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Obesity is an epidemic in many developed nations and maternal obesity can result in 

developmental alterations in offspring that have long-lasting effects.  Two experiments 

were conducted to determine the impact of maternal obesity on placental development 

and early embryonic growth and muscle development.  Experiment one utilized obese 

Lethal Yellow (LY) and normal weight C57BL/6 (B6) dams to assess how maternal 

obesity alters skeletal muscle development in mid-gestational embryos.  Embryos from 

LY dams exhibited decreased embryo and placental weights as well as an increase in the 

myogenic marker desmin.  Furthermore, the adipogenic marker PPARG expression was 

predominately localized to the neural tube and was significantly decreased in LY-derived 

embryos.  The objective of experiment 2 was to identify how maternal obesity alters 

placenta development and function and may be associated with altered development of 

the fetus.  The same mid-gestation embryos and corresponding placenta from LY and B6 

dams were used.  Placenta from LY dams were smaller than when developed in a B6 dam 

and exhibited a phenotype of reduced function.  The placenta also displayed increased 

hypoxia markers and decreased gene expression of enzymes which regulate the transfer 



of active glucocorticoids from the mother to developing embryo.  Interestingly, the 

embryos reared in an obese dam possessed decreased expression of vasculature markers.  

In summary, these experiments support the following findings: (1) maternal obesity 

decreases embryonic and placental weight and results in altered temporal regulation of 

myogenesis; (2) PPARG expression is localized to the neural tube and decreased in LY-

derived embryos indicating a function for this transcription factor in neural tube 

development and suggesting that obesity alters this function; (3) placenta from an obese 

dam display increased hypoxemia and altered glucocorticoid metabolism resulting in 

altered embryonic vasculature and potentially differences in the function of various organ 

systems.  These data represent an important shift in understanding how maternal obesity 

reduces skeletal muscle density during development and its long-term effects on the 

metabolic health of their children. 
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CHAPTER I 

LITERATURE REVIEW 

Incidence of Maternal Obesity and its Correlation to Childhood Obesity 

There has been a rapid rise in the incidence of obesity due to changes in diet and 

activity levels of individuals.  The body mass index (BMI), which is directly correlated 

with the amount of body fat, is the measure used to determine if one is obese.  In order to 

calculate BMI, an individual’s weight in pounds is divided by their height in inches 

squared and multiplied by a conversion factor of 703.  When an adult has a BMI between 

25 and 29.9 they are considered overweight, while an adult with a BMI of 30 or higher is 

considered obese (1).  Obesity worldwide now exists at a prevalence of 15–20% (2).  In 

2011, 27.8% of the total USA population had a BMI greater than 30 (3) while in the UK, 

~25% of the adult population is classified as obese (4).  Bays et al. (5) reported that in the 

USA for the past 20-30 years the rate of overweight or obesity has increased from 15 to 

33% in adults, 5 to 14% in children (2-5 years), 7 to 19% in children (6-11 years), and 5 

to 17% in adolescents (12-19 years).  Due to the increased incidence of obesity, it is now 

considered a significant public health problem which is associated with a reduction in life 

expectancy of ~8 years (4) and is attributed to 2-7 % of the total health care costs in the 

USA (2).  Obesity also has been shown to increase the risk of developing metabolic 

syndrome which comprises several major diseases including type 2 diabetes and coronary 

artery disease (4).   

Overweight and obese women are more likely to gain excessive gestational 

weight and maintain higher weights after delivery which is one factor that attributes to 
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the growing obesity epidemic (2, 6).  In the USA, approximately 64% of reproductive 

aged women are overweight and 35% are obese which is translated to more than one in 

five pregnant women being obese (7, 8).  Pregnant women accumulate fat as a result of 

enhanced lipogenesis and increased adipose tissue lipoprotein lipase activity.  From mid- 

to late gestation, maternal lipid metabolism switches from an anabolic to a catabolic state 

concomitant with increasing maternal insulin resistance (9).  This increase in insulin 

resistance results in excess weight gain during pregnancy which has detrimental effects 

on offspring (10).  The fetus is not able to regulate their own food intake or growth, so 

they are under the control of their mothers’ nutrient availability.  Figure 1.1 depicts how 

obesity combined with pregnancy leads to an increase in maternal circulating lipids that 

increases the lifetime risk of obesity in offspring as well as metabolic syndrome during 

childhood and adolescence (11, 12).   

 

Figure 1.1. The Effect of Maternal Lipids on Fetal Development and its Consequences in 
Adulthood.  Maternal obesity results in increased inflammation, insulin resistance, lipolysis and 
hepatic very-low-density lipoprotein (VLDL) accumulation in the adipose tissue. These changes 
in adipose tissue phenotype lead to an increase in lipid exposure by a developing fetus, impacting 
organ development and resulting in an increase in the risk for metabolic disease in childhood.  
Monocyte chemotractant protein-1 (MCP-1); chylomicron (CM); triglycerides (TG); lipoprotein 
lipase (LPL); free fatty acid (FFA); nonalcoholic liver disease (NAFLD) (9). 
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The nutritional and hormonal environment encountered by the fetus is a strong 

determinant of not only fetal growth, but also cardiovascular disease risk in later life (13).  

Changes in maternal diet throughout pregnancy modify the mother’s endocrine status 

which can have pronounced effects on the growth and development of their conceptus 

(14).   

Metabolic Stress in Obese Individuals 

Potentially important insights into the mechanisms controlling intrauterine growth 

are provided by recent studies which demonstrate that white adipose tissue is a highly 

active endocrine organ.  Immature adipose tissue first appears in the fetus between 14 and 

16 weeks of gestation in the human and once adulthood is reached, adipose cell numbers 

remain relatively constant (11).  Mature adipose tissue consists of adipocytes, 

macrophages, and stroma-vascular cells which are composed of vascular endothelial 

cells, fibroblasts, and cells of the hematopoietic lineage (11, 15).  Adipose tissue is 

known to secrete a range of hormones that are important in modulating metabolism, 

energy homeostasis and growth, collectively called adipocytokines (16).  These 

adipocytokines can either produce proinflammatory cytokines or metabolic regulators 

that often act as negative regulatory signals that temper the action of hormones and 

growth factors (17).  In obesity, the expansion of adipose tissue mass (not cell number) is 

associated with increased inflammation of adipose tissue (11) which results in an 

imbalance in adipocytokine levels that in the pregnant female can impact the 

development of the growing fetus.   
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IGF-Family:   

The insulin-like growth factor (IGF) system is comprised of IGF-1, IGF-2, the 

two cell surface receptors, IGF-1R and IGF-2R, as well as six binding proteins, IGFBP 1-

6 and proteases which degrade these binding proteins (18).  Overall, the IGF system, in 

combination with growth hormone (GH), accounts for 83% of postnatal body growth 

(19).  The primary mechanism of GH/IGF axis function involves GH-dependent 

stimulation of IGF-1 which regulates both metabolism and growth (20).  IGF-1 is 

predominately produced in the liver in the presence of sufficient nutrient intake and 

elevated hepatic portal insulin levels, but is also synthesized in many other tissues and 

cell types (21, 22).  Interestingly, adipose tissue is a major source of circulating IGF-1 as 

well as IGF-1 being a critical mediator of preadipocyte proliferation, differentiation, and 

survival (22).  IGF-1 concentrations are inversely related to life span, increased cell 

proliferation, and increased IGF-1 levels have been positively correlated with tumor 

progression (17).  Along with GH and the IGF family, insulin is also a central hormone in 

regulating metabolism, capable of stimulating glucose uptake, glycogen synthesis, 

lipogenesis, and prevention of proteolysis (23).  IGF-1 and insulin are known to act in a 

synergistic manner in order to induce adipocyte differentiation.   

The structure of IGF-2 is similar, but not identical to IGF-1 (24).  IGF-2 is known 

to regulate fetal growth and, in an in vitro model of rat adipocyte progenitor cells, 

stimulate adipocyte differentiation (22, 25).  The phenotype of mice lacking IGF-2  

exhibit decreased birth weight compared to control animals, but growth is unaffected 

after birth suggesting that IGF-2 is only essential for prenatal growth (26).  In contrast to 
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IGF-1 which is GH dependent, IGF-2 is, for the most part, GH independent and is 

expressed in most tissues during fetal development, predominantly by cells of 

mesenchymal origin (27, 28).  The activities of IGF-1 and IGF-2 are modulated by three 

distinct mechanisms with the first being the control of ligand expression.  Secretion of 

IGF-1 is sensitive to nutritional and endocrine control and thus is positively related to 

growth rate (17).  Secondly, high affinity binding proteins  are responsible for 

maintaining a large circulating pool of IGF-1 and IGF-2 (29).  Specifically, IGFBP6 

binds to IGF-2 with higher affinity than IGF-1 while other IGFBPs bind to both IGF-1 

and IGF-2 with similar affinities (30).   Finally, tissue specific expression of IGF and 

insulin receptors is an important mechanism that confers specificity of IGF actions.  

IGF-1R, IGF-2R, and insulin receptor are ligand-activated transmembrane 

tyrosine kinases with IGF-1R being widely expressed in many cell types in both fetal and 

postnatal tissues (31).  As depicted in Figure 1.2, the IGF-1R and insulin receptors are 

heterotetramer glycoproteins consisting of two alpha and two beta subunits which recruit 

insulin receptor substrate 1 (IRS-1) to induce phosphorylation and initiate a cascade of 

signal transduction reactions (32).  Insulin receptor shares a high degree of homology 

with IGF-1R, so much so that hybrid receptors naturally occur with full ligand-activated 

signal transduction capacity (17, 28).  The insulin receptor, is comprised of two isoforms 

(A and B) which differ by only 12 amino acids (22).  These receptors are able to bind 

IGFs with a low affinity (28).  Certain cell types are found to contain different receptors.   

For example, preadipocytes express IGF-1R and insulin receptor isoform A, whereas 

mature adipocytes express predominantly insulin receptor isoform A and B (33).  The 
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IGF-1R is known to bind IGF-1 with high affinity and initiates a physiological response.  

It is also able to bind IGF-2, but with a lower affinity, and is responsible for the 

mitogenic effects of IGF-2 during fetal development (34, 35).  The IGF-1R has 

traditionally been viewed in the context of its impact on somatic growth, in particular the 

synergistic relationship with GH that is essential for normal postnatal growth (36).  IGF 

resistance due to receptor desensitization plays a role in growth retardation and metabolic  

 

Figure 1.2. Insulin and IGF Signaling Pathways.  Both Insulin and IGFs share similar signal 
transduction pathways and are able to bind the different receptors with varying affinities.  Ligand 
binding results in MAPK and PI3K signaling pathway activation resulting in transcription, 
proliferation and gene expression (37). 
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disorders which can be caused by a variety of factors including but not limited to 

diabetes, obesity and IGF-1R mutations (17).  The final receptor, IGF-2R, acts as a decoy 

receptor due to it not regulating any significant signaling cascades.  However, IGF-2R 

has been implicated in the regulation of intracellular trafficking of mannose-6-phosphate 

proteins such as lysosomal enzymes (38).  IGF-2 competes for binding with IGF-1R but 

has preferential affinity for IGF-2R over IGF-1 and does not bind insulin receptor (35, 

39).   

 Ligand binding to IGF-1R and insulin receptor results in the phosphorylation of 

the beta subunits and stimulates tyrosine kinase activity.  This phosphorylation results in 

the binding of IRS proteins to the receptors (28).  There are two major pathways that 

have been identified as playing an important role in IGFs cellular proliferation and the 

inhibition of apoptosis (35).  The mitogen-activated protein kinase (MAPK) and the 

phosphoinositide-3 kinase (PI3K) pathways both demonstrate a role in mediating the 

anti-apoptotic and cell proliferative responses of the IGFs (40-42).  IGF-1 is implicated in 

the regulation of adipocyte differentiation and cell cycle by activation of the PI3K 

pathway (22).  Various downstream components of the PI3K pathway are associated with 

enhancing specific cellular events, including metabolism, transcription, hypertrophy and 

differentiation (17).  IGFs also stimulate MAPK which is mediated through Src family of 

nonreceptor tyrosine kinases (43).  On the other hand, pro-inflammatory cytokines have 

been found to exhibit properties that induce a state of IGF-1 resistance (17, 44). 

Both IGFs and insulin are key molecules in mediating the metabolic-related 

function of adipocytes.  IGF-1, which mediates the clonal expansion of preadipocyte cells 
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prior to differentiation, is equipotent with insulin in promoting glucose uptake and 

inhibiting lipolysis in mature adipocytes (23).  Villafuerte et al. (45) looked at adipocyte 

depot-specific expression patterns of IGF-1 (and leptin).  They found that IGF-1 mRNAs 

correlate with adipocyte volume, such that there is increased expression of IGF-1 in 

retroperitoneal compared to subcutaneous fat where retroperitoneal fat has a much greater 

adipocyte volume compared to subcutaneous fat.  They also determined that both leptin 

and IGF-1 function at the autocrine level which could modulate region-specific patterns 

of adipose tissue growth.  Similarly, knowing that individuals with low birth weight have 

an increased risk for metabolic syndrome later in life, a study compared the expression of 

insulin/IGF-signaling molecules in adipose tissue of low-birth-weight and normal-birth-

weight young males.  They found a lower expression of genes for PI3K p85 and p110 

subunits as well as decreased IRS-1 in the adipose tissue of low-birth-weight compared to 

normal-birth weight males (46).  Likewise, in another study, IGF-1R, insulin receptor, 

and AKT are decreased in subcutaneous adipocytes from small for gestational age 

compared to appropriate for gestational age children (47).  These studies show that IGFs 

do indeed play a role in the generation of adipose depots in offspring.  Studies have also 

demonstrated that the IGF system may influence other adipokines such as leptin (48). 

Leptin: 

Leptin (meaning thin in Greek) is a 16-kDa protein containing 167 amino acids 

that was discovered in 1994 by Jeffrey Friedman’s group when a mutation in the obese 

(ob) gene resulted in profound obesity and type II diabetes (49-51).  They characterized 

leptin as an adipocyte-derived hormone which is structurally similar to pro-inflammatory 
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cytokines.  Initially leptin was found to diminish adiposity by reducing food intake while 

improving insulin sensitivity, at least in part by depleting triglyceride stores in peripheral 

tissues (52, 53).  Normally, in peripheral tissues, leptin induces fatty acid oxidation (54) 

and glucose uptake (55, 56) as well as stimulates lipolysis by promoting insulin 

insensitivity in adipose tissue, but not in muscle or liver tissue (57).   

Leptin is a molecule intimately linked with fat and feeding behavior, but it also 

has important reproductive functions, including fetal growth and developmental 

processes such as brain development, 

angiogenesis, hematopoiesis, and 

immune cell function (15, 58).  Mice 

treated with high amounts of leptin 

show accelerated maturation of the 

female reproductive tract which leads 

to an earlier onset of the oestrous 

cycle and reproductive capacity (59).  

Leptin has also been found to be 

synthesized in the placenta of many 

mammalian species even though its 

exact function there is unknown (15). 

 
Figure 1.3. Leptin Signal Transduction Pathway. Leptin binds to its receptor where it activates 
JAK2 which then phosphorylates STAT3.  STAT3 then results in gene transcription to induce 
POMC/CART and inhibit NPY/AGRP (60). 
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Leptin functions through binding its receptors which belong to the cytokine 

receptor superfamily.  The leptin receptor, in turn, activates the Janus Kinase/Signal 

Transducer and Activator of Transcription (JAK/STAT) signaling pathway (Figure 1.3).  

There are five alternatively spliced forms of the leptin receptor which all bind leptin with 

nanomolar affinity (61).  Mutations in the receptor cause an obese phenotype identical to 

leptin deficiency (62).  The activation of the leptin receptor homodimer depends on 

phosphorylation of the kinase Jak2 after ligand binding (63).  Phosphorylation of Jak2 

results in activation of Stat3 as well as leads to tyrosine phosphorylation of SHP-2, a 

phosphotyrosine phosphatase, which decreases both the state of Jak2 phosphorylation and 

transcription of a leptin-inducible reporter gene (49, 64, 65).  Even though many of 

leptin’s effects are mediated through the JAK/STAT pathway, it is also found to 

selectively stimulate phosphorylation and activation of the α2 catalytic subunit of the 5' 

adenosine monophosphate-activated protein kinase (AMPK) pathway in skeletal muscle.  

The activation of AMPK results in the suppression of acetyl CoA carboxylase activity, 

thereby stimulating fatty acid oxidation in muscle (66).  

Leptin’s primary site of action is the brain, where it promotes decreased food 

intake and increased energy expenditure (67).  Specifically, leptin acts at the level of the 

arcuate nucleus which contains orexigenic neuropeptide Y (NPY)/agouti related protein 

(AGRP) and anorexigenic cocaine- and amphetamine-regulated transcript 

(CART)/proopiomelanocortin (POMC) neurons.  Leptin modulates energy homeostasis 

in the melanocortin axis by positively regulating CART/POMC neurons and negatively 

regulating NPY/AGRP neurons (68).  Specifically, POMC neurons have been proposed 
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as the primary cell type for mediating leptin’s anorexigenic effect (68, 69).  POMC is the 

precursor of melanocortin-stimulating hormone which when it acts on its receptor, 

melanocortin-4 receptor, in response to an increased plasma leptin concentration, it 

results in decreased food intake and increased energy expenditure (49).  Corticotrophin-

releasing hormone (CRH) also mediates some of leptin's effects, as pretreatment with an 

anti-CRH antibody blunts the anorexigenic effects of leptin.  Other studies have indicated 

NPY as an important component of the biological response to low levels of leptin and 

possibly starvation (49). 

There are three general ways in which alterations in the leptin signaling pathway 

can result in obesity which are depicted in Figure 1.4.  First, a failure to produce leptin 

can occur.  This would result in unchecked expansion of fat cell mass and consequently 

obesity results.  Second, a regulatory defect can result in decreased leptin production for a 

given fat mass.  This leads to a lower plasma leptin concentration secreted then what is 

expected and results in moderate obesity.  Finally, obesity can result from receptor 

insensitivity to leptin.  An increase in circulating leptin would result from this 

insensitivity and cause increased food intake (49).  The complete loss of leptin or leptin 

receptor is the most severe reported monogenic cause of obesity in mice and humans; 

however, it is extremely rare (70).  In fact, most obese animals have higher leptin levels 

than controls indicating that these forms of obesity are associated with some form of 

leptin resistance (71, 72). 
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Figure 1.4.  Obesity can Result from Three Different Alterations in Leptin Signaling.  
Obesity is generated in three ways in regard to the leptin regulatory loop. a) Failure to produce 
leptin leads to a drastic increase in fat mass, b) inappropriately low leptin secretion for a given fat 
mass leads to fat expanding until ‘normal’ levels of leptin are reached, and c) insensitivity to 
leptin resulting in high leptin levels (49). 

 

TNF-α: 

Tumor necrosis factor alpha (TNF-α) is synthesized as a 26 kDa, 233 amino acid 

transmembrane protein that after cleavage is released into circulation as a 17 kDa, 157 

amino acid soluble TNF-α molecule (73, 74).  TNF-α is predominately produced by 

macrophages (75, 76), but is also produced by a broad range of other cell types including 

endothelial cells, cardiac myocytes, fibroblasts, neurons and adipose tissue.  The 

stimulation of Toll-like receptors and activation of cytokines and lipid mediators lead to 

the increased infiltration of adipose tissue with macrophages which increases TNF-α 
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production.  However, no matter the tissue, TNF-α is a rapidly up regulated cytokine 

whose transcription is initiated within minutes and protein production within a few hours.  

Alterations in this complex regulatory system including over and under expression of 

TNF-α has significant pathological consequences (77).  In adipose tissue, TNF-α inhibits 

lipoprotein lipase, stimulate hormone-sensitive lipase and induce uncoupling protein 

expression.  Also, TNF-α functions to down regulate insulin-stimulated glucose uptake 

(78).  All of these effects reduce lipid accumulation within adipose tissue.  TNF-α has 

also been found to be produced by the placenta during pregnancy where it is able to not 

only induce its own synthesis but also the synthesis of its receptors (78, 79).   

Membrane-bound as well as soluble TNF-α interact with TNF receptors (TNF-R) 

1 and 2 (80).  It is through these receptors that TNF-α can activate cell survival, cell 

proliferation, and apoptotic pathways (Figure 1.5).  These differing effects of TNF-α are 

dependent on the signaling pathways activated.  For example, TNF-α induces apoptosis 

through activation of FADD which binds to caspase-8.  Conversely, TNF-α promotes 

inflammation and survival through TRAF2 via c-Jun NH2-terminal kinase (JNK)-

dependent kinase cascade, MAPK and nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) pathways (81).  While the separate pathways are well defined, 

the balance between cell survival and death remains unclear.  TNF-α has also been found 

to impact other signaling pathways by down regulating insulin-stimulated glucose uptake 

via effects on glucose transporter 4, insulin receptor autophosphorylation and IRS-1 (78). 
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Figure 1.5. TNF-α Signal Transduction Pathway. TNF-α binds to either TNF-R1 or TNF-R2 
which activate signaling pathways to induce apoptosis, cell survival or inflammation (81). 

 

Interestingly, TNF-α was the first discovered adipose-derived factor that indicated 

a link between obesity, inflammation and diabetes.  Upon development of obesity, 

macrophages migrate into the adipose tissue and appear to be the predominant source of 

adipose-derived TNF-α (82).  Studies using genetic models of TNF-α deficiency 

confirmed a causal role for this inflammatory cytokine in the development of obesity-

induced insulin resistance (76).  Furthermore, insulin has been reported to stimulate 

macrophages in adipose tissue to produce more TNF-α (11, 82).  Interestingly, TNF-α is 

involved in ovarian and uterine cyclicity as well as in the establishment of the dialogue 
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between the implanting embryo and the receptive uterus (83).  Likewise, elevated 

circulating TNF-α increases placental produced maternal peripheral blood mononuclear 

cells (84).  Altogether, these data have established the now well accepted paradigm that 

obesity is a chronic condition of low-grade inflammation and activated adipose tissue 

macrophages resulting in increased TNF-α production (4).   

The increase in the production of adipocytokines including IGFs, leptin, and 

TNF-α upon increased maternal adipose tissue mass may directly impact the development 

of the growing fetus.  The placenta, which plays an important role in the transfer of 

nutrients from the mother to the fetus, can also be impacted by these adipocytokines.  

Thus, an indirect effect of increased maternal adipocytokines may be to alter nutrient 

transfer resulting in abnormalities in the development of multiple fetal organ systems.   

Effect of Maternal Obesity on Fetal Growth 

There is a developmental overnutrition hypothesis which proposes that increased 

fuel supply to the fetus due to maternal obesity or overnutrition leads to permanent 

changes in offspring metabolism, behavior, and appetite regulation (8, 85, 86).  A study 

by Parsons et al. (87) in humans found that heavier mothers give birth to heavier babies 

which go on to have a high BMI in adult life as well as are at an increased risk for 

metabolic syndrome, asthma and developmental abnormalities (88-90).  Even though 

human studies have found a prevalence for large-for-gestational-age (LGA) fetuses, 

maternal obesity has also been associated with intrauterine growth restriction (IUGR) in 

humans as well as in rodents and livestock species (91-93).  Interestingly, both LGA and 
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IUGR result in offspring exhibiting similar developmental abnormalities (94-97).  This 

may be due to catch-up growth in IUGR infants which could put them at a higher risk for 

metabolic syndrome in adulthood (98) as well as the postnatal accelerated growth 

adversely affecting glucose tolerance in rats (99). 

 Based on these data, it is clear that maternal overfeeding and adiposity prior to 

pregnancy has a significant impact on fetal, neonate, and adult growth.  Furthermore, this 

effect on growth has been correlated to alterations in fetal organ development (100).  

Animal models (mainly rodents and sheep) have proven to be invaluable tools to define 

the mechanistic links between maternal diet and body composition as well as the 

offspring phenotype of metabolic syndrome (101-103).  For example, prenatal 

overfeeding in the rat, mouse, and sheep leads to altered appetite regulation in the 

postnatal offspring (97, 104, 105) which may be due to programming changes at appetite 

centers in the hypothalamus (86, 92, 106).  This altered appetite regulation is tied to the 

increased fat deposition resulting in postnatal weight gain and eventually offspring 

obesity.  Prior to birth, embryos from mice fed a high fat diet display significant growth 

retardation, with live pups being significantly smaller at birth compared to control fetuses 

(93).   

The development of the cardiovascular system, liver, and pancreas may be 

particularly sensitive to pre-conception and/or early gestational changes in maternal body 

composition and metabolism beyond what is compensated for by fetal visceral fat 

deposition (100).  Excess energy is normally stored as visceral fat, but if stores are 

surpassed, circulating lipid levels are increased.  Indeed, offspring from obese dams are 
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found to display not only higher percentage of body fat (97, 107), but also increases in 

triglyceride levels (108) which together can predispose the animal to postnatal 

development of metabolic disease (e.g. fatty liver disease) (100, 109).   

Along with the impact of increased adiposity on fetal growth and metabolic 

disturbance, there is evidence that maternal obesity in rodents and ewes can predispose 

offspring to alterations in organ development.  For example, pancreas weight is increased 

and displays enhanced early β–cell maturation in offspring from obese dams (100, 102, 

107).  A similar increase is also seen in regards to liver weights which have been shown 

to lead to the development of nonalcoholic fatty liver disease (100, 108, 110).  Animal 

studies also suggest that the vasculature of the offspring is significantly affected by 

maternal high-fat diet during pregnancy.  A study in non-human primates showed that 

offspring of mothers fed a high-fat diet had a threefold reduction of dilation capacity in 

the abdominal aorta, increased intimal wall thickness and an increase in the expression of 

vascular inflammation markers, suggesting a negative effect of maternal high-fat diet on 

offspring endothelial function (111).  These data represent a potential mechanistic link 

between maternal obesity and the development of high blood pressure (97, 112-114) seen 

in animal models.  However, despite this animal evidence, there has been no data in 

humans that explains the association between maternal obesity and blood pressure (85).  

Interestingly, there are also sexually dimorphic differences in the impact of maternal 

obesity on organ function, particularly in relation to glucose homeostasis and liver 

weights.  A study by Samuelsson et al. (97) found that liver weights are increased in male 

offspring but not in female offspring.   
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Maternal Obesity Alters Muscle Development 

The impact of maternal obesity on skeletal muscle development is of particular 

importance.  Skeletal muscle is a major metabolic organ and alterations in muscle 

development could result in long-lasting effects on the metabolic health of offspring.  

Skeletal muscle development is known to have a lower priority in nutrient partitioning 

than the development of the neural system, internal organs, and bone, making it 

susceptible to nutrient fluctuation (115).  Due to this fact, studies have been conducted 

that look at the effects of an altered maternal diet on embryonic muscle development.  

One study carried out by Larciprete et al. (116) used ultrasonic measurements of IUGR 

fetuses to show a reduction in muscle mass in these IUGR fetuses.  Likewise, Zhu et al. 

(117) indicate that maternal nutrient availability is associated with the number of 

secondary fibers present in prenatal muscles.  During early and mid-gestation in the ewe 

nutrients have been shown to reduce skeletal muscle fiber density suggesting 

abnormalities in myotube formation (118, 119).  The incorporation of additional 

myoblasts into the myofiber during fetal development continues via fiber hypertrophy 

and requires additional myoblast incorporation to increase genomic DNA content (120, 

121).  However, in fetal sheep with placental insufficiency caused by alterations in 

maternal nutrients, skeletal muscle fibers contain fewer myonuclei than fibers from 

control fetuses, resulting in less DNA, RNA and protein per fiber (122).  Also, Huang et 

al. showed that maternal obesity enhances collagen content and crosslinking in fetal 

skeletal muscle, which might be due to reduced collagen remodeling, and leads to fibrosis 

which impairs muscle function and is a hallmark of muscle aging (123).  These 
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alterations that are occurring in muscle may be impacting the myogenic program and 

altering the stages of skeletal muscle development (Figure 1.6).  The pre-adipocyte 

marker, peroxisome proliferator-activated receptor γ (PPARγ), has also been found to be 

expressed in higher concentrations in skeletal muscle of offspring from obese dams 

indicating increased intramuscular adiposity in offspring from over nourished mothers 

(119, 124).  In addition to abnormalities in muscle mass, the metabolic function of 

muscle is also impaired in fetuses of obese dams with obesity during pregnancy causing 

defects in insulin-signal transduction (125). 

 
 
Figure 1.6.  Stages of Bovine Fetal Skeletal Muscle Development.  The progression through 
the various bovine fetal skeletal muscle developmental stages during gestation may be impacted 
by nutrient restriction or excess. The stage in which the nutrient deficiency or excess occurs will 
determine what organs are impacted based on their developmental program.  Adapted from (140). 

 

Maternal obesity dependent reductions in myogenesis and increased intramuscular 

fat in the late gestation fetal sheep has been associated with increased expression of 

inflammatory markers and altered AMP-activated protein kinase signaling (119, 126, 

127).  Skeletal muscle, which is the largest tissue in the body, synthesizes and responds to 

many inflammatory mediators.  For example, elevated proinflammatory cytokines 

including TNF-α are implicated in muscle wasting (128, 129).  This muscle wasting may 
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be a result of inflammatory cytokines suppressing IGF-1 signaling in myofibers and 

myoblasts.  Indeed, TNF-α has been shown to decrease IGF-1 mRNA by 80% (17, 130).  

Along with the impact of proinflammatory cytokines, high maternal glucocorticoid levels 

have been shown to impair fetal skeletal muscle growth (131).  In mature muscle, 

glucocorticoid exposure decreases muscle protein synthesis and promotes protein 

degradation (132).  Thus, increased glucocorticoid levels during gestation may negatively 

impact muscle development by disrupting the differentiation process resulting in 

decreased muscle mass.  During normal development, skeletal muscle development is 

induced by reduced O2 availability, or hypoxemia.  Embryonic somites have been shown 

to exhibit increased expression of hypoxic markers prior to the formation of local blood 

vessels and embryonic muscle (133) with hypoxemia increasing the undifferentiated state 

of muscle stem cells.  However, a chronic hypoxic environment diminishes the 

differentiation of muscle stem cells which promotes self-renewal divisions without 

affecting the overall proliferation of primary myoblasts (134). 

Previous studies have focused on the impact of maternal obesity on skeletal 

muscle development during late gestation (secondary myogenesis) and the phenotype of 

skeletal muscle in the adult offspring.  However, there is a gap in understanding how 

maternal obesity affects primary myogenesis and the consequences of potential 

alterations during primary myogenesis on the later stages of muscle development.  In 

order to understand the alterations that are occurring in muscle development due to 

maternal obesity, it is imperative to understand how skeletal muscle normally develops.  
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Normal Skeletal Muscle Development 

The fetal period is crucial for skeletal muscle development due to no net increase 

in the number of muscle fibers after birth (117, 122, 135).  Adult skeletal muscle consists 

of about 40-50% of the total body mass (136) and is a key metabolic organ which is 

responsible for the oxidation of glucose and fatty acids (126).  The myogenic program is 

a highly conserved process in all species (137).  However, the formation of secondary 

myofibers and adipogenesis begins around mid-gestation in humans, sheep and cattle 

(138), while rodents are born highly immature with secondary myogenesis occurring late 

in gestation and continuing throughout the neonatal period (126, 139).  Thus, even though 

there is a difference in the timing of myogenesis, the process and its regulation is still 

very similar. 

The Somite Region Harbors Muscle Progenitor Cells: 

All skeletal muscles in the body arise from muscle founder stem cells located in 

the somites.  Somites are transitory structures that form in pairs, on either side of the 

neural tube, as epithelial spheres from the presomitic paraxial mesoderm (Figure 1.7) 

(141, 142).  Somites begin forming at the anterior (head) end of the embryo and are 

added posteriorly (tail) as the embryo extends. This means that the anterior somites are 

more developed than the posterior somites and result in a range of somite stages within a 

single embryo (137).  Since an anterior/posterior developmental gradient occurs in 

somitogenesis, there is also a difference in limb formation with the forelimbs forming 

before the hindlimbs (139).  Once somitogenesis is complete there are a total of 60 pairs 
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Figure 1.7.  Spatial Representation of Somite Development.  Segmentation of the presomitic 
paraxial mesoderm into ball-like structures, known as somites, occurs along the dorsal–ventral 
axis and in an anterior to posterior direction. In response to signals from the notochord and the 
neural tube, the somites differentiate and subdivide to give rise to the dermomyotome and the 
sclerotome which result in the development of many different tissues and organs throughout the 
body (143). 

 

of somites in the developing mouse embryo (139).  The somites harbor progenitor cells 

that give rise to not only skeletal muscle, but also cartilage, endothelial cells, tendons, 

connective tissue and the dermis of the back (144). 

As the cells of the somite proliferate, they divide into multiple distinct regions 

(Figure 1.8); the sclerotome which gives rise to vertebral and rib cartilage, dermal 

lineages, and blood vessel lineages and the dermomyotome (DM) which harbors skeletal 

muscle progenitor cells (MPC) of the trunk, limbs and some head muscles as well as 

dermal progenitors (139, 141, 145).  The DM has a region that lies directly below it 

called the myotome.  Further, both the DM and the myotome are divided into two 
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regions, epaxial and hypaxial.  The epaxial region gives rise to the deep muscles of the 

back, while the hypaxial region produces the rest of the body and limb musculature (137, 

142).  Even more specifically, the DM has two regions on the ends, the ventral lateral lip 

(VLL) and the dorsal medial lip (DML).  The VLL progenitors delaminate from limb 

level somites and migrate to limb buds to form limb muscles (145).  Medial DM cells as 

well as the cells at the DML produce the epaxial muscle progenitors that migrate 

underneath the DM.  These cells then differentiate into mononucleated myocytes to form 

the myotome which is the region where the first skeletal muscles form (133, 141, 146, 

147). 

 

Figure 1.8.  Somite Origin of Myogenic Progenitor Cells. Myogenic progenitors originate in 
the dorsal-medial lip (DML) and ventral-lateral lip (VLL) of the dermomyotome. Cells of the 
dorsal medial lip (DML) migrate under the dermomyotome to form the epaxial myotome. A 
similar event occurs at the ventral lateral lip (VLL), which results in the formation of the hypaxial 
myotome. Cells of the VLL also undergo an epithelial to mesenchymal transition, delaminate and 
migrate to regions of limbs for muscle development (145). 
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As somites develop, the complex muscle differentiation process is occurring in 

tandem.  Myogenesis has multiple waves in the developing embryo that build the 

framework for adult musculature.  As shown in Figure 1.9, the mouse has its first 

embryonic wave of muscle development around embryonic day (E) 8.5 which continues 

until around E 14.5.  During this wave, quiescent myogenic stem cells (MSC) are 

activated and proliferate making them muscle progenitor cells (MPC) (Figure 1.10).  

During this time MPC further differentiate into myoblasts which are able to begin to 

differentiate and fuse to form primary fibers or myotubes.  Those primary fibers then act 

as a scaffold for the formation of fetal (secondary) fibers which occurs in the fetal wave 

of muscle development (E 14.5 - E 16.5).  Around E 16.5, the late fetal wave begins 

which is the final wave where secondary fibers fill in the spaces not already occupied by 

existing fibers and complete myogenesis (148).   

Figure 1.9.  Waves of Developmental Myogenesis in the Mouse.  The early embryonic wave 
begins around embryonic day (E) 8.5 and results in the formation of primary fibers.  The fetal 
wave, between E 14.5 and E 16.5, consists of the scaffolding of secondary fibers.  Around E 16.5, 
proliferating myotubes form muscle fibers completing myogenesis.  Adapted from (141, 149, 
150). 
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Myogenic Regulatory Factors: 

The process of differentiation from MSC to myotubes is dependent on the temporal 

expression of several transcription factors which belong to the basic-Helix-Loop-Helix 

(bHLH) family (Figure 1.10).  These myogenic regulatory factors (MRFs) include 

myogenic determination factor 1 (MyoD), myogenic factor 5 (Myf5), myogenic regulator 

factor 4 (Mrf4, also known as myogenic factor 6-Myf6 when first discovered) and 

myogenin (Myog, also known as myogenic factor 4-Myf4 when first discovered) (151, 

152).  The expression of two paired box (Pax) transcription factors, Pax3 and Pax7, is the 

first step in differentiation of DM progenitor cells to skeletal muscle (141).  Pax3 and 

Pax7 are also members of the bHLH family of transcription factors and are expressed in 

the central nervous system, neural crest cells and somites.  Their expression is necessary 

for the emergence and survival of MPC and the regulation MRFs (141, 149).  In a 

Figure 1.10.  Gene Expression Profiles during Myogenesis.  Myogenic stem cells (MSC), 
myogenic progenitor cells (MPC), myoblasts, and the multinucleated myotube express different 
genes during myogenesis (148). 
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coordinated fashion, MRFs form heterodimeric DNA-binding complexes with other 

bHLH transcription factors such as the E2 gene family (E47 and E12) and bind a 

canonical DNA sequence (CANNTG, also referred to as an E box) to regulate the 

expression of an array of genes that regulate the assembly of skeletal muscle (145, 153, 

154).   

The switch from MSC to MPC marks the start of differentiation (137) with the 

temporal activation of MRFs regulating the myogenic program (outlined in Figure 1.10).  

Specifically, in the developing embryo Pax7 plays a large part in the activation of MSCs 

which begins the differentiation process into mature muscle (155).  The activation of 

Pax7 results in the expression of Myf5 which is the earliest marker of MPC and is closely 

followed by MyoD expression.  Myf5, MyoD and Mrf4 are all co-expressed in MPC as 

well as myoblasts and play a role in the establishment and maintenance of muscle 

progenitor lineages by directing the developmental program during embryogenesis (156-

159).  Due to the Myf5 and MyoD transcripts being relatively unstable, their continued 

expression requires constant signals from the neural tube and notochord in order for these 

cells to later initiate myotome differentiation (160).  Further differentiation is marked by 

the onset of Myog expression and the formation of myoblasts (Figure 1.10) (161, 162).  

Under the proper signals, levels of Myog will increase, followed by up-regulation of Des 

(Desmin) (163, 164).  DES, an intermediate filament protein, is expressed in 

differentiated myotubes that, along with MYOG expression, is critical for muscle 

formation during embryogenesis, however is not needed for proper muscle differentiation 

in adulthood (141, 165).  In adult myofibers, the expression profile switches to Mrf4, 
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whereas MyoD, Myf5 and Myog expression is relatively lower, making Mrf4 a 

predominant factor in adult muscle (166). 

Satellite Cells in Adult Muscle: 

Towards the end of fetal muscle development (around E16.5) (10), MSC begin to 

be enveloped under a basal lamina that forms around the muscle fibers (133).  In 1961, 

Alexander Mauro discovered and termed these cells satellite cells (167).  Satellite cells 

arise from a novel population of MSC that express both Pax3 and Pax7 (133, 168).  

However, while Pax3 is not solely required for satellite cell emergence or maintenance, 

Pax7 is required otherwise they will fail to repopulate the stem cell niche and eventually 

die (133, 168, 169).  In newborn animals, the proportion of satellite cells in muscle is 

higher.  It is during this time that they participate in proliferation and adding nuclei to the 

growing muscles.  Once growth is achieved, satellite cells become quiescent and 

represent a very small proportion of nuclei in adult muscles (170).  For example, the 

number of satellite cells in muscle declines after birth from 30% of myonuclei in the 

juvenile phase (0 - 3 weeks) to 4% in the adult phase (3 weeks to ~18 months), followed 

by a small decrease to 2% in aged mice (18 months to end of life) (171, 172). 

Adequate satellite cell availability is needed for proper muscle maintenance and 

repair after injury in the adult animal (Figure 1.11).  Muscle satellite cells are normally 

quiescent, expressing both Pax7 and Myf5, but lacking MyoD expression (173, 174).  

When muscle fiber is damaged, satellite cells become activated.  At this time satellite 

cells can either replicate and differentiate to form new fibers permitting muscle repair or 
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they will become renewed satellite cells allowing for repopulation of the satellite stem 

cell niche (173, 175).  When a satellite cell is activated, they will express the MYOD 

protein which is the hallmark of an activated satellite cell.  The satellite cell then will 

either lose MYOD expression and maintain PAX7 expression as they will leave the cell 

cycle and self-renew (176) or will retain the MYOD expression.  If retained, MYOG 

expression is activated to signal terminal differentiation to a mature myoblast (173).  The 

terminal differentiation results in the fusion of the recently differentiated myoblast to 

form nascent multinucleate myofibers or fuse with myofiber end-fragments to develop a 

new muscle fiber (148).  So, MYF5 and MYOD commit progenitors to a muscle fate 

whereas MYOG is required for terminal differentiation of committed progenitors (141). 

 

Figure 1.11.  Expression Profile of Satellite Cells. The proliferating myoblast population is 
represented by the Pax7+/MyoD+ mononuclear cells. Nuclei that are MyoD+/Myog+ (and no 
longer express Pax7) are found within differentiated mononuclear cells and myotubes, whereas a 
minor population of Pax7+/MyoD+/Myog+ cells represents a transitional stage within recently 
differentiated myoblasts; newly formed myotubes occasionally display Pax7+/ MyoD+/Myog+ 
nuclei as well. Renewed cells Pax7+/MyoD− represent reentry into the satellite cell niche (177). 
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Signals Impacting Muscle Development 

Neural Tube Regulation of Myogenesis: 

Secreted factors from the neural tube, notochord and surface ectoderm regulate 

the myogenic program including regulating the expression of MRFs and Pax transcription 

factors (Figure 1.7).  While the notochord releases signals that are required for the 

activation of MRFs, the signals from the neural tube aid in the maintenance of MRF 

expression during somite maturation prior to the initiation of myotome differentiation 

(178).  Both the neural tube and notochord provide essential signals specific for the 

formation of epaxial muscles, but not for hypaxial or limb muscles (179).  These signals 

from the adjacent notochord, neural tube, and surface ectoderm impinge upon the cells in 

the DM to regulate the emergence of MPC (141, 148).   

Factors secreted by the neural tube including Notch, Wnt, Sonic Hedgehog (Shh), 

and Bone Morphogenetic Proteins (BMPs) function in the activation of MSCs, their 

downstream progeny, and their lineage progression (Figure 1.12) (180).  Notch signaling 

is necessary for the initial phases of myogenesis and MSC maintenance in DM cells 

which is activated by mild hypoxia (134, 181, 182).  The Notch signaling pathway is 

responsible for the reduction in the proliferative capacity of the Pax3 and Pax7 positive 

MSCs (183).  If the Notch signaling pathway is disrupted, the progenitor pool depletion is 

accelerated due to their commitment to myogenesis thereby compromising muscle 

development (141).  A sustained activation of Notch reverses the myogenic program, 

resulting in a downregulation of Myf5 and MyoD expression and a return to a quiescent 
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MSC state (181).  There is some evidence that MSC self-renew through asymmetric cell 

divisions is controlled by not only the Notch but also Wnt signaling pathways (184-186).  

Canonical Wnt signaling, which follows Notch, promotes differentiation of satellite cells 

to become muscle fibers (187).  Specifically, Wnt6, produced by the surface ectoderm, 

activates Pax3 to initiate further differentiation into MPC (188, 189).  Wnt signaling has 

also been shown to regulate the initiation of Sonic hedgehog (Shh) signaling from the 

surface ectoderm and dorsal neural tube during somite formation (190).  Shh is an 

essential and sufficient notochord signal for Myf5 and MyoD activation (190-192).  

Noggin, a secreted BMP antagonist, also regulates Myf5 and MyoD expression by 

inhibiting Bmp4 signaling from the neural tube (193).  Altogether, the activation of Myf5 

and MyoD genes in the 

somite, as well as in 

the limbs, depends on 

signaling from Wnts, 

Bmp4, Noggin, and 

Shh (139, 193, 194).   

 

 

 

Figure 1.12.   Signals from Surrounding Tissues Impact Myogenic Markers. Signals from 
adjacent lineages, notochord, neural tube, and surface ectoderm, impact the expression of genes 
in the dermomyotome, myotome, and sclerotome (148). 
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While the mechanisms are not clear, it is likely that factors expressed due to maternal 

obesity alter these signaling pathways and therefore disrupt myogenesis. 

Neural Crest Cell Regulation of Myogenesis:  

In addition to neural tube signals that impact myogenesis, neural crest cells also 

play a part in the regulation of muscle development. Neural crest cells originate in the 

neural tube and go through a transformation where they delaminate and migrate away 

from the neural tube to diverse regions in the developing embryo (Figure 1.13) (195-

200).  One region they migrate past following somite maturation is the anterior half of the 

sclerotome and along the basement membrane of the DM (201, 202).  It is in this region 

that they play a part in the regulation of myogenesis (200, 201, 203).  In order for neural 

crest migration to occur these cells must undergo an epithelial-mesenchymal transition 

(EMT).  EMT is a mechanism where epithelial cells are converted to a mesenchymal 

phenotype.  In order for this to occur, the expression of Snail, Twist and Zeb2 are needed 

to repress the expression of epithelial polarity/adhesion factors (e.g. E-cadherin) (204).   

Along with neural crest cells providing signals to the surround cells, they are also able to 

differentiate into neurons, cartilage, melanocytes, the dorsal root ganglia and many other 

types of cells (149, 200, 203).  
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Figure 1.13.  Migration Pattern of Neural Crest Cells.  Trunk neural crest cells in the mouse 
migrate from the neural tube (NT) through the dermomyotome (d) and sclerotome (scl) and 
impact myogenic differentiation. Somite (s); and notochord (n) (200). 

 

Functional signaling exists between neural crest cells and MPC in early muscle 

development where they aid in the survival of the MPC and maintain them in an 

undifferentiated state (181, 205).  Neural crest cell migration is limited to a short time 

period during early development, and therefore, neural-crest-mediated regulation of 

muscle growth is limited to the initial phases of myotome formation (181).  Specifically, 

when somites are going through the embryonic wave of myogenic differentiation 

characterized by expression of MYF5, neural crest cells are migrating from the neural 

tube and playing a role in regulating this stage of muscle development (181).  Hence, the 

timing of myotome formation to that of neural crest migration may provide a mechanistic 

link for the concurrence of these two events (181, 199).  Moreover, neural crest cells have 

been found to secrete Neuregulin1 which plays a part in muscle regulation by restraining 

MPC from precocious differentiation (205).  Interestingly, the depletion of migrating 

neural crest cells has been shown to compromise myogenesis by altering the balance 
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between Pax7 positive progenitors and differentiating muscle (181, 205).  Altogether, 

MPC rely on the migration of neural crest cells to trigger the transient activation of Notch 

signaling which guarantees a balanced and progressive differentiation of the MPC pool 

(181).   

Fetal Programming is Impacted by Maternal Environment 

Fetal growth and development are influenced by genetic as well as environmental 

factors (206).  The overall fetal response to its in utero environment is defined as “fetal 

programming” (207).  Fetal programming involves developmental plasticity with 

disturbances during critical periods of fetal development altering the differentiation of 

specific cells, organ systems or homeostatic pathways (208, 209) which persist into adult 

life.  Furthermore, the postnatal environment may either mask or magnify the effects of 

programming on the expression of a phenotype (98).  Two of the major environmental 

factors that have been proposed to influence fetal programming are malnutrition and 

stress.  For example, many have hypothesized that the macro- and micro-nutrient 

components of the diet, together with caloric content, act to set the cellular control of 

energy oxidation and storage (210).  Likewise, maternal overnutrition can stimulate 

programming mechanisms which regulate mitochondrial bioactivity, cellular stress and 

inflammation (210).  Altogether, the nutrient status of the mother during pregnancy is 

responsible for the development of the placenta (211), which is a key organ in respiratory 

gas, nutrient, and waste exchange between the mother and fetus.  If alterations in 

placental development occur, the growth and future health of the fetus may be impacted 

(10).   
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Placenta’s Role in Embryonic Development 

The late, eminent reproductive physiologist Samuel Yen referred to the placenta 

as the ‘third brain’ in pregnancy in recognition of the regulatory nature of placental 

function (15).  The placenta acts as an important source of pregnancy-associated 

hormones and growth factors, and is involved in immune protection of the fetus (212).  

The placenta itself is derived from the trophectoderm with the number of cells that 

differentiate into this lineage determining its developmental potential (213).  Specifically, 

at the time of implantation the trophectoderm cells become trophoblast giant cells (212, 

213).  The cells immediately adjacent to the inner cell mass are then transformed in a 

number of ways to differentiate into the remaining placental structures (Figure 1.14).  

One of these ways is when the trophoblast, with its associated fetal blood vessels, 

undergoes extensive villous branching to create a densely packed structure called the 

labyrinth (212).  While the labyrinth is developing, it is supported structurally by the 

spongiotrophoblast, which form a compact layer of non-syncytial cells between the 

labyrinth and outer giant cells which is in contact with maternal blood (15, 212).  The 

fetal vascular compartment of the placenta arises from the allantoic mesoderm of the 

embryo while the maternal components are derived from the maternal vasculature and 

decidual cells (212).  Maternal nutrients are able to be exchanged when blood enters the 

small spaces of the labyrinth where it flows in a countercurrent manner with fetal blood 

in the trophoblastic villi to maximize nutrient transport (212, 214).   
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Figure 1.14.  Structure of the Mouse Placenta.  The mouse placenta is composed of a labyrinth, 
spongiotrophoblast, trophoblast giant cell layer and maternal decidua.  The labyrinth layer 
consists of fetal capillaries and maternal blood and is the site of nutrient and gas exchange 
between the fetal and maternal blood (213). 

 

During the early phase of fetal development (i.e. the first two-thirds of gestation) 

maximal placental growth, differentiation, and vascularization are occurring (211, 215).  

It is during this time that an adequate establishment of the uteroplacental blood flow is 

needed to allow for exchange of all respiratory gases, nutrients, and waste products 

between the maternal and fetal systems (211, 216-219).  Placental function is a dynamic 

process which is influenced by maternal diet, body composition and lifestyle and has an 

important regulatory role in maternal well-being during pregnancy (11).  If an altered 

nutrition and hormone profile occurs, changes in nutrient transfer and partitioning 

between mother, placenta, and fetus results which modifies placental weights (220).  

Interestingly, placental weight is used to predict growth and long-term health of the fetus 

(221) and under normal conditions, placental and fetal weights are highly correlated (222, 
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223).  Abnormalities in maternal metabolism (e.g. due to obesity) alters the balance 

between placental and fetal weight (224, 225).  In addition, normal processes of placental 

function like oxidative stress and hypoxia can be altered due to maternal obese 

environment.  Together, these alterations can contribute to differences in the normal 

program of fetal development.  These changes then result in altered differentiation of the 

developing fetus due to changes in uteroplacental blood flow, placental metabolism of 

glucocorticoids and the transport of nutrients to the developing fetus.   

Oxidative Stress: 

The syncytiotrophoblast cells come in direct contact with the relatively high 

oxygen concentration in maternal blood, but have reduced levels of antioxidants making 

the placenta highly susceptible to oxidative stress (226).  Sources of oxidative stress 

including nutritional and environmental factors play a major role in the susceptibility of 

programming disease in offspring (227).  Oxidative stress is a result of the generation of 

reactive oxygen species (ROS) in the absence of sufficient antioxidant support (228, 

229).  There are three ROS: superoxide (O•−
2), hydrogen peroxide (H2O2) and hydroxyl 

(OH•) (228, 230, 231), all of which are in a more reactive state than molecular oxygen 

and are generated within the cell as by-products of aerobic respiration and metabolism.  

The generation of O•−
2 by a single electron donation to O2 is the initial step in the 

formation and propagation of ROS within and out of the cell (Figure 1.15).  The 

formation of O•−
2 leads to a cascade of other ROS development.  For example, 

dismutation of O•−
2 produces H2O2 which can be reduced to H2O and O2 by various 

antioxidants.  Likewise, in the presence of iron, O•−
2 is converted to OH•.  Interestingly, 
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due to the ROS have a very short half-life, the development of oxidative stress in the 

placenta does not directly affect signal transduction and cell survival in the developing 

embryo.  However, placental changes as a result of an adverse maternal environment may 

induce oxidative stress in the embryo (232).  If uncontrolled, ROS can damage different 

biological targets such as lipids, DNA, carbohydrates and proteins and compromise cell 

function (228, 229, 233).   

During a normal pregnancy, there is an important balance between ROS 

production and antioxidant defenses (234).  This balance is altered to favor ROS 

production in pregnancies complicated by obesity resulting in the development of an in 

utero environment of oxidative stress (Figure 1.16) (235).  The production of ROS is 

facilitated by growth factors and cytokines like insulin, transforming growth factor beta 

(TGFβ), or TNF-α which are normally increased due to an obese environment.  Also, 

major sources for intracellular ROS are the mitochondria, which generate O•−
2 and H2O2 

as byproducts of cellular energy production (236).  All of these factors increase the 

generation of O•−
2 through the activation of nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidases or via mitochondrial antioxidants (237, 238).  There are a number of 

steps where antioxidants work to control the exposure of cells to O•−
2 with the first being 

conversion of O•−
2 to H2O2 by superoxide dismutases (SOD) (Figure 1.15).  There are 

three different SODs: SOD1 which contains Cooper and Zinc and is located in the 

cytoplasm, Manganese containing SOD (SOD2) which is located in the mitochondria and 

extracellular SOD3 which contains Copper and Zinc (230).  In addition to SODs, the 

antioxidants glutathione peroxidase 1 and catalase are reducing enzymes which convert 
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H2O2 to O2 and H2O and therefore limit cell exposure to H2O2 (Figure 1.15).  They also 

act on lipid hydroperoxides (233).  All of these antioxidants, along with non-enzymatic 

dietary antioxidants (239), work together to defend the body against oxidative stress 

(Figure 1.16).  

 

 

Figure 1.15.  Oxidative Stress Results from the Production of Reactive Oxygen Species.  
Reactive oxygen species (ROS) are produced from  molecular oxygen (O2) being converted to 
hydroxyl radicals ( OH).  There are multiple key cellular antioxidant enzymatic pathways that try 
to convert ROS back into O2 and water (H2O). Superoxide anion ( O2

−); hydrogen peroxide 
(H2O2); copper–zinc containing SOD (Cu,Zn-SOD or SOD1); manganese containing SOD (Mn-
SOD or SOD2); catalase (CAT); glutathione peroxidase (GPX) (230). 
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Figure 1.16.  Prooxidant-Antioxidant Imbalance Results in Oxidative Stress.  A balance is 
needed between the amount of antioxidants and ROS present in order to not create an oxidative 
stress environment.  Reactive oxygen species (ROS); antioxidant (AOX); superoxide dismutase 
(SOD); glutathione peroxidase (GPX); catalase (CAT); total antioxidant status (TAS) (233). 

 

Small changes in ROS associated with maternal obesity modulate the expression 

of genes via activation of multiple signaling pathways  (98).  For example, ROS activate 

members of the JNK and p38 stress kinase family, MAPKs, PI3K, and NF-κB (238).  The 

JNK and p38 stress kinase family mediate inflammatory cytokine- and stress-induced 

apoptosis and stress-responsive gene expression functions through the phosphorylation of 

the Forkhead Box (FOXO) family of transcription factors (240).  ROS are known to 

promote FOXO1 translocation to the nucleus of β–cells by a mechanism that involves 

activation of JNK and the phosphorylation of FOXO (241).  The JNK-induced 

phosphorylation by oxidative stress overrides the effects of FOXO phosphorylation, 
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which then provides a mechanism where oxidative stress results in an increase in insulin 

sensitivity (242).  The activation of FOXO transcription factors due to increased 

oxidative stress can also induce the expression of a wide range of genes that regulate 

cellular responses such as cell cycle arrest, apoptosis.  Interestingly, FOXO transcription 

factors also stimulate the expression of SODs and antioxidants in order to alleviate the 

oxidative stress (237, 243, 244).  ROS are also known to activate MAPKs which are 

protein serine/threonine kinases which play an important role in cell differentiation, 

growth, apoptosis, via the activation of a variety of transcription factors which regulate 

target gene expressions (245).  Finally, PI3K is activated in response to ROS which 

induces cell growth, proliferation, differentiation, motility, and survival while NF-κB 

signaling results in growth control, immune response to infection, and inflammation 

(246).  Altogether, all of these pathways are activated in response to oxidative stress 

which can have a negative impact on placental nutrient regulation impacting embryonic 

development. 

Hypoxia: 

Oxidative stress is also induced by hypoxia (247, 248).  Hypoxia occurs when 

oxygen availability does not match the demand of the surrounding tissue, resulting in 

decreased oxygen tension (249).  For example, if oxygen supply is equal to the oxygen 

demand then a state of normoxia results but, if oxygen supply is not enough to fulfill 

tissue demands then a hypoxic environment results.  Hypoxia was first proposed as a 

possible cause of inflammation in obesity in 2004 (249-251) when hypoxia was found in 

only the adipose tissue of obese mice (251).  The decreased perfusion as well as 
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decreased blood flow per blood vessel occurs in adipose tissue of obese mice (249).  

Systemic hypoxia has also been shown to induce insulin resistance as glucose infusion 

rate was decreased which occurs in obese individuals (251, 252).  Hypoxia has been 

found to stimulate both leptin and vascular endothelial growth factor (VEGF) from 

mature adipocytes in vitro as well as being the primary signal for angiogenesis (249, 253, 

254).  Inflammation in adipose tissue is induced by hypoxia due to the induction of gene 

expression in adipocytes and macrophages (255).   

Low oxygen tension is important in many normal physiological processes in the 

adult animal including postnatal growth, differentiation and migration.  During 

embryonic development, low oxygen tension promotes the establishment and 

differentiation of the vascular and hematopoietic systems (256).  However, reductions in 

oxygen tension, to the level of hypoxia, are known to differentially regulate cell 

differentiation and therefore alter the fetal developmental program (247).  For example, 

hypoxia plays a major part in inhibiting the differentiation of preadipocytes into 

adipocytes and myoblasts into myocytes (257) which leads to decreased fetal growth and 

skeletal anomalies (258).   

Cells respond to hypoxia by coordinating expression of numerous genes to ensure 

adaptation (249).  The primary pathway that responds to tissue hypoxia is the hypoxia 

inducible factor (HIF) signaling cascade.  The HIF signaling cascade is activated in 

response to low oxygen availability and is central in maintaining oxygen homeostasis 

(256, 259).  The HIF signaling cascade is composed of a HIF-1β subunit and one of the 

three HIFα subunits (HIF-1α, HIF-2α or HIF-3α).  It also contains prolyl hydroxylase 
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domain-containing proteins (PHDs) which aid in the regulation of HIF signaling.  There 

are three types of PHDs with each having a distinct tissue distribution, pattern of 

subcellular localization, and substrate specificity (260).  PHD2 is the rate-limiting 

enzyme that sets the low steady-state levels of HIF-1α in normoxia, whereas PHD1 and 

PHD3 contribute to HIF-1α regulation only upon chronic hypoxia (261).   

 

Figure 1.17.  Hypoxia/Normoxia Signaling Cascade. Hypoxia inducible factor (HIF)-1α is 
degraded in a normoxia environment, while in a hypoxic environment it binds to a hypoxia 
responsive element (HRE) and promotes transcription of genes.  Prolyl hydroxylase (PHD); von 
Hippel Lindau protein (pVHL); and ubiquitination (Ub) (262). 

 

Under normal oxygen conditions, PHDs in the presence of O2 hydroxylates HIF-

1α, which can then bind to von Hippel Lindau protein (Figure 1.17).  This event promotes 

the polyubiquitination of HIF-1α followed by its degradation (263).  In well-oxygenated 
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cells, HIF-1α is an exceptionally short-lived protein with a half-life of less than 5 minutes 

(264).  On the other hand, under hypoxic conditions, the lack of oxygen prevents the 

hydroxylation of HIF-1α by PHD, leading to its stabilization (Figure 1.17).  The lack of 

oxygen results in HIF-1α migrating to the nucleus where it dimerizes with HIF-1β which 

then binds the cofactor p300/CBP.  This HIF-1 complex is then able to bind to and induce 

the transcription of genes containing hypoxia responsive elements in their promoter 

region (262, 263).  Hypoxia is associated with the activation of several stress-induced 

protein kinases, including JNK, p38, ERK and the NF-κB pathways which trigger cell 

death (255, 265, 266).  NF-κB is a master regulator of inflammation response and 

controls the transcription of many pro-inflammatory cytokines like TNF-α and IL-1β 

which are increased in hypoxic tissues (267). 

Impaired placental perfusion in early development can lead to hypoxia in the 

placenta which often causes fetal growth restriction and in severe cases even fetal death 

(98, 268).  Normally, in early pregnancy, placentation occurs in relatively hypoxic 

conditions which is critical for proper placental and embryonic development (268).  

Hypoxia is needed to express adequate amounts of a variety of genes, including VEGFA, 

glycolytic enzymes and inducible nitric oxide synthetase (269).  Similarly, placental 

insufficiency (i.e. reduced placental blood flow) causes a chronic state of fetal hypoxemia 

and hypoglycemia.  As a result, endocrine and metabolic adaptations in the placenta, 

including the interaction between the Igf2 gene in feto-placental tissues and nutrient 

transporter genes in placental tissues, conserve fetal nutrients (270).   
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Glucocorticoids: 

Maternal obesity not only increases hypoxia and oxidative stress in tissues but 

also stimulates the production of adrenal glucocorticoids (271).  Physiological 

glucocorticoids (cortisol in humans, corticosterone in rats and mice) are synthesized in 

the adrenal cortex (272).  Cortisol synthesis is regulated by the activity of the 

hypothalamic–pituitary–adrenal (HPA) axis with adrenocorticotropin hormone (ACTH) 

stimulating cortisol production by the adrenals.  Cortisol, in turn, reduces corticotropin 

releasing hormone (CRH) and ACTH release by the hypothalamus and pituitary.  Cortisol 

produced by the mother, is transported to the placenta which regulates fetal exposure to 

glucocorticoids.  Glucocorticoid receptors are found in the placenta as well as most fetal 

tissues and are members of the nuclear hormone receptor superfamily of ligand-activated 

transcription factors (273, 274).  In the placenta, glucocorticoid receptors are thought to 

mediate both metabolic and anti-inflammatory effects (274) and increased levels of 

glucocorticoids in the placenta directly affect placental size (275).   

The ability of the placenta to inter-convert glucocorticoids between their active 

and inactive forms cortisol was first described by Osinski (276) in 1960.  In the placenta, 

there are two enzymes, 11β hydroxysteroid dehydrogenase type 1 (11β-HSD1) and type 2 

(11β-HSD2), that regulate the amount of circulating glucocorticoids in the body, 

specifically the active form cortisol (Figure 1.18).  Both 11β-HSD1 and 11β-HSD2 are 

members of the short-chain alcohol dehydrogenase superfamily (277) with the genes 

encoding them being found on chromosome 1 (278) and chromosome 16 (279), 

respectively.  The enzyme 11β-HSD1 catalyzes the bidirectional conversion of active-
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cortisol and inactive-cortisone activities, but operates predominately as an oxoreductase, 

converting cortisone to cortisol, due to its higher affinity for cortisone (Figure 1.18) 

(280).  In contrast, 11β-HSD2 is a high-affinity unidirectional enzyme that exhibits only 

oxidase activity, cortisol to cortisone, under physiological conditions and is regulated by 

oxygen (268, 281).  Interestingly, Mericq et al. (282) found 11β-HSD2 enzyme activity in 

the placenta to be is seven- to eightfold higher compared with the activity of 11β-HSD1.   

 

Figure 1.18.  Enzymatic Regulation of Glucocorticoids.  Hsd11b1 is responsible for the 
conversion of ‘inactive’ cortisone to ‘active’ cortisol while Hsd11b2 converts ‘active’ cortisol to 
‘inactive’ cortisone. 

 

Glucocorticoids are essential for the development and maturation of fetal organs 

(lung, thymus, gastrointestinal tract, heart, liver, and kidneys) at the end of gestation 

(283-287).  However, excessive exposure to glucocorticoids during earlier stages of 

development leads to altered maturation of organs as well as has a negative impact on 

fetal growth resulting in IUGR (286).  Normally the fetus has much lower levels of 

physiological glucocorticoids than its mother (288), with the concentrations being very 

high in maternal blood during pregnancy.  The placenta cannot stop lipophilic steroids 

from crossing to the fetus and therefore limiting embryonic exposure to cortisol is 

dependent on placental 11β-HSD2 concentration/activity which rapidly inactivates 
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cortisol to inert cortisone (Figure 1.19) (289, 290).  Even though 11β-HSD2 forms a 

potent barrier to the high levels of maternal glucocorticoids, approximately 10-20% of 

the maternal glucocorticoids are still able to cross intact to the fetus which are required 

for the development and maturation of fetal organs (289, 291).  Also, the barrier function 

of 11β-HSD2 is found to decrease in the last part of gestation, along with an increase in 

11β-HSD1 gene expression, which may be a mechanism by which cortisol concentrations 

rise at term to regulate fetal maturation and activate pathways associated with labor (206, 

292).  Alfaidy et al. (268) showed that oxygen may be an important regulator of placental 

11β-HSD2.  Indeed, hypoxia has been shown to modulate placental 11β-HSD2 levels by 

diminishing its promoter activity and down-regulating its protein synthesis (293, 294) 

while an increase in oxygen levels up-regulates glucocorticoid metabolism through 11β-

HSD2 activation.  There are also some indirect factors, TNF-α and IL-1β, which have 

been shown to decrease 11β-HSD2 activity in the placenta (256, 267). 

When the placenta exhibits reduced 11β-HSD2 activity there is an increase in 

fetal exposure to cortisol which is correlated to abnormalities in organ development.  For 

example, reduced 11β-HSD2 activity is associated with increased blood pressure as well 

as the programming of permanent hyperglycemia in the offspring during adult life (295, 

296).  Similarly, in humans, mutations in the 11β-HSD2 gene have been associated with 

low birth weight and reduced 11β-HSD2 activity, and increased fetal cortisol levels have  
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Figure 1.19.  Glucocorticoid Signaling between the Mother, Placenta and Fetus.  Activation 
of the maternal hypothalamic–pituitary–adrenal (HPA) axis during pregnancy leads to increased 
circulating levels of cortisol (filled circles).  Maternal cortisol is transported to the placenta where 
it is either broken down by the enzyme HSD2 into inactive cortisone (grey triangles) or passes 
directly through to the fetus. If there is not enough HSD2 in the placenta it can lead to fetal HPA 
axis activation (associated with low birthweight, metabolic and brain abnormalities). 
Corticotropin releasing hormone (CRH); adrenocorticotropin hormone (ACTH); and 11β 
hydroxysteroid dehydrogenase type 2 (HSD2) (297). 

 

been reported in association with IUGR (Figure 1.19) (272).  Overall, fetal exposure to 

high levels of glucocorticoids reduces fetal growth independent of its effects on maternal 

food intake as well as alters the trajectory of fetal tissue maturation (131).  Interestingly, 

placental glucocorticoid metabolism differs according to sex of the fetus with the male 

fetus being less sensitive to the effects of glucocorticoids compared to the female fetus 

(298).    
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Conclusion 

Obesity impacts not only the health of the mother but when combined with 

pregnancy is associated with an increased risk for their offspring to be obese and develop 

metabolic syndrome.  Offspring from obese dams are more likely to experience IUGR 

which if accompanied by a catch-up growth in the first few weeks after birth has been 

correlated to alterations in adult organ function.  Interestingly, the extent of the 

alterations may be sex dependent, but more research is needed to determine the exact 

mechanisms that are impacting gender-dependent alterations in organ development.  Of 

special interest is the impact of maternal obesity on skeletal muscle development given 

that it is an important metabolic organ.  Currently, there is a gap in understanding how 

maternal nutrition affects early muscle differentiation; although, a number of studies have 

documented a negative effect of maternal obesity on secondary and tertiary myogenesis 

and the metabolic function of this skeletal muscle.   

The intrauterine growth of a fetus is largely determined by the capacity of the 

placenta, which is a key organ in respiratory gas, nutrient, and waste exchange, to supply 

nutrients from the mother to the fetus.  Normal levels of oxygen tension and ROS are 

needed in the placenta for proper development to occur.  However, oxidative stress, 

hypoxia and altered glucocorticoid metabolism in the placenta inhibit the transport of 

nutrients which can negatively impact fetal development.  The placenta is unique in that 

it is able to produce an adaptive response if the fetus is not developing well; however, 

this adaptation can only partly compensate for impaired growth in utero.   
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While the normal development of the placenta and muscle is well described, the 

mechanisms by which maternal obesity alters this development are unknown.  The long-

term goal of our laboratory is to understand how maternal obesity alters placental 

function and impacts cell differentiation during embryonic/fetal development.  The 

working hypothesis of this project is that maternal obesity induces placental hypoxia 

and/or oxidative stress resulting in the altered differentiation of somite-associated 

mesodermal cells and reduced skeletal muscle development.  In order to test this 

hypothesis, the lethal yellow (LY) mouse model of obesity was used.  The LY mouse has 

a deletion mutation on the C57BL/6 (B6) background which results in ectopic expression 

of agouti (Figure 1.20).  Agouti, in turn, inhibits hypothalamic signaling of -MSH and 

CART via the melanocortin 4 receptor (MC4R) resulting in inhibition of satiety, excess 

caloric intake, and progressive obesity.  In this study, mid-gestation embryos and 

placentas that were developed in a B6 (lean) or LY (obese) environment were examined 

for placental abnormalities and differences in embryonic cell differentiation, specifically 

alterations in primary myogenesis.  
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Figure 1.20.  Lethal Yellow Mouse Model of Obesity.  Schematic representation of the deletion 
mutation on the C57 BL/6 background which produces the Lethal Yellow phenotype.   
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CHAPTER II 

Maternal Obesity Alters Embryonic Expression of Desmin and PPARγ, Reduces 

Placental Function and Alters Placental Expression of Stress-Related Genes  

Kristin A. Norwood, Amanda K. Brandt and Jennifer R. Wood 

Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 

 

ABSTRACT 

Maternal obesity has been correlated to decreased skeletal muscle mass, increased 

adipose tissue mass and increased risk for metabolic syndrome in their children.  

However, mechanistic links between maternal obesity and the development of these 

phenotypes remain unclear.  Thus, the objective of the current study was to determine 

how maternal obesity alters the temporal program of skeletal muscle differentiation.  To 

achieve this objective, mid gestation embryos (12.5 days post coitus) were collected from 

age-matched, obese Lethal Yellow (LY) and normal weight C57BL/6 (B6) dams. As 

expected, the body weight of LY dams was heavier than B6 dams while the average wet 

weight and tail somite number of LY-derived embryos was decreased.  To determine the 

impact of maternal obesity and decreased embryo weight on mesodermal cell 

differentiation, the expression of the myogenic marker desmin (DES) and adipogenic 

marker PPARG were examined.  Surprisingly, DES expression tended to be increased (P 

< 0.09) in somite-associated cells of LY-derived embryos.  Furthermore, PPARG 

expression was predominately localized to the neural tube and was significantly 

decreased (P < 0.04) in LY-derived embryos.  Placental function in the LY dams was 
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also altered.  Specifically, the ratio of embryo to placenta weight was decreased 12% in 

LY-derived embryos suggesting abnormalities in placental development.  Furthermore, 

the mRNA abundance of Hif1a, Pecam1, and Hsd11b2 was altered in the placenta 

indicative of chronic hypoxemia and stress.  Taken together, these data demonstrate that 

temporal regulation of myogenesis is altered in embryos derived in an obese environment 

and may be associated with obesity-induced placental stress. 

 

Key Words: Obesity, Cortisol, Muscle Development, Neural Tube 

 

INTRODUCTION 

Obesity is a considerable public health problem that is associated with an 

increased risk of several chronic diseases including type 2 diabetes and cardiovascular 

disease (1, 2).  The prevalence of obesity worldwide is 15–20% with at least 1/3 of 

reproductive age women classified as obese in the United States (3, 4).  Maternal obesity 

negatively affects the infant’s health by increasing fetal adiposity as well as increasing 

the lifetime risk of obesity and development of metabolic syndrome during childhood or 

early adult life (5-7).  Specifically, maternal obesity increases fetal intramuscular 

adipocytes and fibrosis (8-10) as well as decreases muscle fiber density (11).   

Furthermore, Yan et al. (12) have shown attenuated insulin signaling in the skeletal 

muscle of offspring derived from over nourished mothers.  

These changes in the structure and function of skeletal muscle (12, 13) suggests 

that the activation and/or regulation of the skeletal muscle program are altered when the 
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fetus is exposed to an obese in utero environment.  During normal fetal development, 

skeletal muscle in the trunk and limb develops from stem cells in the dermomyotome 

layer of the somite which differentiate into myogenic progenitor cells upon stimulation of 

paired box (Pax) 3 and Pax7 expression (14).  PAX3 and PAX7 are transcription factors 

that regulate  the expression of myogenic factor-5 (Myf5), myogenic differentiation 1 

(MyoD), myogenin (Myog), and desmin (Des) which, in turn, promote differentiation of 

proliferating muscle progenitor cells into myocytes and ultimately mature muscle fibers 

(15-19).  Regulation of the myogenic program is dependent on multiple signals from the 

neural tube located adjacent to each somite and neural crest cells which migrate around 

and within the somite (20, 21).  Together, these signals maintain an important balance 

between the maintenance and/or migration of stem and progenitor cells and the 

differentiation and establishment of mature myofibers which are the major components of 

adult skeletal muscle.   

The effect of maternal obesity on fetal development is mediated by the placenta 

which serves as a dynamic interface between the mother and developing fetus (22).  

Hayes et al.(23) showed that excessive adiposity during pregnancy results in increased 

platelet endothelial cell adhesion marker (PECAM1) and decreased smooth muscle actin 

expression, indicative of poor placental vascularization.  Decreased placental vascular 

density has been tied to reduced tissue oxygenation and the development of a hypoxic 

environment (24).  Poor development of placental vasculature also results in reduced 

placental blood flow, leading to not only a smaller placenta but also insufficient nutrient 

transport (25, 26).  Hypoxia, in turn, can induce oxidative stress due to decreased 
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expression of antioxidants (27) as well as decreased expression of 11-hydroxysteroid 

dehydrogenase 2 (Hsd11b2) which converts glucocorticoids from an active to inactive 

state (28).  Collectively, these maternal obesity dependent changes to placental function 

have been linked to intrauterine growth restriction (IUGR).  Furthermore, activation of 

signaling pathways due to hypoxia and oxidative stress as well as changes to DNA 

methylation and histone modifications by the glucocorticoid, cortisol, result in changes in 

the fetal program which can directly impact phenotypes expressed by the children of 

obese mothers (29-31).     

Taken together, these data indicate that the increased incidence of maternal 

obesity may perpetuate the obesity epidemic in the next generation due in part to altered 

skeletal muscle programming.  However, mechanistic links between maternal obesity and 

the regulation of the skeletal muscle program during embryonic development remain 

poorly defined.  In the current study, the Lethal Yellow (LY) mouse model was used to 

identify maternal obesity-dependent temporal and/or spatial changes in primary 

myogenesis.  The LY mouse has a deletion mutation on the C57BL/6 (B6) background 

which results in ectopic expression of agouti (32-34).  Agouti, in turn, inhibits 

hypothalamic signaling of -MSH and CART via the melanocortin 4 receptor (MC4R) 

resulting in inhibition of satiety, excess caloric intake, and progressive obesity (35).  We 

have previously demonstrated that the obese phenotype of LY females includes a 

significant increase in total body weight, visceral fat weight, and circulating leptin and 

insulin concentrations (36).  Using this model, we have identified novel differences in the 
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expression of myogenic markers and abnormalities in placental function of mid-gestation 

embryos collected from lean (B6) and obese (LY) dams.     

MATERIALS AND METHODS 

Animal Model:  Founder B6 (C57BL/6 a/a) and LY (C57BL/6 Ay/a) mice were 

purchased from Jackson Laboratory (Bar Harbor, ME).  Fertile, male B6 mice were 

mated with aged-matched (17-week-old) B6 or LY female littermates.  Twelve days after 

visual confirmation of a vaginal plug (i.e., 12.5 dpc), B6 (n=7) and LY (n=12) dams were 

euthanized and maternal weights were determined.  Viable and degenerative embryos 

were collected from each dam (degenerative: B6=7.01% and LY=5.53%).  Each viable 

embryo and its placenta were weighed and the number of tail somites per embryo counted 

from hind limb to the tip of the tail.  Half of the embryos from each litter were fixed in 

Bouin’s solution and embedded in paraffin for morphological and immunohistochemical 

(IHC) analyses while the other half were flash frozen for RNA extraction.  All of the 

placentas were flash frozen for RNA extraction.  Agouti mRNA abundance (see QPCR 

methods below) was used to distinguish between B6 and LY embryos derived from LY 

dams.  All animal experiments were approved by the University of Nebraska-Lincoln 

Institutional Animal Care and Use Committee. 

Reverse Transcription:  Whole placenta and whole embryo RNA was isolated 

using Tri-Reagent (Invitrogen, Carlsbad, CA).  RNA (5 μg) from each individual sample 

was treated with DNase I (Promega, Madison, WI) and reverse transcribed using random 
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hexamer primers (Roche Diagnostics, Indianapolis, IN) and Moloney Murine Leukemia 

Virus reverse transcriptase (Promega) according to manufacturer’s instructions. 

Quantitative, Real-Time PCR (QPCR):  Forward and reverse primers for 

candidate genes and the housekeeping gene β-actin (Actb) (Table 2.1) were designed 

(Primer Express, Applied Biosystems, Foster City, CA) and synthesized (Integrated DNA 

Technologies, Coralville, IA).  Primers were tested empirically to determine the maximal 

concentration that produced specific amplification of the target sequence in the absence 

of primer dimers.   Quantitative PCR (QPCR) reactions were carried out using each 

primer set and equivalent amounts of cDNA from each sample as previously described 

(37).   QPCR amplification of Gapdh and 18s rRNA was carried out using an endogenous 

control kit (Applied Biosystems, Foster City, CA). The relative abundance of the 

candidate mRNA in each sample was normalized using the most stably expressed 

housekeeping gene(s) (Gapdh, 18s, or Actb) which was determined using Normfinder 

(38).  Specifically, embryo candidate genes were normalized using the geometric mean of 

18s rRNA and Gapdh mRNA abundance for each embryo sample while Gapdh mRNA 

abundance was used to normalize candidate genes for each placenta sample.  The 

resulting normalized data for each candidate mRNA was then compared to the mean 

normalized mRNA abundance in B6-derived placenta or embryo and expressed as a fold 

change. 
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Table 2.1. Primer Sequences for QPCR Analysis 

 

Immunofluorescence Analyses:  Transverse sections (8 µm) were generated from 

the Bouin’s-fixed embryos from LY and B6 dams for IHC analyses.  Samples were 

deparaffinized and hydrated followed by boiling in 10 mM sodium citrate for antigen 

retrieval (39).  Samples were blocked in 1X PBS, 5% normal goat serum and 0.3% Triton 

X-100.  After blocking, anti-DES (1:200) (Abcam, Cambridge, MA), anti-PPARG 

(1:200) (Cell Signaling, Danvers, MA), or no primary antibody diluted in SignalStain 

Antibody Diluent (Cell Signaling, Danvers, MA) was added to each section and 

incubated overnight at 4°C.  Sections were washed and subsequently incubated with 

Alexa Fluor 555 anti-rabbit secondary antibody (DES) or Alexa Fluor 488 anti-rabbit 

secondary antibody (PPARG) (Cell Signaling, Danvers, MA).  Sections were washed and 

mounted with VectaShield Hard Mount containing DAPI (Vector Labs, Burlingame, CA) 

to stain cell nuclei.  Sections exposed to only Alexa Fluor 555 or Alexa Fluor 488 anti-

rabbit secondary antibodies were used as a negative control in order to ensure specific 

detection of signal.  Detection of DES or PPARG positive cells was carried out using an 

IX71 Olympus inverted brightfield and fluorescence microscope (Hitschfel Instruments, 
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Inc., St. Louis, MO) and images captured using the Slidebook 4.2 Software (Intelligent 

Imaging Innovations, Inc., Denver, CO) (40).  Images were captured using the same 

exposure length and analyzed using Image J Software (National Institute of Health, 

Bethseda, MD) for the percent area stained.  The mean value for embryos derived in LY 

dams was compared to the mean value from embryos derived in B6 dams and shown as a 

fold change.   

Statistical Analyses:  All statistical analyses were carried out using GraphPad 

Prism 5.0 (GraphPad Software, La Jolla, CA).  Statistically significant differences in 

weights, mRNA abundance or protein expression between B6 and LY dams or B6- and 

LY-derived embryos or placentas (P < 0.05) were determined using Student t-test.   

RESULTS 

Maternal Obesity Reduces Fetal Growth and Induces Modest Developmental 

Delays in Viable Fetuses:  As expected based on our previous study (36), maternal body 

weights of female LY mice were significantly higher (P < 0.0001) than age-matched B6 

mice at embryonic day 12.5 (E12.5) (Figure 2.1A).  While there was an increase in body 

weight, no difference in litter size of viable embryos (Figure 2.1B) or the number of 

degenerating embryos (data not shown) was identified.  Individual wet weights of the 

viable embryos showed a significant 30% reduction (P < 0.0001) in LY-derived 

compared to B6-derived embryos (Figure 2.1C).  Furthermore, embryos derived from LY 

dams had a modest but significant reduction (P < 0.0001) in tail somite number      

(Figure 2.1D).  To establish that these morphological effects were due to the maternal 
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obese phenotype and not overexpression of agouti, B6 and LY embryos collected from 

LY dams were compared.  There was no difference in embryo and placental wet weights 

or tail somite number (Supplemental Figure 2.7) between LY and B6 littermates.  All 

placentas from LY dams, regardless of embryo phenotype, expressed agouti.  Agouti can 

bind to the melanocortin family of receptors including MC1R and MC4R; however, there 

were negligible levels of Mc1r and Mc4r mRNA detected in either the placentas or 

embryos collected from LY dams (data not shown).  Together, these data indicated that 

the embryonic phenotypes are induced by the obese phenotype of the dams and not the 

ectopic expression of 

agouti.  The 

embryonic phenotypes 

are consistent with 

IUGR and modest 

developmental delays 

reported in diet 

induced obesity 

models (22, 41, 42).   

 

 

                             
Figure 2.1. LY Mice Exhibit an Obese Phenotype and Altered Growth of their Embryos.  
Maternal body weight (A) and the number of embryos at 12.5 dpc (B) were determined for B6 
(black bar, n=7) and LY (yellow bar, n=12) dams.  The wet weights (C) were recorded for 
embryos (B6-derived, black bar, n=63; LY-derived, yellow bar, n=113) and the number of tail 
somites (D) for each B6-derived (black bar, n=58) or LY-derived (yellow bar, n=103) embryo 
were counted from hind limb to tip of the tail.  The mean ± SEM normalized values are presented, 
and asterisks represent a statistically significant difference in means (P < 0.0001, ***). 
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Primary Myogenesis is Accelerated in Embryos Developed in an Obese In Utero 

Environment:  To assess differences in myocyte development between LY- and B6-

derived embryos, IHC analysis of DES expression was carried out.  DES is a marker of 

differentiating myocytes and, upon its expression, myocytes are destined to complete 

myogenesis (i.e. this is an irreversible differentiation step).  As expected, DES-positive 

cells were located exclusively in the somite regions adjacent to the neural tube in both 

B6- and LY-derived embryos (Figure 2.2A and 2.2B).  In contrast, there was no signal 

detected in sections incubated with only secondary antibody (NEG Control, Figure 2.2A). 

   

Figure 2.2. DES Expression is Increased in the Somite in LY-Derived Embryos.  (A, B) 
Immunofluorescent detection of DES was carried out using transverse sections of 12.5 dpc 
embryos derived from B6 and LY dams.  Representative images (A=40X, B=100X) are shown 
for DES (orange) and DAPI (blue) expression.  Sections processed without primary antibody 
were used to verify specific detection of DES (NEG control).  (C) The percent of the indicated 
area (circled in A) which is positive for DES was determined for each sample (B6, black bar, 
n=8; LY, yellow bar, n=11), normalized to the average percent area for the B6-derived embryos, 
and expressed as a fold change (mean ± SEM).  The mean ± SEM normalized values are 
presented and the data was tested for statistical significance (P < 0.09, †).  Scale bars=100 µm 
(A) and 50 µm (B). 
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The percentage of DES-positive cells in LY- compared to B6-derived embryos was also 

different.  However, there tended to be 2-fold more DES-positive cells (P < 0.09) in LY-

derived embryos (Figure 2.2C) which was unexpected given that fetal and adult muscle 

mass is decreased in other models of maternal obesity (11, 13, 43, 44).   

PPARG is Predominately Expressed in the Neural Tube and Its Expression is 

Decreased in LY-Derived Embryos:  Myocytes and adipocytes arise from the same stem 

cells in vitro (43).  Therefore, given the difference in DES expression in LY-derived 

embryos, we also examined the expression of a marker of adipocyte differentiation, 

peroxisome proliferator-activated receptor gamma (PPARG), in each embryo (Figure 2.3, 

2.4).  While some PPARG-positive cells were identified in the somites of both LY- and 

B6-derived embryos, PPARG expression was primarily localized to the neural tube of 

each embryo (Figure 2.3A-D).  Conversely, no signal was detected in sections incubated 

with only secondary antibody (NEG control, Figure 2.3E).  Furthermore, PPARG was 

expressed in cells that appeared to be delaminating from the neural tube (Figure 2.4). 

Semi-quantitative analysis of PPARG expression in the somite region revealed no 

differences in the percentage of PPARG positive cells in B6- or LY-derived embryos (1.0 

± 0.50 vs. 0.66 ± 0.27, P = 0.52).  However, we did detect a significant 2-fold decrease (P 

< 0.04) in PPARG expression in the neural tube region (circled regions; Figure 2.3A and 

C) of LY-derived embryos (Figure 2.3F).   
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Figure 2.3. PPARG Expression is Decreased in the Neural Tube of LY-Derived 12.5 dpc 
Embryos.  Representative embryos (40X) from B6 and LY dams were stained for 
immunofluorescent detection of PPARG (green) and DAPI (blue).  A representative section 
processed without primary antibody served as a negative control (E) to verify specific detection 
of PPARG.  The percent of the indicated area (circled in A, C) which is positive for PPARG was 
determined for each sample (B6, black bar, n=8; LY, yellow bar, n=11), normalized to the 
average percent area for the B6-derived embryos, and expressed as a fold change (mean ± SEM).  
Asterisk represents a statistically significant difference in means (P < 0.05, *). Scale bars=100 
µm. NT=neural tube and Som=somite. 

 
Figure 2.4. PPARG is Expressed in Cells Adjacent to the Neural Tube in 12.5 dpc Embryos.  
Representative images (100X) of B6 (n=8) and LY-derived embryos (n=11) from Figure 3 
showing expression of PPARG (green).  Arrows indicate PPARG-positive cells adjacent to the 
neural tube.  Scale bars=50 µm. NT=neural tube. 
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Expression of the Epithelial-Mesenchymal Transition Marker Zeb2 is Decreased 

in Embryos Developed in an Obese In Utero Environment:  The conversion of neural 

tube cells from an epithelial to a mesenchymal lineage is an important process prior to 

delamination and migration of these cells during embryonic development.  Furthermore, 

there is in vitro evidence that PPARG regulates the epithelial to mesenchymal transition 

(EMT) (44, 45).  Therefore, to determine if decreased neural tube expression of PPARG 

was associated with changes in the mRNA abundance of transcription factors that 

regulate EMT (SNAI1, SNAI2, TWIST1, ZEB2), QPCR was carried out using RNA 

collected from the whole 

embryo.  While there were 

no differences in the 

mRNA abundance of 

Snai1, Snai2, or Twist1; 

Zeb2 tended to be 

decreased 1.35-fold (P < 

0.07) in LY- compared to 

B6-derived embryos 

(Figure 2.5). 

Figure 2.5. Abundance of EMT mRNAs in Whole Embryos from B6 and LY Mothers.  
QPCR analysis of Snai1, Snai2, Twist1 and Zeb2 was carried out.  The normalized, relative 
abundance of each gene from embryos derived in LY dams (yellow bar, n=10) was compared to 
the mean, normalized relative abundance of each gene from embryos derived in B6 dams (black 
bar, n=10) and the data shown as a fold change (mean ± SEM).  The data was tested for statistical 
significance (P < 0.1, †).   
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Reduced Placental Growth and Altered Gene Expression in LY-derived Placenta:  

Given that the placenta serves as a critical interface between the dam and fetus, the effect 

of maternal obesity on placental function was examined.    The placental weight was 

significantly reduced (P < 0.0001) when collected from LY compared to B6 dams (Figure 

2.6A).  Furthermore, there was a 12% decrease (P < 0.02) in the ratio of embryo to 

placenta weight when embryos were collected from LY dams (Figure 2.6A) suggesting 

abnormalities in placental development and/or function.  To determine if the placentas 

collected from LY dams exhibited evidence of hypoxemia, the mRNA abundance of 

hypoxia induced transcription factors Hif1a and Arnt were determined by QPCR.  While 

Hif1a mRNA abundance was modestly increased (1.24-fold, P < 0.07), there was no 

difference in Arnt expression (Figure 2.6B).  In addition to these transcription factors, 

markers of angiogenesis which are increased upon hypoxia were also examined.  The 

mRNA abundance of Pecam1 was increased 1.34-fold (P < 0.05) in placenta from LY 

compared to B6 dams (Figure 2.6C).  However, the mRNA abundance of other 

angiogenesis makers including  Angpt1, Vcam1, or Vegfa_164 was not different in LY 

compared to B6 placentas.  Chronic hypoxemia can also impact the expression of 

enzymes which regulate the conversion of glucocorticoids between their inactive 

(Hsd11b2) and active (Hsd11b1) isoforms.  There was no difference in Hsd11b1 mRNA 

abundance in placentas derived from B6 and LY dams.  However, Hsd11b2 mRNA 

levels were decreased 1.59-fold (P < 0.04) (Figure 2.6D).   
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Figure 2.6. Placental Morphology and Function is Altered in LY Dams.  Wet weights (A) 
were recorded for B6-derived (black bar, n=27) and LY-derived (yellow bar, n=73) placenta as 
well as the ratio of embryo to placenta weight was determined.  (C, D) QPCR analysis of Hif1a, 
Arnt, Angpt1, Pecam1, Vcam1, Vegfa_164, Hsd11b1 and Hsd11b2 was carried out.  The 
normalized, relative abundance of each gene in placenta from LY dams (yellow bar, n=12) was 
compared to the mean, normalized relative abundance of each gene from placenta from B6 dams 
(black bar, n=11) and the data shown as a fold change (mean ± SEM).  The data was tested for 
statistical significance (P < 0.1, †; P < 0.05, *; and P < 0.0001, ***). 

 

DISCUSSION 

Numerous studies have demonstrated a clear correlation between maternal obesity 

and altered physiological function in adult offspring.  Indeed, maternal overnutrition has 

been linked to decreased density and/or metabolic function of fetal and adult skeletal 

muscle in sheep (11, 12, 46, 47) and rodents (48, 49).  Based on in vitro studies of 
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mesodermal stem cells and in vivo studies carried out in the last third of gestation, one 

underlying mechanism of this phenotype could be decreased development of skeletal 

muscle and increased development of adipose tissue from common stem or progenitor 

cells (13, 43).  However, data in the current study indicates that maternal obesity 

increased DES expression in the dermomyotome layer of somites in mid-gestation 

embryos suggesting increased differentiation of skeletal muscle cells.  Furthermore, at 

mid-gestation, PPARG expression was primarily localized to the neural tube with very 

little expression in the somite indicating temporal uncoupling of myogenesis and 

adipogenesis. Thus, for the first time, we provide evidence that maternal obesity 

increases myogenesis early in development and suggest that these events may cause 

changes in the trajectory of skeletal muscle progenitor cell differentiation.  This may 

subsequently result in reduced skeletal muscle development later in gestation and reduced 

muscle mass and/or function in adult offspring.   

Primary myogenesis is initiated in the early embryo (E8.5-E9.0 in the mouse) and 

results in the differentiation of stem cells into myoblasts which proliferate, migrate, and 

ultimately fuse to form primary myotubes (i.e., primitive muscle fibers) (50).  The 

intermediate filament protein, Des, is initially expressed in proliferating myoblasts and its 

expression is maintained through differentiation into mature myofibers (51-53).  DES 

expression in the somite is detected at E9.0, with cranial somites exhibiting expression 

first followed by caudal somites.  Interestingly, we showed that expression of DES in the 

dermomyotome layer of the somite is increased in E12.5 embryos developed in an obese 

compared to a normal weight environment.  This difference in expression was not 
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attributed to differences in the expression profile of cranial versus caudal somites as each 

embryo was processed to ensure that somites at similar anatomical positions were 

examined.  Li et al. (54) showed that loss of DES expression in the C2C12 myoblast cell 

line results in poor fusion of myoblasts into myotubes suggesting that one function of 

DES is to promote myotube formation over myoblast proliferation and/or migration.  In 

sheep, decreases in muscle fiber density were identified in both the semitendinosus (limb) 

and longissimus dorsi (trunk) muscles (10-12) indicating an overall reduction in myotube 

formation.  Based on these collective data, we hypothesize that maternal obesity favors 

myoblast exit from the cell cycle and fusion during primary myogenesis resulting in 

decreased myoblast proliferation.  

PPARG is a well described transcriptional regulator of adipocyte differentiation 

and is expressed in the committed preadipocyte and mature white adipocyte (55).  Given 

this role of PPARG and evidence that adipocytes and myocytes arise from common 

mesodermal stem cells in vitro (43), we anticipated that PPARG expression would be 

localized to the somite and be increased in embryos derived from LY dams.  In contrast, 

however, PPARG expression was primarily localized to the ventral neural tube at E12.5 

and the percentage of PPARG-positive cells was decreased in the neural tube of embryos 

developed in an obese environment (Figure 2.3).  These data are consistent with PPARG 

localization studies during development carried out by Michalik et al. (56).  Likewise, 

Wada et al. (57) showed high levels of PPARGexpression in the embryonic brain and 

demonstrated that PPARG is required for neural stem cell proliferation and the formation 

of neurospheres in vitro.  The novel decrease in PPARG upon maternal obesity identified 
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in the current study suggests that, not only is PPARG functionally important during 

neural development, but also provides the first evidence that decreased PPARG may 

contribute to abnormalities in neural development in an obese environment.   

Irrespective of the role of PPARG in the neural tube, the lack of PPARGpositive 

cells in the somite of mid-gestation embryos (Figure 2.3) indicates that temporal 

regulation of primary myogenesis and adipogenesis are uncoupled.  While these findings 

oppose in vitro studies which show that adult mesenchymal stem cells divergently 

differentiate into myogenic versus adipogenic cells (58), mechanistic differences between 

embryonic cell differentiation during in vivo development and adult stem cell 

differentiation during tissue regeneration are not unprecedented.  For example, 

regeneration of skeletal muscle, which includes activation of satellite cells, in the adult 

animal is mechanistically different from the myogenic program during embryonic 

development (59, 60).  Thus, given the metabolic importance of the skeletal muscle to 

adipose tissue ratio in the adult animal, a better understanding of how adipogenesis is 

stimulated and regulated during normal embryo and fetal development is needed.  

Interestingly, Billon et al. demonstrated that neural crest cells have the potential to 

differentiate into adipocytes (61).  Likewise, we detected PPARGexpression in cells that 

may be delaminating from the neural tube and therefore may represent neural crest cells 

(Figure 2.4).  However, while adult adipose tissue in the head and neck have been traced 

to a neural crest cell lineage, fat pads in the trunk including perigonadal, subcutaneous, 

and perirenal depots were not derived from the neural crest cell lineage (61).  These data 

indicate that different adipose tissue depots likely develop by unique mechanisms and 
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arise from different stem and progenitor cell lineages during development adding another 

layer of complexity to adipose tissue development.   

The specific mechanisms by which the maternal environment alters embryo 

growth and development are uncertain, but include changes in placental function.  

Indeed, in our model of maternal obesity, embryo weight, placenta weight, and the ratio 

of embryo to placenta weight were decreased (Figure 2.1 and 2.6) indicating potential 

abnormalities in placenta development and/or function.  The decrease in placenta and 

embryo weight at mid-gestation is consistent with other rodent models of maternal 

obesity or gestational diabetes (22, 41, 42).  However, an increased risk for macrosomia 

due to increased growth during gestation (large for gestational age, LGA) is the common 

phenotype reported upon human maternal obesity (62-64).  It is important to note that the 

rodent studies detected growth restriction at mid-gestation of pregnancy (E12.5-14.5) 

while most human studies are identifying small and large for gestational age babies at 

birth.  Furthermore, Jones et al. (65) showed that E18.5 fetuses from high-fat fed 

C57/BL6 dams weighed more than fetuses from control-fed dams due to increased 

placental transport of glucose and aminoisobutyric acid.  In our mouse colony, weaning 

weights of offspring from obese, LY dams were not different than age-matched offspring 

from lean, B6 dams (Wood, unpublished data).  Thus, restricted growth during the first 

half of gestation may be followed by compensatory growth during the second half of 

gestation ultimately resulting in normal or increased birth weights in the murine model of 

maternal obesity and may represent a mechanism of macrosomia development.   
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The abnormalities in fetal growth associated with maternal obesity have been 

correlated to placental inflammation and hypoxemia (7, 66, 67).  In the current study, we 

detected no evidence of inflammation (data not shown) but did detect indications of 

hypoxemia (Figure 2.6) in the placenta from obese LY dams.  Furthermore, we 

demonstrated that Hsd11b2 mRNA abundance was decreased in placenta from LY dams 

(Figure 2.6).  The 11-HSD type 2 enzyme converts active glucocorticoids to their 

inactive form and its expression in the placenta is crucial in order to limit transport of 

maternal cortisol to the fetus (28).  Interestingly, Gokulakrishnan et al. (68) showed that 

in utero exposure of rat fetuses to dexamethasone, a synthetic glucocorticoid, during the 

second half of gestation (E12-E22) resulted in reduced placenta and fetal weight, a 

decreased fetal-to-placenta weight ratio, and decreased protein mass in skeletal muscle of 

the quadriceps and diaphragm.  Furthermore, Nesan et al. (69) demonstrated that 

knockdown of the glucocorticoid receptor (GR) during early embryogenesis of zebrafish 

resulted in reduced embryo length but increased expression of Myog.  Together, these 

data indicate an important role of cortisol in regulating the myogenic program.   

In summary, we have presented novel evidence that maternal obesity-dependent 

increases in fetal exposure to hypoxemia and/or cortisol results in increased expression of 

the skeletal muscle differentiation marker DES during primary myogenesis.  Based on 

these data, we propose that primary myogenesis is precociously activated when the 

embryo develops in an obese environment resulting in depletion of skeletal muscle 

progenitor cells required for secondary myogenesis.  In addition, we have shown that 

PPARG expression is localized to the neural tube indicating a function for this 
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transcription factor independent of adipocyte development.  These key findings represent 

an important shift in our understanding of how maternal obesity reduces skeletal muscle 

fiber density and increases adipose tissue mass during development which will have long-

lasting effects on the metabolic health of their children.    

 

SUPPLEMENTAL FIGURE  

 
Supplemental Figure 2.7. Embryos from LY Mice Do Not Differ in Growth Regardless of 
Agouti Expression.  Embryos and their corresponding placenta were isolated from B6 dams (B6 
embryo, black bar, n=10) or LY dams (B6 embryo, grey bar, n=7; LY embryo, yellow bar, n=3).  
Wet weights for each embryo and placenta were recorded as well as the number of tail somites 
were counted (mean ± SEM).  Statistically significant differences (n.s., not significant; P < 0.1, †; 
P < 0.05, *; and P < 0.001, **) were determined using one-way ANOVA. 
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CHAPTER III 

Placenta from Obese, Lethal Yellow Dams Exhibit Reduced Weight and Show 
Evidence of Hypoxia and Abnormal Cortisol Metabolism but Not Oxidative Stress 

 Kristin A. Norwood and Jennifer R. Wood  

Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 

 

ABSTRACT 

Proper placental development is critical for adequate gas, nutrient, and waste 

exchange and ensures appropriate transfer of substrates needed to support normal fetal 

growth.  Previous studies demonstrate that maternal obesity negatively impacts placental 

function but the mechanisms have not been defined.  Thus, the objective of this study was 

to determine how maternal obesity impacts the overall growth and molecular phenotype 

of the mid-gestation placenta.  To achieve this objective, embryos and their 

corresponding placenta were collected 12.5 days post coitus from age-matched, obese 

Lethal Yellow (LY) and normal weight C57BL/6 (B6) dams.  Placenta weight and the 

ratio of embryo to placenta weight were decreased in LY-derived embryos suggesting 

abnormalities in placental development and/or function.  To determine if the reduced 

placental weight is associated with abnormalities in hypoxia, oxidative stress or 

glucocorticoid metabolism, whole placenta was collected for quantitative real-time PCR, 

Western blot, and enzyme activity assays. We identified significant changes in the 

mRNA abundance of Hif1a, Pecam1, Gpx1 and Hsd11b2 in the placenta of LY compared 

to B6 dams.   However, there were no differences in the expression of Sod1 or Sod2 and 

there was no increase in the expression or activity of xanthine oxidase.  The impact of 
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altered placental gene expression on embryonic gene expression was also examined.  

Interestingly, embryos from an obese environment displayed decreased mRNA 

abundance of Vegfa_164 and Vegfa_165b.  Taken together, the data provide evidence that 

maternal obesity increases placenta hypoxemia and reduces glucocorticoid metabolism 

which may be altering nutrient transport by the placenta and negatively impacting 

angiogenesis in the embryo.   

 

Key Words: obesity, placenta, hypoxia, glucocorticoids 

 

INTRODUCTION 

Obesity in the USA is a rising epidemic with 27.8% of the total USA population 

considered obese in 2011 (1).  Furthermore, approximately 35% of reproductive aged 

women are obese which translates to more than one in five pregnant women being obese 

(2, 3).  Excess weight gain during pregnancy has detrimental effects on offspring 

development as well as their future health (4).  During development, nutrient availability 

and fetal growth are dependent on maternal nutrient availability which is transported via 

the placenta.  Specifically, the placenta’s role is to regulate the respiratory gas, nutrient, 

and waste exchange between the mother and developing fetus (5-9). 

The placenta is the first organ to develop during mammalian embryogenesis and 

forms from trophoblast cells, which provide the main structural and functional 

components needed to bring the fetal and maternal blood systems into close contact (10).  

Normal placental angiogenesis is critically important to ensure adequate blood flow to the 
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placenta and therefore, to provide the substrates that support normal fetal growth (11).  

Reduced oxygen levels and the synthesis of reactive oxygen species (ROS) which are 

associated with abnormal functions in other physiological systems play an important role 

in normal placenta development.  For example, during early pregnancy, placentation 

occurs under low oxygen tension conditions which promote placental morphogenesis, 

angiogenesis, and cell fate decisions critical for proper placental development (12, 13).  A 

moderate increase in ROS levels is also a normal occurrence in the placenta during the 

second trimester of pregnancy which leads to the stimulation of cell growth and 

proliferation (14, 15).  The development of the placenta and its functions during gestation 

are dynamic processes which are influenced by maternal diet, body composition and 

lifestyle (7, 16).  Increased maternal nutrition or environmental stress results in abnormal 

placental angiogenesis and altered fetal growth (6, 11).  Likewise, hypoxia and oxidative 

stress associated with maternal obesity inhibits normal placental angiogenesis and can 

reduce placental blood flow and nutrient transport (9, 17).   

Hypoxia occurs when oxygen availability does not match the demand of the 

surrounding tissue (18).  In the presence of a hypoxic environment, cells activate the 

hypoxia inducible factor (HIF) signaling cascade which coordinates the expression of 

genes and ensures adaptation (18-20).  The primary targets of the HIF signaling cascade 

are the transcription factors HIF1a and ARNT.  Under normoxic conditions, HIF1a is 

rapidly hydroxlyated resulting in its degradation.  However, when oxygen levels are 

decreased, HIF1a hydroxylation is reduced allowing for its translocation to the nucleus 

where it dimerizes with ARNT.  This complex then binds to and induces the transcription 
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of genes (vascular endothelial growth factor A (VEGFA), glycolytic enzymes and 

inducible nitric oxide synthetase) which contain hypoxia responsive elements in their 

promoter region leading to their increased expression (21-23).   

When there is an increase in the level of hypoxia, an increase in oxidative stress 

usually arises as well (24, 25).  The generation of oxidative stress occurs due to an 

increase in reactive oxygen species (ROS) (26, 27); however, antioxidants like 

glutathione peroxidase (Gpx1) and superoxide dismutase (Sod) work to defend the body 

against their generation.  Conversely, xanthine oxidase, which is stimulated by hypoxia, 

promotes the production of ROS.  ROS can damage different biological targets such as 

lipids, DNA, carbohydrates and proteins which compromise cell function and can alter 

the transport of nutrients through the placenta (27, 28).   

Another important function of the placenta is regulating glucocorticoid 

availability to the embryo and fetus.  At the end of gestation, glucocorticoids are essential 

for the development and maturation of fetal organs (e.g. lung, thymus, gastrointestinal 

tract, heart, liver, and kidneys) (29-33).  Physiological glucocorticoids (cortisol in 

humans, corticosterone in rats and mice) are synthesized throughout pregnancy by the 

maternal adrenal cortex (34) and once produced, are able to be transported from the 

mother, through the placenta, to the developing fetus.  In the placenta, there are two 

enzymes, 11β hydroxysteroid dehydrogenase type 1 (Hsd11b1) and type 2 (Hsd11b2) 

which regulate the amount of maternal glucocorticoids that reach the fetus.  The enzyme 

Hsd11b1 catalyzes the conversion of cortisone (11-dehydrocorticosterone (11-DHC) in 

mice) to corticosterone/cortisol (35) while Hsd11b2 converts corticosterone/cortisol to 
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11-DHC/cortisone.  The expression of Hsd11b2 is regulated by oxygen (12, 36) and 

Mericq et al. (37) showed that Hsd11b2 enzyme activity in the placenta to be seven- to 

eightfold higher compared with the activity of Hsd11b1.  These data suggest that the 

primary role of the placenta is to convert glucocorticoids to their inactive form and limit 

fetal exposure of glucocorticoids until the end of the gestation.  There is evidence that 

glucocorticoid metabolism in the placenta may be altered due to a maternal obesity 

resulting in altered differentiation of the developing fetus (38). 

While there is evidence that maternal obesity negatively effects placental 

development and function, it is unclear if maternal obesity increases hypoxia and 

oxidative stress or alters glucocorticoid metabolism in the placenta.  In the current study, 

we use a Lethal Yellow (LY) obese mouse model to identify the impact of maternal 

obesity on markers of placental hypoxia, oxidative stress and glucocorticoid metabolism.  

Previously, we characterized LY mice  and showed that they over eat and have an altered 

hormone profile similar to that of obese humans (39).  Using this LY mouse model of 

obesity we have discovered differences in the placenta due to a maternal obese 

environment that may impact placental function and nutrient transport. 

MATERIALS AND METHODS 

Animal Model:  Founder B6 (C57BL/6 a/a) and LY (C57BL/6 Ay/a) mice were 

purchased from Jackson Laboratory (Bar Harbor, ME).  Fertile, male B6 mice were 

mated with aged-matched (17 week old) B6 or LY female littermates.  Twelve days after 

visual confirmation of a vaginal plug (i.e., 12.5 dpc), B6 (n = 7) and LY (n = 12) dams 

were euthanized and maternal weights were determined.  Viable embryos and their 
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corresponding placenta were collected and wet weights were determined.  All of the 

placentas were flash frozen for RNA and protein extraction whereas half of the embryos 

from each litter were flash frozen for RNA and protein extraction.  All animal 

experiments were approved by the University of Nebraska-Lincoln Institutional Animal 

Care and Use Committee. 

Reverse transcription:  Whole placenta and whole embryo RNA was isolated 

using Tri-Reagent (Invitrogen, Carlsbad, CA).  RNA (5 μg) from each individual sample 

was treated with DNase I (Promega, Madison, WI) and reverse transcribed using random 

hexamer primers (Roche Diagnostics, Indianapolis, IN) and Moloney Murine Leukemia 

Virus reverse transcriptase (Promega) according to manufacturer’s instructions. 

Quantitative, real-time PCR (QPCR):  Forward and reverse primers for candidate 

genes and the housekeeping gene beta actin (Actb) (Table 3.1) were designed (Primer 

Express, Applied Biosystems, Foster City, CA) and synthesized (Integrated DNA 

Technologies, Coralville, IA).  Primers were tested empirically to determine the maximal 

concentration that produced specific amplification of the target sequence in the absence 

of primer dimers.   Quantitative PCR (QPCR) reactions were carried out using each 

primer set and equivalent amounts of cDNA from each sample as previously described 

(40).  QPCR amplification of Gapdh and 18s rRNA was carried out using an endogenous 

control kit (Applied Biosystems, Foster City, CA).  The relative abundance of the 

candidate mRNA in each sample was normalized using the most stably expressed 

housekeeping gene(s) (Gapdh, 18s, or Actb) which was determined using Normfinder 

(41).  Specifically, embryo candidate genes were normalized using the geometric mean of 
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18S rRNA and Gapdh mRNA abundance for each embryo sample while Gapdh mRNA 

abundance was used to normalize candidate genes for each placenta sample.  The 

resulting normalized data for each candidate mRNA was then compared to the mean 

normalized mRNA abundance in B6-derived placenta or embryos and expressed as a fold 

change.  

 

Table 3.1. Primer sequences for QPCR analysis. 

 

Protein Extraction: Whole placenta and whole embryo samples were 

homogenized in RIPA buffer (150 mM NaCl, 1 mM EDTA, 50mM Tris-HCl pH7.4, 1% 

NP-40, 0.25% Na-deoxycholate) containing phosphatase inhibitors (1 mM NaF and 1 

mM Na3VO4) and Complete Mini Protease Inhibitor Cocktail (Roche Diagnostics).  

Following homogenization, samples were sonicated and then centrifuged to separate cell 

debris from the supernatant which contained the soluble protein.  The protein 

concentration of each sample was determined using the Pierce BCA Protein Assay Kit 
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(Rockford, IL, USA).  Light absorbance was measured on a Spectra Max 250 plate reader 

(Molecular Devices, Sunnyvale, CA) at 562 nm.  

Western Blot Analyses:  Placenta protein samples were resolved by SDS-

polyacrylamide gel electrophoresis using a 4% stacking gel and 7% separating gel.  

Protein samples were loaded together with loading buffer (62.5 mM Tris-HCl pH 6.8, 

20% glycerol, 2% SDS and 5% β-mercaptoethanol) and electrophoresis carried out at 

constant voltage (100V) for 90 minutes.  The separated protein was transferred to 

Immobilon PVDF (Millipore, Billerica, MA).  Following transfer, the membranes were 

blocked with 5% nonfat dry milk in 1X TBST (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 

0.1% (v/v) Tween 20)  for 1 hour with gentle shaking in order to block nonspecific 

proteins.  The blots were probed with primary antibody against Xanthine Oxidase (Santa 

Cruz Biotechnology, Santa Cruz, CA) diluted in 5% w/v BSA in 1XTBST overnight at 

4°C with gentle shaking.  Blots were then washed with 1X TBST and then incubated for 

1 hour with HRP-conjugated secondary antibody (Cell Signaling Technology, Danvers, 

MA) which was diluted with 5% nonfat dry milk in 1X TBST.  Blots were incubated with 

West Pico Chemiluminescent Substrate (Pierce, Rockford, IL) for 5 min and exposed to 

autoradiograph film (Fisher Scientific, Fairlawn, IL).  After visualization of the protein, 

blots were stripped with Restore Western Blot Stripping Buffer (Thermo Scientific, 

Waltham, MA) at room temperature for 15 min.  Blots were then rinsed with 1X TBST 

and re-blocked with 5% milk in 1XTBST.  Next, they were incubated with primary 

antibody against β-Actin (Cell Signaling Technology, Danvers, MA) overnight at 4°C 

with gentle shaking.  Total protein was exposed and visualized as described above.  The 
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visualized total protein for β-Actin served as a loading control for each sample.  The 

autoradiograph images films were scanned and the density of the protein band was 

determined in Adobe Photoshop.  The density of the Xanthine Oxidase band was 

normalized to the density of the β-Actin band in each sample.  The normalized abundance 

of Xanthine Oxidase protein in LY samples was subsequently compared to the B6 control 

samples to determine the fold-change in the LY samples. 

Xanthine Oxidase Assay:  Placenta and embryo protein samples were analyzed for 

superoxide production using the Amplex® Red Xanthine Oxidase Assay Kit (Molecular 

Probes, Eugene, OR) according to manufacturer instructions with hypoxanthine as the 

substrate.  H2O2 was used as a positive control and reaction buffer without sample was 

used as a negative control.  After 30 minutes of incubation at 37°C, absorbance was read 

on a Spectra Max 250 plate reader (Molecular Devices, Sunnyvale, CA) at 560 nm.  

Hypoxanthine supplied in the kit was used as a standard and final sample concentrations 

were calculated based on the standard curve.   

Statistical Analyses:  All statistical analyses were carried out using GraphPad 

Prism 5.0 (GraphPad Software, La Jolla, CA).  Statistically significant differences in 

weights, mRNA abundance, protein expression or protein activity between B6 and LY 

dams or B6- and LY-derived embryos or placentas (P < 0.05) were determined using the 

Student’s t-test.   
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RESULTS 

Maternal Obesity Reduces Placental Weight and the Ratio of Embryo to Placental 

Weight:  We have previously demonstrated that the obese phenotype of LY females 

includes a significant increase in total body weight.  However, embryos from LY dams 

exhibit decreased mid-gestational embryonic weight (39).  Given that the placenta serves 

as a critical interface between the dam and fetus (5), the effect of maternal obesity on 

placental weight was examined.  Placenta weight was significantly reduced (P < 0.0001) 

when collected from a LY compared to a B6 dam (Chapter II, Figure 2.6A).  

Furthermore, there was a 12% decrease (P < 0.05) in the ratio of embryo to placenta 

weight when collected from LY dams (Chapter II, Figure 2.6A) which is indicative of 

reduced placental function and may explain the reductions of embryo weight and 

developmental delay previously identified (39).     

LY-Derived Placenta Display Mild Hypoxia and Altered Vasculature:  To 

determine how the molecular phenotype of the placenta was affected by maternal obesity, 

changes in the mRNA abundance of hypoxia candidate genes Hif1a and Arnt were 

measured.  Interestingly, Hif1a mRNA abundance was increased 20% (1.25-fold, P < 

0.06) in the placenta from LY mothers compared to B6 mothers (Chapter II, Figure 2.6B) 

suggesting hypoxemia (mild hypoxia) (42).  Since decreased oxygen levels results in the 

compensatory expression of vascular markers, we examined the mRNA abundance of 

vasculature markers Pecam1, Vcam1, Vegfa_164 and Vegfa_165b which are essential in 

the development of placental vasculature (23).  Pecam1 was significantly increased 

(1.34-fold, P < 0.05) in LY-derived placenta (Chapter II, Figure 2.6C); although none of 
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the other mRNAs showed significant changes in abundance (Chapter II, Figure 2.6C; data 

not shown for VEGFA_165b). 

Placental Hypoxemia Negatively Impacts Embryonic Vasculature:  Placental 

vascular development ensures for the proper exchange of nutrients exchange between the 

mother and fetus.  If a hypoxic environment in the placenta is altering its vasculature 

development, nutrient transfer may be decreased and negatively impact vascular 

development in the embryo.  Thus, we examined the expression of the vascular markers 

Vegfa_164 and Vegfa_165b in the mid-gestation embryos to discover if embryo vascular 

development is impaired.  We found a significant decrease (1.79-fold, P < 0.004) in 

Vegfa_164 and a tendency (1.59-fold, P < 0.10) for Vegfa_165b to be decreased in LY-

derived embryos (Figure 3.1).   

 
Figure 3.1. Vasculature Markers in Whole Embryos from LY Dams are Decreased.  QPCR 
analysis of the vasculature markers Vegfa_164 and Vegfa_165b was carried out.  The normalized, 
relative abundance of each gene from embryos from LY dams (yellow bars, n=10) was compared 
to the mean, normalized relative abundance of each gene from embryos from B6 dams (black 
bars, n=10) and the data shown as a fold change (mean ± SEM).  The data was tested for 
statistical significance (P < 0.1, † and P < 0.01, **). 

 

Maternal Obesity does not Induce Oxidative Stress in the Placenta of our LY 

Mouse Model:  It has been documented that hypoxia increases placental oxidative stress 

(25, 43).  Therefore, we examined several markers in B6- and LY-derived placenta 
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which, when their expression is altered, results in the development of oxidative stress.  

First, changes in the mRNA abundance of the antioxidant and superoxide dismutase 

genes Gpx1, Sod1 and Sod2 were measured.  While there was no difference in Sod1 or 

Sod2 expression, there was a tendency for the antioxidant Gpx1 to be decreased (1.14- 

fold, P < 0.09) in placenta from LY mothers (Figure 3.2A).  Next, we looked at the 

 

Figure 3.2.  LY-Derived Placenta Exhibit Mild Oxidative Stress Compared to B6-Derived 
Placenta.  QPCR analysis of the oxidative stress primers (A) Gpx1, Sod1 and Sod2 was carried 
out.  The normalized, relative abundance of each gene from placenta from LY dams (yellow bars, 
n=14) was compared to the mean, normalized relative abundance of each gene from placenta 
from B6 dams (black bars, n=12) and the data shown as a fold change (mean ± SEM).  (B) 
Western blot analysis was carried out using antibodies against Xanthine Oxidase.  Total β-Actin 
was subsequently probed and served as a loading control.  Semi-quantitative analysis of band 
density between LY (yellow bar, n=7) and B6-derived (black bar, n=8) placenta was calculated 
and shown as a fold change.  (C) Xanthine Oxidase activity in the placenta was measured using 
an Amplex Red Xanthine Oxidase Assay Kit and activity level is displayed between LY dams 
(yellow bar, n=16) and B6 dams (black bar, n=16).  The data was tested for statistical significance 
(P < 0.1, †). 

 

activity of the xanthine oxidase pathway which is one mechanism by which ROS is 

generated.  We found no difference in either the concentration or the activity of xanthine 
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oxidase in the placenta from B6- and LY-derived placenta (Figure 3.2B, C).  In addition 

to the placenta, we also examined these markers of oxidative stress in the embryos of B6 

and LY dams.  There were no differences in the mRNA abundance of Gpx1, Sod1 and 

Sod2 between B6- and LY-derived embryos (Figure 3.3A).  Likewise, we found no 

difference in xanthine oxidase activity in B6- compared to LY-derived embryos (Figure 

3.3B). 

 

Figure 3.3. LY-Derived Embryos Show No Signs of Oxidative Stress.  QPCR analysis of the 
oxidative stress primers (A) Gpx1, Sod1 and Sod2 was carried out.  The normalized, relative 
abundance of each gene from embryos from LY dams (yellow bars, n=10) was compared to the 
mean, normalized relative abundance of each gene from embryos from B6 dams (black bars, 
n=10) and the data shown as a fold change (mean ± SEM).  (B) Xanthine Oxidase activity in the 
embryos was measured using an Amplex Red Xanthine Oxidase Assay Kit and activity level is 
displayed between LY dams (yellow bar, n=16) and B6 dams (black bar, n=12).   

 

Maternal Obesity Results in Placenta with Alterations in Glucocorticoid 

Regulation:  In addition to oxidative stress, hypoxia also regulates placental 
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glucocorticoid metabolism; specifically, the enzymes Hsd11b1 and Hsd11b2 (responsible 

for the conversion of active-corticosterone/cortisol and inactive-11-DHC/cortisone) 

levels (44).   In order to determine if these enzymes were impacted in placenta collected 

from obese or lean dams, mRNA abundance was determined using primers specific for 

Hsd11b1 and Hsd11b2.  While there was no difference in Hsd11b1 mRNA levels, we 

found a 1.59 fold (P < 0.03) decrease in Hsd11b2 mRNA levels in placenta from LY 

compared to B6 mothers (Chapter II, Figure 2.6D).   

DISCUSSION 

Other studies have demonstrated that maternal obesity causes reduced 

angiogenesis and nutrient transport but the mechanisms are unclear.  In the current study, 

embryo weight (39), placenta weight and ratio were decreased (Figure 3.1), indicating 

potential abnormalities in placenta development and/or function.  The decrease in 

placenta and embryo weight (39) at mid-gestation is consistent with other rodent models 

of maternal obesity or gestational diabetes (45-47).  However, the exact role of the 

placenta in altered nutrient transfer and fetal growth restriction is unknown.   

Based on in vivo studies in human, sheep and rats, excessive exposure to a 

hypoxic environment can be detrimental to development by resulting in the inadequate 

perfusion of the placenta resulting in fetal growth restriction (12, 48).  Similarly, 

decreased placental function and nutrient transport has been found to result in a chronic 

state of fetal hypoxemia (49).  When looking at the impact of maternal obesity as 

opposed to induced hypoxia on the placenta we found a trend for increased HIF1a (Figure 

3.2) in placenta from an obese environment suggesting modest hypoxemia.  Hypoxia 



111 
 

causes increased expression of genes which contain the hypoxia response element in their 

promotor region (21-23).  Knowing this, additional evidence of mild hypoxemia in the 

placenta is the increased expression of Pecam1 (Figure 3.2B).   

While we found no change in VEGFA isoform expression in the placenta of LY 

compared to B6 dams (Figure 3.2), we found decreased or a tendency for decreased 

expression of the major angiogenic and anti-angiogenic isoforms (Figure 3.3) in LY-

derived compared to B6-derived embryos.  Mild hypoxemia in the placenta will alter its 

function and nutrient transport which plays a direct role in fetal programming, 

specifically modifications in embryonic vascular development which ultimately leads to 

cardiovascular or metabolic disease later in adult life (50). 

Alterations in the placental ROS/antioxidant balance due to maternal obesity can 

also affect placental function and nutrient transport and result in congenital irregularities 

or embryonic death (51).  Barrington et al. (52) found that women with low 

concentrations of serum selenium, the transition metal embedded within GPX, display 

increased placental oxidative stress and experience a higher rate of early pregnancy 

failure.  In our model of maternal obesity, there was no evidence of oxidative stress in the 

placenta or embryo using the markers selected for this study.  However, while Sod1 and 

Sod2 mRNA abundance was not different and xanthine oxidase protein and enzyme 

activity levels were not different between LY and B6 dams (Figure 3.4), there are other 

pathways which play a role in the synthesis of ROS that we did not examine.  These 

pathways that are known to increase H2O2 include NADPH oxidase, lipid peroxides, 

substrates of monoamine oxidases, isoprostanes and peroxisomal proliferators (53, 54).  
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Glucocorticoid regulation in the placenta is crucial to limit transport of maternal 

cortisol in the fetus (55).  Excessive exposure to glucocorticoids in utero can lead to 

altered maturation of organs as well as fetal growth restriction (32).  In humans, 

mutations in the Hsd11b2 gene reduces Hsd11b2 activity which leads to an increase in 

fetal corticosterone/cortisol levels and fetal growth restriction (34).  Likewise, exposure 

of rat fetuses to dexamethasone, a synthetic glucocorticoid, during the second half of 

gestation (12-22 dpc) resulted in reduced placenta and fetal weight and a decreased fetal-

to-placenta weight ratio (56).  The knockdown of the glucocorticoid receptor during early 

embryogenesis has also been found to reduce embryo length (57).  Together, these data 

indicate that an important function of the placenta is to regulate embryo exposure to 

active glucorticoids and the expression of Hsd11b2 is critical for this function.  Data in 

our current study indicates that maternal obesity decreases Hsd11b2 mRNA abundance 

(Figure 3.6).  Interestingly, hypoxia decreases placental Hsd11b2 levels (44, 58) while an 

increase in oxygen levels up-regulates glucocorticoid metabolism through Hsd11b2 

activation.  This suggests that the chronic, modest hypoxemia in the placenta of LY dams 

may result in altered glucocorticoid metabolism and increased exposure of these embryos 

to corticosterone.   

All in all, we have presented evidence that maternal obesity increases placental 

hypoxemia and decreases placental regulation of glucocorticoid metabolism.  These 

alterations in the molecular function of the placenta may represent plausible mechanisms 

for altered vascular development and growth of the embryos from obese dams.   
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APPENDIX A 

Effect of Maternal Obesity on Body Weight, Percent Body Fat, Reproductive Organ 
Weights, and Skeletal Muscle Molecular Phenotypes of Male and Female Offspring  

Kristin A. Norwood and Jennifer R. Wood 

Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 

 

INTRODUCTION 

Obesity worldwide is a rising epidemic which exists at a prevalence of 15–20% of 

the total population (1).  Over the past 20-30 years, the rate of overweight or obesity in 

the USA has increased from 15 to 33% in adults and has experienced similar increases in 

children and adolescents (2).  With the rise in the incidence of obesity it is now 

considered a significant public health problem which contributes 2-7 % of the total health 

care costs in the USA (1).  Obesity combined with pregnancy has been found to lead to 

an increase in maternal circulating lipids resulting in a pronounced effect on the growth 

and development of their conceptus (3).  Maternal obesity has been shown to increase the 

lifetime risk of obesity in offspring as well as lead to metabolic syndrome in childhood 

and adolescence (4-6).   

The correlation between maternal obesity and abnormalities in fetal 

growth/development has led to the establishment of a developmental overnutrition 

hypothesis which proposes that increased fuel supply to the fetus due to maternal 

overnutrition leads to permanent changes in offspring metabolism and growth (7-9).  

Other studies have established a correlation between maternal obesity and abnormalities 

in organ and whole body development. For example, studies have found increased 
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pancreas weight with enhanced early β–cell maturation (10-13), increases in triglyceride 

levels (14), increased liver weight leading to the development of nonalcoholic fatty liver 

disease (11, 14, 15), increased perirenal body fat weight or percent body fat (11, 12, 16, 

17) and only select studies have found an increase in heart weight (11, 13).  One study 

looked at gender differences and found liver weights to be increased in male offspring but 

not in female offspring while both males and females exhibit decreased muscle and 

increased fat pad weight when developed in an obese dam (16).   

While maternal obesity impacts multiple organ systems, how it is impacting 

skeletal muscle development is of particular importance given that muscle is a major 

metabolic organ and directly contributes to the development of obesity.  Several studies 

have looked at the effects of an altered maternal diet on embryonic muscle growth.  

These studies that have found IUGR fetuses to display a reduction in muscle mass (16, 

18), which may be due to maternal overnutrition interfering with myotube formation (19, 

20).  The pre-adipocyte marker, peroxisome proliferator-activated receptor gamma 

(PPARG) is expressed in skeletal muscle and its expression is higher in the skeletal 

muscle of offspring from obese dams indicating increased intramuscular adiposity in 

these offspring (20, 21).  Regulation of adult muscle mass is a complex process that is 

controlled by the transcription factor, PAX7, which drives the expression of myogenic 

factors (myogenic factor-5 (Myf5), myogenic differentiation 1 (MyoD), myogenin 

(Myog), and desmin (Des)) to promote the differentiation of proliferating muscle 

progenitor cells into myocytes and ultimately mature muscle fibers (22-26).  The 
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regulation of these genes is imperative for proper adult muscle regeneration, but how 

these genes are altered in the adult offspring of obese mothers has not been examined.   

Due to the rising incidence in obesity, many animal models have been used to 

determine the impact maternal obesity is playing on life-long offspring outcomes.  For 

example, prenatal overfeeding in the rat, mouse, and sheep leads to altered appetite 

regulation in the postnatal offspring (16, 27, 28) which is tied to increased postnatal 

weight gain and development of obesity.  These studies show that a maternal obese 

environment alters the development of their offspring resulting in altered organ 

development and body growth.  It is unknown if prenatal exposure to an obese 

environment coupled with postnatal stimulus for increased food intake has a synergistic 

effect on the morphology and/or function of specific organs.     

MATERIALS AND METHODS 

Animal Model:  Founder B6 (C57BL/6, a/a) and LY (C57BL/6, Ay/a) mice were 

purchased from Jackson Laboratory (Bar Harbor, ME).  Fertile, female B6 mice were 

mated with LY male littermates (B6-LY) or female LY mice were mated with male B6 

littermates (LY-B6).  Following a natural birth, animals were weaned at 3 weeks, housed 

with 1 to 4 mice per cage, and provided ad libitum access to water and normal rodent 

chow.  At 12 weeks of age, both male and female offspring were euthanized, weighed 

and subjected to dual-energy X-ray absorptiometry (DEXA) using the Lunar PIXImus 

Densitometer (GE Medical Systems, Fitchburg, WI).  Following the DEXA scan, organs 

were removed from males (gastrocnemius skeletal muscle, liver, kidneys, adrenals, testis, 

seminal vesicles, epididymis and prostate) and females (gastrocnemius skeletal muscle, 
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kidneys, liver, ovaries and uterus) and their wet-weights were determined.  All organ 

weights were normalized to the total lean tissue mass of the animal.  The gastrocnemius 

skeletal muscle was flash frozen for RNA extraction.  In addition, B6 females were mated 

with fertile B6 males (B6-B6) and male offspring were collected at twelve weeks of age 

for body weight and DEXA analysis.  All animal experiments were approved by the 

University of Nebraska-Lincoln Institutional Animal Care and Use Committee. 

Reverse Transcription:  Gastrocnemius skeletal muscle RNA was isolated using 

the RNeasy Fibrous Tissue Mini Kit (Qiagen, Valencia, CA).  RNA (1 μg) from each 

individual sample was treated with DNase I (Promega, Madison, WI) and reverse 

transcribed using random hexamer primers (Roche Diagnostics, Indianapolis, IN) and 

Moloney Murine Leukemia Virus reverse transcriptase (Promega) according to 

manufacturer’s instructions. 

Quantitative, Real-Time PCR (QPCR):  Forward and reverse primers for 

candidate genes and the housekeeping gene β-actin (Actb) (Table A.1) were designed 

(Primer Express, Applied Biosystems, Foster City, CA) and synthesized (Integrated DNA 

Technologies, Coralville, IA).  Primers were tested empirically to determine the maximal 

concentration that produced specific amplification of the target sequence in the absence 

of primer dimers.  Quantitative PCR (QPCR) reactions were carried out using each 

primer set and equivalent amounts of cDNA from each sample as previously described 

(29).  QPCR amplification of Gapdh and 18s rRNA was carried out using an endogenous 

control kit (Applied Biosystems, Foster City, CA).  The relative abundance of the 

candidate mRNA in each sample was normalized using the most stably expressed 
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housekeeping gene(s) (Gapdh, 18s, or Actb) which was determined using Normfinder 

(30).  Specifically, muscle candidate genes were normalized using the geometric mean of 

Actb and Gapdh mRNA abundance for each male or female muscle sample.  The 

resulting normalized data for each candidate mRNA was then compared to the mean 

normalized mRNA abundance in B6 offspring derived in a B6 dam and expressed as a 

fold change.  

 

Table A.1. Primer Sequences for QPCR Analysis 

 

Statistical Analyses:  All statistical analyses were carried out using GraphPad 

Prism 5.0 (GraphPad Software, La Jolla, CA).  Differences between male and female B6 

and LY offspring body weights, percent fat, total tissue mass, organ weights and mRNA 

abundance from either a B6 dam and LY sire or a LY dam and B6 sire were determined 

using one-way ANOVA and Bonferroni post-test.  If no difference was found between 

offspring from the same dam, then statistically significant differences between all 

offspring from a B6 dam and LY sire was compared to all offspring from a LY dam and 

B6 sire (P < 0.05) using Student t-test.    
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RESULTS 

 Maternal Obese Environment Impacts Male Offspring Growth and Fat Mass 

Irrespective of Paternal Phenotype:  In order to compare the adult phenotypes of male 

offspring developed in a lean versus obese environment, twelve week old male mice were 

examined.  B6 and LY males from B6-LY and LY-B6 crosses were compared.  Also, in 

order to verify that there was no paternal obesity influence, B6 males from a B6-B6 cross 

were examined.  As expected, LY males from B6-LY crosses showed increased body 

weight (1.39-fold, P < 0.0001), a 51% increase (2-fold, P < 0.0001) in percent body fat 

and increased (1.11-fold, P < 0.01) in total lean tissue mass compared to B6 male 

offspring from a B6-LY cross (Figure A.1A).  In addition, B6 male offspring from a LY-

B6 cross display increased (1.15-fold, P < 0.05) total lean tissue mass compared to B6 

male offspring from a B6-LY cross.  However, we surprisingly found no differences in 

body weight, percent fat and total lean tissue mass when comparing the B6 and LY male 

offspring from a LY-B6 cross (Figure A.1A).  In order to validate that a sire effect was 

not occurring with our model, we examined the impact of paternal obesity on body 

weight, percent body fat, or total lean tissue mass of B6 male offspring from a B6-B6 

cross with B6 male offspring from a B6-LY cross.  This comparison showed no 

difference in body weight, percent fat or total lean tissue mass (Figure A.1B) indicating 

no effect of paternal obesity on offspring phenotypes.  Together, this data shows that 

regardless of the sire phenotype, male B6 offspring from a B6-LY cross are significantly 

smaller and exhibit decreased body fat and total tissue mass compared to age-matched 

LY littermates. 
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Figure A.1.  Male LY Offspring from B6 Dams Display Increased Body, Fat and Total Lean 
Tissue Mass.  (A) Male offspring from B6 dams and LY sires (B6, dark grey bar, n=13; LY, light 
yellow bar, n=7) and from LY dams and B6 sires (B6, light grey bar, n=2; LY, dark yellow bar, 
n=4) were collected at 12 weeks of age.  Body weight was calculated and percent body fat and 
total lean tissue mass were determined via DEXA scan (mean ± SEM).  (B) For each comparison, 
male B6 offspring from a B6 dam and B6 sire (black bar, n=4 or 8) were compared to B6 
offspring from a B6 dam and LY sire (dark grey bar, n=13) to justify our control (dark grey bar).  
Statistically significant differences (P < 0.05, *; P < 0.01, **; P < 0.0001, ****) were determined 
using one-way ANOVA. 

 

 Male Organ Weights are Altered Based on their In Utero Maternal Environment:  

To determine if maternal obesity affects the growth of individual organs irrespective of 

total lean body mass, we next compared the weights of various organs between B6-LY 

and LY-B6 derived 12-week old offspring.  Gastrocnemius skeletal muscle (1.14-fold, P 

< 0.001) and kidney weight ratios (1.11-fold, P < 0.01) were decreased in LY compared 

to B6 offspring from a B6-LY cross (Figure A.2A).  The weight ratio for kidneys 

between B6 male offspring from a LY dam were increased (1.27-fold, P < 0.05) 

compared to B6 males from a B6 dam.  Likewise, we found an increase (1.15-fold, P < 

0.01) in the kidney weight ratio between LY male offspring from a LY dam compared to 
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a B6 dam.  Also, the testis (1.19-fold, P < 0.01) and epididymis (1.17-fold, P < 0.05) 

were significantly smaller in LY compared to B6 offspring from a B6-LY cross (Figure 

A.2B).  Due to the fact that there was no difference in adrenal and prostate weights 

between LY and B6 offspring from B6 dams or from LY dams, we grouped the weights 

of the adrenals from B6-LY and LY-B6 crosses regardless of the offspring’s phenotype.  

We found that both the adrenal glands (1.79-fold, P < 0.01) as well as the prostate (1.19-

fold, P < 0.10) from offspring developed from a LY-B6 cross were heavier than offspring 

from a B6-LY cross (Figure A.2A).   
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Figure A.2.  Organ Growth Differs in Male Offspring from B6 Dams and LY Dams.  (A, B) 
Male offspring from B6 dams (B6, dark grey bar, n=13; LY, light yellow bar, n=7) and LY dams 
(B6, light grey bar, n=2; LY, dark yellow bar, n=4) were euthanized and organs were removed.  
All organ weights were normalized to their corresponding total lean tissue mass (mean ± SEM) 
and statistically significant differences (P < 0.10, †; P < 0.05, *; P < 0.01, **; P < 0.001, ***) 
and tendencies were determined using one-way ANOVA.  If there were no differences between 
male offspring from the same dam a Students t-test was used for the combination of male 
offspring from a B6 dam compared to male offspring from a LY dam. 
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 Dependent on Maternal Weight, Adult Male Offspring Skeletal Muscle Display 

Differences in mRNA Expression:  The proper differentiation of muscle progenitor cells is 

needed for muscle to develop normally.  Thus, we examined the myogenic markers Pax7, 

Myod1, Myf5, Myog and Des in whole gastrocnemius skeletal muscle.  Due to low 

sample size, we grouped all muscle samples from offspring developed from a B6-LY  

 

Figure A.3.  Muscle Function in Male Offspring is Altered.  (A, B) QPCR analysis of Pax7, 
Myod1, Myf5, Myog, Des, Pparg, Igf2 and Slc2a4 was carried out.  The normalized, relative 
abundance of each gene from male B6 offspring derived in B6 dam (dark grey bar, n=5) was 
compared to the mean, normalized relative abundance of each gene from LY offspring derived in 
a B6 dam (light yellow bar, n=5), B6 offspring derived in a LY dam (light grey bar, n=1) or LY 
offspring derived in a LY dam (dark yellow bar, n=3) with the data shown as a fold change (mean 
± SEM).  Statistically significant differences (P < 0.1, †; P < 0.01, **) were determined using the 
Students t-test for the combination of male offspring from a B6 dam compared to male offspring 
from a LY dam. 
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cross and from a LY-B6 cross.  We found a tendency (1.22-fold, P < 0.08) for an increase 

in Myod1 expression in skeletal muscle from a LY-B6 cross compared to muscle 

developed from a B6-LY cross (Figure A.3A).  We also examined other markers that 

impact skeletal muscle metabolism (Pparg, Igf2 and Slc2a4) and found Slc2a4 expression 

to be 21% decreased (1.27-fold, P < 0.001) in muscle developed from a LY-B6 cross 

compared to a B6-LY cross (Figure A.3B). 

 Female Offspring Show a Similar Growth Pattern as Their Male Littermates: We 

found the female LY compared to B6 offspring from a B6-LY cross to exhibit a 27% 

increase (1.38-fold, P < 0.0001) in body weight (Figure A.4).  Similarly, there was a 

significant increase (P < 0.0001) in percent body fat (2.13-fold, 53%) in LY offspring 

from a B6-LY cross compared to B6 littermates (Figure A.4).  In contrast to the male 

offspring, we found a 40% increase (1.67-fold, P < 0.01) in percent body fat in LY 

compared to B6 offspring from a LY-B6 cross.  However, while we found differences in 

total lean tissue mass in male offspring, no differences were seen in female offspring. 

 

Figure A.4.  Female Offspring from B6 and LY Dams Exhibit Differing Body Growth 
Depending on their Phenotype.  Female offspring from B6 dams and LY sires (B6, dark grey 
bar, n=10; LY, light yellow bar, n=9) and from LY dams and B6 sires (B6, light grey bar, n=2; 
LY, dark yellow bar, n=4) were collected at 12 weeks of age.  Body weight was calculated and 
percent body fat and total lean tissue mass were determined via DEXA scan (mean ± SEM).  
Statistically significant differences (P < 0.01, **; P < 0.0001, ****) were determined using one-
way ANOVA. 
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LY Female Organ Weights are Decreased Compared to B6 Littermates 

Regardless of Dam Phenotype:  Female kidney weight ratio was increased (1.08-fold, P < 

0.10) in B6 and LY female offspring from a LY-B6 cross compared to B6 and LY 

offspring from a B6-LY cross (Figure A.5A, B).  The liver showed an increased weight 

ratio between LY and B6 offspring from a LY dam (1.30-fold, P < 0.05) as well as when 

from a B6 dam (1.21-fold, P < 0.001).  We also determined the uterus to be significantly 

smaller (1.23-fold, P < 0.001) in LY compared to B6 littermates from a B6-LY cross 

(Figure A.5B).  Interestingly, when the ovaries were grouped according to dam, we found 

a decrease (1.36-fold, P < 0.05) in weight ratio when developed from a LY-B6 cross 

compared to a B6-LY cross (Figure A.5B). 

 

Figure A.5.  Female Offspring Display Altered Organ Growth When From a B6 Compared 
to LY Dam.  (A, B) Female offspring from B6 dams (B6, dark grey bar, n=10; LY, light yellow 
bar, n=9) and LY dams (B6, light grey bar, n=2; LY, dark yellow bar, n=4) were euthanized and 
the gastrocnemius skeletal muscle, kidneys, liver, ovaries and uterus were removed.  All organ 
weights were normalized to their corresponding total lean tissue mass (mean ± SEM) and 
statistically significant differences (P < 0.10, †; P < 0.05, *; P < 0.001, ***) were determined 
using one-way ANOVA.  If there were no differences between female offspring from the same 
dam a Students t-test was used for the combination of female offspring from a B6 dam compared 
to female offspring from a LY dam. 
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Female Skeletal Muscle Myogenic Factors are Altered in LY-B6 Crosses:  The 

myogenic factors Pax7, Myod1, Myf5, Myog and Des were examined in female whole 

gastrocnemius skeletal muscle.  While no difference was found for Pax7, Myod1, or Des, 

we found a 27% reduction (1.37-fold, P < 0.05) for Myf5 and a 29% reduction (1.42-fold, 

P < 0.05) for Myog mRNA expression of offspring skeletal muscle from a LY-B6 cross  

 

Figure A.6.  Muscle mRNA Expression Differs in Female Offspring Skeletal Muscle.  (A, B) 
QPCR analysis of Pax7, Myod1, Myf5, Myog, Des, Pparg, Igf2 and Slc2a4 was carried out.  The 
normalized, relative abundance of each gene from female B6 offspring derived in B6 dam (dark 
grey bar, n=5) was compared to the mean, normalized relative abundance of each gene from LY 
offspring derived in a B6 dam (light yellow bar, n=5), B6 offspring derived in a LY dam (light 
grey bar, n=1) or LY offspring derived in a LY dam (dark yellow bar, n=3) with the data shown 
as a fold change (mean ± SEM).  Statistically significant differences (P < 0.05, *) were 
determined using the Students t-test for the combination of female offspring from B6 dams 
compared to female offspring from LY dams. 
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compared to a B6-LY cross (Figure A.6A).  We also examined other muscle markers 

(Pparg, Igf2 or Slc2a4) that impact muscle metabolism but failed to find any differences 

in gene expression between offspring from a B6-LY compared to LY-B6 cross (Figure 

A.6B). 

SUMMARY 

 The preliminary data collected in this study suggests that there are genetic 

alterations that are occurring in offspring reared in an obese compared to a normal weight 

environment.  However, the small sample size from each experimental group made it 

difficult to ascertain the statistical significance of these data.  We did, however, detect an 

environmental effect due to maternal obesity with the difference in kidney and ovary 

weights in female offspring where kidneys were increased and ovary were decreased in 

LY-B6 compared to B6-LY crosses (Figure A.5).  Additionally, male adrenal weights 

were significantly larger when developed from a LY-B6 compared to a B6-LY cross 

(Figure A.2A) and prostate weight ratio was increased in male offspring from a LY-B6 

compared to a B6-LY cross (Figure A.2B.  We also experienced some gender dependent 

differences in gastrocnemius skeletal muscle mRNA expression but it is not clear how 

these changes are affecting muscle signaling. 

We expected to see a synergistic effect when LY offspring were developed in a 

LY dam; however, we only experienced this effect in male kidneys.  The lack of a 

synergistic effect of prenatal and postnatal obesity on organ growth and development in 

LY derived from LY-B6 cross may be attributed to our low animal numbers, differences 

in the number of mice per cage and variations in litter size.  Also, our offspring are 12 
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weeks old which may be too early to see a dramatic phenotype.  Later time points may be 

needed in order to allow for more drastic effects to take form.  Altogether, further studies 

are needed that control for litter size, mice per cage, food intake and take into account the 

impact of paternal obesity in order to make valid conclusions as to the effect of maternal 

obesity on offspring development and organ function.  
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APPENDIX B 

Genes Involved in the Immediate Early Response and Epithelial-Mesenchymal 
Transition are Regulated by Adipocytokines in the Female Reproductive Tract. 

 
Zhufeng Yang, Kristin A. Norwood, Jacqueline E. Smith, Jill G. Kerl, and Jennifer R. 

Wood 

Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 

Molecular Reproduction & Development. 2012 Feb; 79(2): 128-137  

 

These results were performed and then combined with work done by Zhufeng Yang 

and others which was published in Molecular Reproduction & Development in 

2012. 

Epithelial-Mesenchymal Transition (EMT) mRNA Levels are Increased in the LY Uterus:   

The effect of an obese phenotype on the abundance of IE and EMT mRNAs in the whole 

uterus was subsequently determined by QPCR.  Uterus was collected 44 hours after eCG 

stimulation from 6, 12, or 24 week old LY and B6 females.  RNA was isolated from the 

whole uterus and QPCR was carried out using primers against cJun, cFos, cMyc, Snai1, 

Snai2, or Twist1 (Figure B.4).  There was no difference in cJun, cFos, or cMyc mRNA 

abundance in the uterus of LY compared to B6 at any age (Figure B.4A).  However, both 

cJun and cMyc mRNA levels were increased in 24 compared to 6 and 12 week-old LY 

and B6 females. Conversely, Snai1, Snai2, and Twist1 mRNA abundance was increased 

in the whole uterus of 6 week-old LY compared to age-matched B6 females (Figure 

B.4B).    Similar to cJun and cMyc, the mRNA abundance of Snai1 was also increased in 

24 week-old LY and B6 uterus compared to 6 and 12 week-old uterus.    
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  The differences in uterine Snai1, Snai2, and Twist1 mRNA levels between 6 

week-old LY and B6 females were correlated to increased circulating IGF-1 levels at this 

age (compare Figure B.3B and B.4B).  IGF-1 and IGF-1 binding proteins (IGFBPs) are 

also expressed in the murine uterus (1, 2).  Therefore, QPCR was carried out to identify 

differences in uterine levels of Igf1, Igfbp2, or Igfbp3 mRNAs between age-matched LY 

and B6 females (Figure B.4C).  While Igf1 and Igfbp2 mRNA levels were not different 

between LY and B6, Igfbp3 mRNA abundance was increased in uterus of 6 week-old LY 

compared to B6 females.  Furthermore, Igfbp3 tended to be increased in 24 week-old LY 

compared to B6 uterus.   

 
Figure B.4. Abundance of IE, EMT, and IGF family mRNAs in Uterus of Obese and 
Normal-Weight Females.  Total RNA was isolated from the whole uterus of 6, 12, or 24 week-
old B6 (black bars) or LY (white bars) females 44 h after eCG stimulation.  Quantitative, real-
time PCR was carried out using primers specific for (A) cJun, cFos, or cMyc; (B) Snai1, Snai2, or 
Twist1; or (C) Igf1, Igfbp2, or Igfbp3 as described in Figure 1.  Analysis of the resulting QPCR 
data was also carried out as described in Figure 1.   Statistically significant differences in fold 
change (P < 0.05) were determined using one-way ANOVA and Tukey-Kramer post-test and 
indicated by different letters. 
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