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Abstract

The interaction between environmental forces and dispersal characteristics is largely

responsible for the patterns of population structure in marine fish. Yet, crucial gaps in

knowledge on life-histories and the relative contributions of numerous environmental

factors still hinder a thorough understanding of marine population connectivity. One

life-history trait so far overlooked by most fish population geneticists is sequential

hermaphroditism, whereby individuals first mature as one sex and later in life reverse

into the other sex. Population genetic theory predicts that sex-changing fish will

present a higher potential for more spatially structured populations than gonochoristic

species, as a result of their naturally skewed sex ratio, which is expected to reduce

effective population size and hence increase genetic drift. We gathered published data

on genetic population structure in marine fish, as summarized by the popular FST

index, and – after controlling for several potentially confounding factors – we tested the

hypothesis that sex-changing species are more genetically structured than gonoch-

oristic ones. Although we found no evidence to support the theoretical expectations,

our results suggest new working hypotheses that can stimulate new research avenues

at the intersection between physiology, genetics and fisheries science.
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Introduction

A major goal of modern fisheries research is to

acquire knowledge on spatial and temporal genetic

variation, thereby yielding information on stock

subdivision, genetic depletion, and the capacity of

populations to cope with environmental changes

(Palsboll et al. 2007; Schwartz et al. 2007). Over

the past three decades, most genetic studies of

marine fish have focused on gene flow, suggesting

that patterns of spatial genetic variation result from

interactions between environmental forces and the

dispersal characteristics of species, and that these

interactions occur over various time scales.

In particular, comparative studies (Waples 1987;

Doherty et al. 1995) have shown that a significant

component of genetic structuring in marine fish is

related to species’ life-history traits. Nevertheless,

population structure can be affected by a variety of

other factors, and it is only by taking these carefully

into account that the challenge of understanding

population connectivity can be met. Here we aim to

contribute to such understanding by exploring one

previously understudied life-history trait: sequential

hermaphroditism.

Factors affecting population structure in marine

fish

Even in the seemingly continuous marine environ-

ment, physical barriers may reduce or prevent

gene flow. At large scales, phylogeographical

structure has been shown to exist as a result of

the historical separation of different ocean basins

and persistent oceanographical constraints. For

example, many marine fish exhibit strong genetic

differentiation between the Atlantic and the Med-

iterranean Sea (Bargelloni et al. 2003; Brutto et al.

2004; Nakadate et al. 2005; and see review in

Patarnello et al. 2007). Other well-known phylo-

geographical breaks include the separation

between the Gulf of Mexico and the Western

Atlantic (Gold and Richardson 1998; Blandon

et al. 2001), the Indian Ocean and the Western

Pacific separated by the Torres Strait (Chenoweth

et al. 1998) and, within the Pacific Ocean, the

Eastern Pacific barrier (Rosenblatt and Waples

1986; Lessios and Robertson 2006) and the

disjunction between Gulf of California and Pacific

populations (Bernardi et al. 2003). At smaller

scales, the topography of the environment and its

heterogeneity may also act as an efficient barrier to

dispersal at different life-history stages (Bernardi

2000; Riginos and Nachman 2001; Watts and

Johnson 2004, Sarvas and Fevolden 2005).

Despite the existence of such physical barriers,

several studies have observed contrasting patterns

of spatial genetic variation in different species

living across the same geographical breaks (Bon-

homme et al. 2002; Bargelloni et al. 2003), sug-

gesting that additional variables are important in

determining population structure. On the one

hand, it has been shown that differences in life-

history traits, such as pelagic larval duration, adult

migratory behaviour, maximum adult size, and egg

type, all determine variation in dispersal and hence

gene flow (Doherty et al. 1995; Shulman and

Bermingham 1995; Riginos and Victor 2001;

Bernardi and Vagelli 2004; Bay et al. 2006;

Pindaro et al. 2006). On the other hand, differ-

ences in genetic patterns of species sharing the

same geographical range can often be explained by

past historical events. For instance, two popula-

tions might exhibit low genetic differentiation if

their separation is recent, and with insufficient

time for genetic drift to occur. Many examples

illustrate the effect of isolation and secondary

contacts due to ancient historical events, such as

glaciations (Nesbo et al. 2000; Hickerson and Ross

2001; Bernardi et al. 2003; Gysels et al. 2004a,b;

Wilson 2006), sea level fluctuations (Planes and

Doherty 1997; Stefanni and Thorley 2003; Stef-

anni et al. 2003; Rohfritsch and Borsa 2005; Van

Herwerden et al. 2006) and more generally, cli-

mate change (Grant and Bowen 1998; Lecomte

et al. 2004).

When gene flow is sufficiently reduced for long

periods between two populations exposed to differ-

ent environmental dynamics, natural selection can

also induce strong genetic divergence. Differences in

salinity (Lemaire et al. 2000; Nielsen et al. 2004;

Cimmaruta et al. 2005), temperature (Borsa et al.

1997; Riginos and Nachman 2001), and biotic

characteristics such as predation pressure (Planes

and Romans 2004) or zooplankton productivity and

feeding activity (Roldan et al. 2000) can affect

population structure, if measured using adaptive

markers. Furthermore, several studies have

explored environmental selection and genetic diver-

gence in the presence of gene flow: although it is

generally assumed that gene flow will swamp local

adaptation in new environments (Bridle and Vines

2007), recent developments have shown how

genetic divergence measured at marker loci under
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hitch-hiking selection is much greater than that

measured at neutral loci (Nielsen et al. 2006;

Williams and Oleksiak 2008). Several studies seem

to confirm that natural selection is a non-negligible

force in determining genetic divergence, even in the

face of gene flow, at least in coastal and shelf

habitats (Beheregaray and Sunnucks 2001; Byers

and Pringle 2006; Hemmer-Hansen et al. 2007a;

Pringle and Wares 2007).

Effective population size and sex change

Gene flow is traditionally expressed by the effective

number of migrants (Nem) per generation, and its

value is given by the product of the effective

population size, Ne, and the migration rate,

m. Wright’s (1951) classical n-island model of

population structure and many simulation studies

indicate that genetic structuring (as measured by

FST) is inversely related to Nem.

Contrary to what has long been assumed, recent

studies suggest that surprisingly low effective

population sizes are not uncommon in marine

fish, despite their large census population size (N)

(Hauser et al. 2002; Turner et al. 2002; Hutchin-

son et al. 2003; Hoarau et al. 2005), with esti-

mates of the Ne/N ratio ranging between 10)3 and

10)5 in several continental shelf fish species

belonging to various families (Sciaenidae, Sparidae,

Serranidae, Gadidae, Pleuronectidae) (Hauser and

Carvalho 2008). High variance in individual

reproductive success has been proposed to be one

of the potential factors responsible for the relatively

low Ne/N ratios in some marine fish. In such

circumstances, a few individuals can in principle

often replace the entire population at the next

generation; such ‘sweepstakes’ events increase the

chances that offspring might share the same

parent, and the probability that two alleles drawn

at random in the population are the same

(Hedgecock 1994).

The diversity of reproductive modes in fishes has

attracted interest for many decades. In particular,

and contrary to all other vertebrates, hermaphro-

ditism is widespread in fish, being in the vast

majority of cases, sequential (Warner 1988a), with

individuals first maturing as one sex and later in life

reversing to the other sex. Sex change has evolved

independently in at least 23 teleost families and

more than 350 species (Frisch 2004), and yet, our

understanding of the evolutionary history of this

phenomenon is far from complete (Price 1984;

Devlin and Nagahama 2002; Frisch 2004;

Nagahama 2005; Volff 2005). Recently, Sadovy &

Liu (2008) suggested that a ‘proto-hermaphroditic’

condition is most likely to have been a very

ancestral state in fish, providing a platform for the

independent evolution of functional hermaphrodit-

ism in several fish lineages.

Warner’s (1975, 1988b) size-advantage model

states that as individuals reach larger sizes, sex

change is advantageous if the genetic contribution

to the next generation from the ‘second’ sex is

higher than that of the ‘first’ sex. This model

predicts that sex change should occur at a relatively

constant size, which was recently shown to be

c. 70–80% of maximum length (Allsop and West

2003). However, the idea that sex change is only

determined by size and age has been criticized

(Shapiro 1984; Nee et al. 2005). Large intra-popu-

lation variation has been found in the life stage at

which sex change occurs. It has been shown – both

in captivity and in the wild – that hermaphroditic

fish might not change sex when isolated, and that in

some species, sex change depends on the proportion

of individuals of the same gender present in the

population at any given time (Beentjes and Carbines

2005; Munday et al. 2006).

Contrary to general assumptions, there is strong

evidence that sex ratios in sequentially hermaphro-

ditic species are very skewed and biased towards the

sex at which individuals first reach reproductive

maturity. Allsop and West (2004) analysed data

from 121 sex changing species (76 of which were

fish, belonging to eight families), and found that

their sex ratios significantly departed from 1:1, with

protandrous (first maturing as males) being male-

biased, and protogynous (first maturing as females)

being female-biased. Furthermore, Garratt (1985)

observed that male:female ratios in Chysoblephus

puniceus, a commercially valuable South African

protogynous species, are consistently biased

towards the females, and ratios can become

extremely skewed in heavily exploited populations

(over 90% of the catch being represented by

females).

In such a scenario, the mating system is typically

characterized by only a few, older and larger

individuals of the second sex monopolizing access

to other younger and smaller individuals of the first

sex. In sex-changing fish, individuals of the less-

numerous second sex still contribute half of the

genes in the next generation, hence reducing the

number of possible genotypic combinations avail-
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able to the offspring. Such skewed sex ratio is

known to reduce the effective size in natural

populations (Hartl and Clark 1997). Consequently

– all else being equal – it might be expected that sex-

changing fish will present a higher potential for

exhibiting more spatially structured populations

than gonochorists, as a result of lower effective size

and increased genetic drift. Such a scenario may be

more likely than hitherto expected, as indicated by

the higher incidence of adaptive differentiation in

marine fishes, and presumed opportunities for

isolation, even at small spatial scales (Hauser and

Carvalho 2008).

No studies have so far addressed the population

genetic consequences of sex change in marine fish.

However, many of these species are subjected to

harvesting, and in particular, sex-changing Sparids

(sea breams), Serranids (groupers), Scarids (parrot-

fish) and Lethrinids (emperors) all sustain valuable

fisheries in both temperate and tropical seas. Fishing

pressure has already been shown to exert a size-

selective force on natural populations through the

removal of the largest individuals, significantly

influencing in some cases the species phenotypic

evolution (Kuparinen and Merila 2007). In sex-

changing fish, because larger and older individuals

mostly belong to one sex, size-selective harvesting

will inevitably result in a ‘sex-selective’ pressure

(Alonzo and Mangel 2004, Hawkins and Roberts

2004; Molloy et al. 2007), promoting even more

skewed sex ratios (Garratt 1985) and theoretically a

pronounced reduction of effective population size.

To test whether sex change can affect the levels of

population structure in marine fish, it is necessary

to take into account several factors that might bias

the comparison between hermaphrodites and

gonochoristic species. We have illustrated briefly

how the wide diversity of species life-histories and

habitats can affect population structure; further-

more, methodological variables, such as the use of

genetic markers with different characteristics (i.e.

nuclear vs. mitochondrial; fast-evolving vs. slow-

evolving; neutral vs. adaptive) (Avise 2004), as well

as the number of markers employed, the sample size

and the number of populations screened (Waples

1998; Slatkin 2005; Ryman et al. 2006) can also

influence estimates of genetic structuring among

populations.

Here we present the results of an extensive survey

comparing data from hundreds of population

genetic studies on marine fish, including both

protogynous and protandrous sequential hermaph-

rodites, as well as gonochoristic species. After

accounting for other ecological and methodological

variables, we tested the null hypothesis that there is

no significant difference in the level of population

genetic structuring between the groups.

Materials and methods

Data collection

Data on population genetic structure were obtained

from published articles (from 1987 to 2007) using

two databases: ISI Web of Science and the Aquatic

Science and Fisheries Abstracts, using combinations

of the following keywords: marine fish, genetic*,

population, structur* and gene flow. The survey was

limited to strictly marine species, excluding anad-

romous and catadromous species. For each study,

the fixation index of population substructuring

(overall FST or UST) was obtained. In studies

providing only pairwise FST between populations,

we averaged the pairwise FST to obtain an overall

FST.

The task of accounting for all variables poten-

tially affecting marine fish population genetic

structure is challenging, given the diversity in

life-history, demography, behaviour and evolution-

ary history of marine fish. Yet, to investigate the

effect of sex change on population genetic param-

eters, it was necessary to attempt a correction for

as many potentially confounding factors as possi-

ble. Thus, two groups of variables were recorded

(Table 1): nine ‘methodological variables’ related

to sampling and analytical procedures and 10

‘ecological variables’. Methodological variables

included the mean number of fish sampled per

site, the sampling area perimeter (recorded using

Path Tool in Google Earth available at http://earth.

google.com), the latitudinal and longitudinal

sampling range which allowed us to assess the

percentage of species distribution range effectively

sampled, the presence of an environmental barrier

between sampled populations, which is presumed

to limit gene flow (the barrier was either defined by

the authors of the study or was generally accepted

from previous work, such as the Mediterranean

Sea-Atlantic transition), and finally the type of

marker used (microsatellites, mtDNA and allo-

zymes). Ecological variables included the number

of FAO areas (‘Food and Agriculture Organization

of the UN’: http://www.fao.org) where each species

is found, the maximum depth, the type of egg

Genetic structure and sex changing fish J Chopelet et al.
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(pelagic or demersal) and the type of adult habitat

(pelagic, benthopelagic and bathypelagic species

were grouped into the category ‘pelagic’ while

demersal, bathydemersal and reef-associated spe-

cies were grouped into ‘demersal’), latitudinal and

longitudinal range, maximum size and age, and

the growth rate parameter (K) of the Von Berta-

lanffy (1938) growth function (details in Table 1).

Data on larval duration could only be retrieved for

about 50% of species.

Data analysis

Most FST-values were measured following the Weir

and Cockerham (1984), which corrects for sample

size and the number of populations used. When the

method did not use any sample size correction, we

subtracted 1/2S from the FST-estimates, where S is

the harmonic mean sample size (Wright 1978). To

adjust FST for the higher genetic diversity of

microsatellites, we used Hedrick’s method (formula

4b in Hedrick 2005), which computes the adjusted

FST (FSTadj) from the expected heterozygosity

(HE: the expected frequency of heterozygotes

under the Hardy–Weinberg equilibrium assump-

tion, averaged across populations) and the number

of subpopulations (k) such that:

FSTadj ¼
FSTðk� 1þ HEÞ
ðk� 1Þð1� HEÞ

:

Although historical isolation events affect

FST-estimates in non-equilibrium populations

(Ryman and Leimar 2008), the effect tends

to disappear in populations at migration/drift

equilibrium, and in absence of detailed information

on the dominant causes of substructuring on each

one of the cases examined, Hedrick’s adjustment is

still an advisable practice (Jost 2008).

As both continuous and binary variables were

employed in our study, we explored our dataset

using a principal coordinates analysis (PCO) using

two R (Free Software Foundation Inc, Boston, MA,

USA) packages: ‘Cluster’ and ‘Labdsv’ (‘R’ version

2.6.1). Similarity matrices were computed using the

Gower index, which standardizes binary and con-

tinuous variables on the same range from 0 to 1

(Gower 1971). Ordination techniques such as PCO

Table 1 Correlation of continuous (Pearson) and binary variables (Spearman) with the first three PCO axes.

mtDNA Nuclear DNA

PC01 (29%) PC02 (22%) PC03 (12%) PC01 (25%) PC02 (21%) PC03 (15%)

Continuous variables

Study latitudinal range (degrees) )0.24* )0.67* )0.10 0.28* –0.35* 0.03

Study longitudinal range (degrees) )0.42* )0.50* )0.14 0.37* )0.48* 0.31*

stLat/spLat (%) 0.23* )0.75* 0.05 )0.18 )0.50* 0.03

stLon/spLon (%) 0.19 )0.74* 0.37* )0.26* )0.67* 0.16

Study surface/species distribution (%) 0.27* )0.80* 0.12 )0.33* )0.59* 0.04

Perimeter of the sampled area (km) )0.44* )0.56* )0.09 0.29* )0.38* 0.04

Number of sites 0.32* )0.47* 0.33* )0.28* )0.02 0.22*

Total number of individual sampled 0.10 )0.02 0.45* )0.23* 0.25* 0.39*

Mean number of individual per site )0.17 0.12 0.22 )0.08 0.22* 0.27

Maximum size (cm) )0.58* 0.07 0.38* 0.64* )0.03 0.04

Maximum age (years) 0.06 0.14 0.38* )0.21* )0.32* 0.14

Growth rate (K) 0.02 0.27* )0.45* )0.28* 0.36* 0.14

Species latitudinal range (degrees) )0.75* 0.15 )0.14 0.77* 0.08 )0.12

Species longitudinal range (degrees) )0.61* 0.20 )0.66* 0.49* 0.16 0.37*

Depth (m) )0.26 0.15 0.41* 0.13 0.17 0.04

Number of FAO )0.82* 0.07 )0.27* 0.68* 0.06 0.16

Binary variables

Presence of geographical barrier )0.34* )0.77* )0.24 0.38* )0.65* 0.54*

Type of eggs (pelagic or not) )0.65* 0.07 0.31* 0.80* )0.17 )0.38*

Type of habitat (pelagic or not) )0.78* )0.03 0.32* 0.26* 0.57* 0.63*

Values are given for mitochondrial and nuclear DNA. Percentage of variance explained by each axis is indicated in brackets

(*uncorrected P < 0.05, values in bold are significant after sequential Bonferroni correction).
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can reduce the variance contained in a complex

multivariate data set into a few synthetic ‘axes’

(eigenvectors). Subsequently, we assessed the asso-

ciation of each of the original variables and the

principal coordinates extracted using the Pearson

correlation, for continuous variables, and the

Mann–Whitney test for binary ones. We adjusted

P-value thresholds using a sequential Bonferroni

correction for multiple testing, applying the correc-

tion separately for the 16 continuous variables and

the three binary ones. We could then employ the

principal coordinates extracted as multivariate

measures of ‘methodological and ecological biases’

and assess their association with FST/(1 ) FST)

using a linear regression approach. FST/(1 ) FST)

is routinely used for regression against geographical

distance, and this transformation has been shown

to be more suitable than FST for linear regression

(Rousset 1997). As information on larval duration

was only available for half of the species examined,

we could not use this variable in our main

multivariate analysis, but details on analyses per-

formed on a reduced data set including larval

duration information are reported in the Supporting

Information. Given the different nature and proper-

ties of nuclear and mitochondrial markers, we

conducted all analyses independently for the two

groups of datasets.

When FST-values were shown to be correlated

with either PCO1, PCO2 or PCO3 (seen as multi-

variate combinations of mainly dispersal- and sam-

pling-related variables, see Results), we used these

principal coordinates in a general linear model

to control for their effects and then tested for

differences between groups. For instance, in cases

where the linear regression of FST/(1 ) FST) against

PCO1 was significant, residuals of this regression

were used to test the differences among reproductive

modes. Two designs were explored: a two-group

comparison (gonochorists vs. hermaphrodites) and

a three-group comparison of gonochorists, protan-

drous and protogynous.

Results

We recorded 157 FST-datapoints from 99 species of

marine fish, of which 19 were protogynous and

only seven protandrous. Five families of protogy-

nous species (Serranidae, Labridae, Scaridae, Poma-

centridae and Lethrinidae) and three families of

protandrous (Sparidae, Pomacentridae and Latidae)

were represented. The FST-distribution was skewed,

with an average of 0.131 (SD = 0.201) and a

median of 0.036. The average expected heterozy-

gosity measured was 0.12 for allozymes and 0.78

for microsatellites. Hedrick’s adjustment of FST to

account for differential polymorphism of markers

only slightly increased FST-values measured with

allozymes, whereas adjusted FST-values for micro-

satellites were about five times higher than non-

adjusted ones. After Hedrick’s adjustments, mean

FST/(1 ) FST) values were 0.115 for nuclear DNA

data and 0.178 for mtDNA, which proved not to be

significantly different (Kruskal–Wallis H2;157 =

5.99, P = 0.891); however, the highest values were

measured in studies using mitochondrial DNA.

Effect of sampling effort and species dispersal

ability

The first axis (PCO1) accounted for 29% of the total

variance for mitochondrial DNA studies and 25% for

the nuclear DNA dataset; PCO2 accounted for 22%

and 21% of the variation for mtDNA and nuclear

data respectively, while PCO3 explained 12% and

15% of the total variance for respectively mitochon-

drial and nuclear data sets (Table 1, Fig. 1). With

mtDNA, ecological variables related to species dis-

tribution range, habitat use and dispersal capabili-

ties (latitudinal and longitudinal distribution range,

number of FAO areas where the species is found, the

maximum size of species, pelagic eggs and pelagic

habitat) were negatively correlated with PCO1

(Table 1). Methodological variables related to sam-

pling (study latitudinal and longitudinal ranges, the

study perimeter, and the percentage of the species’

range sampled), as well as the presence of geograph-

ical barrier, were negatively correlated with PCO2

(Table 1). PCO3 was negatively correlated with the

K growth parameter and positively associated with

the total number of individuals analysed.

With nuclear DNA, PCO1 was positively corre-

lated to the distribution and dispersal variables as

well as the maximum species size, whilst PCO2

proved negatively correlated not only to variables

related to the sampling area and to the presence of

environmental barrier, but also to the pelagic

habitat. PCO3 was only positively correlated to the

number of individuals analysed (Table 1).

For both data sets, the first three axes explained

more than 60% of the variance, with PCO1 consis-

tently associated with the dispersal and distribution

variables and PCO2 associated with the sampling

area and the environmental barrier. Some of the
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variables were not fully independent (e.g. if a

sampling area is very large, it is more likely to also

comprise an environmental barrier), hence the

occasional redundant association of some variables

to more than one axis (Table 1); in such instances,

we interpreted as the strongest correlation the one

yielding the highest R and the lowest P-values

(Gotelli and Ellison 2004). Further PCO axes

extracted were not associated to any variables not

already strongly associated with PCO1, PCO2 or

PCO3; due to their redundancy and the little

variance explained (8–2% for PCO3-10), they were

not employed for further analyses.

Generally, irrespective of the marker, higher

levels of FST/(1 ) FST) were found with species with

demersal eggs living in demersal habitat and in

studies with a geographical barrier. Lower

FST/(1 ) FST) levels were associated with large

pelagic species with pelagic eggs, high dispersal

ability and large habitat use. However, this pattern

was much stronger with mitochondrial DNA, where

a significant correlation was observed between

FST/(1 ) FST) and the scores on both the first and

the second axis (PCO1: R = 0.259, P < 0.033;

PCO2: R = )0.469, P < 0.0001) (Fig. 2), while

with nuclear DNA data, no significant relationships

were observed with any PCO factor (Fig. 2). When

the same analysis was conducted using a reduced

dataset containing larval duration, the patterns

observed were not substantially different (though a

decrease in resolution power was noticeable); larval

duration was not one of the variables correlated to

FST-estimates (Table S3).

Testing the hypothesis: do sex-changing species

show higher FST?

Figure 3 illustrates the adjusted FST/(1 ) FST) val-

ues for gonochoristic, protandrous and protogynous

species. Employing all the above correction proce-

dures, and after removing the effects of PCO1 and

PCO2 – in the case of mitochondrial DNA – and

conducting a simple one-way ANOVA with nuclear

DNA, no differences among reproductive modes

were observed for either the two- or the three-group

designs (Table 2).

Discussion

Highly biased sex ratios measured in populations of

sequentially hermaphrodite fish are theoretically

expected to lead to lower effective population size. In

such a scenario, the effective population of males

and females are measured separately, such that the

overall Ne is equal to 4(NefNem)/(Nef + Nem), with

Nem and Nef being the effective population size of

males and females respectively. In this model, any

sex-ratio departure from unity leads to lower

effective size (Crow and Kimura 1970). Conse-

quently, we predicted that sequentially hermaphro-

dite fish with biased sex ratio and theoretically

lower effective population size experience higher

genetic drift, leading to higher genetic structuring.

Such a hypothesis has never been tested, although it

can potentially have big consequences on the

management of several commercially important

species. Cotton and Wedekind (2009) have

also briefly emphasized the importance of sex ratio
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Figure 1 Scatter plot of data within the space identified

by the first two Principal coordinates (PCO) extracted from

a matrix including the 16 continuous and three binary

variables of Table 1. Graphs are shown for (a) mitochondrial

and (b) nuclear DNA. Data points are labelled according

to the three types of reproductive modes: gonochorist

(white), protandrous (grey) and protogynous (black).
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on Ne in fish, but focusing on the changes caused by

environmentally induced feminization/masculiniza-

tion. In this study, we attempted to assess the

potential effect of sex change on the population

structure (FST) of marine fish using published data

from many studies. After adjusting for the effect of

dispersal ability and analysing mtDNA and nuclear

DNA separately, it appeared that the remaining

variation of population structure was not explained

by the incidence of sex change.

It should be stressed again that the number of

ecological, historical, analytical factors – and their

interplay – that can affect the degree of genetic

structuring in marine fish populations is consider-

able (Selkoe et al. 2008), especially when relying

upon published data gathered across diverse species

over a period of 20 years. Although we accounted

for these covariates in our analyses to the extent

possible, they undoubtedly reduced the power to test

for effects of sex ratio. Furthermore, the number of

studies on sex-changing fish available in the liter-

ature was limited, which obviously decreases the

power of our comparison. Although a larger num-

ber of studies on hermaphroditic species would

certainly be desirable, we suspect that substantially

different results are unlikely. Indeed, several sex-

changing species present low levels of population

structure, such as the California Sheephead

(Semicossyphus pulcher, Labridae) and the Rock

wrasse (Halichoeres semicinctus, Labridae) (Waples

1987; Bernardi et al. 2003) or the White seabream

(Diplodus sargus, Sparidae) (Bargelloni et al. 2005)

and the Carolines parrotfish (Calotomus carolinus,

Scaridae) (Lessios and Robertson 2006). On the

other hand, several gonochoristic species present

very strong population structure, such as the Silver

gemfish (Rexea solandri, Gempylidae) (Ward and

Elliott 2001) and the Long-spine porcupine

fish (Diodon holocanthus, Diodontidae) (Lessios and

Robertson 2006). Based on the above caveats, the

apparent lack of impact of sex change should be

interpreted with some caution, though, such factors

can stimulate new working hypotheses and

the development of more focused experimental

investigations.

Factors associated with the dispersal ability of

species accounted for a large part of variation in

population genetic structure. The swamping effect

of high gene flow resulting from the dispersal of

highly migratory pelagic species is indeed able to

prevent strong genetic structuring in many species

of scombrids, billfishes, carangids, clupaeids, etc.;

however, interestingly, we found a strong signal

only with mtDNA (Fig. 2). On the one hand, this

could support the traditional view that the lower

effective size of mtDNA (due to haploidy and

(a)

(b)

Figure 2 Relationships between FST/(1 ) FST) and the three principal coordinates (PCO1, PCO2 and PCO3) for

(a) mitochondrial and (b) nuclear DNA. R is the correlation coefficient. Trend lines are shown for significant correlations.
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matrilinear inheritance) would result in greater

genetic structuring than at nuclear markers (Avise

2004). On the other hand, a variety of other factors

can affect the relative differentiation of mtDNA and

nuclear markers, including different mutation rates,

the higher degree of homoplasy at microsatellites,

which are constrained to allelic size ranges, and

the confounding factor that FST is a function of the

level of genetic variability (Ryman and Leimar

2008). In this light, the effect of dispersal-related

variables might have shaped the genetic structure of

marine fish mainly over the longer time scales (past

climatic and geological events) on which informa-

tion can be gathered through mtDNA variation (e.g.

Buonaccorsi et al. 2001; Lecomte et al. 2004;

Durand et al. 2005; Gonzalez and Zardoya 2007).

In contrast, microsatellites provide insights into

more recent/contemporary processes, and several

recent studies (Knutsen et al. 2004; Hemmer-Han-

sen et al. 2007b; Galarza et al. 2009) have shown

that patterns of present-day population structure in

marine fish may be strongly linked to oceanograph-

ical features, which were among the factors we

could not incorporate in our study.

We expected that sequential hermaphroditism

would be a major factor in determining biased sex

ratio, but a sex ratio estimate at any given point in

time may be an over-simplistic and misleading

approximation in species that can change sex under

a range of environmental conditions. Moreover, sex

ratio might also be biased in gonochoristic species

(Morgan and Trippel 1996). A number of examples

of biased sex ratio in gonochoristic marine fish have

been recorded for several species like the sand goby

(Pomatoschistus minutus, Gobiidae) (Kvarnemo et al.

1995), with several factors possibly affecting the

operational sex ratio (e.g. age and size at maturity,

the mortality rate or the migration patterns).
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Figure 3 Average FST/(1 ) FST) (±standard deviation) for

three different reproductive modes (gonochorist, protogy-

nous, protandrous), obtained with both (a) mitochondrial

and (b) nuclear DNA.

Table 2 Analysis of variance testing for differences in

FST/(l ) FST) among reproductive modes: (a) gonochorists

vs. protandrous vs. protogynous (mitochondrial DNA), (b)

gonochorists vs protandrous vs. protogynous (nuclear

DNA), (c) gonochorists vs. sequential hermaphrodite

(mtDNA), (d) gonochorists vs. sequential hermaphrodites

(nuclear DNA).

Source df SS F P-value

(a)

PCO1 1 0.37 5.73 0.020

PCO2 1 1.22 19.09 <0.0001

Reproduction 2 0.02 0.12 0.883

Residuals 63 4.03

Total 67 5.68

(b)

Reproduction 2 0.09 0.75 0.474

Residuals 86 5.06

Total 88 5.15

(c)

PC01 1 0.36 5.65 0.020

PC02 1 1.24 19.57 <0.0001

Reproduction 1 0.00 0.08 0.780

Residuals 64 4.04

Total 67 5.68

(d)

Reproduction 1 0.02 0.42 0.519

Residuals 87 5.12

Total 88 5.15

With mitochondria DNA, the principal components PCO1 and

PCO2 were included in the analysis as covariates.
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Dramatic changes in the sex ratio, in both gonoch-

orist and hermaphrodite species, may occur spa-

tially and temporally in allopatric populations and

in different seasons (Garratt 1985; Demartini et al.

2000). Furthermore, it has been suggested that

while biased sex ratio is among the factors affecting

effective population size and population structure, it

might not be the most important one. High variance

in individual reproductive success is known to be

responsible for the discrepancy between census size

and effective size in species with high fecundity and

high juvenile mortality (Hauser and Carvalho

2008). In contrast to species that release eggs in

the water column, such as the majority of commer-

cial species, several other fishes display parental

care that may improve offspring fitness and reduce

variance in individual reproductive success. Other

factors should ideally also be considered, such as the

type of overlapping generations, the generation time

and longevity, which, in the case of isolated

populations, may affect evolutionary rates (Hill

1979; Shulman 1998; Turner et al. 2002). In

addition, historical factors inducing census size

fluctuations are also expected to affect long-term

Ne (Hauser et al. 2002; Kalinowski and Waples

2002; Turner et al. 2002): populations sampled

may have undergone several size reductions and

expansions with significant fluctuations of their

genetic diversity and effective size. Finally, breeding

competition, the diversity of reproductive behaviour

and mating systems even in gonochoristic species

may also potentially affect the effective size of

populations, but these have so far received relatively

little attention (Rowe et al. 2008) and it was not

feasible to include them in our model.

In summary, despite the strong theoretical back-

ground predicting higher potential for population

genetic structure in hermaphrodite species, we

could not reject the null hypothesis of no difference

in population structuring among reproductive

modes. As discussed above, this is likely to depend

on a range of biological factors not accounted for,

such as: reproductive potential, natural Ne/N ratio,

generation time, etc. – which cannot be assumed to

be equal across gonochoristic and sequentially

hermaphroditic species.

One contribution of this study is that of under-

pinning the paradigm that the dispersal abilities and

the existence of environmental barriers account for

an important proportion of the variance in the

genetic structuring of marine fish populations. Our

findings echo previous multispecies investigations

and reviews (see Ward et al. 1994; Doherty et al.

1995; Bohonak 1999); yet, the more or less subtle

inconsistencies between different classes of genetic

markers, the still largely incomplete knowledge on

life-histories, and the paucity of empirical integra-

tions of physical oceanographical models with

biological and genetic data (Werner et al. 2007),

all indicate that more effort is required to more fully

unravel the processes driving marine population

connectivity. An immediate next step towards a

more controlled assessment of the population

genetic consequences of sequential hermaphrodit-

ism, could be obtained by conducting empirical

studies on closely related species of fish – some

gonochoristic, some sequentially hermaphroditic –

with carefully matched life-history traits, and demo-

graphics, and conducting a carefully consistent

sampling and analytical protocol, employing both

nuclear and mitochondrial markers.

In conclusion, we hypothesized that uneven sex

ratio observed in hermaphroditic species could

depress Ne and consequently increase population

structure; yet, we found no support for this

hypothesis by examining hundreds of published

studies on marine fish. However, we argue that the

very nature of sequential hermaphroditism intro-

duces a degree of complexity in population genetics

modelling that has so far received very little

attention. Sex change has long been seen as an

evolutionary adaptation to increase lifetime repro-

ductive success (Warner 1975, 1988b), yet,

because in hermaphrodite species many individuals

of the first sex exhibit a relatively low reproductive

success (few mating opportunities with high com-

petition), compared with the few individuals of the

second sex, such features may also increase the

variance in individual reproductive success, with

consequences on the effective population size that

are still poorly understood. It should be noted that

Ne is affected not only by the skew of sex ratios

measured at any given time, but rather by the

lifetime effective sex ratio. Although sequentially

hermaphroditism should potentially reduce the

Ne/N ratio, this has never been explored/modelled

in depth. Furthermore, the fact that a proportion of

a sex-changing population can reproduce at differ-

ent times, both as a male as well as a female, will

affect the relative signatures detectable with mater-

nally and biparentally inherited molecular genetic

markers, because mtDNA has the potential to be

transmitted by all individuals in the population.

Future empirical and modelling studies on
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sex-changing fish may either confirm or reappraise

the significance of sequential hermaphroditism for

the population structuring of marine species, but

will for certain provide new valuable insights

towards the understanding of this intriguing life-

history strategy.
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