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Calculating Ne and Ne/N in age-structured populations:
a hybrid Felsenstein-Hill approach

ROBIN S. WAPLES,1,3 CHI DO,1 AND JULIEN CHOPELET
2

1NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, Washington 98112 USA
2Marine Biodiversity Ecology and Evolution, University College Dublin, Belfield, Dublin 4 Ireland

Abstract. The concept of effective population size (Ne) was developed under a discrete-
generation model, but most species have overlapping generations. In the early 1970s, J.
Felsenstein and W. G. Hill independently developed methods for calculating Ne in age-
structured populations; the two approaches produce the same answer under certain conditions
and have contrasting advantages and disadvantages. Here, we describe a hybrid approach that
combines useful features of both. Like Felsenstein’s model, the new method is based on age-
specific survival and fertility rates and therefore can be directly applied to any species for
which life table data are available. Like Hill, we relax the restrictive assumption in
Felsenstein’s model regarding random variance in reproductive success, which allows more
general application. The basic principle underlying the new method is that age structure
stratifies a population into winners and losers in the game of life: individuals that live longer
have more opportunities to reproduce and therefore have a higher mean lifetime reproductive
success. This creates different classes of individuals within the population, and grouping
individuals by age at death provides a simple means of calculating lifetime variance in
reproductive success of a newborn cohort. The new method has the following features: (1) it
can accommodate unequal sex ratio and sex-specific vital rates and overdispersed variance in
reproductive success; (2) it can calculate effective size in species that change sex during their
lifetime; (3) it can calculate Ne and the ratio Ne/N based on various ways of defining N; (4) it
allows one to explore the relationship between Ne and the effective number of breeders per
year (Nb), which is a quantity that genetic estimators of contemporary Ne commonly provide
information about; and (5) it is implemented in freely available software (AgeNe).

Key words: age-structured population; effective number of breeders; Leslie matrix; overdispersed
variance; overlapping generations; reproductive success; sex reversal; software.

INTRODUCTION

The concept of effective population size (Ne) is

elegantly simple yet rapidly becomes complex as

simplifying assumptions give way to practical realities.

One major challenge (extension to age-structured

populations) was addressed by Felsenstein (1971) and

Hill (1972, 1979), who showed how Wright’s (1938)

discrete generation model could be modified to accom-

modate species with overlapping generations. The

Felsenstein and Hill approaches are largely complemen-

tary and have contrasting advantages and disadvantag-

es. A nice feature of Felsenstein’s method is that it uses

age-specific survival and fertility rates and therefore can

provide information on Ne and the ratio of effective size

to census size (N ) for any population for which detailed

demographic information is available. However, his

method depends on the assumption that variance in

reproductive success among same-age individuals is

random, which is unlikely to occur in natural popula-

tions. Also, Felsenstein did not directly consider species

with separate sexes, although he speculated that results

would probably not differ substantially from those he

found for haploid and monoecious species. Hill’s

method is more general, as it makes no particular

assumptions about variance in reproductive success and

can be applied to separate sexes; however, it does not

provide a direct link to the population’s demographic

data, nor does his method provide any guidance on how

to use the type of demographic information contained in

a life table to calculate Ne. The two models produce the

same result under Felsenstein’s random-variance as-

sumption (Johnson 1977, Charlesworth 1980).

Here, we describe a hybrid method for calculating Ne

and Ne/N in age-structured populations that incorpo-

rates useful aspects of both the Felsenstein and Hill

methods and includes some additional features. Like

Felsenstein’s (1971) model, the new method begins with

demographic information for the population at hand

and therefore allows one to evaluate how Ne and Ne/N

vary as vital rates vary. Like Hill’s (1972, 1979) model,

the hybrid method provides a simple way to assess

effects of overdispersed variance on effective size. The

hybrid model complements the pioneering work of Len

Nunney, who, in a series of papers (Nunney 1991, 1993,

Manuscript received 14 September 2010; accepted 24
January 2011. Corresponding Editor: D. F. Doak.

3 E-mail: robin.waples@noaa.gov

1513



1996) derived analytical approximations for effective

size in age-structured species based on some key life
history parameters. The principle underlying the new

method is that age structure stratifies a population into
winners and losers in the game of life: individuals that

live longer have more opportunities to reproduce and
therefore have a higher mean lifetime reproductive
success than do individuals that die at a younger age.

This creates different classes of individuals within the
population, based on age at death. Even if variance in

reproductive success is random among all individuals
that die at a specific age, the lifetime variance among

individuals in the population as a whole will be greater
than Poisson because of this process of stratification,

and as a result Ne will be less than N. This basic idea was
briefly outlined by Waples (2010); here, we provide a

more rigorous quantitative treatment and extend the
method to some special cases. The new method has the

following features: (1) it uses demographic information
of the type found in a life table or Leslie matrix; (2) it

can accommodate two sexes with unequal sex ratio and/
or different vital rates; (3) it can accommodate

departures from Poisson variance in reproductive
success; (4) it can calculate Ne and Ne/N based on
various ways of defining N; (5) it can calculate the

effective number of breeders per year (Nb) and the ratio
Nb/Ne; (6) it can calculate effective size in species that

change sex during their lifetime; and (7) it is imple-
mented in freely available software (AgeNe; see Supple-

ment).

DEVELOPMENT OF THE APPROACH

Assumptions and notation

Key assumptions of our model follow those of

Felsenstein and Hill: (1) there are fixed numbers of
individuals at each age, (2) a constant number N1 of
newborns is produced each time period (hereafter

assumed to be years), (3) individual variations in fertility
are not inherited, and (4) age-specific survival and

reproduction are both independent of reproductive
success in previous years. With a closed population of

constant size, inbreeding and variance effective sizes are
the same, so the treatment that we will outline applies

equally to both.
The important demographic parameters are age-

specific birth rates (bx is the mean number of newborns
produced by an individual at age x) and survival rates

(sx is the probability of surviving from age x to age xþ
1). By convention, all newborns survive to the repro-

ductive period at age 1, at which point they produce an
average of b1 newborns. Following reproduction, a

fraction s1 of the one-year-olds survive to the reproduc-
tive period at age 2. Repeated sequences of reproduction

and survival or mortality continue until the remaining
individuals reach the maximum age (K ), at which point
they reproduce and die (i,e., sK ¼ 0). These data can be

assembled in a standard life table, as in Table 1. The
survivorship curve (lx is the fraction of the newborn

cohort that is alive at age x) is generated by defining the

function l1 ¼ 1 and lx ¼ lx�1sx�1 for x . 1. For the
population to be stable in size and produce exactly N1

offspring every year, the vectors of lx and bx values must

satisfy the relationship
P

bxlx¼ 1. If this is not the case,
a stable population can be generated by dividing each bx
value by

P
bxlx. This provides a handy way of rescaling

estimates of age-specific, relative reproductive success to
produce a stable population. In this formulation, the
number of individuals in each age group is given by Nx¼
N1lx, the total number of individuals alive at any given
time is NT ¼

P
Nx, the number of births by individuals

of age x is given by Bx¼ bxNx, and the generation length
(L, the average age of parents of a newborn cohort) is
given by L ¼

P
xBx/N1.

In the example shown in Table 1, the nominal bx
values (0, 1, 2, 3 for ages 1–4 years) lead to a growing
population (

P
bxlx¼ 1.375), so they are scaled to values

in the same proportions (bx
0) that lead to a stable

population. In this example, the generation length is L¼
2.909 years, the total population includes NT ¼ 1875
individuals aged 1–4 years, and the adult population
includes NA ¼ 875 mature individuals aged 2–4 years.

Haploids

Our goal is to use Hill’s (1972, 1979) formulas for Ne

in species with overlapping generations, but to anchor
the analysis to life table data, as in Felsenstein’s method.
We begin by considering the simple case of a haploid

organism. Hill (1979) provided the following expression
for Ne in an age-structured haploid species:

Ne ’ N1L=Vk ð1Þ
where N1 and L are as previously defined and Vk is the

lifetime variance in reproductive success among the N1

individuals in a cohort. The ‘‘’’’ sign reflects the fact

that Hill ignored second-order terms in N in the
derivation. To accomplish our goal, we need a means
to calculate Vk from data in a life table. This can be done

by partitioning the overall population into groups of
individuals based on age at death. In the example in
Table 1, K ¼ 4 so there are four groups of individuals:

those that die after reaching ages 1, 2, 3, and 4 years.
Within each group, all individuals have the same
expected lifetime reproductive success, given by k̄x ¼P

bi(i�x), where k is the number of gametes contributed
by an individual to the next generation. Associated with

each mean k̄x will be a variance (Vx) that represents the
lifetime variance in k among all individuals that die at
age x. We want to relax Felsenstein’s assumption that all

these variances are binomial (in which case Vx is close to
the Poisson variance k̄x). However, it is convenient to
express realized Vx in terms of the Poisson variance to

retain a direct connection to the ideal-population
analogue that assumes random variation in reproductive
success. Therefore, we specify that Vx¼axk̄x, where ax is
a Poisson scaling or overdispersion factor that quantifies
how large Vx is compared to k̄x. Although in general it

will be the case that a . 1 in natural populations, this
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treatment is general and can accommodate situations

(e.g., captive breeding programs) under which extrinsic

factors might constrain variance in reproductive success

to be less than random (leading to a , 1).

We use a sums-of-squares approach to obtain overall

Vk from the age-at-death specific k̄x and Vx values, as

illustrated in Table 2. The data in Table 1 lead to mean

reproductive success values that range from k̄1 ¼ 0

(individuals that die at age 1 never reproduce) to k̄4 ¼
4.364 (for those that live to age 4). Because the

population is haploid and stable, on average each

individual must contribute exactly one gamete to the

next generation; therefore, overall k̄� ¼ 1, which also is

the weighted mean across the age-at-death groups. The

numbers that die after reaching each age x are easily

calculated as Dx ¼ Nx – Nxþ1. Overall Vk� is the mean

squared deviation of the individual k values from the

overall mean k̄�. The total sum of squares of deviations

(SSDT) is composed of two parts: (1) deviations of the

lifetime k of each individual from its age-at-death

specific mean value k̄x, and (2) deviations of the k̄x from
the overall k̄� (Dx ¼ k̄x � k̄�). We refer to the first

component as SSDI because it captures information

about variation among individuals within groups and to

the second component as SSDG because it refers to

deviations of the group means from the overall

population mean. For each age-at-death group x, SSDIx

is simply DxVx, SSDGx is DxD
2
x , and their sum is denoted

by SSDx¼ SSDIxþ SSDGx. It is then straightforward to

calculate SSDT as
P

SSDx and overall Vk� as SSDT/N1.

When these analyses are applied to the data in the

example, the result is that lifetime variance among all

individuals in the population is Vk� ¼ 3.107 (Table 2A),

and when this value is inserted into Eq. 1 together with

N1¼ 1000 and L¼ 2.909 from Table 1, the result is Ne¼
936.2. Note that this is almost exactly half the total

number of individuals alive at any given time (Ne/NT ¼
936.2/1875 ¼ 0.499), a reduction that can be explained

by the fact that Vk� for the population is over three times

as large as the mean. This example assumed Poisson

variance in reproductive success among individuals

within an age group, so the increased variance is due

to stratification of the population into groups with

different mean lifetime reproductive success. For exam-

ple, in this population, one-half of the individuals do not

survive to age at first reproduction, and those that live
until age 4 have an expected lifetime reproductive

success six times as large as that for individuals that

die after age 2 (k̄4 ¼ 4.364; k̄2 ¼ 0.727). However, only

125 individuals (one-eighth of the original cohort) live to

age 4, so during any given time period more newborns
are produced by two- and three-year-old parents than

those age 4 (Table 1). Although in this example Ne/NT is

about 0.5 when NT is used in the denominator, the result

is quite different if Ne is compared to the number of

mature adults (Ne/NA ¼ 936.2/875 ¼ 1.07).

Table 2B shows the effect of allowing nonrandom
variation in reproductive success among individuals of

the same age. This example used the Poisson scaling

factor a ¼ 3, so all Vx ¼ 3k̄x. With this extra source of

variability, overall variance in reproductive success is

higher (Vk� ¼ 5.107; Table 2B) and effective size is
considerably lower (Ne¼569.6, after inserting the higher

Vk� into Eq. 1) than under the Poisson assumption. It is

interesting to note that, with the haploid life history, for

every unit increase in the Poisson scaling factor, Vk�

increases by exactly 1.0. To see why this is so, note that

Vk� ¼
1

N1

X

x

SSDx ¼
1

N1

X

x

Dxðaxk̄x þ D2
xÞ:

Let c be a constant. Replacing ax in the sum above by
(ax þ c), we have

1

N1

X

x

Dx½ðax þ cÞ k̄x þ D2
x �

¼ 1

N1

X

x

Dxðaxk̄x þ D2
xÞ þ c

1

N1

X

x

Dxk̄x

Vk� ¼
1

N1

X

x

Dxðaxk̄x þ D2
xÞ þ ck̄�:

Thus, adding c to the scaling factor will result in Vk�

being increased by ck̄�. A similar approach can be used

to show that, with separate sexes, adding a constant c to

the Poisson scaling factor will cause Vk� to be increased
by 2ck̄�.

Separate sexes

Now consider a population with separate sexes that

still produces a constant number (N1) of newborns each

TABLE 1. Life table data for a haploid species that produces a constant number N1 of newborns each year, all of which survive to
age 1.

Age, x (yr) sx bx lx bxlx b 0
x b 0

xlx Nx Bx xBx/N1

1 0.5 0 1.000 0.000 0.000 0.000 1000 0.0 0.000
2 0.5 1 0.500 0.500 0.727 0.364 500 363.6 0.727
3 0.5 2 0.250 0.500 1.455 0.364 250 363.6 1.091
4 0 3 0.125 0.375 2.182 0.273 125 272.7 1.091

Totals 1.375 1.000 1875 1000 2.909�

Notes: The parameter b 0
x is age-specific fecundity scaled to produce a constant population size, given age-specific survival rates

(sx); lx is the fraction of the newborn cohort that is alive at age x; Nx is the number of age-x individuals in the population, and Bx¼
b 0

xNx is the number of newborns in a single year produced by parents of age x.
� RxBx/N1 is generation length (L) in years, although the model can accommodate different time units for x and L.
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year, of which a constant fraction m are male and f¼1�
m are female. For each sex, an analogue to Table 1 can

be created using sex-specific vital rates (sx(s), bx(s), where

subscripted s signifies m or f ). To allow for unequal sex

ratio, it is necessary to scale the sex-specific bx values so

that overall population size is constant but the less

numerous sex produces more offspring per capita. Each

of the N1 newborns in each time period must have

exactly one male and one female parent. Therefore,

during their lifetime, the mN1 male members of a

newborn cohort must father a total of N1 offspring, and

the same is true for the (1� m)N1 females in the cohort.

This can be achieved by scaling bx(s) so that
P

bx(s)Nx(s)

¼ N1.

In this way, analogues to Tables 1 and 2 can be

constructed separately for each sex, and Vk� is then

calculated across both sexes, as illustrated in Tables 3

and 4. In this example, variance in age-specific

reproductive success is Poisson, but initial sex ratio is

unequal (70% of newborns are male) and both bx and sx
vectors differ between males and females (Table 3).

Despite the unequal sex ratio, each sex must contribute

equally to the N1 newborns, so to maintain constant

population size the nominal bx values are scaled to

ensure that
P

Bx¼
P

b 0
xNx¼ 1000. This can be achieved

by setting b 0
x ¼ 1000bx/

P
bxNx. The different vital rates

lead to different generation lengths in males and females,

and the overall generation length (L) is simply the mean

of the sex-specific values (L¼ [2.240þ 3.121]/2¼ 2.681)

(Charlesworth 1980).

Table 4 is based on demographic data in Table 3 and

is analogous to Table 2, but with two differences: (1)

separate sub-tables are presented for each sex; (2) Dx and

SSDx are calculated with respect to the sex-specific

means (k̄m ¼ 1.429; k̄f ¼ 3.333), leading to sex-specific

variances of reproductive success (Vm ¼ 2.824; Vf ¼

20.455). Using these sex-specific means and variances, it

is straightforward to calculate overall values (across

both sexes) as k̄� ¼mk̄mþ fk̄f¼ 2 and Vk� ¼mVmþ fVfþ
mf(k̄m � k̄f )

2 ¼ 8.875. Note that in our model k̄� will
always be exactly 2 for diploids because population size

is constant.

The analogue to Eq. 1 for diploids is as follows (Hill

1972: Eq. 16; Hill 1979: Eq. 8):

Ne ’
4N1L

Vk� þ 2
: ð2Þ

N1, L, and Vk� as calculated here can be inserted into

Eq. 2 to calculate effective size: Ne ¼ 4 3 1000 3 2.681/

(8.875þ2)¼986. This leads to Ne/N ratios of 986/2067¼
0.48 for the population as a whole and 986/1767¼ 0.56

when compared to the number of adults.

In this example, even though there is only random

variation in reproductive success among individuals of

the same age and sex each year, the combination of

skewed sex ratio and age structure causes the overall Vk�

to be more than four times the mean. Females are in the

minority and therefore have a higher mean reproductive

success; they also have a much higher variance in

reproductive success than males (Vf . 20 compared to

Vm , 3), in part because female fecundity increases

geometrically with age while male fecundity increases

only linearly (Table 3).

Hill (1972, 1979) also provided a more complicated

formula for Ne with separate sexes that accounts for

different pathways by which male and female gametes

can be transmitted across generations. However, as the

simpler formula performed well with simulated data (see

Fig. 1), we use that formula here and put details of the

more complicated formulation in the Appendix.

If survival rates differ between sexes, the sex ratio will

vary over time even if the initial sex ratio is even. In that

TABLE 2. Demographic data (see Table 1) for individuals grouped by age at death, with variation in reproductive success among
same-aged individuals being (A) random (Vx ¼ k̄x) and (B) overdispersed (Poisson scaling factor a¼ 3, so Vx¼ 3k̄x).

Age at death (yr) k̄x Vx Dx k̄xDx SSDIx Dx SSDGx SSDx

A) Random variation

1 0.000 0.000 500 0.0 0.0 1.00 500.0 500.0
2 0.727 0.727 250 181.8 181.8 0.27 18.6 200.4
3 2.182 2.182 125 272.7 272.7 �1.18 174.6 447.3
4 4.364 4.364 125 545.5 545.5 �3.36 1414.3 1959.7

Totals 1� 3.107� 1000 1000 3107.4

B) Overdispersed variation

1 0.000 0.000 500 0.0 0.0 1.00 500.0 500.0
2 0.727 2.182 250 181.8 545.5 0.27 18.6 564.0
3 2.182 6.545 125 272.7 818.2 �1.18 174.6 992.8
4 4.364 13.091 125 545.5 1636.4 �3.36 1414.3 3050.6

Totals 1� 5.107� 1000 1000 5107.4

Notes: The parameters k̄x and Vx are the mean and variance of lifetime reproductive success for individuals that die at age x; Dx

is the number that die at age x; SSDIx¼VxDx is the sum of squared deviations of individual (I) k values from the age-at-death mean
k̄x; Dx¼ k̄x� k̄� is the difference between the age-specific mean and the overall mean k̄�; SSDGx¼DxD

2
x ; and SSDx¼SSDIxþSSDGx,

where subscript G refers to deviations of the group means from the overall population mean. Although x is most commonly in years,
other time units are possible.

� Overall k̄� ¼
P

(k̄xDx)/N1.
� Overall Vk� ¼

P
SSDx/N1.
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case, it can be shown that the fraction of males in the

population at age x is given by

mx ¼
lxmm1

lxf f1 þ lxmm1

ð3Þ

and the fraction of females by fx ¼ 1 � mx. Under the

special case where (1) initial sex ratio is 1:1, (2) all

individuals mature at age 1 but experience mortality

before maturing, and (3) survival is independent of age

but can vary between males and females (sm, sf ), the

fraction of males in the adult population as a whole is as

follows (Nunney 1996):

mA ¼
1� sf

2� sf � sm

:

Sex change

Some species are sequential hermaphrodites, begin-

ning life as females and changing to males (protogy-

nous) or the reverse (protandrous). Several authors

(Warner 1975, Charnov 1982, Allsop and West 2003)

have proposed evolutionary mechanisms that would

promote sex reversal at specific sizes or ages if, on

average, it should increase individual fitness. Sex

reversal creates additional layers of stratification in a

population beyond those associated with separate sexes

and age structure. Here, we assume that an individual

can only change sex once during its lifetime (from initial

sex 1 to terminal sex 2), that within the population the

direction of sex change is fixed, and that the initial

fraction of the N1 newborns that are the terminal sex is

y. We can expand the two-sex model discussed

previously to accommodate more than two groups of

individuals with similar expectations for key life history

parameters. If the maximum age is K, an individual can

take one of K þ 1 different sexual-identity pathways

during its lifetime. For example, with K ¼ 3 the four

possible ontogenetic pathways are 111, 112, 122, and

222, where (for example) pathway 122 represents

individuals that begin life as sex 1, change to sex 2

TABLE 3. Life table data for a diploid species with separate sexes and an initial sex ratio that is 70% male.

Age, x (yr) sx bx lx bxNx b 0
x b 0

xNx Nx Bx xBx/N1

Males

1 0.6 1 1.000 700.0 0.399 279.3 700 279.3 0.279
2 0.5 2 0.600 840.0 0.798 335.2 420 335.2 0.670
3 0.4 3 0.300 630.0 1.197 251.4 210 251.4 0.754
4 0 4 0.120 336.0 1.596 134.1 84 134.1 0.536

Totals 2506.0 1000.0 1414 1000.0 2.240�

Females

1 0.6 0 1.000 0.0 0.000 0.0 300 0.0 0.000
2 0.6 2 0.600 360.0 1.526 274.7 180 274.7 0.549
3 0.6 4 0.360 432.0 3.053 329.7 108 329.7 0.989
4 0 8 0.216 518.4 6.105 395.6 65 395.6 1.582

Totals 1310.4 1000.0 653 1000.0 3.121�

Notes: The parameter b 0
x is age-specific fecundity scaled to ensure that each sex produces N1¼1000 offspring in each time period.

Other variables are defined in Table 1. In this example, age-specific fecundity and survival both differ between sexes.
�
P

xBx/N1 is the sex-specific generation length. Overall generation length (L) ¼ (2.240 þ 3.121)/2 ¼ 2.681 yr. The model can
accommodate other time units.

TABLE 4. Demographic data for individuals grouped by sex and age at death, based on Table 3, assuming Poisson variance in
reproductive success (Vx ¼ k̄x at each age).

Age at death (yr) k̄x Vx Dx k̄xDx SSDIx Dx SSDGx SSDx

Males

1 0.399 0.399 280 111.7 111.7 �1.03 296.8 408.5
2 1.197 1.197 210 251.4 251.4 �0.23 11.2 262.6
3 2.394 2.394 126 301.7 301.7 0.97 117.5 419.2
4 3.990 3.990 84 335.2 335.2 2.56 551.3 886.5

Totals 1.429 2.824 700 1000.0 1976.8

Females

1 0.000 0.000 120 0.0 0.0 �3.33 1333.3 1333.3
2 1.526 1.526 72 109.9 109.9 �1.81 235.1 345.0
3 4.579 4.579 43 197.8 197.8 1.25 67.0 264.8
4 10.684 10.684 65 692.3 692.3 7.35 3501.1 4193.4

Totals 3.333 20.455 300 1000.0 6136.5

Overall 2� 8.875� 1000 2000.0

� Overall k̄� ¼ mk̄mþ fk̄f.
� Overall Vk� ¼ mVmþ fVf þ mf(k̄m� k̄f )

2.
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before age 2, and remain so until they die after age 3.

Individuals that follow this pathway have expected

lifetime reproductive success that is a function of b11 for

sex 1 and b22þ b32 for sex 2; survival from age 1 to 2 is

determined by s11 for sex 1 and survival from age 2 to 3

is governed by s22 for sex 2. That is, the sequence of

events in our model is reproduction, survival (or

mortality) to the next age, and sex reversal (or not).

The K þ 1 pathways define K þ 1 groups of individuals

that can be characterized by a mean and variance in

lifetime reproductive success, and analogues to Tables 1

and 2 can be used to calculate overall Vk� and hence Ne

using Eq. 2. For each pathway, the overall SSDT can be

calculated exactly as was done for the case of separate

sexes, and the SSDT values for all pathways can be

added to get SSDT� and hence Vk�.

Note that this method provides a way to calculate

lifetime variance in reproductive success of individuals

that can reproduce as both males and females (albeit in

different time periods). Although in principle a separate

generation length could be calculated for each pathway,

the result would be of uncertain biological relevance.

Instead, it is simpler to calculate generation length for

the population as L ¼
P

xBx�/N1, where Bx� is the total

number of births in a given time period by parents of age

x. That is, Bx� ¼ Bxf þ Bxm ¼ bxfNxf þ bxmNxm. Because

individuals can change sex, the numbers of each sex at

each age (Nxm, Nxf ) are no longer given by Nxs ¼ N1lxs
but instead have to be calculated based not only on N1

and age- and sex-specific survival rates, but also on the

sex ratio of newborns (y, 1 � y) and the age-specific

probability of changing sex ( px is the probability of

changing from sex 1 at age x to sex 2 at age x þ 1).

Effective number of breeders per year (Nb)

Our previous treatments have all focused on lifetime

means and variances in reproductive success, which are

the appropriate quantities for assessing Ne per genera-

tion in iteroparous, age-structured species. However, it

can also be of interest to calculate the effective size of the

breeding population in any given year and compare that

to the annual census size. Here we use the term ‘‘effective

number of breeders’’ (Nb; Waples 1990) to refer to the

Ne analogue that reflects contributions of parents in a

single year.

Only minor adjustments to the model just described

are necessary to calculate Nb, which considers k̄ and Vk

for a single year among all NT individuals in the

population. In any given year, the number of individuals

of age x and sex s in the population is given by Nxs, the

mean number of offspring each produces that year is k̄xs
¼ b 0

xs, and the variance is Vxs ¼ axk̄xs. Each sex must

contribute one-half of the genes to the N1 newborns, so

the sex-specific means (across all ages) are k̄s ¼ N1/NTs,

where NTs¼
P

Nxs is the total number of individuals in

the population of sex s. Overall, the NT ¼ NTm þ NTf

individuals in the population contribute 2N1 genes to the

newborns, so overall k̄� ¼ 2N1/NT. Then, a sums-of-

squares approach similar to that in Table 2 can be used

to calculate overall Vk�.

Because we consider only a single year of reproduc-

tion, we can use a discrete generation formula to

calculate Nb. In general, it will be the case that annual

k̄� 6¼ 2, which means that inbreeding and variance Nb will

differ. For populations that are changing in size,

variance Ne is sensitive to the number of offspring and

generally must be scaled to k̄ ¼ 2 to produce a

meaningful result (Crow and Morton 1955). Therefore,

we calculate inbreeding Nb because this can be

interpreted directly in terms of the number of parents

(Kimura and Crow 1963) and because scaling to k̄¼ 2 is

not necessary for inbreeding Ne (Waples 2002a). For a

species with separate sexes, the inbreeding effective size

can be calculated as follows (after Crow and Denniston

[1988] and Caballero [1994], using current notation):

FIG. 1. Comparison of observed rate of increase in identity
by descent (IBD) in simulated data with theoretical expectation.
For both panels, maximum age is 4 years, and vital rates are the
same in both sexes: sx¼0.7 for x¼1–3 years, relative birth rates
bx¼ 1, 2, 3, 4 for x¼ 1–4 years, and generation length L¼2.613
years. (A) Fixed cohort size N1 ¼ 1000, sex ratio is 1:1, and
variance in reproductive success is Poisson among same-age
individuals (a ¼ 1), leading to Ne ¼ 1719 from both Eq. 2 and
Appendix Eq. A.1, so the expected rate of change in IBD is
described by a single line. (B) N1¼ 500, sex ratio of newborns is
70% male, and variance in reproductive success in both sexes is
overdispersed (Poisson scaling factor a ¼ 3). Under these
conditions, Ne ¼ 465 using Eq. 2 and Ne ¼ 373 from the
Appendix: Eq. A.1.
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Nb ¼
k̄�NT � 2

k̄� � 1þ
Vk�
k̄�

: ð4Þ

The identical result can be obtained by calculating
inbreeding Nb separately for each sex using sex-specific
k̄s and Vks and combining them using a variation of

Wright’s sex ratio adjustment (Crow and Denniston
1988):

Ne ¼
4NbðmÞNbðfÞ

NbðmÞ þ NbðfÞ
:

One can also calculate Nb using only mature adults as
potential parents. Although excluding immature indi-

viduals changes both the mean and variance of k, it is
easy to show that these changes exactly cancel out so
that inbreeding effective size is the same regardless

whether immature (or senescent) individuals are includ-
ed or not (Waples and Waples 2011). Finally, our model
enumerates family size at birth and assumes random

survival at each age. If this assumption is true, the same
results should be obtained if one were to compute the ki
values in terms of offspring that survive to reproduce.

However, if family correlated mortality occurs before
newborns reach maturity, counting family size at the
two life stages could produce different Vk and hence

different Ne values. In that case, enumerating family size
in terms of production of mature adults would provide a
more accurate picture of the effective number of

breeders per year.
We should emphasize that Nb is not the same quantity

that Hill defined as the ‘‘annual effective size’’ (denoted

by Ny in Hill 1972 and Na in Hill 1979), which is the size
of a discrete generation population that experiences the
same amount of drift as occurs over a single year in a

population with overlapping generations. Because a
single year represents only part of a generation for an
age-structured population, Ny is larger than Ne by a

factor equal to the generation length: Ny ¼ LNe (Hill
1972, 1979). In contrast, because Nb represents parental
contributions in only one year, it is generally less than

Ne, although exceptions can occur for certain life
histories.

Validation

We evaluated accuracy of the new method by
comparing observed rates of increase in identity by

descent (IBD) in simulated data with rates predicted
from standard population genetics theory, assuming

that true Ne is as predicted from the model. We used
SPIP (Anderson and Dunham 2005) to generate genetic
data for age-structured populations and used the

options that specify a fixed cohort size (N1 in current
notation) and allow one to track founder alleles in
subsequent generations. In the latter option, after a

warm-up period to ensure that stable age distribution is
reached, each individual at year 0 (the founders) is
assigned two unique alleles at each locus. In subsequent

generations, it is easy to calculate the mean fraction of

loci at which the two alleles that an individual carries are

IBD (traced to the same founder). These simulations

used separate sexes, in which case IBD is still 0 after one

generation because founder alleles cannot unite in

offspring until the second generation. Therefore, we

calculated the elapsed number of generations as DL¼ t/

L� 1, where L is the generation length and t is the year

at which IBD is measured. The expected value of IBD

after DL generations was then calculated as

EðIBDDLÞ ¼ 1� ½1� 1=ð2NeÞ�DL:

We calculated observed IDB by averaging results for 20

gene loci across all of the N1 newborns at time t. This

process was repeated 10 times to generate 10 replicate

values of IBD for each time period, and these were

averaged to represent the ‘‘observed’’ IBD values.

We considered two different scenarios, both of which

used the same vital rates for each sex (see Fig. 1 for

details). In the first scenario, sex ratio was equal and

reproductive variance was Poisson, so Ne is the same for

Eq. 2 and Appendix Eq. A.1. The observed rate of

increase in IBD across 500 years (almost 200 genera-

tions) tracked the expected rate of increase almost

perfectly (Fig. 1A). Notably, this occurred in spite of the

fact that, even with cohort size fixed at N1 newborns,

survival and newborn sex ratio are random variables in

SPIP. This means that random variations in sex ratio,

population size, and the number in each age class did

not materially affect results. In the second scenario,

newborn sex ratio was skewed (70% male) and

reproductive variance was overdispersed (a ¼ 3 in both

sexes), in which case Eq. A.1 predicted a lower Ne than

Eq. 2. The observed rate of increase in IBD closely

paralleled the rate predicted using Eq. 2 but was lower

than the rate predicted by Eq. A.1 (Fig. 1B).

Software

We have developed a software program, AgeNe that

implements all of the analyses just described (see

Supplement). Input data for AgeNe are vital rates (sx
and bx, as illustrated in Tables 1 and 3) and Poisson

scaling factors for each sex for an arbitrary number of

ages, as well as the number of newborns in each cohort

and their initial sex ratio. Only relative fecundities are

required as inputs; bx values for both sexes are

automatically scaled to produce a stable population.

Outputs include L, k̄, and Vk for each sex and overall,

NA and NT, Ne from Eqs. 2 and 3, Nb from Eq. 4, and

the ratios Ne/NA and Ne/NT. To calculate Ne under sex

change, AgeNe also requires the user to input the initial

sex and the fraction of the population at each age that is

the terminal sex.

DISCUSSION

The hybrid method described here facilitates practical

application of Hill’s method by retaining the link that

Felsenstein’s method has to demographic data contained

in a standard life table. Although such data can be
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challenging to collect in nature, recent dramatic

increases in the power of genetic-based parentage

analysis (reviewed by Jones et al. 2010) have made it

possible to gather information about reproductive

success that previously was all but unattainable.

Even in the absence of detailed demographic infor-

mation, AgeNe provides a simple way of conducting

sensitivity analyses to assess the effects of various factors

on Ne and Ne/N. For example, Nunney (1991, 1996)

noted that an unbalanced sex ratio can result from two

different factors (a skewed primary sex ratio, or different

survival rates in males and females) and showed that the

former reduces Ne more strongly. These two factors can

be evaluated separately in AgeNe by (1) making age-

specific survival rates equal in males and females but

allowing the newborn sex ratio to depart from unity, and

(2) by using an even primary sex ratio but allowing

different survival rates in the two sexes. Similarly,

Nunney (1996) identified three components that con-

tribute to variance in lifetime reproductive success of

females: (1) random variation across years, (2) changes

in fecundity with age, and (3) different mean fecundities

for same-aged individuals. In AgeNe, the first compo-

nent can be studied by using a single bx value for all ages

and a Poisson scaling factor of a ¼ 1 (in which case

seasonal variations in reproductive success within an

individual are random), and the second component can

be evaluated by setting a¼1 but allowing bx to vary with

age. The third component can be mimicked by choosing

a . 1, to reflect the fact that, in any given year, Vk will

be larger than k̄ because not all individuals have the

same expected fecundity.

An advantage of the hybrid model is its flexibility and

the ease with which it can simultaneously evaluate the

joint effect of numerous demographic factors that can

affect Ne. In this respect, it serves to complement the

analytical models developed by Nunney, which used

several simplifying assumptions that were sequentially

relaxed to evaluate specific factors. The new method

could also be useful in studies that combine demograph-

ic, genetic, and/or simulation approaches to estimating

Ne in age-structured species (e.g., Ryman et al. 1981,

Harris and Allendorf 1989, Jorde and Ryman 1995,

Hard et al. 2006).

An important new feature of AgeNe is that it can

facilitate comparison of Ne and Nb in age-structured

populations. The difficulty in integrating data on

variance in individual reproductive success across

multiple breeding periods has proven to be the most

challenging problem in computing Ne in iteroparous

species, but this problem is greatly reduced for Nb,

which only requires data for a single time period. As

noted, improvements in parentage analysis make these

demographic data increasingly feasible to collect in the

wild. Furthermore, the last few years have seen a rapid

expansion of interest in single-sample genetic methods to

estimate effective size (Nomura 2008, Tallmon et al.

2008, Waples and Do 2008, Zhdanova and Pudovkin

2008, Wang 2009, Waples and Waples 2011). When

applied to data for a single cohort, these methods yield

an estimate of Nb, and AgeNe provides a simple way of

calculating Nb from demographic data to allow a direct

comparison with genetic estimates. A systematic evalu-

ation of the relationship between Nb and Ne in

iteroparous species would perhaps uncover simple

patterns that can be generalized to species with similar

life histories. To date, most quantitative comparisons of

Nb and Ne have been conducted for semelparous species

with variable age at maturity (Nunney 2002, Waples

2002b, 2006, Vitalis et al. 2004); Palstra et al. (2009) is an

exception, as it considers a species with a certain degree

of iteroparity.

AgeNe requires data in an age-based (Leslie matrix)

format. Cochran and Ellner (1992) describe the trans-

formations necessary to convert stage-based (Lefkovitch

matrix) data into age-structured format. For example,

the probability of moving from one stage to another can

be used to generate a distribution of realized ages on

entering the second stage. It should be recognized,

however, that the transformations used by Cochran and

Ellner assume no demographic stochasticity: that is, that

deviations from model predictions due to finite popula-

tion size can be ignored. This common assumption is

also explicit in the Felsenstein and Hill models, as well as

the current model. The finding (Fig. 1) that simulated

data using a model that incorporates demographic

stochasticity in population size agreed closely with our

theoretical predictions is encouraging, as it suggests that

ignoring demographic stochasticity might not be a

serious problem, at least for moderate to large

populations. However, most populations also experience

environmental stochasticity, and the joint effects of these

factors on Ne in age-structured populations can be

complex (Engen et al. 2005, 2007, 2010).

Our hybrid model makes certain other assumptions

that limit its applicability in some cases. For example, it

adopts the common assumption that individual varia-

tions in fertility are not heritable. Nei and Murata

(1966) provided an approximate formula for reductions

in Ne due to heritability of fertility in a monoecious

diploid with discrete generations and constant N:

Ne ’
4N

ð1þ 3h2ÞVk þ 2
ð5Þ

where h2 is heritability. With h2 ¼ 0, this reduces to the

familiar equation for Ne in species with discrete

generations (e.g., Crow and Kimura 1970). This

equation shows that if h2 is even a modest 0.2, Ne of

an otherwise ideal population is reduced by nearly one-

quarter. Based on the close similarity of Eqs. 2 and 5, we

expect that the consequences should be roughly the same

for overlapping generations (as suggested by Ryman et

al. 1981).

Our model also assumes a fixed population size and

includes a simple way to assure this by rescaling

fecundities to produce a constant N. In general, this is
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not unreasonable, given that populations that persist for

any period of time must eventually reach a dynamic

equilibrium for population growth rate, with central

tendency of k ¼ 1. Rescaling survival rates can also

affect population growth rate, but this approach is less

desirable here for two reasons: (1) it is less straightfor-

ward because survival is multiplicative across years; (2)

it is less general because it is possible to stipulate a

vector of bx values for which no manipulation of

survival rates will produce a stable population size. In

contrast, any nonzero vector of bx values can be scaled

to produce a constant N, given any nonzero vector of sx
values.

Strictly speaking, scaling of vital rates is not

necessary, as Felsenstein (1971) showed analytically

(and Waples and Yokota 2007 verified numerically) that

his model also works for populations with a constant

growth rate (either positive or negative). Under those

conditions, effective size would change for each gener-

ation with the change in N, with changes in inbreeding

Ne (which depends on the number in the parental

generation) lagging behind those for variance Ne (which

depends on the number in the progeny generation).

Our hybrid model, like the models of Hill and

Felsenstein, assumes that age-specific survivals and

fecundities are independent. At least two types of

departures from this assumption are commonly found

in nature. First, in some species (especially mammals

with long gestation times and/or extended parental

care), females skip one or more years between repro-

ductive events, and as a consequence only part of the

female population reproduces in a given year. Within

any year, it is easy to adjust female k̄ and Vk to account

for this. However, a key feature of this type of life

history is that, to a large extent, different females

reproduce in successive years. This negative correlation

between female reproduction in successive years is not

accommodated in the hybrid model (nor in those of Hill

or Felsenstein). Because this negative correlation will

reduce lifetime Vk for females, the estimate of Ne based

on the hybrid model would be biased upward. Second,

some individual differences in mean fecundity might be

fixed over time (e.g., because of persistent individual

differences in size, behavior, physiology, or expression

of traits under sexual selection). Our model can

accommodate overdispersed variance in reproductive

success within a year but has no way to track persistent

individual differences across time. Lee et al. (2011)

showed that this type of scenario can reduce Ne

considerably.

Other interesting life history features are directly

amenable to study with AgeNe. For example, the

genetically important aspect of fecundity is not the

number of offspring produced but the number that

survives to pass on genes to subsequent generations.

The hybrid model assumes random, genotype-indepen-

dent survival, in which case production of newborns is

a good predictor of production of offspring that

survive to maturity. However, in some (perhaps many)

populations, not all individuals produce offspring with

equal fitness. In the common lizard (Lacerta vivipara),

both males and females exhibit senescence, whereby

older individuals produced less viable offspring (Rich-

ard et al. 2005). In black rockfish (Sebastes melanops),

as well as other species of marine fish, older individuals

produce eggs and larvae with higher survival rates,

presumably because of better provisioning of the egg

with energy resources (Berkeley et al. 2004). Notably,

this ‘‘big old fat fecund female fish’’ (BOFFFF) effect

depends on age much more than size and is not

accounted for by simply tracking fecundity. Because

AgeNe quantifies bx in terms of the number of

offspring that survive to age 1, it is easy to adjust the

effective fecundities of older fish to account for higher

offspring survival. The hybrid model also provides an

easy way to evaluate the consequences for Ne and N of

size-selective or sex-selective harvest that can truncate

age and size structure in harvested populations (Hard

et al. 2006, Jørgensen et al. 2007).
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APPENDIX

Four different gametic pathways (Ecological Archives E092-126-A1).

SUPPLEMENT

AgeNe, a program to calculate Ne and Nb in age-structured populations (Ecological Archives E092-126-S1).
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