fatty acids than the neutral lipid layer.  



 115 

 

 

This means that any changes in fatty acid composition due to grass type or 

supplementation may be altered again by the end of the finishing lot period.     

 Supplementing cattle influenced a few more FA by decreasing concentrations (P 

< 0.03) of C18:3 (7.57 vs. 10.88) and C20:5 (13.09 vs. 21.19).  This study showed that 

supplementation did not influence total saturated fatty acids (SFA), total MUFA, and 

total PUFA concentrations in either the neutral or phospholipid layer.  In a study 

conducted by Kiesling et al. (2011), two different types of supplementation were 

provided to cattle while grazing.  They reported that total MUFA concentrations were not 

different between the different types of supplementation, like in this study, but total SFA 

and total PUFA concentrations were.  In their study, they did not have a control where no 

supplementation was provided, but the fact that FA profiles can vary based purely on the 

type of supplementation provided still has merit.  Finishing on an all-corn diet instead of 

a diet with a WDGS inclusion caused a higher concentration (P = 0.02) of C16:1 (15.59 

vs. 8.36) and a lower concentration (P = 0.008) of C18:2 (190.70 vs. 239.01).   

B. femoris Steaks 

 A majority of the FA in the neutral lipid layer were significantly (P < 0.05) 

affected by a three-way interaction between grass type, supplementation, and finishing 

diet (Table 8).  In order to better interpret the data, means were separated by grass type.  

Overall, within warm-season grass grazing, when cattle are not supplemented finishing 

on corn caused significantly higher (P < 0.05) concentrations than finishing on WDGS.  

In contrast, when supplementation was provided, there were very few differences in FA 

concentrations between finishing on corn or WDGS (P > 0.05).  The lack of differences 
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could be because WDGS were used for supplementation.  Even though half of the cattle 

were finished on corn, they were exposed to WDGS for the entire pre-finishing phase 

which could have influenced the FA profile from the beginning.  The amount of time they 

were in the finishing lot on corn was insufficient to overcome the initial changes to the 

FA.  In L. dorsi steaks, when cattle were grazed on warm-season grasses and not 

supplemented there was also a significant decrease (P < 0.05) in FA in the neutral lipid 

layer.  This occurrence is mirrored in the B. femoris steaks.  There were few differences 

between supplementation and finishing diet combinations within cool-season grass 

grazing. 

 For the three-way interaction between grass type, supplementation, and finishing 

diet (Table 8),  within warm-season grazing, when the cattle were not supplemented 

finishing on an all corn diet caused the concentrations of C14:0, C14:1, C15:0, C18:0, 

C18:1, total SFA, total UFA, and total MUFA to be higher (P < 0.05) than when they are 

finished on WDGS (89.37 vs. 55.06, 33.30 vs. 19.48, 17.31 vs. 10.91, 348.04 vs. 240.94, 

1,558.94 vs. 1,060.05, 1,375.10 vs. 857.17, 1,952.46 vs. 1,330.93, and 1,905.19 vs. 

1,285.39, respectively, Table 10).  Koger et al. (2010) saw no differences in total SFA, 

UFA, and MUFA when they included DGS into the diet.  Their study only examined the 

L. dorsi muscle.   

 Cattle that were not supplemented and were finished on corn also had higher 

concentrations of C16:0 and C17:0 (P < 0.04) then when finished on WDGS, both 

without supplementation (867.17 vs. 517.49 and 48.27 vs. 30.97, respectively) and with 

supplementation (867.17 vs. 644.16 and 48.27 vs. 37.62, respectively).  Finishing on corn 
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without supplementation caused the highest concentrations of C17:1 (53.33) compared to 

all other supplementation and finishing diet combinations (P = 0.05) but caused the 

concentration of C10:0 to only be higher (P = 0.008) when compared to supplementing 

and finishing on corn (1.55 vs. 0.23).   

 Not supplementing and finishing on corn as well as supplementing and finishing 

on WDGS caused concentrations of C12:0 to be higher (P < 0.0001) than when cattle 

were not supplemented and finished on WDGS (3.01 and 3.05 vs. 0.45, respectively) and 

when they were supplemented and finished on corn (3.01 and 3.05 vs. 1.45, respectively).  

Table 8 shows that C18:2tt was significantly (P = 0.04) affected by the three-way 

interaction, but when the means were separated and compared, no differences existed 

between the different supplementation and finishing diet combinations for either grass 

type (Table 10 and 11).  This suggests that grass type is causing the differences and not 

so much the supplementation or finishing diet.   

 Similarly, when the means were separated within cool-season grass grazing and 

the different supplementation and finishing diet combinations were compared, the means 

for C14:0, C14:1, C15:0, C16:0, C17:0, C17:1, C18:0, C18:1, C18:2tt, total SFA, total 

UFA, and total MUFA were all not different (P > 0.05) from each other (Table 11).  This 

shows that perhaps it is grass type that is the driving force behind this three-way 

interaction, with warm-season grasses causing the most differences.  Within warm-season 

grasses, when supplementation was provided there were no differences between finishing 

diets.  This shows that the addition of supplementation during the grazing period can 

deter any effects that grass type may cause on the fatty acid profile.   
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 When finishing on corn, supplementing cattle caused the concentrations of C10:0 

to be higher (P = 0.008) than when they were not supplementing (1.83 vs. 0.34).  Also, 

not supplementing cattle and finishing on corn caused the concentrations of C12:0 to be 

the lowest (0.47, P < 0.0001) out of all the different supplementation and finishing diet 

combinations except for when cattle were supplemented and finished on WDGS, which 

was not different.         

 No other dietary regimen interactions significantly influenced any other FA in the 

neutral layer.  Grass type did influence both C18:1t, C18:2tt, and C20:1 concentrations (P 

< 0.05), with cool-season grasses creating higher concentration than warm-season grasses 

(70.29 vs. 50.12, 4.03 vs. 3.09, and 21.48 vs. 17.46, respectively, Table 12), similar to 

what was observed in the L. dorsi steaks.  In contrast, concentrations of C17:1 were lower 

(P = 0.05) when cattle were grazed on cool-season grasses instead of warm-season 

grasses (32.68 vs. 39.54).  Jenschke et al. (2008) also fed various roughages to cattle and 

in doing so was also able to influence C18:1 concentrations in R. femoris muscles, which 

are also from the round.  They did not report any differences in C17:1 and C20:1 

concentrations, perhaps because the roughages they fed were different from the grasses 

grazed in this study.   

 Unlike in the neutral layer, there were no significant (P < 0.05) three-way 

interactions between grass type, supplementation, and finishing diets for any of the FA in 

the phospholipid layer (Table 9).  The FA in the phospholipid layer were mostly affected 

by finishing diet with corn causing increased concentrations over WDGS (P < 0.05).  
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 There were two two-way interactions, both involving grass-type, which 

influenced FA.  Not supplementing while grazing on a cool-season grass caused the 

concentration of C20:5 to be the highest (26.93, P = 0.01), when compared to all other 

grass type and supplementation combinations (Table 14).  When cattle were grazed on a 

cool-season grass, finishing on WDGS instead of corn (Table 15) caused higher 

concentrations (P = 0.05) of C14:1 (8.29 vs. 2.41).  In both instances, grass type was 

involved corroborating that the type of forage cattle grazed can have an effect on the 

composition of the final product.   

 Grass type alone did not have any significant influence (P < 0.05) over any of the 

FA concentrations, however supplementing did cause higher concentrations (P < 0.04) of 

C20:4 and C24:1 as opposed to not providing supplementation (185.43 vs. 159.90 and 

16.32 vs. 12.97, respectively, Table 13).  In contrast, concentrations of C20:5 were higher 

when cattle were not supplemented (22.97 vs. 14.63, P = 0.03).  Srinivasan et al. (1998) 

did not see any differences in C20:5 concentrations in Semimembranosus muscles when 

comparing supplementing and not supplementing.  The grain type used for supplementing 

was different from the ones used in this study, which could account for the differences.  

When the cattle were finished on an all corn diet, concentrations of C16:1, C18:1, 

C18:1v, C22:6, and total MUFA were higher (P < 0.03) than when they were finished on 

WDGS (11.93 vs. 7.38, 110.82 vs. 78.05, 40.57 vs. 26.84, 2.84 vs. 0.73, and 233.07 vs. 

185.12, respectively).  In contrast, the concentration of C18:2 decreased (P = 0.0007) on 

a corn finishing diet (205.67 vs. 269.96).   
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 In conclusion, FA in neutral lipids are more easily manipulated by diet than those 

in the phospholipid layer.  Again, this could be attributed to the phospholipid layer 

having a faster turnover rate than the neutral lipid layer.  Since the phospholipids have a 

faster turnover rate, any changes in composition due to diet, especially the grass type and 

supplementation which were fed at a young age, could become negligible by the end of 

the finishing period.   

 Overall, grass type had the biggest effect on the fatty acid profile with warm-

season grasses causing decreased concentrations in a majority of the FA, especially in the 

neutral lipid layer.  Even though grass type had such a major effect, the provision of 

WDGS as a supplemental energy source was able to minimize, if not deter, a majority of 

the changes.  This would mean that if a producer was concerned about the effect of the 

grass their cattle are being grazed on, they could provide an energy supplementation to 

their cattle and effectively negate any effects.    
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Figures and Tables 

 

Table 1.  The influence of grass-type, supplementation, and finishing diet on the P-values of 

fatty acids in the neutral lipid layers in L. dorsi steaks 

 

P-Value 

Neutral Lipids, 

mg/100 g of meat Grass
x
 Supp 

GrassX

Supp Diet 

GrassX

Diet 

SuppX

Diet 

GrassX

SuppX

Diet 

C10:0 0.04 0.46 0.85 0.93 0.10 0.13 0.73 

C12:0 0.08 0.05 0.27 0.85 0.09 0.29 0.92 

C14:0 0.08 0.18 0.10 0.72 0.18 0.71 0.43 

C14:1 0.61 0.21 0.05 0.64 0.15 0.77 0.52 

C15:0 0.19 0.57 0.08 0.75 0.36 0.79 0.51 

C16:0 0.08 0.20 0.14 0.98 0.22 0.90 0.38 

C16:1 0.44 0.24 0.06 0.43 0.15 0.98 0.52 

C17:0 0.23 0.70 0.03 0.95 0.30 0.58 0.58 

C17:1 0.34 0.74 0.01 0.36 0.28 0.50 0.73 

C18:0 0.10 0.11 0.14 0.18 0.39 0.67 0.31 

C18:1t 0.0003 0.49 0.27 0.005 0.22 0.85 0.36 

C18:1 0.23 0.18 0.03 0.74 0.30 0.68 0.44 

C18:1v 0.05 0.08 0.51 0.67 0.34 0.25 0.44 

C18:2TT 0.006 0.16 0.05 0.06 0.29 0.64 0.11 

C18:2 0.008 0.18 0.10 0.002 0.25 0.68 0.78 

C20:0 0.51 0.95 0.78 0.30 0.68 0.91 0.98 

C18:3 0.27 0.06 0.80 0.005 0.83 0.02 0.88 

C20:1 0.002 0.06 0.19 0.31 0.09 0.68 0.45 

C22:0 0.11 0.17 0.08 0.14 0.27 0.17 0.36 

Others 0.10 0.59 0.05 0.49 0.27 0.67 0.37 

Total SFA
y
 0.08 0.17 0.13 0.64 0.26 0.79 0.37 

Total UFA 0.14 0.18 0.04 0.59 0.26 0.69 0.47 

Total MUFA 0.15 0.18 0.04 0.68 0.26 0.69 0.46 

Total PUFA 0.006 0.13 0.10 0.002 0.27 0.53 0.68 

xGrass = Grass type, Supp = Supplementation, Diet = Finishing diet 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 
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Table 2.  The influence of grass-type, supplementation, and finishing diet on the P-values of 

fatty acids in the phospholipid layers in B. femoris steaks 

 

P-Value 

Phospholipids, 

mg/100 g of meat Grass
x
 Supp 

GrassX

Supp Diet 

GrassX

Diet 

SuppX

Diet 

GrassX

SuppX

Diet 

C12:0 0.84 0.70 0.34 0.30 0.39 0.09 0.64 

C13:0 0.44 0.70 0.75 0.62 0.14 0.20 0.52 

C14:0 0.60 0.14 0.68 0.94 0.93 0.67 0.85 

C14:1 0.30 0.81 0.39 0.46 0.12 0.06 0.91 

C15:0 0.17 0.57 0.93 0.57 0.10 0.30 0.77 

C16:0 0.46 0.67 0.59 0.60 0.89 0.82 0.62 

C16:1 0.78 0.13 0.42 0.02 0.96 0.37 0.91 

C17:0 0.15 0.31 0.89 0.61 0.16 0.28 0.36 

C17:1 0.03 0.88 0.98 0.48 0.71 0.26 0.50 

C18:0 0.29 0.48 0.74 0.76 0.50 0.24 0.56 

C18:1t 0.80 0.69 0.55 0.64 0.23 0.73 0.84 

C18:1 0.73 0.41 0.63 0.11 0.89 0.67 0.59 

C18:1v 0.49 0.67 0.72 0.14 0.73 0.47 0.57 

C18:2 0.07 0.56 0.49 0.008 0.18 0.38 0.09 

C20:0 0.59 0.34 0.46 0.13 0.32 0.72 0.76 

C18:3 0.76 0.03 0.007 0.06 0.23 0.73 0.67 

C22:0 0.57 0.37 0.24 0.32 0.20 0.18 0.17 

C20:4 0.34 0.51 0.69 0.48 0.59 0.34 0.39 

C20:5 0.51 0.0008 0.07 0.32 0.85 0.37 0.90 

C24:1 0.17 0.71 0.74 0.95 0.25 0.29 0.65 

C22:6 0.25 0.10 0.11 0.72 0.70 0.91 0.40 

Others 0.06 0.02 0.13 0.33 0.83 0.54 0.93 

Total SFA
y
 0.26 0.39 0.63 0.66 0.40 0.45 0.80 

Total UFA 0.25 0.61 0.67 0.96 0.57 0.64 0.57 

Total MUFA 0.62 0.47 0.80 0.13 0.93 0.80 0.61 

Total PUFA 0.13 0.82 0.63 0.23 0.30 0.32 0.17 

xGrass = Grass type, Supp = Supplementation, Diet = Finishing diet 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 

 

 

 

 

 

 



 

 

 

 

 

 

 

Table 3. The effect of grass type and supplementation on the LS means of fatty acids in the neutral lipid layers in L. dorsi steaks 

 

Warm-season Grass 

 

Cool-season Grass 

  Neutral Lipids, mg/100 g of meat No Supplementation Supplementation   No Supplementation Supplementation   SEM 

C10:0 0.80 1.12 

 

1.58 1.77 

 

0.35 

C12:0 0.72 1.90 

 

1.84 2.16 

 

0.39 

C14:0 51.65 81.72 

 

86.35 83.06 

 

10.23 

C14:1 14.33
b
 23.16

a
 

 

21.13
ab

 19.09
ab

 

 

2.76 

C15:0 9.95 13.65 

 

14.83 12.95 

 

1.63 

C16:0 503.46 723.12 

 

764.72 747.74 

 

81.16 

C16:1 61.65 91.97 

 

87.97 81.04 

 

10.11 

C17:0 29.03
b
 40.52

ab
 

 

44.05
a
 35.87

ab
 

 

4.41 

C17:1 22.64
b
 33.48

a
 

 

35.79
a
 27.35

ab
 

 

3.79 

C18:0 257.21 385.49 

 

387.67 393.92 

 

42.41 

C18:1t 39.95 58.09 

 

90.39 86.04 

 

10.35 

C18:1 848.22
b
 1279.40

a
 

 

1261.53
a
 1159.56

ab
 

 

125.10 

C18:1v 18.75 30.56 

 

31.54 37.00 

 

4.91 

C18:2TT 1.19
b
 3.61

a
 

 

4.65
a
 4.25

a
 

 

0.73 

C18:2 27.85 45.51 

 

53.83 51.93 

 

5.97 

C20:0 1.85 1.73 

 

2.08 2.27 

 

0.59 

C18:3 2.74 3.73 

 

3.24 4.53 

 

0.60 

C20:1 7.99 14.67 

 

17.41 18.69 

 

2.09 

C22:0 0.23 1.50 

 

1.60 1.44 

 

0.42 

Others 17.32
b
 25.21

ab
 

 

28.63
a
 24.09

ab
 

 

3.16 

Total SFA
x
 854.90 1250.75 

 

1304.72 1281.18 

 

138.88 

Total UFA 1045.3
b
 1584.17

a
 

 

1607.48
a
 1489.49

a
 

 

159.18 

Total MUFA 1013.53
b
 1531.32

a
 

 

1545.75
a
 1428.78

ab
 

 

153.35 

Total PUFA 31.78 52.85   61.73 60.71   6.73 

xSFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA = polyunsaturated fatty acids 

abMeans within the same row with different superscripts are different (P < 0.05) 
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Table 4. The effect of grass type and supplementation on the LS means of fatty acids in the phospholipid layers in L. dorsi steaks 

 

Warm-season Grass 

 

Cool-season Grass 

  Phospholipids, mg/100 g of meat No Supplementation Supplementation   No Supplementation Supplementation   SEM 

C12:0 4.52 5.34 

 

5.61 3.65 

 

1.50 

C13:0 2.65 2.73 

 

1.39 2.21 

 

1.18 

C14:0 7.21 10.14 

 

7.54 12.71 

 

2.80 

C14:1 4.29 3.45 

 

1.69 3.19 

 

1.40 

C15:0 23.69 26.30 

 

30.84 34.41 

 

5.62 

C16:0 131.14 147.46 

 

152.55 150.87 

 

17.38 

C16:1 8.16 14.96 

 

11.33 13.43 

 

2.98 

C17:0 17.97 23.18 

 

25.08 29.02 

 

4.60 

C17:1 3.26 3.57 

 

7.16 7.37 

 

1.79 

C18:0 75.39 85.83 

 

89.47 93.18 

 

10.37 

C18:1t 36.61 30.80 

 

31.65 32.80 

 

2.95 

C18:1 98.44 121.09 

 

112.82 118.68 

 

17.70 

C18:1v 23.82 27.34 

 

28.53 28.87 

 

4.62 

C18:2 187.27 209.65 

 

232.10 230.40 

 

17.99 

C20:0 1.29 1.45 

 

0.42 1.59 

 

0.71 

C18:3 8.61
b
 9.40

ab
 

 

13.14
a
 5.75

b
 

 

1.49 

C22:0 21.24 30.15 

 

28.75 27.54 

 

4.39 

C20:4 123.11 126.83 

 

131.05 146.22 

 

14.73 

C20:5 18.40 14.42 

 

23.99 11.75 

 

2.31 

C24:1 14.27 14.34 

 

16.43 17.88 

 

2.10 

C22:6 0.29 0.28 

 

1.95 0.00 

 

0.61 

Others 33.11 28.77 

 

49.29 30.62 

 

4.80 

Total SFA
x
 285.10 332.58 

 

341.65 355.18 

 

35.97 

Total UFA 526.53 576.14 

 

611.84 616.34 

 

55.18 

Total MUFA 188.85 215.55 

 

209.61 222.22 

 

28.10 

Total PUFA 337.68 360.58   402.23 394.12   32.94 
xSFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA = polyunsaturated fatty acids 
abMeans within the same row with different superscripts are different (P < 0.05) 1

2
6
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Table 5. The effect of supplementation and finishing diet on the LS means of fatty acids in 

the neutral lipid layers in L. dorsi steaks 

 

No Supplementation 

 

Supplementation 

  Neutral Lipids, 

mg/100 g of meat Corn WDGS
x
   Corn WDGS   SEM 

C10:0 1.44 0.94 

 

1.16 1.72 

 

0.35 

C12:0 1.45 1.11 

 

1.79 2.27 

 

0.39 

C14:0 69.11 68.90 

 

78.77 86.01 

 

10.23 

C14:1 18.76 16.71 

 

21.35 20.90 

 

2.76 

C15:0 12.34 12.44 

 

12.84 13.76 

 

1.63 

C16:0 638.20 629.98 

 

729.28 741.58 

 

81.16 

C16:1 78.82 70.81 

 

90.28 82.73 

 

10.11 

C17:0 37.59 35.48 

 

36.88 39.51 

 

4.41 

C17:1 32.14 26.29 

 

30.87 29.96 

 

3.79 

C18:0 303.21 341.68 

 

353.09 426.32 

 

42.41 

C18:1t 49.13 81.20 

 

57.99 86.14 

 

10.35 

C18:1 1060.17 1049.57 

 

1173.98 1264.99 

 

125.10 

C18:1v 26.88 23.41 

 

30.02 37.54 

 

4.91 

C18:2TT 2.40 3.43 

 

3.08 4.78 

 

0.73 

C18:2 32.47 49.21 

 

37.97 59.47 

 

5.97 

C20:0 1.70 2.23 

 

1.67 2.33 

 

0.59 

C18:3 2.82
b
 3.17

b
 

 

2.59
b
 5.67

a
 

 

0.60 

C20:1 12.07 13.33 

 

15.23 18.14 

 

2.09 

C22:0 0.89 0.94 

 

0.88 2.06 

 

0.42 

Others 22.57 23.38 

 

22.95 26.36 

 

3.16 

Total SFA
y
 1065.93 1093.69 

 

1216.36 1315.57 

 

138.88 

Total UFA 1315.66 1337.13 

 

1463.35 1610.30 

 

159.18 

Total MUFA 1277.97 1281.32 

 

1419.72 1540.39 

 

153.35 

Total PUFA 37.69 55.81   43.64 69.92   6.73 

xWDGS = Wet distillers grains with solubles 
 

ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 

abMeans within the same row with different superscripts are different (P < 0.05) 

 

 

 

 

 

 

 



 

 

Table 6.  The effect of grass type, supplementation, and finishing diet on the LS means scores of fatty acids in the neutral lipid layers in L. dorsi 

steaks 

 

Grass Type 

  

Supplementation 

  

Finishing Diets 

 Neutral Lipids, 

mg/100 g of meat 

Warm-

season 

Cool-

season SEM   No Yes SEM   Corn WDGS
x
 SEM 

C10:0 0.96
b
 1.68

a
 0.24 

 

1.19 1.44 0.24 

 

1.30 1.33 0.24 

C12:0 1.31 2.00 0.27 

 

1.28
b
 2.03

a
 0.27 

 

1.62 1.69 0.27 

C14:0 66.69 84.71 7.07 

 

69.00 82.39 7.07 

 

73.94 77.45 7.07 

C14:1 18.74 20.11 1.90 

 

17.73 21.12 1.90 

 

20.05 18.80 1.90 

C15:0 11.80 13.89 1.13 

 

12.39 13.30 1.13 

 

12.59 13.10 1.13 

C16:0 613.29 756.23 56.07 

 

634.09 735.43 56.07 

 

683.74 685.78 56.07 

C16:1 76.81 84.51 6.99 

 

74.81 86.51 6.99 

 

84.55 76.77 6.99 

C17:0 34.77 39.96 3.05 

 

36.54 38.20 3.05 

 

37.24 37.50 3.05 

C17:1 28.06 31.57 2.62 

 

29.22 30.42 2.62 

 

31.50 28.13 2.62 

C18:0 321.35 390.8 29.30 

 

322.44 389.71 29.30 

 

328.15 384.00 29.30 

C18:1t 49.02
b
 88.21

a
 7.15 

 

65.17 72.07 7.15 

 

53.56
b
 83.67

a
 7.15 

C18:1 1063.81 1210.54 86.42 

 

1054.87 1219.48 86.42 

 

1117.07 1157.28 86.42 

C18:1v 24.65
b
 34.27

a
 3.39 

 

25.14 33.78 3.39 

 

28.45 30.47 3.39 

C18:2TT 2.40
b
 4.45

a
 0.51 

 

2.92 3.93 0.51 

 

2.74 4.11 0.51 

C18:2 36.68
b
 52.88

a
 4.12 

 

40.84 48.72 4.12 

 

35.22
b
 54.34

a
 4.12 

C20:0 1.79 2.17 0.41 

 

1.97 2.00 0.41 

 

1.68 2.28 0.41 

C18:3 3.24 3.89 0.42 

 

2.99 4.13 0.42 

 

2.70
b
 4.42

a
 0.42 

C20:1 11.33
b
 18.05

a
 1.44 

 

12.70 16.68 1.44 

 

13.65 15.73 1.44 

C22:0 0.86 1.52 0.29 

 

0.91 1.47 0.29 

 

0.89 1.50 0.29 

Others 21.27 26.36 2.18 

 

22.98 24.65 2.18 

 

22.76 24.87 2.18 

Total SFA
y
 1052.82 1292.95 95.95 

 

1079.81 1266.00 95.95 

 

1141.14 1204.63 95.95 

Total UFA 1314.74 1548.48 109.97 

 

1326.39 1536.80 109.97 

 

1389.51 1473.72 109.97 

Total MUFA 1272.43 1487.27 105.95 

 

1279.64 1480.10 105.95 

 

1348.84 1410.85 105.95 

Total PUFA 42.31
b
 61.22

a
 4.65   46.75 56.78 4.65   40.67

b
 62.86

a
 4.65 

xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA = polyunsaturated fatty acids 
abMeans within the same treatment and the same row with different superscripts are different (P < 0.05) 

1
2
8
 



 

 

 

Table 7.  The effect of grass type, supplementation, and finishing diet on the LS means scores of fatty acids in the phospholipid layers in L. dorsi 

steaks 

 

Grass Type 

  

Supplementation 

  

Finishing Diets 

 Phospholipids, 

mg/100 g of meat 

Warm-

season 

Cool-

season SEM   No Yes SEM   Corn WDGS
x
 SEM 

C12:0 4.93 4.63 1.04 

 

5.06 4.50 1.04 

 

4.01 5.55 1.04 

C13:0 2.69 1.80 0.81 

 

2.02 2.47 0.81 

 

2.53 1.97 0.81 

C14:0 8.68 10.13 1.94 

 

7.38 11.43 1.94 

 

9.50 9.30 1.94 

C14:1 3.87 2.44 0.97 

 

2.99 3.32 0.97 

 

3.66 2.65 0.97 

C15:0 25.00 32.63 3.89 

 

27.27 30.36 3.89 

 

30.36 27.27 3.89 

C16:0 139.30 151.71 12.01 

 

141.84 149.17 12.01 

 

149.90 141.11 12.01 

C16:1 11.56 12.38 2.06 

 

9.75 14.19 2.06 

 

15.59
a
 8.36

b
 2.06 

C17:0 20.57 27.05 3.18 

 

21.52 26.10 3.18 

 

24.95 22.68 3.18 

C17:1 3.42
b
 7.27

a
 1.23 

 

5.21 5.47 1.23 

 

5.96 4.72 1.23 

C18:0 80.61 91.33 7.17 

 

82.43 89.50 7.17 

 

84.43 87.50 7.17 

C18:1t 33.70 32.22 4.11 

 

34.13 31.80 4.11 

 

31.62 34.30 4.11 

C18:1 109.77 115.75 12.23 

 

105.63 119.88 12.23 

 

126.64 98.88 12.23 

C18:1v 25.58 28.70 3.19 

 

26.17 28.11 3.19 

 

30.53 23.74 3.19 

C18:2 198.46 231.25 12.43 

 

209.69 220.02 14.43 

 

190.70
b
 239.01

a
 12.43 

C20:0 1.37 1.00 0.49 

 

0.86 1.52 0.49 

 

1.72 0.66 0.49 

C18:3 9.00 9.44 1.03 

 

10.88
a
 7.57

b
 1.03 

 

7.86 10.59 1.03 

C22:0 25.69 28.14 3.03 

 

24.99 28.84 3.03 

 

29.04 24.80 3.03 

C20:4 124.97 138.64 10.18 

 

127.08 136.53 10.18 

 

136.83 126.78 10.18 

C20:5 16.41 17.87 1.59 

 

21.19
a
 13.09

b
 1.59 

 

18.25 16.03 1.59 

C24:1 14.31 17.15 1.45 

 

15.35 16.11 1.45 

 

15.80 15.66 1.45 

C22:6 0.28 0.97 0.42 

 

1.12 0.14 0.42 

 

0.73 0.52 0.42 

Others 30.94 39.96 3.31 

 

41.20
a
 29.69

b
 3.31 

 

37.71 33.18 3.31 

Total SFA
y
 308.84 348.42 24.85 

 

313.38 343.88 24.85 

 

336.44 320.82 24.85 

Total UFA 551.33 614.09 38.12 

 

569.19 596.24 38.12 

 

584.18 581.24 38.12 

Total MUFA 202.20 215.91 19.41 

 

199.23 218.89 19.41 

 

229.80 188.32 19.41 

Total PUFA 349.13 398.18 22.76   369.96 377.35 22.76   354.38 392.93 22.76 
xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA = polyunsaturated fatty acids 
abMeans within the same treatment and the same row with different superscripts are different (P < 0.05) 

1
2
9
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Table 8.  The influence of grass-type, supplementation, and finishing diet on the P-values of fatty 

acids in the neutral lipid layers in B. femoris steaks 

Neutral Lipids, 

mg/100 g of 

meat Grass
x
 Supp 

GrassX

Supp Diet 

GrassX

Diet 

SuppX

Diet 

GrassX

SuppX

Diet 

C10:0 0.37 0.52 0.13 0.91 0.76 0.71   0.008 

C12:0 0.25 0.26 0.84 0.90 0.28 0.39 <0.0001 

C14:0 0.63 0.92 0.64 0.36 0.20 0.38   0.02 

C14:1 0.09 0.57 0.72 0.21 0.15 0.47   0.04 

C15:0 0.22 0.80 0.56 0.09 0.30 0.46   0.05 

C16:0 0.76 0.88 0.39 0.13 0.15 0.32   0.02 

C16:1 0.26 0.85 0.55 0.06 0.08 0.48   0.06 

C17:0 0.08 0.22 0.70 0.13 0.39 0.47   0.04 

C17:1 0.05 0.14 0.97 0.02 0.23 0.33   0.05 

C18:0 0.60 0.41 0.60 0.49 0.65 0.56   0.03 

C18:1t 0.007 0.48 0.65 0.19 0.50 0.64   0.28 

C18:1 0.27 0.60 0.65 0.24 0.29 0.54   0.03 

C18:1v 0.99 0.82 0.66 0.62 0.14 0.17   0.28 

C18:2TT 0.05 0.56 0.91 0.49 0.80 0.47   0.04 

C18:2 0.36 0.37 0.50 0.09 0.65 0.94   0.26 

C20:0 0.58 0.07 0.58 0.64 0.81 0.64   0.81 

C18:3 0.63 0.99 0.36 0.98 0.52 0.50   0.45 

C20:1 0.05 0.14 0.40 0.50 0.72 0.56   0.10 

C22:0 0.93 0.77 0.38 0.14 0.90 0.35   0.06 

Others 0.14 0.35 0.40 0.58 0.65 0.66   0.12 

Total SFA
y
 0.65 0.91 0.47 0.20 0.24 0.38   0.02 

Total UFA 0.42 0.70 0.63 0.29 0.26 0.55   0.03 

Total MUFA 0.38 0.67 0.63 0.25 0.25 0.54   0.03 

Total PUFA 0.30 0.47 0.65 0.13 0.62 0.92   0.20 

xGrass = Grass type, Supp = Supplementation, Diet = Finishing diet 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA 

= polyunsaturated fatty acids 
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Table 9.  The influence of grass-type, supplementation, and finishing diet on the P-values of fatty 

acids in the phospholipid layers in B. femoris steaks 

Phospholipids, 

mg/100 g of 

meat Grass
x
 Supp 

GrassX

Supp Diet 

GrassX

Diet 

SuppX

Diet 

GrassX

SuppX

Diet 

C12:0 0.53 0.40 0.08 0.10 0.93 0.56 0.30 

C13:0 0.46 0.10 0.12 0.92 0.15 0.38 0.11 

C14:0 0.55 0.64 0.48 0.31 0.15 0.91 0.93 

C14:1 0.99 0.07 0.50 0.08 0.05 0.19 0.99 

C15:0 0.56 0.68 0.32 0.82 0.51 0.63 0.87 

C16:0 0.62 0.39 0.13 0.41 0.25 0.95 0.24 

C16:1 0.63 0.78 0.50 0.003 0.62 0.09 0.12 

C17:0 0.74 0.50 0.29 0.18 0.82 0.49 0.59 

C17:1 0.46 0.51 0.35 0.46 0.91 0.62 0.35 

C18:0 0.90 0.36 0.58 0.34 0.57 0.81 0.74 

C18:1t 0.82 0.75 0.15 0.79 0.71 0.52 0.25 

C18:1 0.54 0.57 0.21 0.003 0.22 0.71 0.18 

C18:1v 0.36 0.20 0.41 0.03 0.46 0.25 0.18 

C18:2 0.06 0.15 0.54 0.0007 0.23 0.89 0.17 

C20:0 0.50 0.40 0.48 0.20 0.12 0.09 0.85 

C18:3 0.06 0.13 0.10 1.00 0.76 0.15 0.13 

C22:0 0.19 0.14 0.63 0.63 0.58 0.38 0.16 

C20:4 0.69 0.04 0.66 0.66 0.70 0.65 0.34 

C20:5 0.37     0.0006 0.01 0.13 0.96 0.87 0.32 

C24:1 0.35  0.006 0.62 0.87 0.59 0.72 0.46 

C22:6 0.69 0.41 0.33 0.03 0.54 0.28 0.47 

Others 0.16 0.18 0.25 0.02 0.65 0.67 0.10 

Total SFA
y
 0.47 0.11 0.63 0.95 0.20 0.88 0.29 

Total UFA 0.43 0.14 0.53 0.90 0.42 0.60 0.08 

Total MUFA 0.95 0.21 0.43 0.02 0.65 0.36 0.06 

Total PUFA 0.29 0.19 0.69 0.09 0.40 0.87 0.19 

xGrass = Grass type, Supp = Supplementation, Diet = Finishing diet 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA 

= polyunsaturated fatty acids 
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Table 10.  The effect of grass type, supplementation, and finishing diet on the LS means of 

fatty acid concentrations within in warm-season grass type in the neutral lipid layer when 

separated by grass type for B. femoris steaks 

 

No Supplementation 

 

Supplementation 

  Warm-Season Grass 

Neutral Lipids 

(mg/100 g of meat) Corn WDGS
x
   Corn WDGS   SEM 

C10:0 1.55
a
 0.38

ab
 

 

0.23
b
 1.12

ab
 

 

0.46 

C12:0 3.01
a
 0.45

b
 

 

1.45
b
 3.05

a
 

 

0.55 

C14:0 89.37
a
 55.06

b
 

 

65.32
ab

 71.93
ab

 

 

8.82 

C14:1 33.30
a
 19.48

b
 

 

23.95
ab

 24.28
ab

 

 

3.47 

C15:0 17.31
a
 10.91

b
 

 

13.15
ab

 13.14
ab

 

 

1.63 

C16:0 867.17
a
 517.94

b
 

 

628.56
b
 644.16

b
 

 

77.41 

C16:1 146.67 82.95 

 

112.36 101.3 

 

14.09 

C17:0 48.27
a
 30.97

b
 

 

36.07
ab

 37.62
ab

 

 

4.61 

C17:1 53.33
a
 30.94

b
 

 

37.92
b
 35.96

b
 

 

4.77 

C18:0 348.04
a
 240.94

b
 

 

280.02
ab

 325.43
ab

 

 

37.89 

C18:1t 49.07 49.33 

 

46.55 55.51 

 

10.07 

C18:1 1558.94
a
 1060.05

b
 

 

1183.94
ab

 1245.22
ab

 

 

136.71 

C18:1v 43.88 28.99 

 

33.45 35.02 

 

4.66 

C18:2TT 3.77
a
 2.63

a
 

 

2.19
a
 3.75

a
 

 

0.67 

C18:2 39.57 40.44 

 

35.77 46.26 

 

6.30 

C20:0 0.00 0.00 

 

0.77 0.42 

 

0.35 

C18:3 3.94 2.47 

 

3.60 4.12 

 

0.98 

C20:1 20.00 13.64 

 

16.93 19.26 

 

2.74 

C22:0 0.38 0.52 

 

0.44 1.29 

 

0.50 

Others 33.16 28.02 

 

26.16 26.50 

 

3.33 

Total SFA
y
 1375.10

a
 857.17

b
 

 

1026.02
ab

 1098.15
ab

 

 

125.99 

Total UFA 1952.46
a
 1330.93

b
 

 

1496.66
ab

 1570.67
ab

 

 

174.3 

Total MUFA 1905.19
a
 1285.39

b
 

 

1455.10
ab

 1516.54
ab

 

 

168.35 

Total PUFA 47.27 45.55   41.56 54.13   7.27 

xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 

abMeans within the same row with different superscripts are different (P < 0.05) 
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Table 11.  The effect of grass type, supplementation, and finishing diet on the LS means of fatty 

acid concentrations within cool-season grass type in the neutral lipid layer when separated by 

grass type for B. femoris steaks 

 

No Supplementation 

 

Supplementation 

  Cool-Season Grass 

Neutral Lipids 

(mg/100 g of meat) Corn WDGS
x
   Corn WDGS   SEM 

C10:0 0.34
b
 1.18

ab
 

 

1.83
a
 1.11

ab
 

 

0.46 

C12:0 0.47
b
 2.25

a
 

 

2.23
a
 1.21

ab
 

 

0.55 

C14:0 60.45
a
 72.13

a
 

 

72.11
a
 64.95

a
 

 

8.82 

C14:1 19.21
a
 23.24

a
 

 

22.20
a
 19.23

a
 

 

3.47 

C15:0 11.63
a
 12.33

a
 

 

13.48
a
 11.26

a
 

 

1.63 

C16:0 593.70
a
 662.40

a
 

 

706.67
a
 628.92

a
 

 

77.41 

C16:1 91.88 102.87 

 

107.99 94.99 

 

14.09 

C17:0 33.89
a
 36.37

a
 

 

33.24
a
 26.37

a
 

 

4.61 

C17:1 35.36
a
 34.97

a
 

 

33.89
a
 26.50

a
 

 

4.77 

C18:0 246.91
a
 285.51

a
 

 

328.20
a
 276.96

a
 

 

37.89 

C18:1t 53.37 78.85 

 

72.86 76.08 

 

10.07 

C18:1 1082.62
a
 1230.83

a
 

 

1238.18
a
 1063.27

a
 

 

136.71 

C18:1v 33.76 36.11 

 

33.46 37.79 

 

4.66 

C18:2TT 3.64
a
 4.76

a
 

 

3.97
a
 3.76

a
 

 

0.67 

C18:2 33.50 48.67 

 

45.99 50.26 

 

6.30 

C20:0 0.00 0.00 

 

0.38 0.26 

 

0.35 

C18:3 3.94 4.43 

 

3.36 3.74 

 

0.98 

C20:1 18.46 19.91 

 

25.15 22.41 

 

2.74 

C22:0 0.00 1.59 

 

0.81 0.37 

 

0.50 

Others 22.77 27.37 

 

27.38 22.28 

 

3.33 

Total SFA
y
 947.37

a
 1073.76

a
 

 

1158.95
a
 1011.42

a
 

 

125.99 

Total UFA 1375.74
a
 1584.63

a
 

 

1587.05
a
 1398.04

a
 

 

174.30 

Total MUFA 1334.67
a
 1526.77

a
 

 

1533.73
a
 1340.28

a
 

 

168.35 

Total PUFA 41.07 57.85   53.32 57.76   7.27 

xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 

abMeans within the same row with different superscripts are different (P < 0.05) 
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Table 12.  The effect of grass type, supplementation, and finishing diet on the LS means scores of 

fatty acids in the neutral lipid layers in B. femoris steaks 

 

Grass Type 

  

Finishing Diets 

 Neutral Lipids, 

mg/100 g of meat 

Warm-

season 

Cool-

season SEM   Corn WDGS
x
 SEM 

C10:0 0.82 1.12 0.23 

 

0.99 0.95 0.23 

C12:0 1.99 1.54 0.28 

 

1.79 1.74 0.28 

C14:0 70.42 67.41 4.41 

 

71.81 66.02 4.41 

C14:1 25.25 20.97 1.74 

 

24.67 21.56 1.74 

C15:0 13.63 12.18 0.82 

 

13.89 11.91 0.82 

C16:0 664.46 647.92 38.71 

 

699.02 613.35 38.71 

C16:1 110.82 99.43 7.05 

 

114.72 95.53 7.05 

C17:0 38.23 32.47 2.31 

 

37.87 32.83 2.31 

C17:1 39.54
a
 32.68

b
 2.39 

 

40.13
a
 32.09

b
 2.39 

C18:0 298.60 284.39 18.95 

 

300.79 282.21 18.95 

C18:1t 50.12
b
 70.29

a
 5.03 

 

55.46 64.95 5.03 

C18:1 1262.04 1153.72 68.35 

 

1265.92 1149.84 68.35 

C18:1v 35.34 35.28 2.33 

 

36.14 34.48 2.33 

C18:2TT 3.09
b
 4.03

a
 0.34 

 

3.39 3.72 0.34 

C18:2 40.51 44.61 3.15 

 

38.71 46.41 3.15 

C20:0 0.30 0.16 0.18 

 

0.29 0.17 0.18 

C18:3 3.53 3.86 0.49 

 

3.71 3.69 0.49 

C20:1 17.46
b
 21.48

a
 1.37 

 

20.13 18.80 1.37 

C22:0 0.66 0.69 0.25 

 

0.41 0.94 0.25 

Others 28.46 24.95 1.67 

 

27.37 26.04 1.67 

Total SFA
y
 1089.11 1047.88 63.00 

 

1126.86 1010.13 63.00 

Total UFA 1587.68 1486.36 87.15 

 

1602.98 1471.07 87.15 

Total MUFA 1540.56 1433.86 84.17 

 

1557.17 1417.24 84.17 

Total PUFA 47.13 52.50 3.64   45.81 53.82 3.64 

xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 

abMeans within the same treatment and the same row with different superscripts are different (P < 0.05) 
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Table 13.  The effect of grass type, supplementation, and finishing diet on the LS means scores of 

fatty acids in the phospholipid layers in B. femoris steaks 

 

Supplementation 

  

Finishing Diets 

 Phospholipids, 

mg/100 g of meat No Yes SEM   Corn WDGS
x
 SEM 

C12:0 1.31 0.75 0.47 

 

1.59 0.48 0.47 

C13:0 3.09 5.31 0.92 

 

4.27 4.13 0.92 

C14:0 5.10 5.78 1.02 

 

6.18 4.70 1.02 

C14:1 3.91 6.81 1.09 

 

3.96 6.76 1.09 

C15:0 29.32 31.87 4.31 

 

29.90 31.29 4.31 

C16:0 136.37 147.88 9.42 

 

147.66 136.59 9.42 

C16:1 9.46 9.85 1.00 

 

11.93
a
 7.38

b
 1.00 

C17:0 22.34 25.89 3.70 

 

20.59 27.64 3.70 

C17:1 6.18 7.69 1.60 

 

7.79 6.09 1.60 

C18:0 88.87 95.76 5.27 

 

88.70 95.93 5.27 

C18:1t 43.28 45.44 4.81 

 

43.45 45.26 4.81 

C18:1 91.46 97.41 7.38 

 

110.82
a
 78.05

b
 7.38 

C18:1v 29.63 37.78 4.43 

 

40.57
a
 26.84

b
 4.43 

C18:2 224.93 250.70 12.40 

 

205.67
b
 269.96

a
 12.40 

C20:0 1.17 1.82 0.54 

 

1.99 1.00 0.54 

C18:3 7.66 6.05 0.73 

 

6.86 6.85 0.73 

C22:0 27.33 34.50 3.33 

 

32.05 29.78 3.33 

C20:4 159.90
b
 185.43

a
 8.71 

 

175.42 169.90 8.71 

C20:5 22.97
a
 14.63

b
 1.58 

 

20.51 17.09 1.58 

C24:1 12.97
b
 16.32

a
 0.82 

 

14.55 14.74 0.82 

C22:6 2.19 1.39 0.68 

 

2.84
a
 0.73

b
 0.68 

Others 43.28 38.57 2.46 

 

45.33
a
 36.52

b
 2.46 

Total SFA
y
 314.90 349.57 15.03 

 

332.94 331.53 15.03 

Total UFA 614.54 679.51 30.14 

 

644.39 649.65 30.14 

Total MUFA 196.89 221.30 13.40 

 

233.07
a
 185.12

b
 13.40 

Total PUFA 417.64 458.21 21.62   411.31 464.54 21.62 
xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 

abMeans within the same treatment and the same row with different superscripts are different (P < 0.05) 
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Table 14. The effect of grass type and supplementation on the LS means of fatty acids in the phospholipid 

layers in B. femoris steaks 

 

Warm-season Grass 

 

Cool-season Grass 

  Phospholipids, 

mg/100 g of 

meat 

No 

Supplementation Supplementation   

No 

Supplementation Supplementation   SEM 

C12:0 0.51 1.13 

 

2.12 0.37 

 

0.66 

C13:0 3.64 3.78 

 

2.54 6.83 

 

1.31 

C14:0 4.15 5.86 

 

6.04 5.71 

 

1.44 

C14:1 4.44 6.29 

 

3.37 7.32 

 

1.54 

C15:0 30.62 27.00 

 

28.02 36.74 

 

6.09 

C16:0 122.73 154.81 

 

150.01 140.96 

 

13.32 

C16:1 8.63 9.99 

 

10.29 9.71 

 

1.42 

C17:0 26.02 23.98 

 

18.67 27.80 

 

5.23 

C17:1 6.40 5.78 

 

5.96 9.60 

 

2.27 

C18:0 87.25 98.33 

 

90.50 93.19 

 

7.46 

C18:1t 39.11 51.21 

 

47.45 39.67 

 

6.80 

C18:1 88.09 107.20 

 

94.83 87.63 

 

10.44 

C18:1v 29.35 32.30 

 

29.91 43.26 

 

6.27 

C18:2 202.41 239.15 

 

247.44 262.26 

 

17.54 

C20:0 1.71 1.81 

 

0.64 1.83 

 

0.76 

C18:3 5.76 5.92 

 

9.56 6.18 

 

1.04 

C22:0 25.34 30.22 

 

29.32 38.78 

 

4.71 

C20:4 165.10 185.19 

 

154.70 185.67 

 

12.32 

C20:5 19.01
b
 16.56

bc
 

 

26.93
a
 12.70

c
 

 

2.24 

C24:1 12.72 15.49 

 

13.22 17.15 

 

1.15 

C22:6 2.86 1.10 

 

1.52 1.67 

 

0.96 

Others 38.72 38.10 

 

47.85 39.04 

 

3.48 

Total SFAy 301.96 346.92 

 

327.84 352.22 

 

21.26 

Total UFA 583.89 676.19 

 

645.18 682.82 

 

42.63 

Total MUFA 188.75 228.26 

 

205.03 214.34 

 

18.96 

Total PUFA 395.14 447.92   440.15 468.49   30.58 

xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA 

= polyunsaturated fatty acids 
abcMeans within the same treatment combination and the same row with different superscripts are different (P 

< 0.05) 
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Table 15. The effects of the interaction between grass type and finishing diet on the LS means 

of fatty acids in the phospholipid layers in B. femoris steaks 

 

Warm-season Grass 

 

Cool-season Grass 

  Phospholipids, 

mg/100 g of meat Corn WDGS
x
   Corn WDGS   SEM 

C12:0 1.41 0.24 

 

1.77 0.72 

 

0.66 

C13:0 4.75 2.67 

 

3.79 5.59 

 

1.31 

C14:0 6.81 3.20 

 

5.55 6.20 

 

1.44 

C14:1 5.51
ab

 5.22
ab

 

 

2.41
b
 8.29

a
 

 

1.54 

C15:0 30.15 27.47 

 

29.66 35.10 

 

6.09 

C16:0 152.10 125.43 

 

143.21 147.75 

 

13.32 

C16:1 11.94 6.68 

 

11.93 8.07 

 

1.42 

C17:0 22.07 27.93 

 

19.10 27.36 

 

5.23 

C17:1 6.81 5.38 

 

8.76 6.80 

 

2.27 

C18:0 91.33 94.25 

 

86.08 97.61 

 

7.46 

C18:1t 42.98 47.34 

 

43.93 43.19 

 

6.80 

C18:1 120.49 74.80 

 

101.15 81.30 

 

10.44 

C18:1v 35.36 26.29 

 

45.78 27.39 

 

6.27 

C18:2 199.33 242.23 

 

212.01 297.69 

 

17.54 

C20:0 2.86 0.65 

 

1.12 1.34 

 

0.76 

C18:3 6.00 5.68 

 

7.71 8.03 

 

1.04 

C22:0 27.60 27.97 

 

36.51 31.58 

 

4.71 

C20:4 180.33 169.96 

 

170.52 169.84 

 

12.32 

C20:5 19.55 16.02 

 

21.48 18.16 

 

2.24 

C24:1 13.70 14.51 

 

15.40 14.97 

 

1.15 

C22:6 2.74 1.22 

 

2.95 0.25 

 

0.96 

Others 42.01 34.81 

 

48.65 38.23 

 

3.48 

Total SFA
y
 339.07 309.80 

 

326.80 353.26 

 

21.26 

Total UFA 644.75 615.33 

 

644.03 683.97 

 

42.63 

Total MUFA 236.79 180.23 

 

229.36 190.01 

 

18.96 

Total PUFA 407.96 435.10   414.67 493.97   30.58 

xWDGS = Wet distillers grains with solubles 
ySFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty acids, and 

PUFA = polyunsaturated fatty acids 
abcMeans within the same treatment combination and the same row with different superscripts are 

different (P < 0.05) 
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Abstract 

The objective of this study was to determine diet and aging combinations that generate 

desirable beef flavor.  Crossbred steers (n = 64) were grazed on warm or cool-season 

grasses, without or with energy supplementation from wet distillers grains with solubles 

(WDGS), and were finished on corn or 35% WDGS.  Six carcasses from each treatment 

(n = 48) that graded USDA Choice or Select were identified and Longissimus dorsi and 

Biceps femoris muscles from each side of each carcass were collected and aged under 

vacuum 7 or 28 d.  Steaks displayed under retail conditions for 7 d were used for 

consumer taste panels in Olathe, KS and Houston, TX.  Panelists (n=120 per city) rated 

cooked steaks for overall acceptability, overall flavor acceptability, and beefy flavor and 

intensity (1 = extremely dislike or extremely bland and 9 = extremely like or extremely 

intense).  When supplementing on pasture with WDGS, finishing on corn caused higher 

(P < 0.04) scores for overall like, overall flavor like, and beefy flavor like of L. dorsi 

steaks than finishing on WDGS (6.52 vs. 5.98, 6.34 vs. 5.84, and 6.43 vs. 5.91, 

respectively).  Although beefy flavor intensity scores of L. dorsi steaks were influenced 

by an interaction between grass type, supplementation, and aging period (P = 0.05), no 

discernible pattern existed.  For B. femoris steaks, the highest (most desirable) ratings for 

overall like, overall flavor like, beefy flavor like, and beefy flavor intensity scores 

occurred with cool season grasses and shorter aging times (P < 0.05).  Lexicon scores for 

L. dorsi steaks had 2 significant (P < 0.04) three-way interactions; grass type, finishing 

diet, and aging period for fat scores and supplementation, diet, and aging period for 

bloody scores.  Within the 7 d aging period, finishing on WDGS caused low scores for fat 
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flavor and high scores for bloody flavor.  The highest intensities of liver flavor (P < 0.04) 

occurred in beef from cattle grazed on warm-season grass without supplement or aged for 

28 d.  Warmed-over flavors were four times worse when cattle were finished on WDGS 

instead of corn (P = 0.002).  For B. femoris steaks, the least desirable flavor notes were 

associated with warm-season grasses (liver, bloody, metallic, and sour), most of which 

were improved with supplementation.  Aging increased painty, sour milk, bitter, and 

(when corn was fed) fishy flavors. These data suggest that beef flavor is best established 

with cool season grasses, feeding WDGS as an energy supplement during grazing and 

finishing on corn.  Shorter aging periods appear to reduce off-flavor development.   

Keywords:  Aging, beef, diet, flavor, forages, supplementation 

 

Introduction 

 Flavor is often the most important attribute people rely on for a pleasurable beef 

eating experience.  Umberger et al. (2002) found that consumers were willing to pay 

considerably more for cuts they had identified as having a desirable flavor.  The type of 

forage on which an animal is grazed post-weaning can influence the flavor profile of the 

meat.  When Larick et al. (1987) fed cattle fescue grass, the beef had a much more 

prevalent grassy flavor.  Jenschke et al. (2008) also reported that feeding low levels of 

alfalfa caused a higher prevalence of bloody flavor notes than feeding high levels of 

alfalfa, high levels of corn stalks, and low and high levels of corn silage.   

 More flavor changes have been found with finishing cattle on distillers grains 

with solubles (DGS).  Taste panelists in a study conducted by Gill et al. (2008) perceived 

no difference in beef flavor due to diets, however, consumers were more unpleased with 



141 

 

 

samples from beef fed DGS than samples from beef fed steam-flaked corn.  Jenscke et al. 

(2007) fed cattle diets with an inclusion of 0, 10, 20, 30, 40, or 50% WDGS, for 125 days 

and found no differences in off-flavor intensity, liver-like flavor, or metallic flavor 

between samples.  In the previous study, samples were stored under a constant vacuum 

and were never allowed to oxidize.  In contrast, Depenbusch et al. (2009) found that beef 

from cattle fed dried DGS at higher rates had greater beef flavor intensity.    

 As meat ages, lipid oxidation creates unique flavors.  When Smith et al. (1978) 

dry aged meat up to 11 d, flavor desirability was significantly increased.  Campo et al. 

(1999) also found that flavor intensity increased as the length of wet aging increased up 

to 10 d.  Seneratne et al. (2010) showed a higher degree of liver and/or off-flavor in meat 

from cattle fed  wet distillers grains with solubles as opposed to corn.  These differences 

were only found after the meat had been aged in a retail display for 7 d.    

 This research was conducted to investigate how beef flavor is affected in two 

different muscles from cattle fed two different forages post-weaning, with or without 

supplemental energy, finished on either a corn or wet DGS (WDGS) diet, and aged for 7 

or 28 d.   

Materials and Methods 

Diets 

 All protocols performed in this study were approved by the University of 

Nebraska-Lincoln Institutional Animal Care and Use Committee.  Cattle were fed in a 

2x2x2 factorial design.  Crossbred steers (n = 64) were backgrounded on either warm-

season grasses (i.e. bluestem and switch grass) at the Barta Ranch in Western Nebraska 
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or on cool-season (i.e. brome and bluegrass) pastures in Ithaca, NE for 177 d, shortly 

after weaning.  Within each pasture, half of the cattle were supplemented with 0.6 kg 

WDGS/kg body weight/ day for energy.  At the end of the grazing period, all cattle were 

transported to the University of Nebraska-Lincoln’s research feedlot in Ithaca, NE.  

While in the feedlot, half of each pasture and supplementation treatments were finished 

on an all-corn diet while the other half were fed corn with WDGS at a 35% inclusion rate 

(DM basis).  Cattle were on feed for 119 days and fed to an average live weight of 1,427 

lbs.          

Harvest 

 At the end of the feedlot period, cattle were transported and harvested at the 

Greater Omaha Packing (Omaha, NE).  Forty-eight carcasses grading either USDA 

Choice (n = 43) or USDA Select (n = 5), 6 from each treatment combination, were 

selected.  Strip loins (Longissimus dorsi; IMPS #180, NAMP, 2007) and bottom round 

flats (Biceps femoris; IMPS #171B, NAMP, 2007) were collected from each side of the 

carcass.  Only ten L. dorsi muscles were collected from the cool-season grass, 

supplementation provided, and finished on WDGS treatment because two L. dorsi 

muscles (one from each side) were lost within Greater Omaha Packing Plant.  Subprimals 

from the left side of the carcass were aged under vacuum for 7 d while subprimals from 

the right side were aged under vacuum 28 d at 2°C.  Upon fabrication, 5 steaks were cut 

from each subprimal.    
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Sample collection 

 Three steaks were cut 2.54 cm thick, placed on Styrofoam trays, wrapped with 

PVC overwrap film, and placed under simulated retail display for 7 d.  Two of the steaks 

were used for consumer panels and the third steak was used for a beef lexicon panel.  L. 

dorsi steaks were packaged as two steaks per tray and B. femoris steaks were one per 

tray.  At the end of retail display, steaks were vacuumed packaged and frozen until 

further use.   

Retail display   

 All of the steaks were displayed on a table in a 2°C cooler and were constantly 

exposed to warm white fluorescence lighting (PHILIPS F32T8/TL741 ALTO 700 Series, 

32 WATT B7, Royal Philips Electronics, Amsterdam, Netherlands) at 1000 to 1800 lux 

in order to simulate retail display conditions.  Every day, packages were randomly 

relocated to minimize any effects due to location.  After 7 d, steaks were vacuumed 

packaged and frozen until further analysis.   

Consumer Panel 

All consumer and lexicon panels were approved by the Institutional Review 

Board and all panelists signed a consent form.  Consumer panels were conducted in 

Houston, Texas and Olathe, Kansas (n = 120 per location). Consumers were recruited 

using existing consumer data banks and random phone solicitation. Consumers were 

selected who eat beef at least three times per week, range in age from 21 to 65, with an 

approximately equal balance of males and females, and a range in income.  
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In each city, consumer panels were conducted over two days, with the first day 

evaluating Longissimus dorsi steaks and the second day evaluating Biceps femoris steaks.  

Different consumers evaluated each muscle type.  Steaks from each animal were 

evaluated at both locations.  Panels were conducted with three sessions per day and 20 

consumers per session.  Five consumers evaluated each steak.  Treatment order was 

randomized and allocated to consumers using an incomplete block design.  Each 

consumer evaluated eight steaks in a session.     

Steaks were cooked on a Hamilton Beach Health Smart grill (model 31605A, 

Hamilton Beach/ Proctor-Silex, Inc., Southern Pines, NC) to an internal temperature of 

70°C.  Consumers evaluated each sample using 9-point hedonic (1=dislike extremely, 

9=like extremely) and intensity scales (1=none or extremely bland, 9=extremely intense) for 

overall like, overall flavor like, beefy flavor like and intensity, and grilled flavor like and 

intensity. 

Beef Flavor Lexicon   

An expert, trained descriptive attribute sensory panel with over 23 cumulative 

years of experience in evaluating beef flavor and aromas was used.  This panel was one 

of the three panels used to validate the Beef Lexicon at Texas A&M University (Philips 

et al., 2010; Miller, 2010).  The panel underwent ballot development, training and 

validation sessions to assure consistent rating and identification of individual aroma and 

flavor attributes.  Attributes were classified as major and minor notes.  This provides a 

standardized, defined reference guide for determining and measuring aroma and flavor in 

beef.   
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During training and testing, steaks were cooked the same way as described for 

consumer panels.  Aromas and flavor aromatics were evaluated using the Spectrum® 

Universal 16-point scale where 0 = none and 15 = extremely intense (Meilgaard et al., 

2007).  Traits evaluated were browned, bloody, fat, metal, liver, green hay, umami, 

overly sweet, sweet, sour, salty, bitter, sour aroma, barnyard, burnt, heated oil, chemical, 

apricot, asparagus, cumin, floral, beet, chocolate, green grass, musty, medicinal, 

petroleum, smoked/charred, smoked wood, spoiled, dairy, buttery, cooked milk, sour 

milk, refrigerator stale, warmed over, soapy, painty, fishy, and cardboardy.    

Statistical Analysis 

All data were analyzed as a 2x2x2x2 factorial arrangement split plot design within 

a randomized complete design using the Mixed procedure in SAS (Version 9.2, SAS 

Institute Inc., Cary, NC, 2006). The experimental unit was the individual animal and the 

model included grass, supplementation, finishing diet, and age as fixed effects.  The least 

square means procedure with the probability of difference (pdiff) option was used for 

mean separation; with significance determined at P < 0.05 levels.  Whenever there was a 

three- or four-way interaction, the LSmeans were reanalyzed using the GLIMMIX 

procedure with the slicediff option in order to more accurately study differences.   

Results and Discussion 

Consumer Panel  

L. dorsi Steaks 

 Overall like, flavor like, beefy flavor like, and beefy flavor intensity were all 

influenced by finishing diet (Table 1).  The first three of these traits had an interaction 
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between diet and supplementation (P < 0.04) while beefy flavor intensity was influenced 

by the interaction of finishing diet and aging period (P = 0.05).  When cattle had been 

supplemented with WDGS while grazing, finishing on WDGS caused a significant 

decline (P < 0.04) in scores of overall like, flavor like, and beefy flavor like.  Beefy 

flavor intensity was significantly (P = 0.04) affected by a three-way interaction between 

grass-type, supplementation, and aging period.  When the means were separated out by 

aging period (Figure 1) there were no differences between the means.  This would show 

that it is the aging period that is causing the interaction to be significant.  Shand et al. 

(1998) also showed no differences in beefy flavor intensity, flavor desirability, and off 

flavor intensity due to a distillers grain supplementation.    

 Also, when supplementing cattle, finishing on corn caused higher (P < 0.04) 

overall like, overall flavor like, and beefy flavor like scores than if they were finished on 

WDGS (6.52 vs. 5.98, 6.34 vs. 5.84, and 6.43 vs. 5.91, respectively, Table 2), suggesting 

that long-term exposure to WDGS may be detrimental to flavor.  In contrast, Gill et al. 

(2008) found that when cattle were finished on steam flaked corn and various types of 

distillers grains, the panelists could not determine a difference in taste between the two 

samples.  However, Gill et al. (2008) also found that the number of panelists overall 

unpleased with the flavor was higher with samples from cattle fed distillers grains.  

Miller et al. (1996) and Busboom et al. (2000) also reported that finishing diet had no 

effect on flavor intensity, flavor desirability, and off-flavors in L. dorsi steaks when 

comparing corn to barley.              
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 When cattle were finished on WDGS, aging the beef to 28 d caused the beefy 

intensity to decrease (P = 0.05) when compared to aging for only 7 d (5.67 vs 6.06, Table 

3).  In addition, at 28 d age, finishing on WDGS decreased (P = 0.05) beefy intensity 

from 6.05 to a 5.67 when compared to finishing on corn.  For Depenbusch et al. (2009), 

beefy flavor intensity was strongest in beef from cattle fed either 45 or 60% dried DGS 

and was the least for cattle fed no dried DGS.  Their findings differ from the results in 

this study perhaps because the meat in the Depenbusch et al. study was only aged for 14 

d.  The difference could be due to the much shorter aging period, especially since this 

study shows that aging period has an influence on flavor.  Neither grill flavor like nor 

grill flavor intensity scores were affected by any combinations of feeding regimens and 

aging. 

  B. femoris Steaks 

 All consumer panel scores, except for grill flavor like and grill flavor intensity, 

were significantly (P < 0.05) influenced by the four-way interaction of grass type, 

supplementation, finishing diet, and aging (Table 1).  In order to better analyze the data, 

means were separated by aging period (Table 4).  Within the 7 d aging period, grazing on 

warm-season grasses without supplementation and finishing on WDGS caused the 

greatest amount of differences.  That diet combination caused lower overall like, overall 

flavor like, beefy flavor like, beefy flavor intensity, grill flavor like and grill flavor 

intensity scores (although not all were significantly different) than all other diet regimen 

combinations.   In contrast, Jeremiah et al. (1998) found that finishing diet did not affect 

overall flavor desirability and intensity.  Their study only looked at finishing diet and all 
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animals came from various background diets, which could account for the difference.  In 

addition, when supplementation was given, not only were the finishing diets no longer 

different from each other, but they were not different from any of the dietary combination 

within cool-season grass grazing either.  This would show that the addition of 

supplementation is able to deter any differences in consumer scores due to grass type.  

 When aging for 28 d, grazing on warm-season grasses with supplementation and 

finishing on corn caused higher (P < 0.05) overall like (6.28), overall flavor like (6.38), 

beefy flavor like (6.50), and beefy flavor intensity (6.36) scores than all other 

supplementation and finishing diet combinations within warm-season grass grazing.  The 

only exception was for beefy flavor intensity scores, where within warm-season grass 

grazing, supplementing and finishing on corn was not significantly (P < 0.05)  different 

from not supplementing and finishing on WDGS (6.36 vs. 5.73).  Most scores from 

within cool-season grass grazing were not different from the scores within warm-season 

grass grazing.  Perhaps the longer aging period was able to dissipate the negative 

influences that warm-season grass grazing seemed to have on the consumer scores that 

were seen when the meat was only aged for 7 d.  However, the differences in scores 

between supplementation and finishing diet were only within warm-season grass grazing, 

so its effects are not completely dismissed.  None of the diet regimen and aging 

combinations influenced grill flavor like or grill flavor intensity scores (P > 0.05). 
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Lexicon Scores 

L. dorsi Steaks 

 Grass type appeared to be the main component in flavor note development.  Over 

all, grazing on warm-season grass caused higher levels of undesirable flavor notes, such 

as bloody, liver, barnyard, and burnt.  Finishing diets also altered flavors notes.  Finishing 

on WDGS not only increased the prevalence of warmed over flavors, but it also 

decreased sweet flavors which may be considered a desirable flavor.  When aging and 

supplementation were taken into effect, differences became more prevalent.  The highest 

intensities of liver flavor occurred in beef from cattle grazed on warm-season grass 

without supplement or aged for 28 d.  Warmed-over flavors were four times worse when 

cattle were finished on WDGS instead of corn 

 Table 5 shows the P-values for all dietary and aging period interactions for 

lexicon flavor notes in L. dorsi steaks.  At 7 d aging, the prevalence of fat flavor was 

weaker (P = 0.02) when cattle were grazed on cool-season grasses and finished on 

WDGS than when they were grazed on cool-season grasses and finished on corn (1.49 vs. 

1.76) and grazed on warm-season grasses and finished on WDGS (1.49 vs. 1.77, Figure 

2).  Miller et al. (1996) found no differences in cooked beef flavor due to finishing diet, 

but they did not have varying grass types and aging periods in their study.  Conversely, 

when the meat was aged for 28 d, meat from cattle grazed on warm-season grasses had a 

stronger fat flavor when finished on corn instead of WDGS (1.84 vs. 1.59).   

 For bloody flavor, within 7 d aged product, not supplementing and finishing on 

WDGS caused the highest scores (1.85, P = 0.04) than all other supplementation and 
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finishing diet combination (Figure 3).  Within the 28 d aging periods, there were no 

differences in bloody flavor scores between all supplementation and finishing diet 

combinations.  It would appear that the longer aging period is able to dissipate 

differences caused supplementation and finishing diet. 

 The intensity of browned flavor (P = 0.04) was higher when cattle were grazed on 

cool-season grasses and the steaks were aged for 28 d instead of 7 d, 1.95 vs. 1.65 (Table 

6).  Metal and livery flavors were also influenced by a grass type and aging interaction, 

but in a much different manner.  For metal flavor, grazing on a cool-season grass and 

aging for 28 d caused the beef to have the lowest intensity scores (1.62) compared to all 

other grass type and aging period combinations except for grazing on a warm-season 

grass and only aging 7 d (P = 0.02).  Grazing on a warm-season grass and aging for 28 d 

caused the steaks to have a significantly (P = 0.04) higher liver flavor (0.28) than all 

other grass type and aging period combinations (Table 6).  Not supplementing and aging 

L. dorsi steaks 28 d caused higher intensities of cardboardy flavor (P = 0.03) when 

compared to both aging for 7 d (0.23 vs. 0.10) and supplementing and aging 28 d (0.23 

vs. 0.11, Table 6).  In all instances, aging tended to be the main influence on flavor notes.   

 Not supplementing while grazing on warm-season grasses caused the highest liver 

flavor scores (0.30, P = 0.03) compared to all other grass type and supplementation 

combinations (Table 7).  Grazing on warm-season grass and aging to 28 d also caused 

higher liver scores.  Clearly grass type is a key factor in the development of liver flavor in 

beef.  Similarly, not supplementing while grazing on cool-season grasses created the 

lowest barnyard flavor scores (0.00, P = 0.05) compared to all other grass type and 
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supplementation combinations.  Supplementing while grazing on cool-season grasses also 

caused the lowest burnt flavor scores (0.04, P = 0.05) compared to all other grass type 

and supplementation combinations except for when cattle were not supplemented while 

grazing warm-season grasses, which was not different.  

 Finishing diet, in combination with grass type, had the most influence over 

several L. dorsi steak flavors.  When finishing cattle on an all-corn diet, grazing them on 

a warm-season grass first instead of a cool-season grass significantly (P = 0.02) increased 

the metal flavor intensity (1.77 vs. 1.63, Table 8).  However, when grazed on cool-season 

grasses, finishing on WDGS caused higher scores of metal flavor than finishing on corn 

(1.77 vs. 1.63).  When not providing supplementation, finishing on corn instead of 

WDGS significantly increased (P = 0.02) soured milk intensity from a 0.00 to a 0.11 

(Table 8).  In contrast, when not supplementing, refrigerator stale scores were higher (P = 

0.04) when cattle were finished on WDGS instead of corn (0.047 vs. 0.00).   

 When finishing diet alone is examined, finishing on corn significantly increases 

(P = 0.04) the sweet flavor intensity (1.07 vs. 0.94) but decreases (P = 0.002) the warmed 

over flavor (0.06 vs. 0.24, Table 9).  This would show that corn tended to promote 

desirable flavors while dissipating undesirable flavors.  Liver flavor was not influenced 

by finishing diet (P = 0.56).  Kinman et al. (2011) also compared finishing on corn and 

WDGS and also reported no difference in liver flavor due to finishing diet.  Providing 

supplementation caused higher smoked wood scores than not supplementing (0.02 vs. 

0.00, Table 9).  Larick et al. (1987) found that grassy flavor in L. dorsi steaks was 

influenced by grass type, with the highest scores caused by fescue grass.  In this study 
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grass type, or any other dietary component, had no influence (P > 0.05) on green grass 

flavor.   

B. femoris Steaks 

 For B. femoris steaks, the least desirable flavor notes were associated with warm 

season grasses (liver, bloody, metallic, sour, and salty), most of which were improved 

with supplementation.  In fact, when supplementation was not provided, liver, sour, sour 

milk, and warmed over lexicon flavor notes were higher, regardless of grass type. 

Increasing aging from 7 d to 28 d also increased painty, sour milk, bitter, and (when corn 

was fed) fishy flavors. 

 For both chemical and fishy flavors there were significant (P < 0.05) three-way 

interactions (Table 10).  In order to better understand the data, the means were separated 

by aging period.  When aged for 7 d, not supplementing while grazing on cool-season 

grasses caused more intense (P = 0.05) chemical flavors than supplementing (0.22 vs. 

0.07, Figure 4).  Again showing that supplementation may help to dissipate undesirable 

flavors.  When aging for 28 d, there were no differences between the different grass type 

and supplementation combinations.  Similarly, for fishy flavors, within 7 d aging there 

were no differences between any grass type and finishing diet combinations (Figure 5).  

When aged 28 d, grazing on warm-season grass followed by a finishing diet of corn 

caused the highest (P = 0.02) fishy flavor scores (0.150) out of all the different grass type 

and finishing diet combinations, except for when cattle were grazed on cool-season 

grasses and finished on WDGS, which was not different.   
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  Aging also was a heavy influence in several other flavor intensities.  

Supplementing caused metal flavor intensities to be higher (P = 0.03) than not 

supplementing (2.08 vs. 1.88, Table 11) after aging 28 d.   There was a significant 

interaction between finishing diet and aging period for metal flavor (P = 0.05), but when 

the means were separated and compared there were no differences between any of the 

combinations (Table 11).  This could mean that it is aging that is driving the interaction 

and causing the differences.  Busboom et al. (2000) found that finishing diet did alter the 

incidences of metallic flavors, but that was comparing corn to barley finishing diets.  

Jenschke et al. (2007) finished cattle on WDGS and reported that finishing diet had no 

effect on metallic flavor.  Finishing on corn and aging for 7 d caused the beef to have the 

most intense (P = 0.003) bloody flavor (1.83) compared to all other finishing diet and 

aging period combinations except for when cattle were finished on WDGS and the steaks 

were aged for 28 d, which was not different.   

 In addition, finishing on a WDGS diet and aging the beef for 28 d caused the 

green hay flavor to be the most intense (P = 0.02) when compared to all other finishing 

diet and aging period combination.  Aging 28 d significantly increased bitter (P < 

0.0001), sour milk (P = 0.05), and painty (P = 0.01) flavor intensities when compared to 

the 7 d aging period (1.52 vs. 1.30, 0.13 vs. 0.05, and 0.07 vs. 0.01, respectively), 

regardless of any diet regimen (Table 13).         

 When examining diet regimen only, grazing on warm-season grass without 

supplementation caused the beef to have the most intense metal (P = 0.03) and liver (P = 

0.005) scores (2.11 and 0.53, respectively) compared to all other grass type and 
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supplementation combinations (Table 12).  This is similar to what was observed in the L. 

dorsi steaks as well.  Especially with the addition of supplementation being able to 

dissipate the intensities of all the undesirable flavors.  In contrast, cool-season grass 

grazing without supplementation significantly increased (P = 0.03) salty flavor 

intensities, which could be considered a desirable flavor, from 1.32 to 1.47 when 

compared to warm-season grass grazing without supplementation, but no other grass type 

and supplementation combination were significantly (P < 0.05) different from each other. 

 Bloody (P = 0.02), liver (P = 0.0004), and sour (P = 0.02) flavors were all highest 

when cattle were grazed on warm-season grasses instead of cool-season grasses (1.77 vs. 

1.62, 0.38 vs. 0.17, and 1.53 vs. 1.37, respectively, Table 13).  Larick and Turner (1990) 

also found that sour flavor intensity can change when cattle are fed different types of 

forages, however, bloodlike flavor was not affected by grass type.  Their grass pastures 

were all in the same area so their grass was all grown on the same soil type and the grass 

type could have all been the same season type, which may explain why they saw no 

differences in bloodlike flavor due to grass.  Jenschke et al. (2008) did see a change in 

bloody flavor notes in R. femoris muscles when roughage type was changed, which is 

similar to the findings in this study.     

 In contrast, cool-season grass grazing caused higher browned flavor scores (P = 

0.04) than warm-season grass grazing (1.83 vs. 1.67).  Not supplementing while grazing 

caused more intense liver (P = 0.03), sour (P = 0.03), sour milk (P = 0.005) and warmed 

over (P = 0.05) flavors than providing supplementation (0.34 vs. .021, 1.51 vs. 1.39, 0.15 

vs. 0.04, and 0.65 vs. 0.48, respectively, Table 13).       
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 In conclusion, finishing diet had the most influence on flavor scores in L. dorsi 

steaks with finishing on WDGS, especially after being supplemented with WDGS, 

causing declines in several scores.  Conversely, grass type appeared to be more important 

for consumer panel scores in B. femoris steaks with warm-season grasses being the most 

detrimental.  For both L. dorsi and B. femoris steaks, the least desirable flavor notes were 

associated with warm-season grasses most of which were improved with 

supplementation.  Aging also changed the prevalence of specific flavor notes.   

 Overall, even though finishing diet had the most effect on consumer panel scores 

in L. dorsi steaks,   grass type had a much larger effect on both consumer panel and 

lexicon flavor scores.  Clearly, the type of grass cattle graze plays a vital role in both 

flavor development and consumer preference.  Unfortunately warm-season grasses 

tended to create unfavorable scores.  Luckily, the addition of supplementation was able to 

remove any differences in consumer panel scores as well as promote desirable flavors 

and lessen the intensities of undesirable flavors.  Due to these results, it is highly 

recommended that if producers are grazing cattle on warm-season grasses that they 

supplement in order to remove any negative effects.  

 As previously stated, aging also played a key role in flavor development.  For the 

most part, longer aging periods caused an increase in desirable flavor intensities and a 

decrease in undesirable flavor intensities.  Due to these facts, a longer aging period of 

beef is recommended.  

 

 



156 

 

 

Literature Cited 

Busboom, J.R., Nelson, M.L., Jeremiah, L.E., Duckett, S.K., Cronath, J.D., Falen, L., and 

 Kuber, P.S. 2000. Effects of graded levels of potato by-products in barley- and 

 corn-based beef feedlot diets:  II. Palatability. J. Anim. Sci. 78:  1837-1844. 

 

Campo, M.M., Sañudo, C., Panea, B., Alberti, P., and Santolaria, P. 1999. Breed type 

 and ageing time effects on sensory characteristics of beef strip loin steaks. Meat 

 Sci. 51:383-390.  

 

Depenbusch, B.E., Coleman, C.M., Higgins, J.J., and Drouillard, J.S. 2009. Effects of 

 increasing levels of dried corn distillers grains with solubles on growth 

 performance, carcass characteristics, and meat quality of yearling heifers. J. 

 Anim. Sci. 87:2653-2663. 

 

Gill, R.K., VanOverbeke, D.L., Depenbusch, B., Drouillard, J.S., and DiCostanzo, A. 

 2008. Impact of beef cattle diets containing corn or sorghum distillers grains on 

 beef color, fatty acid profiles, and sensory attributes. J. Anim. Sci. 86(4):923-

 935. 

 

Jenschke, B.E., James, J.M., Vander Pol, K.J., Klopfenstein, T.J., and Calkins, C.R. 

 2007. Wet distillers grains plus solubles do not increase liver-like off-flavors in 

 cooked beef from yearling steers. J. Muscle Foods 18(4):341-348.   

 

Jenschke, B.E., Benton, J.R., Calkins, C.R., Carr, T.P., Eskridge, K.M., Klopfenstein, 

 T.J., and Erickson, G.E. 2008. Chemical and sensory properties of beef of  known 

 source and finished on wet distillers grains diets containing varying types  and 

 levels of roughage. J. Anim. Sci. 86:949-959. 

 

Jeremiah, L. E., Beauchemin, K. A., Jones, S. D. M., Gibson, L. L., and Rode, L. M. 

 1998. The influence of dietary cereal grain source and feed enzymes on the 

 cooking properties and palatability attributes of beef. Can. J. Anim. Sci. 78(3):  

 271-275. 

 

Kinman, L.A., Hilton, G.G., Richards, C.J., Morgan, J.B., Krehbiel, C.R., Hicks, R.B., 

 Dillwith, J.W., and Vanoverbeke, D.L. 2011. Impact of feeding various amounts 

 of wet and dry distillers grains to yearling steers on palatability, fatty acid profile, 

 and retail case life of longissimus muscle. J. Anim. Sci. 89:  179-184. 

 



157 

 

 

Larick, D.K., Hedrick, H.B., Bailey, M.E., Williams, J.E., Hancock, D.L., Garner, G.B., 

 and Morrow, R.E. 1987. Flavor constituents of beef as influenced by forage- and 

 grain-feeding. J. Food Sci. 52:245-251. 

 

Larick, D.K. and Turner, B.E. 1990. Flavor characteristics of forage- and grain-fed 

 beef as influenced by phospholipid and fatty acid compositional differences. J. 

 Food Sci. 55:312-317. 

 

Meilgaard, M.C., G.V.  Civille, and B.T. Carr. 2007. Sensory evaluation techniques. 

  4
th 

ed. Boca Rotan, FL: CRC Press.  

 

Miller, R.K., Rockwell, L.C., Lunt, D.K., and Carstens, G.E. 1996. Determination of the 

 flavor attributes of cooked beef from cross-bred Angus steers fed corn- or barley-

 based diets. Meat Sci. 44:  235-243. 

 

Miller, R.K. 2010.  Research Project Final Report:  Differentiation of beef flavor across 

 muscles and Quality grade. National Cattlemens’ Beef Association.  June, 2010. 

 

NAMP. (2007) The meat buyers guide.  North American Meat Processors Association, 

 Reston, VA. 

 

Philips, C., Miller, R.K., Adehari, K. and Chambers IV, E.  2010. Development of a 

 lexicon for the description of beef flavor and aroma.  Proceedings from the 63
rd

 

 Reciprocal Meats Conference. Meat Sci. 86:561-562. 

 

Senaratne, L.S., Calkins, C.R., de Mello Jr., A.S., and Erickson, G.E. 2010. Wet 

 distillers grains diets supplemented with vitamin E affect sensory attributes of 

 beef m. Longissimus lumborum. Nebraska Beef Cattle Report. MP93:101-103. 

 

Shand, P.J., McKinnon, J.J., and Christensen, D.A. 1998. Eating quality of beef from 

 animals fed wet brewers’ grains and wheat-based wet distillers’ grains. Can. J. 

 Anim. Sci. 78(1):  143-146. 

 

Smith, G.C., Culp, G.R., and Carpenter, Z.L. 1978. Postmortem aging of beef 

 carcasses. J. Food Sci. 43:823-826. 

 

 

 



158 

 

 

Umberger, W.J., Fuez, D.M., Calkins, C.R., and Killinger-Mann, K. 2002. U.S. 

 consumer preference and willingness-to-pay for domestic corn-fed beef versus 

 international grass-fed beef measured through an experimental auction. 

 Agribusiness 18(4):491-504. 

 

 



159 

 

 

Figures and Tables 

 

a
Means within the same aging period with the same superscript are not significantly (P > 0.05) different 

 

Figure 1. The effect of grass type, supplementation, and aging period on the LS means of 

beefy flavor intensity consumer panel scores when separated by aging period in L. dorsi 

steaks (P = 0.05). 
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ab

Means within the same aging period with the different superscripts are significantly (P < 0.05) different 

 

Figure 2. The effect of grass type, finishing diet, and aging period on the LS means of fat 

flavor scores when separated by aging period in L. dorsi steaks (P = 0.02). 
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ab
Means within the same aging period with the different superscripts are significantly (P < 0.05) different 

 

Figure 3. The effect of supplementation, finishing diet, and aging period on the LS means 

of bloody flavor scores when separated by aging period in L. dorsi steaks (P = 0.04). 
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  ab
Means within the same aging period with the different superscripts are significantly (P < 0.05) different 

 

Figure 4. The effect of grass type, supplementation, and aging period on the LS means of 

chemical flavor scores when separated by aging period in B. femoris steaks (P = 0.05). 
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ab

Means within the same aging period with the different superscripts are significantly (P < 0.05) different 

 

Figure 5. The effect of grass type, finishing diet, and aging period on the LS means of 

fishy flavor scores when separated by aging period in B. femoris steaks (P = 0.02). 
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Table 1.  The influence of diet and age on the P-values of consumer panel scores for L. dorsi and B. femoris steaks 

 

P-Value 

Trait Grass
x
 Supp 

Grass

XSupp Diet 

Grass

XDiet 

Supp

XDiet 

Grass

XSupp

XDiet Age 

Grass

XAge 

Supp

XAge 

Grass

XSupp

XAge 

DietX

Age 

Grass

XDiet

XAge 

Supp

XDiet

XAge 

Grass

XSupp

XDiet

XAge 

L. dorsi 

               Overall 

Like
y
 0.55 0.50 0.29 0.05 0.94 0.03 0.62 0.99 0.94 0.76 0.09 0.67 0.38 0.43 0.31 

Flavor 

Like 0.70 0.90 0.19 0.08 0.91 0.04 0.90 0.99 1.00 0.25 0.12 0.47 0.33 0.39 0.32 

Beefy 

Like 0.35 0.82 0.36 0.10 0.63 0.02 0.80 0.57 0.80 0.97 0.11 0.39 0.16 0.28 0.35 

Beefy 

Intensity 0.64 0.79 0.86 0.41 0.26 0.11 0.58 0.37 0.94 0.70 0.04 0.05 0.15 0.38 0.25 

Grill Like 0.87 0.74 0.38 0.43 0.43 0.13 0.15 0.25 0.92 0.94 0.14 0.34 0.52 0.38 0.17 

Grill 

Intensity 0.76 0.64 0.87 0.36 0.30 0.50 0.39 0.31 0.41 0.59 0.29 0.73 0.17 0.50 0.13 

                B. femoris 

               Overall 

Like 0.01 0.31 0.39 0.17 0.01 0.66 0.45 0.08 0.99 0.96 0.96 0.95 0.73 0.06 0.005 

Flavor 

Like 0.04 0.10 0.29 0.15 0.02 0.16 0.62 0.09 0.70 0.64 0.63 0.39 0.89 0.20 0.01 

Beefy 

Like 0.08 0.21 0.13 0.41 0.08 0.31 0.91 0.04 0.31 0.99 0.49 0.85 0.63 0.24 0.01 

Beefy 

Intensity 0.18 0.27 0.32 0.96 0.21 0.12 0.43 0.03 0.45 0.23 0.28 0.09 0.65 0.07 0.05 

Grill Like 0.12 0.17 0.44 0.10 0.24 0.06 0.39 0.39 0.54 0.93 0.41 0.45 0.65 0.17 0.23 

Grill 

Intensity 0.67 0.14 0.09 0.06 0.21 0.55 0.61 0.71 0.24 0.82 0.35 0.31 0.87 0.79 0.06 

x
Grass = Grass type, Supp = Supplementation, Diet = Finishing diet, Age = Aging period 

y
1=dislike extremely, none, or extremely bland, 9=like extremely or extremely intense 

1
6
4
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Table 2. The effects supplementation and finishing diet on the LS means of 

consumer panel scores for L. dorsi and B. femoris steaks 

  No Supplementation   Supplementation     

Trait Corn WDGS
x
   Corn WDGS   SEM 

L. dorsi               

Overall Like
y
 6.14

b
 6.18

ab
   6.52

a
 5.98

b
   0.13 

Overall Flavor Like 6.06
ab

 6.10
ab

   6.34
a
 5.84

b
   0.14 

Beefy Flavor Like 6.15
ab

 6.24
ab

   6.43
a
 5.91

b
   0.13 

Beefy Flavor Intensity 5.85 5.96   6.10 5.77   0.14 

Grill Flavor Like 5.78 5.87   5.93 5.64   0.13 

Grill Flavor Intensity 5.33 5.30   5.49 5.27   0.14 

                

B. femoris               

Overall Like 5.77 5.64   5.97 5.72   0.14 

Overall Flavor Like 5.65 5.65   6.08 5.69   0.14 

Beefy Flavor Like 5.85 5.87   6.15 5.90   0.14 

Beefy Flavor Intensity 5.63 5.84   6.00 5.77   0.14 

Grill Flavor Like 5.51 5.54   5.95 5.48   0.14 

Grill Flavor Intensity 5.16 4.97   5.46 5.10   0.15 

x
WDGS = Wet distillers grains with solubles         

y
1=dislike extremely, none, or extremely bland, 9=like extremely or extremely 

intense 
ab

Means within the same row with different superscripts are different (P < 0.05) 
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Table 3. The effects of finishing diet and aging period on the LS means of 

consumer panel scores for L. dorsi and B. femoris steaks 

  Corn   WDGS
x
     

Trait 7 d 28 d   7 d 28 d   SEM 

L. dorsi               

Overall Like
y
 6.30 6.35   6.10 6.05   0.13 

Overall Flavor Like 6.15 6.25   6.02 5.92   0.13 

Beefy Flavor Like 6.27 6.31   6.17 5.98   0.13 

Beefy Flavor Intensity 5.90
ab

 6.05
a
   6.06

a
 5.67

b
   0.13 

Grill Flavor Like 5.84 5.87   5.63 5.89   0.12 

Grill Flavor Intensity 5.37 5.46   5.19 5.38   0.14 

                

B. femoris               

Overall Like 5.99 5.75   5.81 5.55   0.14 

Overall Flavor Like 6.04 5.69   5.73 5.61   0.14 

Beefy Flavor Like 6.15 5.85   6.02 5.76   0.14 

Beefy Flavor Intensity 6.08 5.54   5.84 5.77   0.14 

Grill Flavor Like 5.84 5.62   5.52 5.50   0.14 

Grill Flavor Intensity 5.36 5.26   4.94 5.14   0.15 

x
WDGS = Wet distillers grains with solubles         

y
1=dislike extremely, none, or extremely bland, 9=like extremely or extremely 

intense 
ab

Means within the same row with different superscripts are different (P < 0.05) 

 

 

 

 

 

 

 



 

 

 

 

 

Table 4.  The effect of grass type, supplementation, finishing diet, and aging period on the LS means of consumer panel scores when 

separated by aging period for B. femoris steaks 

  Warm-Season Grass   Cool-Season Grass     

  No Supplementation   Supplementation   No Supplementation   Supplementation     

Trait Corn WDGS
x
   Corn WDGS   Corn WDGS   Corn WDGS   SEM 

7 d                           

Overall Like
y
 6.12

a
 5.02

b
   5.89

a
 5.78

ab
   5.92

a
 6.25

a
   6.02

a
 6.17

a
   0.29 

Overall Flavor Like 6.06
a
 5.13

b
   6.04

a
 5.64

ab
   5.83

ab
 6.19

a
   6.24

a
 5.96

a
   0.31 

Beefy Flavor Like 6.08
ab

 5.44
b
   6.02

ab
 6.05

ab
   6.08

ab
 6.41

a
   6.43

a
 6.17

ab
   0.29 

Beefy Flavor 

Intensity 6.11
a
 5.55

a
   5.88

a
 5.72

a
   6.11

a
 6.10

a
   6.24

a
 5.98

a
   0.32 

Grill Flavor Like 5.85 5.22   5.81 5.59   5.59 5.71   6.12 5.55   0.28 

Grill Flavor Intensity 5.38 4.65   5.60 5.16   5.03 5.02   5.41 4.91   0.31 

                            

28 d                           

Overall Like 5.18
cd

 5.48
bcd

   6.28
a
 4.91

d
   5.85

abc
 5.80

abc
   5.71

abc
 6.02

ab
   0.29 

Overall Flavor Like 5.08
c
 5.48

bc
   6.38

a
 5.19

c
   5.64

abc
 5.81

abc
   5.66

abc
 5.95

ab
   0.31 

Beefy Flavor Like 5.39
b
 5.65

b
   6.50

a
 5.47

b
   5.84

ab
 6.00

ab
   5.66

b
 5.92

ab
   0.29 

Beefy Flavor 

Intensity 4.88
c
 5.73

ab
   6.36

a
 5.49

bc
   5.40

bc
 5.96

ab
   5.52

bc
 5.90

ab
   0.32 

Grill Flavor Like 5.14 5.28   6.03 5.21   5.47 5.96   5.85 5.56   0.28 

Grill Flavor Intensity 4.73 4.87   5.77 4.96   5.49 5.35   5.06 5.37   0.31 

x
WDGS = Wet distillers grains with solubles                     

y
1=dislike extremely, none, or extremely bland, 9=like extremely or extremely intense 

abcd
Means within the same treatment combination and the same row with different superscripts are different (P < 0.05) 
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Table 5.  The influence of diet and age on the P-values of lexicon scores for L. dorsi steaks 

  P-Value 

Flavor Grass
x
 Supp 

GrassX

Supp Diet 

GrassX

Diet 

SuppX

Diet 

Grass

XSupp

XDiet Age 

GrassX

Age 

SuppX

Age 

GrassX

SuppX

Age 

DietX

Age 

Grass

XDiet

XAge 

SuppX

DietX

Age 

Grass

XSupp

XDiet

XAge 

Browned 0.75 0.96 0.17 0.20 0.37 0.32 0.40 0.26 0.04 0.53 0.96 0.09 0.35 0.83 0.65 

Bloody 0.05 0.05 0.04 0.43 0.19 0.92 0.28 0.19 0.11 0.32 0.98 0.16 0.87 0.04 0.07 

Fat 0.88 0.59 0.20 0.10 0.69 0.51 0.70 0.21 0.17 0.34 0.92 0.79 0.02 0.41 0.58 

Metal 0.47 0.18 0.39 0.59 0.02 0.64 0.18 0.38 0.02 0.71 0.67 0.20 0.84 0.51 0.21 

Liver 0.03 0.19 0.03 0.56 0.27 0.42 0.80 0.33 0.04 0.88 0.18 0.10 0.71 0.82 0.84 

Green 

Hay 0.58 0.95 0.60 0.98 0.54 0.27 0.50 0.63 0.28 0.08 1.00 0.59 0.22 0.56 0.24 

Umami 0.26 0.96 0.13 0.17 0.45 0.74 0.08 0.30 0.21 0.97 0.30 0.92 0.32 0.56 0.50 

Overly 

Sweet 0.27 0.81 0.57 0.18 0.77 0.75 0.47 0.95 0.86 0.50 0.89 0.92 0.14 0.72 0.88 

Sweet 0.83 0.28 0.34 0.04 0.64 0.37 0.18 0.49 0.55 0.67 0.57 0.78 0.30 0.39 0.47 

Sour 0.84 0.21 0.30 0.25 0.65 0.88 0.16 0.71 0.82 0.47 0.17 0.20 0.40 0.92 0.24 

Salty 0.85 0.70 0.92 0.37 0.63 0.82 0.13 0.08 0.11 0.89 0.71 0.78 0.69 0.81 0.20 

Bitter 0.39 0.85 0.56 0.99 0.68 0.90 0.92 0.29 0.62 0.26 0.79 0.27 0.56 0.39 0.51 

Sour 

Aroma 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

Barnyard 0.90 0.44 0.05 0.88 0.16 0.45 0.42 0.50 0.50 0.97 0.18 0.48 0.58 0.92 0.96 

Burnt 0.34 0.27 0.05 0.52 0.77 0.86 0.19 0.13 0.13 0.33 0.94 0.25 0.81 0.22 0.25 

Heated 

Oil 0.46 0.91 0.09 0.67 0.60 0.64 0.19 0.88 0.88 0.70 0.91 0.84 0.18 0.90 0.40 

x
Grass = Grass type, Supp = Supplementation, Diet = Finishing diet, Age = Aging period 
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Table 5 cont.  The influence of diet and age on the P-values of lexicon scores for L. dorsi steaks 

  P-Value 

Flavor Grass
x
 Supp 

Grass

XSupp Diet 

Grass

XDiet 

Supp

XDiet 

Grass

XSupp

XDiet Age 

Grass

XAge 

Supp

XAge 

Grass

XSupp

XAge 

DietX

Age 

Grass

XDiet

XAge 

Supp

XDiet

XAge 

Grass

XSupp

XDiet

XAge 

Chemical 0.67 0.33 0.64 0.98 0.94 0.97 0.17 0.29 0.54 0.54 0.74 0.55 0.36 0.71 0.79 

Floral 0.79 0.32 0.72 0.72 0.32 0.79 0.10 0.79 0.10 0.72 0.32 0.32 0.72 0.10 0.79 

Green Grass 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

Musty 0.83 0.94 0.11 0.25 0.70 0.25 0.99 0.23 0.19 0.13 0.62 0.35 0.91 0.18 0.77 

Medicinal 0.97 0.99 0.16 0.99 0.95 0.15 0.97 0.15 0.97 0.99 0.95 0.17 0.95 0.15 0.16 

Smoked/ 

Charred 0.55 0.61 0.55 0.55 0.09 0.55 0.61 0.09 0.55 0.61 0.55 0.55 0.09 0.55 0.61 

Smoked 

Wood 0.36 0.04 0.36 0.98 0.26 0.98 0.26 0.92 0.29 0.92 0.29 0.92 0.29 0.92 0.29 

Spoiled 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 

Buttery 0.94 0.48 0.36 0.91 0.89 0.74 0.64 0.74 0.06 0.97 0.36 0.47 0.38 0.13 0.19 

Cooked 

Milk 0.67 0.67 0.20 0.20 0.67 0.67 0.20 0.67 0.20 0.20 0.67 0.67 0.20 0.20 0.67 

Sour Milk 0.74 0.81 0.80 0.28 0.28 0.02 0.62 0.62 0.59 0.52 0.94 0.14 0.36 0.74 0.78 

Refrigerator 

Stale 0.34 0.57 0.08 0.29 0.10 0.04 0.39 0.55 0.08 0.54 0.30 0.60 0.54 0.61 0.93 

Warmed 

over 0.71 0.60 0.77 0.002 0.19 0.71 0.25 0.06 0.80 0.83 0.26 0.31 0.67 0.44 0.79 

Painty 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

Fishy 0.14 0.14 0.81 0.13 0.75 0.15 0.82 0.36 0.37 0.41 0.42 0.37 0.38 0.72 0.71 

Cardboardy 0.97 0.39 0.84 0.49 0.64 0.70 0.72 0.26 0.92 0.03 0.70 0.24 0.37 0.60 0.64 

x
Grass = Grass type, Supp = Supplementation, Diet = Finishing diet, Age = Aging period 
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Table 6. The effect of grass type and aging period and the interaction between supplementation and aging period on the LS means of lexicon scores for 

L. dorsi steaks 

 

Warm-Season Grass 

 

Cool-Season Grass 

   

No 

Supplementation 

 

Supplementation 

  
Trait 7 d 28 d   7 d 28 d   SEM   7 d 28 d   7 d 28 d   SEM 

Browned 1.88
ab

 1.79
ab

 

 

1.65
b
 1.95

a
 

 

0.09 

 

1.74 1.90 

 

1.79 1.84 

 

0.09 

Bloody 1.66 1.68 

 

1.64 1.47 

 

0.06 

 

1.73 1.60 

 

1.56 1.55 

 

0.06 

Fat 1.72 1.71 

 

1.62 1.79 

 

0.07 

 

1.69 1.70 

 

1.66 1.80 

 

0.07 

Metal 1.69
ab

 1.77
a
 

 

1.77
a
 1.62

b
 

 

0.05 

 

1.76 1.73 

 

1.71 1.65 

 

0.05 

Liver 0.13
b
 0.28

a
 

 

0.13
b
 0.07

b
 

 

0.05 

 

0.16 0.21 

 

0.10 0.14 

 

0.05 

Green Hay 0.02 0.01 

 

0.01 0.03 

 

0.02 

 

0.00 0.04 

 

0.03 0.01 

 

0.02 

Umami 0.99 0.97 

 

0.98 1.22 

 

0.11 

 

0.99 1.10 

 

0.99 1.09 

 

0.11 

Overly Sweet 1.04 1.02 

 

0.95 0.96 

 

0.07 

 

1.01 0.96 

 

0.98 1.02 

 

0.07 

Sweet 1.04 0.96 

 

1.01 1.01 

 

0.06 

 

0.98 0.96 

 

1.07 1.00 

 

0.06 

Sour 1.37 1.34 

 

1.37 1.36 

 

0.05 

 

1.38 1.40 

 

1.36 1.30 

 

0.05 

Salty 1.37 1.38 

 

1.30 1.46 

 

0.05 

 

1.33 1.41 

 

1.34 1.43 

 

0.05 

Bitter 1.10 1.17 

 

1.08 1.11 

 

0.04 

 

1.06 1.16 

 

1.12 1.12 

 

0.04 

Sour Aroma 0.000 0.010 

 

0.000 0.000 

 

0.005 

 

0.000 0.000 

 

0.000 0.100 

 

0.005 

Barnyard 0.02 0.02 

 

0.03 0.01 

 

0.01 

 

0.02 0.01 

 

0.03 0.02 

 

0.01 

Burnt 0.17 0.07 

 

0.09 0.09 

 

0.03 

 

0.13 0.11 

 

0.13 0.05 

 

0.03 

Heated Oil 0.04 0.05   0.07 0.07   0.03   0.05 0.07   0.06 0.06   0.03 

ab
Means within the same treatment combination and the same row with different superscripts are different (P < 0.05) 
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Table 6 cont. The effect of grass type and aging period and the interaction between supplementation and aging period on the LS means of 

lexicon scores for L. dorsi steaks 

  

Warm-Season 

Grass   

Cool-Season 

Grass       

No 

Supplementation   Supplementation     

Trait 7 d 28 d   7 d 28 d   SEM   7 d 28 d   7 d 28 d   SEM 

Chemical 0.12 0.13   0.11 0.17   0.04   0.11 0.12   0.12 0.18   0.04 

Floral 0.00 0.03   0.02 0.00   0.01   0.02 0.02   0.00 0.01   0.01 

Green Grass 0.00 0.00   0.01 0.00   0.005   0.01 0.00   0.00 0.00   0.005 

Musty 0.06 0.15   0.10 0.10   0.04   0.05 0.15   0.11 0.10   0.04 

Medicinal 0.03 0.01   0.03 0.01   0.01   0.03 0.01   0.03 0.01   0.01 

Smoked/Charred 0.00 0.02   0.00 0.01   0.01   0.00 0.01   0.00 0.02   0.01 

Smoked Wood 0.01 0.02   0.01 0.00   0.01   0.00 0.00   0.02 0.02   0.01 

Spoiled 0.00 0.02   0.00 0.00   0.01   0.00 0.02   0.00 0.00   0.01 

Buttery 0.06 0.11   0.12 0.06   0.03   0.08 0.07   0.10 0.09   0.03 

Cooked Milk 0.00 0.02   0.01 0.00   0.01   0.00 0.02   0.01 0.00   0.01 

Sour Milk 0.04 0.04   0.04 0.07   0.03   0.04 0.07   0.05 0.04   0.03 

Refrigerator Stale 0.04 0.02   0.03 0.08   0.02   0.04 0.02   0.03 0.08   0.02 

Warmed over 0.10 0.18   0.10 0.21   0.05   0.11 0.21   0.09 0.18   0.05 

Painty 0.00 0.00   0.00 0.01   0.005   0.00 0.01   0.00 0.00   0.005 

Fishy 0.01 0.01   0.02 0.04   0.02   0.02 0.04   0.01 0.01   0.02 

Cardboardy 0.13 0.17   0.12 0.17   0.04   0.10
b
 0.23

a
   0.15

ab
 0.11

b
   0.04 

ab
Means within the same treatment combination and the same row with different superscripts are different 

(P < 0.05)         
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Table 7. The effect of grass type and supplementation on the LS means of lexicon scores for L. dorsi 

steaks 

  Warm-season Grass   Cool-season Grass     

Trait 

No 

Supplementation Supplementation   

No 

Supplementation Supplementation   SEM 

Browned 1.77 1.90   1.87 1.74   0.10 

Bloody 1.78
a
 1.55

b
   1.55

b
 1.56

b
   0.06 

Fat 1.66 1.78   1.73 1.68   0.07 

Metal 1.79 1.68   1.71 1.68   0.05 

Liver 0.30
a
 0.12

b
   0.08

b
 0.12

b
   0.05 

Green 

Hay 0.01 0.02   0.03 0.02   0.02 

Umami 0.90 1.06   1.18 1.02   0.11 

Overly 

Sweet 1.00 1.06   0.96 0.94   0.07 

Sweet 0.94 1.06   1.01 1.02   0.06 

Sour 1.41 1.30   1.37 1.36   0.05 

Salty 1.37 1.38   1.37 1.39   0.05 

Bitter 1.14 1.13   1.08 1.11   0.04 

Sour 

Aroma 0.00 0.009   0.000 0.000   0.005 

Barnyard 0.03
a
 0.01

a
   0.00

b
 0.04

a
   0.01 

Burnt 0.11
ab

 0.14
a
   0.14

a
 0.04

b
   0.02 

Heated 

Oil 0.03 0.07   0.10 0.04   0.03 

ab
Means within the same row with different superscripts are different (P < 0.05) 
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Table 7 cont. The effect of grass type and supplementation on the LS means of lexicon scores for L. dorsi steaks 

  Warm-season Grass   Cool-season Grass     

Trait 

No 

Supplementation Supplementation   

No 

Supplementation Supplementation   SEM 

Chemical 0.12 0.13   0.11 0.17   0.04 

Floral 0.02 0.01   0.02 0.00   0.01 

Green Grass 0.000 0.000   0.009 0.000   0.005 

Musty 0.14 0.08   0.07 0.13   0.04 

Medicinal 0.01 0.03   0.03 0.01   0.01 

Smoked/Charred 0.01 0.01   0.00 0.01   0.01 

Smoked Wood 0.00 0.03   0.00 0.01   0.01 

Spoiled 0.02 0.00   0.00 0.00   0.01 

Buttery 0.06 0.11   0.09 0.08   0.03 

Cooked Milk 0.02 0.00   0.00 0.01   0.01 

Sour Milk 0.04 0.04   0.06 0.05   0.03 

Refrigerator 

Stale 0.05 0.02   0.03 0.08   0.02 

Warmed over 0.14 0.13   0.18 0.14   0.05 

Painty 0.000 0.000   0.009 0.000   0.005 

Fishy 0.02 0.00   0.04 0.02   0.02 

Cardboardy 0.16 0.13   0.17 0.12   0.04 

ab
Means within the same row with different superscripts are different (P < 0.05) 
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Table 8. The effect of grass type and finishing diet and the interaction between supplementation and finishing diet on the LS means of 

lexicon scores for L. dorsi steaks 

  

Warm-season 

Grass   Cool-season Grass       

No 

Supplementation   Supplementation     

Trait Corn WDGS
x
   Corn WDGS   SEM   Corn WDGS

x
   Corn WDGS   SEM 

Browned 1.85 1.81   1.91 1.70   0.10   1.83 1.81   1.92 1.71   0.10 

Bloody 1.68 1.65   1.50 1.62   0.06   1.65 1.69   1.53 1.58   0.06 

Fat 1.76 1.68   1.77 1.64   0.07   1.73 1.66   1.81 1.66   0.07 

Metal 1.77
a
 1.69

ab
   1.63

b
 1.77

a
   0.05   1.74 1.75   1.65 1.70   0.05 

Liver 0.17 0.25   0.11 0.09   0.05   0.19 0.18   0.09 0.16   0.05 

Green Hay 0.02 0.01   0.02 0.03   0.02   0.01 0.03   0.03 0.01   0.02 

Umami 1.01 0.95   1.21 0.99   0.11   1.13 0.95   1.09 0.98   0.11 

Overly Sweet 1.06 0.99   1.01 0.89   0.07   1.02 0.95   1.06 0.94   0.07 

Sweet 1.08 0.92   1.06 0.96   0.06   1.01 0.94   1.13 0.95   0.06 

Sour 1.31 1.40   1.35 1.38   0.05   1.36 1.42   1.30 1.35   0.05 

Salty 1.41 1.34   1.39 1.37   0.05   1.40 1.34   1.40 1.37   0.05 

Bitter 1.14 1.12   1.09 1.11   0.05   1.11 1.11   1.12 1.12   0.05 

Sour Aroma 0.009 0.000   0.000 0.000   0.005   0.000 0.000   0.009 0.000   0.005 

Barnyard 0.03 0.01   0.01 0.03   0.01   0.02 0.01   0.02 0.03   0.01 

Burnt 0.13 0.12   0.11 0.07   0.03   0.13 0.12   0.10 0.07   0.03 

Heated Oil 0.06 0.04   0.07 0.07   0.03   0.06 0.06   0.07 0.05   0.03 
x
WDGS = Wet distillers grains with solubles  

ab
Means within the same treatment combination and the same row with different superscripts are different (P < 0.05)  
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Table 8 cont. The effect of grass type and finishing diet and the interaction between supplementation and finishing diet on the LS 

means of lexicon scores for L. dorsi steaks 

  

Warm-season 

Grass   

Cool-season 

Grass       

No 

Supplementation   Supplementation     

Trait Corn WDGS
x
   Corn WDGS   SEM   Corn WDGS

x
   Corn WDGS   SEM 

Chemical 0.13 0.12   0.14 0.14   0.04   0.11 0.12   0.15 0.15   0.04 

Floral 0.02 0.01   0.00 0.02   0.01   0.02 0.02   0.00 0.01   0.01 

Green Grass 0.000 0.000   0.000 0.009   0.005   0.000 0.009   0.000 0.000   0.005 

Musty 0.08 0.14   3.09 0.11   0.04   0.06 0.14   0.11 0.11   0.04 

Medicinal 0.02 0.02   0.02 0.02   0.01   0.01 0.03   0.03 0.01   0.01 

Smoked/Charred 0.00 0.02   0.01 0.00   0.01   0.00 0.01   0.01 0.01   0.01 

Smoked Wood 0.02 0.01   0.00 0.01   0.01   0.00 0.00   0.02 0.02   0.01 

Spoiled 0.02 0.00   0.00 0.00   0.01   0.02 0.00   0.00 0.00   0.01 

Buttery 0.08 0.09   0.09 0.09   0.03   0.08 0.07   0.09 0.10   0.03 

Cooked Milk 0.02 0.00   0.01 0.00   0.01   0.02 0.00   0.01 0.00   0.01 

Sour Milk 0.04 0.04   0.09 0.02   0.03   0.11
a
 0.00

b
   0.03

ab
 0.06

ab
   0.03 

Refrigerator 

Stale 0.00 0.06   0.06 0.05   0.02   0.00
b
 0.07

a
   0.06

ab
 0.04

ab
   0.02 

Warmed over 0.08 0.20   0.03 0.28   0.05   0.06 0.26   0.05 0.22   0.05 

Painty 0.000 0.000   0.009 0.000   0.005   0.009 0.000   0.000 0.000   0.005 

Fishy 0.00 0.02   0.02 0.05   0.02   0.01 0.05   0.01 0.01   0.02 

Cardboardy 0.14 0.15   0.12 0.17   0.04   0.16 0.17   0.11 0.15   0.04 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment combination and the same row with different superscripts are different (P < 0.05) 
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Table 9.  The effect of grass type, supplementation, finishing diet, and aging period on the LS means for lexicon scores for L. dorsi steaks 

  Grass Type     Supplementation     Finishing Diets     Aging Period   

Trait 

Warm-

season 

Cool-

season SEM   No Yes SEM   Corn WDGS
x
 SEM   7 d 28 d SEM 

Browned 1.83 1.80 0.07   1.82 1.82 0.07   1.88 1.76 0.07   1.76 1.87 0.07 

Bloody 1.67
a
 1.56

b
 0.04   1.67

a
 1.56

b
 0.04   1.59 1.63 0.04   1.65 1.57 0.04 

Fat 1.72 1.71 0.05   1.70 1.73 0.05   1.77 1.66 0.05   1.67 1.75 0.05 

Metal 1.73 1.70 0.04   1.75 1.68 0.04   1.70 1.73 0.04   1.73 1.69 0.04 

Liver 0.21
a
 0.10

b
 0.03   0.19 0.12 0.04   0.14 0.17 0.04   0.13 0.18 0.03 

Green 

Hay 0.01 0.02 0.01   0.02 0.02 0.01   0.02 0.02 0.01   0.01 0.02 0.01 

Umami 0.98 1.10 0.07   1.04 1.04 0.07   1.11 0.97 0.08   0.99 1.09 0.07 

Overly 

Sweet 1.03 0.95 0.05   0.98 1.00 0.05   1.04 0.94 0.05   0.99 0.99 0.05 

Sweet 1.00 1.01 0.04   0.97 1.04 0.04   1.07
a
 0.94b 0.04   1.03 0.98 0.04 

Sour 1.35 1.37 0.04   1.39 1.33 0.04   1.33 1.39 0.04   1.37 1.35 0.04 

Salty 1.37 1.38 0.03   1.37 1.39 0.03   1.40 1.36 0.03   1.34 1.42 0.03 

Bitter 1.13 1.10 0.03   1.11 1.12 0.03   1.12 1.11 0.03   1.09 1.14 0.03 

Sour 

Aroma 0.005 0.000 0.003   0.000 0.005 0.003   0.005 0.000 0.003   0.000 0.005 0.003 

Barnyard 0.02 0.02 0.01   0.01 0.02 0.01   0.02 0.02 0.01   0.02 0.01 0.01 

Burnt 0.12 0.09 0.02   0.12 0.09 0.02   0.12 0.09 0.02   0.13 0.08 0.02 

Heated 

Oil 0.05 0.07 0.02   0.06 0.06 0.02   0.07 0.05 0.02   0.06 0.06 0.02 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment and the same row with different superscripts are different (P < 0.05) 
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Table 9 cont.  The effect of grass type, supplementation, finishing diet, and aging period on the LS means for lexicon scores for L. dorsi steaks 

  Grass Type     Supplementation     Finishing Diets     Aging Period   

Trait 

Warm-

season 

Cool-

season SEM   No Yes SEM   Corn WDGS
x
 SEM   7 d 28 d SEM 

Chemical 0.13 0.14 0.03   0.12 0.15 0.03   0.13 0.13 0.03   0.11 0.15 0.03 

Floral 0.010 0.010 0.010   0.020 0.004 0.010   0.010 0.010 0.010   0.010 0.010 0.010 

Green Grass 0.000 0.005 0.003   0.005 0.000 0.003   0.000 0.005 0.003   0.005 0.000 0.003 

Musty 0.11 0.10 0.03   0.10 0.11 0.03   0.08 0.12 0.03   0.08 0.13 0.03 

Medicinal 0.02 0.02 0.01   0.02 0.02 0.01   0.02 0.02 0.01   0.03 0.01 0.01 

Smoked/Charred 0.009 0.004 0.006   0.005 0.009 0.006   0.004 0.009 0.006   0.00 0.013 0.006 

Smoked Wood 0.01 0.01 0.01   0.00
b
 0.02

a
 0.01   0.01 0.01 0.01   0.01 0.01 0.01 

Spoiled 0.01 0.00 0.01   0.01 0.00 0.01   0.01 0.00 0.01   0.00 0.01 0.01 

Buttery 0.08 0.09 0.02   0.08 0.10 0.02   0.08 0.09 0.02   0.09 0.08 0.02 

Cooked Milk 0.009 0.004 0.007   0.009 0.004 0.007   0.013 0.000 0.007   0.004 0.009 0.007 

Sour Milk 0.04 0.05 0.02   0.05 0.05 0.02   0.07 0.03 0.02   0.04 0.06 0.02 

Refrigerator 

Stale 0.03 0.05 0.02   0.04 0.05 0.02   0.03 0.05 0.02   0.04 0.05 0.02 

Warmed over 0.14 0.16 0.03   0.16 0.14 0.03   0.06
b
 0.24

a
 0.04   0.10 0.19 0.04 

Painty 0.000 0.004 0.003   0.004 0.000 0.003   0.004 0.000 0.003   0.000 0.004 0.003 

Fishy 0.01 0.03 0.01   0.03 0.01 0.01   0.01 0.03 0.01   0.01 0.03 0.01 

Cardboardy 0.15 0.15 0.03   0.16 0.13 0.03   0.13 0.16 0.03   0.12 0.17 0.03 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment and the same row with different superscripts are different (P < 0.05) 
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Table 10.  The influence of diet and age on the P-values of lexicon scores for B. femoris steaks 

  P-Value 

Flavor Grass
x
 Supp 

GrassX

Supp Diet 

Grass

XDiet 

Supp

XDiet 

Grass

XSupp

XDiet Age 

Grass

XAge 

Supp

XAge 

Grass

XSupp

XAge 

DietX

Age 

Grass

XDiet

XAge 

Supp

XDiet

XAge 

Grass

XSupp

XDiet

XAge 

Browned 0.04 0.16 0.43 0.49 0.79 0.87 0.19   0.19 0.32 0.79 0.16 0.16 0.71 0.13 0.56 

Bloody 0.02 0.21 0.08 0.31 0.61 0.80 0.80   0.80 0.45 0.08 0.08 0.003 1.00 0.80 0.45 

Fat 1.00 0.72 0.72 0.28 0.28 0.63 1.00   0.55 0.90 0.63 0.15 0.81 0.09 0.28 0.72 

Metal 0.09 0.26 0.03 0.89 0.39 0.16 0.89   0.57 0.67 0.03 0.39 0.05 0.89 0.89 1.00 

Liver 0.0004 0.03   0.005 0.32 1.00 1.00 0.07   0.16 0.20 0.32 0.26 0.89 0.16 0.78 0.89 

Green 

Hay 0.43 0.19 0.79 0.07 0.19 0.43 0.79   0.07 0.19 0.43 0.79 0.02 0.43 0.19 0.79 

Umami 0.27 0.89 0.36 0.36 0.19 0.67 0.31   0.60 0.67 0.74 0.47 0.81 0.81 0.81 0.74 

Overly 

Sweet 0.95 0.67 0.50 0.24 0.95 0.95 0.42   0.19 0.95 0.19 0.29 0.67 0.76 0.35 0.76 

Sweet 0.23 0.29 0.23 0.18 0.36 0.72 0.43   0.23 0.94 0.36 0.43 0.72 0.72 0.10 0.94 

Sour 0.01 0.03 0.60 0.82 0.26 0.94 0.41   0.09 0.20 0.20 0.60 0.71 0.71 0.71 0.41 

Salty 0.34 0.93 0.03 0.34 0.26 0.93 0.43   0.10 0.93 0.79 0.19 0.79 0.93 0.79 0.43 

Bitter 0.94 0.32 0.70 0.94 0.19 0.82 0.25 <0.0001 0.70 0.49 0.70 0.49 0.82 0.49 0.94 

Sour 

Aroma 0.21 0.21 0.21 0.53 0.53 0.53 0.53   0.21 0.21 0.21 0.21 0.53 0.53 0.53 0.53 

Barnyard 0.62 0.32 0.62 0.62 0.32 0.13 0.32   0.62 0.32 0.62 1.00 0.32 0.62 1.00 0.62 

Burnt 0.27 0.46 0.85 0.46 0.20 0.85 0.46   0.10 0.27 0.46 0.58 0.27 0.85 0.85 0.71 

Heated 

Oil 0.52 0.20 0.52 0.28 0.20 0.52 0.09   0.28 1.00 0.83 0.20 0.39 0.83 1.00 0.28 

x
Grass = Grass type, Supp = Supplementation, Diet = Finishing diet, Age = Aging period 
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Table 10 cont.  The influence of diet and age on the P-values of lexicon scores for B. femoris steaks 

  P-Value 

Flavor Grass
x
 Supp 

Grass

XSupp Diet 

Grass

XDiet 

Supp

XDiet 

GrassX

SuppX

Diet Age 

Grass

XAge 

Supp

XAge 

Grass

XSupp

XAge 

DietX

Age 

Grass

XDiet

XAge 

Supp

XDiet

XAge 

Grass

XSupp

XDiet

XAge 

Chemical 0.66 0.08 0.38 0.66 1.00 0.38 0.38 0.27 0.83 0.27 0.05 0.12 0.83 0.83 0.83 

Beet 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

Green Grass 0.16 0.48 0.16 0.16 0.48 1.00 0.48 1.00 0.48 1.00 0.48 0.48 1.00 0.48 0.16 

Musty 0.17 0.61 0.31 0.61 0.73 0.23 0.09 0.06 0.09 0.61 0.50 0.61 0.17 0.87 0.50 

Medicinal 1.00 0.19 0.08 0.67 1.00 0.67 1.00 0.39 0.19 0.39 0.67 1.00 0.67 1.00 0.67 

Petroleum 0.06 0.21 0.21 1.00 1.00 0.23 0.23 0.21 0.21 0.53 0.53 0.53 0.53 1.00 1.00 

Smoked/ 

Charred 0.87 0.27 0.43 0.27 0.87 0.87 0.63 0.63 0.15 0.43 0.63 0.63 0.87 0.43 0.63 

Smoked 

Wood 0.16 0.16 0.16 1.00 1.00 1.00 1.00 0.16 0.16 0.16 0.16 1.00 1.00 1.00 1.00 

Dairy 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

Buttery 0.84 0.16 0.54 0.54 0.16 0.07 0.31 0.84 0.84 0.84 0.84 0.54 0.31 0.31 0.31 

Cooked 

Milk 0.65 0.37 0.65 1.00 0.65 1.00 0.18 0.65 0.37 0.65 0.37 0.18 1.00 0.65 0.37 

Sour Milk 1.00 0.005 0.51 0.13 0.51 0.66 0.66 0.05 0.83 0.08 0.66 0.66 0.19 0.28 0.28 

Refrigerator 

Stale 0.16 0.84 0.54 0.84 0.31 0.84 0.54 0.07 0.54 0.31 0.84 0.31 0.16 0.31 0.84 

Warmed 

over 0.53 0.05 0.89 0.67 0.74 0.81 0.17 0.23 0.89 0.74 0.36 0.96 0.67 0.89 0.60 

Soapy 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

Painty 0.07 0.71 0.27 0.46 0.46 0.46 1.00 0.01 0.07 0.71 0.71 0.46 1.00 1.00 1.00 

Fishy 0.50 0.17 0.31 1.00 0.09 0.31 1.00 0.09 1.00 1.00 0.31 0.04 0.02 0.73 1.00 

Cardboardy 0.15 0.52 0.52 0.42 0.87 0.75 0.20 0.33 0.75 0.87 0.08 0.52 0.33 0.87 0.87 

x
Grass = Grass type, Supp = Supplementation, Diet = Finishing diet, Age = Aging period 
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Table 11. The effect of supplementation and aging period and the interaction between finishing diet and aging period on the LS 

means for lexicon scores for B. femoris steaks 

  

No 

Supplementation   Supplementation       Corn   WDGS
x
     

Trait 7 d 28 d   7 d 28 d   SEM   7 d 28 d   7 d 28 d   SEM 

Browned 1.63 1.76   1.77 1.85   0.08   1.62 1.83   1.78 1.78   0.08 

Bloody 1.68 1.78   1.72 1.58   0.07   1.83
a
 1.62

bc
   1.57

c
 1.75

ab
   0.07 

Fat 1.70 1.71   1.69 1.77   0.07   1.74 1.77   1.65 1.71   0.07 

Metal 1.92
ab

 2.08
a
   1.98

ab
 1.88

b
   0.06   2.00

a
 1.92

a
   1.89

a
 2.04

a
   0.06 

Liver 0.27 0.41   0.20 0.23   0.06   0.21 0.28   0.26 0.35   0.06 

Green 

Hay 0.008 0.050   0.000 0.017   0.016   0.008
b
 0.000

b
   0.000

b
 0.067

a
   0.016 

Umami 0.79 0.72   0.78 0.76   0.09   0.83 0.77   0.73 0.71   0.09 

Overly 

Sweet 0.98 0.81   0.93 0.93   0.07   1.01 0.89   0.90 0.84   0.07 

Sweet 0.90 0.78   0.91 0.89   0.06   0.93 0.88   0.88 0.78   0.06 

Sour 1.43 1.59   1.38 1.40   0.06   1.42 1.49   1.38 1.50   0.06 

Salty 1.43 1.36   1.43 1.34   0.05   1.46 1.37   1.40 1.33   0.05 

Bitter 1.31 1.57   1.29 1.48   0.05   1.28 1.54   1.32 1.50   0.05 

Sour 

Aroma 0.000 0.000   0.000 0.033   0.013   0.000 0.025   0.000 0.008   0.013 

Barnyard 0.02 0.02   0.03 0.04   0.02   0.01 0.03   0.03 0.03   0.02 

Burnt 0.14 0.18   0.14 0.25   0.05   0.13 0.26   0.15 0.18   0.05 

Heated 

Oil 0.07 0.10   0.11 0.16   0.04   0.09 0.17   0.08 0.09   0.04 

x
WDGS = Wet distillers grains with solubles 

abc
Means within the same treatment combination and the same row with different superscripts are different (P < 0.05) 
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Table 11 cont. The effect of supplementation and aging period and the interaction between finishing diet and aging period on the LS means 

for lexicon scores for B. femoris steaks 

  

No 

Supplementation   Supplementation       Corn   WDGS
x
     

Trait 7 d 28 d   7 d 28 d   SEM   7 d 28 d   7 d 28 d   SEM 

Chemical 0.20 0.20   0.09 0.18   0.04   0.17 0.15   0.13 0.23   0.04 

Beet 0.000 0.000   0.000 0.008   0.004   0.000 0.000   0.000 0.008   0.004 

Green Grass 0.017 0.017   0.008 0.008   0.012   0.000 0.008   0.025 0.017   0.012 

Musty 0.18 0.30   0.18 0.25   0.05   0.18 0.30   0.18 0.25   0.05 

Medicinal 0.03 0.03   0.04 0.08   0.02   0.04 0.06   0.03 0.05   0.02 

Petroleum 0.000 0.008   0.008 0.033   0.013   0.000 0.025   0.008 0.017   0.013 

Smoked/ 

Charred 0.05 0.06   0.10 0.07   0.03   0.07 0.04   0.08 0.08   0.03 

Smoked 

Wood 0.000 0.000   0.017 0.000   0.006   0.008 0.000   0.008 0.000   0.006 

Dairy 0.000 0.000   0.008 0.000   0.004   0.008 0.000   0.000 0.000   0.004 

Buttery 0.03 0.03   0.06 0.06   0.02   0.04 0.06   0.04 0.03   0.02 

Cooked 

Milk 0.03 0.02   0.04 0.04   0.02   0.05 0.02   0.03 0.04   0.02 

Sour Milk 0.08 0.22   0.03 0.04   0.04   0.03 0.09   0.08 0.17   0.04 

Refrigerator 

Stale 0.03 0.05   0.02 0.08   0.02   0.03 0.05   0.02 0.08   0.02 

Warmed 

over 0.58 0.72   0.44 0.52   0.09   0.49 0.60   0.53 0.63   0.09 

Soapy 0.000 0.017   0.000 0.000   0.008   0.000 0.000   0.000 0.017   0.008 

Painty 0.01 0.08   0.01 0.06   0.02   0.01 0.05   0.01 0.08   0.02 

Fishy 0.04 0.08   0.01 0.05   0.02   0.00
b
 0.09

a
   0.05

ab
 0.04

ab
   0.02 

Cardboardy 0.17 0.23   0.21 0.25   0.05   0.15 0.23   0.23 0.24   0.05 

x
WDGS = Wet distillers grains with solubles 

abc
Means within the same treatment combination and the same row with different superscripts are different (P < 0.05) 
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Table 12. The effect of grass type and supplementation on the LS means of lexicon scores for B. femoris 

steaks 

  Warm-season Grass   Cool-season Grass     

Trait 

No 

Supplementation Supplementation   

No 

Supplementation Supplementation   SEM 

Browned 1.58 1.76   1.81 1.86   0.08 

Bloody 1.58 1.76   1.81 1.86   0.08 

Fat 1.69 1.74   1.72 1.72   0.07 

Metal 2.11
a
 1.92

b
   1.88

b
 1.94

b
   0.06 

Liver 0.53
a
 0.23

b
   0.15

b
 0.19

b
   0.06 

Green 

Hay 0.03 0.00   0.03 0.02   0.02 

Umami 0.67 0.76   0.84 0.78   0.09 

Overly 

Sweet 0.88 0.95   0.92 0.90   0.07 

Sweet 0.77 0.90   0.91 0.90   0.06 

Sour 1.60 1.45   1.42 1.33   0.06 

Salty 1.32
b
 1.42

ab
   1.47

a
 1.36

ab
   0.05 

Bitter 1.43 1.39   1.45 1.38   0.05 

Sour 

Aroma 0.00 0.03   0.00 0.00   0.01 

Barnyard 0.03 0.03   0.01 0.03   0.02 

Burnt 0.13 0.18   0.19 0.22   0.05 

Heated 

Oil 0.06 0.13   0.11 0.13   0.04 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same row with different superscripts are different (P < 0.05) 
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Table 12 cont. The effect of grass type and supplementation on the LS means of lexicon scores for B. femoris 

steaks 

  Warm-season Grass   Cool-season Grass     

Trait 

No 

Supplementation Supplementation   

No 

Supplementation Supplementation   SEM 

Chemical 0.23 0.13   0.18 0.14   0.04 

Beet 0.000 0.008   0.000 0.000   0.004 

Green Grass 0.000 0.008   0.033 0.008   0.012 

Musty 0.30 0.23   0.18 0.21   0.05 

Medicinal 0.02 0.08   0.05 0.04   0.02 

Petroleum 0.00 0.00   0.01 0.04   0.01 

Smoked/Charred 0.07 0.08   0.04 0.09   0.03 

Smoked Wood 0.00 0.02   0.00 0.00   0.01 

Dairy 0.000 0.008   0.000 0.000   0.004 

Buttery 0.03 0.07   0.03 0.05   0.02 

Cooked Milk 0.03 0.05   0.03 0.03   0.02 

Sour Milk 0.13 0.05   0.16 0.03   0.04 

Refrigerator 

Stale 0.03 0.03   0.05 0.07   0.02 

Warmed over 0.62 0.46   0.68 0.50   0.09 

Soapy 0.02 0.00   0.00 0.00   0.01 

Painty 0.01 0.03   0.08 0.04   0.02 

Fishy 0.06 0.05   0.07 0.01   0.02 

Cardboardy 0.22 0.28   0.18 0.18   0.05 

x
WDGS = Wet distillers grains with solubles 
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Table 13.  The effect of grass type, supplementation, finishing diet, and ageing period on the LS means for lexicon scores for B. 

femoris steaks 

  Grass Type     Supplementation     Finishing Diets     Aging Period   

Trait 

Warm-

season 

Cool-

season SEM   No Yes SEM   Corn WDGS
x
 SEM   7 d 28 d SEM 

Browned 1.67
b
 1.83

a
 0.06   1.70 1.81 0.06   1.73 1.78 0.06   1.70 1.80 0.06 

Bloody 1.77
a
 1.62

b
 0.05   1.73 1.65 0.05   1.73 1.66 0.05   1.7 1.68 0.05 

Fat 1.72 1.72 0.05   1.70 1.73 0.05   1.75 1.68 0.05   1.70 1.74 0.05 

Metal 2.01 1.91 0.04   2.00 1.93 0.04   1.96 1.97 0.04   1.95 1.98 0.04 

Liver 0.38
a
 0.17

b
 0.05   0.34

a
 0.21

b
 0.05   0.25 0.30 0.04   0.23 0.32 0.04 

Green 

Hay 0.013 0.025 0.011   0.029 0.008 0.011   0.004 0.033 0.011   0.004 0.033 0.011 

Umami 0.71 0.81 0.06   0.75 0.77 0.06   0.80 0.72 0.06   0.78 0.74 0.06 

Overly 

Sweet 0.91 0.91 0.05   0.90 0.93 0.05   0.95 0.87 0.05   0.95 0.87 0.05 

Sweet 0.83 0.90 0.04   0.84 0.90 0.04   0.91 0.83 0.04   0.90 0.83 0.04 

Sour 1.53
a
 1.37

b
 0.04   1.51

a
 1.39

b
 0.04   1.45 1.44 0.04   1.40 1.50 0.04 

Salty 1.37 1.41 0.03   1.39 1.39 0.03   1.41 1.37 0.03   1.43 1.35 0.03 

Bitter 1.41 1.41 0.04   1.44 1.38 0.04   1.41 1.41 0.04   1.30
b
 1.52

a
 0.04 

Sour 

Aroma 0.017 0.000 0.009   0.000 0.017 0.009   0.013 0.004 0.009   0.000 0.017 0.009 

Barnyard 0.03 0.02 0.01   0.02 0.03 0.01   0.02 0.03 0.01   0.02 0.03 0.01 

Burnt 0.15 0.20 0.03   0.16 0.20 0.03   0.20 0.16 0.03   0.14 0.22 0.03 

Heated 

Oil 0.10 0.12 0.03   0.08 0.13 0.03   0.13 0.09 0.03   0.09 0.13 0.03 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment and the same row with different superscripts are different (P < 0.05) 
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Table 13 cont.  The effect of grass type, supplementation, finishing diet, and ageing period on the LS means for lexicon scores for B. femoris 

steaks 

  Grass Type     Supplementation     Finishing Diets     Aging Period   

Trait 

Warm-

season 

Cool-

season SEM   No Yes SEM   Corn WDGS
x
 SEM   7 d 28 d SEM 

Chemical 0.18 0.16 0.03   0.20 0.13 0.03   0.16 0.18 0.03   0.15 0.19 0.03 

Beet 0.004 0.000 0.003   0.000 0.004 0.003   0.000 0.004 0.003   0.000 0.004 0.003 

Green Grass 0.004 0.020 0.008   0.017 0.008 0.008   0.004 0.021 0.008   0.013 0.013 0.008 

Musty 0.26 0.20 0.03   0.24 0.22 0.03   0.24 0.22 0.03   0.18 0.28 0.03 

Medicinal 0.05 0.05 0.01   0.03 0.06 0.01   0.05 0.04 0.01   0.04 0.05 0.01 

Petroleum 0.000 0.025 0.009   0.004 0.021 0.009   0.013 0.013 0.009   0.004 0.021 0.009 

Smoked/ 

Charred 0.07 0.07 0.02   0.05 0.08 0.02   0.05 0.08 0.02   0.08 0.06 0.02 

Smoked 

Wood 0.008 0.000 0.004   0.00 0.008 0.004   0.004 0.004 0.004   0.008 0.000 0.004 

Dairy 0.004 0.000 0.003   0.000 0.004 0.003   0.004 0.000 0.003   0.004 0.000 0.003 

Buttery 0.05 0.04 0.01   0.03 0.06 0.01   0.05 0.04 0.01   0.04 0.05 0.01 

Cooked 

Milk 0.04 0.03 0.01   0.03 0.04 0.01   0.030 0.03 0.01   0.04 0.03 0.01 

Sour Milk 0.09 0.09 0.03   0.15
a
 0.04

b
 0.03   0.06 0.12 0.03   0.05

b
 0.13

a
 0.03 

Refrigerator 

Stale 0.03 0.06 0.01   0.04 0.05 0.01   0.04 0.05 0.01   0.03 0.06 0.01 

Warmed 

over 0.54 0.59 0.06   0.65
a
 0.48

b
 0.06   0.55 0.58 0.06   0.51 0.62 0.06 

Soapy 0.008 0.000 0.006   0.008 0.000 0.006   0.000 0.008 0.006   0.000 0.008 0.006 

Painty 0.02 0.06 0.02   0.04 0.03 0.02   0.03 0.05 0.02   0.01
b
 0.07

a
 0.02 

Fishy 0.05 0.04 0.02   0.06 0.03 0.02   0.05 0.05 0.02   0.03 0.07 0.02 

Cardboardy 0.25 0.18 0.04   0.20 0.23 0.04   0.19 0.23 0.04   0.19 0.24 0.04 

x
WDGS = Wet distillers grains with solubles 

ab
Means within the same treatment and the same row with different superscripts are different (P < 0.05) 
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Abstract 

 The objective of this study was to investigate the relationships of biochemical 

constituents to consumer flavor like ratings and specific flavor notes in two different 

muscles from cattle fed different diets.  Biochemical constituents of the meat were 

separated into five distinct groupings- neutral lipid fatty acids, phospholipid fatty acids, 

minerals, amino acids, and composition (pH, moisture, fat, protein, ash, total 

carbohydrates, and cooking loss)- and analyzed using the principle component procedure.  

The first two principle components were used to determine the regression coefficients of 

the biochemical constituents for consumer flavor ratings and flavor notes.  In L. dorsi 

steaks phospholipid principle component (PC) 1, mineral PC 2, and amino acid PC1 were 

related (P < 0.15) to overall flavor like, beefy flavor like, and grill flavor like scores 

while neutral lipid PC 1 was related (P < 0.15) to overall like, overall flavor like, grill 

flavor like, and grill flavor intensity scores.  Mineral PC 2 and meat aging duration 

greatly influenced (P < 0.15) overall like, overall flavor like, beefy flavor like, and beefy 

flavor intensity in B. femoris steaks.  City contributed (P < 0.15) to beefy flavor like, 

beefy flavor intensity, and grill flavor like.  In L. dorsi steaks, lexicon traits browned 

(positive) and floral (negative) were significant (P < 0.15) factors influencing overall like, 

overall flavor like, beefy flavor like, beefy intensity like, grill flavor like, and grill flavor 

intensity.  The lexicon trait burnt was a significant (P < 0.15) factor in all of the consumer 

sensory trait equations for B. femoris steaks with refrigerator stale and buttery 

contributing (P < 0.15) to overall like, overall flavor like, beefy flavor like, beefy flavor 

intensity, and grill flavor intensity.  Lexicon traits listed were also related to the meat 
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components.  For L. dorsi steaks, amino acid PC 1 influenced (P < 0.15) browned, liver, 

umami, overly sweet, salty, bitter, barnyard, heated oil, floral, and buttery.  Interestingly, 

amino acid PC 1 was also a significant influence (P < 0.15) on a majority of the consumer 

panel traits.  In contrast, mineral PC 2 of B. femoris steaks contributed to a majority of 

consumer traits but had no effect (P > 0.15) on any of the lexicon traits that were found to 

influence consumer scores.  Neutral lipid PC 1, phospholipid PC 1, mineral PC 1, amino 

acid PC 1, and composition PC 1 did not influence (P > 0.15) any of the lexicon traits 

that related to consumer ratings.  While biochemical constituents could significantly 

influence consumer flavor ratings and flavor notes, flavor notes had the strongest 

relationships with consumer flavor ratings. 

Keywords:  beef, beef lexicon, consumer scores, diet, regression coefficients 

 

Introduction 

 Flavor and tenderness are the major determinants in eating pleasure when it 

comes to beef.  Even the smallest change in sensory ratings, including flavor and 

tenderness, could greatly change consumers overall acceptance (Platter et al., 2003).  

Consumers’ acceptance can then translate into increased profit.  Feuz and Umberger 

(2001) found that consumers were willing to pay at least an additional $1.30 per pound 

for a steak they thought had a good flavor compared to a less desirable steak.  

  There are many different biochemical constituents of meat that influence flavor.  

One way cooked meat gets its unique flavor is through the maillard reaction, which 

occurs when amino acid compounds react with carbonyl groups of reducing sugars in the 



189 

 

 

presence of heat, along with the degradation of fats while cooking (Mottram, 1998, 

Calkins and Hodgen, 2007).  When cysteine, an amino acid, and ribose, a 

sugar/carbohydrate, react with each under heating many aromatic volatiles are formed 

(Farmer et al., 1989) creating unique flavor and aromas.  Larick and Turner (1990) and 

Melton et al. (1982) were able to identify specific FA that also promoted a desirable 

cooked beef flavor when their presence was increased, such as palmitoleic acid (C16:1)  

and oleic acid (C18:1).  

 Contrasting findings have occurred when minerals are studied.  Some report an 

increase in iron content also increased livery off-flavor (Yancey et al., 2006), while 

others found the exact opposite (Jenschke et al., 2007).  In addition, Meynier and 

Mottram (1995) reported different flavor notes were observed when pH changed.  Aging 

of beef may also be responsible for some flavor differences.  As meat ages, lipids (i.e. 

fatty acids (FA)) are oxidized, creating unique flavors.  Smith et al. (1978) and Campo et 

al. (1999) reported that aging meat up to 11 d significantly (P < 0.05) increased flavor 

desirability.  

 This study investigated the relationship of biochemical constituents to consumer 

flavor ratings and specific flavor notes in two different muscles from cattle fed different 

diets.  Following a simulated retail display, flavor differences were identified and the 

various biochemical components and flavor notes responsible for these differences were 

studied.    
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Materials and Methods 

Diets 

 All protocols performed in this study were approved by the University of 

Nebraska-Lincoln Institutional Animal Care and Use Committee.  Cattle were fed in a 

2x2x2 factorial design.  Crossbred steers (n = 64) were backgrounded on either warm-

season grasses (i.e. bluestem and switch grass) at the Barta Ranch in Western Nebraska 

or on cool-season (i.e. brome and bluegrass) pastures in Ithaca, NE for 177 d, shortly 

after weaning.  Within each pasture, half of the cattle were supplemented with 0.6 kg 

WDGS/kg body weight/ day for energy.  At the end of the grazing period, all cattle were 

transported to the University of Nebraska-Lincoln’s research feedlot in Ithaca, NE.  

While in the feedlot, half of each pasture and supplementation treatments were finished 

on an all-corn diet while the other half were fed corn with WDGS at a 35% inclusion rate 

(DM basis). Cattle were on feed for 119 days and fed to an average live weight of 1,427 

lbs.      

Harvest 

 At the end of the feedlot period, cattle were transported and harvested at the 

Greater Omaha Packing (Omaha, NE).  Forty-eight carcasses grading either USDA 

Choice (n = 43) or USDA Select (n = 5), 6 from each treatment combination, were 

selected.  Strip loins (Longissimus dorsi; IMPS #180, NAMP, 2007) and bottom round 

flats (Biceps femoris; IMPS #171B, NAMP, 2007) were collected from each side of the 

carcass.  Only ten L. dorsi muscles were collected from the cool-season grass, 

supplementation provided, and finished on WDGS treatment because two L. dorsi 

a a 
b b 
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muscles (one from each side) were lost within Greater Omaha Packing Plant.  Subprimals 

from the left side of the carcass were aged under vacuum for 7 d while subprimals from 

the right side were aged under vacuum 28 d at 2°C.  Upon fabrication, five steaks were 

cut from each subprimal.    

Sample collection 

 The first steak, cut 1.25 cm thick, was used for all lab analyses.  The second steak, 

also 1.25 cm thick, was used as a back-up for lab analyses.  Both steaks were vacuumed 

packaged and frozen at -20°C for approximately 2 months.  Before any lab procedures 

were conducted, all lab steaks had any subcutaneous fat and epimysial tissue removed 

and were cut into cubes.  The cubes were flash frozen in liquid nitrogen, powdered using 

a Waring blender (Waring Commercial, model 51BL32, Torring, CT), and stored at -

80°C for several weeks until further lab analyses.  All lab analyses were conducted on 

powdered samples.  Fat, protein, ash, amino acid, mineral, and fatty acid analysis were 

only conducted on 7 d aged steaks while pH, moisture, non-heme iron, heme iron, and 

total carbohydrate analysis were conducted on both 7 and 28 d aged steaks.         

 The third steak, cut 2.54 cm thick, was placed on a Styrofoam tray, wrapped with 

PVC overwrap film, and placed under simulated retail display for 7 d for use by a beef 

lexicon panel.  Steaks 4 and 5 were cut 2.54 cm thick, placed on a Styrofoam tray, 

wrapped with PVC overwrap film, and placed under simulated retail display at 2°C for 7 

d.  These two steaks were used for consumer panels.  Strip loin steaks were packaged as 

two steaks per tray.  Steaks on the same tray were from animals that received identical 

feeding treatments so as to prevent any possible contamination or influence.  At the end 
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of retail display, steaks were vacuumed packaged and frozen at -20°C for two months 

until further use. 

Retail Display 

 All of the trays were displayed on a table in a 2°C cooler and were constantly 

exposed to warm white fluorescence lighting (PHILIPS F32T8/TL741 ALTO 700 Series, 

32 WATT B7, Royal Philips Electronics, Amsterdam, Netherlands) at 1000 to 1800 lux 

in order to simulate retail display conditions.  Every day, packages were randomly 

relocated to minimize any effects due to location.  After 7 days, steaks were vacuumed 

packaged and frozen until further analysis.   

pH   

 To determine ultimate pH, duplicate 10 g powdered samples from each steak were 

homogenized with 90 mL of double distilled water using a Polytron homogenizer 

(POLYTRON Kinimatica CH-6010, Switzerland).  The pH was determined using an 

Orion 4 STAR pH ISE Bench-top meter (Thermo Electron Corporation, Waltham, MA) 

calibrated using a 7.0 and 4.0 buffer.  The pH probe was rinsed with double distilled 

water and wiped dry with a Kimwipe (Kimberly-Clark Professional, Roswell, GA) 

between every sample.  

Proximate Analysis 

 Moisture and ash were measured using a LECO Thermogravimetric Analyzer 

(LECO Corporation, model 604-100-400, St. Joseph, MI) and fat was measured by ether 

extraction using the Soxhlet procedure (AOAC, 1990).  Protein was determined by 

difference.   
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Total Carbohydrates   

Samples were prepared by homogenizing 0.5 g of powdered meat with 20 mL of 

80% ethanol in a 50 mL centrifuge tube in duplicates.  Samples were stored in a 2°C 

cooler until further testing, at least one hour later.  Upon analysis, tubes were centrifuged 

at 783 RCF (g) for 5 min.  A 1 mL aliquot of sample containing <0.1 mg/mL of 

carbohydrate was removed and added to a new tube following the procedures of Dubois 

et al. (1956).  To the new tubes, 50 μL of 80% phenol and 2.5 mL of concentrated 

sulfuric acid were added and vortexed immediately.  After 10 min, samples were moved 

to a cool water bath for 10 to 25 min and read on a Cary 100 Varian UV/Visual 

Spectrophotometer (Varian Instruments, Sugarland, TX) at 490 nm.   

 Sugar concentrations were estimated using a standard curve.  The curve was 

prepared by mixing a stock solution of 0.1 mg/mL glucose standard at varying 

concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0 mL, respectively) with varying amounts of 

double distilled water (1.0, 0.8, 0.6, 0.4, 0.2, and 0 mL, respectively).  Standard samples 

were then prepared and read the same way as described above.   

Non-heme Iron 

 The procedures described by Rhee and Ziprin (1987) were used to determine non-

heme iron concentrations.  Duplicate 5 g powdered samples were mixed with 0.2 mL of 

NaNO2 solution (0.39% w/v) and 15 mL of 40% TCA-HCL (1:1) acid solution, vortexed, 

and placed in a water shaker bath set at 65°C for 20 h.  After incubation, samples were 

allowed to cool to room temperature for 1 h.   
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 Approximately 1 mL aliquots of the liquid phase were removed and mixed with 5 

mL of a color reagent (20:20:1 double distilled deionized water:saturated sodium acetate 

solution:bathophenathroline disulfonate reagent).  To create a liquid phase without a 

color reagent blank, a 1mL aliquot of the liquid phase was mixed with 5 mL of a 21:20 

double distilled deionized water:sodium acetate solution.  Both a reagent blank and a 

liquid phase blank were created.  All 4 mixtures were vortexed, centrifuged (Sorvall SE-

12 rotor and Sorvall RC 5B centrifuge, Dupont Co., Wilmington, DE), and read at 540 

nm using the spectrophotometer.     

 Readings were compared against a standard curve created using an iron stock 

standard (Sigma) mixed with the TCA-HCL acid solution at varying concentrations (0.5, 

1.0, 1.5, 2.5, 3.5, and 4.5 μg/mL) to total 25 mL.  Standard samples were then mixed with 

5 mL of the color reagent, vortexed, centrifuged, and read at 540 nm.   

Final absorbance of each sample was calculated by subtracting the absorbance of 

the incubated liquid phase without color reagent from the absorbance of the incubated 

liquid phase with color reagent.  Next, final concentration was calculated by subtracting 

the intercept of the standard curve from the final absorbance and dividing it all by the 

slope of the standard curve.  Finally, non-heme iron was calculated as follows:                                                                                              

μg non-heme Fe/g meat = concentration (μg/mL) x 
                            

  
      

Heme Iron 

 Samples were prepared following the procedures described by Hornsey (1956) as 

modified by Lee et al. (1998).  Duplicate 2 g samples of powdered meat were mixed with 

8.1 mL of acetone and 0.2 mL of hydrochloric acid.  All tubes were kept in test tube trays 
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wrapped in aluminum foil to reduce light exposure.  The sample was homogenized using 

a Polytron homogenizer at 10,800 rpm for 15 sec.  Samples were immediately filtered 

through #2 Whatman filter paper (90 mm in diameter) and into a new tube which was 

also kept in a test tube rack wrapped in aluminum foil.  The filtrate was immediately read 

on a spectrophotometer at 640 nm. 

 In order to determine total amount of heme iron, total pigment (mg/kg) was 

calculated by multiplying the absorbance of the sample by 680.  Total heme iron (mg/kg) 

was calculated by multiplying the total pigment by 8.82 and dividing it all by 100. 

Minerals and Amino Acids 

 Mineral composition was determined by Ward Laboratories, Inc. in Kearney, NE.  

Atomic absorption spectroscopy was used to quantify the minerals following the 

procedures of Ward and Gray (1994). 

 Amino acid composition was determined by AAA Service Laboratory, Inc. in 

Damascus, OR.  A Hitachi L8900 Amino Acid Analyzer with post-column-ninhydrin 

derivatization was used to quantify amino acids following the procedures of Moore and 

Stein (1949), Roach and Gehrke (1970), Simpson et al. (1976), Stanford (1963), and 

Keutmann and Potts (1969). 

Fatty Acids 

 Fats were extracted following the procedures of Folch et al. (1957).  Four gram 

powdered meat samples were mixed with 10 mL of 2:1 chloroform:methanol solution, 

vortexed, and allowed to sit at room temperature for 1 h.  Homogenized samples were 

filtered into new tubes, brought to 15 mL with 2:1 chloroform:methanol solution, mixed 
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with 2 mL of 0.74% KCl solution, vortexed, purged with nitrogen gas, and kept in a -

20°C freezer overnight.  The next day, the top aqueous phase was removed and 2 mL of 

the lower phase was collected and dried down at 60°C under constant nitrogen gas 

purging.  

Samples were separated into neutral and phospholipid layers following the 

procedures described by Carr et al. (2005).  The neutral and phospholipid regions of 

interest were isolated using thin layer chromatography plates (Silica Gel 60 w/o indicator, 

Catalog No.: M5547-7, Thermo Fisher Scientific Inc.) and isolated.  The neutral lipid 

samples were submerged in chloroform and the phospholipid samples were submerged in 

methanol to extract the lipids.  Samples were stored in a 2°C cooler for 45 min.  

After incubation the solutions were dried at 60°C under constant nitrogen gas 

purging.  Once dried, the fatty acid methyl esters were prepared following the procedures 

described by Morrison and Smith (1964) and Metcalfe et al. (1996).  Gas 

chromatography (Hewlett-Packard Gas Chromatograph – Agilent Technologies, model 

6890 series, Santa Clara, CA) was used to determine fatty acid content using a 

Chrompack CP-Sil 88 (0.25 mm x 100 m) column using Helium as the carrier gas with a 

flow rate of 1.1 mL/min.  The injector temperature was held at 270°C and the detector 

temperature was 300°C.  Fatty acids were identified by comparing retention times and 

peaks with known standards.   

To get exact concentrations of each FA, additional thin layer chromatography 

plates were made separating the neutral and phospholipid layers.  This time the plates 

were stained using iodine, and the areas on the plates were measured, as a percent, using 



197 

 

 

Quantity One 1-D Analysis Software (Bio-Rad, Hercules, CA).  To calculate the mg/100 

g of meat for each FA in each layer, the total fat percentages attained for each sample 

from proximate analysis was converted to grams of fat per 100 g of meat.  That value was 

multiplied by the percentage of the neutral and phospholipid layers, and converted to mg 

of neutral or phospholipid per 100 g of meat.  From there the percentage of each 

individual FA in each layer was multiplied by their respective value and the mg of each 

FA per 100 g of meat was attained.   

Consumer Panel 

All consumer and lexicon panels were approved by the Institutional Review 

Board and all panelists signed a consent form.  Consumer panels were conducted in 

Houston, Texas and Olathe, Kansas (n = 120 per location). Consumers were recruited 

using existing consumer data banks and random phone solicitation. Consumers were 

selected that eat beef at least three times per week, range in age from 21 to 65, with an 

approximately equal balance of males and females, and a range in income.  

In each city, consumer panels were conducted over two days, with the first day 

evaluating Longissimus dorsi steaks and the second day evaluating Biceps femoris steaks.  

Different consumers evaluated each muscle type.  Steaks from each animal were 

evaluated at both locations.  Panels were conducted with three sessions per day and 20 

consumers per session.  Five consumers evaluated each steak and treatment order was 

randomized and allocated to consumer using an incomplete block design.  Each consumer 

evaluated eight steaks in a session.     
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Steaks were cooked on a Hamilton Beach Health Smart grill (model 31605A, 

Hamilton Beach/ Proctor-Silex, Inc., Southern Pines, NC) to an internal temperature of 

70°C.  Consumers evaluated each sample using 9-point hedonic (1=dislike extremely, 

9=like extremely) and intensity scales (1=none or extremely bland, 9=extremely intense) for 

overall like, overall flavor like, beefy flavor like and intensity, and grilled flavor like and 

intensity. 

Beef Flavor Lexicon   

An expert, trained descriptive attribute sensory panel with over 23 cumulative 

years of experience in evaluating beef flavor and aromas was used.  This panel was one 

of the three panels used to validate the Beef Lexicon at Texas A&M University (Philips 

et al., 2010; Miller, 2010).  The panel underwent ballot development, training and 

validation sessions to assure consistent rating and identification of individual aroma and 

flavor attributes.  Attributes were classified as major and minor notes.  This provides a 

standardized, defined reference guide for determining and measuring aroma and flavor in 

beef.   

During training and testing, steaks were cooked the same way as described for 

consumer panels.  Aromas and flavor aromatics were evaluated using the Spectrum® 

Universal 16-point scale where 0 = none and 15 = extremely intense (Meilgaard et al., 

2007).  Traits evaluated were browned, bloody, fat, metal, liver, green hay, umami, 

overly sweet, sweet, sour, salty, bitter, sour aroma, barnyard, burnt, heated oil, chemical, 

apricot, asparagus, cumin, floral, beet, chocolate, green grass, musty, medicinal, 
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petroleum, smoked/charred, smoked wood, spoiled, dairy, buttery, cooked milk, sour 

milk, refrigerator stale, warmed over, soapy, painty, fishy, and cardboardy.    

Statistical Analysis 

All data were analyzed as a 2x2x2x2 factorial arrangement split plot design within 

a randomized complete design using the Mixed procedure in SAS (Version 9.2, SAS 

Institute Inc., Cary, NC, 2006). The experimental unit was the individual animal and the 

model included grass, supplementation, finishing diet, and age as fixed effects.  The least 

square means procedure with the probability of difference (pdiff) option was used for 

mean separation; with significance determined at P < 0.05 levels.  Whenever there was a 

three- or four-way interaction, the LSmeans were reanalyzed using the GLIMMIX 

procedure with the slicediff option in order to more accurately study differences.   

In order to determine regression coefficients, the biochemical components of the 

meat were separated into five distinct groupings:  neutral lipid fatty acids, phospholipid 

fatty acids, minerals, amino acids, and composition (pH, moisture, fat, protein, ash, total 

carbohydrates, and cooking loss).  Each individual grouping was analyzed using the 

principle component procedure in SAS.  The first two principle components were 

identified and associations for each were determined.  Three different analysis were 

conducted to determine the regression coefficients of the principle components of the 

biochemical constituents for the consumer panel results, the principle components of the 

biochemical constituents for the lexicon results, and the lexicon results for the consumer 

panel results using the regression procedure.   
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Results and Discussion 

Principle component identification 

L. dorsi Steaks 

 For all principle components (PC), no identifiable associations or trends could be 

found for the third PC for any of the attributes.  The first two PC were selected for the 

model, however, in some instances no identifiable associations or trends could be 

established for the second PC.  In those instances, the second PC was not included.  The 

first PC for both the neutral lipids (neutral lipid PC 1) and phospholipids (phospholipid 

PC 1) represented the weights/dimensions of each fatty acid (Appendix 1 and 2).  No 

association could be determined for the second PC so they were not included in the 

regression models.  The first PC accounted for 68% of the variation of neutral lipids and 

36% of the variation for phospholipids. 

 Both PC for minerals had identifiable associations (Appendix 3).  The first PC 

(mineral PC 1) represented the weights/dimensions of each mineral.  All of the positive 

values in the second PC (mineral PC 2) tended to be associated with trace minerals while 

the negative values were minerals that were the most abundant in the human body.  Both 

PC accounted for 41% of the variation. 

 The first PC for amino acids (amino acid PC 1) was associated with the 

weights/dimensions of each amino acid (Appendix 4).  The second PC had an 

overwhelming association with methionine and no other amino acid.  For this reason, 

methionine was used in the regression model instead of the second PC to avoid any 

unnecessary variance.  The first two PC explained 93% of the variation. 
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 The PC for the composition in L. dorsi steaks behaved a little differently 

(Appendix 5).  The first PC (composition PC 1) was associated with the general 

composition of meat with moisture and fat having the largest values.  The second PC 

(composition PC 2) was mostly associated with carbohydrates and pH.  Water holding 

capacity, which is related to cook loss, and protein denaturation are affected by pH and 

their association with pH may explain why their values are negative just like pH values.  

Both of the PC’s explain 44% of the variation. 

B. femoris steaks 

   The PC’s in B. femoris steaks behaved similarly to the PC in L. dorsi steaks.  For 

neutral lipids, the first PC (neutral lipid PC 1) was associated with the general 

weights/dimensions of each fatty acid (Appendix 6).  All of the positive values in the 

second PC (neutral lipid PC 2) were associated with long chain fatty acids, 18 carbons or 

more.  The first two PC accounted for 65% of the variation.   

    Similar to the neutral lipids, the first PC’s for phospholipids (phospholipid PC 

1) was associated with the weights/dimensions of each fatty acid (Appendix 7).  For the 

second PC (phospholipid PC 2), the largest values tended to be associated with odd chain 

fatty acids.  About 46% of the variation was accounted for by the first two PC. 

 The first PC for minerals (mineral PC 1) explained the variation in most of the 

minerals except for iron (Appendix 8).  In concurrence, the highest values in the second 

PC (mineral PC 2) were mostly for iron and its parts (heme and non-heme iron).  The first 

two PC accounted for 50% of the variation. 
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 Similar to L. dorsi steaks, the first two PC for amino acids in B. femoris steaks 

(Appendix 9) were associated with the weights/dimensions of each amino acids (amino 

acid PC 1) and methionine (amino acid PC 2).  The effect of methionine in the second PC 

was not as strong as it was in L. dorsi steaks though, so the entire PC was still included in 

the model.  These two PC explained 96% of the variation. 

    The first PC for composition (composition PC 1) was associated with moisture, 

ash, and protein (Appendix 10).  The second PC (composition PC 2) was associated with 

the other constituents of meat, pH and carbohydrates.  The first two PC explained 96% of 

the variation. 

Biochemical factors influencing consumer panel traits  

L. dorsi steaks 

 Prediction models were created for each consumer panel sensory trait using the 

principle components of meat.  Table 1 shows the variables and coefficients included in 

each of the models for L. dorsi steaks.  City had a large effect on several of the equations.  

This was not surprising as personal preferences vary greatly across different geographical 

locations.  Phospholipid PC 1, mineral PC 2, and amino acid PC1 were related to overall 

flavor like, beefy flavor like, and grill flavor like scores.  Also, neutral lipid PC 1 was 

related to overall like, overall flavor like, grill flavor like, and grill flavor intensity scores.  

In contrast, mineral PC 1, methionine, composition PC 2, and aging period did not 

significantly (P > 0.15) contribute to any of the equations.     

 The equation for overall flavor like was found to be significant (P = 0.01) with 

neutral lipid PC 1, mineral PC 2, amino acid PC 1 negatively (P < 0.10) influencing the 
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equation and phospholipid PC 1 positively (P < 0.10) influencing the equation.  City was 

also associated (P < 0.10) with overall flavor like scores.  Both neutral lipid PC 1 and 

amino acid PC 1 represented the general weights of all the variables in those components.  

The general neutral lipid and amino acid composition in the meat negatively affects 

overall like.  Varnold (2013) previously showed that when cattle are supplemented, 

finishing on corn instead of WDGS increased overall flavor like scores (6.34 vs. 5.84, P 

= 0.04).  In addition, finishing on corn lowered some neutral lipid concentrations, both 

when supplemented and not (P < 0.05).  Since finishing on corn both decreased neutral 

lipid concentrations and increased overall flavor like scores, the regression coefficient 

was expected.  

 Phospholipid PC 1 positively (P < 0.10) influenced the equation for beefy flavor 

like while mineral PC 1 and amino acid PC 1 negatively (P < 0.15) influenced it.  City 

was also found to influence (P < 0.10) beefy flavor like ratings.  

 Similar to overall flavor like, the equation for grill flavor like was significant (P = 

0.04), with many of the same factors contributing to the equation.  Neutral lipid PC 1, 

mineral PC 2, and amino acid PC 1 negatively (P < 0.10) influenced the equation for grill 

flavor like while phospholipid PC 1 and methionine positively (P < 0.10) influenced it.  

Here, mineral PC 2 became a contributor.  Mineral PC 2 was associated with essential 

trace minerals.  This means that grill flavor like is influenced by the presence and 

concentrations of trace minerals in the meat.  Grill flavor like ratings were not affected by 

grass type (data not shown), but were affected by neutral lipid concentration.  Grazing on 

warm-season grass caused significant (P < 0.05) decreases in many neutral lipids.  Since 
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neutral lipids were such a major contributing factor in grill flavor like, grass type may 

have an underlying effect after all.   

 The equation for predicting overall like ratings was not significant (P = 0.19), but 

several variables contributing to the equation were.  Neutral lipid PC 1, mineral PC2, and 

amino acid PC1 were all found to significantly (P < 0.15) contribute to the equation, 

however their contribution was minimal.  It is interesting to note that all of the significant 

prediction coefficients negatively influence scores.  The equations for beefy flavor 

intensity and grill flavor intensity were also not significant (P > 0.34), perhaps because 

city was the only significant (P < 0.05) prediction coefficient in the entire model.  Grill 

flavor intensity had more significant (P < 0.15) prediction coefficients (neutral lipid PC 

1, mineral PC 2, amino acid PC 1, and composition PC 1) but their contributions for the 

most part were negatively related to scores.  It appears that grill flavor intensity can be 

influenced by moisture and fat content in meat. 

B. femoris steaks 

 Unlike in L. dorsi steaks, none of the prediction equations for consumer scores for 

B. femoris steaks (Table 2) were found to be significant (P > 0.05), but beefy flavor like 

and grill flavor like had a tendency to be significant (P = 0.07 and 0.06).  Mineral PC 2 

and age greatly influenced (P < 0.15) overall like, overall flavor like, beefy flavor like, 

and beefy flavor intensity ratings.  In L. dorsi steaks, aging did not contribute at all but 

now in B. femoris steaks it is one of the most important factors.  City was found to 

contribute (P < 0.15) to beefy flavor like, beefy flavor intensity, and grill flavor like 

ratings.  Also, amino acid PC 2 greatly influenced (P < 0.15) overall like, beefy flavor 
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like, and grill flavor like.  In contrast, neutral lipid PC 1, neutral lipid PC 2, phospholipid 

PC 1, phospholipid PC 2, mineral PC 1, composition PC 1, and composition PC 2 had no 

effect (P > 0.15) on any of the equations. 

 For overall like (P = 0.27), mineral PC 2 and age positively (P < 0.15) influenced 

the equation while only amino acid PC 2 negatively influenced (P < 0.10) it.  Similarly 

the equation for overall flavor like (P = 0.46) was positively influenced (P < 0.05) by 

both mineral PC 2 and age.  Varnold (2013) previously reported that 28 d aged product 

had a higher heme and non-heme iron content (P < 0.05).  Earlier it was shown that 

mineral PC 2 was associated with iron content.   

 Both of the equations for beefy flavor like (P = 0.07) and beefy flavor intensity (P 

=0.29) ratings were positively (P < 0.15) influenced by mineral PC 2, and age while 

amino acid PC 2 negatively influenced (P < 0.05) the equation for beefy flavor like.  City 

also influenced (P < 0.15) beefy flavor like and beefy flavor intensity ratings.  Mineral 

PC 2 was associated with iron content while amino acid PC 2 was associated with 

methionine.  In turn, beefy flavor like ratings are positively related to iron content and 

negatively related to methionine content.  Again, both of those factors are influenced by 

aging, further justifying the importance of aging in consumer traits. 

 The equation for grill flavor like ratings had several contributing factors affecting 

it including positively influences (P < 0.05) due to mineral PC 2 and negative influences 

(P < 0.10) from  amino acid PC 1 and 2.  City was also found to influence (P < 0.05) grill 

flavor like ratings.  In contrast, the equation for grill flavor intensity (P = 0.95) had no 

factors that significantly (P > 0.15) contributed to it.   
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Lexicon traits and consumer panel traits 

L. dorsi steaks 

 The beef lexicon panel at Texas A&M University in College Station, TX was 

used to characterize the flavor profile in both L. dorsi and B. femoris steaks.  Those 

results were then used to create models that could be used to predict consumer panel 

scores.  Table 3 shows the lexicon flavor traits and their coefficients that can be used to 

create the models for L. dorsi steaks.  The lexicon traits browned and floral appear to be 

the major significant (P < 0.15) factors influencing overall like, overall flavor like, beefy 

flavor like, beefy intensity like, grill flavor like, and grill flavor intensity ratings.  Also, 

overly sweet, and spoiled were found to influence (P < 0.15) overall flavor like, beefy 

flavor like, beefy intensity like ratings.  City also influenced (P < 0.15) overall flavor 

like, beefy flavor like, beefy intensity like ratings.  While developing a beef lexicon, 

Maughan (2011) also found browned flavor to be highly correlated to consumer like 

ratings.  In contrast, the lexicon traits metal, sour, salty, barnyard, burnt, heated oil, 

chemical, cooked milk, sour milk, painty, and cardboard did not significantly (P > 0.15) 

influence any of the equations.  

 The equation for overall flavor like ratings (P = 0.01) was found to be positively 

influenced (P < 0.15) by browned, green hay, sweet, green grass, and buttery lexicon 

traits and was negatively influenced (P < 0.15) by overly sweet, floral, smoked/charred, 

spoiled, and warmed over lexicon traits.  Overall flavor like ratings were also influenced 

by city (P < 0.15).  The lexicon traits green hay, overly sweet, floral, green grass, 

smoked/charred, spoiled, and buttery appeared to be the strongest contributors to the 
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equation, with prediction coefficients greater than or equal to 1 for all of them.  Browned, 

sweet, and buttery are often associated as being desirable flavors, which corresponds to 

their positive influence on overall flavor like scores.  In congruence, overly sweet, floral, 

smoked/charred, spoiled, and warmed over were negatively associated with overall flavor 

like scores and they are also known to be undesirable flavors in meat.   

 The equation for beefy flavor like ratings was also significant (P = 0.005) with the 

lexicon traits browned, sour aroma, green grass, and musty all positively influencing (P < 

0.15) the equation while the traits overly sweet, floral, smoked/charred, spoiled, 

refrigerator stale, and warmed over, all of which are undesirable flavors in beef, 

negatively influenced (P < 0.05) it.  Beefy flavor like ratings were also influenced by city 

(P < 0.15).  Again, overly sweet, sour aroma, floral, green grass, smoked/charred, 

spoiled, and refrigerator stale all had prediction coefficients greater than or equal to 1.  

Varnold (2013) showed that when cattle are supplemented, finishing on corn will cause 

higher consumer ratings for beefy flavor like than when cattle were finished on WDGS 

(6.43 vs. 5.91, P < 0.05).  Refrigerator stale, one of the factors that had a large prediction 

coefficient, was also affected by an interaction between supplementation and diet (P < 

0.05) with finishing on corn creating lower concentrations than finishing on WDGS when 

no supplementation is provided (0.00 vs. 0.07).  Since finishing on corn lowered levels of 

refrigerator stale flavor, so finishing on corn would also increase beefy flavor like scores, 

hence the negative association.  Melton (1990) also found a difference in flavor liking 

ratings between finishing cattle on corn and corn silage, which would be similar to 

WDGS.   
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 All three of the equations described above accounted for 28% or more of the 

differences found between scores.  The equations for overall like, beefy flavor intensity, 

grill flavor like, and grill flavor intensity were not significant (P > 0.09).  Several of the 

equations were influenced by the green grass trait.   

B. femoris steaks 

 Table 4 shows the lexicon flavor traits and their coefficients that can be used to 

create the models for B. femoris steaks.  The lexicon traits burnt was a significant (P < 

0.15) factor in all of the consumer sensory trait equations with refrigerator stale and 

buttery contributing (P < 0.15) to overall like, overall flavor like, beefy flavor like, beefy 

flavor intensity, and grill flavor intensity ratings.  Umami and overly sweet influenced (P 

< 0.15) overall like, overall flavor like, beefy flavor like, and grill flavor like scores while 

browned and sweet contributed (P < 0.15) to overall like, overall flavor like, and grill 

flavor intensity.  In addition, city significantly (P < 0.10) influenced beefy flavor like, 

beefy flavor intensity, and grill flavor like.  In contrast, the lexicon traits bloody, fat, 

metal, liver, sour, salty, bitter, sour aroma, heated oil, chemical, beet, green grass, 

petroleum, smoked/charred, cooked milk, sour milk, warmed over, soapy, fishy, and 

cardboardy as well as the factor of age did not significantly (P > 0.15) influence any of 

the equations. 

 The equations for overall like, beefy flavor like, beefy flavor intensity, grill flavor 

like, and grill flavor intensity ratings were all not significant (P > 0.05).  Only the 

equation for overall flavor like was significant (P = 0.04) with the traits umami, sweet, 

burnt, smoked wood, buttery, and refrigerator stale positively influencing (P < 0.05) the 
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equation and browned, overly sweet, musty, and medicinal negatively influencing (P < 

0.15) it.  Even though aging was not a contributing factor in any of the equations, 

previous research by Varnold (2013) showed that it can affect both consumer and lexicon 

traits.  In the four-way interaction between grass type, supplementation, finishing diet, 

and aging period (P = 0.01), aging the meat 28 d caused numerically lower overall flavor 

like scores in most of the dietary combinations.  In addition, aging had a tendency (P = 

0.06) to increase the prevelance of a musty flavor (0.13 vs 0.08), which was a negative 

contributor to overall flavor like scores in this study.  Clearly, aging plays a role in 

desirability of beef. 

 The traits overly sweet, sweet, burnt, medicinal, smoked wood, buttery, and 

refrigerator stale all had large regression coefficients (> 1.00), which suggests these traits 

may be the most important in predicting consumer overall flavor like ratings.  Of those 

traits, sweet, smoked wood, and buttery are often associated with desirable flavors so it 

makes sense that they positively influenced consumer traits.  Overly sweet and medicinal 

had large coefficients showing that they greatly negatively influence consumer traits.     

Biochemical constituents influence on the flavor notes that determine consumer 

acceptance 

L. dorsi steaks  

 All of the lexicon traits can also be related to the meat components, just like the 

consumer panel traits (Table 5).  Overall, amino acid PC 1 influenced (P < 0.15) many of 

the lexicon traits.  It was previously noted that amino acid PC 1 was a significant 

influence (P < 0.15) on 5 of the 7 consumer panel traits.  Clearly there is a link between 
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amino acid content and flavor.  Also, amino acid PC 1 was the only meat component to 

influence several lexicon traits including having a positive influence (P < 0.15) on floral 

(0.004) and a negative influence (P < 0.15) on both browned and buttery. 

 Neutral lipid PC 1 was found to positively influence (P < 0.10) umami, smoked 

wood, warmed over, and fishy lexicon traits (0.04, 0.005, 0.02, and 0.01, respectively) 

while smoked/charred was negatively influenced (P < 0.15) by it (-0.003).  For consumer 

panel scores neutral lipid PC 1 was found to influence four of the scores, perhaps that 

influence is due to these lexicon traits.  In connection, feeding WDGS was found to 

increase the prevalence of warmed over flavor as well as increase several neutral lipid 

fatty acids (Varnold, 2013).  Since neutral lipid PC 1, which represented a general 

distribution of fatty acids, was negatively associated with most consumer traits, it can be 

concluded that finishing diet can have an effect on flavor.  Mandell et al. (1998) also 

found that increased concentrations of fatty acids, specifically C18:3 and C20:4, could 

cause undesirable flavors.    

 Phospholipid PC 1 was found previously to influence three of the consumer 

scores, and it also positively influences (P < 0.05) fat, umami, and overly sweet traits 

(0.04, 0.05, and 0.02, respectively) while negatively influencing (P < 0.15) bitter and 

smoked/charred (-0.02 and -0.003).     

 Mineral PC 1 only influenced (P < 0.15) liver notes.  Mineral PC 1 did not have 

any influence over any of the consumer traits.  Mineral PC 2 however was a significant 

contributor (P < 0.15) to four of the consumer traits discussed previously, and likewise it 

contributed to several lexicon traits as well.  Mineral PC 2 positively influenced (P < 



211 

 

 

0.15) liver, smoked wood, and warmed over traits (0.03, 0.01, and 0.06, respectively) and 

negatively influenced (P < 0.10) green hay and smoked/charred (-0.01 for both).  Varnold 

(2013) found that not only did grass type affect liver flavor prevalence, it also altered 

several of the minerals in the meat.  Even though grass type did not influence any of the 

consumer scores, it clearly has an influence over the factors that do.  Melton et al. (1982) 

found that ground beef samples from grass-fed or limit grain fed steers had a noticeable 

undesirable flavor notes.  In addition, Larick and Turner (1990) also observed that 

grazing on different types of grasses increased and decreased the prevalence of specific 

flavor notes.   Perhaps samples in the present study were affected by undesirable flavor 

notes because of their grazing background.      

 Amino acid PC 1 positively influenced (P < 0.05) liver (0.02) and negatively 

influences bloody, umami, overly sweet, and bitter lexicon traits (-0.02, -0.02, -0.01, and 

-0.01, respectively).  In addition, the amino acid methionine positively influenced (P < 

0.05) medicinal and warmed over lexicon traits (0.01 and 0.07, respectively) and 

negatively influenced (P < 0.05) smoked/charred flavors (-0.01).  Methionine contributed 

to grill flavor like ratings.   

 Composition PC 1 only contributed to grill flavor intensity scores and 

composition PC 2 had no contribution in any of the consumer trait equations, but both 

components had fairly large prediction coefficients for several lexicon traits.  This may 

mean that its effects have a stronger background contribution than primary contribution 

to flavor.  Composition PC 1 positively influenced (P < 0.15) bloody, liver, warmed over, 

and fishy lexicon traits (0.12, 0.07, 0.06, and 0.01, respectively) and negatively affected 
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(P < 0.10) smoked/charred traits (-0.01).  Similarly, composition PC 2 positively 

influenced (P < 0.10) the lexicon traits musty, medicinal, and warmed over (0.04, 0.01, 

and 0.04, respectively) but negatively influenced (P < 0.05) bloody (-0.13).  Grass type 

was found to greatly change (P < 0.05) the prevalence of both liver and bloody flavors in 

meat, as well as the moisture content (Varnold, 2013).  Since one of the main factors 

associated with composition PC 1 was moisture, it can be concluded that the composition 

of meat as affected by grass type can influence flavor.  In this study, neither neutral lipid 

PC 1 nor phospholipid PC 1 influenced liver flavors.  This is in contrast to Calkins and 

Hodgen (2007) who found that several fatty acids were strongly correlated to livery 

flavors in beef.   

 Even though aging was found to positively influence (P < 0.15) medicinal traits 

(0.02) and negatively influence (P < 0.10) both smoked/charred and warmed over (-0.02 

and -0.09, respectively) it had no effect on any of the consumer trait prediction equations 

discussed previously.  Green grass, spoiled, and refrigerator stale were unaffected (P > 

0.15) by any of the meat components or the factor age. 

B. femoris steaks  

 The results for B. femoris steaks (Table 6) were completely different from those 

found in L. dorsi steaks.  Mineral PC 2 was previously found to be a major contributor in 

5 of the 7 consumer trait prediction equations discussed earlier.  It has no effect (P > 

0.15) on any of the lexicon traits that were previously found to influence consumer 

scores.  Similarly, neutral lipid PC 1, phospholipid PC 1, mineral PC 1, amino acid PC 1, 

and composition PC 1 did not influence (P > 0.15) any of the lexicon traits that were 
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previously found to influence consumer scores.  In contrast, both neutral lipid PC 1 and 

phospholipid PC 1 were significantly associated (P < 0.05) with the green grass trait.  

Larick et al. (1987) also found that several fatty acids were strongly correlated to grassy 

flavor in ground beef.   

 Neutral lipid PC 2 was found to positively influence (P < 0.10) the lexicon trait 

medicinal (0.01) and negatively influence (P < 0.15) overly sweet, smoked wood, and 

buttery (-0.03, -0.005, and -0.01, respectively).  Even though their contributions were 

significant, they were still minimal as can be seen in their small prediction coefficients.  

Phospholipid PC 2 positively influenced (P < 0.10) browned and umami characteristics 

(0.05 and 0.04, respectively) and negatively influenced (P < 0.10) medicinal (-0.01).  It is 

interesting to note that even though both the neutral lipid PC 2 and phospholipid PC 2 

contributed to several lexicon traits, they had no effect on any of the consumer traits.  

Grass type altered a majority of the long chain fatty acids (up to 18 C) in the neutral lipid 

layer, with warm-season grass causing significant decreases in concentration (P < 0.05).   

 Amino acid PC 2 only negatively influenced (P < 0.10) the lexicon trait browned 

(-0.12) and three of the consumer traits.  Composition PC 2 also negatively influenced (P 

< 0.10) both browned and umami (-0.11 and -0.06, respectively).  Since the regression 

coefficient for browned (-0.11) is so large, it can be assumed that composition PC 2 plays 

a large role in its occurrence.  Grass type has been found to affect (P < 0.05) the 

prevalence of a browned flavor (Varnold, 2013).   

 Aging positively influenced (P < 0.15) overly sweet and sweet characteristics 

(0.09 and 0.07, respectively) and negatively influenced (P < 0.10) burnt, musty, and 
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refrigerator stale prevalence (-0.08, -0.09, and -0.04, respectively).  Aging also 

contributed to 5 of the 7 consumer trait prediction equations discussed earlier. 

 In L. dorsi steaks neutral and phospholipids, mineral, and amino acid content 

greatly determined consumer panel scores.  Specific lexicon traits such as browned and 

warmed over can also greatly affect consumer panel traits.  In addition, several lexicon 

traits, i.e. umami and warmed over, and biochemical components, i.e. neutral lipids and 

amino acids, were also related to each other.  All three different traits (components, 

consumer panel, and lexicon) were all found to be influenced by diet, specifically grass 

type.  Aging was also a major contributing factor in several of the different consumer 

flavor scores and flavor notes.   

 Mineral and amino acid content, as well as aging greatly contributed to several 

consumer panel traits in B. femoris steaks.  Specific lexicon traits such as browned and 

umami also influenced consumer panel traits.  In addition, lexicon traits like browned and 

umami, and biochemical components like phospholipids and amino acids, were also 

related to each other.  All three different traits (components, consumer panel, and 

lexicon) were all found to be influenced by production factors such as aging.  

 Even though significant influences were found between the meat PC and 

consumer panel scores, the regression coefficients were small.  The significant regression 

coefficients were also small for the meat PC and lexicon flavor notes.  Several regression 

coefficients between the lexicon traits and the consumer panel scores were not only 

significant, but also large.  Clearly, individual flavor notes are good predictors of 

consumer acceptability.  A majority of the lexicon flavor notes were shown to be altered 
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by both diet and aging.  Through diet formulations and proper aging periods the flavor 

notes can be altered to such a degree that they can create a product that is highly 

acceptable to consumers. 
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Tables 

 

Table 1.  Regression coefficients for the influence of meat principle components on consumer panel 

scores for L. dorsi steaks. 

 

Consumer Panel Traits 

Principle 

Components Overall Like 

Overall 

Flavor 

Like 

Beefy 

Flavor 

Like 

Beefy 

Flavor 

Intensity 

Grill 

Flavor 

Like 

Grill 

Flavor 

Intensity 

Intercept 5.94*** 5.72*** 5.73*** 5.66*** 5.52*** 5.30*** 

Neutral Lipid 

PC 1 -0.06* -0.07** -0.05 -0.05 -0.07** -0.09*** 

Phospholipid 

PC 1 0.03 0.08*** 0.05** 0.02 0.06** -0.002 

Mineral PC 1 0.04 0.02 0.05 0.03 0.01 0.04 

Mineral PC 2 -0.09** -0.09** -0.12*** -0.07 -0.10*** -0.09* 

Amino Acid 

PC 1 -0.04*** -0.05*** -0.03* -0.02 -0.04*** -0.03* 

Methionine 0.06 0.07 0.06 0.02 0.09** 0.05 

Composition 

PC 1 -0.11 -0.08 -0.09 -0.10 -0.08 -0.19** 

Composition 

PC 2 0.07 0.07 0.07 0.03 0.07 0.05 

Age -0.004 0.01 0.06 0.10 -0.14 -0.11 

City 0.13 0.24** 0.38*** 0.31*** 0.13 -0.09 

       P-value 0.19 0.01 0.003 0.46 0.04 0.34 

R
2
 0.07 0.12 0.14 0.05 0.10 0.06 

***P < 0.05 

**P < 0.10 

*P < 0.15 
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Table 2.  Regression coefficients for the influence of meat principle components on consumer panel 

scores for B. femoris steaks. 

 

Consumer Panel Traits 

Principle 

Components Overall Like 

Overall 

Flavor 

Like 

Beefy 

Flavor 

Like 

Beefy 

Flavor 

Intensity 

Grill 

Flavor 

Like 

Grill 

Flavor 

Intensity 

Intercept 5.51*** 5.53*** 5.61*** 5.50*** 5.33*** 5.06*** 

Neutral Lipid 

PC 1 -0.01 -0.03 0.02 -0.04 0.06 0.03 

Neutral Lipid 

PC 2 0.03 0.03 0.08 0.02 0.04 0.01 

Phospholipid 

PC 1 0.01 -0.002 -0.004 -0.06 0.07 0.06 

Phospholipid 

PC 2 0.03 0.01 0.04 0.005 0.03 -0.04 

Mineral PC 1 0.01 0.01 0.004 0.04 -0.02 0.003 

Mineral PC 2 0.15*** 0.13*** 0.16*** 0.10* 0.16*** 0.05 

Amino Acid 

PC 1 -0.03 -0.03 -0.01 0.002 -0.04** -0.02 

Amino Acid 

PC 2 -0.21** -0.12 -0.23*** -0.15 -0.20** 0.004 

Composition 

PC 1 -0.07 -0.11 0.01 -0.19 0.15 0.08 

Composition 

PC 2 0.01 0.02 -0.02 -0.01 0.11 0.09 

Age 0.28* 0.25* 0.30** 0.34*** 0.10 -0.05 

City 0.22 0.18 0.34*** 0.29** 0.41*** 0.24 

       P-value 0.27 0.46 0.07 0.29 0.06 0.95 

R
2
 0.08 0.06 0.10 0.07 0.11 0.03 

***P < 0.05 

**P < 0.10 

*P < 0.15 
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Table 3.  Regression coefficients for the influence of beef lexicon traits on consumer panel scores for L. 

dorsi steaks. 

 

Consumer Panel Trait 

  

Beef Lexicon 

Traits 

Overall 

Like 

Overall 

Flavor 

Like 

Beefy 

Flavor 

Like 

Beefy 

Flavor 

Intensity 

Grill 

Flavor 

Like 

Grill 

Flavor 

Intensity   

Mean 

Score 

Intercept 6.80*** 5.96*** 6.96*** 6.54*** 5.48*** 5.70*** 

  Brown 0.40* 0.62*** 0.59*** 0.46* 0.70*** 0.71*** 

 

1.82 

Bloody 0.16 0.31 0.23 0.37 0.56*** 0.55** 

 

1.62 

Fat 0.51** 0.41 0.30 0.15 -0.13 -0.18 

 

1.71 

Metal -0.60 -0.41 -0.55 -0.31 -0.03 -0.16 

 

1.71 

Liver 0.06 0.03 0.15 0.07 -0.31 -0.14 

 

0.16 

Green Hay 1.49* 1.70** 1.06 0.76 -0.08 -0.10 

 

0.02 

Umami -0.48** -0.34 -0.22 -0.32 -0.14 -0.41 

 

1.04 

Overly Sweet -0.79 -1.00** -1.00** -0.95* -0.75 -1.23*** 

 

1.00 

Sweet 0.49 0.97*** 0.55 1.10*** 0.79** 1.32*** 

 

1.01 

Sour -0.25 -0.30 -0.39 -0.55 -0.27 -0.53 

 

1.35 

Salty -0.49 -0.66 -0.60 -0.49 -0.36 -0.001 

 

1.38 

Bitter 0.43 0.17 0.20 -0.08 -0.24 -0.38 

 

1.11 

Sour Aroma 7.49*** 4.50 5.67* 3.31 2.07 2.29 

 

0.002 

Barnyard -1.09 -1.73 -1.67 -1.66 -1.88* -1.96 

 

0.02 

Burnt 0.20 -0.17 -0.08 0.22 -0.08 0.18 

 

0.11 

Heated Oil 0.39 0.09 0.03 -0.67 -0.06 0.10 

 

0.06 

Chemical -0.15 0.06 -0.20 -0.35 -0.18 -0.39 

 

0.13 

Floral -2.89*** -2.89*** -2.85*** -3.69*** -2.04** -2.36*** 

 

0.01 

Green Grass 6.14* 5.75* 6.35* 5.50 -0.44 1.26 

 

0.002 

Musty 0.63* 0.43 0.62* 0.23 0.43 0.58 

 

0.10 

Medicinal 0.09 1.21 -0.12 -0.58 1.30 0.99 

 

0.02 

Smoked/Charred -4.38*** -4.79*** -3.67** -2.09 -0.55 -0.46 

 

0.01 

Smoked Wood -0.23 -0.94 -0.89 0.90 -1.84 -2.57 

 

0.01 

Spoiled -3.07** -2.68* -3.42*** -2.75* -2.27 -2.46 

 

0.004 

Buttery 0.47 1.08** 0.42 0.41 0.50 -0.21 

 

0.09 

Cooked Milk -1.54 -0.78 -0.92 -0.58 -0.80 -0.03 

 

0.06 

Sour Milk -0.13 0.04 -0.41 -0.13 -0.61 -0.04 

 

0.05 

Refrigerator 

Stale -0.94 -0.89 -1.34*** -0.89 -0.73 -0.98 

 

0.04 

Warmed over -0.58** -0.53* -0.71*** -0.31 -0.53* -0.39 

 

0.14 

Painty 0.48 3.42 1.67 1.49 0.95 1.72 

 

0.002 

Fishy -0.74 -1.77 -1.60 -1.28 -1.05 -2.45* 

 

0.02 

Cardboardy -0.13 0.30 0.45 0.10 -0.01 0.02 

 

0.14 

Age -0.15 -0.18 -0.07 -0.10 -0.33*** -0.32** 

  City 0.11 0.22** 0.35*** 0.30*** 0.12 -0.10 

  
         Mean 6.20 6.09 6.19 5.93 5.82 5.36 

  P-Value 0.09 0.01 0.005 0.14 0.09 0.18 

  R
2
 0.24 0.28 0.30 0.23 0.24 0.22     

***P < 0.05 

**P < 0.10 

*P < 0.15 



223 

 

 

Table 4.  Regression coefficients for the influence of beef lexicon traits on consumer panel scores for B. 

femoris steaks. 

 

Consumer Panel Trait 

  

Beef Lexicon 

Traits 

Overall 

Like 

Overall 

Flavor 

Like 

Beefy 

Flavor 

Like 

Beefy 

Flavor 

Intensity 

Grill 

Flavor 

Like 

Grill 

Flavor 

Intensity   

Mean 

Score 

Intercept 8.22*** 8.39*** 7.44*** 7.08*** 5.31*** 5.86*** 

  Brown -0.72* -0.99*** -0.73** -0.34 -0.41 -0.88*** 

 

1.75 

Bloody -0.12 -0.06 0.09 0.21 0.20 -0.12 

 

1.69 

Fat -0.21 -0.28 -0.05 -0.17 0.19 -0.28 

 

1.72 

Metal -0.18 -0.23 -0.44 0.04 0.08 0.16 

 

1.96 

Liver 0.33 0.42 0.11 -0.11 -0.03 0.21 

 

0.28 

Green Hay 0.04 0.06 0.57 0.74 -1.52 -2.16** 

 

0.02 

Umami 0.77* 0.93*** 0.75* 0.49 0.67* 1.01*** 

 

0.76 

Overly Sweet -0.93* -1.05** -0.86* -0.77 -0.78* -0.73 

 

0.91 

Sweet 1.17** 1.33*** 0.78 0.43 1.04** 1.38*** 

 

0.87 

Sour -0.68 -0.49 -0.14 -0.08 -0.10 0.13 

 

1.45 

Salty -0.36 -0.31 -0.15 -0.45 -0.63 -0.92 

 

1.39 

Bitter -0.10 -0.12 -0.0005 -0.37 -0.10 0.27 

 

1.41 

Sour Aroma -1.29 -0.23 1.08 0.83 0.80 1.30 

 

0.008 

Barnyard 1.06 1.51 1.38 0.96 1.04 2.09* 

 

0.03 

Burnt 1.10* 1.37*** 0.98* 1.14** 1.22*** 1.44*** 

 

0.18 

Heated Oil 0.37 0.19 -0.18 0.29 -0.16 -0.53 

 

0.11 

Chemical -0.27 -0.41 -0.59 -0.12 -0.26 -0.12 

 

0.17 

Beet -1.87 -1.17 0.58 2.68 0.75 -1.33 

 

0.002 

Green Grass 0.52 0.25 0.14 -0.44 1.10 0.56 

 

0.01 

Musty -0.45 -0.80** -0.68* -0.54 -0.38 -1.02*** 

 

0.23 

Medicinal -1.44 -1.80* -1.55* -0.70 -1.16 -0.48 

 

0.05 

Petroleum -0.63 -0.10 -0.52 -1.85 -0.19 0.89 

 

0.01 

Smoked/Charred 0.46 0.57 0.03 -0.63 0.30 1.18 

 

0.07 

Smoked Wood 3.69 5.80** 3.40 3.70 2.20 6.31** 

 

0.004 

Dairy 7.68* 6.72 4.86 -0.96 4.05 8.06* 

 

0.002 

Buttery 2.36** 2.47*** 2.13** 2.33** 1.44 1.91* 

 

0.04 

Cooked Milk 0.62 0.29 0.84 0.78 -0.17 0.35 

 

0.03 

Sour Milk -0.37 -0.47 -0.62 -0.08 0.19 0.72 

 

0.09 

Refrigerator 

Stale 1.73* 2.23*** 2.38*** 1.84** 1.56* 2.35*** 

 

0.04 

Warmed over 0.04 0.13 0.17 -0.13 0.25 0.17 

 

0.56 

Soapy -2.91 -2.43 -2.01 -3.03 -2.02 -1.63 

 

0.004 

Painty 1.06 0.87 0.32 0.58 1.19 2.16*** 

 

0.04 

Fishy 0.18 0.06 0.14 0.39 -0.01 -0.57 

 

0.05 

Cardboardy -0.06 -0.07 0.08 -0.38 -0.10 -0.36 

 

0.21 

Age 0.13 0.08 0.22 0.34 0.16 0.04 

  City 0.22 0.18 0.34*** 0.29** 0.41*** 0.24 

  
         Mean 5.75 5.74 5.92 5.78 5.59 5.15 

  P-Value 0.19 0.04 0.08 0.22 0.25 0.15 

  R
2
 0.22 0.26 0.25 0.22 0.21 0.23     

***P < 0.05 

**P < 0.10 

*P < 0.15 



 

 

 

 

Table 5.  Regression coefficients for the influence of principle components on beef lexicon traits for L. dorsi steaks. 

 

Principle Components 

    Beef 

Lexicon 

Trait Intercept 

Neutral 

Lipid 

PC 1 

Phospholipid 

PC 1 

Mineral 

PC 1 

Mineral 

PC 2 

Amino 

Acid PC 1 Methionine 

Other 

PC 1 

Other 

PC 2 Age   P-value R
2
 

Brown 1.88*** 0.01 0.02 0.03 -0.01 -0.02** -0.001 -0.07 0.06 -0.10 

 

0.004 0.25 

Bloody 1.52*** 0.02 0.02 0.004 -0.02 -0.02* 0.01 0.12*** -0.13*** 0.10 

 

0.001 0.29 

Fat 1.79*** 0.01 0.04*** 0.0001 0.01 -0.01 -0.01 0.004 -0.01 -0.05 

 

0.09 0.16 

Metal 1.64*** 0.01 0.004 -0.01 0.02 -0.01 0.01 0.06** -0.05*** 0.05 

 

0.04 0.19 

Liver 0.29*** 0.01 0.004 0.03* 0.03* 0.02*** -0.03 0.07** -0.02 -0.05 

 

0.03 0.19 

Green Hay 0.03 -0.002 -0.004 0.002 -0.01** -0.002 -0.0004 -0.01 -0.01 -0.01 

 

0.69 0.07 

Umami 1.13*** 0.04*** 0.05*** -0.03 -0.03 -0.02** -0.01 0.03 -0.01 -0.10 

 

0.0002 0.31 

Overly 

Sweet 1.04*** -0.003 0.02*** -0.001 -0.01 -0.01** -0.01 -0.02 0.02 0.02 

 

0.02 0.21 

Sweet 1.04*** 0.002 0.01 0.01 -0.02 -0.004 -0.01 -0.05 0.01 0.05 

 

0.03 0.20 

Sour 1.31*** -0.01 -0.001 -0.01 -0.02 0.002 0.01 0.03 -0.03* 0.02 

 

0.005 0.24 

Salty 1.42*** 0.01 0.02** -0.02** 0.01 -0.01*** -0.001 -0.02 -0.02 -0.08** 

 

0.0002 0.31 

Bitter 1.13*** -0.0002 -0.02* -0.02 0.01 -0.01* 0.005 0.01 -0.02 -0.06 

 

0.08 0.17 

Sour Aroma 0.005 -0.001 0.00002 0.0001 0.001 0.0001 -0.0001 -0.001 0.001 -0.004 

 

0.99 0.03 

Barnyard 0.02 -0.004 -0.001 0.005 -0.001 -0.004*** -0.002 -0.01 0.002 0.01 

 

0.49 0.09 

Burnt 0.08* 0.003 -0.004 -0.002 -0.02 -0.002 0.0004 -0.01 0.03* 0.05 

 

0.41 0.10 

Heated Oil 0.03 -0.001 0.003 -0.01 0.01 -0.01** 0.01 -0.003 0.02 -0.002 

 

0.67 0.08 

***P < 0.05 

**P < 0.10 

*P < 0.15 
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Table 5 cont.  Regression coefficients for the influence of principle components on beef lexicon traits for L. dorsi steaks. 

 

Principle Components 

    

Beef Lexicon 

Trait Intercept 

Neutral 

Lipid PC 

1 

Phospholipid 

PC 1 

Mineral 

PC 1 

Mineral 

PC 2 

Amino 

Acid 

PC 1 Methionine 

Other 

PC 1 

Other PC 

2 Age   P-value R
2
 

Chemical 0.10*** 0.01 -0.01* -0.01 0.02* 0.004 0.01 0.01 0.005 -0.03 

 

0.44 0.10 

Floral 0.02 -0.001 0.004 0.001 0.01 0.004* -0.0004 0.01 0.0001 -0.01 

 

0.83 0.06 

Green Grass -0.01 0.0002 -0.0004 0.001 0.001 0.0001 0.002 0.0003 0.002 0.004 

 

0.86 0.05 

Musty 0.06 -0.01 -0.01 -0.002 0.01 -0.01 0.02 -0.003 0.04** -0.05 

 

0.35 0.11 

Medicinal -0.03* 0.002 0.0001 -0.002 0.01 -0.001 0.01*** 0.01 0.01*** 0.02* 

 

0.18 0.14 

Smoked/Charred 0.04*** -0.003* -0.003** 0.002 -0.01** 0.001 -0.01*** -0.01** 0.001 -0.02** 

 

0.04 0.18 

Smoked Wood 0.01 0.005*** 0.002 -0.003 0.01*** 0.002 -0.001 0.002 -0.002 -0.001 

 

0.001 0.28 

Spoiled 0.02* 0.001 -0.001 -0.001 0.003 0.0003 -0.003 -0.00003 -0.004 -0.01 

 

0.81 0.06 

Buttery 0.11*** 0.01 0.01 -0.01 0.002 -0.01* -0.01 0.0003 -0.0002 0.01 

 

0.20 0.13 

Cooked Milk 0.01 -0.002 -0.0004 -0.01** 0.001 -0.001 -0.001 -0.004 -0.01 -0.004 

 

0.49 0.09 

Sour Milk 0.13*** -0.003 0.01 -0.01* -0.02*** -0.004 -0.02*** -0.002 -0.04*** -0.02 

 

0.05 0.18 

Refrigerator 

Stale 0.03 0.005 -0.01 -0.003 0.004 0.002 0.01 0.01 0.005 -0.02 

 

0.91 0.05 

Warmed over -0.05 0.02** -0.01 -0.01 0.06*** 0.001 0.07*** 0.06** 0.04*** -0.09*** 

 

0.001 0.29 

Painty -0.001 0.0004 0.001 -0.001 -0.001 -0.001 0.001 0.003 -0.001 -0.004 

 

0.79 0.06 

Fishy 0.004 0.01*** -0.005 0.001 0.003 0.001 0.01 0.01* 0.004 -0.02 

 

0.10 0.16 

Cardboardy 0.06 0.01 -0.01 0.003 -0.01 0.0005 0.03*** -0.005 0.02 -0.04   0.31 0.12 

***P < 0.05 

**P < 0.10 

*P < 0.15 
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Table 6.  Regression coefficients for the influence of principle components on beef lexicon traits for B. femoris steaks. 

 

Principle Components 

    

Beef 

Lexicon 
Trait Intercept 

Neutral 

Lipid PC 
1 

Neutral 

Lipid PC 
2 

Phospholipid 
PC 1 

Phospholipid 
PC 2 

Mineral 
PC 1 

Mineral 
PC 2 

Amino 

Acid PC 
1 

Amino 

Acid PC 
2 

Other 
PC 1 

Other 
PC 2 Age   P-value R2 

Brown 1.80*** -0.05 0.002 0.002 0.05** -0.01 -0.02 -0.01 -0.12** -0.07 -0.11*** -0.10 

 

0.16 0.16 

Bloody 1.68*** 0.10*** 0.02 0.05 -0.02 -0.04** 0.08*** 0.02*** 0.13*** 0.22*** 0.19*** 0.02 

 

0.001 0.29 

Fat 1.74*** 0.03 -0.06*** 0.02 0.02 -0.01 0.02 -0.02*** -0.001 0.02 0.0005 -0.04 

 

0.002 0.29 

Metal 1.98*** 0.01 0.01 -0.01 -0.04*** 0.02 0.01 0.003 0.11*** -0.004 0.06*** -0.03 
 

0.20 0.15 

Liver 0.32*** 0.02 -0.07*** -0.02 -0.003 0.01 -0.04* 0.01 0.08** 0.001 0.07** -0.08 

 

0.03 0.22 

Green 
Hay 0.03*** -0.003 0.003 -0.004 0.002 0.01 -0.001** 0.0002 -0.002 -0.02 -0.01 -0.03* 

 

0.50 0.11 

Umami 0.74*** 0.01 -0.03 0.02 0.04** 0.01 -0.02 -0.01 -0.01 0.001 -0.06** 0.05 

 

0.02 0.22 

Overly 

Sweet 0.87*** 0.02 -0.03* 0.02 0.01 0.01 0.01 -0.01 0.01 0.06 0.01 0.09** 
 

0.24 0.15 

Sweet 0.83*** 0.004 -0.02 0.01 0.01 0.01 0.02 -0.01 0.02 -0.003 -0.02 0.07* 

 

0.24 0.15 

Sour 1.50*** 0.04** -0.03* -0.01 -0.02 0.002 -0.04** 0.01* 0.02 0.07 0.07*** -0.10** 

 

0.001 0.31 

Salty 1.35*** 0.002 -0.001 0.008 0.03*** -0.01 -0.001 0.004 -0.03 -0.001 -0.01 0.08** 
 

0.31 0.13 

Bitter 1.52*** 0.02 -0.02 0.01 -0.01 0.02 -0.03** -0.004 -0.06*** 0.07 0.01 -0.22*** 
 

<0.0001 0.36 
Sour 

Aroma 0.02** -0.01 -0.01** -0.01 0.0002 0.002 -0.001 -0.001 0.002 -0.02 -0.01 -0.02 

 

0.76 0.08 

Barnyard 0.03*** 0.01 0.01 0.01 0.01 -0.01** 0.01*** -0.0003 0.003 0.01 0.01 -0.01 

 

0.15 0.16 

Burnt 0.22*** 0.005 0.02 0.02 -0.00003 0.02 -0.002 -0.01 -0.02 0.06 0.01 -0.08** 
 

0.36 0.13 
Heated 

Oil 0.13*** -0.003 -0.02 -0.002 -0.002 -0.01 0.003 -0.01*** -0.01 -0.02 -0.02 -0.04 

 

0.18 0.16 

Chemical 0.19*** -0.01 -0.02 -0.01 0.004 -0.002 -0.01 0.0003 -0.02 -0.01 -0.02 -0.04 

 

0.66 0.09 

***P < 0.05 

**P < 0.10 

*P < 0.15 
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Table 6 cont.  Regression coefficients for the influence of principle components on beef lexicon traits for B. femoris steaks. 

 

Principle Components 

    Beef 

Lexicon 

Trait Intercept 

Neutral 

Lipid PC 

1 

Neutral 

Lipid PC 

2 

Phospholipid 

PC 1 

Phospholipid 

PC 2 

Mineral 

PC 1 

Mineral 

PC 2 

Amino 

Acid PC 1 

Amino 

Acid PC 

2 

Other 

PC 1 

Other 

PC 2 Age   

P-

value R2 

Beet 0.004 0.001 0.001 -0.0005 -0.0003 -0.0001 0.001 -0.001 0.0005 0.002 -0.0005 -0.004 

 

0.93 0.05 

Green Grass 0.01*  0.01*** 0.01 0.01*** 0.002 -0.003 -0.002 -0.002 -0.02*** 0.05*** -0.002 0.00 

 

0.02 0.23 

Musty 0.28*** 0.003 -0.02 -0.03 0.01 0.02 -0.02 0.01 -0.02 -0.04 -0.003 -0.09*** 
 

0.20 0.15 

Medicinal 0.05*** -0.005 0.01** 0.001 -0.01** 0.001 -0.01 -0.001 0.01 -0.01 -0.005 -0.02 

 

0.25 0.14 

Petroleum 0.02*** -0.00001 0.01** -0.002 0.0005 -0.003 0.002 -0.005*** 0.01 -0.004 -0.003 -0.02 

 

0.14 0.17 

Smoked/Cha

rred 0.06*** -0.0004 0.005 -0.01 -0.004 0.003 0.004 -0.003 -0.02 -0.004 -0.01 0.01 
 

0.74 0.08 
Smoked 

Wood 0.00 -0.001 -0.005** -0.001 0.001 0.0001 -0.003 0.00002 0.004 -0.003 0.0003 0.01 

 

0.74 0.08 

Dairy 0.00 -0.001 0.003* 0.0001 -0.003*** 0.001 -0.0001 0.0001 0.01*** -0.002 0.003 0.004 

 

0.15 0.16 

Buttery 0.05*** -0.01 -0.01* -0.01 -0.01 0.01 -0.01 -0.001 -0.001 -0.02 -0.01 -0.004 
 

0.86 0.07 

Cooked Milk 0.03*** -0.003 -0.01 -0.01 0.004 0.001 -0.001 0.002 -0.02 -0.02 -0.01 0.01 
 

0.93 0.06 

Sour Milk 0.13*** 0.03* -0.02 0.004 0.01 0.002 -0.03** 0.01 0.01 0.06 0.02 -0.08*** 

 

0.07 0.19 

Refrigerator 

Stale 0.06*** -0.01 0.004 -0.01 0.003 -0.01 -0.0003 0.003 -0.01 -0.03 -0.02 -0.04*** 
 

0.60 0.10 
Warmed 

over 0.62*** 0.03 0.03 0.02 0.001 -0.003 0.02 0.003 -0.09* 0.09 -0.04 -0.10 

 

0.62 0.10 

Soapy 0.01 0.001 -0.003 0.002 -0.003 0.001 -0.0004 -0.001 0.01 0.01 0.01 -0.01 

 

0.59 0.10 

Painty 0.07*** -0.004 0.01 -0.004 -0.004 -0.01** -0.0001 0.001 0.002 -0.02 -0.01 -0.06*** 

 

0.14 0.17 

Fishy 0.07*** 0.01 0.01 -0.01 -0.01 -0.01 0.01 0.003 0.01 -0.01 0.02** -0.04** 
 

0.28 0.14 

Cardboardy 0.24*** 0.01 0.002 0.01 0.02 -0.01 -0.01 -0.01 0.01 0.02 -0.004 -0.05   0.73 0.08 

***P < 0.05 

**P < 0.10 

*P < 0.15 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

 This study determined that grass type cattle graze during the background phase 

plays a key role in determining the biochemical make-up of the meat and the flavors 

associated with it.  Warm-season grasses specifically were found to be the most 

detrimental in consumer flavor acceptability and also caused most of the changes in the 

biochemical constituents.  A complete analysis of the nutrient composition of each grass 

type would be helpful in determining why the changes in both the beef composition and 

flavor were seen.  In addition, all of the cattle were grazed in the summer time.  It would 

be interesting to see if the same observations that occurred in this study are seen during 

different seasons when the grass is at different maturities, such as spring and fall.  A 

second study grazing the cattle on the same pastures would also show if the findings in 

this study are repeatable. 

 Even though warm-season grasses were detrimental, this study found that if the 

cattle were supplemented for energy during the background phase most of the detriments 

were mitigated.  A future study comparing supplementing for energy vs. protein may 

show different results since protein would require a higher level of supplementation. 

    A majority of the biochemical constituents (moisture, ash, fat, protein, minerals, 

amino acids, and fatty acids) were measured on steaks that were never part of a retail 

display.  It is known that during retail display the fat oxidizes and changes composition.  

It would be interesting to see how the other biochemical constituents listed above may 

also be affected by a retail display period.      
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 All the steaks analyzed in both the consumer and beef lexicon panels were aged 

under vacuum either 7 or 28 d and then placed in a retail display for 7 d.  A study 

comparing 0 and 7 d retail display could not only evaluate the differences caused by 

oxidation, but the data from biochemical constituents at both 0 and 7 d retail display  

could also be used to give more insight into how the different meat constituents effect 

flavor acceptability and notes.   

 In this study all of the meat constituents were placed into groupings and analyzed 

as a whole using principle components.  Within the principle components it was seen that 

certain factors within a grouping had a little more influence than others.  An analysis 

evaluating each biochemical constituent may give more insight into how each affected 

flavor acceptability and notes.   
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APPENDIX I:  Principle components of the neutral lipids in L. dorsi 

steaks 

 
Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    13.5855211    11.8019051        0.6793        0.6793 

   2     1.7836160     0.4987043        0.0892        0.7685 

   3     1.2849117     0.4563723        0.0642        0.8327 

   4     0.8285394     0.2321844        0.0414        0.8741 

   5     0.5963549     0.1003876        0.0298        0.9039 

   6     0.4959673     0.1629688        0.0248        0.9287 

   7     0.3329985     0.0225565        0.0166        0.9454 

   8     0.3104420     0.0877001        0.0155        0.9609 

   9     0.2227419     0.0845362        0.0111        0.9721 

  10     0.1382057     0.0333825        0.0069        0.9790 

  11     0.1048232     0.0192387        0.0052        0.9842 

  12     0.0855844     0.0128491        0.0043        0.9885 

  13     0.0727354     0.0172203        0.0036        0.9921 

  14     0.0555151     0.0145889        0.0028        0.9949 

  15     0.0409262     0.0109414        0.0020        0.9969 

  16     0.0299849     0.0156108        0.0015        0.9984 

  17     0.0143741     0.0046485        0.0007        0.9992 

  18     0.0097256     0.0051523        0.0005        0.9996 

  19     0.0045734     0.0021144        0.0002        0.9999 

  20     0.0024589                      0.0001        1.0000 

 

                                          Eigenvectors 

                        Prin1       Prin2       Prin3       Prin4       Prin5       Prin6 

n10          n10     0.171541    0.484178    -.142420    0.014848    -.099385    -.355220 

n12          n12     0.182388    0.443595    -.112615    -.162180    -.258666    -.345591 

n14          n14     0.263157    -.060786    -.047813    -.009111    -.111699    -.090003 

n141         n141    0.238226    -.054860    -.237255    -.217702    0.010561    -.103686 

n15          n15     0.250310    -.177138    -.117188    0.062266    0.157820    -.108688 

n16          n16     0.262894    -.089017    -.063909    0.043610    0.000806    -.077752 

n161         n161    0.248521    -.109582    -.185290    -.172409    -.014341    -.081588 

n17          n17     0.245859    -.107641    -.157203    0.085947    0.245978    0.032353 

n171         n171    0.238790    -.121504    -.283395    -.068263    0.214088    0.078551 

n18          n18     0.257564    -.086053    0.060835    0.151653    0.049237    0.072725 

n181t        n181t   0.205587    -.029185    0.445865    0.264987    -.198955    -.068181 

n181         n181    0.260948    -.062638    -.069662    -.078783    0.069409    0.103794 

n181v        n181v   0.223978    0.071022    0.006666    -.092173    0.185746    0.402302 

n182tt       n182tt  0.229253    -.071859    0.239914    0.048143    -.357123    -.075436 

n182         n182    0.229333    -.016668    0.364075    0.135934    -.128546    0.241196 

n20          n20     0.114708    0.385739    -.152989    0.738825    0.211069    0.095518 

n183         n183    0.093981    0.278976    0.541799    -.310058    0.647996    -.209316 

n201         n201    0.243046    -.165390    0.184399    -.113477    -.205337    -.058027 

n22          n22     0.150888    0.438151    -.033996    -.302068    -.204167    0.629112 

TotOthern  TotOthern 0.253894    -.125745    0.040870    0.060112    0.074102    -.072748 
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APPENDIX II:  Principle components of the phospholipids in L. dorsi 

steaks 

 
   Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    7.80951950    4.73471002        0.3550        0.3550 

   2    3.07480949    1.04484664        0.1398        0.4947 

   3    2.02996285    0.21713075        0.0923        0.5870 

   4    1.81283210    0.43560657        0.0824        0.6694 

   5    1.37722553    0.25038231        0.0626        0.7320 

   6    1.12684322    0.12570081        0.0512        0.7832 

   7    1.00114241    0.19740404        0.0455        0.8287 

   8    0.80373837    0.19245762        0.0365        0.8653 

   9    0.61128075    0.06932618        0.0278        0.8931 

  10    0.54195457    0.09504723        0.0246        0.9177 

  11    0.44690734    0.08657039        0.0203        0.9380 

  12    0.36033696    0.07911907        0.0164        0.9544 

  13    0.28121789    0.11166256        0.0128        0.9672 

  14    0.16955532    0.01609020        0.0077        0.9749 

  15    0.15346513    0.04924665        0.0070        0.9819 

  16    0.10421848    0.02727913        0.0047        0.9866 

  17    0.07693935    0.00744276        0.0035        0.9901 

  18    0.06949659    0.01789355        0.0032        0.9932 

  19    0.05160304    0.01151891        0.0023        0.9956 

  20    0.04008413    0.00913242        0.0018        0.9974 

  21    0.03095171    0.00503644        0.0014        0.9988 

  22    0.02591527                      0.0012        1.0000 

 

                                          Eigenvectors 

                     Prin1     Prin2     Prin3     Prin4     Prin5     Prin6     Prin7 

p12          p12     0.084375  0.127295  0.231277  0.241133  0.543820  -.157723  -.285632 

p13          p13     0.038466  0.424414  0.040376  0.337760  -.289284  -.039450  -.147260 

p14          p14     0.255825  -.041276  -.217343  0.221731  0.311889  -.156680  -.045261 

p141         p141    0.039673  0.352360  0.002865  0.445926  -.267421  -.165886  -.184120 

p15          p15     0.206455  0.360637  -.178628  -.258670  0.100662  0.061383  -.045764 

p16          p16     0.310273  -.187968  0.018390  0.171814  0.024800  -.013941  0.012980 

p161         p161    0.272058  -.149365  -.222500  0.155289  0.116442  -.078093  0.114140 

p17          p17     0.230300  0.299100  -.207529  -.279912  0.087604  0.104328  -.109236 

p171         p171    0.113490  0.307674  -.109809  -.033268  -.293962  -.138965  0.484271 

p18          p18     0.310712  -.057881  -.040296  -.145168  -.058222  0.055734  -.105481 

p181t        p181t   0.102779  -.413918  0.151073  0.198592  -.354200  -.052534  -.092130 

p181         p181    0.286108  -.132851  -.115817  0.211893  0.213972  -.071054  0.141191 

p181v        p181v   0.282516  -.077310  -.195672  0.056269  -.207246  -.153699  0.125195 

p182         p182    0.225685  0.085498  0.219215  -.169341  -.101123  0.181423  -.394508 

p20          p20     -.083897  0.145630  -.222384  0.338415  0.122357  0.353458  0.224952 

p183         p183    0.061590  0.173878  0.511344  0.153225  0.095075  0.301957  0.108315 

p22          p22     0.199844  -.004800  0.037947  0.081275  0.052145  0.595613  0.211181 

p204         p204    0.303448  -.010994  -.024635  -.174747  -.143473  -.043936  -.282353 

p205         p205    0.199536  -.088537  0.410777  -.055456  -.059056  0.001383  0.273161 

p241         p241    0.285820  -.007661  0.037926  -.114473  -.070487  0.155991  0.072617 

p226         p226    0.000835  0.190512  0.227438  -.225516  0.221402  -.392210  0.328751 

TotOtherp  TotOtherp 0.247957  0.067745  0.318865  0.017889  -.028182  -.250663  0.116424 
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APPENDIX III:  Principle components for minerals in L. dorsi steaks 

 
  Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    3.40780674    1.11715601        0.2434        0.2434 

   2    2.29065073    0.22625803        0.1636        0.4070 

   3    2.06439270    0.70520192        0.1475        0.5545 

   4    1.35919078    0.18491117        0.0971        0.6516 

   5    1.17427961    0.28215984        0.0839        0.7355 

   6    0.89211977    0.19050905        0.0637        0.7992 

   7    0.70161072    0.10737133        0.0501        0.8493 

   8    0.59423939    0.07997821        0.0424        0.8917 

   9    0.51426118    0.20785697        0.0367        0.9285 

  10    0.30640421    0.07134943        0.0219        0.9504 

  11    0.23505478    0.04747747        0.0168        0.9671 

  12    0.18757731    0.03675759        0.0134        0.9805 

  13    0.15081973    0.02922738        0.0108        0.9913 

  14    0.12159235                      0.0087        1.0000 

 

                                           Eigenvectors 

 

                           Prin1      Prin2      Prin3      Prin4       

ConvC       ConvC       0.408322   -.005055   -.263719   0.108734  

ConvP       ConvP       0.314860   -.271185   0.057828   0.456702   

ConvK       ConvK       0.077536   -.220848   -.192853   -.180658    

ConvMg      ConvMg      0.421005   0.033296   -.221695   0.028289 

ConvZn      ConvZn      0.150842   0.430005   0.195141   -.031091  

ConvFe      ConvFe      0.407322   0.033023   -.073456   -.235696    

ConvMn      ConvMn      0.323833   0.185390   0.128314   -.321214   

ConvCu      ConvCu      0.239855   0.133099   0.210790   -.443811   

ConvS       ConvS       0.282234   -.153924   0.210267   0.331531  

ConvNa      ConvNa      0.306486   -.021055   -.233454   0.059104  

NonHeme7    NonHeme7    0.094634   0.093626   0.560203   -.104054    

NonHeme28   NonHeme28   0.114679   -.042192   0.525917   0.340678   

Heme7       Heme7       0.004621   0.531314   -.196718   0.278618    

Heme28      Heme28      -.064019   0.567005   -.092560   0.267532  
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APPENDIX IV:  Principle components for amino acids in L. dorsi steaks 

 
  Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    13.9271322    12.9209415        0.8704        0.8704 

   2     1.0061907     0.4134999        0.0629        0.9333 

   3     0.5926908     0.3150411        0.0370        0.9704 

   4     0.2776497     0.1718712        0.0174        0.9877 

   5     0.1057785     0.0660565        0.0066        0.9943 

   6     0.0397220     0.0229557        0.0025        0.9968 

   7     0.0167663     0.0071565        0.0010        0.9979 

   8     0.0096098     0.0018918        0.0006        0.9985 

   9     0.0077180     0.0027637        0.0005        0.9990 

  10     0.0049544     0.0010461        0.0003        0.9993 

  11     0.0039083     0.0009542        0.0002        0.9995 

  12     0.0029541     0.0006452        0.0002        0.9997 

  13     0.0023089     0.0009496        0.0001        0.9998 

  14     0.0013594     0.0005921        0.0001        0.9999 

  15     0.0007672     0.0002775        0.0000        1.0000 

  16     0.0004898     0.0004898        0.0000        1.0000 

  17     0.0000000     0.0000000        0.0000        1.0000 

  18     0.0000000     0.0000000        0.0000        1.0000 

  19     0.0000000     0.0000000        0.0000        1.0000 

  20     0.0000000                      0.0000        1.0000 

 

                                          Eigenvectors 

                 Prin1       Prin2       Prin3       Prin4       Prin5       Prin6       

Cys     Cys     0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Hyp     Hyp     0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Asp     Asp     0.266309    -.010992    -.054237    -.047419    -.196391    -.292619     

Thr     Thr     0.265614    -.001983    -.114855    -.072841    0.177829    -.226938     

Ser     Ser     0.261761    -.012007    -.031107    0.035564    0.541562    -.547284     

Glu     Glu     0.259802    -.010326    -.094466    -.140159    0.551604    0.623634     

Pro     Pro     0.247896    0.007561    0.466446    0.140845    0.064844    0.227668    

Gly     Gly     0.216239    -.003997    0.746614    0.217723    -.109015    -.089919     

Ala     Ala     0.266758    0.016252    0.082542    0.033368    0.098901    0.045861     

Val     Val     0.264183    0.017218    -.081081    -.073306    -.415317    0.095442     

Met     Met     -.009024    0.995602    0.026090    -.061551    0.017632    -.009735     

Ile     Ile     0.264030    -.007162    -.112324    -.162375    -.293758    0.247862     

Leu     Leu     0.266518    -.004871    -.098053    -.103445    -.070082    -.092289     

Nle     Nle     0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Tyr     Tyr     0.264024    0.001307    -.092818    -.211413    -.180603    -.124153     

Phe     Phe     0.266389    -.005007    -.083568    -.071634    -.015934    -.039103     

His     His     0.224268    0.065685    -.363832    0.881411    -.070645    0.093232     

Hlys    Hlys    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Lys     Lys     0.265873    0.036651    -.109970    -.129270    -.054068    0.012628     

Arg     Arg     0.266209    -.044807    0.051041    -.116323    -.039894    0.086380     
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APPENDIX V:  Principle components for other biochemical 

constituents in L. dorsi steaks 

 
Eigenvalue    Difference    Proportion    Cumulative 

   1    2.56820437    0.77733816        0.2568        0.2568 

   2    1.79086621    0.30365943        0.1791        0.4359 

   3    1.48720678    0.44599198        0.1487        0.5846 

   4    1.04121480    0.11267470        0.1041        0.6887 

   5    0.92854010    0.17002978        0.0929        0.7816 

   6    0.75851032    0.10688033        0.0759        0.8575 

   7    0.65162999    0.04117274        0.0652        0.9226 

   8    0.61045724    0.44708704        0.0610        0.9837 

   9    0.16337021    0.16337021        0.0163        1.0000 

  10    0.00000000                      0.0000        1.0000 

                                       Eigenvectors 

                          Prin1         Prin2         Prin3         Prin4         Prin5 

ph7            ph7       0.231696      -.250045      0.161699      0.422653      0.415915 

ph28           ph28      0.092300      -.371848      -.099309      -.031781      0.681120 

Moisture       Moisture  0.533641      -.169618      0.061509      0.010063      -.176046 

Ash            Ash       0.167271      0.067441      0.570149      -.275627      -.168381 

Fat            Fat       -.579235      0.168032      0.023406      -.011341      0.271912 

Protein        Protein   0.270882      -.117068      -.544951      0.176553      -.234969 

CkLoss7        CkLoss7   -.141683      0.298157      -.164240      0.656198      -.144761 

CkLoss28       CkLoss28  0.099751      0.188096      0.523559      0.469091      0.041712 

PerCarb7       PerCarb7  0.361537      0.526351      -.084112      -.010360      0.241660 

PerCarb28      PerCarb28 0.235417      0.568001      -.171621      -.249467      0.305785 
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APPENDIX VI:  Principle components of the neutral lipids in B. femoris 

steaks 
 

            Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    11.2568315     9.4325428        0.5628        0.5628 

   2     1.8242887     0.4486691        0.0912        0.6541 

   3     1.3756196     0.0780059        0.0688        0.7228 

   4     1.2976136     0.3245444        0.0649        0.7877 

   5     0.9730692     0.3041009        0.0487        0.8364 

   6     0.6689683     0.1636528        0.0334        0.8698 

   7     0.5053155     0.0318749        0.0253        0.8951 

   8     0.4734405     0.1032893        0.0237        0.9188 

   9     0.3701513     0.0557763        0.0185        0.9373 

  10     0.3143749     0.0557277        0.0157        0.9530 

  11     0.2586473     0.0678921        0.0129        0.9659 

  12     0.1907552     0.0266015        0.0095        0.9755 

  13     0.1641537     0.0549651        0.0082        0.9837 

  14     0.1091886     0.0081034        0.0055        0.9891 

  15     0.1010852     0.0539023        0.0051        0.9942 

  16     0.0471828     0.0164030        0.0024        0.9965 

  17     0.0307798     0.0134603        0.0015        0.9981 

  18     0.0173195     0.0047045        0.0009        0.9989 

  19     0.0126150     0.0040154        0.0006        0.9996 

  20     0.0085997                      0.0004        1.0000 

 

 

                                          Eigenvectors 

                      Prin1       Prin2       Prin3       Prin4       Prin5       Prin6 

n10          n10     0.184110    0.142369    -.357774    0.352059    -.050325    -.215089 

n12          n12     0.183087    -.024190    -.327518    0.440228    0.091615    0.253258 

n14          n14     0.283681    -.045149    -.044887    0.010119    0.043164    0.123139 

n141         n141    0.236299    -.267354    -.153073    -.040396    0.112471    0.403518 

n15          n15     0.268200    -.144422    0.169778    -.029319    0.028524    -.041380 

n16          n16     0.287967    -.021058    0.075148    -.019195    -.102842    0.049071 

n161         n161    0.254777    -.244794    -.082197    -.128298    -.059012    0.220505 

n17          n17     0.244920    -.147965    0.296584    0.170503    -.023749    -.346296 

n171         n171    0.232298    -.334900    0.203371    0.087492    -.032317    -.285518 

n18          n18     0.257704    0.177036    0.217607    0.167140    -.103628    -.141431 

n181t        n181t   0.193936    0.412254    -.166946    -.236209    0.018678    -.141443 

n181         n181    0.282177    -.083675    0.085493    0.055639    -.086107    -.059772 

n181v        n181v   0.238594    -.024202    0.110994    -.251300    -.153916    -.176770 

n182tt       n182tt  0.175715    0.373046    0.006115    -.030185    -.276710    0.202572 

n182         n182    0.223506    0.317133    -.113546    -.269033    0.121313    -.152868 

n20          n20     -.032384    0.343557    0.463994    0.404281    -.316945    0.349040 

n183         n183    0.151370    0.135428    0.365966    -.362839    0.353601    0.348604 

n201         n201    0.233875    0.179121    -.303441    -.097901    -.166678    -.045199 

n22          n22     0.103702    0.230288    0.103470    0.304204    0.755330    -.105836 

TotOthern  TotOthern 0.227459    -.142281    -.094585    0.074945    0.028446    0.248177 
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APPENDIX VI:  Principle components of the phospholipids in B. 

femoris steaks 

 
  Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    5.96463428    1.77633465        0.2711        0.2711 

   2    4.18829963    1.34470180        0.1904        0.4615 

   3    2.84359783    0.58689115        0.1293        0.5908 

   4    2.25670668    0.84278119        0.1026        0.6933 

   5    1.41392549    0.21607242        0.0643        0.7576 

   6    1.19785307    0.14990934        0.0544        0.8120 

   7    1.04794373    0.44014487        0.0476        0.8597 

   8    0.60779886    0.04770799        0.0276        0.8873 

   9    0.56009087    0.06059805        0.0255        0.9128 

  10    0.49949282    0.16978298        0.0227        0.9355 

  11    0.32970984    0.08987098        0.0150        0.9505 

  12    0.23983886    0.04129140        0.0109        0.9614 

  13    0.19854746    0.02881219        0.0090        0.9704 

  14    0.16973527    0.02420958        0.0077        0.9781 

  15    0.14552570    0.04535979        0.0066        0.9847 

  16    0.10016590    0.03149277        0.0046        0.9893 

  17    0.06867313    0.00907864        0.0031        0.9924 

  18    0.05959449    0.01008340        0.0027        0.9951 

  19    0.04951110    0.02055670        0.0023        0.9973 

  20    0.02895439    0.01273657        0.0013        0.9987 

  21    0.01621782    0.00303505        0.0007        0.9994 

  22    0.01318277                      0.0006        1.0000 

                                       Eigenvectors 

                      Prin1     Prin2     Prin3     Prin4     Prin5     Prin6     Prin7 

p12          p12     0.139500  0.180824  0.053339  -.419163  0.052547  0.048520  0.168430 

p13          p13     0.081951  0.305397  0.114000  0.275054  0.347133  -.177608  0.048148 

p14          p14     0.152631  0.030012  0.379360  -.048073  0.077352  0.182551  0.425996 

p141         p141    0.102876  0.262376  -.107371  0.261241  0.352407  0.027748  0.381190 

p15          p15     0.048496  0.409426  -.227218  -.100171  -.004509  0.193117  -.017506 

p16          p16     0.315242  -.241925  0.012982  0.080852  0.112228  -.023640  0.218285 

p161         p161    0.260637  -.106814  0.234092  -.125301  0.051530  0.350666  -.003323 

p17          p17     0.012055  0.371319  -.251173  -.050325  -.127139  0.349182  -.025063 

p171         p171    0.042052  0.406887  0.252503  0.061301  -.175271  0.028735  -.104441 

p18          p18     0.290123  -.034567  -.212853  0.144964  -.140649  0.286949  0.140640 

p181t        p181t   0.217419  -.341599  -.014908  0.171150  -.102067  -.158487  -.017470 

p181         p181    0.297316  -.215648  0.130793  -.054547  0.189112  0.253889  0.052342 

p181v        p181v   0.107968  0.090545  0.489330  0.214264  -.159808  0.086079  -.148794 

p182         p182    0.227250  0.044478  -.278557  0.281785  -.136606  -.261263  0.200934 

p20          p20     0.092284  0.043414  -.019306  -.124315  0.642927  -.242719  -.263939 

p183         p183    0.243403  0.158270  -.091354  -.134978  -.140175  -.385909  0.248019 

p22          p22     0.121571  0.211155  0.349078  0.294658  -.165112  -.232560  -.186357 

p204         p204    0.313560  0.027144  -.217002  0.177130  -.056438  0.126005  -.246602 

p205         p205    0.245911  0.013692  -.000365  -.389848  -.234794  -.293641  0.054100 

p241         p241    0.263540  -.063362  -.189807  0.227261  -.004251  0.105456  -.319380 

p226         p226    0.249456  0.056107  -.012283  -.220845  0.193343  0.026526  -.384076 

TotOtherp  TotOtherp 0.334987  0.095502  0.041971  -.238034  -.135149  -.158109  -.136128 
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APPENDIX VIII:  Principle components for minerals in B. femoris 

steaks 

 
Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    4.13629300    1.25051165        0.2954        0.2954 

   2    2.88578135    1.28397365        0.2061        0.5016 

   3    1.60180770    0.43717772        0.1144        0.6160 

   4    1.16462998    0.24172370        0.0832        0.6992 

   5    0.92290629    0.17371958        0.0659        0.7651 

   6    0.74918671    0.07085115        0.0535        0.8186 

   7    0.67833556    0.12246870        0.0485        0.8671 

   8    0.55586686    0.10395318        0.0397        0.9068 

   9    0.45191368    0.14525850        0.0323        0.9391 

  10    0.30665518    0.07377257        0.0219        0.9610 

  11    0.23288262    0.09426788        0.0166        0.9776 

  12    0.13861473    0.03375830        0.0099        0.9875 

  13    0.10485643    0.03458653        0.0075        0.9950 

  14    0.07026990                      0.0050        1.0000 

 

 

                                           Eigenvectors 

 

                           Prin1      Prin2      Prin3      Prin4    

 

ConvC       ConvC       0.364846   0.097270   -.220057   -.258159    

ConvP       ConvP       0.396121   -.188906   0.017254   -.003397    

ConvK       ConvK       0.251653   0.245576   0.215048   -.301344    

ConvMg      ConvMg      0.343502   0.201734   -.084440   -.439977    

ConvZn      ConvZn      0.264612   -.172420   0.330971   0.208212    

ConvFe      ConvFe      0.012623   0.405338   -.263567   0.454020   

ConvMn      ConvMn      0.263406   0.318163   -.202215   0.454296    

ConvCu      ConvCu      0.334039   0.063474   0.014944   0.313742   

ConvS       ConvS       0.396818   -.102125   0.087748   -.060395    

ConvNa      ConvNa      0.332425   -.290607   -.018846   0.163451    

NonHeme7    NonHeme7    -.046551   0.367853   0.328541   -.074763    

NonHeme28   NonHeme28   0.042364   0.480031   0.218875   -.042832    

Heme7       Heme7       -.048922   0.145501   0.620971   0.127004   

Heme28      Heme28      0.056419   -.269753   0.358152   0.201817 
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APPENDIX IX:  Principle components for amino acids in B. femoris 

steaks 

 
   Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    14.5033492    13.6941499        0.9065        0.9065 

   2     0.8091994     0.3574986        0.0506        0.9570 

   3     0.4517008     0.3091645        0.0282        0.9853 

   4     0.1425363     0.1061475        0.0089        0.9942 

   5     0.0363888     0.0212125        0.0023        0.9964 

   6     0.0151763     0.0034843        0.0009        0.9974 

   7     0.0116920     0.0030797        0.0007        0.9981 

   8     0.0086122     0.0018172        0.0005        0.9987 

   9     0.0067950     0.0026225        0.0004        0.9991 

  10     0.0041725     0.0007549        0.0003        0.9994 

  11     0.0034176     0.0011036        0.0002        0.9996 

  12     0.0023139     0.0006296        0.0001        0.9997 

  13     0.0016843     0.0001436        0.0001        0.9998 

  14     0.0015408     0.0006244        0.0001        0.9999 

  15     0.0009164     0.0004118        0.0001        1.0000 

  16     0.0005045     0.0005045        0.0000        1.0000 

  17     0.0000000     0.0000000        0.0000        1.0000 

  18     0.0000000     0.0000000        0.0000        1.0000 

  19     0.0000000     0.0000000        0.0000        1.0000 

  20     0.0000000                      0.0000        1.0000 

 

                                          Eigenvectors 

                   Prin1       Prin2       Prin3       Prin4       Prin5       Prin6        

Cys     Cys     0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Hyp     Hyp     0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Asp     Asp     0.261413    -.052993    -.064555    -.003341    0.154893    -.343892     

Thr     Thr     0.261044    -.006499    -.134184    0.010275    -.091309    -.241303     

Ser     Ser     0.260635    0.033629    -.069261    0.023882    -.309001    -.574967     

Glu     Glu     0.257828    -.012979    -.142208    0.224011    -.637675    0.506542     

Pro     Pro     0.247302    -.034942    0.478817    0.113422    -.279981    -.033777     

Gly     Gly     0.223305    -.099376    0.767059    0.038387    0.189288    0.085097     

Ala     Ala     0.261297    -.025998    0.111322    -.035996    -.005687    0.079277     

Val     Val     0.260018    -.093548    -.061597    -.013097    0.432872    0.104829     

Met     Met     0.127624    0.968516    0.050697    0.146301    0.109228    0.043016     

Ile     Ile     0.259221    -.107907    -.148451    0.053509    0.167585    0.298218     

Leu     Leu     0.260976    -.040223    -.144078    0.000704    0.073547    -.027601     

Nle     Nle     0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Tyr     Tyr     0.258374    -.061686    -.192786    0.179532    0.280772    0.257181     

Phe     Phe     0.261042    -.002024    -.110175    0.054838    0.151521    -.075546     

His     His     0.244506    0.113148    -.002507    -.923189    -.115339    0.145368     

Hlys    Hlys    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000     

Lys     Lys     0.260874    -.007200    -.153287    0.018232    -.004225    -.008690     

Arg     Arg     0.260528    -.085890    -.028279    0.145633    -.058250    -.161493     
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APPENDIX X:   Principle components for other biochemical 

constituents in B. femoris steaks 

 
Eigenvalues of the Correlation Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 

   1    2.36062136    0.60281618        0.2361        0.2361 

   2    1.75780518    0.47628352        0.1758        0.4118 

   3    1.28152166    0.07837431        0.1282        0.5400 

   4    1.20314735    0.17843995        0.1203        0.6603 

   5    1.02470740    0.06749533        0.1025        0.7628 

   6    0.95721207    0.27521558        0.0957        0.8585 

   7    0.68199648    0.22409425        0.0682        0.9267 

   8    0.45790224    0.18281596        0.0458        0.9725 

   9    0.27508628    0.27508628        0.0275        1.0000 

  10    0.00000000                      0.0000        1.0000 

                                      Eigenvectors 

                           Prin1         Prin2         Prin3         Prin4         Prin5 

ph7            ph7       -.081344      0.264864      -.119125      0.368851      0.711958 

ph28           ph28      -.047423      0.125427      0.632616      -.320584      0.165780 

Moisture       Moisture  0.588104      0.098057      0.084079      0.026039      0.043556 

Ash            Ash       0.024927      0.581925      0.309227      -.111598      -.251288 

Fat            Fat       -.635864      -.123457      -.089023      -.009370      0.017813 

Protein        Protein   0.484612      -.309003      -.163256      0.061050      0.071003 

CkLoss7        CkLoss7   -.045882      -.197151      0.239999      0.532252      -.540939 

CkLoss28       CkLoss28  -.038600      -.335172      0.467363      0.445897      0.217091 

PerCarb7       PerCarb7  0.023393      -.398567      0.384346      -.295342      0.232086 

PerCarb28      PerCarb28 0.036507      0.380887      0.156810      0.418192      0.040305 
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APPENDIX XI: pH 

 
1. Weigh out 10 gof raw sample in duplicate into small beakers. 

2. Add 90 mL of distilled, deionized water to each. 

3. Homogenize the solution for 30 seconds using a Polytron at 10,800 rpm. 

4. Place stir bar in the solution after homogenizing and while stirring the solution, read 

the pH using a pH meter which has been calibrated using 7.0 buffer and 4.0 buffer. 

5. Be sure to keep electrode clean by rinsing well between samples. 
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APPENDIX XII:  Proximate analysis 

 
 University of Nebraska-Lincoln 

 Meat Science and Muscle Biology Research Lab 

 A.O.A.C. Methods-Serial Sample Analysis 

Moisture and Ash by LECO 

(This portion of the proximate analysis will be done on a Thermogravimetric Analyzer 

(TGA-601) Leco Corp., St. Jos. MO.) 

1. Powdered samples are removed from the ultra-low freezer. 

2. Samples are stored in a small stryo-foam cooler containing liquid nitrogen to 

 keep from thawing while loading subsamples into the TGA-601.  Samples are 

 kept in their original plastic bags so they do not come in direct contact with the 

 liquid nitrogen. 

3. Sample identification numbers are entered into the computer. 
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4.  The method of operation is selected (User defined). 

Name Covers RampRate RampTime StartTemp EndTemp 

Moisture Off 6 d/m :17 min 25 C 130 C 

Ash Off 20 d/m :30 min 130 C 600 C 

 

Name Atmosp FlowRate HoldTime Const.Wt. Const.Wt. Time 

Moisture N High 00 min 0.05% 09 min 

Ash O High 00 min 0.05% 09 min 

 

General Setting 

 Crucible Density  3.00 

 Cover Density   3.00 

 Sample Density  1.00 

Equations: 

 Initial Wt.  W [Initial] 

 Moisture  ((W[Initial] - W[Moisture])/W[Initial])*100 

 Ash   (W[Ash]/[Initial]) * 100 

 Ash Dry Basis  E[Ash] * (100/(100-E[Moisture])) 
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5. Select “Analysis” and click on “collect”. 

6. Select furnace to be used. 

7. Load empty crucibles into selected furnace. 

8. TGA-601 will weigh all crucibles to obtain a tare weight. 

9. After tare is obtained the machine will call to load each sample (1g). 

10. Return samples to ultra-low freezer. 

11. After all samples are loaded the machine will automatically start. 

12. When analysis is finished click the “save” icon on toolbar and print a hard copy of 

 results. 

13. Remove crucibles after they have cooled down for 30 minutes.  Wash them in 

 soapy  water and allow to dry in drying oven for at least 1 ½ hours. 

14. Remove dry crucibles and transfer to desiccator for future use. 

15. Before doing another run the machine must cool down to 25 C. 
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APPENDIX XIII: Fat extraction – Soxhlet method 

 
WARNING: ETHER IS EXTREMELY FLAMMABLE AND PRODUCES 

EXPLOSIVE PEROXIDES.  NEVER BRING A RADIO OR ANY OTHER 

POTENTIALLY SPARK-PRODUCING ITEM INTO THE FAT EXTRACTION 

ROOM. 

1. Check ground glass connections.  They should be wiped clean with a dry paper 

towel and given a thin coating of stopcock grease. 

2. Each boiling flask must contain boiling stones.  This helps prevent violent boiling 

of the solvent which could be dangerous. 

3. Load samples into soxhlet tubes, arranging them so that no samples are above the 

level of the top bend in the narrower tubing on the outside of the soxhlet.  (The 

soxhlet will only fill with the solvent up to this point before cycling back down 

into the boiling flask.)  In general, the large soxhlets will hold about 20 two-gram 

samples and the small soxhlets from 4-6. 

4. Fill the large (500ml) boiling flasks with @ 400ml of solvent and the small 

(125ml) flasks with 100ml of solvent.  DO THIS UNDER THE FUME HOOD! 

5. Fit the soxhlet onto the boiling flask.  Very carefully, bring the assembly into the 

extraction room and fit it onto the condenser.  Make sure all ground glass 

connections are snug and each boiling flask is resting on the heating element.  The 

ceramic fiber sheet should be covering the bare metal surfaces of the burners 

completely. 

6. Turn on the water supply to the condensers (usually a quarter turn).  Check later 
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to make sure condensers are cool enough - if not, increase water flow. 

7. Turn heating element control dials to 2 way between three and four.  Each burner 

has its own dial.  NEVER TURN THE BURNER BEYOND FIVE.  Ether has a 

very low boiling point and violent boiling is dangerous.  Double check fittings, 

boiling stones, etc. 

8. Fat extraction will take from 24 to 72 hours depending on the sample.  (Beef-48 

hours, Bacon-72 hours).  Check extractions twice daily to see that everything is 

alright while they are running. 

9. When done, turn off the burners and let solvent cool completely before removing 

samples. 

10. After it has cooled down, slowly uncouple the flask and soxhlet tube from the 

condenser.  Cover the top of the soxhlet with one palm so as to reduce ether 

vapors while transporting it to the fume hood.  Air dry samples in the fume hood 

for two hours to get rid of the remaining ether in the samples.  Pour ether back 

slowly into an approved container for reuse or discarding.  DO NOT LEAVE 

ETHER OUT OF THE HOOD OR THE FLAMMABLE CABINET. 

11. Place samples in drying oven (105 degrees C) for about four hours or overnight 

before weighing back. 

 

Calculation: ( (Original weight including filter paper and paper clip-Fat extracted sample 

weight)/Sample Wt)*100)-% Moisture=% Fat 
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APPENDIX XIV: Phenol-sulfuric acid method for total carbohydrates 

 
1. To 1 ml of a solution containing <0.1 mg/ml of carbohydrate, add 50 µl of 80% 

(w/w) phenol 

2. Add 2.5 ml of concentrated sulfuric acid and vortex immediately 

3. Let stand 10 min 

4. Cool in water bath for 10-25 min 

5. Read absorbance at 490 nm  

6. Estimate sugar concentration from a standard curve prepared with glucose, 

arabinose+xylose, or fructose 

Standard curve: Make a stock solution of ~0.1 mg/ml of sugar standard 

Standard Stock 

solution (ml) 

Water (ml) Approx. 

concentration 

(mg/ml)* 

0 0 1.0 0 

1 0.2 0.8 0.02 

2 0.4 0.6 0.04 

3 0.6 0.4 0.06 

4 0.8 0.2 0.08 

5 1.0 0 0.1 

*Use actual concentration of stock solution to calculate concentration in standards 

 

Reference: Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. Colorimetric 

method for determination of sugars and related substances. Anal. Chem. 1956; 28: 350-

356 
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APPENDIX XV: Determination of non-heme iron 

 
 Rhee, K.S. and Ziprin, Y.A.  1987.  Modification of the Schricker nonheme iron method 

to minimize pigment effects for red meats.  J. Food Sci. 52:1174-1176. 

 

1.  Weigh 5 g + 0.05 g of powdered sample into 50 mL (2.5 x 1.5 cm) screw-cap tubes 

and add 0.2 mL NaNO2 solution (156 ppm NaNO2 based on meat weight).  Mix well with 

spatula and leave in tube to mix again. 

 

2.  Add 15 mL acid solution to tubes, caps, and shake vigorously. 

 

3.  Heat samples in water shaker bath for 20 hours at 65°C with vigorous agitation.  Use 

pump to trickle water into bath overnight so it does not run dry. 

 

4.  Remove samples from water bath and cool to room temperature.  Do not agitate less 

than 1 hour before pipetting.   

 

5.  SAMPLE 

Transfer 1 mL of the middle liquid brown phase (acidic liquid above the meat phase) to 

small (15 x 75) centrifuge tube and mix with 5 mL of color reagent.  Vortex.  Carefully 

pipette to avoid particulate.  Read against the Reagent Blank (use as reference). 

 

6.  LIQUID PHASE WITHOUT COLOR REAGENT BLANK 

Transfer 1 mL of the middle liquid brown phase to another set of centrifuge tubes and 

mix with 5 mL 21:20 sodium acetate solution.  Read against the Liquid Phase Blank 

(use as reference). 

 

7. REAGENT BLANK 

Mix duplicate reagent blanks in the same size tube using 1 mL HCL-TCA acid mixture + 

5 mL color reagent.  

 

8.  LIQUID PHASE BLANK 

Mix duplicate liquid phase blanks in the same size tube using 1 mL HCL-TCA acid 

solution +  5 mL 21:20 sodium acetate solution. 

 

9.  Prepare standards according to table below. 

 

10.  Transfer 1 mL of each standard to a 15 x 75 mm centrifuge tube and mix 5 mL color 

reagent.  The gradient is pale pink color. 
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11.  Centrifuge all samples, blanks, and standards at 3800 x g (6,000 rpm with Sorvall 

SE-12 rotor and Sorvall RC 5B centrifuge, DuPont Co., Wilmington, DE) for 10 min. 

 

12.  Set up a standard curve at 540 nm on the spectrophotometer. 

 

13.  Measure absorbance of all samples and blanks at 540 nm. 

 

CONCENTRATION 

(μg/mL) 

mL 50 mg/100 mL Fe 

STANDARD* 

mL Acid Mixture 

0.5 0.025 24.975 

1.0 0.050 24.950 

1.5 0.075 24.925 

2.0 0.100 24.900 

2.5 0.125 24.875 

3.0 0.150 24.850 

3.5 0.175 24.825 

4.0 0.200 24.800 

4.5 0.225 24.775 

5.0 0.250 24.750 

 *Standard obtained from Sigma 

 

REAGENTS 

 

NaNO2 Solution:  Daily 

 Prepare NaNO2, 0.39% (w/v), with fresh distilled deionized water each day.  (0.39 

g in 100 mL) 

 

40% TCA 

 Make from 100% TCA by mixing 200 mL brought to 500 mL with H20.  (100% 

TCA made from new bottle of 500g with 500 mL added) 

 

Acid Solution 

 Mix 6 N HCL and 40% TCA in equal volumes 1:1. 

 

Color Reagent:  Daily 

 Mix water:saturated sodium acetate solution:bathophenathroline disulfonate 

reagent (20:20:1) fresh each day.  (Daily should need 100:100:5 mL or 250:250:12.5 mL 

or 300:300:15 mL) 
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Sodium Acetate Solution 

 Stir 400 g sodium acetate (trihydrate) into 500 mL distilled deionized water.  

When the solution (initially very cold) warms to room temperature, add more sodium 

acetate until crystals remain undissolved. 

 

Bathophenanthroline Disulfonate Solution 

 Dissolve 0.162 g bathophenanthroline disulfonic acid in 100 mL water.  Add 2 

mL thioglycolic acid (in freezer).  Store in amber bottle. 

 

21:20 Sodium Acetate Solution (for blanks) 

 Mix 105 mL H2O and 100 mL of sodium acetate solution. 

 

Calculations 

 

(Absorbance of incubated liquid phase with color reagent) – (Absorbance of incubated 

liquid phase without color reagent) = Final Absorbance 

 

Use Final Absorbance in the following equation: 

 Final Concentration = (Final Absorbance – intercept)/slope 

 

Take the intercept and slope from the standard curve in step 12.  (Slope tends to be ~ 

0.06) 

 

The final equation is as follows: 

  

 Μg nonheme FE/g meat = Concentration (μg/mL) x 
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APPENDIX XVI: Determination of heme iron concentration and total 

pigment 

 
Modified procedure of:         

Hornsey, H.C. 1956.  The color of cooked cured pork.  I. Estimation of nitric oxide-haem 

 pigments.  J. Sci. Food Agric.  7:534-540.       

Lee, B.J., Hendricks, D. G. and Cornforth, D.P.  1998.  Antioxidant effects of carnosine  

 and phytic acid in a model beef system.  J. Food Sci.  63:394-398.   

1.  Weigh 2 g+ 0.02 g of powdered sample into screw cap tubes.    

2.  Add needed de-ionized water to tube so the total volume of water is 0.72mL.  

 (.72mL-moisture %=amt. of water to add     

 ie:  if meat has 70% moisture then 70% of .72=0.504ml, so     

 .72 ml - 0.504 = 0.216 ml of water to add)       

3.  Add 8.1 mls of acetone to tube.        

4.  Add 0.2 ml of hydrochloric acid to tube.        

5.  Polytron solution using a Polytron set at position 5 (10,800 rpm) for 15 sec.  

6.  Filter solution through #2 Whatman filter paper (90 mm in diameter).   

7.  Filtrate is then immediately read using the Cary 100 Varian UV/Visual 

 spectrophotomer at 640 nm.       
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Calculations:        

  Total Pigment (ppm) = absorbance 640 x 680.    

  Heme-Iron (ppm) = Total pigment (ppm) x 8.82/100   

    

Notes:        

  Acetone 90% 8.1ml    

  HCl 2% .18ml  (@.2ml)    

  Water 8% .72ml     

    9 ml     

  Perform addition of acetone and HCl and polytroning under hood.  

  Keep away from direct light as much as possible.    

  Do 12-24 tubes at a time to keep readings as accurate as possible.  
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APPENDIX XVII: Fatty acid determination with neutral and 

phospholipid layer separation 

 
1.  Weigh out 4 g of pulverized muscle tissue into centrifuge tube. 

2.  Add 10 mL of 2:1 chloroform:methanol (v/v) for muscle tissue or 3 mL for 

subcutaneous fat. 

3.  Vortex for 5 s and let stand for 1 h at room temperature. 

4.  Filter homogenate through Whatman #2 filter paper into 13 x 150 mm screw cap tube 

bringing the final volume with chloroform:methanol to 15 mL for muscle lipid and 5 mL 

for subcutaneous fat extract.  If stopping at this point, purge test tube with nitrogen, cap 

tube, and store at -80°C. 

5.  Add 2 mL of a 0.74% KCl solution for muscle lipid extract or 1 mL for subcutaneous 

fat tissue extract and vortex for 5 s.  If stopping at this point, purge test tube with 

nitrogen, cap tube, and store at 0°C for no more than 24 h. 

6.  Centrifuge samples at 1000 x g for 5 min.  Following centrifugation, aspirate off the 

aqueous phase (top layer).  If stopping at this point, purge test tube with nitrogen, cap 

tube, and store at -80°C. 

7.  Evaporate to dryness under nitrogen at 60°C. 

8.  Plate dried samples onto aluminum thin layer chromatography (TLC) plates (Silica 

Gel 60 w/o indicator, Catalog No.: M5547-7, Thermo Fisher Scientific Inc.) 



253 

 

 

9.  Place TLC plates in a tank with a 75:25:2 hexane:diethyl ether:acetic acid solution, 

and allow to run until the solution had travelled to the top of the plate, approximately 45 

min.  Upon completion, remove plate from the tank and allow the solvent to evaporate.   

10.  Stain dried plates with primilin dye (5mg of primulin in 100 mL of acetone\water 

(80\20)).  The neutral and phospholipid regions are identified and marked (with pencil) 

under a blacklight using a known standard that is also ran on the same plate.   

11.  Regions of interest are cut out, folded up, and placed in separate glass tubes.   

12.  Submerge the neutral layer samples in 100% chloroform and the phospholipid 

samples in 100% methanol.  Purge with nitrogen, cap, and place tubes in a 4°C cooler for 

45 min to extract the fatty acids.  

13.  After extraction, remove the folded up plates from the tube and evaporate the 

samples to dryness under nitrogen at 60°C. 

14.  Add 0.5 mL of a 0.5 M NaOH in methanol.  Vortex for 5 sec.  Heat for 5 min at 

100°C 

15.  Add 0.5 mL of boron trifluoride in 14% methanol.  Vortex for 5 sec.  Heat for 5 min 

at 100°C. 

16.  Add 1 mL of a saturated salt solution and 1 mL of hexane.  Vortex for 5 sec. 

17.  Centrifuge samples at 1000 x g for 5 min.  Following centrifugation, remove hexane 

layer (top layer) making sure not to disrupt the aqueous phase (lower layer) and place in 
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GC vial.  For neutral lipid samples:  Purge GC vial with nitrogen, cap and crimp cap, and 

store at -80°C until sample is ready to be read on the GC.   

 

For phospholipid samples:  Evaporate samples in GC vial to dryness under nitrogen at 

60°C.  Add 100 μL of hexane to concentrate the sample.  Samples are then re-pipetted 

into 100 μL polyspring inserts (which are placed inside the GC vial).  Purge GC vial with 

nitrogen, cap and crimp cap, and store at -80°C until sample is ready to be read on the 

GC.   

  GC Settings 

 Column- Chrompack CP-Sil 88 (0.25 mm x 100 m) 

 Injector Temp- 270°C 

 Detector Temp- 300°C 

 Head Pressure-40 psi 

 Flow Rate-1.0 mL/min 

 Temperature Program-  Start at 140°C and hold for 10 min.  Following 10 min, 

 raise temperature 2°C/min until temperature reaches 220°C.  At 220°C, hold for 

 20 min. 
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