
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

Spring 2-4-2013

Test Advising Framework Test Advising Framework

Yurong Wang
University of Nebraska-Lincoln, lucymagic.unl@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Computer Engineering Commons

Wang, Yurong, "Test Advising Framework" (2013). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 54.
https://digitalcommons.unl.edu/computerscidiss/54

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17271652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/54?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages

TEST ADVISING FRAMEWORK

by

Yurong Wang

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professors Matthew Dwyer and Sebastian Elbaum

Lincoln, Nebraska

January, 2013

TEST ADVISING FRAMEWORK

Yurong Wang, M. S.

University of Nebraska, 2013

Advisors: Matthew Dwyer and Sebastian Elbaum

Test cases are represented in various formats depending on the process, the technique or

the tool used to generate the tests. While different test case representations are necessary,

this diversity challenges us in comparing test cases and leveraging strengths among them -

a common test representation will help.

In this thesis, we define a new Test Case Language (TCL) that can be used to represent

test cases that vary in structure and are generated by multiple test generation frameworks.

We also present a methodology for transforming test cases of varying representations into a

common format where they can be matched and analyzed. With the common representation

in our test case description language, we define five advice functions to leverage the testing

strength from one type of tests to improve the effectiveness of other type(s) of tests. These

advice functions analyze test input values, method call sequences, or test oracles of one

source test suite to derive advice, and utilize the advice to amplify the effectiveness of

an original test suite. Our assessment shows that the amplified test suite derived from

the advice functions has improved values in terms of code coverage and mutant kill score

compared to the original test suite before the advice functions applied.

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisers, Dr. Matthew Dwyer and Dr. Sebastian

Elbaum. This work could not have been accomplished without their support and guidance.

Dr. Dwyer is very sincere and encouraging and Dr. Elbaum is so patient and understanding.

I want to thank them for the great effort they put in to guide me through my research path

from a very basic level. I am deeply grateful for the great opportunity to work both them.

I also want to thank Dr. Suzette Person for all she’s done to help me with this work.

She is so nice, thoughtful and always ready to help when I have a problem. I would also

like to thank my committee member, Dr. Myra Cohen for offering great suggestions and

taking time to read this thesis.

Friends in ESQuaReD helped so much during my course of study. I thank them for the

fruitful discussion on research ideas, the help to tackle a technical issue, and all the small

talks among girls. I also want to thank Shelley Everett, Deb Heckens, Charles Daniel and

Shea Svoboda for their generous help on the administrative tasks.

Finally, I want to thank my family for their continuous support throughout my course

of study.

iv

Contents

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivating Example . 2

1.2 Research Contributions . 7

1.3 Thesis Overview . 8

2 Related Work 9

2.1 Theoretical Models of Testing . 9

2.2 Test generation Approaches and Tools . 11

2.3 Test Case Representations . 13

2.4 Test Advice . 16

2.5 Test evaluation Tools . 18

3 A Framework for Representing Tests 20

3.1 A Common Test Representation . 22

3.1.1 TCL Syntax . 24

v

3.2 Transforming Test Cases To the Framework 27

3.2.1 Manual Tests to TCL . 27

3.2.2 JUnit Tests in TCL . 30

3.2.3 Differential Unit Test in TCL . 32

3.2.4 Abstract JPF Tests in TCL . 34

3.2.5 Load Tests in TCL . 36

3.3 Implementation . 38

3.4 Assessing the TCL . 43

4 Test Advice 45

4.1 Test Advice Functions . 47

4.2 A Family of Advice Functions . 48

4.2.1 Advice on Test Input Values . 49

4.2.1.1 Motivation . 50

4.2.1.2 Definitions . 50

4.2.1.3 From Hand-Coded Tests to Randomly Generated Tests . . 52

4.2.1.4 From Systematically Generated Tests to Randomly Gen-

erated Tests . 54

4.2.2 Test Method Sequence Advice . 56

4.2.2.1 Motivation . 56

4.2.2.2 Definitions . 56

4.2.2.3 Combining System-level Random Concrete Execution Se-

quences with Unit-level Symbolic Execution Sequences . 57

4.2.3 Advice on Test Oracles . 61

4.2.3.1 Motivation . 61

4.2.3.2 Definition . 61

vi

4.2.3.3 Oracle Advice from Hand-Coded Tests to Others 62

5 Evaluation 66

5.1 Research Questions . 66

5.2 Artifacts . 67

5.3 Input Advice . 67

5.3.1 From Hand-Coded Tests to Randomly Generated Tests 67

5.3.1.1 Experimental Design . 68

5.3.1.2 Results . 69

5.3.2 From Systematically Generated Tests to Randomly Generated Tests 73

5.3.2.1 Experiment Design . 73

5.3.2.2 Results . 74

5.3.2.3 Synthetic Program Snippet 76

5.3.3 Discussion on Input Advice . 77

5.4 Sequence Advice . 78

5.4.1 Combining System-level Random Concrete Execution Sequences

with Unit-level Symbolic Execution Sequences 78

5.4.1.1 Experimental Design . 79

5.4.1.2 Results . 80

5.4.1.3 Discussion on Combining Random and Systematic Ap-

proaches . 83

5.5 Oracle Advice . 84

5.5.1 Oracle Advice from Hand-Coded Tests to Others 84

5.5.1.1 Experimental Procedure 85

5.5.1.2 Results . 86

5.6 Threats to Validity . 88

vii

6 Conclusions and Future Work 89

Bibliography 91

viii

List of Figures

1.1 SUT . 3

1.2 Developer’s Test in Scripting Language . 3

1.3 Test generated with Randoop . 4

1.4 Test “specs” generated with SPF . 5

3.1 TCL syntax . 24

3.2 Test example for Invoke Action . 25

3.3 Test example for Write Action . 26

3.4 Soda Vending Machine Test Case . 28

3.5 Example to Show How TCL Represents the JUnit Tests 30

3.6 Example to Show How TCL Represents the DUTs (pre-state) 32

3.7 Example to Show How TCL Represents the DUTs (post-state) 33

3.8 Example to Show How TCL Represents Abstract Test Cases - source code . . . 35

3.9 Example to Show How TCL Represents Abstract Test Cases - path constraint . 35

3.10 Soda Vending Machine Load Test . 36

3.11 Randoop Test with try/catch Block . 39

3.12 Hand-code tests translated from JML with if branch 40

4.1 Test Advising Approach . 46

4.2 Test Advices based on Test Advising Framework 49

ix

4.3 Example to demonstrate the importance of input value selection 50

4.4 Process to Generate Randoop Tests with and without input advice from Hand-

coded Tests . 53

4.5 Relationship between trandoop in Trandoop and Tamp in Tamp 58

4.6 Process to Generate Amplified Test Suite using Method Sequence Advice . . . 60

4.7 Implementation Process of the Oracle Advice from hand-coded tests to others . 64

4.8 Example To Show Oracle Advice Generated By Oracle Analyzer 64

5.1 Example of Specific String Needed in Randoop’s Test Generation 70

5.2 Example to demonstrate the importance of input values 75

5.3 Example to demonstrate the importance of input values 77

5.4 Example target method with NullPointerException 83

5.5 Example to show the randomness in mutant score that exists in Trandoop 87

x

List of Tables

3.1 Decomposed Soda Vending Machine Test Case 28

3.2 Soda Vending Machine Test Case in TCL . 29

3.3 Decomposed JUnit Test Case . 31

3.4 JUnit Test Case in TCL . 31

3.5 Decomposed DUT . 33

3.6 Differential Unit Tests in TCL . 34

3.7 Decomposed Abstract JPF Test Case . 35

3.8 JPF Abstract Tests in TCL . 35

3.9 Decomposed Soda Vending Machine Load Test 37

3.10 Soda Vending Machine Load Test in TCL . 37

5.1 Mutant Kill Score Comparison between Randoop (Torig) and Randoop with

Input Advice (Tamp). 71

5.2 Coverage of Randoop (Torig) and Randoop with Input Advice (Tamp). 72

5.3 Coverage Comparison between Randoop and Randoop with JPF Input Advice . 75

5.4 Mutant Detection Capability between Randoop and Randoop with JPF Input

Advice . 75

5.5 Profile of Randoop and JPF Test Suites Generated 80

xi

5.6 Coverage Comparison between SPF (Torig) and SPF with Sequence Advice

(Tamp). 81

5.7 Mutant Score Comparison between SPF (Torig) and SPF with Sequence Advice

(Tamp). 82

5.8 Mutant Detection Capability of RandoopTests and Tamp with the Oracle from

Hand-coded Tests . 87

1

Chapter 1

Introduction

Tests come in many forms, they have varied goals, and they encode valuable information

from different stakeholders and development artifacts. A requirements engineer may care-

fully specify a set of acceptance tests for a system during its initial inception. A developer

implementing a tricky algorithm may write some throw-away tests to exercise behavior she

is not confident in. A test engineer may seek to craft a suite of tests that provide compre-

hensive coverage of a design model or specification [68, 48] or implementation [80]. A

system engineer may develop end-to-end tests to expose system performance or resource

consumption [20]. When viewed broadly, the space of all such tests constitute a rich body

of information about how a system should function.

When performed manually, such testing activities result in test descriptions that detail

how to establish a state, i.e., the test input, in which the system under test (SUT) is executed

and how the resulting state should be judged, i.e., the test oracle [67]. Tests might be

expressed using domain specific languages [71], as code using special libraries [7], or using

custom encodings of input and output data [23]. While this diversity may enable different

stakeholders to contribute to the overall testing effort, differences in test description present

an obstacle to extracting information from a population of tests.

2

Automated test case generation techniques can provide support to some of those efforts.

Given the definition of system inputs, random generation of values has proven effective for

certain systems, e.g., [53, 52, 76, 5, 14, 29, 34, 81]. Analysis of program source code can

be applied to generate tests that cover unlikely input scenarios, e.g., [63, 73, 79]. If design

models or specifications are available, tests can be generated that exercise a system based

on that design [9, 38]. Such test generators provide an increasingly important capability

that complements manual testing. While automated test generators can produce tests that

humans might not produce or do so more efficiently, limitations in test generator interfaces

present an obstacle to customizing the test generation process.

We hypothesize that information captured in different types of tests and test generators

is complementary. Furthermore, if the highlighted obstacles are overcome, then that in-

formation could be extracted and applied in order to generate more effective tests. In this

thesis, we explore an approach that transforms diverse tests into a common encoding, ex-

tracts information from those test encodings, and applies that information to either directly

improve existing tests or to enhance the capabilities of test generators.

1.1 Motivating Example

Consider the code in Figure 1.1 which contains excerpts from a Binary Search Tree class

with a series of methods including insert, delete, and balance, and the three kinds

of tests that exercise that class in Figures 3-5. These tests come from different sources,

have different representations, and present different tradeoffs.

The test in Figure 1.2, was designed by a tester and implemented in some scripting

language. The test generates, through a series of insertions with deliberately chosen values,

a tree with nodes only on the right, a corner case of interest to the tester. More interesting is

that the test includes not only a check on the tree height against a constant, but also a more

3

public class Binarytree {
stat ic class Node {

Node l e f t ; Node right ; int value ;
public Node(int value) {

this . value = value ;
} }
public void inser t (Node node , int value) {

i f (value < node . value) {
i f (node . l e f t != null) {

inser t (node . le f t , value) ;
} else node . l e f t = new Node(value) ;

} else i f (value > node . value) {
i f (node . r ight != null) {

. . .
} }
public void delete (Node node , int value) { . . .}

public void balance (Node node) { . . .}
}

Figure 1.1: SUT

general check that uses an invariant that characterizes the relationship between a node and

its children (this invariant is reused across many of the hand-coded tests).

create BST root with value 0;
inser t node in BST with value 1;
inser t node in BST with value 2;
inser t node in BST with value 3;
inser t node in BST with value 4;

check(BST height = 4);

For each node in BST
i f Left node exis ts then

check (Left node value < Node value)
i f Right node exis ts then

check (Right node value >= Node value)

Figure 1.2: Developer’s Test in Scripting Language

The tests in Figure 1.3 were generated by an automated tool like Randoop [53] that,

given a class, will invoke its public methods using a set of predefined values or values

4

returned by previous method calls, and use some form of regression oracle. The tool is

somewhat limited by its pool of default values(e.g, 0,1, -1, 10, 100 for integer values), and

limited by the primitive nature of its oracle, but it can quickly explore more and longer

sequences than those often implemented by the tester. These sequences can cover a lot of

functionality and also lead to the creation of more complex heap structures.

public void Test1 () throws Throwable{
Node rootnode = new Node(0) ;
inser t (rootnode , −1);
inser t (rootnode , 1);
inser t (rootnode , 10);
inser t (rootnode , 100);
balance (rootnode) ;
assertTrue (rootnode . value , 0);

}
public void Test2 () throws Throwable{

Node rootnode = new Node(0) ;
inser t (rootnode , 1);
inser t (rootnode , −1);
inser t (rootnode , 10);
inser t (rootnode , 100);
delete (rootnode , −1);
delete (rootnode , 100);
delete (rootnode , 0);
assertTrue (rootnode . value , 1);

}

Figure 1.3: Test generated with Randoop

Figure 1.4 introduces a more abstract form of tests that represents partitions in the

input space of the insert method, each leading to the execution of a different path in

the method. This kind of test, often produced by tools that operate based on some form of

symbolic execution like SPF [73], is concretized by solving the generated constraints. So,

for example, solving PC 2 will lead to the creation of a new node to the left of the single

existing node. The most valuable part of these tests is that each test covers a unique path

through the code and (ideally) all paths are covered. The exhaustive nature of the test suite

5

leads to the discovery of faults that may be missed by the other approaches (PC 1 detect a

fault when trying to insert on an empty tree).

/ / target inser t method
PC 1: node = null

PC 2: node . value == 0 &&
node . l e f t = null &&
node . r ight = null &&
value < node . value

PC 3: node . value == 0 &&
node . l e f t = null &&
node . r ight = null &&
value == node . value

PC 4: node . value == 0 &&
node . l e f t = null &&
node . r ight = null &&
value > node . value

. . .

Figure 1.4: Test “specs” generated with SPF

Although the code excerpt and the test sample is small, it illustrates the diversity we

find across tests generated with different goals, information, and tools. What is perhaps

less evident given the diversity of formats, are the opportunities to improve these tests by

leveraging each other.

Consider the list of exhaustive tests generated by SPF from which we showed just three

in Figure 1.4. Although these tests may in practice cover most paths, they can only expose

faults that raise exceptions. The lack of a more strict oracle often renders these tests unable

to detect many faults residing in paths that are traversed. For example, the lack of an oracle

associated with PC 3 means that when attempting to insert a node with an existing value

and the node is not created, the test does not report a fault. Now, if the invariant from the

manual test in Figure 1.2 would be incorporated at the end of the test instantiated from

6

PC 3, then the fault would be found. In this case, we say that an oracle advice from the

manual test could benefit the SPF test.

Now consider the Randoop test in Figure 1.3. These tests are limited by the pool of

integer values that the tool uses to invoke the insertmethod. Since the code is not adding

new nodes when values already exist in the tree, Randoop cannot generate trees with more

than 5 elements, which we assume would be necessary to reveal a fault in the balance

method. This problem could be overcome if the values from the SPF instantiated tests,

which cover all paths in insert, or the values used by the tester in the scripted test are

used to enrich the initial pool of integer values of Randoop. We call this an input advice,

which in this case would help Randoop to generate more and richer sequences, leading to

complex tree structures.

Last, consider the rich sequences that are explored by the Randoop tests in Figure 1.3.

In the second test, a single sequence builds a tree and explores three different removals (of

the left node, right node, and root node). Generating a similar test sequence with a tool like

SPF would be extremely costly (in the order 5 hours for sequences of length 5) as it would

require the exploration of large program space until a tree of that size could be built. In this

case, the SPF tests could leverage such sequence to act as a test setup. Similarly, we note

that tests developed by the tester could provide valuable sequences for Randoop and SPF

tests alike. In this case the sequence consists of just creating the root node, but it is easy

to imagine more complex setups such as those involving method calls that follow specific

protocols where automatic test case generation mechanisms would struggle. Such cases are

instances of what we call a sequence advice.

7

1.2 Research Contributions

In this thesis, we begin to address the limitations that are introduced by diversity in test

representations by defining a new test case language to establish a common representation

for test cases generated by multiple techniques and by illustrate how the common represen-

tation can be used to create synergy between testing techniques. We first show how our test

case language can be used to represent test cases that vary in structure and are generated

by multiple test generation frameworks. We also present a methodology for automating the

transformation of test cases in varying representations into a common format where they

can be matched and analyzed. We then illustrate how the strengths of one test suite, stored

in the common format, can be leveraged to help improve the effectiveness of other types of

test through the presentation of four test advice functions. These advice functions analyze

test input values, method call sequences, and test oracles for a source test suite to derive

and utilize the advice to amplify the effectiveness of another test suite. Our assessment

shows that the amplified test suite derived from the advice functions has improved values

in terms of code coverage and mutant kill score compared to the original test suite before

the advice functions applied.

The main contributions of our work are:

• We define a test case language (TCL) for representing test cases in a canonical repre-

sentation. The grammar captures the three components of a test case: Invoke action,

Write action and Decision action. We demonstrate the applicability of the grammar

through a series of examples covering test cases of varying formats.

• We present a methodology to automatically transform test cases into the grammar

and implement the transformation process for three different types of tests.

8

• We define four advice functions to operate on the common test representation of test

suites. Each advice function is evaluated and results show that the advice functions

do bring value to the amplified test suite by increasing the code coverage or mutant

kill score.

1.3 Thesis Overview

The rest of this thesis is organized as follows. We discuss in Chapter 2 the related work

in software testing functional models, test representations, other advising frameworks, ap-

proaches and tools for test generation and evaluation. In Chapter 3, we define the test case

language used for the common representation of tests and demonstrate the applicability of

the test case language through a series of examples. We define four advice functions in

Chapter 4 operating on various types of tests represented in the canonical representation

and Chapter 5 performs evaluation on each of the four advice functions. Finally, in Chapter

6 we conclude the thesis.

Special Thanks A significant part of this thesis material comes from a conference paper

submission with Dr. Suzette Person, Dr. Sebastian Elbaum, and Dr. Matthew Dwyer. I

greatly appreciate the tremendous effort they have put in for this piece of work and the

paper submission. There could have never been a paper without their generous support.

9

Chapter 2

Related Work

In this chapter, we discuss several avenues of work related to our test advising frame-

work. We describe related work in theoretical models of testing, the main test generation

approaches and tools, alternative test case representations, other existing advising frame-

works, and the evaluation tools utilized in our work.

2.1 Theoretical Models of Testing

Informal testing models have existed since the first program was tested, but early work by

the testing community recognized the need of more formal testing models to more pre-

cisely describe the testing problem and its key components. In 1975, Goodenough and

Gerhart first attempted to more formally define the software testing problem by providing

a theoretical foundation for testing, and characterizing a test data selection strategy [30].

In their theory, the definition of an ideal test is dependent on the program F and the in-

put domain D. Let F be a program, D be its input domain, OK(d) denoting the result

of executing F with input d ∈ D, T be a subset of D, T is considered as an ideal test if

OK(t),∀t ∈ T ⇒ OK(d),∀d ∈ D. T is successful iff ∀t ∈ T ⇒ OK(d),∀d ∈ D. Two

10

properties (reliable and valid) were brought up to help define the test selection criteria. A

criteria C is considered as ideal if it is both reliable and valid. By reliable, it means the

tests selected by C have consistent results (they all pass or they all fail). By valid, it means

the tests selected by C can reveal the error if there is one in the program F .

Later on, both the work by Weyuker and Ostrand [77] and the theory by Gourlay [31]

refined Goodenough and Gerhart’s framework. Weyuker and Ostrand brought up the con-

cepts of a uniformly ideal test selection criteria and a revealing subdomain. A criteria C

is considered uniformly ideal if C is both uniformly valid and uniformly reliable. Goode-

nough and Gerhart defined the concepts of valid and reliable. And a test selection criteria

C is considered uniformly valid if C is valid for all programs and considered uniformly

reliable if C is reliable for all programs. This is to address the flaw in Goodenough and

Gerhart’s work of having the definition of valid and reliable restricted to the scope of a

single program and specification. A subdomain S is a subset of the input domain D. A

subdomain S is revealing if the output of an input in S is incorrect, then all test sets which

satisfy C is also incorrect.

In Gourlay’s theory, a testing system is defined with respect to a set of arbitrary pro-

grams, specifications and tests. Let P be the set of all programs, S be the set of all spec-

ifications, T be the set of all tests, p okt s denoting that test t performed on program p

is judged successful by specification s, p corr s denoting the fact that p is correct with

respect to s, a testing system is defined as a collection of < P, S, T, corr, ok >, where

corr ⊆ P × S, ok ⊆ T × P × S, and ∀p ∀s ∀t (p corr s⇒ p okt s).

Staats et al. in [67] extended Gourlay’s Framework to include oracles into the mix.

They argue that the important oracle aspect of testing has been largely overlooked in all

previous foundational work. Staats et al. refined Gourlay’s Framework with two major

changes. They replaced the predicate ok with the set of O of test oracles, and also added a

predicate defining correctness of tests in T . A testing system is defined as a collection of

11

< P, S, T,O, corr, corrt >, where corr ⊆ P × S, corrt ⊆ T × P × S, and ∀p ∈ P, ∀s ∈

S, corr(p, s)⇒ ∀t ∈ T corrt(t, p, s).

All the approaches listed above provide fundamental support for the research work

in software testing. However, they all define a test case based on other artifacts like the

programs and the specifications. This can be problematic since independent of the SUT,

we cannot compare tests or use tests based on these definitions. In the work [30, 31, 77],

a test is considered as data and as an entity related to programs and specifications, and in

[67] a test is defined as a sequence of inputs accepted by some program. We argue that all

these functional models are too vague and do not specify the components a test. We will

explore a novel approach in Chapter 3 which focuses on the tests, exploring the fundamental

elements in the tests independent of a particular implementation of the SUT. This provides

us a clearer view of what the tests are actually doing, and leads to opportunities to enhance

the elements involved in the tests.

2.2 Test generation Approaches and Tools

There are two directions for software testing - automated and manual testing [40]. We

discuss in this section both manual testing and two alternatives for automated testing.

Manual Approach Even though it is considered labor intensive and expensive [22, 41],

manual testing is still a well-known and widely used testing technique. In manual testing,

programmers embed their understanding of the SUT inside the tests they write, e.g., what

values to use for method invocation, which methods to call or which attributes to check

after the test execution. This knowledge is hard for the automated techniques to obtain, and

also makes the manual tests valuable to have.

12

Random Approach In random testing, test cases are sampled from the input domain

randomly [37]. Although random testing is considered as a naı̈ve approach [50], it has

successfully detected defects in some widely used applications like Unix utilities [47],

Haskell programs [15]. Random testing tools are easier to implement and can generate a

large number of tests within a short period of time. However, being entirely random, they

can produce many illegal or equivalent test inputs. They cannot guarantee any coverage

goal while exercising a random sample of the total input space, and they may also be

challenged to cover sections of code guarded by predicates that cannot be easily traversed

through random values. Many tools have been developed based on the idea of random

testing (e.g., [5, 14, 17, 18, 25, 29, 53, 65]). Among these, Randoop [53] is the one that

we use in this thesis. It utilizes a feedback-directed random test generation technique.

Randoop generates unit tests by generating sequences of methods and constructors for the

SUT, executing the generated sequences and discarding any illegal sequences. Studies have

shown Randoop is capable of generating cost-effective tests [53].

Systematic Approach Systematic testing techniques generate test inputs up to a size

bound. Different from random testing, systematic testing enumerates all inputs within the

given bound deterministically. Being systematic and exhaustive, it has consistent coverage

of the SUT and ensures the correctness of the input space explored. However, systematic

testing suffers from the lack of scalability and tends to focus on a part of the state space

with less diverse test inputs. One alternative to systematic testing is a symbolic-execution

based approach. In symbolic execution, path constraints are collected based on symbolic

inputs used for method parameters. Concrete input parameters derived through solving the

path constraints are in turn used to create concrete test cases. It has been implemented in

tools like JPF [72], Symstra [79], and XRT [33], jCUTE [63]. JPF is widely used to test

mission critical applications at NASA. In Chapter 4 and Chapter 5, we use SPF [55, 56] for

13

test generation in the systematic fashion.

Test cases generated through different approaches have their own strengths and weak-

nesses. In Chapter 4 and Chapter 5, we explore tests generated with all 3 different ap-

proaches listed above. With the understanding of the advantages and disadvantages of each

type of tests, we leverage the information from one type of tests to provide advice to other

type(s) of tests.

2.3 Test Case Representations

Tests can take on various forms depending on the process, the technique or the tool used

to generate the tests. We discuss in this section a few of the most commonly used test

representations and how they are used or generated in testing software.

Category Partition Method The category-partition method [51] is a specification-based

functional testing technique. It can derive test specification based on analysis of the func-

tional specification of the SUT, and tests in textual descriptions can also be transformed

from the test specification. The generated tests require manual effort to be executed and

only specify the potential test inputs and setups. Ostrand et al. in [4] attempted to au-

tomate the testing process and added test results into the test representation. A test case

now include both test input and expected results. Although subsequent research effort in

the literature built on the category partition method (e.g., [4, 12, 44]), there is no uniform

representation for the tests generated. For example, test inputs can be parameter values or

scripts running Unix commands, etc.

Tests in xUnit Framework xUnit refers to a group of well-known testing frameworks.

The concrete instances include JUnit for Java, CppUnit for C++, NUnit for .NET, etc. A

14

number of basic components are shared among all xUnit frameworks with varying imple-

mentation details. For example, they all have the component of test suite which is composed

of a number of test cases, and also the assertion component is used by all frameworks to

verify the execution results of tests. The xUnit frameworks have made it easy for the

automated test generation process. For example, a number of tools output test suites in

JUnit framework like JCrasher [17], Randoop [53], JPF-symbc [55, 56] with SymbolicSe-

quenceListener, and Symstra [79]. The tests in xUnit frameworks are rather standard. They

are represented as source code which exercise the implementation of the SUT. However, it

is not clearly stated what a test is composed of. For example, we can only infer that the

assertion statements are the oracles in the tests and all other statements are used to set up

the test input.

Tests in Scripting Languages A test script has a list of instructions which exercises the

functions in the SUT to check whether they are implemented correctly. For example, the

test input generated by category partition method we discussed above can be specified in

shell scripts running Unix commands. Test scripts are also often used to test GUI-based

applications (e.g., [11, 27, 32]). GUI testing is considered tedious and labor intensive. Thus

test scripts are developed to help automate the process and can be written in scripting lan-

guages like JavaScript or VBScript. There are also commercial software testing automation

tools available for composing test scripts like HP Quick Test Professional (QTP) and Bor-

land SilkTest. The instructions contained in the test script captures in general the actions

to perform on the SUT and the expected results after performing the specified actions. It is

rather similar to the tests in xUnit frameworks in terms of the representation, but all written

in different languages.

15

JMLUnit Tests JMLUnit [13] has its test cases represented as part of the program spec-

ification written in JML [43]. JML is a formal language specification which can define

invariants for classes, pre- and post-conditions for methods. JMLUnit takes advantage of

the in-line JML specification developed for the SUT and performs testing at runtime by

checking concrete executions against the in-line specifications. Tests, in this case, are in-

strumented into the implementation of the SUT based on the rich inline specification. Thus

it is hard to identify what the test is composed of and hard for other techniques to commu-

nicate with the JMLUnit tests.

Tests As Constraints This is an abstract type of tests, in which the input values are

specified as constraints. SPF [55, 56] generates tests represented in path constraints with

each path constraint represents an execution path of the SUT. Schulte et al. [70] also works

at the abstract level with path constraints to generate tests. Each abstract test is represented

as a path constraint generated, which captures the relationship constraints that parameters

involved need to satisfy.

Parameterized Unit Test In parametric test cases, parameters are allowed in the tests in

order to be more general and expressive. Different input values can be assigned leading

the test case on a different path of the program. A number of research effort has integrated

with the concept of parameterized unit test. The commonly used JUnit framework starts

to support parameterized test with @RunWith, @Parameter and @Parameters annotations.

Schulte et al. [70] works with parameterized unit tests and path constraints for method

under test to generate concrete input values for tests. The framework implemented by

Zeller et al. [26] supports the generation of parameterized unit tests.

Ad-hoc Under many occasions, every practitioner may have their own adaptation to bet-

ter fit their domain to skills. Differential Unit Tests (DUT) are represented as a pair (pre-

16

state, post-state) of XML files in [23]. The pre-state of the DUT captures the program state

before the method invocation and the post-state captures the program state after. Systems

built in [6, 66] target the database systems and thus output tests in SQL queries. Siena is a

Scalable Internet Event Notification Architecture [10] and the tests available in the Subject

Infrastructure Repository (SIR) [19, 60] are represented in shell scripts. Each specific kind

here takes on its own representation suitable to its own domain.

Given the variety of test representations used in the literature, we argue in Chapter

3 about the benefits of unifying the representations in testing literature and present how test

cases in various formats can be represented uniformly and the benefits of having the same

canonical representation.

2.4 Test Advice

Even though not explicitly called advice, researchers in related work aim to improve a

technique or a test generation tool by leveraging information from other sources. Given

a test, we can extract three different and important pieces of advice including the method

input arguments used to invoke methods, the method sequence used to set up the program

state, and the oracles utilized to check the correctness of the program state. We will discuss

recent research work on each aspect.

Method Input Values We identified a few pieces of work, which involves getting “better”

tests through better input selection. Robinson et al. collected the input values used in

the source code to guide a random test generation tool to get a richer set of tests [59].

In a different direction, in PUT (Parametrized Unit Test), parameterizable arguments are

allowed in test methods in order to improve expressiveness [70]. Often, symbolic execution

17

and constraint solving are utilized to provide “good” input values for the parametrized test

methods.

Test Method Sequence Palulu [3] infers a call sequence model from a sample program

execution and use it to guide the test generation process. Palus [82] enriches the call se-

quence model with method argument constraints and also take advice from method de-

pendencies extracted from a static analysis of the SUT, in order to guide the subsequent

test generation process. MSeqGen [69] mines the available source code from open source

projects to get method sequences which are considered useful for random or systematic test

generation tools. The difference between the two approaches is that the method sequence

advice used in MSeqGen includes both the list of methods to be invoked and the input argu-

ments used for these method invocation. Palus abstracts the method sequence models from

the sample code and only retrieving the advice on the list of methods to be used while input

values used for the method calls are still picked randomly at test generation time. RecGen

[83] uses a static analysis to identify the relevant methods and uses the information to guide

the test generation process.

Test Oracles The oracles used in automated tests have always been a big challenge [8].

There have been a few strategies employed in the literature to address this challenge like

Decision Table, Regression Tester [64]. A number of tools utilize the regression strategy

for the oracles used in generated tests [23, 53, 78], where version N ′s behavior of the SUT

is used to validate the behavior of version N +1. Although they all use regression strategy,

the tools differ in how they perform it. Randoop checks the variable values which capture

the return values of method calls [53]; Carving checks fields [23]; and Orstra checks public

method return values [78]. Also, Randoop leverages the API contracts information while

generating tests by checking a small set of contracts that the SUT should follow, includ-

18

ing Reflexivity of equality, and Symmetry of equality for example. By default, JPF checks

whether the SUT has unhandled exceptions, and catches some generic program properties

like “ArithmeticException: division by zero”. All these works take advantage of the com-

monly accepted programming contracts to provide some oracle support in the generated

tests. An alternative to this direction is utilized in JMLUnit [13]. JMLUnit leverages infor-

mation from the formal specification for the SUT and use it as the oracles while performing

runtime checks. Landhauser et al. [42] discussed the opportunity of reusing oracles from

other tests by cloning, but they also pointed out failing tests can be derived when cloning

the oracles.

In a similar fashion to all the directions of advice, in Chapter 4 and Chapter 5 we

also explore the potential of advice extracted from an existing type of tests based on the

unifying representation of the test cases.

2.5 Test evaluation Tools

There are four major test evaluation directions in the literature - code coverage, mutant kill

score, manual fault seeding, and evaluating program with real faults in them which were

discovered in later versions. In this section, we focus on the first two since we will use

them later in Chapter 5 of the thesis. We discuss in the following sections the most widely

used tools for the first two test evaluation metrics.

Structual Coverage Measures Code coverage is a structural software testing metric

widely used in software testing to evaluate the effectiveness of a test suite. There are a

variety of ways to measure code coverage, e.g., statement coverage, predicate coverage,

path coverage, function coverage [50, 58, 80]. The basic intuition behind code coverage

19

is that the code needs to be executed before the bug can be found. And the more code

covered through testing, the higher probability of revealing underlying defects. A number

of coverage based testing tools have been developed (e.g., [16, 24, 57]). Cobertura [16] is

one of the commonly used tool in the evaluation of software testing techniques. Cobertura

instruments the Java byte-code after it has been compiled. It displays in a HTML or XML

format the statement and predicate coverage for each class, each package and the whole

SUT. It also provides detailed information about which lines or predicates are covered or

not covered. We use Cobertura as a test evaluation tool in our assessment in Chapter 5.

Mutant Detection Capability Measures In mutation testing, one small change is seeded

in the SUT at a time which generates one mutant of the original SUT. Typical changes

include replacing a subtraction operator with an addition operator, changing values of con-

stants and literals, removing a method call, etc. After the mutants are generated, all tests

are run on the mutated version of the SUT. If at least one test fails, the mutant is said to

be killed. If all tests pass, the mutant is said to be alive. Unless all mutants are killed, the

test suite is considered inadequate and more enhancement needs to be made. Andrews et

al. [2] concluded that mutation testing generates mutants similar to real software defects

and can provide trustworthy results. A number of mutation testing tools have been devel-

oped for Java (e.g., [39, 45, 49, 61]). Among these, Javalanche [61] is a recent tool which

aims to address the efficiency challenge of mutation testing with fully automated support.

They attempt to perform efficient mutation testing through manipulating bytecode to avoid

recompilation cost, leverage coverage data to execute the subset of tests which exercise the

mutant, reduce the probability of equivalent mutants, etc. It is shown in the study [61] that

Javalanche is efficient with large programs. In our study, we use Javalanche as the mutation

testing tool to evaluate the effectiveness of the test suites.

20

Chapter 3

A Framework for Representing Tests

Software engineers generate a diversity of tests to validate their software. This diversity

manifests along multiple dimensions. Diversity manifests in what type of test is generated.

For example, testers require functional tests to validate features and non-functional tests to

validate performance attributes. Diversity manifests in the process followed and the tech-

niques employed to generate the tests cases. For example, some testing activities such as

input generation may be performed automatically while others may require manual effort

to incorporate test oracles. Diversity manifests in when the tests cases are generated, which

also may have an impact on their granularity. For example, unit tests may be generated

for target classes as they are developed, while system tests may be developed throughout

the project and executed towards the end of each complete product cycle. Even the per-

sonnel performing testing, with their domain knowledge and preferences, insert a certain

level of diversity into the testing process. These different types of testing diversity are nec-

essary to validate complex software from multiple perspectives and at different stages of

development.

Yet, for all its strengths, there is an aspect of test diversity that is not only unnecessary

but limiting: the diversity in test case representation.

21

Diversity in representation is limiting in at least two ways. First, the knowledge em-

bedded in the tests is unnecessarily constrained to a specific technique or tool for which it

was originally designed. For example, JMLUnit [13] is an automatic unit test generation

tool based on JML (Java Modelling Language) specifications. It uses the in-line specifi-

cation statements written in JML to derive tests performing run-time assertion checking

on the SUT. This rich in-line specification, however, cannot be easily communicated to

other techniques. Furthermore, with the number of emerging testing techniques and tools,

lacking a common representation limits the comparison across techniques. For example,

the Differential Unit Test (DUT) [23] carved from system tests are cost effective at testing

changed code. However, their custom representation in XML files makes it hard for other

techniques to leverage their detailed state information. Other common types of tests in-

clude manual tests (which often lack a common format), load tests (a non-functional type),

and JPF’s abstract tests represented as path constraints [55, 56]. Also, test case represen-

tation diversity makes it harder to develop synergy between existing testing approaches,

techniques, and tools. In Chapter 4 and Chapter 5 of the thesis, we will illustrate the po-

tential of having such a common test representation, through a family of testing advice

that leverage information from one type of tests to improve the coverage or fault detection

power of other types of tests.

Second, diversity in representation makes it costly to maintain large and diverse test

suites as tests may require very specific support to evolve with the program in order to

remain relevant. As shown by Orso et al. [54], test suites rarely remain the same once

they are created. Test suites evolve in a number of ways, modifying method arguments,

changing method-call sequences, or adding better assertions for example. A uniform test

representation will facilitate the test repair techniques as they would not need to consider

various representations.

22

We start this chapter with the definition of a test case representation that is meant to

unify the format diversity in tests. Then we explore the applicability of the test representa-

tion by looking at different types of tests and how they are transformed into the common

test representation format. We also talk about the implementation of the framework and

the transformation of various types of tests into the framework. Finally, we discuss the

robustness of the current implementation of the framework.

3.1 A Common Test Representation

It is relatively common in the testing literature (e.g., [52, 4, 74]) to define or assume that a

test case is a pair, (i, e), of inputs i that are used to exercise the software under test (SUT)

and expected outputs e that are compared against the outcome of the SUT to judge its

correctness. The functional models of testing discussed in Section 2.1 provide additional

informal definitions of a test and how it relates to a program, its specifications, and oracles.

However, the definitions still remain very general inferring the definition of a test from its

relationship to programs and specifications.

By themselves, these notions of what constitutes a test case are ambiguous, incomplete,

and not general enough. They are ambiguous in that representing a test case in terms

of inputs and outputs can be done in many ways. For example, it is not clear whether

a composite input should be treated as one or many inputs, or how the expected outputs

should be compared against the actual program outputs. They are incomplete in that they

do not include critical aspects of a test case like the setup of the context for the SUT to be

executed or the fact that multiple inputs may need to be provided at different points during

the execution. They are not general enough in that they cannot capture many common types

of potential tests like those for non-functional tests that may not rely on an expected output

but rather on a performance measure.

23

The ambiguity and incompleteness of the notations in the literature for what a test case

is may partially result from the diversity in the representation of the tests. The representa-

tion chosen to specify a test case depends on the several factors, including but not limited

to characteristics of the SUT, availability of testing tools, and capabilities of the testing

organization. In Section 2.3, we talked about various test representations in the literature,

e.g, source code in xUnit frameworks, QTP test scripts, SQL statement, abstract path con-

straints. For the purposes of comparing and leveraging tests’ diverse strengths, however,

these representations are not sufficient.

We argue that it is possible to transform test cases into a common representation based

on a small number of core components, regardless of how a test case is represented initially.

Rather than centering on the inputs and outputs of a test case, our definition of a test (T), is

based on three types of interactions between the test case and the SUT: 1) Invoke actions ,

2) Write actions, and 3) Decision actions. These three sets of core actions can be sequenced

to effectively describe a rich set of interactions between a test and its corresponding SUT,

and cover a large spectrum of test types. Invoke actions are used to represent the functions

invoked to setup the SUT context and the calls to the SUT. Write actions represent an update

to the SUT state by the test case. Decision actions represent a set of comparisons between

actual and expected values to judge if the test has passed or failed. This approach is capable

of not only capturing the traditional notion of a test case, encoding the inputs and expected

outputs of a test case as actions, but it also supports an expanded view of a test case by

supporting a more detailed specification of a test case, and by encoding the relative order

of the actions in a test case.

24

T ::= tID A IA A

A ::= (IA | WA | DA)
∗

IA ::= funcSig

WA ::= location “←” vWrite

DA ::= (fCMP (vExpected,vActual))+

funcSig ::= fName “(” fArgTypeList “)” “:” fRetType

location ::= varName | freshName

vWrite ::= expr | constraint
vExpected ::= expr

vActual ::= expr

Figure 3.1: TCL syntax

3.1.1 TCL Syntax

Given the procedural nature of many software test cases, we define each test as a sequence

of test actions. These actions represent updates to the program state, calls to functions in

the system under test, and queries of the resulting state to render a validation judge. Figure

3.1 gives the TCL syntax for encoding test cases; literals are enclosed in quotation marks,

regular expression notation is used in productions, and named non-terminals are included

to enhance the readability of the syntax.

A test, T , is composed of a unique identifier (tID) and a sequence of actions, A, where

at least one action is an invoke action (IA) representing a call to the method (function)

under test. A call to the method under test may occur anywhere in the sequence of actions.

An invoke action is specified by a function signature defining the name of the function

invoked by the test (fName), a list of the function’s argument types (fArgTypeList), and

the function return type (fRetType). For example, Figure 3.2 shows a Randoop test for

Binary Search Tree, which we used in Section 1.1. An invoke action representing the first

25

call to method insert in Test1() of is specified with the following function signature:

insert(Node, int):void.

public void Test1 () throws Throwable{
Node rootnode = new Node(0) ;
inser t (rootnode , −1);

}

Figure 3.2: Test example for Invoke Action

A write action (WA) represents the assignment of a value (vWrite) to a location in

memory (location). A memory location is specified using the name of a locally or globally

defined program variable (varName), or a freshName when the location cannot be speci-

fied by a program variable, i.e., a function argument or the function return value. A fresh

variable name can be any string identifier, but must be unique across the set of write actions

associated with the same invoke action. For example, consider again the first call to method

insert in Test1() of Figure 3.2. This call to insert involves two write actions, one

for each argument. The first write action:

insert_arg_0 <-- rootnode

specifies the value written to the first argument in the call to insert using a fresh name,

insert arg 0, and the assigned value, rootnode.

The value written (vWrite) to a location can be represented as an expr or a constraint.

An expr is an unspecified typed value defined over constants and variables in the test. A

constraint is specified as a conjunction of boolean expressions over constants and vari-

ables in the test. For example, Figure 3.3 shows part of the abstract test generated by SPF

for Binary Search Tree. The test of insert represented by PC in Figure 3.3 specifies a

constraint over the two arguments of insert and, thus, there are two write actions:

1) node <-- node.value == 0 &&

26

node.left == null && node.right == null &&

value > node.value

2) value <-- value > node.value

These write actions specify the node and value arguments to insert as specified by

the constraints generated by Symbolic PathFinder. In Section 3.3 we explain how this

encoding of the write actions, using constraints, enables abstract test cases to be included

in the framework.

PC: node . value == 0 &&
node . l e f t = null &&
node . r ight = null &&
value > node . value

Figure 3.3: Test example for Write Action

A decision action (DA) is a sequence of one or more comparison functions. They

are used to represent the comparison of an expected value (vExpected), i.e., oracle, with

an actual value (vActual) to determine the results of the test. The comparison function,

fCMP : Expr×Expr → Boolean, specifies the comparison operation between the actual

and expected values. The comparison operator can be a predefined relational operator, e.g.,

≤, 6=, or a user-specified comparison function. Multiple comparison functions within a

single decision action are interpreted as a disjunction.

Sequences of decision actions can be used to encode rich oracles. For example, a

logical formula in conjunctive normal form can be expressed as a sequence of decision

actions where each encodes a conjunct.

27

3.2 Transforming Test Cases To the Framework

We demonstrate in this section how the transformation happens from a test case to the

common representation in our framework. Given the diversity in test cases, the results of

this process will vary considerably in the number and types of actions that are created to

represent a single test case. We will illustrate the applicability of TCL (Test Case Language)

through a series of examples with different types of tests from concrete tests to abstract

tests, and functional tests to non-functional tests.

3.2.1 Manual Tests to TCL

We will illustrate in this section how the transformation to TCL is done for a manual test

case testing the soda vending machine.

A vending machine takes in money, a choice of soda from the customer, and outputs

customer’s choice of soda and any change left after the soda. Imagine in the vending

machine we are testing, each bottle of soda costs 1.25 dollars. It has two buttons, one to

dispense soda and the other one to dispense the change. A test case to test soda vending

machine may include the following steps: (1) a customer inserts 2 dollars, picks the choice

of Mountain Dew, (2) when the customer pushes the button to dispense soda, the vending

machine should deliver a bottle of Mountain Dew, (3) when the customer pushes the button

to dispense the change, the vending machine should give the customer back 0.75 dollars.

Figure 3.4 is a more abstract notation of the test case. There are two inputs, two button

pushes to the vending machine and the vending machine has one output each time the

button is pushed.

The process for transforming a test case to the common test representation is primarily

a process of mapping elements in the original representation to the actions specified by the

Test Case Language. The inputs are the written values to the memory locations to set up

28

Inputs:	 $2,	 Mountain	 Dew	

Output:	 Mountain	 Dew	

Output:	 0.75	 dollars	

dispense
soda

dispense
coin

Figure 3.4: Soda Vending Machine Test Case

the program state. A button pushing is a call to the SUT to perform specific functions.

The output specified in the test case is the expected value or oracle that the vending ma-

chine should deliver. The actual output from the vending machine is the actual value to be

checked on. Depending on the implementation of the soda vending machine. The argu-

ments and calls to SUT can be mapped differently. Table 3.1 shows the decomposed test

case represented in steps of actions for the testing scenario described above. The column

“actionNumber” is used to help connect the the TCL representation in Table 3.2. Table

3.2 is the TCL representation of the manual test for the soda vending machine. Since each

type of action contains different components, the table representing TCL is composed of 3

parts: (a) Invoke Actions (b) Write Actions and (c) Decision Actions.

Table 3.1: Decomposed Soda Vending Machine Test Case

Action Type Description actionNumber
W-Action writes 2 dollars for the money received 0
W-Action writes “Mountain Dew” for the soda choice 1
I-Action push button to get soda 2

W-Action write the soda output to a memory location for the subsequent D-Action 3
D-Action check if the returned soda is “Mountain Dew” 4
I-Action push button to get coin change for the subsequent D-Action 5

W-Action write the output change to a memory location 6
D-Action check if the coin change is 0.75 dollars 7

29

Now we will go step by step to see how the transformation process happens from Table

3.1 to the TCL representation in Table 3.2. The inputs of 2 dollars and “Mountain Dew”

are W-Action in Table 3.2, as input arguments for the vending machine with actionNum-

ber=0,1. Pushing the button to get the soda is mapped in Table 3.2 to an invoke action

for the call the the SUT (actionNumber=2). A W-Action (actionNumber=3) is added to

capture the output of the call to be used as the actual value in the subsequent assertion. The

value-Expression for the write action is the value that is written. In Table 3.2, the write

action (actionNumber=3) has a value-Expression of Soda 1. Soda refers to the type of

the returned output and 1 refers to the index of such type in the current test case. Soda 1

means this is the first value written as type Soda. The D-Action (actionNumber=4) in Table

3.2 is the decision action performing the comparison between the expected value specified

in the test case and the actual value output from the call to the SUT. The transformation

for I-Action (actionNumber=5), W-Action (actionNumber=6) and D-Action (actionNum-

ber=7) is similar to that of I-Action (actionNumber=2), W-Action (actionNumber=3) and

D-Action (actionNumber=4).

Table 3.2: Soda Vending Machine Test Case in TCL

actionNumber funcSig
2 Soda getSoda()
5 double getChange()

(a)Invoke Actions

actionNumber location vWrite
0 VendingMachine money input 2.0
1 VendingMachine sodachoice input “Mountain Dew”
3 getSoda output Soda 1
6 getChange output Double 1

(b)Write Actions

actionNumber vExpected fCMP vActual
4 “Mountain Dew” = Soda 1
7 0.75 = Double 1

(c)Compare Actions

30

From Section 3.2.2 through Section 3.2.5, we will be using the same table structure to

demonstrate the TCL representation for other types of tests.

3.2.2 JUnit Tests in TCL

JUnit test cases are rather standardized, yet, they can vary depending on which tool has

generated them or if they are written manually. For example, the Randoop test generation

tool mostly generates tests in straight-line code with a limited number of try/catch blocks,

but manually designed JUnit tests sometimes utilized complex class hierarchies to make the

test suite more concise. In all JUnit tests, the order of the statements indicates the sequence

of actions. Each assignment or argument setup is a write action to a memory location. The

usage of calls to assertions such as assertEquals signals a decision action. Moreover,

we can identify (because we have JUnit API information for these function calls) which

value is expected and which is the actual value in the assertion.

Figure 3.5 is a hand-coded JUnit test case for the ACCoRD framework [1]. ACCoRD

is used at NASA to implement the state-based conflict detection and resolution algorithms.

To help understand the transformation from the test case to TCL, the intermediate repre-

sentation in Table 3.3 shows the relationship between the line of code and the actions in

TCL. Table 3.4 shows the test case in TCL.

1: public void testAddLL () {
2: Plan fp = new Plan () ;
3: fp .addLL(1.0 , −1.0, 5000.0 , 10.0);
4: assertEquals (1 , fp . size ()) ;
5: }

Figure 3.5: Example to Show How TCL Represents the JUnit Tests

31

Table 3.3: Decomposed JUnit Test Case

Line # Action Type Description actionNumber
1 I-Action invoke constructor to create Plan object 0
1 W-Action capture the memory location of the Plan object created 1
1 W-Action assign the Plan object to its lhs variable fp 2
2 W-Action write the 1st argument for addLL 3
2 W-Action write the 2nd argument for addLL 4
2 W-Action write the 3rd argument for addLL 5
2 W-Action write the 4th argument for addLL 6
2 I-Action invoke the method addLL(double,double,double,double) 7
3 W-Action write the 1st argument for assertEquals 8
3 I-Action invoke method size() on fp 9
3 W-Action capture the memory location of returned int value 10
3 W-Action write the returned int value as the 2nd argument for assertEquals 11
3 D-Action check if the returned int value equals to the expected value 1 12

Table 3.4: JUnit Test Case in TCL

actionNumber funcSig
0 Plan Plan()
7 void Plan.addLL(double,double,double,double)
9 int Plan.size()

(a)Invoke Actions

actionNumber location vWrite
1 Plan return value PlanObject1
2 fp Plan return value
3 fp.addLL arg0 1.0
4 fp.addLL arg1 -1.0
5 fp.addLL arg2 5000.0
6 fp.addLL arg3 10.0
8 assertEquals arg0 1
10 fp.size return value intValue1
11 assertEquals arg1 fp.size return value

(b)Write Actions

actionNumber vExpected fCMP vActual
12 1 = fp.size return value

(c)Compare Actions

32

3.2.3 Differential Unit Test in TCL

Figure 3.6 (pre-state) and Figure 3.7 (post-state) represents the original test case that is

generated by the Carving tool [23]. Table 3.5 is the intermediate representation showing

the relationship between the line in XML file and the actions in TCL, and Table 3.6 shows

the test case in TCL. The target method of this test is double Velocity.track(). The pre-state

in Figure 3.6 captures the state of the receiver object used to call the method under test.

There are no other arguments because the target method double Velocity.track() does not

take in any arguments. The post-state in Figure 3.7 captures the receiver object state after

the method invocation and the return value.

We discuss the implementation of the transformation process from DUT to TCL in

Section 3.3.

1: <object−array>
2: <gov . nasa . larcfm . Util . Velocity>
3: < INSTANCE >
4: <x>22225.128251356447</x>
5: <y>−22221.74325667393</y>
6: <z>−121.92</z>
7: </ INSTANCE >
8: < STATICS />
9: </gov . nasa . larcfm . Util . Velocity>
10: <object−array/>
11: </object−array>

Figure 3.6: Example to Show How TCL Represents the DUTs (pre-state)

33

1: <object−array>
2: <gov . nasa . larcfm . Util . Velocity>
3: < INSTANCE >
4: <x>22225.128251356447</x>
5: <y>−22221.74325667393</y>
6: <z>−121.92</z>
7: </ INSTANCE >
8: < STATICS />
9: </gov . nasa . larcfm . Util . Velocity>
10: <double>2.3561183319710546</double>
11: </object−array>

Figure 3.7: Example to Show How TCL Represents the DUTs (post-state)

Table 3.5: Decomposed DUT

Line # Action Type Description actionNumber
pre-state 4 W-Action write the 1st argument for V elocity constructor 0
pre-state 5 W-Action write the 2nd argument for V elocity constructor 1
pre-state 6 W-Action write the 3rd argument for V elocity constructor 2

pre-state 2,9 I-Action invoke constructor to create V elocity object 3
pre-state 2,9 W-Action capture the memory location of the V elocity object 4
pre-state 2,9 W-Action assign the returned V elocity object to a receiver for

subsequent method invocation
5

method invocation I-Action invoke method trace() on receiverObj 6
method invocation W-Action capture the memory location of returned double value 7
method invocation W-Action assign the double return value for its use in the subse-

quent decision action
8

post-state 4 D-Action check attribute x in the receiver object after method
invocation

9

post-state 5 D-Action check attribute y in the receiver object after method
invocation

10

post-state 6 D-Action check attribute z in the receiver object after method
invocation 1

11

post-state 10 D-Action check if the returned double value equals to the ex-
pected value 2.3561183319710546

12

34

Table 3.6: Differential Unit Tests in TCL

actionNumber funcSig
3 Velocity Velocity(double,double,double)
6 double Velocity.trace()

(a)Invoke Actions

actionNumber location vWrite
0 Velocity arg 0 22225.128251356447
1 Velocity arg 1 -22221.74325667393
2 Velocity arg 2 -121.92
4 Velocity return value VelocityObject1
5 receiverObj Velocity return value
7 receiverObj.trace return value doubleObject1
8 returnValue receiverObj.trace return value

(b)Write Actions

actionNumber vExpected fCMP vActual
9 22225.128251356447 = receiverObj.x

10 -22221.74325667393 = receiverObj.y
11 -121.92 = receiverObj.z
12 2.3561183319710546 = returnValue

(c)Compare Actions

3.2.4 Abstract JPF Tests in TCL

Figure 3.8 is the method under test. Figure 3.9 is the original path constraints generated by

JPF for the method under test, Table 3.7 is the intermediate representation of the test case

and Table 3.8 shows the abstract test case in TCL.

First, we map the symbols in the path constraints to the arguments of the method under

test. For value-expression in the write actions for the path constraints, only the clauses that

have the write-location involved are included in the expression. For example, for the value-

expression of “Util.within epsilon arg 0”, only clauses that involve “arg 0” are included.

35

public stat ic boolean within epsilon (double a , double b , double epsilon) {
return Math. abs (a−b) < epsilon ;

}

Figure 3.8: Example to Show How TCL Represents Abstract Test Cases - source code

(CONST 0.0 − (a 4 SYMREAL[−10000.0] − b 5 SYMREAL[−9999.0])) <
epsilon 6 SYMREAL[2.0] && (a 4 SYMREAL[−10000.0] − b 5 SYMREAL[−9999.0]) < CONST 0.0

Figure 3.9: Example to Show How TCL Represents Abstract Test Cases - path constraint

Table 3.7: Decomposed Abstract JPF Test Case

Action Type Description actionNumber
W-Action write the constraint for the 1st argument 0
W-Action write the constraint for the 2nd argument 1
W-Action write the constraint for the 3rd argument 2
I-Action invoke the method under test withinepsilon(double, double, double) 3

Table 3.8: JPF Abstract Tests in TCL

actionNumber funcSig
3 Util within epsilon(double,double,double)

(a)Invoke Actions

actionNumber location vWrite
0 Util.within epsilon arg 0 (CONST 0.0 - (arg 0 - arg 1)) <arg 2

&& (arg 0 - arg 1) <CONST 0.0
1 Util.within epsilon arg 1 (CONST 0.0 - (arg 0 - arg 1)) <arg 2

&& (arg 0 - arg 1) <CONST 0.0
2 Util.within epsilon arg 2 (CONST 0.0 - (arg 0 - arg 1)) <arg 2

(b)Write Actions

There are no explicit decision actions in this test.
(c)Compare Actions

36

Inputs:	 $100,	 Pepsi	

dispense
soda

Time	 taken	 is	 	
less	 than	 3	 seconds	

Input:	 Mountain	 Dew	

Time	 taken	 is	 	
less	 than	 3	 seconds	

…

dispense
soda

Figure 3.10: Soda Vending Machine Load Test

3.2.5 Load Tests in TCL

We explore in this section the transformation of a load test into TCL. We use a load test for

testing the same soda vending machine we discussed in Section 3.2.1. Imagine in a test-

ing scenario where we insert into the vending machine a 100-dollar bill, make continuous

choices of soda as quickly as we can and use a stop watch to record the time it takes to get

the soda each time. The specification indicates that it should take less than 3 seconds to

get one bottle of soda, and this serves as the oracle of the load test. The soda costs 1.25

dollars, so we can get 80 bottles, but we abbreviate the process in the transformation to

demonstrate only two. The first choice made by customer is “Pepsi” and the second choice

is “Moutain Dew”. Also, in a pure load test, we do not check the functional correctness of

the SUT. In other words, we do not check whether the returned soda is the choice made by

the customer. Note that the load tests can be integrated with functional tests to check both

the correctness of the output choice of soda and the time taken to get the soda.

Figure 3.10 demonstrates the process for the specific load test scenario of the soda

machine. Table 3.9 represents the decomposed test case in detailed steps. Table 3.10

37

delivers the corresponding TCL representation of the test case. The only difference in this

load test from the manual functional test discussed in Section 3.2.1 is the type of oracles

being checked.

Table 3.9: Decomposed Soda Vending Machine Load Test

Action Type Description actionNumber
W-Action writes 100 dollars for the money received 0
W-Action writes “Pepsi” for the soda choice 1
I-Action push button to get soda 2

W-Action write the time taken to a memory location 3
D-Action check if the time taken is less than 3 seconds 4
W-Action writes “Mountain Dew” for the soda choice 5
I-Action push button to get soda 6

W-Action write the time taken to a memory location 7
D-Action check if the time taken is less than 3 seconds 8

Table 3.10: Soda Vending Machine Load Test in TCL

actionNumber funcSig
2 Soda getSoda()
6 Soda getSoda()

(a)Invoke Actions

actionNumber location vWrite
0 VendingMachine money input 100.0
1 VendingMachine sodaChoice input “Pepsi”
3 timetaken output Double 1
5 VendingMachine sodaChoice input “Mountain Dew”
7 timetaken output Double 2

(b)Write Actions

actionNumber vExpected fCMP vActual
4 3 seconds ≥ Double 1
8 3 seconds ≥ Double 2

(c)Compare Actions

38

3.3 Implementation

To evaluate our technique, we implemented a tool to automate the transformation of test

cases into the common test representation presented in Section 3.1. Our tool is capable

of transforming test cases specified as Java source code, e.g., JUnit tests, and test cases

specified in the custom format used by the test carving tool described in [23] for generating

differential unit tests (DUTs). However, other implementations could be easily added.

Transforming Java Source Code When the input to the transformation process is Java

source code, the transformation is performed in three phases. The first phase uses the

Abstract Syntax Tree (AST) for the test case (generated by the Java compiler) to map the

elements in the AST to the actions in the Test Case Grammar. The order of the statements

in the source code is used to sequence the actions in the transformed version of the test

case.

The second phase of the transformation process is to propagate the setup in the test

class if it exists. In the JUnit framework, the @Before annotation or setup methods can be

incorporated to have methods executed before each test is run. In the setup propagation

phase, we add the actions for the setup methods before the actions in each of the tests

included in the same class such that each test can be treated as an individual test.

The third phase is the dereference phase. In this phase, we propagate the variable val-

ues through the actions. In a statement, when there is use of a variable name referring to

a value in the preceding statements, we propagate the actual value that was assigned to the

variable from the preceding statement. This does not change the semantics of the tests, but

it is to help us understand the statements better in the sense that we know what the actual

values are in the memory locations related to the statement. For example, for an assertion

assertEquals(1, var1), before dereference we know the test is comparing var1 against the

expected value of 1. However, after dereference, we will know the exact memory location

39

that the test wants to compare which can be the return value of a method call. Another case

when this is desirable is when there is a reference in the test to the field by its name. In or-

der to analyze the test separately, it is desirable to know the values that the field name holds.

public void tes t7 () throws Throwable {
/ / The following exception was thrown during execution .
/ / This behavior wil l recorded for regression tes t ing .
try {

double var3 = gov . nasa . larcfm . Util . Units . convert (‘ ‘ hi ! ’ ’ , ‘ ‘ hi ! ’ ’ , (−0.1493072d)) ;
f a i l (‘ ‘Expected exception of type gov . nasa . larcfm . Util . Units . UnitException ’ ’) ;

} catch (gov . nasa . larcfm . Util . Units . UnitException e) {
/ / Expected exception .

}
}

Figure 3.11: Randoop Test with try/catch Block

In the current implementation of the framework, we handle straight-line code with lim-

ited support for branching. There are two specific cases when we handle branching. The

first one is when the test generator is Randoop, we handle the try/catch block. Randoop

has a special template that we follow during implementation. Figure 3.11 is an example of

one Randoop test, and this is the only case when Randoop has branching in its generated

tests. We process the first statement normally, and then process the second statement in the

block as a decision action, ignoring the catch block in the test since there are no statements

in that block.

The second one is when the tests are translated from JML specification, we handle

if branches. Figure 3.12 is one example of the tests. It also has a template that we can

follow to perform the transformation. All the if-conditions in the tests represent the pre-

condition of the method under test and serve as a guard for the assertions to happen. Thus,

during our transformation, we process the first statement normally and then the condition

in the predicate serves as a condition of the decision actions which represent the assertions

40

public void testAdd () {
Rectangular r1 = new Rectangular(−10.0, 75.2);
Polar p2 = new Polar (7.5 , StrictMath . PI / 3);
i f (p2!=null){

Complex c3 = r1 . add(p2) ;
assertNotNull (c3) ;
assertEquals (r1 . realPart () + p2 . realPart () , c3 . realPart () , 0.005);
assertEquals (r1 . imaginaryPart () + p2 . imaginaryPart () , c3 . imaginaryPart () ,0 .005);
}

}

Figure 3.12: Hand-code tests translated from JML with if branch

statement inside the block. In the evaluation in Chapter 5, we incorporated hand-coded

tests translated from JML specification.

Transforming Abstract Test Specification To transform abstract test cases into the TCL,

we create one write action for each program variable, e.g., method argument or global

variable, specified in the path condition. As we discussed in Chapter 3, the value written

(vWrite) is represented by the conjunction of constraints over the program variable specified

in location. An invoke action is created to represent the call to the unit under test. We

implemented this transformation using a custom application to parse and transform the

path conditions generated by Symbolic PathFinder into the test case language.

Transforming Differential Unit Tests in XML Files The input to the transformation

process when the test cases have been generated by the test carving tool is a set of XML

files, each of which contains a unit-level test case. Each test case specification is composed

of a pre-state, the name of the unit under test, and the post-state. The pre-state represents

the program state before the method under test is invoked and the post-state represents the

program state after the method invocation. For carved test cases, the transformation maps

the elements in the XML structure to the actions in the Test Case Language. The sequence

41

of actions is dependent on the element order in the XML files. In the pre-state of the DUT, it

first includes the the receiver object, and then comes the list of arguments needed to invoke

the method under test. During transformation, we first create the receiver object according

to the values captured in the pre-state. Then we add a write action for each of the argument

needed for the method invocation and finally add one invoke action to represent the method

call. The elements in the post-state are treated as the “oracles” for the test. The post-state

is composed of two parts - receiver object and the return value if there is one. We add one

assertion for each attribute of the receiver object and finally one for the return value.

We note that there are a couple of potential challenges interpreting DUTs. First, from

the pre-state, we know the exact state of the receiver object, the values being assigned to

its attributes. However, we may not be able to set up the object state without knowing what

method-call sequences to use. Second, with the post-state, we would like to check the state

of the object after the method invocation, but we do not know for sure the visibility of the

attributes of the object in the corresponding class. It is possible to solve the second problem

with access to the SUT. For example, with access to the SUT, we can either know the

visibility of the attributes or search for getter methods which return the desired attributes.

However, the first problem of setting up the receiver object state remains challenging. Our

current implementation make approximations in order to represent the rich object state

information contained in the DUTs. We assume that there is a constructor in the class that

does not take in any arguments and the fields in the class are public. To set up the object

state in the pre-state, we first create an object with a constructor of the class which does not

take in any argument, and then we add a write action for each of the attribute of the object.

To represent the post-state, we create decision actions with direct access to the fields of the

class.

42

Storing Tests’ TCL Representation Each test is stored as an ActionSummary, which

is composed of a list of invoke action, write action, decision action, and some additional

information like testName, className, sourceFile and Id.

In invoke action, besides the funcSig described in the grammar, it may also include

receiver object on which the method was invoked and a related write action that captures

the corresponding write action that the return value of this invoke action writes to. If the

method being invoked is a constructor, the receiver object is null, and if there is no return

value like a setter method, the related write action is empty.

In write action, besides the location and vWrite described in the grammar, it may also

have an object if the location is an attribute of one particular object. We also infer the type

information from the test and store the type of the location being written.

In decision action, it has an vExpected representing the oracle of the decision action,

a vActual representing the actual value captured in the test, and a fCMP denoting the re-

lationship between the two values. fCMP may also have a message field to include the

message that comes with the assertion and a precision value for the imprecision tolerance

between vExpected and vActual. It may have a condition in some cases which represents

the pre-condition for this decision action to take place. In other words, the decision action

is performed only when that condition is satisfied.

We also created a database to store the ActionSummary of tests. This is to facilitate

some light-weight analysis. For example, instead of writing a complex analysis in Java

language, you can write simple SQL queries to find out how many decision actions are

utilized in one test, one test class or one test suite, or how many invocations happened for

one target method, etc.

43

3.4 Assessing the TCL

In the discussions above, we illustrate the expressiveness of our test case language and its

flexibility to encode concrete and abstract test cases generated using both automated and

manual techniques. In Section 5 we implement and evaluate a set of test advice functions

which use the tests in the framework to generate amplified test suites. The evaluation of

manual test cases includes hand-coded test cases from the ACCoRD framework [1]. Of

the 180 manual tests available, we were able to transform 157 into the framework. Of

the 23 tests our transformation could not handle, 10 included conditional control flow not

supported by the transformer, and the other 13 tests were effectively composite test cases

that called other test methods to perform a series of tests. To include these test cases, we

could have in-lined the test methods and processed the composite test as a single test case.

Our transformation processes were able to process all of the more than 500-thousand auto-

generated test cases (from Randoop and Symbolic PathFinder) – refer to Chapter 5 for the

actual numbers of auto-generated test cases.

One of the limitations of our transformation algorithms is related to the write actions

that are generated – any updates to the state that occur outside the test will not be captured.

This is because we transform a static representation of the test, and we do not access the

SUT (in a static or dynamic manner) so our only input is the source code for the test.

This was a conscious decision to avoid tying the test to a particular version of the SUT;

however, the trade-off is that our tests may miss the write actions resulting from calls to

other methods.

Finally, it is worth noting that the tests transformed in this work were all functional

tests. We conjecture, however, that our test case language will also support non-functional,

e.g., load, tests. One of the main differences will be in the specification of the decision

44

actions, which for non-functional tests, will involve comparisons of resources used with

specified threshold values.

45

Chapter 4

Test Advice

In Chapter 3, we discussed the common representation of tests, the implementation of the

framework, and the different types of tests that the framework supports. In this chapter, we

will elaborate on how we make effective use of the test data collected in the framework to

provide a family of advice. Figure 4.1 provides a general overview of the approach we take.

We assume that a user of the framework will define a testing context, C, which identifies,

for example, a model, a specification, or more commonly an SUT. The overall operation of

the framework exploits this context.

Tests are transformed into a common test encoding, F, using standard language pro-

cessing techniques – parsing, tree transformation, and code generation. Transformed tests

are collected in a test case language (TCL) repository for future use. Tests in TCL can

easily be converted back to different test representations, i.e., we can map F to a set of

tests, T.

The structure of TCL permits the easy extraction of different types of information that

is related to the testing context; what we refer to as test advice, A. For instance, sequences

of test operations that define portions of an SUT’s input state (potential input advice), and

tests of SUT output values (potential oracle advice) are made explicit in the syntax of TCL.

46

Figure 4.1: Test Advising Approach

Test advice can be exploited by existing tests and test case generation tools alike. This

is depicted in two ways through the dotted and dashed flows through the generate wrapper

component. (1) The repository of TCL tests can be queried for a set of tests that are relevant

to the testing context – the dotted flow. For uniformity with the second case, the test set

is represented as a constant (nullary) function, ⊥ → T. (2) We view test generators as

functions, C→ T, that take a testing context and produce a set of tests – the dashed flow.

Wrapper generation involves exposing an interface to these functions that permits ad-

ditional information to be leveraged during their application. In the first case this is fully

automatic, but for existing monolithic test generators this must be achieved through either

existing APIs, as in the case of Randoop’s literal constant pool, by providing the tool an

enhanced test harness, as in our usage of SPF, or, in future work, by modifying generator

implementations. Wrapping results in a function, A→ (C→ T), enables extracted advice

to be applied to customize the test generation process to produce amplified tests, Tamp. We

call this step, and the overall process described in Figure 4.1, test advising.

In the rest of the Chapter, we start with the formal definition of a set of functions for

extracting and generating testing advice. We then describe three families of advice func-

47

tions that leverage the features of the TCL to generate testing advice targeting a particular

test component, i.e., type of action, in the TCL.

4.1 Test Advice Functions

Testing advice can be extracted from a wide range of frameworks, i.e., sources. We assume

the encoding of the data in the framework will vary depending on factors such as the tool

or technique used to generate the data, and on the type of the data, e.g., specification,

source code. We also assume the encoding of the advice itself may vary. Let F be a type

representing the possible test framework encodings. For the testing advice specified in this

work, we use the test case language encoding specified in Chapter 3 as a concrete instance

of F. Let A be the type representing the advice encodings. Given these type definitions, we

define a function for extracting advice from a set of tests:

Definition 4.1.1 (Advice Extraction Function) An advice extraction function,

extract : F→ A, computes advice from a set of test framework encodings.

The inputs to a software test generation technique can vary widely, ranging from the do-

main knowledge residing in the test developer’s head, to formal specifications of expected

behaviors, to the source code for the SUT. Let C be a type representing such inputs –

we term this test generation context. Note that our technique is not concerned with the

specifics of the test generation process or context. It is, however, necessary to establish

a shared context that is used to coordinate advice extraction and test generation, i.e., the

extracted advice should be appropriate for the test generation context.

The output of a test generation technique is a test suite consisting of one or more test

cases. Let T be a type representing a set of test cases. Given these type definitions, we now

define a function for generating a test suite:

48

Definition 4.1.2 (Test Generation Function.) A test generation function, gen : C → T,

produces a set of test cases, i.e., test suite, based on the given testing context.

We note that a fixed test suite is defined by a nullary instance of gen whose domain is

empty, i.e., C = ⊥.

In order to incorporate advice into the test generation process we must extend gen so

that it can accept and apply advice. We do this by defining a higher-order test advice

function which effectively wraps instances of gen.

Definition 4.1.3 (Test Advice Function) A test advice function, adv : A → (C → T),

uses extracted test advice to produce an enhanced test generation function which can, in

turn, produce a test suite.

Instances of this function will be created and applied to generate an enhanced test suite,

Tamp = adv(extract(F)(C)), exploiting advice from a given set of tests encoded in the

framework and a test generation context. Note that evaluating adv produces a customized

test generation function which is then applied, with an appropriate testing context, to pro-

duce amplified tests.

4.2 A Family of Advice Functions

A test, in general, needs inputs which are used to set and modify the program states,

calls which are used to perform the functionality of the system, and oracles which are

needed to check the correctness of the results of the test. In the context of Object-Oriented

languages, three fundamental pieces are desirable to compose a “cost-effective” test: (1)

input values used to invoke methods, (2) method sequences utilized to set up the program

state to explore, (3) the oracle checks that help decide whether the test passes or fails. In

this section, we define a family of concrete test advice functions that leverage the test case

49

Advice in general
Tamp = adv(extract(F)(C))

Input Advice
Tamp = advIn(extractIn(F)(C))

Tamp = advIn(extractIn(ManualTests)(Randoop))

Tamp = advIn(extractIn(SPFTests)(Randoop))

Sequence advice
Tamp = advSeq(extractSeq(F)(C))

Tamp = advSeq(extractSeq(RandoopTests)(SPF))

Oracle advice
Tamp = advO(extractO(F)(C))

Tamp = advO(extractO(ManualTests)())

Figure 4.2: Test Advices based on Test Advising Framework

language presented in Chapter 3. Each function is focused on providing advice to improve

either the test inputs, the sequences of function calls, or the test oracle. The simplicity of

these functions illustrates the power of the TCL to enable tests to be treated as a source of

advice for improving other tests. Figure 4.2 gives an overview of the four pieces of advice

we have instantiated and explored in this thesis. In Chapter 5, we evaluate each concrete

instantiation of the advice functions.

4.2.1 Advice on Test Input Values

The input values used to invoke methods in tests can have a significant impact on the quality

of the tests. Missing some input values may weaken any sophisticated setup of program

state and leave certain parts of the SUT untested. On the other hand, having too many input

50

values lying in the same input partition will increase the maintenance and execution cost of

the tests. In this section, we address the problem of missing important input values.

4.2.1.1 Motivation

We now present a small example to show the importance of input value selection.

1 public void example(int x){
2 i f (x < −10){
3 / / bug here
4 }else{
5 / / everything is f ine
6 }
7 }

Figure 4.3: Example to demonstrate the importance of input value selection

For the code shown in Figure 4.3, only the tests invoking method example with input

values less than -10 are capable of revealing the bug. Now consider a random test gen-

eration tool that uses a pre-defined pool of input values to choose from. If the pool does

not include an integer value that is less than -10, the test suite generated by the random

approach will reach the if predicate at line 2, but fail to cover the code inside the predicate,

and thus fail to reveal the bug. On the other hand, manual tests may include values such as

-9, -10, -11. Advising random test generation tool with those values will be of particular

help under such circumstances.

4.2.1.2 Definitions

INPUT VALUE In general, an input value is the value of the write action assigned to

a memory location. Input values are used to set the program state before invoking the

functions in SUT. In our framework, a method input value used to invoke the method under

51

test is represented as a WA(write action). In the context of unit tests for an object-oriented

language, our instantiation takes the following form:

Given a write action, WA = location “←” vWrite, an input value is the written-

value in a WA where location=freshName denoting methodName arg index.

In methodName arg index, MethodName is the name of the method invoked, and index is

the order index in the argument list starting from 0.

SCOPE-VALUES PAIR In general, the input values or variables in a program all have

their own scope whether it is a block, a method, a class, or global. In the setting of our

framework, we also have scope for values to indicate when and where they can be used.

In a scope-values pair (scope, values), SCOPE can have 4 different granularities, namely

method, class, package, program. VALUES refers to the set of input values associated

with the scope (note that we use a set since there are no duplicates).For instance, values

will be the set of the arguments for a method if the scope is method, and value will be the

set of arguments used for all methods in a given class if the scope is class.

Also, in our framework, the scope of input values is not explicitly saved in terms of the

4 granularities. We save the (method, values) information.Inferring the class to which each

method belongs, we know which class scope the values have. Also inferring the package

to which this class belongs, we know which package scope the values have.

INPUT ADVICE FUNCTION

An input advice function, advIn, leverages advice in the test framework to determine

the test inputs that may help to improve a test suite.

We define extractIn : F → A which extracts the test input data from the tests stored

in the framework to generate advice AIn. A natural instantiation of advIn extracts the test

inputs from the vWrite component of the write actions. For each input i extracted from the

52

framework, a scope, s, is inferred to identify where the input is used within the test. The

scope can be specified at various levels of precision: method, class, package, or program,

and is inferred from the context C.

For this instantiation of advIn, the advice computed by extractIn, AIn = {(i1, s1),

(i2, s2), ..., (in, sn)}, is used to control the input values produced by test generator. In

Section 4.2.1.3 and Section 4.2.1.4, we explain the implementation details of two concrete

instances of the test input advice function.

4.2.1.3 From Hand-Coded Tests to Randomly Generated Tests

Hand-coded tests encode the programmers’ understanding of the system under test into

the tests they write. Input values picked for the methods being invoked is one aspect of

such knowledge. On the other hand, as the example shown in Figure 4.3, random testing

approach may have the problem of lacking certain input values needed to cover desirable

statements in the SUT. In this section, we explore the potential benefits that hand-coded

tests may bring to randomly generated tests by providing advice on method input values.

In this thesis, we use Randoop as our representative of the random test generation tools.

More specifically, this input advice function is:

extractIn : ManualTests→ Inputs,

gen : Randoop→ RandoopTests,

and

Tamp = advIn((Inputs)(Randoop))

The scope for the Inputs advice is computed at the class-level.

53

Randoop	 test	 	
genera-on	

(a) without input advice from Hand-coded Tests 	

Output:	

Randoop tests To	

Input:	

Program under test	

Input:	

hand-coded tests	
 Test	 	

Transformer	
common test	

representation	

SCOPE-‐VALUES	
pairs	 extractor	

Input:	

Program under test	

Randoop	 test	 	
genera-on	

SCOPE-VALUES 	

 pairs	

(b) with input advice from Hand-coded Tests 	

Output:	

Randoop tests Tamplified	

Figure 4.4: Process to Generate Randoop Tests with and without input advice from Hand-
coded Tests

Implementation The following is the two-step implementation we performed to deploy

the test method input advice from hand-coded tests to Randoop tests.

Step 1, given a test suite ManualTests (hand-coded test suite), we collected the set of

method input values Inputs. We extracted all the class-values pairs from the hand-coded

test suite. We first transformed the hand-coded test suite into the framework representation

and filtered the tests to get the subset of write actions whose location is a freshName for

method argument. This step helps us to get all the class-values pairs used for method

invocations in the original hand-coded test suite.

54

Step 2, we advise Randoop to use the additional inputs extracted from step 1 for its

test generation. Randoop has a pre-defined initial pool of values to use for test generation.

Randoop picks from −1, 0, 1, 10, 100 for numeric values, ‘#’, ‘ ’, ‘4’ and ‘a’ for charac-

ters, and “”, “hi!” for strings. And any other input values needed will be unavailable for

Randoop. With the advice, Randoop chooses from the original pool plus the advice pro-

vided by the hand-coded tests. Since Randoop currently does not incorporate any reference

values from an external source during test generation process, we further restrict our advice

to numeric and string types.

Figure 4.4 summarizes the process we use Randoop to generate tests with and with-

out the input advice function applied. We perform an evaluation of this concrete advice

function in Section 5.3.1.

4.2.1.4 From Systematically Generated Tests to Randomly Generated Tests

In this section, we take another approach to the input advice, replacing the values extracted

from hand-coded tests in Section 4.2.1.3 with input values generated from systematic test

generation approaches.

As discussed in Section 2.2, one approach to systematic testing is Symbolic Execution.

This approach executes the method sequences of the SUT using symbolic values for method

parameters, and collects path constraints on these parameters along the execution. Finally,

it utilizes underlying solvers to solve the constraints collected with symbolic parameters

and the solution creates actual concrete test input values for the method parameters. Since

these concrete input values are needed by the tests to cover partitions of the SUT’s total

input space, they provide an excellent source of input value advice. In this section, we

evaluate how these carefully chosen input values from systematic testing approaches can

benefit random test generation techniques. In our implementation, we use Randoop [53]

55

as representative of the random test generation approaches, and use SPF [55, 56] for the

systematic approach.

More specifically, this input advice function is:

extractIn : SPFTests→ Inputs,

gen : Randoop→ RandoopTests,

and

Tamp = advIn((Inputs)(Randoop))

The scope for the Inputs advice is computed at the class-level.

Implementation Following the test driver example that Visser et al. wrote for the Java

containers [74], we wrote test drivers for the artifacts we are experimenting on. In the test

driver, we explicitly specified the sequence length and all the methods we need to involve in

the test generation process. SPF explores the method sequences by exercising the methods

specified in the test driver. We used the SymbolicSequenceListener while running symbolic

execution of the SUT. This listener helped to produce the generated test sequences in the

JUnit format.

Once we had the systematically generated test suite from SPF, the rest of the imple-

mentation for this part is the same as the implementation described in Section 4.2.1.3 and

in Figure 4.4. First, we extracted all the (class-values pairs) from SPF test suite. Then

we advised Randoop to generated tests based on the advice on these (class-values pairs)

extracted from the SPF tests.

56

4.2.2 Test Method Sequence Advice

A test method sequence consists of a series of method calls in a test to set up the program

state. There are usually different interpretations of the method sequence concept. The

method sequence we discuss in this section refers to the well-formed method sequence

associated with proper data dependences enforced. By this, we mean subsequent statements

in the method sequence refer to preceding statements for data to use.

4.2.2.1 Motivation

The method sequence in a test decides what program states the test can reach and conse-

quently what oracle checks can be performed. Galeotti et al. illustrated in [28] one test

example for one implementation of BinomialHeap, where a method sequence of length 13

is required to cover part of the source code and to reveal an underlying bug. Sai et al. also

experienced similar situation in [82] with Randoop. Randomized test generation struggles

to compose a method sequence with specific order and particular arguments. For example,

Randoop is not able to generate the method sequence required to make a connection to a

database system.

A lot of research exists on generating meaningful method sequences as test input [46,

52, 73, 74, 76]. In Section 4.2.2.3 we will address this challenge with the help of method

sequence advice from other type(s) of tests.

4.2.2.2 Definitions

METHOD-SEQUENCE A method sequence is a sequence of method calls, with each

method call being a call to the functions from the system. In our framework, a method call

is represented as a list of WA(write action) and one IA(invoke action). There is one WA for

each argument for the method, and one IA for the receiver object if there is one. Thus,

57

A METHOD-SEQUENCE is a sequence of method calls (m1,m2, . . .mn), and for i ∈

[1, n], we have mi = {(WA)
∗(IA)

+}

Sequence Advice Function

A sequence advice function, advSeq, applies advice on the sequences of function calls

that may help setup parts of the system state that may not otherwise be accessible due to

limitations in a particular testing technique.

We define extractSeq : F → A to extract method sequence from tests. Specifically,

we extract sequences of invoke actions in tests stored in the framework to generate advice

ASeq. In addition to the invoke actions, the write actions on which they are dependent are

also extracted to specify the function call and its arguments.

The method sequence advice, ASeq, is used to control how the method invocations are

ordered by a test generator. In Section 4.2.2.3 we explain the implementation details of an

instantiation of advSeq which inserts such sequences as test setup logic for tests produced

by Symbolic PathFinder. In this instantiation we use the sequences as test prefixes, but they

could also be inserted elsewhere in the test.

4.2.2.3 Combining System-level Random Concrete Execution Sequences with

Unit-level Symbolic Execution Sequences

Random testing is usually fast, easy to scale up to large systems, capable of revealing

software defects, and thus is considered as a cost effective testing technique [17, 21, 36, 53].

Gutjahr et al. [35] have also shown that random testing can be as effective as systematic

testing techniques. Especially, with recent research advances in directed random testing,

the tests generated by random approaches have fewer redundant and illegal test inputs [53].

However, there are cases when random approaches cannot reach some code guarded by

58

method	
invoca-on	

of	 m	

trandoop	

method	
invoca-on	

of	 m	

method	
invoca-on	

of	 m	 …

Random	 Tes-ng	

Systema-c	 Tes-ng	

tamplified

Figure 4.5: Relationship between trandoop in Trandoop and Tamp in Tamp

specific predicates as we illustrated in Figure 4.3, in which the random approaches are

blocked because of some particular input values needed.

Systematic testing such as SPF [56] and jCUTE [63], on the other hand, tends to be

exhaustive and explores all possible behaviors of the SUT, but it is very expensive and

suffers from the scalability issues. It also tends to focus on a particular part of the state

space and results in less diverse test inputs. For example, Pǎsǎreanu et al. [56] pointed out

that SPF is general enough to be applied at various testing phases, but is more suitable for

unit-level testing.

However, one problem with unit-level systematic testing based on a Symbolic Execu-

tion based approach is that it does not consider that valid inputs to a particular unit are

constrained by the calling context of the unit. Consequently, having the systematic testing

focus only on the unit-level would result in wasting time to generate data that may not ap-

pear in the context of the program execution. This is where our method sequence advice is

particularly helpful. Directed random testing is fast and good at generating feasible method

sequences that can be used to set up the state of the program. We conjecture that building

59

on top of the feasible program state, systematic testing can take over and explore the full

behavior of the unit under test.

We use SPF as an example of a systematic approach and Randoop as a random approach

to explain the concept. As shown in Figure 4.5, trandoop refers to a test that Randoop

generates at the system-level and we can base on it to set up the program state. Then, we

can run systematic testing like SPF on the target method m and have it generate all possible

argument lists to invoke m. Finally, Each pair of the (trandoop, method invocation of m) is

an amplified test tamp in Tamp.

More specifically, this sequence advice function is:

extractSeq : RandoopTests→ Sequences,

gen : SPF → SPFTests,

and

Tamp = advSeq((Sequences)(SPF))

Implementation We have discussed both test generation techniques in previous sections.

However, one thing about Randoop that is worth mentioning again is that it is a directed

random test generation technique. It executes the method sequences during its generation

process, leaving out any sequences trapped by exceptions. Thus, with the passing tests that

Randoop generates, we can trust the method sequences are valid to setup the environment

for the target method under test.

We followed the process in Figure 4.6 to implement the advice. First, we use the test

transformer described in Section 3.3 to transform the given Randoop test suite into the

framework. Based on the common test representation of the Randoop tests, the Sequence

Composer composes a method sequence in the Java code format for each test in the given

60

Input:	

Randoop tests	

 Ts	

Test	 	
Transformer	

common test	

representation	

Sequence	
Composer	

JPF	 Test	 Driver	 Test	 Composer	

Output:	

JPF+ tests Tamplified	

method	

sequences	
method	

sequences	

JPF Test To	
Input:	

Program under test	

Figure 4.6: Process to Generate Amplified Test Suite using Method Sequence Advice

Randoop test suite. This step is particularly helpful when, for example, complex setup

methods in the test class are present or if there are field values that a test refers to by name

in tests. The transformer transforms a stand-alone method sequence after propagating the

setup methods and field values for the current test.

Second, a SPF test driver uses the method sequence output by Sequence Composer

to set up state in the test driver before exploring the method. The test driver always has

the sequence length set to 1 and generates SPF tests with one method invocation of m.

Finally, the Test Composer takes in the method sequence for the Randoop test suite and

the method sequence for the SPF tests to output the set of tests for Tamp. As shown in

the advice function, for each SPF test generated, there exists one test in Tamp and the test

includes the setup sequence followed by the method invocation of m generated in the SPF

tests.

For the evaluation in this section, we only worked on a limited number of tests and

methods to explore the potential of the technique, handling them manually. However, we

do see the possibility of automating the whole process.

61

4.2.3 Advice on Test Oracles

Oracle advice is an especially interesting advice type since automated oracle generation is

still quite limited [8].

4.2.3.1 Motivation

The process of software testing relies on an oracle to determine if the system under test

behaves correctly on a particular execution of a test case. Studies have shown that the

effectiveness of a test suite decreases with oracle decay [62]. In spite of the importance of

test oracles in successful software testing, it still remains a challenging area. Automated test

generation techniques are getting very good at generating test inputs [46, 52, 73, 74, 76],

but there is limited support when it comes to automating test oracles [8].

We attempt to address the test oracle problem by providing test oracle advice leveraging

information from other testing tools or other type(s) of tests. For example, even though

generating tests manually is costly and often inadequately done, the oracles in manual tests

are valuable in that they capture the testers’ understanding of the SUT and knowledge

of what is important to be checked. This is valuable information that can benefit tests

generated through automated tools.

4.2.3.2 Definition

ORACLE ADVICE FUNCTION

An oracle advice function, advO, applies advice on the tests that are performed on the

SUT state resulting from its invocation.

We define extractO : F → A to extract oracle data from the tests stored in the frame-

work. More specifically the oracle advice, AO, is extracted from the decision actions, and

the comparison function (fCMP) they contain. For each oracle o extracted from the frame-

62

work, a scope, s, is inferred to identify where the oracle can be used within the test. The

scope can be inferred from the context C.

For this instantiation of advO, the advice computed by extractO, AO = {(o1, s1),

(o2, s2), ..., (on, sn)}, is used to enrich the set of test oracles that are inserted by a test

generator. To ensure appropriate application of this advice, advO only inserts oracles at

method calls that match the scope associated with a piece of advice. In Section 4.2.3.3, we

explain the implementation details of a concrete instance of the test oracle advice function.

4.2.3.3 Oracle Advice from Hand-Coded Tests to Others

e have discussed different aspects of hand-coded tests in the previous sections. In this

section, we will be looking at another type of hand-coded tests that are written in adherence

to the specifications of the programs.

A program specification is a technical contract for the program that describes what the

system should achieve. There are different kinds of formal specifications, and we needed

one that works with the Java language. So we consider in this section the formal specifica-

tion language - JML (Java Modelling Language). JML is a behavioral interface specifica-

tion language for Java [43]. It has many sample artifacts that come with the project and it

has been used in plenty of research work. To be able to integrate with our framework, we

manually translated the JML specifications to hand-coded tests in the JUnit framework. In

Section 4.2.3.3, we describe how we derive the manual tests from the specification. The

translated hand-coded tests will be the advice source. In the evaluation, we used Randoop

tests as representative of all other types of tests, but note that all other types can benefit

from this type of advice.

More specifically, the oracle advice function we implement in this section is:

extractO : Hand-Coded→ Oracles,

63

gen : ⊥ → jUnitTests,

and

Tamp = advO((Oracles)())

There is an empty test generator ⊥ in gen function, since the oracle advice function

operates on an existing test suite.

Implementation First, there is only a small subset of JML specifications that we cur-

rently consider in the evaluation of our framework. Namely, we incorporate the follow-

ing semantics: method specification clauses (requires, ensures), specification expression

(\result), model type declaration and Model Programs. ensures is directly mapped to the

assertions in the tests. requires is treated as a precondition of the checks that happen in

the corresponding ensures, and the precondition is encoded as a condition in the related

decision action. \result is interpreted as the return value of the method invocation. model

methods in JML are methods that are declared to help in a specification, and they are treated

as the helper methods in a test class. In other words, we declared helper methods in the test

classes and invoke these methods in the assertions to help check the correctness of the im-

plementation. The artifact we use in the evaluation in Section 5.5 uses the model program

JMLDouble and JMLDouble.approximatelyEqualTo works as assertEquals with expected

value, actual value, and a precision being its tolerance.

In JML, the program specification is specified as the pre- and post-conditions of meth-

ods, and class invariants. To take advantage of this rich in-line specification, we construct

one manual test for each method, which includes a method call, and oracles checking on

post-conditions after the the method invocation when the corresponding pre-conditions are

satisfied.

64

Input:	

SUT with 	

JML specs	

manual	 	
transla*on	

hand-coded	

tests TS	

Test	 	
Transformer	

common test	

representation	

Oracle	
Analyzer	

Test	 Composer	
Input:	

Randoop tests	

 To	

Test	 	
Transformer	

common test	

representation	

oracle advice	

Output:	

Randoop+ tests Tamplified	

Figure 4.7: Implementation Process of the Oracle Advice from hand-coded tests to others

Figure 4.7 describes the process that we have implemented. The oracle analyzer takes

in the hand-coded tests from the test representation framework, and generates the oracle

advice. Since JML specifies pre- and post-conditions for methods, the manually translated

hand-coded tests basically specifies a list of assertions following each method invocation.

The oracle analyzer takes this advantage and generates the oracle advice for each method

in the SUT. Figure 4.8 is an example showing the advice that the oracle analyzer generates.

Note that in the oracle advice generated, we do not have any specific values, because the

assertions in the hand-coded tests from JML specification are all generalized.

methodSignature : Complex. add(Complex arg1)
condition : arg1 != null
oracles :

1. assertNotNull (add return value)
2. assertEquals (arg1 . realValue ()+ receiverObject . realValue () ,

add return value . realValue () , 0.005)

Figure 4.8: Example To Show Oracle Advice Generated By Oracle Analyzer

65

The test composer will take the oracle advice generated by the oracle analyzer, the

Randoop test suite from the framework, and output the amplified the Randoop+ tests Tamp

with the oracles from the hand-coded tests. It performs oracle matching at the method

level based on the method signature. The oracle analyzer generates oracle advice for each

method in the SUT for which advice is available. Whenever the test composer comes across

a method invocation in given Randoop test suite, it searches to see if a piece of advice is

available for the method. If there is a match, it instantiates the oracle template with the

concrete instance in the test. When the test composer goes through all method invocations

in the test, it outputs the amplified test.

66

Chapter 5

Evaluation

In this Chapter, we perform an evaluation on the four concrete instantiations of the advice

function introduced in the previous chapter.

5.1 Research Questions

The goal of this section is to provide a preliminary evaluation of advice functions on test

inputs, sequences, and oracles, through an assessment of the effectiveness of the original

test suites versus the amplified test suites with the advice. To evaluate the effectiveness,

we measure code coverage in terms of line and branch coverage with Cobertura [16], and

mutants killed score with Javalanche [61].

Research Questions

We developed two research questions that we aim to answer in the study. We evaluate the

quality of the advice functions by checking whether value, in terms of coverage and mutant

score, is added to the amplified test suites.

67

• RQ1: Does the advice functions add value in achieving higher coverage? We com-

pare the line coverage and branch coverage achieved by the original test suite and the

amplified test suite with advice function applied.

• RQ2: Does the advice functions add value in achieving better mutant detection capa-

bility? We compare the mutant score of the original test suite and the amplified test

suite with advice function applied.

5.2 Artifacts

The study is performed primarily on the Java prototype of the ACCoRD framework devel-

oped at NASA for the formal specification and verification of state-based conflict detection

and resolution algorithms [1]. The framework has 77 classes in total. We scoped our eval-

uation to the 16 classes (2468 LOC) that have hand-coded JUnit tests, which were needed

for the study. The first three columns of Table 5.2 provide a brief characterization of these

classes. For the evaluation in Section 5.3.2, we used Wheel Brake System (WBS with

212 LOC) and Altitude Switch (ASW with 295 LOC). In addition, for the study in Section

5.5.1, we use the Complex Number artifact (141 LOC).

5.3 Input Advice

5.3.1 From Hand-Coded Tests to Randomly Generated Tests

We mentioned before that Randoop tests may be limited by the tool’s initial pool of input

values. In this section we explore the effects of enriching that pool by applying input

advice extracted from manual tests, which tend to encode input values deemed as valuable

by the programmer. More specifically we explore the input advice function defined in

68

Section 4.2.1.3. To recall, extractIn : ManualTests → Inputs, gen : Randoop →

RandoopTests, and Tamp = advIn(Inputs)(Randoop). The scope for the Inputs advice

is computed at the class-level.

5.3.1.1 Experimental Design

To measure the quality of the generated Randoop tests in terms of the two research ques-

tions, we first generated Torig (Randoop original configuration) and Tamp (Randoop+ test

suite with original configuration + inputAdvice function). Then we used Cobertura [16] to

compute the line coverage and branch coverage and used Javalanche [61] to compute the

mutant score of all test suites generated.

When calculating coverage, we enforced some special considerations. Randoop makes

random choices while generating tests, based on the random seed used in the configuration.

Sometimes a different random seed could make a difference in the test suite generated. To

mitigate the effect from this randomness, we generated 10 test suites for each of the 16

ACCoRD classes. We picked at random 5 different seeds (0, 4, 7, 11, 13), and ran Randoop

twice for each seed. Finally, we calculated the average coverage the 10 runs and reported

the average. Also, time bound to generate tests are 10 seconds for 14 classes and 100

seconds for 2 classes. Given the size of the classes, we found that 10 seconds is a good

time limit to achieve a consistent coverage. “IntentCriteria” and “Kinematics” exhibit non-

terminating behavior which traps Randoop into an infinite loop during test generation. In

Randoop’s configuration, the option “usethreads” can be configured to execute each test

in a separate thread and kill tests when it is taking too long to finish. In our case, the

“usethreads” flag needed to be turned on for the 2 classes which slowed down the test

generation, and thus a longer time interval was given to make up the gap.

We made a couple arrangements when calculating mutant score. Despite the advances

in getting more effective mutation tools, it is still very expensive to calculate mutant score

69

for a target program. For example, for our experiment we would need to run 320 test suites

of over 20 million tests. Also, the test suites have to be run against every mutated version of

the SUT. With the understanding of the random side of the Randoop tool, we used the most

common seed 0 that testers use to generate Randoop tests and performed our evaluation on

these suites. The test suite generated with seed 0 is consistent with the average coverage

that we achieved for validating RQ1, and this also assured us that these test suites are valid

for us to use for the exploration of RQ2. Two out of the 16 classes are not included in this

evaluation: “Priority” and “Units”, because their Randoop tests depend on other tests in the

suite, which causes Javalanche to calculate incorrect mutant scores. For the classes Util

and WGS84, which had over 150, 000 tests, we only retained 10, 000 to control the cost of

mutation evaluation.

5.3.1.2 Results

Research Question 1: Higher Coverage Achieved? Does the input value advice add

value in achieving higher coverage?

Table 5.2 demonstrates the detailed results for a coverage comparison between Torig

(Randoop original configuration) and Tamp (Randoop+ test suite with original configuration

+ inputAdvice function). As mentioned in Section 5.3.1.1, the results reflect the average

of 10 Randoop runs for each class.

From Table 5.2, we can see that Tamp has better performance for 9 out of 16 classes.

In particular, for the “SeparatedInput” class, Tamp achieved an increase of 10.2% for line

coverage and 21.6% for branch coverage. Some specific strings, which are not in Randoop’s

initial pool of values, are needed to explore some methods in this SUT. Figure 5.1 is one

such example. On average across all 16 classes, Tamp covers 36 more lines of code and

44 more predicates. The higher increase in predicate number than LOC can result when

there is no matching else block for an if predicate. However, we can not underestimate

70

\n\n# Test\n\n #Test = 3\n\nx = hello
\ny = 10\nz = 10 [nmi]\ncol1 col2, Col3\n 1 2 3\n 4 5 6\n

Figure 5.1: Example of Specific String Needed in Randoop’s Test Generation

the effect of the increase in the number of predicates covered. Covering more branches can

sometimes bring more benefits if there is a potential bug or there is a big chunk of code not

covered in that branch.

4 out of the 16 classes did not reflect any change in terms of coverage. These 4 classes

all have very simple implementations without much interaction between method invoca-

tions, and they did not require any extra input values. There are 3 classes where Tamp

ended up with a lower coverage: “GreatCircle”, “IntentCriteria”, and “SimpleProjection”.

The average difference was small. On average, Tamp covered 0.76 less branches for class

“GreatCircle”, 0.1 less branches for class “IntentCriteria” and equal numbers of line cov-

erage. For class “SimpleProjection”, Tamp covered 4.16 less lines of code and 0.384 less

branches. When we extended the test generation time from 10s to 100s, “GreatCircle” and

“IntentCriteria” achieved equal coverage for Torig and Tamp.

However, “SimpleProjection” class illustrates the case that undesirable input values

given to Randoop could potentially harm the test generation process instead. The more

input values added to Randoop’s pool, the more time Randoop would need to explore all

combinations. When the advice provided is not desirable, it will just divert Randoop and

take longer to explore the program states that it could have otherwise reached.

Research Question 2: Better Mutant Detection Capability? Does the input value ad-

vice add value in achieving higher mutant score?

Table 5.1 demonstrates the detailed results for the comparison of mutant detection ca-

pability between Torig (Randoop original configuration) and Tamp (Randoop+ test suite

71

with original configuration + inputAdvice function). The findings are consistent with the

coverage results presented above – overall, Tamp is more effective at killing mutants than

Randoop (Tamp kills 178 mutants more than RandoopTests). The input advice helps to

improve half of the classes, is neutral for four classes, and has a negative impact on three

classes. In some cases, e.g., SeparateInput, the improvement is close to 25%, while

the worst performance is for SimpleProjection with a decrease in mutants killed of

2%. In all cases, increasing the test generation time would improve the performance of

Randoop only when the advice was applied. Thus, Randoop tests with the advice from

manual tests are more capable of killing more mutants than those without, which in turn

indicates better bug detection capability.

Class Name # of # of Tests Mutant Score (%)
Mutants Torig Tamp Torig Tamp

AircraftState 803 10300 9940 47.45 55.17
CDII 172 10840 10353 66.28 66.28
CDSI 175 7269 9284 71.43 71.43
GreatCircle 446 15141 17246 79.82 79.37
IntervalSet 226 9267 11114 51.77 53.54
IntentCriteria 24 210 320 83.33 87.50
Kinematics 526 4146 4282 57.41 58.94
Plan 116 12024 11693 69.57 67.83
PlanCore 912 8589 7843 48.25 50.66
SeparatedInput 292 9788 8806 50.34 74.32
SimpleProjection 262 8767 8012 76.72 74.43
Util 324 10000 10000 64.81 71.30
Velocity 102 13442 7434 98.04 98.04
WGS84 114 10000 10000 70.18 70.18
Total 4493 129783 126236 - -
Average % - - - 59.50 63.45

Table 5.1: Mutant Kill Score Comparison between Randoop (Torig) and Randoop with
Input Advice (Tamp).

72

C
la

ss
N

am
e

L
O

C
#

of
#

of
Te

st
s

L
in

e
C

ov
er

ag
e

%
B

ra
nc

h
C

ov
er

ag
e

%
pr

ed
ic

at
es

T
o
r
ig

T
a
m
p

T
o
r
ig

T
a
m
p

T
o
r
ig

T
a
m
p

A
ir

cr
af

tS
ta

te
35

6
15

2
95

17
.8

10
64

1.
5

72
.5

73
69

69
.9

C
D

II
71

36
10

53
0.

3
11

79
3.

2
85

85
77

77
C

D
SI

85
34

75
81

.6
83

94
.6

91
91

79
79

G
re

at
C

ir
cl

e
11

8
38

17
54

7.
5

18
19

1.
2

98
98

93
.8

93
.6

In
te

rv
al

Se
t

15
0

86
85

41
.6

10
33

2.
3

87
.3

88
.4

76
.1

80
In

te
nt

C
ri

te
ri

a
18

2
41

3.
8

29
9.

1
10

0
10

0
90

85
K

in
em

at
ic

s
27

0
10

2
43

45
.6

44
28

.9
79

.6
80

.1
75

.2
75

.5
Pl

an
81

26
12

90
9.

1
12

43
4.

3
93

93
69

.8
73

Pl
an

C
or

e
39

1
26

8
77

44
.2

72
09

.4
75

.8
77

64
66

.2
Pr

io
ri

ty
58

2
76

22
5

79
38

0.
7

94
94

50
50

Se
pa

ra
te

dI
np

ut
17

4
11

0
19

07
4.

9
18

49
5.

4
75

.2
85

.4
63

.2
84

.8
Si

m
pl

eP
ro

je
ct

io
n

10
4

48
81

44
.3

78
28

.8
94

.2
93

.8
87

.4
86

.6
U

ni
ts

42
8

88
30

75
3.

7
34

33
1.

8
81

82
.6

82
.2

88
.9

V
el

oc
ity

32
2

10
67

7.
7

83
62

.8
94

.2
94

.8
70

80
U

til
10

0
94

15
76

05
.9

15
72

10
.4

87
89

.2
84

.6
87

.6
W

G
S8

4
27

-
24

99
61

.7
24

44
68

.8
92

92
-

-
To

ta
l

24
68

10
88

63
15

74
.7

63
38

03
.2

-
-

-
-

Av
er

ag
e

%
-

-
-

-
81

.9
7

83
.4

4
73

.0
2

77
.0

5

Ta
bl

e
5.

2:
C

ov
er

ag
e

of
R

an
do

op
(T

o
r
ig

)a
nd

R
an

do
op

w
ith

In
pu

tA
dv

ic
e

(T
a
m
p
).

73

5.3.2 From Systematically Generated Tests to Randomly Generated

Tests

Similar to Section 5.3.1, in this section we explore the effects of enriching that pool by

applying input advice extracted from SPF tests, which tend to encode input values deemed

as valuable by the programmer. More specifically we explore the input advice function de-

fined in Section 4.2.1.4. To recall, extractIn : SPFTests→ Inputs, gen : Randoop→

RandoopTests, and Tamp = advIn(Inputs)(Randoop). The scope for the Inputs advice

is computed at the class-level.

5.3.2.1 Experiment Design

For this study, we used Wheel Brake System (WBS) and Altitude Switch (ASW). SPF does

not work well with the 16 classes in ACCoRD, because of the complex objects needed as

method arguments. Given a 5-hour test generation time limit, SPF is capable of generating

tests with average method sequence of length 0.9 for the 16 classes. WBS is used to provide

safe retardation of an aircraft during taxi and landing and in the event of an aborted take-off.

It has one class and 212 lines of source code. ASW is a synchronous reactive component

from the avionics domain with one class and 295 lines of source code. Both artifacts are

within the applicability of both SPF and Randoop, which makes them qualified artifacts

in the experiment setting in the evaluation of the input advice from SPF tests to Randoop

tests.

The procedure is quite similar to the one in Section 5.3.1. To measure the quality of

the generated Randoop tests in terms of the two research questions, we first generated Torig

(Randoop original configuration) and Tamp (Randoop+ test suite with original configura-

tion + inputAdvice function). Second, we used Cobertura [16] to compute the statement

74

coverage and branch coverage for all generated test suites. Finally, we used Javalanche

[61] to compute the mutant score of all test suites.

To calculate the coverage for both WBS and ASW, we also ran Randoop with 5 different

seeds(0, 4, 7, 11, 13). However, both WBS and ASW are much less complicated compared

to the 16 classes in ACCoRD. Given 5 seconds of time, Randoop was able to reach consis-

tent coverage results for all seeds chosen. All the test suites used in this section for both

coverage and mutant score calculation are generated with random seed of 0.

5.3.2.2 Results

In this section, we examine the results for the two research questions.

Research Question 1: Higher Coverage Achieved? Does the input value advice add

value in achieving higher coverage?

From Table 5.3, we can identify a coverage increase in WBS, but ASW had the same

coverage before and after the advice was deployed. We now explore the reasons for these

different outcomes. In WBS, we identified constraints in the program for which Randoop

failed to provide the needed input values. Figure 5.2 shows one of such examples that we

identified in WBS. For the predicate at line 1 to be true, var1 must be 3. However, Randoop

does not to have 3 in its initial pool of values. JPF-symbc, on the other hand, was able to

solve the constraints in these classes and eventually generated tests with the desired input

values. With these inputs provided as advice, Randoop was able to overcome the hurdle and

went on with the test generation reaching such statements. For ASW however, Randoop

was able to cover all the reachable code with its initial pool of values and thus the input

advice from JPF-symbc tests were not able to help Randoop in this case.

75

Table 5.3: Coverage Comparison between Randoop and Randoop with JPF Input Advice

Subject # of Tests Line Cov Branch Cov
Torig Tamp Torig Tamp Torig Tamp

WBS 6012 9618 67 82 50 68
ASW 4007 3867 88 88 70 70

1 i f (((var1 >= 3) && (var1 < 4))) {
2 WBS Node WBS BSCU Switch2 = 3;
3 } else {
4 WBS Node WBS BSCU Switch2 = 4;
5 }

Figure 5.2: Example to demonstrate the importance of input values

Research Question 2: Better Mutant Detection Capability? Does the input advice add

value in achieving higher mutant score?

Table 5.4 provides the information about the mutant detection capabilities of these test

suites. From Table 5.4, we can see that the mutant detection capabilities are consistent

with the coverage of the test suites. WBS test suites did manage to obtain a higher mutant

score with the advice. This is reasonable considering the extra percentage of the code that

was covered after the inputAdvice function applied. ASW test suite remained the same in

terms of mutant score, same as with the coverage.

Table 5.4: Mutant Detection Capability between Randoop and Randoop with JPF Input
Advice

Subject # of mutants # of Tests Mutant Score
Torig Tamp Torig Tamp

WBS 264 6012 9618 56.44 80.30
ASW 265 4007 3867 89.81 89.81

76

5.3.2.3 Synthetic Program Snippet

As discussed in Section 5.3.2.2, method input values extracted from JPF-symbc tests were

able to provide valuable advice to Randoop in cases where Randoop got stuck because of

the constraints in a predicate. However, WBS did not reveal all the potential that this advice

is capable of providing.

We illustrate the greater potential of the input advice function in the code shown in Fig-

ure 5.3. The class testclass has one public method waiting to be tested: testme. The method

takes 2 integer arguments, which are needed for comparison in 2 equality constraints inside

the method. Only when x==1048576 and equalityPredicate==7 will the bug be detected

at line 11.

To test the method testme, if we use a random testing approach, whether the bug can be

detected or not entirely depends on the method input values that the random approach has at

hand. Take Randoop for example, it will not be able to cover any code inside the if predicate

at line 4, and thus will leave the bug undetected. On the other hand, if we use a systematic

testing approach like Symbolic Execution, the loop construct at line 6 will stop the approach

from exploring all the program states because of the infinitely long execution paths that

could possibly be generated. If we choose to perform a bound exhaustive approach, we

will need a depth of over 1048576 to reveal the buggy code. Take JPF-symbc for example,

it does not finish executing within 1-hour limit for a bound of 1048576. Given that this is a

small example with one method under test, we set a small window of 1 hour to let it finish.

If the bound is smaller, it will finish sooner without revealing the bug, but generating the

desired input values.

In this case, a better alternative would be to advise Randoop with JPF method input

values. JPF-symbc generates method input values of both 1048576 and 7 when the bound

is set to 5 and finishes after 3 seconds. And on the other hand, it is easy for Randoop to

77

1 public class t e s t c l a s s {
2 int index = 0;
3 public void testme (int x , int equalityPredicate){
4 i f (x==1048576){
5 int i = 0;
6 while (i<1048577){
7 i ++;
8 increaseIndex () ;
9 i f (helper (equalityPredicate)){

10 / / divide by 0 when index is 1048576
11 int temp = index / (index−x) ;
12 }
13 }
14 }else{
15 / / everything is f ine here
16 }
17 }
18
19 private void increaseIndex (){
20 index += 1;
21 }
22
23 private boolean helper (int equalityPredicate){
24 i f (equalityPredicate == 7)
25 return true ;
26 else
27 return false ;
28 }
29 }

Figure 5.3: Example to demonstrate the importance of input values

execute with concrete values inside the method. With the help of the input advice, Tamp

detects the bug in 1 second.

5.3.3 Discussion on Input Advice

In Section 5.3.1 and Section 5.3.2, we have applied the advice at the class level. In other

words, a literal extracted from a given class is used as input advice only to methods of that

class for test generation. There are indeed other granularities at which this advice can be

applied, for example the package level or the method level.

78

Theoretically, advising Randoop with the same set of input values at different levels

should eventually converge to the same results, but it may take different amount of time as

it enumerates all (scope, values) pairs of the test method input values. We did experience

better results running at the class level than running at the package level. This is reasonable,

because at a package level Randoop needs more time to enumerate all possible values for

the scope of package, when some method input values are actually intended for methods

of one particular class.

We anticipate that at the method level, we will achieve same coverage and mutant score

as that of the class level within a shorter period of time and less tests. However, Randoop

tool does not currently support this feature, so we did not validate this conjecture.

Robinson, et al. conducted similar experiments in [59], where they experienced better

results at the package level, because there were cases where literals from one class were

needed to invoke methods in another class. However, they extracted input values from the

SUT to guide Randoop. Such input values do not necessarily reflect their needs for method

arguments. On the contrary, the input values we extracted from the hand-coded tests or JPF

tests are more targeted and are designed by the testers to be used as the method arguments.

We conjecture that when these values are more targeted, it is better to restrict them to the

level that they are from.

5.4 Sequence Advice

5.4.1 Combining System-level Random Concrete Execution

Sequences with Unit-level Symbolic Execution Sequences

SPF tests are generally effective at generating inputs for primitive types to cover most paths

in a target method. When a target method execution depends on an object that requires

79

several method invocations to be built, however, SPF tends to struggle due to the exhaustive

nature of its exploration of the program space. Randoop on the other hand tends to quickly

build tests with long sequences of method invocations, which can often lead to the creation

of interesting object structures. In this section we explore whether we can leverage the

strengths of Randoop tests to set the state of the program such that SPF can generate tests

with improved coverage and mutant scores on a set of methods identified as of interest by

the developer. More specifically we explore the sequence advice function defined in Section

4.2.2. To recall, extractSeq : RandooTests → Sequences, gen : SPF → SPFTests,

and Tamp = advSeq(Sequences)(SPF).

5.4.1.1 Experimental Design

To perform this study we consider a scenario where a tester with access to SPF and Randoop

is trying to improve the coverage of some methods. Given the large number of potential

methods to target, we decided to restrict our attention to the two largest classes in ACCoRD

with non-static methods (AircraftState and PlanCore).

First, we ran Randoop at the system-level. For the class that the target method is in, we

ran Randoop for 10 seconds. This served as the advice source test suite from which we ex-

tract sequence advice. Then we also try to run SPF at the system-level. When running SPF,

we get the longest possible method sequences given a time limit of 5-hour. SPF generation

for “PlanCore” class went beyond the 5-hour time limit when the sequence length was set

to 2, and generation for “AircraftState” fell into an error of “java.lang.RuntimeException:

Error: SYMBOLIC IREM not supported” when the sequence length was set to 2. Thus,

we generated SPF test suites for class “PlanCore” and “AircraftState” of length 1. Table

5.5 shows the profile of both the Randoop test suite and the JPF test suite generated for the

two classes used in the evaluation. Randoop is able to generate long sequences within a

very short period of time. For the advice to be applicable and valuable, SPF and Randoop

80

tests must be able to reach the target methods but not fully cover them. Within the two tar-

get classes, we selected the three largest methods that met the previous criteria. Sequence

advice was then extracted from the generated Randoop tests, and provided to SPF to guide

its test case generation process by acting as prefixes to any exploration.

Table 5.5: Profile of Randoop and JPF Test Suites Generated

Class Name Time(s) # of tests Avg Seq Len
JPF Ran JPF Ran JPF Ran

AircraftState 30 10 53 8966 1 15
PlanCore 874 10 548 8227 1 21

5.4.1.2 Results

In this section, we examine the results obtained for the research question we raised above.

Research Question: Higher Coverage Achieved? Does the method sequence advice

add value in achieving higher coverage on a the target methods using the sequence of

method invocations from the Randoop tests to set up the desired program state?

Table 5.6 shows the results for the coverage metrics of the six methods before and

after the advice is deployed. On average, we identified an average increase of 49% in

line coverage and 41% in branch coverage. We can see that the method sequence advice

function was able to increase the coverage of the target methods to varying extents (from

0% to 72.43%), and for some methods the advice function was not able to achieve full

coverage on the target method. This is because some of the predicates inside the code are

dependent on referenced values of the pre-defined concrete state. And in SPF, once the one

variable is set to be concrete, it will stay as concrete during its execution. Thus, part of the

81

code in these methods that is directly or indirectly dependent on referenced values was not

covered.

Class.Method # of # of # of tests Line Cov % Branch Cov %
lines branches Torig Tamp Torig Tamp Torig Tamp

AircraftState.find 7 5 1 1+14 28.57 100 60 100
AircraftState.add 22 9 1 1+4 31.82 90.91 22.22 77.78
AircraftState.predLinear 8 3 4 4+0 87.5 87.5 66.67 66.67
PlanCore.gsSmooth 22 11 5 5+7 36.36 86.36 45.45 81.82
PlanCore.timeshiftPlan 14 10 2 2+70 28.57 100 30 100
PlanCore.getIndex 14 13 1 1+11 64.29 92.86 61.54 84.62
Totals 87 51 14 14+106 - - - -
Average % - - - - 42.53 91.95 45.10 86.27

Table 5.6: Coverage Comparison between SPF (Torig) and SPF with Sequence Advice
(Tamp).

Research Question: Higher Mutant Detection Capability Achieved? Does the method

sequence advice add value in achieving higher mutant kill score on the target methods with

the application of the sequence advice function?

Since SPF tests’ oracles are weak, the small increases in mutation scores were ex-

pected (the amplified test suite killed 38 additional mutants). Table 5.7 shows the results

for the mutant score metrics of the six methods before and after the advice is deployed.

On average, we identified an average increase of 20% with the application of the advice

function. It was interesting that most of the additional mutants killed came from Plan-

Core.timeshiftPlan. A closer analysis revealed that the original test suite could not reach

the code within the nested loops in this method, where several mutants resided. Once that

code become reachable due to the sequence advice, the SPF tests were able to reveal 21 of

the 28 seeded mutants because of exceptions like NullPointerException, ArrayIndexOutOf-

BoundException or having program execution trapped in an infinite loop.

For method “PlanCore.timeshiftPlan(int, double)” shown in Figure 5.4, there are 9

tests which reached the “if” predicate at line 7. However, in all 9 cases, the argument

82

Class.Method # of # of tests Mutant Score %
mutants Torig Tamp Torig Tamp

AircraftState.find 13 1 1+14 7.69 7.69
AircraftState.add 36 1 1+4 0 0
AircraftState.predLinear 17 4 4+0 11.76 11.76
PlanCore.gsSmooth 47 5 5+7 0 14.89
PlanCore.timeshiftPlan 28 2 2+70 0 75
PlanCore.getIndex 47 1 1+11 8.51 27.79
Totals 188 14 14+106 - -
Average % - - - 3.72 23.94

Table 5.7: Mutant Score Comparison between SPF (Torig) and SPF with Sequence Advice
(Tamp).

“double st” was not set right for it to reach the code inside the “if” predicate. On the other

hand, the SPF tests can not set up a program state with “numPts” attribute greater than 0.

And the “if” predicate at line 2 ensures that the local variable start ≥ 0. Thus, none of the

JPF tests can reach the code wrapped inside the “for” loop at line 3 and the “if” predicate at

line 6. However, when we extract the method sequence from Randoop tests to help SPF to

get inside the “for” loop at line 3 and the “if” predicate at line 6, SPF was able to generate

tests that cover all the code in the method.

Also, for this method, not only did the advice manage to increase the coverage of the

target method, it also revealed a NullPointerException existing in the code. The excep-

tion happens at line 14 with ”java.lang. NullPointerException: Calling ‘time()D’ on null

object...”. The code first calculates the larger value of two variables start and lastOrig,

and then uses the larger value as an index to retrieve data from points. However, for the

given test case, there is only 1 element in points at index 0. When Math.max returned 1

as the larger value, points[1] is null and it resulted in NullPointerException when trying to

call time(). Not understanding the logic of the code, it is hard to explain what caused the

NullPointerException or how to fix it though.

83

1 public void timeshiftPlan (int s ta r t , double s t) {
2 i f (s t a r t < 0) s t a r t = 0;
3 for (int i = s t a r t ; i < numPts ; i++) {
4 setTime(i , points [i] . time () + s t) ;
5 }
6 i f (s t a r t < numPts) {
7 i f (s t < 0.0) {
8 int lastOrig = s ta r t−1;
9 i f (lastOrig < 0)

10 lastOrig = 0;
11 double beforeTime = points [lastOrig] . time () ;
12 double cTime = points [Math.max(s ta r t , lastOrig +1)]. time () ;
13 while (cTime <= beforeTime && s t a r t < numPts) {
14 removeWithRecord(s t a r t) ;
15 cTime = points [s t a r t] . time () ;
16 }
17 }
18 }
19 }

Figure 5.4: Example target method with NullPointerException

5.4.1.3 Discussion on Combining Random and Systematic Approaches

There are a couple of points that we want to discuss further on the proposed approach which

is a hybrid of Symbolic Execution and Random Concrete Execution.

First, the underlying reason that this combination can work is that the Random Con-

crete Execution at the system level is able to provide us with rich heap that can set up the

interesting program state for symbolic execution to keep working on the target method. For

the particular representative approach that we use in the evaluation - Randoop, it is a good

candidate for the random execution at the system level because Randoop tends to build long

method sequences with repetitive method calls. The long method sequences make a higher

probability that a rich heap can be constructed. However, if the assumption fails to hold,

Randoop may not be an ideal candidate to use.

Second, when generalized, the approach can be defined as executing the system con-

cretely with Randoop for a given period of time until it struggles with a particular unit and

84

then, SPF takes in the concrete method sequences generated by Randoop and exhaustively

explores the unit under test based on the concrete program state set up by Randoop. The

combination of running SPF first and then Randoop for method sequence generation, how-

ever, was not effective. We investigated running JPF-symbc first generating the longest

possible method sequences given a time and memory limit, and then we had Randoop in-

corporate all those method sequences. We found, however, that SPF gets stuck with short

sequences, and the sequences generated did not provide much value in terms of setting up

a complex program state needed for Randoop.

Finally, another potential direction to investigate is to restrict the program state based

on the pre-conditions of the MUT to improve the precision of symbolic execution on the

unit-level as proposed by Pǎsǎreanu, et al. in [56]. This would require for our framework

to encode those and develop advice that use that information to instantiate the concrete

program state that can be used for the unit-level symbolic execution.

5.5 Oracle Advice

5.5.1 Oracle Advice from Hand-Coded Tests to Others

Randoop tests can include a variety of regression oracles on method return values and

checks against a small set of predefined contracts like Symmetry of equality and Equals

to null. In this section we explore whether oracles extracted from manual tests that may

encode a developer’s understanding of the particular code specifications can enhance the

fault detection of Randoop tests. More specifically we explore the oracle advice function

defined in Section 4.2.3.3. To recall, extractO : Hand-Coded → Oracles, gen : ⊥ →

jUnitTests, and Tamp = advO(Oracles)().

85

5.5.1.1 Experimental Procedure

Our first attempt to explore this advice targeted the ACCoRD framework where we quickly

faced a significant challenge. We found that advice extracted from the manual tests tended

to be too limited in quantity and too specific to be widely applicable across the Randoop

tests. For example, most manual tests made a sequence of invocations with a series of

inputs and then checked for equality between a particular variable value against some ex-

pected value. Such specific advice could only be safely applied to Randoop tests whose

prefix match the manual test sequence of invocations and input values; any relaxing of this

matching may render the oracle inappropriate. One important lesson we learned from this

experience, is that the more general oracle advice may be more broadly applicable across

tests of different types. Within that context, we decided to explore tests that use more ab-

stract oracles. More specifically, we targeted a sample class that is used in the learning

materials of Java Modeling Language [13] and that comes with simple annotations such as

methods pre- and post-conditions. Given the small subset of JML semantics we support

currently, we chose Complex numbers which supports arithmetic operations on complex

numbers like Rectangular or Polar. There are 4 classes in it with 141 LOC.

First, we transformed the program specification in JML into hand-coded tests. JML

encodes pre- and post-conditions for each method. We hand-coded one test for each method

in the classes, serving as the oracle template for the method. And this is our source test

suite where we extract advice from.

Second, we generated Randoop tests for the 4 classes. At the very beginning, we gen-

erated Randoop tests just with random seed 0, but we discovered that the same type of

mutants are sometimes killed and other times alive. Given the randomness of the Randoop

tool, we generated 5 different test suites using 5 different seeds and use them all in the

experiment. This generates the original test suite Torig.

86

Third, we passed both hand-coded tests and Randoop tests to our oracleAdvice func-

tion to generate the Tamp. Finally, using Javalanche, we computed the mutant score for both

Torig and Tamp and report the results for a comparison of the two for the Torig generated for

each of the 5 random seeds.

5.5.1.2 Results

Since we only aim to amplify the oracles in the test suite, we do not modify the test inputs.

Coverage between the original tests and amplified tests remain the same. Thus, we only

explore the improvement in mutant kill score in this section.

Research Question 2: Better Mutant Detection Capability? Does the oracle advice

add value in achieving higher mutant score?

Table 5.8 shows the results we have for the comparison of the mutant detection capabil-

ities. First, we can see that the mutant score does increase for Tamp with the oracle advice

applied from the hand-coded tests on top of the Randoop test suite. This is what we ex-

pected since we are adding the oracles and the mutant score should increase or at least stay

the same. There are 2 reasons for the mutant score for Tamp not to be 100%. First, after

manual inspection, we found that there are 8 mutants that are equivalent. For example, 4

mutants operate on a local variable, but there are assignments to that local variable on all

paths in the rest of the method. Thus, the mutants don’t really change the semantics of the

program, which we consider as equivalent. Second, the test inputs are not comprehensive

to cover the mutant or it covers the mutant but does not provide specific values to kill the

mutant.

Another interesting point about the result is the randomness of the test suite. The mu-

tant score for Trandoop varies depending on which seed is used for test generation, even

though the number of covered mutants are similar. On the other hand, the mutant score for

87

Artifact Seed # of # of Covered Mutant Score %
tests mutants mutants Torig Tamp

0 1731 122 78.62 83.21
Complex 4 1256 124 67.94 85.50

7 1453 131 122 76.34 83.21
numbers 11 1134 124 68.70 85.50

13 1112 120 61.83 81.68
Average % - - - 122.4 70.69 83.82

Table 5.8: Mutant Detection Capability of RandoopTests and Tamp with the Oracle from
Hand-coded Tests

Tamp stays stable considering the number of mutants covered. We will explain the reasons

for this using the example shown in Figure 5.5.

1 public Complex sub(Complex b) {
2 return new Rectangular (this . realPart () − b . realPart () ,
3 this . imaginaryPart () − b . imaginaryPart ()) ;
4 }

Figure 5.5: Example to show the randomness in mutant score that exists in Trandoop

One of the mutants Javalanche generates for this method is at line 2 – “Replace arith-

metic operator (Replace DSUB operator with DADD operator)”. In this case when the

return value is an object of type “Complex”, the types of errors Randoop checks for in-

clude Reflexity of equality, Symmetry of equality, Equals to null, No null pointer exceptions

and Equals-hashcode. All these checks are not capable of killing the mutant. Only when

Randoop by chance calls “double realPart()” on the returned “Complex” object and checks

the return value will the mutant be killed. However, tests in Tamp ensure that the realPart()

is checked every time the method call is made, which is why the results are more consistent.

88

5.6 Threats to Validity

Our findings are subject to several threats to validity, mostly due to the preliminary stage

of this work. First, we limited our study to a small number of test suite types and test case

generation tools, all of which are represented in a format that we could quickly manipulate

for advice extraction or generation. We argue but are yet to show in practice the degree

of generality of the test representation language, and the cost-effectiveness for advice ex-

traction and generation on more diverse suites such as those aiming to check a GUI or

stress a system’s resources. Second, the artifact that we have used serves as a solid starting

point, but larger programs with larger suites will let us analyze, for example, whether the

approach scales and whether the limitations identified at the end of Chapter 3 manifest in

practice. Third, there are several other metrics that we did not consider and that should

be part of a larger evaluation such as the cost of advice extraction and generation. Fourth,

we study very particular instantiations of the advices and in constrained contexts, which

limits the generality of the findings but helped us to observe the advice’s effectiveness at

this early stage of the project.

89

Chapter 6

Conclusions and Future Work

In this work, we defined a Test Case Language (TCL) which can be used to derive a com-

mon test representation for tests of varying formats. The test case language specifies the

components of a test in terms of invoke action, write action and decision action. We demon-

strated the applicability of the language through a series of examples covering tests of

different formats. We also presented a framework for transforming tests of different rep-

resentations into TCL. Two types of tests are incorporated into the framework currently -

tests specified in Java source code and DUTs in XML format. However, other types of tests

can be easily incorporated.

Finally, once tests are in a common representation and can be analyzed, we showed

how valuable advice can be leveraged from one type of tests to amplify other type(s) of

tests. We defined five advice functions - two on test input values, one on method call

sequences, and two on test oracles. We incorporated three types of tests generated through

different techniques including hand-coded tests, randomly generated tests from Randoop

and systematically generated tests from JPF-symbc and operated the five advice functions

on these three types of tests. We evaluated each advice function by checking the value of

the amplified test suite with respect to code coverage and mutant kill score. Results show

90

that the amplified test suite derived from the advice functions has improved value compared

to the original test suite before the advice functions applied.

From our experience working with the framework and analysis discussed in this thesis,

we envision several directions of future work.

First, we want to extend the current framework to incorporate more varieties of tests,

non-functional tests for example. This will help us to improve the applicability of the

framework, and incorporate more testing data for further analysis. Second, we want to

broaden the the family of advice to add advice in other directions. For example, we could

try to remove redundant tests based on the abstract test cases generated by JPF. JPF outputs

abstract tests in path constraints and each path constraint reflects one partition out of the

total input space. By leveraging this information, we can partition the concrete tests and

remove the redundant tests which fall into the same partition. Third, we plan to study

the limitations of the advice and the possibilities of providing bad advice. We explored

four concrete advice functions in this thesis and assessment shows that the four advice

functions do add value in the amplified test suites. However, we’ve also had experience

with a bad advice function when the amplified test suite did not manifest any added value

compared to the original test suite. As part of our future work, we plan to study this

thread in more detail. Fourth, we want to explore other dimensions to take advantage of

the testing data available in the framework. We want to bring about new metrics based

exclusively on the test representation to evaluate the tests besides the commonly used code

coverage and mutant kill score. Test prioritization is also a possible direction, to prioritize

the tests generated through different techniques by maximizing the diversity of the tests -

for example, not only to maximize the methods invoked, but also to maximize the diversity

in the memory locations being checked. We believe that a corpus of diverse tests has the

potential to be a rich source of information for the whole validation cycle.

91

Bibliography

[1] ACCoRD. http://shemesh.larc.nasa.gov/people/cam/ACCoRD/.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for

testing experiments? In Proceedings of the 27th international conference on Software

engineering, ICSE ’05, pages 402–411, New York, NY, USA, 2005. ACM.

[3] Shay Artzi, Michael D. Ernst, Adam Kie. Zun, Carlos Pacheco Jeff, and H. Perkinsmit

Csail. Finding the needles in the haystack: Generating legal test inputs for object-

oriented programs. In In M-TOOS, page 2006, 2006.

[4] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts from

formal test specifications. SIGSOFT Softw. Eng. Notes, 14(8):210–218, November

1989.

[5] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna. A genetic

approach for random testing of database systems. In Proceedings of the 33rd inter-

national conference on Very large data bases, VLDB ’07, pages 1243–1251. VLDB

Endowment, 2007.

[6] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna. A genetic

approach for random testing of database systems. In Proceedings of the 33rd inter-

92

national conference on Very large data bases, VLDB ’07, pages 1243–1251. VLDB

Endowment, 2007.

[7] Kent Beck. jUnit. https://github.com/KentBeck/junit.

[8] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In

2007 Future of Software Engineering, FOSE ’07, pages 85–103, Washington, DC,

USA, 2007. IEEE Computer Society.

[9] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated

testing based on java predicates. In Proceedings of the 2002 ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis, ISSTA ’02, pages 123–133, New

York, NY, USA, 2002. ACM.

[10] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scalabil-

ity and expressiveness in an internet-scale event notification service. In Proceedings

of the nineteenth annual ACM symposium on Principles of distributed computing,

PODC ’00, pages 219–227, New York, NY, USA, 2000. ACM.

[11] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. Gui testing using computer

vision. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’10, pages 1535–1544, New York, NY, USA, 2010. ACM.

[12] T. Y. Chen, Pak-Lok Poon, and T. H. Tse. A choice relation framework for supporting

category-partition test case generation. IEEE Trans. Softw. Eng., 29(7):577–593, July

2003.

[13] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit

testing: The jml and junit way. In Proceedings of the 16th European Conference

93

on Object-Oriented Programming, ECOOP ’02, pages 231–255, London, UK, UK,

2002. Springer-Verlag.

[14] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Artoo: adaptive

random testing for object-oriented software. In Proceedings of the 30th international

conference on Software engineering, ICSE ’08, pages 71–80, New York, NY, USA,

2008. ACM.

[15] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing

of haskell programs. In Proceedings of the fifth ACM SIGPLAN international confer-

ence on Functional programming, ICFP ’00, pages 268–279, New York, NY, USA,

2000. ACM.

[16] Cobertura. http://cobertura.sourceforge.net/.

[17] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic robustness tester

for java. Softw. Pract. Exper., 34(11):1025–1050, September 2004.

[18] T. Daboczi, I. Kollar, G. Simon, and T. Megyeri. Automatic testing of graphical user

interfaces. In Instrumentation and Measurement Technology Conference, 2003. IMTC

’03. Proceedings of the 20th IEEE, volume 1, pages 441 – 445, may 2003.

[19] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled ex-

perimentation with testing techniques: An infrastructure and its potential impact. Em-

pirical Softw. Engg., 10(4):405–435, October 2005.

[20] Dirk Draheim, John Grundy, John Hosking, Christof Lutteroth, and Gerald Weber.

Realistic load testing of web applications. In Proceedings of the Conference on Soft-

ware Maintenance and Reengineering, CSMR ’06, pages 57–70, Washington, DC,

USA, 2006. IEEE Computer Society.

94

[21] Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing. Software

Engineering, IEEE Transactions on, SE-10(4):438 –444, july 1984.

[22] E. Dustin, J. Rashka, and J. Paul. Automated software testing: introduction, manage-

ment, and performance. Bonston: Addison-Wesley, 1999.

[23] S. Elbaum, Hui Nee Chin, M.B. Dwyer, and M. Jorde. Carving and replaying differ-

ential unit test cases from system test cases. Software Engineering, IEEE Transactions

on, 35(1):29 –45, jan.-feb. 2009.

[24] EMMA. http://emma.sourceforge.net.

[25] Roger Ferguson and Bogdan Korel. The chaining approach for software test data

generation. ACM Trans. Softw. Eng. Methodol., 5(1):63–86, January 1996.

[26] Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In Proceed-

ings of the 2011 International Symposium on Software Testing and Analysis, ISSTA

’11, pages 364–374, New York, NY, USA, 2011. ACM.

[27] Chen Fu, Mark Grechanik, and Qing Xie. Inferring types of references to gui objects

in test scripts. In Proceedings of the 2009 International Conference on Software

Testing Verification and Validation, ICST ’09, pages 1–10, Washington, DC, USA,

2009. IEEE Computer Society.

[28] Juan Pablo Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and

Marcelo Fabian Frias. Analysis of invariants for efficient bounded verification. In

Proceedings of the 19th international symposium on Software testing and analysis,

ISSTA ’10, pages 25–36, New York, NY, USA, 2010. ACM.

[29] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random

testing. In Proceedings of the 2005 ACM SIGPLAN conference on Programming lan-

95

guage design and implementation, PLDI ’05, pages 213–223, New York, NY, USA,

2005. ACM.

[30] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data selection.

SIGPLAN Not., 10(6):493–510, April 1975.

[31] J. S. Gourlay. A mathematical framework for the investigation of testing. IEEE Trans.

Softw. Eng., 9(6):686–709, November 1983.

[32] Mark Grechanik, Qing Xie, and Chen Fu. Maintaining and evolving gui-directed test

scripts. In Proceedings of the 31st International Conference on Software Engineering,

ICSE ’09, pages 408–418, Washington, DC, USA, 2009. IEEE Computer Society.

[33] Wolfgang Grieskamp, Nikolai Tillmann, Colin Campbell, Wolfram Schulte, and Mar-

gus Veanes. Action machines - towards a framework for model composition, explo-

ration and conformance testing based on symbolic computation. In Proceedings of the

Fifth International Conference on Quality Software, QSIC ’05, pages 72–82, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[34] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm

testing. In Proceedings of the 2012 International Symposium on Software Testing and

Analysis, ISSTA 2012, pages 78–88, New York, NY, USA, 2012. ACM.

[35] Walter J. Gutjahr. Partition testing vs. random testing: The influence of uncertainty.

IEEE Trans. Softw. Eng., 25(5):661–674, September 1999.

[36] Dick Hamlet. When only random testing will do. In Proceedings of the 1st interna-

tional workshop on Random testing, RT ’06, pages 1–9, New York, NY, USA, 2006.

ACM.

96

[37] Richard Hamlet. Random testing. In Encyclopedia of Software Engineering, pages

970–978. Wiley, 1994.

[38] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John

Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul

Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Wood-

ward, and Hussein Zedan. Using formal specifications to support testing. ACM Com-

put. Surv., 41(2):9:1–9:76, February 2009.

[39] Jumble. http://jumble.sourceforge.net/.

[40] K. Karhu, T. Repo, O. Taipale, and K. Smolander. Empirical observations on software

testing automation. In Software Testing Verification and Validation, 2009. ICST ’09.

International Conference on, pages 201 –209, april 2009.

[41] Bogdan Korel. Automated test data generation for programs with procedures. In

Proceedings of the 1996 ACM SIGSOFT international symposium on Software testing

and analysis, ISSTA ’96, pages 209–215, New York, NY, USA, 1996. ACM.

[42] M. Landhausser and W.F. Tichy. Automated test-case generation by cloning. In

Automation of Software Test (AST), 2012 7th International Workshop on, pages 83

–88, june 2012.

[43] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of jml: a

behavioral interface specification language for java. SIGSOFT Softw. Eng. Notes,

31(3):1–38, May 2006.

[44] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuandong, and Zheng Guo-

liang. Generating test cases from uml activity diagram based on gray-box method. In

97

Proceedings of the 11th Asia-Pacific Software Engineering Conference, APSEC ’04,

pages 284–291, Washington, DC, USA, 2004. IEEE Computer Society.

[45] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: an automated class mutation

system: Research articles. Softw. Test. Verif. Reliab., 15(2):97–133, June 2005.

[46] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid. Ko-

rat: A tool for generating structurally complex test inputs. In Proceedings of the

29th international conference on Software Engineering, ICSE ’07, pages 771–774,

Washington, DC, USA, 2007. IEEE Computer Society.

[47] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability

of unix utilities. Commun. ACM, 33(12):32–44, December 1990.

[48] Tim Miller and Paul Strooper. A framework and tool support for the systematic testing

of model-based specifications. ACM Trans. Softw. Eng. Methodol., 12(4):409–439,

October 2003.

[49] Ivan Moore. Jester- a JUnit test tester. In Proc. of 2nd XP, pages 84–87, 2001.

[50] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY,

USA, 1979.

[51] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and

generating fuctional tests. Commun. ACM, 31(6):676–686, June 1988.

[52] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and classification

of test inputs. In In 19th European Conference Object-Oriented Programming, pages

504–527, 2005.

[53] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-

directed random test generation. In Proceedings of the 29th international conference

98

on Software Engineering, ICSE ’07, pages 75–84, Washington, DC, USA, 2007. IEEE

Computer Society.

[54] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Understanding myths

and realities of test-suite evolution. In Proceedings of the ACM SIGSOFT 20th In-

ternational Symposium on the Foundations of Software Engineering, FSE ’12, pages

33:1–33:11, New York, NY, USA, 2012. ACM.

[55] Corina S. Păsăreanu and Neha Rungta. Symbolic pathfinder: symbolic execution of

java bytecode. In Proceedings of the IEEE/ACM international conference on Auto-

mated software engineering, ASE ’10, pages 179–180, New York, NY, USA, 2010.

ACM.

[56] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,

Michael Lowry, Suzette Person, and Mark Pape. Combining unit-level symbolic exe-

cution and system-level concrete execution for testing nasa software. In Proceedings

of the 2008 international symposium on Software testing and analysis, ISSTA ’08,

pages 15–26, New York, NY, USA, 2008. ACM.

[57] Quilt. http://quilt.sourceforge.net/.

[58] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data flow

information. IEEE Trans. Softw. Eng., 11(4):367–375, April 1985.

[59] Brian Robinson, Michael D. Ernst, Jeff H. Perkins, Vinay Augustine, and Nuo Li.

Scaling up automated test generation: Automatically generating maintainable regres-

sion unit tests for programs. In Proceedings of the 2011 26th IEEE/ACM International

Conference on Automated Software Engineering, ASE ’11, pages 23–32, Washington,

DC, USA, 2011. IEEE Computer Society.

99

[60] G. Rothermel, S. Elbaum, and H Do. Software Infrastructure Repository.

http://cse.unl.edu/ galileo/php/sir/index.php, Jan, 2006.

[61] David Schuler and Andreas Zeller. Javalanche: efficient mutation testing for java. In

Proceedings of the the 7th joint meeting of the European software engineering confer-

ence and the ACM SIGSOFT symposium on The foundations of software engineering,

ESEC/FSE ’09, pages 297–298, New York, NY, USA, 2009. ACM.

[62] David Schuler and Andreas Zeller. Assessing oracle quality with checked coverage.

In ICST ’11: Proceedings of the 4th International Conference on Software Testing,

Verification and Validation, March 2011.

[63] Koushik Sen. Concolic testing. In Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, ASE ’07, pages 571–

572, New York, NY, USA, 2007. ACM.

[64] Seyed Reza Shahamiri, Wan Mohd Nasir Wan Kadir, and Siti Zaiton Mohd-Hashim.

A comparative study on automated software test oracle methods. In Proceedings of

the 2009 Fourth International Conference on Software Engineering Advances, ICSEA

’09, pages 140–145, Washington, DC, USA, 2009. IEEE Computer Society.

[65] Donald R. Slutz. Massive stochastic testing of sql. In Proceedings of the 24rd In-

ternational Conference on Very Large Data Bases, VLDB ’98, pages 618–622, San

Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[66] Donald R. Slutz. Massive stochastic testing of sql. In Proceedings of the 24rd In-

ternational Conference on Very Large Data Bases, VLDB ’98, pages 618–622, San

Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

100

[67] Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Programs, tests, and

oracles: the foundations of testing revisited. In Proceedings of the 33rd Interna-

tional Conference on Software Engineering, ICSE ’11, pages 391–400, New York,

NY, USA, 2011. ACM.

[68] Phil Stocks and David Carrington. A framework for specification-based testing. IEEE

Trans. Softw. Eng., 22(11):777–793, November 1996.

[69] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wol-

fram Schulte. Mseqgen: object-oriented unit-test generation via mining source code.

In Proceedings of the the 7th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software engi-

neering, ESEC/FSE ’09, pages 193–202, New York, NY, USA, 2009. ACM.

[70] Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. SIGSOFT Softw.

Eng. Notes, 30(5):253–262, September 2005.

[71] Bill Venners. ScalaTest. http://www.scalatest.org.

[72] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda.

Model checking programs. Automated Software Engg., 10(2):203–232, April 2003.

[73] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input generation with

java pathfinder. In Proceedings of the 2004 ACM SIGSOFT international symposium

on Software testing and analysis, ISSTA ’04, pages 97–107, New York, NY, USA,

2004. ACM.

[74] Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. Test input generation for java

containers using state matching. In Proceedings of the 2006 international symposium

101

on Software testing and analysis, ISSTA ’06, pages 37–48, New York, NY, USA,

2006. ACM.

[75] Yurong Wang. Test advising framework. Master’s Thesis, Department of Computer

Science and Engineering, University of Nebraska - Lincoln, January 2013.

[76] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura,

and Zhendong Su. Dynamic test input generation for web applications. In Proceed-

ings of the 2008 international symposium on Software testing and analysis, ISSTA

’08, pages 249–260, New York, NY, USA, 2008. ACM.

[77] E. J. Weyuker and T. J. Ostrand. Theories of program testing and the application of

revealing subdomains. IEEE Trans. Softw. Eng., 6(3):236–246, May 1980.

[78] Tao Xie. Augmenting automatically generated unit-test suites with regression oracle

checking. In Proceedings of the 20th European conference on Object-Oriented Pro-

gramming, ECOOP’06, pages 380–403, Berlin, Heidelberg, 2006. Springer-Verlag.

[79] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: a framework

for generating object-oriented unit tests using symbolic execution. In Proceedings of

the 11th international conference on Tools and Algorithms for the Construction and

Analysis of Systems, TACAS’05, pages 365–381, Berlin, Heidelberg, 2005. Springer-

Verlag.

[80] Qian Yang, J. Jenny Li, and David Weiss. A survey of coverage based testing tools.

In Proceedings of the 2006 international workshop on Automation of software test,

AST ’06, pages 99–103, New York, NY, USA, 2006. ACM.

[81] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding

bugs in c compilers. In Proceedings of the 32Nd ACM SIGPLAN Conference on

102

Programming Language Design and Implementation, PLDI ’11, pages 283–294, New

York, NY, USA, 2011. ACM.

[82] Sai Zhang, David Saff, Yingyi Bu, , and Michael D. Ernst. Combined static and dy-

namic automated test generation. In Proc. 11th International Symposium on Software

Testing and Analysis (ISSTA 2011), 2011.

[83] Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. Random unit-test generation

with mut-aware sequence recommendation. In Proceedings of the IEEE/ACM inter-

national conference on Automated software engineering, ASE ’10, pages 293–296,

New York, NY, USA, 2010. ACM.

	Test Advising Framework
	

	tmp.1360722011.pdf.aXkWR

