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The effect of European starlings and ambient 
air temperature on Salmonella enterica 
contamination within cattle feed bunks
JAMES C. CARLSON, USDA-APHIS, Wildlife Services’ National Wildlife Research Center, 4101 

LaPorte Avenue, Fort Collins, CO 80521-2154, USA     james.c.carlson@aphis.usda.gov
JEREMY W. ELLIS, USDA-APHIS, Wildlife Services’ National Wildlife Research Center, 4101 

LaPorte Avenue, Fort Collins, CO 80521-2154, USA
SHELAGH K. TUPPER, USDA-APHIS, Wildlife Services’ National Wildlife Research Center, 4101 

LaPorte Avenue, Fort Collins, CO 80521-2154, USA
ALAN B. FRANKLIN, USDA-APHIS, Wildlife Services’ National Wildlife Research Center, 4101 

LaPorte Avenue, Fort Collins, CO 80521-2154, USA
GEORGE M. LINZ, USDA-APHIS, Wildlife Services’ National Wildlife Research Center, 2110 Miri-

am Circle, Suite B, Bismarck, ND 58501-2502, USA
Abstract: European starlings (Sturnus vulgaris) are a known risk factor for the occurrence 
of microorganisms that are pathogenic to cattle and humans in concentrated animal feeding 
operations (CAFOs). Starling use of CAFOs is known to vary in response to weather; starling 
control operations on CAFOs often are timed to coincide with favorable environmental 
conditions to maximize take. The totality of this information suggests that disease risks 
in CAFOs associated with starlings may be infl uenced by environmental factors, such as 
temperature. In this study, we assessed the risk of Salmonella enterica contamination of cattle 
feed by modeling the interaction between starling numbers and ambient air temperatures 
using data previously reported from Texas CAFOs. We compared these interaction models 
to the previously published additive models for S. enterica contamination of cattle feed using 
an information-theoretic approach to model selection that ranked and weighted models in 
terms of their support by the data, using bias-adjusted Akaike’s Information Criterion (AICc) 
and Akaike weights (Wi). Our results indicate that the interaction between European starlings 
and ambient air temperature better explained the occurrence of S. enterica in cattle feed than 
any of the previously reported models. Specifi cally, the risk of S. enterica contamination of 
cattle feed by starlings was greatest when winter temperatures were highest (10°C). Thus, we 
conclude that the risk of S. enterica contamination of cattle feed by starlings will be worst on 
the few winter days when daytime high temperatures are above freezing and large numbers of 
birds are present. Because these conditions will be most common in the late winter and early 
spring, we recommend that starling control operations on feedlots and dairies be conducted 
as early in the winter as possible to mitigate the risks of disease created by large foraging 
fl ocks of starlings.
 
Key words: cattle, European starlings, foodborne pathogens, human–wildlife confl icts, 
invasive species, peridomestic wildlife, Salmonella enterica, wildlife disease, zoonosis

European starlings (Sturnus vulgaris), 
originally native to Europe, Southwest Asia, 
and North Africa, were introduced into New 
York City in 1890 and, by 1942, they had spread 
across the North American continent (Cabe 
et al. 1993). With a population estimated at 
200 million birds (Feare 1984), starlings are 
one of the most abundant avian species in 
North America (Linz et al. 2007). Currently, 
starlings can be found on every continent 
except Antarctica (Rollins et al. 2009). Due to 
their ability to successfully colonize new areas, 
starlings have become recognized as one of 
the top 100 “world’s worst” invaders by the 
Invasive Species Specialists Group (Lowe et al. 
2004).  

Use of concentrated animal feed operations 

(CAFOs) by starlings varies seasonally, with 
most damage occurring during winter months 
when insects and other natural foods are 
typically unavailable (Besser et al. 1968, Palmer 
1976, Dolbeer et al. 1978, Glahn and Otis 1981, 
Johnson and Glahn 1994). During the winter, 
use of CAFOs by starlings also varies, and it has 
been speculated that this may be a function of 
weather conditions (Feare 1984). Agricultural 
damage by starlings has been estimated at 
$800 million dollars per year within the United 
States (Pimentel et al. 2000, Pimentel et al. 
2005). Starling damage occurs as a result of 
depredation to row crops (e.g., corn), fruit 
orchards, and winter use of CAFOs (e.g., dairies 
and feedlots). Within CAFOs, Besser et al. (1968) 
estimated annual catt le-feed losses of $84 ($526 
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in 2010 dollars) per 1,000 starlings. Lee (1987) 
surveyed producers and estimated that Kansas 
livestock facilities on average absorbed $12,340 
dollars ($24,551 in 2010 dollars) in damage 
during 1986. Feed loss was cited as the greatest 
source of economic loss, and starlings were 
identifi ed as the worst off ending bird species. 
Lastly, Depenbusch et al. (2011) estimated 
that feed consumption by European starlings 
increases the daily production cost $0.92 per 
feedlot animal.

Starling damage to CAFOs may not be 
isolated to feed loss. European starlings 
have been associated with many human 
and catt le pathogens, including Escherichia 
coli, Mycobacterium avium paratuberculosis, 
Chlamydophila psitt aci, Histoplasma capsulatum, 
and Salmonella enterica (Johnson and Glahn 1994, 
Linz, et al. 2007, Gaukler et al. 2009). Starling 
use of CAFOs was associated with S. enterica 
contamination of catt le feed and water (Carlson 
et al. 2011a). The length of time catt le are exposed 
to rations in feedlots was associated with fecal 
shedding of S. enterica by catt le. This suggests 
that contaminated catt le rations contributed to 
infections in the herd (Fedorka-Cray et al. 1998). 
Lastly, control of starlings reduced the amount 
of S. enterica contamination found in catt le feed 
and water (Carlson et al. 2011b). 

 Salmonella enterica are rod-shaped, gram-
negative bacteria that are ubiquitous in 
CAFOs (Maciorowski et al. 2006). It is one of 
the most economically signifi cant pathogens 
in livestock production because of the high 
incidents of livestock morbidity and mortality 
(USDA 2007) and because it is a source for 
human salmonellosis, which is responsible for 
an estimated 1.3 million human cases and 550 
human deaths each year (Mead et al. 1999). 
Catt le typically acquire S. enterica from other 
infected livestock that spread the pathogen 
throughout the herd via contaminated catt le 
feces (Wray and Davies 2000), catt le feed 
(Fedorka-Cray et al. 1998, Maciorowski et 
al. 2006), and water (Kirk et al. 2002). Lastly, 
fecal shedding of S. enterica by catt le is higher 
during the summer (Van Donkersgoed et al. 
1999, Barkocy-Gallagher et al. 2003, Dargatz et 
al. 2003, Green et al. 2010) than during winter. 
This is likely due to the fact that warm summer 
months provide environmental conditions 
optimum for survival and amplifi cation of this 
microorganism. 

The overall objective of this study was to 
determine if S. enterica contamination of catt le 
feed is associated with European starlings 
and environmental conditions. Specifi cally, 
we addressed the research question: is there 
an interaction of eff ects between European 
starlings and ambient air temperature that 
infl uences the risk of S. enterica contamination 
of catt le feed in CAFOs during the winter?

Materials and methods
Data used for this analysis were previously 

published in Carlson et al. (2011a). We built on 
the previous statistical models by assessing the 
interaction between temperature and starling 
variables (Table 1). Specifi cally, we analyzed the 
interactions of the number of starlings within 
feed bunks (SB), the number of starlings on 
CAFOs (SS), and ambient air temperature (T). 

Ten CAFOs were randomly selected from 15 
facilities identifi ed as acceptable for inclusion 
in this study. Acceptable CAFOs produced 
the same fi nal commodity (feeder catt le), had 
comparable management practices (feeding, 
watering, cleaning, and housing practices), 
and were willing to participate in the study. All 
facilities were located in Moore, Sherman, and 
Hansford counties, Texas, USA. We sampled 
CAFOs when starling numbers were greatest: 
from January 20 to February 19, 2009. 

We estimated starling numbers on CAFOs 
each day before collecting diagnostic samples 
by systematically driving through CAFOs and 
counting starlings observed in or fl ying above 
pens. We were careful to account for bird 
movement to eliminate duplication of numbers. 
Also, the number of starlings observed in 
feed bunks was estimated when feed samples 
were collected. This provided estimates of 
starling numbers at 2 spatial scales: numbers of 
starlings on CAFOs (facility level) and numbers 
of starlings in feed bunks within CAFOs (pen 
level).

Diagnostic samples were collected from 
CAFOs only when starlings were present. No 
samples were collected before starlings arrived 
on facilities, and no samples were collected 
aft er starlings returned to roost. All samples 
were collected between 0930 and 1530 hours, 
Monday through Thursday. Feed samples 
were collected approximately 15 minutes aft er 
feeding trucks fi lled bunks, thus, standardizing 
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starling exposure time to catt le rations. All 
samples were aseptically collected from catt le 
feed bunks and placed in sterile Whirl-Paks®. 
All diagnostic samples were immediately 
stored at 4°C and express shipped on the day 
of collection to the Colorado State University 

Veterinary Diagnostic Laboratory in Fort 
Collins, Colorado, for testing.

Standard operating procedures were used 
for S. enterica culture. Briefl y, 10-fold dilutions 
were made of each feed sample (10 g feed) in 
pre-enrichment broth (buff ered peptone water, 

Table 1. Catt le feed contamination models, number of estimable model parameters, 2 negative log-
likelihoods (-2LogL), bias-corrected Akaike’s Information Criterion (AICc), and Akaike weights (wi) 
for all logistic regression models assessed in the analysis of European starlings (Sturnus vulgaris) and 
ambient air temperature on Salmonella enterica contamination within catt le feed bunks. Data were 
collected within 10 concentrated animal feeding operations located in Moore, Sherman, and Hansford 
counties, Texas, 2009.

Model covariates Model parameters -2logL AICc
 Akaike
 weight

Number of starlings in feed bunks (SB) 3 103.08 109.21 0.117

Natural log of starlings on site (LNSS) 3 106.56 112.69 0.004

Number of catt le on site (CS) 3 106.71 112.84 0.003

Air temperature (T) 3 106.71 112.84 0.003

Intercept-only model 2 108.93 112.99 0.003

Antibiotic feed additives used (FA) 3 108.10 114.23 0.001

Number of starlings on sites (SS) 3 108.27 114.40 0.001

Number of catt le feeding from bunk (CFB) 3 108.91 115.04 0.000

Date of sample collection (TD) 3 108.91 115.04 0.000

SB+T+(SB*T)a 5   97.68 108.00 0.391

SS+T+(SS*T) 5 100.02 110.34 0.038

SB+CSb 4 100.65 108.87 0.166

SB+T 4 100.76 108.98 0.148

SB+T+CFB 5   99.58 109.90 0.059

SB+T+CS 5 100.06 110.38 0.036

SB+CFB 4 102.77 110.99 0.020

CFB+T 4 104.81 113.03 0.003

LNSS+CS 4 105.08 113.30 0.002

LNSS+T 4 105.62 113.86 0.001

CS+CFB 4 105.74 113.96 0.001

CS+T 4 106.04 114.26 0.001

SS+CS 4 106.35 114.57 0.001

CS+CFB+T 5 104.27 114.59 0.001

SS+T 4 106.49 114.71 0.000

SS+CFB 4 107.38 115.60 0.000

SS+CS+CFB 5 105.87 116.19 0.000

SS+CS+T 5 105.87 116.19 0.000

aThe top-ranked model, based on Akaike weights, reported in this manuscript.
b The top-ranked model, based on Akaike weights, reported in Carlson et al. 2011a.
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Difco) and incubated overnight at 35°C. Aft er 
pre-enrichment, 1 ml of the culture suspension 
was added to 10 ml of tetrathionate broth (Difco) 
and incubated overnight at 35°C (Dargatz et al. 
2005). For each sample, 100 μl of the incubated 
tetrathionate suspension was transferred to 
10 ml of Rappaport-Vassiliadis broth (Oxoid, 
Ogdensburg, N.Y.) and incubated overnight at 
42° C. A swab of the culture suspension was pla-
ted for isolation on Brilliant green agar (Difco) 
and an XLT4 agar plate (BBL) and incubated 
for 24 hours at 35°C. Up to 3 suspect colonies 
based on colony morphology were picked 
and plated to blood agar plates. Following 
overnight incubation at 35°C, colonies were 
tested with polyvalent O-grouping antisera for 
agglutination. All positive samples were sent to 
the National Veterinary Services Laboratory in 
Ames, Iowa, for serotyping. 

Data on the presence and absence of S. enterica 
in catt le feed were analyzed using generalized 
linear mixed eff ects logistic regression with 
PROC GLIMMIX in SAS version 9.2 (SAS 
Institute Inc., Cary, N.C., 2006). Fixed eff ects 
included the number of starlings at both spatial 
scales, temperature (C°) 
and the interaction between 
number of starlings and 
temperature. The response 
variable was binary (de-
tection or no detection of 
S. enterica), and the CAFO 
of origin was included as a 
random eff ect. These models 
were compared to the pre-
viously published models 
for S. enterica contamination 
of catt le feed using an 
i n f o r m a t i o n - t h e o r e t i c 
approach to model selection 
(Burnham and Anderson 
2002) that ranked and 
weighted models, in terms 
of their support by the data, 
using bias-adjusted Akaike’s 
Information Criterion (AICc) 
and Akaike weights (Wi). 
Following model selection, 
we estimated model fi t 
using the Goodman-Kruskal 
gamma statistic, which is 
a measure of association 

between the predicted probabilities and observed 
responses. Pearson’s correlation coeffi  cients 
were used to test for associations between 
variables. Because starling numbers at diff erent 
spatial scales were highly correlated (r = 0.71, 
P < 0.0001), they were assessed in competing 
models only. Pearson’s correlation coeffi  cients 
also were used to test for associations between 
starling numbers and temperature data.  

Results
Based on Pearson Correlation Coeffi  cients, 

the number of starlings at CAFOs decreased as 
temperature increased (r = -0.32, P < 0.0001), but 
the number of starlings observed in feed bunks 
was not associated with temperature data (r = 
-0.026, P = 0.72). Of the 191 catt le feed samples 
collected from 10 CAFOs (14 to 22 pens per 
CAFO), we detected S. enterica in 8.4% (Carlson 
et al. 2011a). The probability of detecting S. 
enterica in catt le feed was associated with the 
number of starlings in feed bunks and ambient 
air temperature (F1,178 = 4.00, P = 0.05). The best 
logistic regression model explaining S. enterica 
in catt le feed (Table 2) was: 

Figure 1. Predicted probability of Salmonella enterica contamination with-
in cattle feed as a function of number of European starlings observed in 
feed bunks and ambient air temperature (C°). Data was collected on 10 
CAFOs in Moore, Sherman, and Hansford counties, Texas, 2009.

)}]*(0007.0)(149.0)(006.0157.3{exp[1
1)ˆPr(

TSBTSB
S  
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where Pr(Ŝ) was the probability of a feed sample 
being contaminated with S. enterica, SB was the 
number of starlings observed in feed bunks, T 
was the ambient air temperature (C°), and SB*T 
was the interaction between number of starlings 
in feed bunks and ambient air temperature. 
The association of predicted probabilities 
and observed responses was 45%. Within this 
model, the probability of detecting S. enterica 
in feed was greatest when large numbers of 
starlings (500 birds) were present in feed bunks 
on the warmest winter days (≥10° C; Figure 1). 

  Discussion 
We investigated the role of European starlings 

and temperature in the spread S. enterica within 
CAFOs. Models with interactions between 
starlings and temperature were not assessed in 
Carlson et al. (2011a) because, at the time, there 
was no biological justifi cation for including 
these models in their analysis. Subsequently, 
information has emerged, suggesting that 
starling use of CAFOs varies as environmental 
conditions change and that starling numbers are 
greatest on the coldest winter days (Feare 1984, 
Carlson et al. 2011b). Based on this information, 
we decided to revisit our original data set and 
model the interaction between the number of 
starlings and ambient air temperature. Our 
results indicate that European starlings and 
temperature are associated to increases the risk 

of S. enterica contamination within catt le feed 
bunks. The probability of detecting S. enterica 
in catt le feed was greatest on the warmest 
winter days (10°C) in feed bunks containing the 
greatest number of starlings (≥500 birds). Based 
on Akaike weights (wi), the top-ranked model 
reported in this manuscript is a bett er predictor 
for S. enterica contamination of catt le feed 
than competing additive models published in 
Carlson et al. (2011a).  

The relationship among starlings, tem-
perature, and S. enterica contamination of 
CAFOs is complicated. Salmonella enterica 
contamination of catt le feed was greatest on the 
warmest winter days in feed bunks containing 
the greatest number of starlings. Additionally, 
our results indicate that starlings were most 
common on CAFOs on the coldest winter days. 
This suggests that even though starlings are 
more abundant on the coldest days, they are 
a greater risk for spreading S. enterica to catt le 
feed on the warmest winter days. Thus, the 
combination of warm temperatures and large 
numbers of starlings in feed bunks produces 
a disproportionally large risk of S. enterica 
contamination of catt le feed in CAFOs.  

We believe that this information provides 
important management implications related 
to farm-side biosecurity and starling control 
within CAFOs. Typically, USDA-APHIS-
Wildlife Services operational biologists will time 

Table 2. Model structure, number of estimable parameters (K), bias-corrected 
Akaike’s Information Criterion (AICc), and Akaike weight (wi) for the 5 top-ranked 
logistic regression models assessing numbers of starlings and temperature data on 
the probability of Salmonella enterica contamination in catt le feed bunks. Data were 
collected within 10 concentrated animal feeding operations located in Moore, Sher-
man, and Hansford counties, Texas, 2009.

Model structurea Kb   AICc   wi

  β0 + β1(SB) + β2(T) + β3(SB*T) 5 108.004 0.391

  β0 + β1(SB) + β2(CS) 4 108.865 0.166

  β0 + β1(SB) + β2(T) 4 108.975 0.148

  β0 + β1(SB) 3 109.208 0.117

  β0 + β1(SB) + β2(T) + β3(CFB) 5 109.904 0.059

a Variable acronyms in model structures are: SB = number of European 
starlings observed within catt le feed bunks; T = ambient air temperature 
(C°); CS = number of catt le within CAFOs; and CFB = number of catt le ac-
cessing feed bunk. 
b Number of estimable parameters based on the number of logistic regres-
sion coeffi  cients plus an estimated covariance from the random eff ect of 
CAFOs.
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starling control operations to coincide with cold 
days following winter storms. This approach 
increases target effi  cacy, bait consumption, and 
starling take (R. L. Gilliland, Texas Wildlife 
Services, personal communication). We 
believe that high-risk conditions for S. enterica 
transmission to catt le feed by starlings will be 
most common in late winter and early spring 
when daytime high temperatures are above 
freezing but prior to starling dispersal for 
breeding. Thus, we recommend that future 
starling control operations be scheduled to 
occur following the fi rst winter storms of the 
season. This approach will reduce starling 
numbers at a time before they have had less of a 
chance to create risks of disease in CAFOs. Also, 
scheduling starling control for early winter will 
have additional benefi ts to producers because 
CAFOs are known to lose signifi cant amounts 
of feed to starlings while experiencing physical 
damage to structures and fecal contamination 
of machinery (Besser et al. 1968, Dolbeer et al. 
1978, Lee 1987). Thus, controlling starlings as 
early in the winter as possible will maximize 
the value of the control operations for livestock 
producers. 

We hypothesize that the amount of S. enterica 
contamination in CAFOs during winter and 
early spring will infl uence its prevalence in 
herds during the summer. Previous publications 
have shown that herd prevalence for S. enterica 
in CAFOs varies seasonally with peak fecal 
shedding by catt le occurring in the summer 
months and the lowest occurring during the 
winter (Wells et al. 2001). This variability is 
likely due to environmental changes that are 
conducive to survival and amplifi cation of S. 
enterica within media that contributes to catt le 
infections (i.e., catt le feed, water, and feces). 
Thus, improved biosecurity during the winter 
may reduce the risk of S. enterica catt le infections 
during the summer. 

In conclusion, it is unlikely that the ecological 
interactions between European starlings, S. 
enterica, and catt le are the only disease risks 
that can be att ributed to peridomestic wildlife 
use of CAFOs. Starlings may contribute to the 
maintenance and spread of other pathogens 
in CAFOs and other wildlife species may 
contribute to the maintenance and spread of 
S. enterica. Thus, identifi cation of high-risk 
wildlife, the pathogens they introduce, and 

their ecological interactions with domesticated 
animals is needed to characterize the disease 
risks, production costs, and environmental 
impacts associated with wildlife use of CAFOs. 
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