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a b s t r a c t

Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecol-
ogy, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant
natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine
how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to
habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus
boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging
infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of
infection was similar for females and the combined group of males and juveniles. However, only 9% of
terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned
areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in
infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially
in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural dis-
turbances such as wildfire and the resulting diverse habitats can influence infection across large land-
scapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease
resistance.

Published by Elsevier Ltd.

1. Introduction

Despite growing recognition of the role of diseases in the popu-
lation dynamics of wild animals (Brown et al., 1995; Jolles et al.,
2005), how environmental variation and individual habitat use af-
fect host–pathogen interactions is not well understood (Mbora and
McPeek, 2009; McCallum, 2008). Environmental variation and how
individuals are exposed to this variation could modify disease risk
through several mechanisms. For example, disturbances (e.g., frag-
mentation) or unusual climate events (e.g., drought) can magnify
the effects of disease by increasing the density of hosts and subse-
quent transmission rates (Anderson and May, 1978; Arneberg et
al., 1998), changing community structure (Poteet, 2006; Van
Buskirk and Ostfeld, 1998), or affecting the condition of hosts or
pathogens (Jokela et al., 2005; Jolles et al., 2005). However, these
predictions may be context-specific, depending upon the ecology

of the hosts and pathogens, how disease transmission occurs, and
the effects of disease on host populations (Lafferty and Holt,
2003). Greater knowledge of how disease varies among habitats
and individuals is critical to predicting its effects on host fitness
and population growth.

Pathogens are one of the primary causes of amphibian decline
worldwide (Wake and Vredenburg, 2008). Many of these declines
have been attributed to chytridiomycosis, a recently-emerged dis-
ease caused by the aquatic fungus Batrachochytrium dendrobatidis
(Bd) (Berger et al., 1998; Bosch et al., 2001; Muths et al., 2003).
In the Rocky Mountain region (USA), Bd has been linked with the
possible extirpation of boreal toad (Anaxyrus boreas boreas) popula-
tions, and enzootic infection of extant populations reduces survival
of adults (Muths et al., 2003; Pilliod et al., 2010). There is growing
evidence that environmental variation may affect prevalence of Bd
infection among populations (Adams et al., 2010; Becker and
Zamudio, 2011; Hossack et al., 2010; Kriger and Hero, 2007;
Murray et al., 2009), but there has been less emphasis on how hab-
itat use by individuals within populations affects the probability of
infection. For amphibian species that use a variety of habitats, this
variation may alter the individual- and population-level implica-
tions of chytridiomycosis by limiting infection rates or promoting

0006-3207/$ - see front matter Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.biocon.2012.09.013

⇑ Corresponding author at: U.S. Geological Survey, Northern Rocky Mountain
Science Center, Aldo Leopold Wilderness Research Institute, 790 East Beckwith
Avenue, Missoula, MT 59801, USA. Tel.: +1 406 542 3245; fax: +1 406 542 4196.

E-mail addresses: blake_hossack@usgs.gov (B.R. Hossack), winsor.lowe@mso.
umt.edu (W.H. Lowe), jware@mcvh-vcu.edu (J.L. Ware), steve_corn@usgs.gov
(P.S. Corn).

Biological Conservation 157 (2013) 293–299

Contents lists available at SciVerse ScienceDirect

Biological Conservation

journal homepage: www.elsevier .com/ locate /biocon

http://dx.doi.org/10.1016/j.biocon.2012.09.013
mailto:blake_hossack@usgs.gov
mailto:winsor.lowe@mso.umt.edu
mailto:winsor.lowe@mso.umt.edu
mailto:jware@mcvh-vcu.edu
mailto:steve_corn@usgs.gov
http://dx.doi.org/10.1016/j.biocon.2012.09.013
http://www.sciencedirect.com/science/journal/00063207
http://www.elsevier.com/locate/biocon


host recovery (Briggs et al., 2010; Pilliod et al., 2010; Puschendorf
et al., 2011).

The environmental limitations of Bd suggest that how individu-
als use their environment could mediate exposure or the ability to
resist or tolerate infection. Not surprisingly, highly aquatic
amphibians that experience greater exposure to Bd often more
likely to be infected than less aquatic species (Longcore et al.,
2007; Rowley, 2006). Ecological and physiological mechanisms
can also affect disease prevalence of females compared to males.
Females of many amphibians are less aquatic than males or juve-
niles (Bartelt et al., 2004; Grayson and Wilbur, 2009; Tinsley,
1989), which may reduce the frequency of disease-transmitting
encounters, especially during breeding season when males linger
at breeding sites and mount each other frequently (Wells, 1977).
Females may also have stronger immune systems or invest more
resources in immunity than males (Stoehr and Kokko, 2006; Zuk
and McKean, 1996). These differences in exposure or susceptibility
to disease could be especially significant because female survival is
often the most important vital rate for driving population growth
in amphibians (Biek et al., 2002; Trenham and Shaffer, 2005).

Temperature is also a critical factor in many host–pathogen
interactions. Most pathogens have optimal growth temperatures
below that of their hosts; thus, warm microhabitats may slow
pathogen growth (Kluger et al., 1975; Piotrowski et al., 2004).
Growth of Bd declines above �24 �C (Longcore et al., 1999;
Piotrowski et al., 2004), which is below the optimum growth or
performance temperature of boreal toads and some other anurans
(Hillman et al., 2009; Lillywhite et al., 1973). At the same time,
warm temperatures can enhance a host’s immune response,
providing a complementary mechanism to limit pathogen growth
(Ribas et al., 2009; Xiao et al., 2011). Many invertebrates and ver-
tebrates induce behavioral fever after infection by a pathogen,
increasing their survival or other correlates of fitness (Elliot et al.,
2002; Kluger et al., 1975; Richards-Zawacki, 2010). For example,
in a laboratory experiment, boreal toads infected with Bd were
more likely to induce fever than uninfected toads, and infected
toads that induced fever had higher survival than those that did
not induce fever (Murphy et al., 2011). Prior exposure to Bd also in-
creased survival of boreal toads compared with naive hosts, but
only when infected hosts used dry microenvironments (Murphy
et al., 2011). Evidence of resistance to re-infection indicates that
hosts can acquire immunity (Ramsey et al., 2010), and a recent dis-
covery that the major histocompatibility complex (MHC) is linked
with susceptibility to Bd provides a potential mechanism for evolv-
ing resistance (Savage and Zamudio, 2011).

In western North America and many other ecosystems, wildfire
is the dominant natural disturbance and is critical for structuring
habitats for a wide variety of species, including altering host–
parasites interactions (Fyumagwa et al., 2007; Hutto, 1995;
Whelan et al., 2002). Through its effects on host abundance and
microclimate, we expected wildfire could also affect the distribu-
tion and dynamics of Bd. Loss of litter and duff on the forest floor
and greater amounts of solar radiation reaching the soil surface
can result in persistent increases in soil temperatures for several
years after wildfire in northern forests (Bissett and Parkinson,
1980; Kasischke and Johnstone, 2005; Zhuang et al., 2002). Com-
pared with unburned forest, terrestrial habitats in recently burned
forest are warmer and provide more opportunities for boreal toads
to achieve preferred temperatures (27–29 �C; Lillywhite et al.,
1973) that could limit growth of Bd (Hossack et al., 2009). Alterna-
tively, harsher terrestrial conditions after wildfire could force
animals to become more aquatic, potentially increasing their expo-
sure to Bd. Although variation in Bd infection has been linked to
differences in forest structure (Becker and Zamudio, 2011; Van
Sluys and Hero, 2009), we do not know how natural disturbances
like wildfire influence the dynamics of this pathogen. This question

is especially important given the expected climate- and
management-related changes in wildfire regimes occurring
throughout the world (IPCC, 2007; Westerling et al., 2006).

To determine how habitat use, landscape variation caused by
wildfire, and individual host characteristics affect probability of
infection by Bd, we sampled 404 boreal toads over four summers
across a wide variety of habitats in Glacier National Park (NP),
Montana (USA). We predicted that use of terrestrial habitats and
recently-burned forests would reduce Bd infection relative to use
of aquatic habitats and unburned forest, consistent with differ-
ences in exposure and growth conditions for the pathogen. We also
predicted reduced probability of infection for female toads com-
pared with males and juveniles, consistent with differences in
exposure or immunocompetence. During the last year of the study,
we sampled Columbia spotted frogs (Rana luteiventris) to provide
an independent measure of the association between wildfire and
Bd infection. In contrast to majority of previous studies focusing
on species- and population-level variation in Bd infection, ours
was explicitly designed to assess sources of variation in infection
among individuals within a species and thus elucidate both ecolog-
ical and behavioral mechanisms linked with disease.

2. Materials and methods

2.1. Study system

We sampled all toads P1 year old (i.e., we excluded larval and
recently metamorphosed toads) encountered in Glacier NP, Mon-
tana, during the late spring and summers of 2004–2005 and
2008–2009. Toads were captured during surveys that were part
of an amphibian monitoring program and while hiking among
water bodies (Corn et al., 2005). Boreal toads are often terrestrial
outside of a discrete breeding season in the spring (Bartelt et al.,
2004; Guscio et al., 2008). Our sampling of animals away from dis-
crete population centers or breeding sites differs from most other
studies of Bd in aquatic-breeding amphibians, but sampling the full
range of habitats used by individuals was required to better under-
stand variation in disease. Including toads in all habitats was also
necessary to gain information on females, which are secretive
and often skip years between breeding (Muths et al., 2010; Pilliod
et al., 2010), yet are critical for population growth. Many toads
were captured within the perimeters of nine stand-replacement
wildfires that burned mixed-conifer forests between 1998 and
2006 (Fig. 1). These forests were historically replaced by fire every
�140–340 years, and recovery of these forests is slow as a result of
the cold, dry conditions in the region (Barrett et al., 1991).

The Columbia spotted frog and the long-toed salamander
(Ambystoma macrodactylum) are the only other widespread len-
tic-breeding amphibians in the park and often occupied the same
wetlands as boreal toads. The spotted frog is commonly infected
with Bd (Muths et al., 2008), but long-toed salamanders are rarely
infected (C. Goldberg 2012, University of Idaho, personal commu-
nication). Sampled habitats ranged from 950 m to 2164 m in
elevation.

2.2. Disease sampling

We sampled each toad for Bd by thoroughly swabbing the pel-
vic surface and undersides of legs and feet with a sterile swab,
using standardized, clean procedures (Muths et al., 2008). Each
swab was stored in a sealed vial with ethanol until analysis for
presence of Bd using a PCR assay (Annis et al., 2004). See Hossack
et al. (2010) for details on PCR methods. After sampling for Bd, we
measured each toad (snout–vent length [SVL]), assigned it to a
demographic group (juvenile, female, or male), and recorded
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whether it was collected within the perimeter of a recent wildfire.
Distinguishing large juveniles from small females can be difficult
because neither vocalizes or has secondary sexual characteristics;
therefore, we considered all toads 660 mm SVL to be juveniles.
Above 60 mm SVL, males have reliable secondary sexual character-
istics (BRH, personal observation).

We recorded sampling date, capture environment (aquatic or ter-
restrial), geographic coordinates, and distance from a wetland for
each toad. Toads within 10 m of a lentic water body were considered
aquatic because many had obviously just left the water or were bask-
ing next to a water body. We did not consider proximity of streams
because Bd is rare or absent in local streams (Hossack et al., 2010).

We used similar techniques to sample 98 Columbia spotted
frogs during summer 2009, but we focused our efforts in and adja-
cent to areas that burned since 1998 rather than park-wide. Our
primary goal in including spotted frogs was to provide an indepen-
dent test of the relationship between wildfire and probability of
infection by Bd, because preliminary analyses suggested an associ-
ation between wildfire and infection prevalence in toads. Specifi-
cally, we used the frogs to determine whether conditions in
wetlands surrounded by burned forest somehow limited Bd popu-
lations. Columbia spotted frogs are much more aquatic than boreal
toads, which we expect would increase their exposure to the fun-
gus (e.g., Longcore et al., 2007). The more aquatic habits of Colum-
bia spotted frogs may also result in more consistent exposure to Bd
compared with the terrestrial boreal toads.

2.3. Statistical analysis: boreal toads

We used generalized estimating equations (GEEs) to compare
probability of infection for boreal toads relative to capture

environment (aquatic or terrestrial), demographic group (juvenile,
female, or male), and whether or not they were captured in an area
burned since 1998 (proc genmod in SAS 9.2). Aside from one wet-
land in an area burned in 1988, all unburned wetlands had not
burned in >75 years. Instead of simply classifying toads as aquatic
or terrestrial, we considered using distance from wetland as a
covariate. We chose to use the binary covariate because it provided
a similar fit to the data and because there are many unmapped
wetlands in the park, which would introduce error into the analy-
sis. We accounted for the correlation in infection status of individ-
uals from the same wetlands using a compound symmetry
covariance structure (Littell et al., 2002). Before estimating the ef-
fects of interest, we sought to account for as much nuisance varia-
tion as possible. Specifically, infection can co-vary with season and
elevation (Adams et al., 2010; Muths et al., 2008). Because we were
not explicitly interested in this variation, we fit a set of models that
included individual and interactive effects of sample date, year,
and linear and quadratic functions of elevation to determine which
parameters described the most variation in the response data. The
model with year and the linear effect of elevation provided the best
fit to the data and was used as the basis for all subsequent models.

We estimated the additive effects of capture environment,
demographic group, and wildfire on infection status of boreal toads
by fitting models with each covariate by itself as well as a model
that included all three covariates. We hypothesized capture envi-
ronment (aquatic or terrestrial) would affect infection because
individuals captured in or near wetlands likely experienced great-
er, or at least more recent, exposure to Bd than individuals cap-
tured away from wetlands. Similarly, we expected the more
aquatic tendencies of male boreal toads would increase their expo-
sure to Bd relative to females (Bartelt et al., 2004). Finally, we

Fig. 1. Distribution of boreal toads (Anaxyrus boreas; circles) and Columbia spotted frogs (Rana luteiventris; squares) sampled for the aquatic fungus Batrachochytrium
dendrobatidis in Glacier National Park, Montana (USA), during 2004–2005 and 2008–2009. Nine wildfires that burned between 1998 and 2006 are shown in gray. For both
species, solid symbols indicate individuals that tested positive for Bd and open symbols indicate individuals that tested negative.
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hypothesized that the warmer temperatures in recently burned
forests would reduce probability of infection relative to toads in
unburned forest, so we tested if disease status was influenced by
whether or not a toad was captured within a recently burned area.

We also fit models with demographic group � capture environ-
ment and fire � capture environment interactions. A demographic
group � capture environment interaction would be important if
differences in the way individuals use habitats, such as frequency
of use of aquatic versus terrestrial habitats according to age or
sex, affected exposure and probability of infection. Similarly, the
capture environment � fire interaction would be important if
infection in burned and unburned areas was mediated by use of
terrestrial or aquatic habitats. We did not consider a demographic
group � fire interaction because we captured too few females in
burned habitats. Also, we did not consider the effect of community
structure because in previous analyses we found no relationship
between infection of toads and the presence of breeding popula-
tions of the Columbia spotted frog or long-toed salamander
(Hossack, 2011).

We ranked models using QICu, an analog to Akaike’s informa-
tion criterion (AIC) (Pan, 2001). QICu includes a penalty of 2 for
each covariate, like AIC, but it also incorporates the correlation
among observations into the penalty term. We calculated model
weights (wi), the likelihood that a model is the best for the given
dataset, to measure support for each model and used them to cal-
culate model-weighted probabilities of infection for each main ef-
fect (Burnham and Anderson, 2002). After initially fitting all of the
models, we combined the juveniles and males into one group and
re-ran the models. The estimated probability of infection for these
two groups was always nearly identical, and combining them re-
sulted in more parsimonious models and more precise estimates.

2.4. Statistical analysis: Columbia spotted frogs

We used similar methods for the analysis of Bd infection of
Columbia spotted frogs, but we were interested solely in isolating
the effect of wildfire on infection status of aquatic hosts. To esti-
mate the effect of wildfire on infection, we started with a basic
model that included sample date and elevation to describe nui-
sance variation, then added terms for frog size (snout–vent length)
and burn status of the water body where each frog was captured.
We used frog size rather than sex and developmental stage be-
cause we only sampled five juveniles and preliminary analyses
indicated no differences in infection between sexes. We did not
consider the effect of capture environment in this analysis because
only one frog was captured away from a water body. Support for an
effect of wildfire or body size was assessed using model weights
and estimated probability of infection, as described above.

3. Results

3.1. Boreal toads

We sampled 404 boreal toads across the park, of which 29%
tested positive for Bd. Of the 404 toads, 69% were captured aquat-
ically, 23% were female, and 43% were captured in an area that had
burned since 1998. The model with the main effects of capture
environment (aquatic or terrestrial), demographic group (female
or male/juvenile), and burn status (burned or unburned) provided
the best fit to the data and received 2.5 times more support than
the second-ranked model (Table 1). There was little difference in
model weights among the next four models (wi = 0.13–0.17),
which all received similar levels of support because they included
capture environment, the covariate with the largest effect size.
Only 9% of toads captured terrestrially were infected, compared

to >30% of toads captured within 10 m of a water body (Fig. 2a).
Aquatic toads were more likely to be infected regardless of sex or
developmental stage (Fig. 3a).

Although the effect of wildfire on infection status of toads re-
ceived less support than capture environment, its inclusion im-
proved the fit of models significantly, and the 95% confidence
interval around its model-averaged coefficient excluded zero.
Toads in recently burned areas were only half as likely to be in-
fected as toads in unburned areas (Fig. 2b). This fire effect was con-
sistent in both aquatic and terrestrial environments, although the
imprecise estimates prohibit a strong conclusion about the interac-
tion between capture environment and wildfire (Fig. 3b).

After controlling for capture environment, the sex or develop-
mental stage of a toad had the smallest effect on probability of
infection. The model with the main effect of demographic group
provided only a slightly better fit to the data than the base model
that included only capture year and elevation (Table 1). Males and
juveniles combined were 1.4 times more likely to be infected as fe-
males, but the estimates were imprecise (Fig. 2c). The higher infec-
tion probability for males and juveniles was evident only for toads
captured aquatically (Fig. 3a). Terrestrial toads of both demo-
graphic groups were equally likely to be infected (9%).

3.2. Columbia spotted frogs

Thirty-two percent of 98 Columbia spotted frogs tested positive
for Bd in 2009. Probability of infection of Columbia spotted frogs
increased slightly with body size (b = 0.04, SE = 0.02), but it was
similar for frogs from burned (0.33, SE = 0.07) and unburned wet-
lands (0.28, SE = 0.06).

4. Discussion

Our results show that infection of hosts by a potentially-lethal
disease is strongly linked with landscape variation and habitat
use. Only 9% of toads captured terrestrially were infected with
Bd compared to >30% of toads captured in wetlands, and toads
captured in recently burned areas were half as likely to be infected
as toads in unburned areas. Several studies have linked variation in
Bd infection with species-level or habitat characteristics (e.g.,
Kriger and Hero, 2007; Longcore et al., 2007; Rowley, 2006; Savage
et al., 2011). We found that habitat use by individuals within a spe-
cies is linked with probability of infection. Although variation in
infection could result from different rates of disease-induced mor-
tality among habitats, we hypothesize that the large difference in
probability of infection between animals from aquatic and terres-
trial habitats reflects recent exposure to the aquatic fungus, as well
as the enhanced ability of terrestrial animals to clear infections in
an arid environment that is less conducive to pathogen growth
(Murphy et al., 2011; Piotrowski et al., 2004). Bd infection causes
a large reduction in annual survival of boreal toads, yet individuals
commonly transition from infected to uninfected between years
(Pilliod et al., 2010). Differences in habitat use among individuals
may be a critical mechanism that helps promote variation in dis-
ease risk and resistance.

The effect of wildfire was secondary in importance to use of
aquatic or terrestrial habitats, but all fire-effects models—including
the best-supported model—predicted lower infection for toads in
burned habitats than in unburned habitats. We suspect that war-
mer conditions in burned forests compared with unburned forests
may reduce infection either by limiting growth of Bd or by enhanc-
ing the immune response of hosts. Mean temperature of physical
models that simulated the operative body temperature of boreal
toads was up to 5 �C higher in burned habitats after a 2003 wildfire
in Glacier NP than in unburned habitats (Hossack et al., 2009).
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Further, burned habitats provided a greater range of microenviron-
ments in which toads could thermoregulate. The largest tempera-
ture differences between burned and unburned habitats were in
burrows and under large debris, where toads tend to reside when
terrestrial (Bartelt et al., 2004; Guscio et al., 2008; Hossack et al.,
2009). These temperature differences would shrink over time,
but increased soil temperatures in cold forests can last for several
years after fire (Bissett and Parkinson, 1980; Kasischke and
Johnstone, 2005; Zhuang et al., 2002).

Table 1
Models used to describe variation in infection of 404 boreal toads (Anaxyrus boreas) by the fungus Batrachochytrium dendrobatidis relative to capture environment (aquatic or
terrestrial), demographic group (female or male/juvenile), and burn status (burned since 1998 or not). Models are ranked according to differences in QICu and models weights (wi). All
models included an intercept and year and elevation covariates. For models with interactions, main effects were fitted but are not shown. ‘‘k’’ Indicates the number of parameters.

Model k DQICu wi

Capture environment + demographic group + burn status 8 0.00 0.42
Capture environment � demographic group 8 1.88 0.17
Capture environment � burn status 8 2.20 0.14
Capture environment 8 2.25 0.14
Capture environment � demographic group + burn status � demographic group 10 2.36 0.13
Burn status 6 21.49 0.00
Demographic group 6 32.27 0.00
Year + elevation 5 34.99 0.00

Fig. 2. Estimated probability that an individual boreal toad (Anaxryus b. boreas;
n = 404) was infected by the aquatic fungus Batrachochytrium dendrobatidis
according to (a) capture habitat, (b) burn status of habitat, and (c) demographic
group.
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Fig. 3. Estimated probability that an individual boreal toad (Anaxryus b. boreas;
n = 404) was infected by the aquatic fungus Batrachochytrium dendrobatidis
according to (a) the interaction between capture habitat (aquatic or terrestrial)
and demographic group and (b) the interaction between capture habitat and
whether or not the toad was captured in recently burned forest.
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There is increasing evidence that small, achievable increases in
body temperature may confer important survival advantages to
hosts infected by Bd (Bustamante et al., 2010; Murphy et al.,
2011). During a chytridiomycosis epidemic in Panama, frogs that
induced fever were less likely to become infected than frogs that
did not induce fever (Richards-Zawacki, 2010), and survival of
Bd-infected frogs in Australia was linked with changes in seasonal
temperatures (Murray et al., 2009). Also, prevalence and intensity
of Bd infection on amphibians in New World and Australian tropics
were negatively related to deforestation, possibly as a result of less
hospitable conditions for the fungus in open habitats (Becker and
Zamudio, 2011; Van Sluys and Hero, 2009). It is uncertain whether
Bd infection in free-ranging animals is directly limited by environ-
mental conditions (including host microclimate), increased
immune response of hosts, or a combination of these factors. How-
ever, boreal toads and other species can clear Bd infection even at
optimal growth temperatures for the pathogen (Bustamante et al.,
2010; Márquez et al., 2010; Murphy et al., 2011), indicating that
the combination of environmental conditions and host behavior
may be critical to buffering some individuals from disease.

Interactions between disturbance and disease are usually ex-
pected to have negative consequences for populations, because
the increased density of hosts crowded into fragments of suitable
habitat can facilitate disease transmission or reduce host condition
and immunological function (Anderson and May, 1978; Lafferty
and Holt, 2003). Our study system has low amphibian richness,
composed primarily of two pond-breeding anurans that host Bd
and one pond-breeding salamander that is rarely infected. Boreal
toads tend to remain stable or increase in distribution after wild-
fire, whereas abundance of Columbia spotted frogs may increase
or decrease, depending upon burn severity and time since fire
(Hossack et al., in press-a, in press-b). Therefore, it seems unlikely
that the reduced probability of infection for toads in burned forests
resulted from changes in the transmission process, host density, or
disease-related mortality linked with habitat use, although we can-
not exclude these hypotheses. For example, infection was less
common on Stony-creek frogs (Litoria wilcoxii) in fragmented hab-
itats in Australia even though host density was higher than in in-
tact forests (Van Sluys and Hero, 2009). For a different species in
the same genus (Litoria lorica), environmental variation may have
facilitated coexistence with Bd despite high infection prevalence
(Puschendorf et al., 2011).

The comparable infection prevalence on Columbia spotted frogs
from burned and unburned wetlands in our study area further sug-
gests the lower infection probability for boreal toads in burned
areas was not a result of changes in wetland characteristics or host
community.

Counter to our expectation, we found only moderate evidence
that infection differed among demographic groups of boreal toads.
Males and juveniles were 1.4 times as likely to be infected as fe-
males, but they were also twice as likely to be captured aquatically.
We suspect the more frequent infection of males and juveniles re-
sulted from greater exposure to the pathogen than females, rather
than differences in susceptibility to infection or immunocompe-
tence. Most male toads likely try to breed every year and often
spend >1 month at a breeding site, whereas females likely do not
breed every year in our study area (Pilliod et al., 2010). Males
and juveniles are also more aquatic than females outside of the
breeding season, further increasing risk of Bd infection (Bartelt et
al., 2004). Our results suggest aquatic females may have a slightly
higher prevalence of infection than terrestrial females. More
importantly, however, terrestrial toads had the same low preva-
lence of infection (9%) regardless of demographic group, evidence
that leaving the source of pathogen exposure and hospitable envi-
ronments for pathogen growth provides all individuals with simi-
lar opportunities to avoid or clear infection.

Our results illustrate the importance of landscape structure for
host–pathogen interactions and show that natural disturbances
like wildfire can have a large effect on the probability that an indi-
vidual is infected with Bd. The habitat- and sex-specific results we
found also highlight the importance of sampling the full range of
habitats used by a species to better understand disease risk, as well
as potential fitness and population-level implications. Overall,
these results indicate that the ability to avoid or clear infection is
linked with habitat use and the natural fire regime, and strongly
suggest that both natural and anthropogenic variation in landscape
structure can have important implications for host fitness and dis-
ease dynamics. More broadly, our results show that preserving nat-
ural disturbance regimes and diverse habitats can modify infection
prevalence across large landscapes, which may help maintain local
refuges from disease and habitat selection behaviors that could
facilitate evolution of disease resistance.
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