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Cancer Cell

Article
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SUMMARY

We investigated the transcriptional and epigenetic repression ofmiR-29 byMYC,HDAC3, and EZH2 inmantle
cell lymphoma and other MYC-associated lymphomas. We demonstrate that miR-29 is repressed by MYC
through a corepressor complexwith HDAC3 and EZH2.MYC contributes to EZH2 upregulation via repression
of the EZH2 targeting miR-26a, and EZH2 induces MYC via inhibition of the MYC targeting miR-494 to create
positive feedback. Combined inhibition of HDAC3 and EZH2 cooperatively disrupted the MYC-EZH2-miR-29
axis, resulting in restoration ofmiR-29 expression, downregulation of miR-29-targeted genes, and lymphoma
growth suppression in vitro and in vivo. These findings define a MYC-mediated miRNA repression mecha-
nism, shed light on MYC lymphomagenesis mechanisms, and reveal promising therapeutic targets for
aggressive B-cell malignancies.

INTRODUCTION

c-MYC (hereinafter termed MYC) is a transcription factor that

promotes oncogenesis by activating and repressing its target

genes that control cell growth and proliferation (Nilsson and

Cleveland, 2003). MYC is deregulated in a large proportion

of aggressive B-cell lymphomas. Although MYC has been

described as a defining feature and the driving oncogene for Bur-

kitt lymphoma, the significance of MYC has also been recog-

nized in other non-Hodgkin’s lymphomas (Dave et al., 2006).

MYC, which has been detected in 9%–14% of diffuse large

B-cell lymphomas, is associated with an adverse prognosis as

a result of chemoresistance and with shortened survival. In

mantle cell lymphoma (MCL), increased expression of MYC

has been found to be associated with poor prognosis and

MCL aggressiveness (Hartmann et al., 2008). MYC overexpres-

sion has been implicated in high-grade large cell transformation

in follicular and marginal zone cell lymphomas (Slack and

Significance

Aberrant miRNA expression and miRNA oncogenic and tumor suppressive functions have been extensively investigated in
many tumors, including lymphoma; however, themolecular basis for miRNA dysregulation remains unknown and emerging.
Our findings of miRNA regulation by c-MYC (hereafter termed MYC) and epigenetic deacetylation by HDAC3 and trimethy-
lation by EZH2 present a common mechanism for repression of many other tumor suppressor miRNAs. We demonstrated
aMYC-miRNA-EZH2 feed-forward pathway that leads to persistent MYC and EZH2 overexpression andmiR-29 repression,
thus maintaining tumorigenic potential of lymphoma cells. Restoration of miR-29 expression through epigenetic drug
cotreatment resulted in enhanced inhibition of oncogenic signaling pathways, lymphoma growth in vivo, and is a therapeutic
target of histone modifications in aggressive B-cell lymphomas.
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Gascoyne, 2011), supporting the features of MYC in sustain-

ing aggressive transformation of lymphomas. Despite current

modes of intensive chemotherapy and radiation, survival in

patients with high MYC activity is dismal. It is still unclear what

direct MYC-induced transcriptional changes promote cell trans-

formation, and the therapeutics against MYC has remained

elusive.

Aberrant micro-RNA (miRNA) expression and miRNA onco-

genic and tumor suppressive functions have been extensively

investigated in many tumors, including lymphomas (Fabbri and

Croce, 2011). However, the molecular basis for miRNA dysregu-

lation remains uncharacterized and emerging (Liu et al., 2010).

Our work and that of others have indicated that themiR-29 family

might function as a tumor suppressor (Fabbri et al., 2007; Zhao

et al., 2010). Expression of these miRNAs inhibits cell prolifera-

tion, promotes apoptosis of cancer cells, and suppresses

tumorigenicity by targeting multiple oncogenes. Loss or down-

regulation of these miRNAs has been reported in a variety of

hematopoietic and solid tumors and has been shown to be asso-

ciated with high-risk chronic lymphocytic leukemia, lung cancer,

invasive breast cancer, and cholangiocarcinoma (Fabbri and

Croce, 2011). These observations are consistent with our recent

study demonstrating that miR-29 is downregulated in aggressive

MCL (Zhao et al., 2010).

MYC has been recently implicated in controlling the expres-

sion of a host of miRNAs (Chang et al., 2008). The predominant

consequence of activation of MYC is widespread repression

of miRNA expression. Although the mechanisms by which

MYC activates transcription have been extensively studied,

less is known about how MYC represses transcription of target

genes as well as miRNAs. It was reported that MYC repressed

target genes Id2 and Gadd153 by recruitment of histone

deacetylase 3 (HDAC3) (Kurland and Tansey, 2008). More

recently, our study demonstrated that MYC acts as a repressor

of miRNA-15a/16 by recruiting HDAC3 (Zhang et al., 2012).

These findings suggest that histone deacetylation may be

involved in MYC-mediated transcriptional repression. Further

evidence has shown that histone H3 lysine 27 trimethylation,

which is mediated by enhancer of zeste homolog 2 (EZH2)

at the promoter of the gene, leads to silencing of gene expres-

sion (Chen et al., 2005). The polycomb-repressive complex 2

(PRC2) contains three core proteins (EZH2, SUZ12, and

EED), and PRC2 is a transcriptional repressor that has a crucial

function in maintaining the delicate homeostatic balance

between gene expression and repression, the disruption of

which may lead to oncogenesis (Sparmann and van Lohuizen,

2006). The roles of HDAC and PRC2 in miRNA regulation and

dysregulation are largely unknown and have been poorly

defined so far.

In this study, we explored the role of MYC, HDAC, and EZH2 in

miR-29 repression and the contribution of miR-29 to cell survival

and growth in MYC-associated lymphomas. We examined the

regulation and functional roles of miRNAs, histone modifications

and their interplay in MYC, EZH2 overexpression, and the tumor-

igenic potential of lymphoma cells. Furthermore, we tested

molecular targeting strategies to restore miR-29 expression

and examined whether combined inhibitors of HDAC and

EZH2 cooperatively increase miR-29 expression and inhibit

lymphoma growth and shorten in vivo lymphoma survival.

RESULTS

MYC Is Overexpressed in Aggressive MCL and Is
Inversely Correlated with Expression of miR-29
We examined MYC and miR-29 expression and their correlation

using purified lymphoma cells from MCL patients and normal

donors. As shown in Figure 1A, compared with normal CD19+

peripheral blood lymphocytes, miR-29a-c was significantly

downregulated and MYC was significantly overexpressed in

MCL samples. Furthermore, MCLs with higher MYC expression

have significantly lower miR-29 expression. We used the P493-6

human B-cell line as a model to examine the role of MYC

in miR-29 expression. P493-6 cells bear a tetracycline (tet)-

repressible MYC construct such that tet withdrawal results in

rapid induction of MYC followed by cell proliferation. We

compared expression levels of MYC and miR-29 in tet-treated

(MYC-off) and untreated (MYC-on) cells and observed an inverse

correlation between miR-29 and MYC expression (Figures 1B–

1D). Expression of primary miR-29 (pri-miR-29a/b1 and pri-

miR-29b2/c) and mature miR-29 was measured by quantitative

reverse-transcribed polymerase chain reaction (qRT-PCR) in

P493-6 cells with and without MYC expression. We found both

primary miR-29 and mature miR-29 to be remarkably lower in

MYC-on B cells than in MYC-off cells, whereas MYC repression

after tet treatment significantly upregulated, miR29a-c. In addi-

tion, MCL patient samples showed strong positive correlations

between primary miRNAs of miR-29 and mature miR-29 expres-

sion (Figures S1A–S1C available online).

MYC, HDAC3, and PRC2 Are Tethered to the miR-29
Promoter Regions as a Corepressor Complex
to Downregulate miR-29 Expression through
Histone Deacetylation and Trimethylation
We next investigated the epigenetic regulation of MYC-induced

miR-29 repression through histone acetylation and methylation.

We first examined the effects of chromatin-modifying drugs on

miR-29 expression in MCL and other MYC-expressing B-cell

lymphomas. Using qRT-PCR, we evaluated the effects of a

pan-HDAC inhibitor (vorinostat) on both primary and mature

miR-29 expression in MCL (Jeko-1) and Burkitt lymphoma cells

(Ramos). Figure 2A shows that vorinostat caused a dose-depen-

dent increase in miR-29a-c expression. miR-29 induction was

also observed with another HDAC inhibitor, trichostatin A (Fig-

ure S2A), suggesting an HDAC role in miR-29 gene expression

and supporting that the miR-29 family members are subject to

epigenetic control in lymphoma cells. We next studied the role

of PRC2 in the downregulation of miR-29 since PRC2 has

been shown to be recruited to gene promoters to induce histone

trimethylation and gene repression. We evaluated the effects of

the PRC2 inhibitor 3-deazaneplanocin A (DZNep) on miR-29

expression. Based on our previous study of using DZNep for

leukemia cells (Fiskus et al., 2009), we chose the DZNep dosage

range and revealed that DZNep resultes in a dose-dependent

decrease in the protein expression of EZH2 and SUZ12 (Fig-

ure 2B; Figure S2B) and caused a dose-dependent increase in

pri-miR-29a/b1, pri-miR-29b2/c, and mature miR-29 expression

in these lymphoma cell lines (Figure 2C; Figure S2C). Overall, the

above observations implied that both HDAC and PRC2 are

involved in miR-29 expression.

Cancer Cell

MYC, HDAC, EZH2, and miRNA

Cancer Cell 22, 506–523, October 16, 2012 ª2012 Elsevier Inc. 507



We explored whether MYC, HDAC3, and/or EZH2 act together

to be involved in miR-29 expression in MYC-expressing

lymphoma cells. The role of MYC and HDAC3 in the transcrip-

tional regulation of miR-29 gene expression was first examined

by depleting the expression of MYC and HDAC3, respectively,

with siRNA. Expression levels of primary and mature miR-29

were analyzed after MYC or HDAC3 was knocked down. In

agreement with our earlier results with vorinostat, knockdown

of HDAC3 significantly enhanced both primary and mature

miR-29 gene expression (Figure 2D). Moreover, knockdown of
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Figure 1. MYC Is Overexpressed in Aggressive MCLs and Is Inversely Correlated with Expression of miR-29

(A) miR-29a-c expression inversely correlated with MYC expression in primary MCL cells. Expression levels of miR-29a-c andMYC in normal B lymphocytes and

primary MCL samples were measured by qRT-PCR. The high MYC group is defined as those samples in the upper quartile (25%) of MYC expression, while all

others are placed in the low MYC group for the patient samples.

(B–D) Expression of MYC and miR29a-c in tet-treated (MYC turn-off or MYC-off) and untreated (MYC turn-on or MYC-on) P493-6 cells. (B) Western blot shows

MYC expression levels in MYC-off P493-6 cells treated with tet and in MYC-on P493-6 cells after removal of tet for indicated times. (C) Pri-miR-29 expression

levels in MYC-off P493-6 cells treated with tet and in MYC-on P493-6 cells after removal of tet for indicated times. (D) Mature miR-29 andMYC expression levels

in MYC-off P493-6 cells treated with tet and in MYC-on P493-6 cells after removal of tet for indicated times. Pri-miR-29 level was normalized to GAPDH, and

mature miR-29 expression was normalized to RNU44. Results in (B) are representative of three independent experiments. Results in (C) and (D) are means ± SD

from at least three biological replicates.

See also Figure S1.
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MYC also markedly increased miR-29 gene expression and

decreased EZH2 expression (Figure 2D). When we assessed

the role of PRC2 in MYC-mediated miR-29 repression, we found

that depletion of EZH2 and/or SUZ12 using siRNAs also signifi-

cantly increased miR-29 gene expression and decreased MYC

expression (Figure 2E), further supporting the role of EZH2/

PRC2 in miR-29 expression.

Next, we examined the miR-29a/b1 and miR-29b2/c gene

promoter regions for transcription factor binding sites and iden-

tified three highly conserved MYC binding sites—S1, S2, and

S3—in a region �5 kb upstream and in the first intron of both

humanmiR-29a/b1 andmiR-29b2/c (Figure 3A).We investigated

whether HDAC3 and EZH2/PRC2 could be recruited to the

miR-29 promoters by MYC and whether HDAC3 and EZH2

mediated MYC-induced miR-29 repression using chromatin

immunoprecipitation (ChIP) assays. We used primers located

within the miR-29a/b1 and miR-29b2/c proximal promoter

regions of MYC binding sites and revealed that antibodies

against both MYC and HDAC3 efficiently immunoprecipitated

the miR-29 promoter regions (Figures 3A and 3B). In addition,

we found that site S3 of miR-29a/b1 and sites S2 and S3 of

miR-29b2/c carry binding sites for both MYC and HDAC3, indi-

cating that both MYC and HDAC3 can bind to the miR-29

promoters (Figure 3B; Figure S3A). These bindings are specific

and MYC dependent, since no signal was detected at the

miR-29 distal promoter (site S4) and no HDAC3 binding was de-

tected when MYC was not bound at miR-29 promoters. These

findings implicate the role of MYC in recruiting HDAC3 and

suggest that HDAC3-mediated histone deacetylation might

contribute to MYC-induced miR-29 gene repression. To confirm

the requirement of MYC for HDAC3 binding, P493-6 cells were

used to manipulate MYC expression levels. ChIP assays re-

vealed HDAC3 binding inMYC-on and lack of binding inMYC-off

P493-6 cells, supporting the recruitment role of MYC (Figure 3C).

We further assessed the role of EZH2 in MYC-mediated miR-29

repression and investigated whether similar regulation patterns

occur through recruitment of EZH2 and SUZ12 on miR-29a/b1

and miR-29b2/c promoters. ChIP assay with anti-EZH2 and

anti-SUZ12 antibody showed that both EZH2 andSUZ12 directly

bound to the miR-29 promoters in MYC-on but not in MYC-off

P493-6 lymphocytes (Figure 3C) and was further validated in

Burkitt and MCL cell lines (Figure 3D; Figure S3B). The loss of

binding of these corepressors detected by ChIP is not due to

loss of the proteins from the cell but most likely due to absence

of MYC since 24 hr tet treatment resulted in loss of MYC but no

change in EZH2, SUZ12, or HDAC3 expression in P493 cells

(Figure 3C, insert). Of note, the EZH2 and SUZ12 binding sites

correspond to the MYC and HDAC3 binding sites, supporting

the role of MYC in EZH2 and SUZ12 recruitment and the role

of PRC2 in silencing miR-29 expression. The variation of degree

and site of MYC binding on miR-29a/b1 (site S3 only) and

miR-29b2/c promoters (sites S2 and S3) likely contributes to

different sensitivity of miR-29a/b1 and miR-29b2/c to the treat-

ment of HDAC and EZH2 inhibitors. Furthermore, inhibition of

PRC2 with DZNep degraded EZH2 and SUZ12 and decreased

EZH2 and SUZ12 binding (Figure 3D). We next performed ChIP

assay to validate the MYC, EZH2 and HDAC3 binding to miR-

29 promoters in primary lymphoma samples. Four high-MYC

samples of two blastic MCLs, one Burkitt and one Burkitt-like

(double-hit) lymphoma, and two low-MYC indolent MCLs were

chosen from our clinical samples and were used in this experi-

ment. MYC expression levels in these samples were confirmed

by fluorescence in situ hybridization (FISH) and immunohisto-

chemical stains (data not shown). Figure 3E reveals consistent

enrichment of MYC and, to a lesser extent, HDAC3 and EZH2

in miR-29 promoter regions in MYC-associated lymphomas

and supports the findings that these interactions are operative

in primary lymphoma cells. Taken together, these results confirm

that MYC is required and a significant mediator of EZH2-medi-

ated miR-29 repression, suggesting that HDAC3 and EZH2

have coordinated effects on miRNAs such asmiR-29 expression

in MYC-associated lymphomas.

To test whether MYC binding is functional, we generated lucif-

erase reporter constructs carrying the two alternative promoters

of miR-29a/b1 and miR-29b2/c at site S3 for miR29a/b1 and

sites S2 and S3 for miR29b2/c and their mutated types (M2

and M3). The mutants were constructed to harbor mutations in

the MYC binding site (E-box). Both wild-type and mutant plas-

mids (E-box mutants) were then transfected into P493-6 and

293T cells, and luciferase activity was measured (Figure 3F;

Figure S3C). We found luciferase activities of wild-type miR-

29a/b1 and miR-29b2/c promoters to be significantly repressed

by MYC overexpression. Furthermore, knockdown of HDAC3

reversed MYC-mediated repression, supporting that HDAC3 is

involved in MYC-driven miRNA repression. Compared with

wild-type promoters, luciferase activity of mutated-type pro-

moters was not significantly changed by MYC overexpression

andHDAC3 knockdown. Similarly, knockdown of EZH2 reversed

MYC-mediated repression in wild-type but not in mutant miR-29

promoters (Figure 3F). MYC-mediated repression was not

observed in M3 of the miR-29a/b1 promoter and M2 of the

miR-29b2/c promoter. This is likely attributed to the dominant

function of MYC binding in site S3 of miR-29a/b1 and site S2

of miR-29b2/c promoters. These results are in line with those

of ChIP experiments showing the strongest binding of MYC in

S3 of miR-29a/b1 and in S2 of miR-b2/c promoters (Figure 3C).

Overall, these data show that both miR-29a/b1 and miR-29b2/c

loci contain MYC-binding regions that are under negative control

by HDAC3 and EZH2 and that histone hypoacetylation and

trimethylation contribute to MYC-induced miR-29 repression.

We further performed ChIP analysis to probe acetylated

histone 4 (Ac-H4), trimethylated histone 3 (Me3-H3K27), and

RNA polymerase II binding to miR-29 promoters. We first re-

vealed that histone hypoacetylation and trimethylation are

dependent on the presence of MYC since enrichment of Ac-H4

was significantly increased and Me3-H3K27 is significantly

decreased in MYC-off P493-6 cells (Figure S3D). This study

also revealed that accumulation of RNApolymerase II, a hallmark

of active transcription, is tightly controlled byMYC. In agreement

with the epigenetic silencing effect of HDAC3 and EZH2, HDAC3

knockdown and EZH2 inhibition, respectively, increased Ac-H4

and decreased Me3-H3K27 at the miR-29 promoters (Figures

S3E and S3F). Of note, increased recruitment of RNA poly-

merase II was also observed. These results support the finding

that depletion of MYC leads to reduced recruitment of HDAC3

and EZH2 and results in increased histone acetylation,

decreased H3K27 trimethylation, and RNA polymerase II

recruitment.
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We further investigated whether PRC2 and HDAC3 form

a corepressor complex with MYC to repress miR-29 expression

using coimmunoprecipitation (co-IP) assays. First, 293T cells

were cotransfected with vectors expressing FLAG-tagged full-

length specific HDAC3 and/or with full-length MYC. When

MYC and HDAC3 were cotransfected in 293T cells, the exis-

tence of MYC, HDAC3, and SUZ12, but not EZH2, was de-

tected in the immunoprecipitates obtained with an antibody

against HDAC3, and the existence of MYC and HDAC3, but

not SUZ12 and EZH2, was detected in immunoprecipitates

obtained with an antibody against MYC. These results indicate

that MYC coimmunoprecipitated with HDAC3 and that HDAC3

coimmunoprecipitated with MYC as well as SUZ12. Next, we

asked whether endogenous MYC-HDAC3-PRC2 interaction

also occurred in MYC-associated lymphoma cells. Having

recently demonstrated that MYC and HDAC3 formed a coimmu-

noprecipitate complex to regulate the miRNA expression

(Zhang et al., 2012), we further examined the interaction

between HDAC3 and SUZ12 in P493-6 cells. As shown in Fig-

ure 4B, cell lysates immunoprecipitated with an HDAC3-

specific antibody contained HDAC3 and SUZ12. The reverse

endogenous coimmunoprecipitates of HDAC3 and SUZ12

with SUZ12 antibody was also demonstrated in Jeko-1 and

P493-6 cells (Figures 4B and 4C). Third, we further explored

how MYC interacted with SUZ12 and EZH2 by using MYC-on

and MYC-off P493-6 cells. In MYC-on P493-6 cells, strong

HDAC3, weak SUZ12, and no EZH2 were coimmunoprecipi-

tated with MYC antibody; strong SUZ12, moderate EZH2,

and MYC were coimmunoprecipitated with HDAC3 antibody;

strong EZH2, moderate HDAC3, and weak MYC were coimmu-

noprecipitated with SUZ12 antibody; and strong SUZ12, weak

HDAC3, and no MYC were coimmunoprecipitated with EZH2

antibody. In contrast, in MYC-off P493-6 cells, there was no

endogenous co-IP of HDAC3 and SUZ12 with MYC detected

and relatively low levels of interaction of HDAC3 with SUZ12

and EZH2 (Figure 4C). Overall, these results suggest that

SUZ12 and EZH2 interact with HDAC3 and MYC to form a multi-

molecular complex. These components interact in a linear

fashion, and HDAC3 bridges the interaction between MYC

and SUZ12/EZH2. To prove this, we depleted HDAC3 and

tested whether this would disrupt interaction between MYC

and SUZ12/EZH2 in P493-6 cells. As shown in Figure 4D,

SUZ12 was not detected in MYC immunoprecipitate and

MYC was not detected in SUZ12 immunoprecipitate, impli-

cating that HDAC3 bridges the interaction between MYC and

SUZ12/EZH2. These data, in conjunction with results from lucif-

erase reporter assay, support the cooperative function of

HDAC3 and EZH2 as a corepressor complex in repressing

miR-29 expression.

miR-29 Is Required for MYC-Mediated Oncogenic
Activity by Targeting IGF-1R andCDK6Pathways inMCL
and Other MYC-Expressing B-Cell Lymphomas
We investigated whether downregulation of miR-29 is necessary

for cellular transformation induced by oncogenic MYC over-

expression. In addition to CDK6, our bioinformatic analysis

also revealed IGF-1R as a potential target of miR-29. Increased

expression of miR-29 significantly downregulated IGR-1R

(Figure 5A; Figure S4A). The relative luciferase activity of the

wild-type construct of IGF-1R 30-UTR was reduced by overex-

pression of miR-29c and was increased when miR-29c was

knocked down, whereas such effects of miR-29c on luciferase

activity were not observed with the mutant construct of IGF-1R

30-UTR (Figure 5A). These findings support a direct and specific

interaction of miR-29c on IGF-1R 30-UTR. To confirm the rele-

vance of the expression of IGF-1R and the relationship between

miR-29 and IGF-1R, the expression of miR-29 and IGF-1R

expression were assessed in a set of primary MCL tissues and

normal B lymphocytes. An inverse correlation of miR-29 and

IGF-1R protein expression was observed in all MCL samples

by using Pearson coefficient, and correlation coefficients were

calculated identifying IGF-1R as a miR-29 target in addition to

the previously demonstrated CDK6 in MCL (Zhao et al., 2010;

Figure 5B; Figures S4B and S4C).

Given the oncogenic feature of MYC and regulatory role of

MYC in miR-29 expression, we postulated that MYC-mediated

miR-29 repression and subsequent miR-29 target changes

contribute to MYC-driven lymphoma cell growth and prolifera-

tion. We, therefore, tested whether MYC upregulates miR-29

targets (CDK6 and IGF-1R expression) in MYC-on and MYC-

off P493-6 cells. With MYC turn-on, protein levels of CDK6 and

IGF-1R were significantly increased, whereas they were signifi-

cantly downregulated with MYC turn-off (Figure 5C). In contrast,

mRNA levels of CDK6 and IGF-1R were not significantly influ-

enced byMYC (Figure S4D). These data suggest a posttranscrip-

tional mechanism of CDK6 and IGF-1R expression and are in line

with MYC-driven miR-29-mediated regulation of CDK6 and

IGF-1R expression. Of note, when MYC is turned off (MYC-off

cells), IGF-1R declines at a faster rate than CDK6. This may be

related to differences in the mRNA and/or protein half-life of

these two proteins. We further assessed whether miR-29 medi-

ated MYC-driven CDK6 and IGF-1R induction and cell growth in

MYC-expressing lymphoma cells. In P493-6 cells, the ectopic

forced expression of miR-29 abolished MYC-induced CDK6

and IGF-1R expression, and miR-29 knockdown blocked

MYC-off-mediated CDK6 and IGF-1R repression (Figure 5D; Fig-

ure S4A). Furthermore, knockdown of CDK6 and IGF-1R

induced significant inhibition of cell growth and colony forma-

tion, and the combined inhibition of CDK6 and IGF-1R resulted

Figure 2. MiR-29 Family Is Coregulated by HDAC3 and PRC2

(A) Vorinostat treatment for 48 hr dose-dependently increased primary and mature miR-29 expression levels in Jeko-1 and Ramos cells.

(B) DZNep treatment for 48 hr downregulated EZH2 and SUZ12 in Jeko-1, Ramos, and HBL2 cells.

(C) DZNep treatment for 48 hr dose-dependently increased primary and mature miR-29 expression in Jeko-1, Ramos, and HBL2 cells.

(D) Knockdown of MYC or HDAC3 by siRNAs increased pri-miR-29 and mature miR-29 expression levels in Mino, Jeko-1, and Ramos cells. mRNA and miRNA

expression levels of cells treated with siCtrl were arbitrarily set as 1.

(E) Knockdown of EZH2 and SUZ12 by their siRNAs increased miR-29a-c gene expression in Mino and Ramos cells. Results in (A) through (E) are means ± SD

from at least 3 biological replicates.

See also Figure S2.
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in a more marked inhibition of cell growth and colony formation

(Figure 5E; Figure S4E). Accordingly, miR-29 overexpression

as well as MYC knockdown significantly abrogated lymphoma

colony formation capacity (Figure 5F; Figures S4F and S4G).

MYC-miR-26a-EZH2-miR-494 Positive Feedback Loop
Sustains MYC Activity and miR-29 Repression in MCL
and Other Aggressive B-Cell Lymphomas
Accumulating evidence has indicated MYC-dependent regula-

tion of EZH2, with further evidence revealing the ability of

EZH2 to induce MYC expression (Sander et al., 2008; Lu et al.,

2011). We speculated that a feedback loop existed between

MYC and EZH2, thereby maintaining MYC overexpression and

miR-29 repression in MYC-associated lymphomas. We thus

explored the interaction between MYC and EZH2 and examined

the role of this circuitry in sustaining miR-29 repression. First, we

tested whether MYC stimulates EZH2 expression by repression

of its negative regulator miRNAs. Since EZH2 was identified by

TargetScan as a potential miR-26a target and was recently

experimentally validated (Sander et al., 2008), we examined

the effects of miR-26a on EZH2 expression. Overexpression of

miR-26a reduced EZH2 and MYC protein abundance in Jeko-1

and Mino cells, and ectopic expression of miR-26a inhibited

EZH2 30-UTR luciferase reporter activity (Figure 6A), confirming

that miR-26a regulates EZH2. Given that miR-26a is a reported

MYC-regulatedmiRNA, we next used the P493-6 cells to confirm

and explore the mechanism by which MYC induces EZH2

expression. Expression of miR-26a in MYC-on P493-6 cells

was significantly lower than that shown in MYC-off cells (Fig-

ure 6B). Furthermore, the effects of MYC on EZH2 expression

were examined, revealing that mRNA levels of EZH2 and

SUZ12 were not changed, whereas protein levels were signifi-

cantly increased inMYC-on cells and decreased inMYC-off cells

(Figure 6B; Figure S5A). This result implies that MYC regulated

EZH2 via posttranscriptional regulation. Moreover, ectopic

expression of miR-26a blocked MYC-induced EZH2 expression

in MYC-on P493-6 cells. To substantiate that miR-26a expres-

sion is responsible for MYC-induced EZH2 change, we inhibited

miR-26a by using anti-miR-26a and revealed increased EZH2

expression inMYC-off P493-6 cell (Figure 6C), further supporting

the role of miR-26a in MYC-regulated EZH2 expression. We next

tested whether EZH2 stimulates MYC expression. Figure 6D

shows that inhibition of EZH2 by using DZNep and shRNA

against EZH2 significantly decreasedMYC expression, substan-

tiating the regulatory role of EZH2 in MYC expression and

implying a positive feedback loop of MYC and EZH2. We

reasoned that EZH2 induces MYC expression through repres-

sion of MYC-repressing miRNAs. Thus, we next explored the

EZH2-regulated miRNAs by examining the effects of EZH2

inhibition on the expression of miRNAs. miRNA microarray was

performed and the expression profile from Jeko-1 cells after

72 hr DZNep (2 mM) treatment was determined (Figure S5B).

We identified a set of miRNAs that were upregulated by DZNep,

were downregulated by PRC2, and are predicted to target MYC

(Figures 6E and 6F). To further test whether these miRNAs target

the MYC 30-UTR directly, we cloned the full length of MYC

30-UTR and constructed a luciferase reporter plasmid (p-miR-

MYC-30-UTR-WT). The plasmid was cotransfected into 293T

cells, with each of the aforementioned pre-miRNAs and lucif-

erase activity measured. Figure S5C shows that the luciferase

activity of wild-type MYC reporter were reduced by overexpres-

sion of miR-135, miR-200, and miR-374, as well as most notice-

ably decreased by miR-494 overexpression. With TargetScan

predicting thatMYC 30-UTR contains twomiR-494-binding sites,

we subsequently mutated the miR-494 binding sites in MYC

30-UTR to test whether miR-494 specifically targets MYC

30-UTR. As revealed in Figure 6F, the mutation abolished the

suppressive effect of miR-494 on the luciferase reporter activity.

These results demonstrated that the miR-494 specifically

and directly targeted the MYC gene. To determine whether

miR-494 is required and a significant mediator for EZH2-

mediatedMYC induction, we performed qRT-PCR and validated

that miR-494 was upregulated by EZH2 inhibition through

DZNep treatment and shEZH2 or siEZH2 (Figures S5D and

S5E). To further confirm that miR-494 is directly regulated by

EZH2, ChIP assay was performed and showed the direct EZH2

binding to miR-494 promoter regions. Furthermore, this binding

is inhibited by the depletion of EZH2 through DZNep treatment

(Figure S5F). We next showed that overexpression of miR-494

downregulated MYC protein level (Figure 6G). Accordingly,

Figure 3. MYC Recruits HDAC3 and PRC2 to miR-29 Promoters to Repress the miR-29 Transcription through Histone Deacetylation and

Trimethylation

(A) Schematic diagram showing location of MYC-binding sites of pri-miR-29a/b1 and pri-miR-29b2/c regulatory region. Sites S1, S2, and S3 represent

MYC-binding site, which has an E-box sequence. S4was used as negative control and is located in the intron 4 of pri-miR-29b2/c andwithout E-box in this region.

Both pri-miR-29s are highly conserved in their putative promoter region and in the pre-miR-29 stem sequences, encoded in the last intron (pre-miR-29a/b1) on

chr.7q32.3 and the last exon (pre-miR-29b2/c) on chr.1q32.2, respectively.

(B) ChIP assay showing MYC and HDAC3 enrichment on pri-miR-29a/b1 and pri-miR-29b2/c promoters. ChIP assay was performed using MYC or HDAC3

antibody to detect binding on S1–S3 regions of pri-miR-29a/b1 and pri-miR-29b2/c promoters, and S4 was used as a negative control. Percent input was

calculated with 2(Ct [1% of input] � Ct [ChIP]). Ct, cycle threshold.

(C) ChIP assay showing MYC, HDAC3, EZH2, and SUZ12 enrichment on pri-miR-29a/b1 and pri-miR-29b2/c promoters and dependence of HDAC3 and EZH2/

SUZ12 binding on MYC in P493-6 cells with or without 24 hr tet treatment, Inserts, western blots showing protein level of MYC, HDAC3, and EZH2/SUZ12 in

MYC-on and MYC-off (24 hr tet treatment) P493-6 cells.

(D) ChIP assay showing EZH2 and SUZ12 enrichment on pri-miR-29a/b1 and pri-miR-29b2/c with or without DZNep treatment.

(E) ChIP assay showing MYC, HDAC3, EZH2, and SUZ12 enrichment on pri-miR-29a/b1 and pri-miR-29b2/c promoters in primary lymphoma samples with high

MYC expression (blastic MCLs, Burkitt, or Burkitt-like lymphomas) and no enrichment in primary samples with low MYC expression (indolent MCLs).

(F) Schematic diagram of pri-miR-29a/b1 and pri-miR-29b2/c promoter luciferase reporter. Solid boxes represent point mutation of E-Box. P493-6 cells

were transfected with either wild-type or mutants (M) of pri-miR-29a/b1 or pri-miR-29b2/c promoter luciferase reporter, together with siHDAC3, siEZH2, or

nontargeting siRNA. The luciferase activity is normalized to b-galactosidase. Results are means ± SD from three biological replicates. For ChIP assays, IgG was

used as a negative control. In (B) through (F), results are means ± SD from at least three biological replicates. Insets, western blots showing protein level.

See also Figure S3.
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downregulation of EZH2 was also observed, supporting the

presence of a MYC-miR-26a-EZH2-miR-494 feed-forward

circuit sustaining MYC activity and miR-29 repression.

To address whether the above observations in MCL and Ra-

mos cell lines are relevant to other aggressive cell lines and

primary lymphoma cells, we examined the relationship between

MYC, EZH2, and miR-26a as well as miR-29 expression levels in

MYC-expressing lymphoma cell lines and primary MYC-

expressing lymphomas. The cell lines included two transformed

large B lymphoma cell lines (SUDHL4, SUDHL10); the Epstein-

Barr virus (EBV)-associated lymphoma cell line SKW6.4; aggres-

sive MCL cell lines Jeko-1, Mino-1, HBL-2, NCEB-1, Rec-1, and

Z138c; and Burkitt lymphoma cell lines Raji and Ramos. The

primary lymphomas included Burkitt lymphomas, high-grade

transformed diffuse large cell lymphomas, and MCLs. For

comparison, we also included normal control B lymphocytes

as control, with MYC-on and MYC-off P493-6 cells as positive

and negative cell lines. In line with our hypothesis, low expres-

sion levels of miR-29 family and miR-26a were correlated with

high expression of MYC and EZH2, and correlation coefficients

were calculated in these cell lines and primary samples by using

Pearson coefficient (Figures 7A–7D). When compared with

normal control B lymphocytes, MYC expression was positively

correlated with EZH2 expression in these primary samples.

Collectively, these observations provide EZH2 and HDAC3 as

potential therapeutic targets for aggressive B-cell lymphomas.

Combined Inhibitors of HDAC and EZH2 Cooperatively
Derepressed miR-29 and Suppressed Tumor Growth
In Vitro and In Vivo in MCL and Other Aggressive B-Cell
Lymphomas
In light of the importance of low or absent expression of miR-29

in MCL aggressive progression and the ability of miR-29 expres-

sion to inhibit tumor cell growth, reactivation of miR-29

A B

C D

Figure 4. HDAC3 Bridges the Interaction between MYC and PRC2 to Form a Corepressor Complex
(A) 293T cells were transfected with MYC plasmid or FLAG-HDAC3 plasmid or cotransfected with MYC plasmid and FLAG-HDAC3 plasmid. The whole cell

lysates were immunoprecipitated using an antibody against MYC, HDAC3, and control IgG, followed by western blot with an antibody against MYC, FLAG,

SUZ12, and EZH2.

(B) Reciprocal co-IP showing endogenous co-IP of HDAC3 and SUZ12. Whole cell extracts of Jeko-1 cells were subjected to IP with anti-HDAC3 antibody

followed by western blotting for SUZ12, and similar whole cells extracts were subjected to IP with anti-SUZ12, followed by western blotting with anti-HDAC3.

(C) Co-IP of MYC, HDAC3, and SUZ12/EZH2 in MYC-on and MYC-off P493-6 cells. Cell lysates of P493-6 with and without tet treatment were immunopre-

cipitatedwithMYC, HDAC3, SUZ12, EZH2, and control IgG, respectively, followed bywestern blotting with an antibody against MYC, HDAC3, SUZ12, and EZH2.

(D) HDAC3-mediated interaction between MYC and SUZ12/EZH2. P493-6 (MYC-on) cells were transfected with HDAC3 siRNA or nontargeting siRNA to knock

down HDAC3, and co-IP experiments were performed to evaluate interaction betweenMYC and SUZ12/EZH2. In (A) through (D), input is equivalent to 10%of the

lysate used for the co-IP. Results are representative of three independent experiments.
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represents a promising therapeutic approach for this tumor

type. Given that HDAC3 and EZH2 converged at miR-29

promoters to repress miR-29 expression and suppression of

CDK6 and IGF-1R pathways by miR-29, we next tested whether

inhibition of HDAC and EZH2 cooperatively restored miR-29

expression and subsequently inhibited CDK6 and IGF-1R to

block the clonenogenic growth in soft agar and lymphoma

growth in vivo. We also asked whether combined inhibitors of

HDAC and PRC2 are more effective in induction of miR-29

expression, suppression of CDK6 and IGF-1R, and tumorige-

nicity in vivo. Compared with each agent alone, cotreatment

with vorinostat and DZNep induced significantly higher expres-

sion of pri-miR-29a/b1, pri-miR-29b2/c, and mature miR-29

than each agent alone in HBL2, Ramos, and Mino, as well as

Z138c MCL cells (Figure 8A; Figures S6A–S6D). Both DZNep

and vorinostat resulted in enhanced inhibition of colony forma-

tion with corresponding downregulation of CDK6 and IGF-1R

in HBL2 and Z138c cells (Figures 8B and 8C; Figure S6B).

Next, we compared the effects of DZNep and/or vorinostat on

the viability of transformed and nontransformed lymphocytes

by using P493-6 cells. Figure 8D demonstrates that exposure

to DZNep or vorinostat induced more loss of viability in MYC-

on than in MYC-off P493-6 cells. Finally, we determined whether

the combination of DZNep and vorinostat would also exert

increased in vivo antilymphoma activity. Figures 8E and 8F

show that cotreatment with DZNep and vorinostat inhibits tumor

growth and significantly improves survival of nonobese diabetic/

severe combined immunodeficient (NOD/SCID) mice bearing

lymphoma xenografts. Lymphoma size was remarkably reduced

and survival of NOD/SCID mice with lymphoma was significantly

higher when they were treated with DZNep plus vorinostat than

when treated with vorinostat, DZNep, or vehicle alone. Further-

more, to confirm that the in vivo targets of these inhibitors were

inhibited, western blot was performed and revealed that vorino-

stat and/or DZNep treatment resulted in significant downregula-

tion of EZH2, SUZ12 and downstream target IGF-1R, as well as

MYC from harvested lymphoma tissues (Figure S6E). In addition,

to validate the direct role of corepressors EZH2 and HDAC3 in

lymphoma formation in vivo, two independent genetic

approaches were used. HBL2 cells were first transfected with

siRNAs or shRNAs against EZH2 or HDAC3 to deplete their

expression, and, subsequently, these cells were applied to an

in vivo lymphoma formation experiment as described in Fig-

ure 8E. Figures S6F and S6G confirmed that HDAC3 or EZH2

siRNA or shRNA knocked down EZH2 or HDAC3, respectively,

and significantly abolished lymphoma growth in vivo supporting

the role of EZH2 and HDAC3 in lymphoma formation. To support

that the tumor inhibition is due to decreased proliferation, the

proliferation status of the tumor cells in shEZH2- and

shHDAC3-treated HBL2 xenografts was measured by using

proliferation marker genes Ki-67 and PCNA. Figure S6H shows

that the Ki-67 and PCNA genes were indeed significantly

decreased in shEZH2 and shHDAC3 groups when compared

to shCtrl group, indicating that the tumor suppression by

shEZH2/HDAC3 is at least partially through proliferation inhibi-

tion. Taken together, MYC-mediated miR-29 repression through

coordinated epigenetic silencing of HDAC3 and EZH2 is a impor-

tant therapeutic target of histone modifications in aggressive

B-cell lymphomas.

DISCUSSION

This study was undertaken to investigate (1) the potential inter-

play between MYC and histone modifiers HDAC3 and EZH2

and their role in miR-29 gene repression, (2) the role of the

miR-29 family and their downstream targets in MYC-driven

oncogenesis, (3) the underlying mechanism of persistent

MYC activation in these aggressive lymphomas through a

MYC-miRNA-EZH2 positive feedback loop, and (4) whether

HDAC3 and EZH2 cooperatively regulate miR-29 expression

and, accordingly, whether inhibitors of HDAC and EZH2 restore

expression of miR-29 in MYC-transformed B lymphoma cells to

significantly inhibit tumorigenesis ex vivo and in vivo. Our find-

ings indicate that miR-29 repression is a result of MYC/HDAC3

and EZH2 interaction and contributes to aggressive clinical

outcome of MYC-associated lymphomas. Results of this

study led to the identification of a model for interplay between

MYC, HDAC3, PRC2, and miRNAs and their contribution to

MYC-associated lymphomagenesis and HDAC3/EZH2/miR-29

as significant therapeutic targets for aggressive lymphomas.

We showed that MYC, HDAC3, and PRC2 form a repressive

complex tethered tomiR-29 promoter elements to epigenetically

repress miR-29 transcription in MYC-expressing lymphoma

cells. Subsequent miR-29 downregulation resulted in induction

of CDK6 and IGF-1R and mediated MYC-driven lymphomagen-

esis shown in Figure 8G. Furthermore, we demonstrated that

MYC contributed to the upregulation of EZH2 via repressing

EZH2-targeting miR-26a and that EZH2, in turn, induced MYC

expression via MYC-targeting miR-494, thereby generating

a positive feedback loop to ensure persistent high protein levels

of MYC and EZH2 and further repression of miR-29, which could

be involved in maintaining the malignant phenotype. In addition

Figure 5. miR-29 Is Required for MYC-Mediated Oncogenic Activity by Targeting IGF-1R and CDK6 Pathways

(A) IGF-1R is a direct target of miR-29. Overexpression of miR-29a-c downregulates IGF-1R expression and reduces luciferase activity of wild-type IGF-1R-30

UTR reporter (IGF-1R-WT) but not mutated IGF-1R-30UTR reporter (IGF-1R-M).

(B) miR-29 level is reversely correlated with IGF-1R protein expression of MCL patient samples.

(C) IGF-1R and CDK6 expression in MYC-on and MYC-off P493-6 cells.

(D) Overexpression of miR-29 after 48 hr pre-miR-29a-c transfection abolished MYC-induced CDK6 and IGF-1R expression and knockdown of miR-29 by

anti-miR-29s (pool of anti-miR-29a-c) transfection blocked MYC-off-induced CDK6 and IGF-1R repression.

(E) Knockdown of IGF1R and CDK6 by their siRNAs inhibits lymphoma cell survival measured by MTT assay and colony formation assay in HBL2 cells after

transfection with siIGF-1R and siCDK6 or control siRNA. Micrographs show the appearance of colonies in methycellulose gels at low power.

(F) Overexpression of miR-29 decreases the colony formation. The numbers of tumor colonies were enumerated microscopically after an incubation of 2 weeks.

Results are representative of three independent experiments or means ± SD from at least three biological replicates.

See also Figure S4.
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to miR-494 other miRNAs such as miR-135a, miR-186, and

miR-200c are also regulated by EZH2 and, in turn, may cooper-

atively regulate MYC expression. Treatment with pan-HDAC

inhibitor vorinostat, EZH2 inhibitor DZNep, and their specific

siRNAs disrupt the MYC-miRNA-EZH2 regulatory circuitry,

resulting in enhanced restoration of miR-29 expression, downre-

gulation of miR-29 target genesCDK6 and IGF-1R, and suppres-

sion of lymphoma cell growth (Figures S6D and S6F). Moreover,

several other tumor suppressors and oncogenes such as TCL-1

andMCL1 (Pekarsky et al., 2006; Mott et al., 2007) are also regu-

lated by miR-29 and may contribute to miR-29-mediated onco-

genesis. On the other hand, a recent study implicated that miR-

29 can function as an oncogene in indolent chronic lymphocytic

leukemia (CLL), suggesting that miR-29 can function as either

a tumor suppressor or an oncogene depending on the cellular

context (Pekarsky et al., 2006). Our findings indicated that

miR-29 is a tumor suppressor in aggressive MCL and revealed

critical mechanisms for MYC-driven miRNA suppression and

rational therapeutic targets of histone modifications in aggres-

sive B-cell malignancies. These data also indicate that MYC-

driven miR-29 repression through recruitment of HDAC3 and/

or EZH2 could be a generic mechanism for miRNA silencing in

aggressive B-cell lymphomas. The MYC-driven miRNA repres-

sion may underlie the molecular mechanism for lymphoma

aggressive transformation and can be epigenetically targeted

through manipulation of histone modifications.

We identified a regulatory element (site S3) located �5 kb

upstream from the miR-29a/b1 and two regulatory elements

(sites S2 and S3) located �5 kb upstream from tthe miR-29b2/c

cluster. These elements contain a MYC-binding site (or sites)

that also associate with the transcriptional repressor factors

EZH2 and HDAC3. Co-IP assays revealed that MYC coimmuno-

precipitates with HDAC3 and HDAC3 with EZH2, likely through

SUZ12 to form a MYC-HDAC3-PRC2 complex. These findings

support the notion that MYC repressed miR-29a/b1 and miR-

29b2/c through recruitment and interaction with HDAC3 and

PRC2 as a corepressor complex. Given that miR-29a/b1 and

miR-29b2/c are located in the different chromosomes, have

different promoter regions and MYC-binding sites, miR-29 tran-

scripts indeed respond differently to the presence or absence of

MYC, EZH2, and HDAC3 as shown in Figures 1 and 2. Further-

more, ChIP analysis demonstrated that MYC, HDAC3, and

PRC2 colocalize to the promoters of the miR-29 cluster genes

and that HDAC3 and EZH2/PRC2 binding to miR-29 promoters

was MYC dependent, supporting the role of MYC in the recruit-

ment of HDAC3 and PRC2 to the miR-29 promoters. Finally,

luciferase reporter assays demonstrated that miR-29 is

repressed by MYC acting through HDAC3 and EZH2-mediated

histone deacetylation and trimethylation. Recent work has

shown that MYC is involved in miR-29 gene expression regula-

tion and that HDAC with MYC is responsible for the silencing

of miR-29b in acute myeloid leukemia cells (Liu et al., 2010).

Our current findings suggest that PRC2 is an additional factor

ensuring miR-29 downregulation through working in concert

with HDAC3. Thus, these findings define a key mechanism of

miRNA transcriptional repression by MYC and shed light on

the poorly understood mechanisms involved in miRNA suppres-

sion in B-cell lymphomas.

The MYC-miR-26a-EZH2-miR-494 positive feedback loop

was observed in MYC-expressing lymphoma cell lines and

primary lymphoma cells examined. We conclude that miR-26a

can function as a tumor suppressor miRNA in MYC-associated

lymphomas. Once MYC is activated, miR-26a is repressed; the

more miR-26a is decreased, the more its target gene (such as

EZH2) is activated. Inverse correlations between miR-26a,

miR-29, and MYC, EZH2 expression were detected in both cell

lines and primary samples supporting the presence of MYC-

miRNA-EZH2 positive feedback loop. The decrease in miR-26a

expression and consequent increase in EZH2 expression have

been reported in a variety of aggressive tumors such as hepato-

cellular carcinoma, nasopharyngeal carcinoma, and Burkitt

lymphoma (Sander et al., 2008). The frequent EZH2 overexpres-

sion found in human cancers is associated with more aggressive

cancer phenotypes with poor prognosis (So et al., 2011). This

was further supported by findings in a larger cohort of hepatocel-

lular carcinoma patients, where low miR-26a expression was

associated with shorter overall survival (Kota et al., 2009). In

addition, EZH2was detected in the neoplastic large cells in inter-

mediate- and high-grade B-cell lymphomas, and its expression

was correlated with clinical grade and the presence of Ki-67

expression (van Kemenade et al., 2001). In MCL, EZH2 is upre-

gulated in proliferating MCL cells, with expression levels of

MYC and EZH2 being the strongest prognostic factors indepen-

dent of tumor proliferation and clinical factors of MCL (Visser

et al., 2001). These reports concur with our previous and current

findings that miR-29 expression is reversely correlated, con-

trolled with MYC and EZH2, and associated with MCL aggres-

sive progression (Zhao et al., 2010). Our significant finding of

the MYC-EZH2-miR-29 axis provides insight into how EZH2 is

activated and contributes to tumor aggressive transformation,

Figure 6. MYC-miR-26a-EZH2-miR-494 Positive Feedback Loop Sustains MYC Activity and miR-29 Repression

(A) EZH2 is a direct target of miR-26a. Overexpression of miR-26a downregulates EZH2 and MYC expression and suppresses EZH2 30-UTR luciferase activity

in 293T cells.

(B) miR-26a expression is regulated by MYC. miR-26a, EZH2, SUZ12, and MYC protein expression levels in MYC turn-on and MYC turn-off P493-6 cells.

(C) Overexpression of miR-26a by pri-miR-26a suppresses MYC-induced EZH2 expression in MYC-on P493-6 cells, while suppression of miR-26a by

anti-miR-26a increases EZH2 expression in MYC-off P493-6 cells.

(D) Inhibition of EZH2 with DZNep or shRNA decreases MYC protein expression.

(E) Putative MYC 30-UTR targeting miRNAs are upregulated by EZH2 inhibition.

(F) TargetScan andmicroCosm depicting potential binding sites for the DZNep upregulated miRNAs inMYC-30-UTR andMYC is a direct target of miR-494. 293T

cells are cotransfected with luciferase reporters, which contain the wild-type or mutant ofMYC 30-UTR, and overexpression of miR-494 inhibitsMYC-30-UTR but

not mutant 30-UTR luciferase activities.

(G) Overexpression of miR-494 suppressesMYC and EZH2 expression. Results are representative of three independent experiments or means ± SD from at least

three biological replicates.

See also Figure S5.
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thus revealing mechanistic links between EZH2 and its upstream

and downstream signaling in MYC-associated lymphomas.

The results on EZH2 regulation of MYC are in agreement with

previous studies showing that EZH2 induced MYC expression

and provide insight into the mechanisms of MYC activation

and EZH2-driven cell proliferation. Recent studies have revealed

recurrent somatic mutations of EZH2 in lymphomas and the in-

activating somatic mutations of the H3K27 demethylase, UTX,

in multiple cancers (van Haaften et al., 2009). These findings

suggest that deregulation of H3K27 methylation may also con-

tribute to constitutive MYC activation in these lymphomas and

EZH2 trimethylase as an ideal therapeutic target for lymphoma

therapy. Here, we reveal that dynamic forces act through a feed-

back circuit to modulate oncogenic expression of proteins, MYC

and EZH2, at the posttranscriptional level via miRNAs. This

reverberating relationship ensures the signal transduction of

the upstream triggering events, leading to the sustained induc-

tion of MYC and EZH2 as well as the suppression of the down-

stream miR-29 family. Given the role of EZH2 in MYC activation

and miR-29 repression, inhibition of EZH2 will target both

upstream (MYC) and downstream (miR-29, CDK6, IGF-1R)

signaling events of aggressive lymphomas.

The transcriptional and posttranscriptional repression of

miRNAs through MYC, HDAC3, and PRC2 could be a common

feature of many tumor suppressor miRNAs. Thus, our findings

provide rational to redirect therapeutic effort by reactivating

these tumor suppressor miRNAs through combined inhibition

of HDAC and PRC2. Convincingly, we demonstrated that the

combination of HDAC and EZH2 inhibitors (vorinostat and

DZNep) or their siRNAs induced more miR-29a/b1 and miR-

29b2/c gene expression, resulting in the synergistic reduction

of protein levels of CDK6 and IGF-1R and subsequent inhibition

of cell survival and colony formation in vitro. Of note, HDAC3 and

EZH2 overexpression was detected in essentially all of the

lymphoma cell lines and primary samples that we tested, but

not in normal B lymphocytes and nontransformed B lympho-

cytes. This provides a strong rationale that targeting HDAC3

and EZH2 may be more effective in lymphoma cells than in

normal B lymphocytes. Indeed, our study showed that vorinostat

and DZNep dramatically inhibited cell growth of transformed

P493-6 cells and had no or minimal effect on nontransformed

P493-6 cells. Finally, in vivo studies presented in this work illus-

trated that, compared with treatment with each agent alone,

combined treatment with DZNep and vorinostat inhibits tumor

growth and significantly improves survival of NOD/SCID mice

bearing MCL xenografts. These results strongly support further

development and testing of a combination of anti-EZH2 and

a specific HDAC3 inhibitor against aggressive lymphomas.

EXPERIMENTAL PROCEDURES

Cell Lines, Cell Proliferation, Colony Formation Assay, and Patient

Samples

Cell lines and patient sample information are detailed in Supplemental

Experimental Procedures. All patient tissue specimens were from fresh

biopsy-derived lymphoma tissues (lymph nodes) after informed consent was

obtained, in accordance with the Declaration of Helsinki and after approval

by the Institutional Review Board of the University of South Florida.

Details of cell proliferation and colony formation assays are also described in

the Supplemental Experimental Procedures.

Co-IP and ChIP

For co-IP in 293T, cells were transfected with plasmids using Lipofectamine

2000 (Invitrogen). Cells were harvested 36 hr after transfection. Protein

(200 mg) was immunoprecipitated with the primary antibody (2 mg) overnight

at 4�C, and the immunocomplexes were resolved by SDS-PAGE followed by

immunoblot analysis.

For endogenous protein interaction in Jeko-1, IP was performed using the

Pierce Co-IP Kit (Thermo Scientific). Six micrograms of anti-HDAC3 antibody,

anti-SUZ12 antibody, or normal rabbit immunoglobulin G (IgG) was coupled to

AminoLink Plus Coupling Resin according to the manufacturer’s protocol.

Immune complexes were eluted from the resin and analyzed by SDS-PAGE

followed by immunoblot analysis.

For P493-6 cell line, cells were lysed in NP-40 lysis buffer. Protein (1,000 mg)

was immunoprecipitated with the primary antibody (2 mg) overnight at 4�C.
HDAC3 was detected using GenScript One-Hour IP-Western Kits.

For the ChIP assay, 23 106 cells and 3 mg of antibody was used per IP. The

immunoprecipitated DNA was treated with RNase (Ambion) for 30 min at 37�C
and proteinase K (Roche) for an hour at 45�C.The DNA was purified with

QIAGEN PCR Spin columns. Purified DNA was analyzed by real-time PCR

using specific primers. Primer sequences used in ChIP assay are listed in

the Supplemental Experimental Procedures.

Luciferase Assays

Cells transfected with indicated plasmid were harvested and subjected to

luciferase reporter assay using the luciferase assay system according to the

manufacturer’s instructions (Promega). Details of this analysis and procedure

are described in the Supplemental Experimental Procedures.

siRNA Knockdown and Short-Hairpin RNA-Mediated Gene

Knockdown

For transient trasfection of siRNA, 53 106 cells were transfected by electropo-

ration using Nucleofector (Amaxa) according to themanufacturer’s instruction.

For short-hairpin RNA-mediated gene knockdown, cells were transduced

with indicated lentivirus particles followed with puromycin selection. The

knockdown efficiency was confirmed by western blot.

Figure 7. miR-26a and miR-29 Downregulation Are Reversely Correlated with Upregulation of MYC and EZH2 in MCL and Other Aggressive

MYC-Expressing Lymphomas

(A) miR-26a and miR-29 expression levels and MYC and EZH2 protein levels in MCL and other aggressive B-cell lymphoma cell lines. Cell lines were as follows:

Jeko-1, Mino, HBL-2, NCEB-1, REC-1, Z138c (MCL); Raji and Ramos (Burkitt lymphoma) SUDHL-4 (Su-4), SUDHL-10 (Su10) (transformed large B-cell

lymphoma); and SKW6.2 (EBV-associated lymphoma).

(B) miR-26a and miR-29 expression levels and MYC and EZH2 protein levels in primary MCL samples and other aggressive B-cell lymphoma samples. Samples

were as follows: P1 and P5 (aggressive MCL); P13 and P31–P35 (Burkitt lymphoma); P14, P24, P25, and P36, (high-grade transformed diffuse large B-cell

lymphomas). N1–N3, CD19 sorted normal B lymphocytes. miR-26a and miR-29 expression levels were measured by qRT-PCR and normalized to RNU44. MYC

and EZH2 expression levels were evaluated by western blot; in (A) and (B), the relative levels of MYC and EZH2 protein were measured by quantitative densi-

tometry and are indicated below each lane. Insert, correlation between MYC and EZH2 protein. r, correlation coefficient.

(C) Correlation between MYC/EZH2 protein expressions with miR-26a/miR-29a-c level in MCL and other aggressive B-cell lymphoma cell lines. r, correlation

coefficient.

(D) Correlation between MYC/EZH2 protein expressions with miR-26a/miR-29a-c level in primary MCL and other aggressive B-cell lymphoma samples.

r, correlation coefficient. Results are representative of three independent experiments or means ± SD from at least three biological replicates.
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The details of these analysis and procedures are described in the Supple-

mental Experimental Procedures.

qRT-PCR Analysis and miRNA Microarray Analysis

For qRT-PCR analysis, total RNA was isolated from cells with Trizol reagent

(Invitrogen). qRT-PCR was performed according to the manufacturer’s

instructions (Applied Biosystems).

Jeko-1 cells were treated with DZNep for 72 hr. Total RNA was extracted

and reverse transcribed into cDNA using the Megaplex Primer Pools by

TaqMan miRNA reverse transcription kit (Applied Biosystems). The cDNAs

were used to perform the microarray analysis using TaqMan Array miRNA

Cards according to the manufacturer’s instructions. Array data were analyzed

using DataAssist Software V3.0 (Applied Biosystems).

Tumorigenesis Assays

Z138c cells (5 3 106) were injected into flanks of NOD/SCID mice (n = 6 mice

per condition). Treatment was initiated when mean tumor volume was approx-

imately 200 mm3. Mice were treated intraperitoneally with dimethyl sulfoxide

(DMSO) (vehicle), 1 mg/kg of DZNep twice per week, and/or 30 mg/kg of

Vorinostat daily for 2 weeks. Tumor growth was measured by calipers every

3 days. Survival of the mice in all groups is represented by Kaplan-Meier

plot. All animal studies were performed in accordance with the Kansas

University Cancer Center Institutional Guidelines and Regulations for animal

care and under protocols approved by the Kansas University Medical Center

Institutional Animal Care and Use Committee.

Statistical Analysis

All of the analyses were completed with SPSS 11.0 software, with p < 0.05

considered statistically significant. Statistical analysis for cell proliferation

and tumor growth curve was carried out by an analysis of variance. A log-rank

(Mantel-Cox) test was used to test the Kaplan-Meier plot.

ACCESSION NUMBERS

The GEO database accession number for the microarray data is GSE40019.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and Supplemental Experimental

Procedures and can be found in this article online at http://dx.doi.org/10.1016/

j.ccr.2012.09.003.
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