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Cobb-Douglas Production Function was widely used in economics and productivity 

studies across many sectors. The function’s quantitative modeling of resource inputs and 

production outputs is appealing to the research domain of construction management. In 

this thesis we explored this function’s application in construction schedule crashing and 

project risk analysis related to duration of construction projects. Existing research on 

construction time-cost tradeoff issues rarely explore the origin of the crashing cost which 

is defined as the cost needed to shorten the project to the desired duration. In the existing 

literature crashing cost function was either assumed without much justification, or came 

from ad-hoc regression analysis of historical data of some actual projects. Cobb-Douglas 

production function, which defines the portion of labor and equipment needed based on 

the production rate, provides a much-needed piece to modeling the cost functions in the 

construction time-cost tradeoff problem during the schedule crashing process. This new 

perspective fills a gap of existing time-cost tradeoff research by considering project 

duration, labor and equipment cost as parameters of the Cobb-Douglas production 



function.  A case study was presented to show how the proposed framework works. Case 

results are presented based on deterministic values of Cobb-Douglas function’s 

parameters (        and   ). Presented results show each of labor and equipment’s 

portion in total cost. Here, more than that we had earlier, we can analyze different options 

based on just one of these factors to find the optimum solution. Not only, the total labor 

and total equipment cost of a project is available, labor and equipment cost of each 

activity’s option can be calculated and compared with other options. After that, 

sensitivity analysis on the mentioned parameters was conducted to further explore the 

model’s sensitivities to these parameters. Inflation factors in labor and equipment cost 

were incorporated in the sensitivity analysis based on assumed costs’ fluctuation range. 

The results show that the total cost highly depends on the summation of   and  . The 

conclusion of the thesis is that utilizing Cobb-Douglas production function in 

construction crashing cost analysis expands our understanding of crashing cost sources 

and the portion of each of elements. Moreover, from sensitivity analysis results, it is 

concluded that labor and equipment efficiencies have significant effects on total cost of a 

project. Cost inflation analysis makes managers aware of uncertain market which 

influences total cost and duration of a project. 
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CHAPTER ONE 

Introduction 

 

Time-cost tradeoff problem (TCTP) has been extensively studied in construction 

scheduling research (Feng et al. 1997; Hegazy 1999, Feng et al. 2000; Ng and Zhang 

2008) to find out the best solutions in terms of minimizing the cost while shortening the 

project duration. Many different algorithms and assumptions were used in searching for 

the best solutions which are explained in detail later.  

Despite many existing researches on TCTP, very little study can be found in 

exploring or explaining the source or the origin of the cost increase during activity 

crashing. Instead, in many studies, the cost functions associated with crashing were 

assumed, or based on historical data, or based on simulation results. Being able to explain 

quantitatively where the increased crashing costs come from is important to better 

understand the theoretical fundamental of TCTP.   

There has been a lack of theoretical base to model the cost functions associated with 

activity crashing. Evensmo and Karlsen (2008) were among the few researchers tried to 

explain the origin of cost increase during activity crashing. However, in their study, they 

only discussed the causes of cost increasing due to labor input changes. A significant 

limitation in their approach is the lack of consideration of changes of equipment inputs 

during crashing activities.  

Considering many construction crews are composed of both labor and equipment, it is 

necessary to identify or develop new models to consider both labor and equipment 
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changes during the activity crashing procedure, so we can more accurately model the 

crashing cost functions. 

Cobb-Douglas production function (CDPF) (Eq. 1) (Cobb and Douglas 1928; Varian 

1992) has been widely used in research on economics (Meeusen and van den Broeck 

1977, Dennis et al. 2010), technology progress (Sircar and Choi 2009), and productivity 

(Banker and Natarajan 2008; Pendharkar et al. 2008).  

                                     (Eq. 1) 

Where: Q = production rate; L = labor input; K = capital/equipment input; A = 

technology; α and β are the output elasticity of labor and capital respectively.  

In particular, CDPF models production rate, labor inputs, equipment/capital inputs 

and technology efficiency in a very elegant formation, which can be used to explain 

many types of production activities. Some important features of CDPF (Fig. 1) are very 

useful in explaining the origin of the crashing cost under many different situations. 

 

 
Fig.1. Illustrative isoquant curves from CDPF 

 



3 
 

An Isoquant (Varian 1992) is a contour line drawn through the set of points at which 

the same quantity of output is produced while changing the quantities of inputs. Fig. 1 

shows a set of isoquants for a production function with two inputs of capital (K) and 

labor (L). K is equivalent to or interchangeable with equipment in this study. One 

important feature of CDPF is reflected by the summation value of  and . When the 

summation of  and  is less than 1 which is called Decrease Return to Scale (DRTS), 

the double inputs of L and K will generate less than double output of Q. This is illustrated 

by case from point C to D in Fig. 1. When the summation of  and  is equal to 1, 

Constant Return to Scale (CRTS), the double inputs of L and K will generate double 

output of Q, which is illustrated by case from point B to C. When the summation of  

and  is greater than 1, Increase Return to Scale (IRTS), the double inputs of L and K 

will generate more than double output of Q,  which is illustrated by case from point A to 

B.  

Another important feature related to this study is the efficiency of substituting part of 

labor (L) input for part of equipment input (K). As we can see in the isoquant curve of  

Q=6, the efficiency of substituting K for L is decreasing (from K1L1 to K2L2) as 

more labor replacements are added to generate the same amount of Q, in this case Q=6.  

Construction activity crashing can be achieved through increasing A, technology, or 

by increasing inputs of L and/or K in fixed period of time. In both cases the Q will 

increase in unit time period, which is essentially activity crashing. In this paper, we limit 

our scope of crashing within the allocation of L and K, while assuming construction 

technology (A) remains the same during the crashing process. This will allow us to focus 

our discussions on how to best utilize L and K in crashing.    
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CDPF provides a feasible tool to model construction schedule crashing activities, 

especially modeling the time-cost trade-off problem. The origin or source of the cost 

increase in construction TCTP can be theoretically explained using CDPF. The duration 

crashing is achieved through increasing either L or K or both, so to increase Q in a given 

time. Applying CDPF with cost functions of both labor and equipment provide a potential 

way to incorporate detailed labor and equipment costs and utilization information into the 

time-cost optimization model in construction TCTP.   

To this end, in the paper, a new framework for TCTP in construction using CDPF and 

GA is proposed. A case study is presented using the proposed framework and the results 

are discussed. Finally, sensitivity analysis on all production function’s factors is done. 

The proposed CDPF framework for TCTP provides a new perspective for research in 

construction TCTP by enabling further analysis on optimizing labor and equipment 

allocations during the activity crashing process. This approach enables the project 

managers to further understanding his options in allocating appropriate combinations of 

labor and equipment based on the CDPF. This additional capacity is a major contribution 

of this study, which has not been reported in existing publications to the best of our 

knowledge.  
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CHAPTER TWO 

Literature Review 

 

Existing researches on construction TCTP can be classified based on cost functions, 

solution methods, objective functions, and models.  

 

2.1. Construction Crashing Time-Cost Function 

The relation between cost and the time has been well studied in various studies. Cost 

functions such as linear (Bazaraa and Shetty 1979, Fulkerson 1961), nonlinear 

(Moussourakis and Haksever 2010), discrete (Kelly, 1961, this research), convex 

(Lamberson and Hocking 1970, Demeulemeester et al. 1993), and concave (Berman, 

1964) have been implemented in the studies on TCTP hitherto. 

 

2.2. Objective Function 

Objective function in construction crashing cost analysis may vary significantly. 

Some researchers consider multi-objective function and assume priority for time and cost, 

and based on that, they try to find the optimum solution. Some consider minimizing total 

project cost. Some try to minimize total project cost or duration subject to predefined 

constraints. 

Moussourakis and Haksever (2010) considered three objective functions including 

minimization of project completion subject to a crash budget constraint, minimization of 

the total project cost, and minimization of the total cost under late completion penalties. 

They used nonlinear time-cost functions.  
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Leu et al. (2001) tried to determine the project completion time regarding project total 

cost which includes both direct and indirect costs. Some other authors consider a limited 

budget for the project and try to minimize the project duration regarding the budget 

constraints (Buddhakulsomsiri and Kim 2006). 

Jaskowski and Sobotka (2006) proposed a multi-criteria objective function which 

considers both time and cost together, and they end up with a Pareto set. They used an 

evolutionary algorithm to compare different solutions based on fitness values. 

One of the main assumptions or constraints, which are commonly considered in the 

literature, is the limitation of resources. Jaskowski and Sobotka (2004) try to minimize 

the project completion time regarding the limitation on resources. They also proposed an 

evolutionary algorithm to assign recourses to activities in a proper time. 

Other authors chose a different approach to cope with this problem. To avoid delay in 

projects, Lin et al. (2011) predict construction project completion time using historical 

data. They used regression model to forecast the future projects completion time. Chen et 

al. (2011) developed a cash-payment model for forecasting the cash flow. They evaluated 

their model by comparing two historical real dataset. 

 

2.3. Models 

There are three main categories in existing literature regarding models or assumptions 

in time-cost trade-off problem. 1) Deterministic relationship between time and cost was 

assumed in Gerk and Qassim (2008), Moussourakis and Haksever (2010), Pollack-

Johnson and Liberatore (2006). 2) Stochastic relation between time and cost was assumed 
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in Aghaie and Mokhtari (2009), Cohen et al. (2007), Ke et al. (2009). 3) Fuzzy relation 

between time and cost was assumed by Ghazanfari et al. (2009). 

Gerk and Qassim (2008) considered both activity overlapping and substitution in their 

model. Pollack-Johnson and Liberatore (2006) assumed discrete time-cost trade-off 

activity like as we do in this study. In both studies, predefined budget were assumed. 

Moussourakis and Haksever (2010) assumed nonlinear time cost function which is more 

realistic than linear ones. Some other authors, like Diaby et al. (2011), took similar 

approach in terms of cost functions. They proposed a geometric programming, and then 

try to solve it. 

Aghaie and Mokhtari (2009) proposed a nonlinear mix integer programming to 

increase the probability of completion of the project in a given due date. They also 

assume that each activity duration follow an exponential distribution. Ke et al. (2009) 

proposed integrating stochastic simulation and genetic algorithm to increase the 

probability of completion of a project by a specific due date. Cohen et al. (2007) wanted 

to minimize the expected cost related by the project. 

Ghazanfari et al. (2009) assumed fuzzy variables. Via Possibility Goal Programming, 

the cost was minimized while considering the minimum duration. The main contribution 

of this fuzzy approach is the use of vagueness in the cost function during the project 

execution. Zheng and Ng (2005) also presented fuzzy set theory regarding the uncertainty 

included in TCTP problem. They also used GA as a meta-heuristic algorithm to develop a 

Pareto set of time and cost.  

 

2.4. Solution Method 
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Large-scale time-cost trade off problem is often NP-hard. The methods developed to 

tackle this problem varied from exact approach such as dynamic programming (DP) 

(Robinson 1965) to heuristic and meta-heuristic algorithms. Yang (2007) proposed a 

particle swarm algorithm to complete the project for all kind of linear or nonlinear cost 

function, discrete or continuous, and concave or convex.  

Feng et al. (1997) proposed a genetic algorithm to draw a Pareto set for a discrete 

time-cost trade-off. They consider a multi-objective criteria problem to find the optimum 

solution, which ended up with a Pareto set. Aghaie and Mokhtari (2009) proposed an ant 

colony optimization for stochastic crashing problem. They also assume a discrete time 

cost function problem. As stated earlier, they have assumed that the time-cost relationship 

is stochastic. They use Monte-Carlo simulation to cope with this problem.  

One recent example of exact solution method for large-scale problems using benders 

decomposition-based exact algorithm is introduced by Hazir et al. (2010). Skutella (2998) 

proposed an approximation algorithm which is an effective algorithm for large scale 

problems.      

Meta-heuristic algorithms have been introduced in the recent years even in other areas 

of construction project management. Zhang and Ng (2012), who use this kind of 

algorithm to develop DSS for TCTP, and Bozejko et al. (2012) are good example for that. 

The proposed approach of this study and other recent related researches are 

summarized in Table 1, to provide a context of our contribution to this research domain.  
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Approach 

Feng et al. (2000) Discrete Multi-objective           GA-Simulation 

Zheng et al. (2004) Discrete Multi-objective          GA 

Zheng and Ng (2005) Discrete Optimal balance of time and cost          Fuzzy set theory-GA 

Pollack-Johnson and 

Liberatore (2006) 

Discrete 
Min Project duration considering quality 

        Quality Management 

Cohen et al. (2007) Linear Completion by a due date         Robust optimization 

Evansmo and Karlsen 

(2008) 

Linear Determine the impact of labor cost on 

total project cost 

         - 

Aghaie and Mokhtari 

(2009) 

Non-linear integer 
math. 

Programming 

Completing the project by a due date 
         Ant Colony Optimization and MC 

Simulation 

Ke et al. (2009) 
Discrete 

Min Expected Cost 
         Chance constraint optimization-

GA 

Ghazanfari et al. (2009) Non-linear Min crashing cost-Min duration         Possibility goal programming 

Moussourakis and 

Haksever (2010) 

Non-linear minimizing project completion- 

minimizing total project cost- minimizing 
total cost under late completion penalties 

         - 

Hazir et al. (2010) 
Discrete minimizing project completion 

considering the budget 

         Benders decomposition 

Diaby et al. (2011)  Non-linear Project completion          Geometric programming 

This research 
 Discrete Optimizing construction crashing cost 

considering labor and equipment cost 

          3 Hybrid Genetic Algorithm & 

Cobb-Douglas Function 

9 
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2.5. Risk Analysis 

      

     Previous research has mainly focused on examining the impacts of risks on one aspect 

of project strategies with respect to cost (Chen et al., 2000), time (Shen, 1997) and safety 

(Tam et al., 2004). 

     Many authors have classified construction risk factors into different groups. Chen et 

al. (2004) proposed 15 risks concerned with project cost and divided them into three 

groups: resources factors, management factors and parent factors. Shen (1997) identified 

eight major risks accounting for project delay and ranked them based on a questionnaire 

survey with industry practitioners. In this study, we consider two main groups of risk 

sources which are internal and external ones.  

     One other aspect which can be considered here is that there are two main approaches 

in the literature to evaluate risk issues: the first one is using historical data (Uher and 

Toakley (1999)) or conducting surveys through expert for gathering their idea and data in 

their businesses (Tam et al. (2004)). This approach is called data-driven analysis. 

     In the second groups of research (like this study), authors use a model to analyze the 

impact of various sources of risk associated with construction management. This 

approach is called model-driven analysis.  
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CHAPTER THREE 

Methodology 

 

3.1. Problem Description 

In this study, an objective function containing both cost and time (which are 

normalized to be comparable) used to do time-cost trade off analysis. Cobb-Douglas 

production function is applied to each activity regarding labor cost and equipment cost. 

Time and cost weights in the objective function show users’ priorities and preference for 

either duration or cost. The main idea of this study extracted from Shen et al. (2012). 

As stated earlier, we assume discrete time-cost relationship; so, for each activity 

option based on the amount of work needed, we obtained total cost, labor and capital 

cost. 

 

3.2. Model 

 In this study, the amount of work needed for each activity is W. When an activity is 

crashed (the time is shortened from normal duration), production output rate Q is 

increased through the increased inputs of labor (L) and/or equipment (K). 

Considering the production function of an activity as           ,  and normal 

time, t0, then the production output rate to accomplish the activity is:  

    
 

  
      (Eq. 2), 

where Q0 is the normal production output rate; W is the total production output during 

t0 duration. 
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During crashing when duration was shortened from t0 to t1, the corresponding output 

becomes:    
 

  
      (Eq. 3), 

where Q1 is the crashed production output rate; t1 is the crashed duration. 

Therefore, to reduce the activity duration by t0 – t1, output rate is increased by Q1 – 

Q0 per time unit, due to the extra inputs of labor and/or equipment.  

Also we assume that the technology impact (A) is constant and equal to 1 for 

simplicity without affecting the results and conclusions, since the thesis is concerned with 

the allocation of existing labor and equipment resources during crashing, not with 

introducing new technology into crashing. In most existing literature (Sircar and Choi 

2007) technology changes were often measured (by changes of A) over long period of 

time, normally 5 to 20 years.   

  and   are also known as the labor and capital’s share of output which identify the 

contribution of labor and capital in the total production. Different combinations of   and 

  for different activities can be estimated by project managers based on the historical 

data, for example via regression method (Mateescu 2010). Although both CRTS and 

DRTS (for example, due to working space constraints) are possible scenarios, to simplify 

the discussion without compromising the main topic, we limit our discursion in this thesis 

to a CRTS scenario, in which +  =1 (Fig. 1) in the first section. Then, we do 

sensitivity analysis and consider DRTS in the last section. 

In many existing production research (Felipe and Adams 2005),   = 0.3,   = 0.7 are 

often reported. Since the specific value of A, α and β are treated as case parameters and 

will not affect the proposed overall framework, so we assume A = 1,   = 0.3,   = 0.7. 

Then we get:  
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            (Eq. 4) 

Let assume W = 10000 for this specific activity and normal time is t0 = 25 days, then 

we have: 

   
 

  
 

     

  
      (Eq. 5) 

                                 

Accordingly, if the crashed duration t1 and t2 equal to 20 day and 16 days 

respectively, then we have: 

   
     

  
                 (Eq. 6) 

   
 

  
 

     

  
         (Eq. 7) 

  

The cost function of an activity is defined as: 

                        (Eq. 8) 

 

Where TC: total cost of the activity; c1: salary rate; L labor input quantity; c2: 

equipment rental rate; K: equipment input quantity; labor cost LC= c1L; equipment cost 

KC= c2K. 

Eq. 8 can be illustrated by the isocost lines shown in Fig.2, in which lines TC1, TC2 

and TC3 are cost lines. The tangent points (such as points A and B) between the isocost 

lines and the isoquant curves are the minimal cost of producing Q=3 (point A) and 

producing Q=6 (point B). The line connecting all the tangent points is referred as 

production expansion line, which represent the minimal cost solution to expand the 

production if the cost function (c1 and c2) hold the same.  
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Fig. 2. The concept of isocost lines and the minimal cost of producing Q 

 

 

If we assume labor cost is 30 dollars per labor unit, capital cost is 90 dollars per 

equipment unit, Eq. 8 will become: 

                         (Eq. 9),  

where x1 and x2 represent L and K respectively. 

Using Q0, Q1 and Q2 to derive isoquant curves and Eq. 9 to draw isocost lines, we can 

find the minimal total cost (TCmin) for Q0, Q1 and Q2, in which Q0 represent production 

rate in a normal duration, and Q1 and Q2 represent production in the crashed durations 

(Fig. 3).  
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Fig. 3. A simple example of finding minimal activity cost using isocosts and 

isoquants  

 

 

The results are: while ti ={25, 20, 16}; TCi min ={848, 1062, 1314} and LCi, KCi = 

{(477, 371); (598, 464); (739, 575)}. The results are graphically shown in Fig. 3, where 

straight lines represents isocosts from Eq. 9 and curve lines represent isoquants derived 

from CDPF with 3 different Q values. The TCmin for each duration (or Q) is the tangent 

point of each isoquant curves. 

Considering the total crashing cost for all activities in a network, the mathematical 

model to find combination of labor and equipment factors minimizing the total cost for 

all involved activities is represented as: 

                        

     

           
    

                       (Eq. 10) 

In order to present a multi-objective function which contains cost and duration we 

define the objective function as: 

                      (Eq. 11) 
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Where    and    are defined based on the decision makers’ preferences and       

   .  Ci and Ti are normalized scores of cost and duration respectively, and both have 

values from 0 to 1. Ci and Ti are defined as:  

   
                 

               
    (Eq. 12) 

   
                 

               
   (Eq. 13) 

So the best score for either cost or duration is 1, when the solution is the minimal. And 

the worst score is 0, when the solution is maximal. The larger Z values represent the 

better overall solutions. 
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CHAPTER FOUR 

Hybrid Genetic Algorithm 

      

Time-cost trade off like lots of other real world problems (travelling salesman, facility 

location, and etc.) is a NP-hard problem. So a Hybrid Genetic algorithm is applied and 

explained in this section. It is expected that the evolutionary algorithm will improve the 

efficiency in searching optimal solutions especially for large-scale time-cost trade off 

problems. 

 

4.1. GA Background 

Genetic algorithm (GA) was developed by John Holland (1975). GA is a population 

based searching technique. Its main idea came from natural evolution. There are various 

hard optimization problems such as Travel Salesman Problem (TSP), job shop 

scheduling, covering, that can be solved by genetic algorithm. GA, like other meta-

heuristic algorithms such as Tabu Search (Glover 1989), searches the whole space 

containing two conflicting operation exploring the whole space while trying to improve 

the quality of current solution in its neighborhood through finding the local optimum.  

Genetic algorithm contains two main operations: crossover and mutation. In the 

crossover phase, GA produces new offspring from two parents which are chosen from the 

population.  The second operation in GA, which helps GA to search the all search space 

and not just the local optimums, is mutation. GA like other artificial intelligence 
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algorithms avoids trapping in local optimum solutions through its operation called 

mutation which will be explained later. The new generations are compared with the 

existing solutions; they may be replaced if they have a better fitness value.  

 

4.2. HGA  

One of the main problems associated with GA is the initial solution in the population. 

First is related to the population size which is usually determined by trial and error. 

According to Golberg (1989), the population size is normally between 30 and 500. The 

other issue is the quality of chromosomes or initial solutions generated in population 

(which are usually randomly generated).  

Hybrid genetic algorithms (HGA) (El-Mihoub et al. 2006) was proposed to overcome 

limitations of most meta-heuristic algorithms by adding local searches, adding learning 

methods, etc., (Revees 1994, Thierens et al. 1998) to make it more efficient. In this study, 

a well-known local search called 2-opt is used to overcome the mentioned problems. The 

2-opt local search is expected to improve the randomly generated population solutions. 2-

opt was first introduced in Croes (1958) as a local search for traveling salesman problem. 

Later, it is modified and used in other operation research applications (McGovern and 

Gupta 2003, Buffa et al. 1964) as an effective way to address the limitations of pure GA. 

The main reason to use 2-opt is that and hybridizing the algorithm is to avoid the 

generation problems. 2-opt procedure improve the initial solutions. 

HGA details are illustrated in Fig. 4. In the initialization phase, algorithm starts with 

randomly generated chromosomes based on population size (as an input).  
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Fig. 4. The flowchart of HGA 
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4.2.1 Notations 

There are some notations that we need to define before developing a genetic 

algorithm: 

 PS:  Population size (which is usually defined based on the problem size) 

 T:  Number of generation before termination 

 Zi: Objective value (fitness value) of the i
th
 solution  

PS and T are presented in Figure 4 as inputs of genetic algorithm. They are 

determined before the algorithm starts. Although, as discussed earlier, PS has an impact 

on the performance of genetic algorithm and may cause problems in case that it is defined 

improperly, it is determined mostly by trial and error. It is the same story for defining T 

as number of iteration must be implemented before the time that the algorithm is 

terminated. With try and error, it is defined based on trade-off between run time and the 

efficiency of solutions.  

In the presented algorithm, PS is equal to 100, and T is assumed 300. Zi which will be 

used in different phases of the algorithm is the objective value or fitness value of the i
th

 

solution. Zi is the basis for comparing the solutions. 

 

4.2.2 Initialization 

Regarding the PS, we generate chromosomes. Number of genes in each chromosome 

is equal to the number of activities of the project. For each activity (gene), a random 

integer number is generated based on the number of activity’s optiosn regarding the fact 

that we consider discrete form of time-cost function in this study. For example, if each 

activity has three options, the generated number could be 1, 2, or 3. The same process is 
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done for all activities in a chromosome. The whole process repeated PS times (number of 

chromosomes in the initial generation). So now, we have PS (population size) randomly 

generated chromosomes. 

 

4.2.3 Procedure of 2-opt 

Here, for the second phase in the proposed HGA which works as an improvement 

phase for the initial solutions that are generated in the population, we develop a 2-opt 

procedure which generates all possible combination of two randomly selected genes and 

their neighborhoods. That is, for each chromosome (initial solution), it generates 5 

offspring. In the first one, it just changes the positions of selected genes. After then, all 

possible swaps are checked. Although it increases the run time, it avoids the problems 

which are caused by generating random population. Figure 5 shows the details of how 2-

opt works. To better understanding of this figure, it should be noted that each string 

presents a solution. Each column presents an activity option. For example, in this specific 

figure, it is assumed that there are 13 activities. So each row (string), shows assigned 

option to the activities. 

 

Fig. 5. 2-opt algorithm 
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     As illustrated in the above figure, first two activities are selected randomly, and their 

assigned options are changed. Then for each of those two, the same procedure is done 

with its neighbors (previous and next activity).  

Then, the fitness value of parent and offspring (all together would be at most 6 

solutions) are compared and the best one will be replaced by the current solution (parent). 

 

 

4.2.4 Selection 

While in most articles in the literature, authors propose an algorithm which randomly 

selects the chromosomes from the population to do the GA operations on them (like 

Zheng et al. 2004), chromosome selection from the population is based on their objective 

value (fitness value) in this study. Roulette wheel selection (Goldberg, 1989) is applied 

here to come up with this drawback in the literature. First, it avoids that not only the best 

chromosome in the population selected. Second, it is not selected randomly. That is, the 

chromosome (solution) selection is proportional to their objective values. So, the better a 

chromosome is regarding its objective value, the more probability has to choose. The best 

two chromosomes which is selected in this phase, are transformed based on GA operators 

in the next steps to be improved. 

     The roulette wheel selection method is summarized in the following steps: 

Step 1: Calculate the total fitness of all chromosomes in the population: 

     
  
                    (Eq. 14) 



23 
 

Step 2: Calculate the selection probability for each chromosome, which is proportional to 

the fitness value of that chromosome to total fitness of all chromosomes in the 

population: 

   
  

 
                        (Eq. 15) 

Step 3: It should be noted that  

   
  
                       (Eq. 16) 

So, the summation of selection probabilities from the first chromosome to the i
th

 

chromosome is called cumulative probability. Calculate the cumulative probability for 

each chromosome: 

      
 
                   (Eq. 17) 

Step 4: generate       

Step 5: chromosome i
th

 will be selected if          . That is the difference between 

     and    is exactly the same as   . 

                       (Eq. 18) 

 

 

 4.2.5 The Crossover 

 

The crossover was introduced by Gen and Cheng (1997). In the first step, two 

parents from the population are randomly chosen, and then the required transformations 
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are done on them to have new offspring. According to the fact that, each chromosome 

(solution) contains specific options for each activity, after choosing a substring in order to 

do crossover, the genes are exchanged to have new offspring. The main purpose of 

crossover is to do local search to find a better solution in parents’ neighborhood. 

Crossover needs two parents (solutions) to do its procedure. 

The procedure to generate offspring from parents is as follows: 

Step 1: Select a substring from the first parent randomly.  

Step 2: Produce an offspring by copying the substring into the corresponding positions in 

that. 

 Step 3: Place the genes other than the chosen substring from the first parent, into the 

unfilled positions of the offspring from left to right.  

Step 4: Repeat Steps 1–3 to produce another offspring by exchanging the two parents. 

Afterward, Zis are compared to choose the better one between each offspring and 

the related parent. This process is shown in Fig. 6. 

 

 

 

 

 

Fig. 6. The Crossover 
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4.2.6 The Inversion Mutation 

 

There are various procedures are introduced for mutation in different research areas; one 

of those is inversion mutation. The inversion mutation firstly introduced by Gen and 

Cheng (1997). In this phase, a substring is randomly selected, and all included genes are 

flipping. As stated earlier, mutation operation is developed to exploit all over the search 

space to find the global optimum instead of looking for local optimum in the 

neighborhood of the current solution. Inversion mutation is used to diversify the solution 

in the solution space, which should be done basically by a mutation operation. The 

inversion mutation procedure is shown in figure 7.   

 

 
 

Fig. 7. The Inversion Mutation 

 

This procedure starts with choosing a substring (set of activities’ options) from the parent 

(solution). The selected genes (activity options) are flipping. Regarding this procedure, 

the solution is diversified. In doing so, we expect the GA searches the whole space. 

Indeed it avoids GA of trapping in a local optimum. 
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CHAPTER FIVE 

Case Analysis 

 

A case study is presented in this section to demonstrate the application context of the 

proposed approach. The network has been chosen from (Liu et al. 1995)  and is illustrated 

in Fig. 8.  

1

4

3

2
5

6

7

 

Fig. 8. The project network (Liu et al. 1995) 

 

We adopted the duration options and the activity network from Liu’s paper (Liu et al. 

1995) for each activity. But we assigned estimated workload (W) to each activity in order 

to use CDPF to better analyze the best allocations of labor and equipment. We also 

identified typical unit costs for labor (CL) and equipment (CK) for each activity from RS 

Means Construction Cost Data Book 2009. After knowing the W for each activity, 

associated Q of each of the three options are obtained using  Eq. 2 and Eq. 3 as described 

in Section 3 of the thesis. 
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Then, L and K (the amount of labor and equipment inputs respectively) are 

determined according to the cost minimization function constrained to Cobb-Douglas 

function, which is presented as Eq. 10 in Section 3. The assumptions are α = 0.3, β = 0.7. 

The total labor cost for each activity (TLC) is obtained from CL× L; and the total 

equipment cost for each activity TKC is obtained from CK× K. Total cost (TC) is equal to 

the summation of TLC and TKC. All data used in this case are presented in the Table 2.  

 

Table 2. The case project information 

 Activity Option W T 
(day) 

Q CL 
($) 

CK 
($) 

L K 
TC ($) TLC ($) TKC($) 

1 1 5000 14 357.1 40 100 374.8 349.8 49975.3 14992.6 34982.7 
1 2 5000 20 250.0 40 100 262.4 244.9 34982.7 10494.8 24487.9 

1 3 5000 24 208.3 40 100 218.6 204.1 29152.2 8745.7 20406.6 

2 1 500 15 33.3 50 70 23.3 38.9 3885.4 1165.6 2719.8 

2 2 500 18 27.8 50 70 19.4 32.4 3237.8 971.4 2266.5 
2 3 500 20 25.0 50 70 17.5 29.1 2914.0 874.2 2039.8 

3 1 600 15 40.0 45 80 33.1 43.4 4960.0 1488.0 3472.0 

3 2 600 22 27.3 45 80 22.5 29.6 3381.8 1014.5 2367.3 
3 3 600 33 18.2 45 80 15.0 19.7 2254.5 676.4 1578.2 
4 1 6000 12 500.0 75 70 263.3 658.2 65819.1 19745.7 46073.4 
4 2 6000 16 375.0 75 70 197.5 493.6 49364.3 14809.3 34555.0 

4 3 6000 20 300.0 75 70 158.0 394.9 39491.5 11847.5 27644.1 

5 1 4500 22 204.5 60 60 113.0 263.7 22606.6 6782.0 15824.6 
5 2 4500 24 187.5 60 60 103.6 241.8 20722.8 6216.8 14505.9 

5 3 4500 28 160.7 60 60 88.8 207.2 17762.4 5328.7 12433.7 

6 1 5500 14 392.9 55 20 106.9 686.2 19604.7 5881.4 13723.3 
6 2 5500 18 305.6 55 20 83.2 533.7 15248.1 4574.4 10673.7 

6 3 5500 24 229.2 55 20 62.4 400.3 11436.1 3430.8 8005.2 

7 1 4700 9 522.2 65 30 168.0 849.2 36392.3 10917.7 25474.6 

7 2 4700 15 313.3 65 30 100.8 509.5 21835.4 6550.6 15284.8 

7 3 4700 18 261.1 65 30 84.0 424.6 18196.1 5458.8 12737.3 

Optimum Solution 
 

83 
  

  
 

  128522.9 38556.9 89966.1 
TC: Total Cost; TLC: Total Labor Cost; TKC: Total Capital Cost; T: duration options; Q: production quantity 
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5.1. Computational Results 

 

HGA is applied to data which are presented in Table 2 to find the optimum/near 

optimum solution reflected by maximal   value. Then the solutions are compared with 

the optimum solution which is obtained from checking all possible combinations of 

activities’ options. The HGA has been run for 10 times for each case, and in each case, 

the result is the same as the optimum solution, which shows that it works properly. 

Assuming the decision makers’ priority (utility function) for time and cost is: , 

      , and       , then the optimum solution is shown in Table 3 and the selected 

option of each activity is boxed in Table 2. 

 

Table 3. Optimal Solution Options 

Activity 1 2 3 4 5 6 7 

Option 3 1 1 3 3 3 2 
 
 

The 83-day duration of the project is obtained from the critical path (using Fig. 8.) of 

the optimal solution options. Total cost of the project is obtained from the summation of 

total cost of the selected option of each activity in the optimal solution, which is equal 

$128,523 (see Table 2 for details of the selected option in each activity) including both 

labor ($38,556.9) and equipment ($89966.1) costs.  

Objective value of this solution is calculated using Eq. 11, 12, and 13 as follows. 
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Max and min of cost of the project obtained by assigning the options with max cost 

and min cost to all activities respectively. The same story is true for max and min time. 

As stated earlier, 

      , and           

The objective value is calculated as: 

                                          

 

Fig.9. illustrates all possible solutions. In case that we do not consider utility function 

(priority) for time and cost, a Pareto set could be drawn like Fig. 9. For example, in this 

specific case, if we do not assume any specific preference for    and   , then the 

solution varied on the dash line in Fig. 7. All the possible solutions on this line do not 

dominate the other ones; but when we assume some specific values for    and     we 

will have just one answer based on that specific    and    priorities. Pareto set 

optimality have been used extensively by authors in different aspects of construction 

project management. Aiyin et al. (2011) have used Pareto set for cash flow planning in 

construction project management. They develop a multi objective cash flow consists of 

cash balance and interest paid to have a Pareto set.   
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Fig. 9. All possible solutions. 
 

Figure 10 depicts how changes of    (and also    since        ) affect the 

objective   values. As expected either    or    becomes 1,   value would be 1. The 

reason is that in that case, for example when    is equal to 1, it means that managers just 

prefer cost rather than time. So, the algorithm chooses the solution with minimum cost 

and therefore maximum cost. Based on Eq. 12 and Eq. 13,    will be 1 and    will be 0. 

When the decision maker weights time and cost equally, Z value will be at the lowest 

point. So the optimal solution identified using HGA will depends on the decision maker’s 

preference of time or cost.  
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Fig. 10. Trend of Z considering     

With using the proposed approach, not only we obtain the optimal objective value, 

but also we understand what the respective allocations of labor and equipment resources 

are. This will provide us with much needed capacity in TCTP to better evaluate all the 

possible resource allocation scenarios.   

 

 

5.2. Sensitivity Analysis 

 

     In this section, we do sensitivity analysis on  .,  , labor cost (  ), and capital cost (  ) 

The main reason is that in the real world, in most cases, we are not sure about the future 

prices of labor and capital (regarding Cobb-Douglas production function). Moreover, 

efficiency of the labor and capital is different from a project to the other one. 

     Sensitivity analysis is applied to be ensuring of risk associated with labor and 

equipment costs and efficiencies. That is to say, in the real world construction projects, 

we cannot guarantee a specific value for the summation of labor and equipment 
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efficiencies (   ). The same story is true about the labor and equipment costs (     ). 

So, in the planning phase, managers or decision makers to avoid the associated risks 

which are arisen from uncertainties in determining labor and equipment cost and 

efficiencies, it is reasonable to analyze different scenarios for those. 

     To do so, sensitivity analysis is conducted here, to have some ranges for cost and 

duration instead of just one value with their respected probability. So, the conditions of 

the project and its relation to these factors are more clarified for managers or decision 

makers to make decisions. In doing so, managers or decision makers can avoid associated 

risks with construction management, which have roots in these parameters uncertainty. 

     Construction managers cope with different kind of risks associated with all phases of a 

construction project such as planning, scheduling, design, and etc., which have impact on 

time, cost, quality, and environment (PMI, 2004). Many authors in the literature have 

investigated various approaches to analyze risk, identify the possibility of occurrence, 

impact of its disruption and etc (Uher and Toakley (1999)).  Risk management is defined 

properly by Uher (2003) as: “a systematic way of looking at areas of risk and consciously 

determining how each should be treated. It is a management tool that aims at identifying 

sources of risk and uncertainty, determining their impact, and developing appropriate 

management responses”.  

     Risk analysis has been investigated in many other research areas like supply chain 

management (Tuncel and Alpan 2010), manufacturing systems (Choi and Chiu 2012), 

and etc. 

     A significant portion of the risks is associated with uncertainty of labor and/or 

equipment productivities and costs. For example fluctuations in both labor and equipment 
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productivities can be affected by many dynamic factors, such as weather, construction 

site conditions, the working spaces, crew compositions. In addition, market fluctuations 

in labor and equipment costs also poses great risks for project cost control. Although 

construction material cost fluctuation can also be significant sometimes, this paper is 

focused only on risk analysis associated with labor and equipment productivity and cost 

factors.  Since productivity factors of labor and equipment can be controlled to some 

extend internally, they are considered internal risk factor in the paper. And by the same 

token, since the labor and equipment cost rates are determined by the market they are 

considered as external factors.  

     For long time there has been a lack of systematic approach to evaluate the 

construction project risks associated with productivity factors due to the lack of 

appropriate quantitative models to model the relationships between the production rate 

and the efficiency of labor and equipment inputs. Since the external risks are also tied to 

the internal risks there is a need to identify proper modeling tools to be able to evaluate 

both internal and external risks in related to the risks of project cost control. 

     The authors believe that Cobb-Douglas production function which has been widely 

used in economics and manufacturing can be utilized to perform quantitative evaluations 

of the cost control risks both internally and externally. In this study, we focus on the two 

main elements of Cobb-Douglas function, labor and equipment, and their relationships 

with the production rates through two different ways: 1) labor and equipment elasticity, 

and 2) market cost of labor and equipment. Long term construction projects are more 

susceptible to external market cost risk sources.   
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     So according to the Cobb-Douglas production, which is the main approach of this 

study,  time and cost of the project can be varied in two ways considering the impact of 

labor and equipment factors:  

1)      In the first category, we analyze the impact of the labor and equipment 

efficiency. In reality, we are not sure about the labor and equipment efficiency 

which is presented as elasticity in Cobb-Douglas production function. This means 

various internal sources may affect the workers or equipment efficiency. Hiring 

unskillful workers or other equipment that are not that much compatible with the 

specific project can decrease the efficiency. For example, we may use new and 

sometimes more technical equipment which the labors were not taught to use.  In 

the literature, authors like Mateescu (2010) did regression analysis to have a 

forecast of what are labor and equipment efficiencies (   ). So here, we do 

sensitivity analysis for better understating how they impact the duration and total 

cost. We consider that the summation of     DRTS which is more common in 

reality. So, we will be aware of how would be the allocation of labor and 

equipment when they are varied. 

2)      The other scenario that can be assumed for the sensitivity analysis is the 

impact of labor and equipment costs. One of the main issues that construction 

project managers are coped with is cost inflation from the planning date to the 

date that start constructing. In the literature it is known as market influence. 

     To effectively manage overall project cost, managers or decision makers must 

continuously evaluate changes in market conditions in relation to cost and time 

impacts against the project baseline scope, cost, and schedule. 
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     These price variations generally were attributable to global energy prices, 

primarily petroleum. Rising fuel prices spurred by a strong global economy, 

particularly in asia, raised petroleum prices. That in turn increased the cost of 

diesel which is an essential commodity for all construction projects, from the 

quarrying of aggregates, to excavation, to the delivery of materials to a 

construction site. 

     The price sensitivity of the international markets illustrates that global events 

pose risks to the ability of agencies in achieving their management objectives. 

     This is more plausible in long term projects specifically. There may be some 

other government rules, environmental issues, economical ones and etc. which 

cause problems or delay in construction project management. 

     For example, government and political rules can cause changes in the labor 

and equipment prices. One of the main issues that affect prices in all over the 

world is the oil price which highly affects the equipment cost. All together may 

affect the budget. To be aware of how they affect the total budget sensitivity 

analysis on their price changes may help us. In this case, we assume an inflation 

rate for both labor and equipment costs. So, in planning phase, managers can get 

an insight from this kind of analysis that how their vestment can be varied. And 

also, it helps them to have a better insight of how much budget needed for that 

specific project. 

      

     Construction projects are mostly long term projects, so there are different sources of 

uncertainty which affect the decision of managers or decision makers. Indeed, how much 



36 
 

a project takes longer to be done; it is more susceptible to be affected by market sources 

of uncertainty.  

     We use Monte-Carlo simulation in order to better understanding the sensitivity of 

objective value, total budget needed to do the project, and the optimum duration 

considering stochastic labor and equipment cost and elasticity. Simulation works based 

on a model which tries to maximize the objective value (Equation 11). Indeed, there are 

two main approaches in the literature. Most authors analyze the risk associated with 

construction project management based on the probability of occurrence and the cost of 

occurrence (Zavadskas et al. 2008). using historical data or in some cases they use expert 

recognition of a system. So they approach is called data driven analysis. In some other 

cases, based on a model, authors try to analyze the systems which are called model-

driven analysis (this research).  

 

5.2.1. Simulation 

     One of the main tools to analyze uncertainty is simulation. According to the fact that 

we assume there is an uncertainty in either elasticity or cost of the labor and equipment, 

we applied Monte-Carlo Simulation to analyze the uncertainty.  

     Simulation models, also called Monte Carlo methods, are computerized probabilistic 

calculations that use random number generators to draw samples from probability 

distributions. The objective of the simulation is to find the effect of multiple uncertainties 

on a value quantity of interest (such as the total project cost or project duration). Monte 

Carlo methods have many advantages. 
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They can determine risk effects for cost and schedule models that are too complex for 

common analytical methods. 

     In each iteration of the simulation, we encounter with a bunch of optimizations 

calculations. That is, for each activity based on the labor and equipment elasticity and 

cost, the optimum amount of labor and equipment is derived. Then based on the objective 

function (equation 11), the optimum combination of activity options is achieved. Then, 

the procedure starts to find the optimum solution of time and cost associated with the 

project considering that specific level of uncertainty. 

     In this stage Cobb-Douglas function will be applied for analyzing the sources of 

uncertainty in construction crashing cost. According to the equation 10, we encounter 

with this optimization model in making decision of the best options for activities. 

                        

     

           
    

                      

     As stated earlier, in the real world, there is always a source of uncertainty about the 

parameters in this model which have impact on the decisions. As it is shown in the above 

formulas, which is compatible with reality, there is an uncertainty about  ,  ,   , and   . 

     Sensitivity analysis will be conducted through Monte-Carlo Simulation on different 

scenario for these parameters. Now, it is necessary to define reasonable ranges for each of 

these to do simulation. 

     First, to analyze the internal sources of uncertainty which cause labor and equipment 

become less efficient, stochastic   and   are considered. In most cases in the real world 

summation of   and   is decrease return to scale (DRTS). That is, the double inputs of L 
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and K will generate less than double output of Q. Rarely, this happens that this 

summation is 1, which is assumed in case analysis. In this study, based on experts point 

of view, this summation is assumed between 0.6 and 1. Moreover, each of these 

parameters (  and  ) are can vary from a project to the other one. So, in this study, it is 

assumed that   have 20 to 40 percent of total    . So, rest of that is   . 

     In addition, to analyze the model sensitivity to   , and    (market influence which 

impact the labor and capital cost), the model is studied in three different conditions:  

-  High inflation rate for labor cost (  ) and low inflation rate for capital cost (  ) 

-  Low inflation rate for labor cost (  ) and high inflation rate for capital cost (  ) 

- High inflation rate for labor cost (  ) and high inflation rate for capital cost (  ) 

     Finally, both internal and external cost are considered together. In doing so, we 

analyze the three above mentioned conditions regarding DRTS efficiency for labor and 

capital.      

     In the following table, different scenarios which are assumed for sensitivity analysis 

are summarized: 

Table 4. different scenarios for sensitivity analysis 

  

              internal external 

DRTS 20-40 % 60-80% 0.6-1 - -   

 L: high inflation rate 

K: low inflation rate - - - 5-15 % 3-5 % 

 

  
L: low inflation rate 

K: high inflation rate - - - 3-5 % 5-15 % 

 

  
L: high inflation rate 

K: high inflation rate - - - 5-15 % 5-15 % 

 

  
L: high inflation rate 

K: low inflation rate 

& DRTS 20-40 % 60-80% 0.6-1 5-15 % 3-5 %     
L: low inflation rate 

20-40 % 60-80% 0.6-1 3-5 % 5-15 %     
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K: high inflation rate 

& DRTS 
L: high inflation rate 

K: high inflation rate 

& DRTS 20-40 % 60-80% 0.6-1 5-15 % 5-15 %     

 

 

 

5.2.2. Simulation Results 

     In this section, according to the problem definition, different scenarios assumed for 

sensitivity analysis. For each scenario, we use Monte Carlo simulation to analyze the 

budget needed regarding that specific scenario. 

 

5.2.2.1. Decrease Return to Scale (DRTS) Efficiency 

     In the first case, we just consider internal sources that decrease the efficiency of labor 

and equipments associated with construction projects. The reason for this assumption is 

that in the real world mostly adding more labors and equipments do not exactly add that 

much value to the production rate (Q). So, it is reasonable to assume that     is DRTS. 

To do so, we assume uncertainty of    . In this case, we assume that           

which is more compatible with the real world. In fact, in most cases in the real world the 

production function is decreasing return to scale. For example, let assume a case that 

there is not enough space to do a task. If we add a labor to workers not only he may not 

add value to the work; but also, he may cause problems, and other feels they cannot work 

convenient. Moreover we assume that           of the    . The rest of that 

would be  . Figure 11 through 14 depicts total cost, labor cost, capital cost, and duration 
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respectively. As expected, labor and capital costs have the same trend with the total cost 

although they are in different ranges. They construct the total cost together, so the model 

allocate  

 

 

Fig. 11. Total Cost (DRTS Efficiency)   
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  Fig. 12. Labor Cost (DRTS Efficiency) 

            

 

Fig. 13. Capital Cost (DRTS Efficiency)   
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  Fig. 14. Duration (DRTS Efficiency) 

          

 

 

 

 

 Fig. 15. Total cost regarding     
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According to Figure 15, total cost is presented based on the summation of         . The 

result of the simulation confirms our expectation. As expected, as the summation 

decreased, the total cost increased; but the interesting point is that the total cost can be 

increased to 50 times more than the case that the summation is equal to 1. The reason is 

the specific conditions of Cobb-Douglas production function. That is, since elasticity 

factors are the power of labor and equipment, even a little change in them, can cause a 

huge difference to the total production value and so the cost. 

 

Fig. 16. Duration regarding     

 

As figure 16 shows, as the summation increased, it tends to increase the duration. It 

contains two main reasons, first, the specific priorities in this example. But the second 

and more important one is that increasing the summation causes the conditions be the 

same as without uncertainty, and it goes to 83 days. 
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It should be noted that the reason for overlapping in some cases is that other than    , 

we assume that both   and   are varied in a range. 

It may seem irrational in the first observation. Since according to the figure when     

decreased, the duration also decreased. The hidden reason, which should not be ignored, 

is that we fixed    and    for this case, so in that range it prefers to do the project in 

shorter time according to our priorities. So here, we present 2 new figures which are 

depicted based on different    and   . In this example, we assume 

Table 5. Priorities based on     

       

0.6-0.7 0.9 

0.7-0.8 0.8 

0.8-0.9 0.7 

0.9-1 0.6 

 

So, we end up with Figure 17 and 18. 

 

 

Fig. 17. Duration regarding     (with various priorities) 
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Fig. 18. Total Cost regarding     (with various priorities) 

In this case, it is assumed that we have different priorities for time and cost (w1 and w2). 

So, as the results show, when     increases, duration decreases. The reason is that, now we 

prefer more on cost than time, so it increases the duration of the project to pay less money. 

Moreover, Total Cost is also different from the previous results. In this case it ends up with $ 5M, 

while previously, it ends up with $ 6M. 

 

5.2.2.2. Market Influence (Cost Inflation) 

     As stated earlier, market can influence the labor and equipment cost. We consider this 

uncertainty as an external source of uncertainty to do analysis. So, according to equation 

10,     and    are considered as stochastic ones. We assume three different scenarios for 

this condition. 

     In the first case, based on expert point of view, we assume that there would be an 

inflation rate of 5 to 15% for labor cost and 3 to 5% for capital cost. For the second case, 
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it is vice-versa. And in the last scenario, we assume higher inflation rate for both of labor 

and capital, 5 to 15%. All of these scenarios are realistic, and in some economic 

conditions they may be applied. 

     One of the most interesting points that can be achieved from this section is that, 

regardless what the labor and capital cost is, the optimum duration based on the objective 

function (equation 11) is 83 days. Now, it may not be that much surprising according to 

previous section analysis. As stated, when the summation of     tends to be 1, the 

optimum duration becomes 83 days. So, in these cases, since this summation is equal to 

1, the optimum duration would not be changed.  

       In the following table, results of different scenarios including total cost, labor and 

equipment cost are summarized. 

 

Table 6. Cost categories based on different scenarios (External Risk) 

                     Cost     

Scenario 

Total Cost Labor Cost Capital Cost 

L: high inflation rate 

K: low inflation rate 
135866.7 40760.04 95106.66 

L: low inflation rate 

K: high inflation rate 
141197.97 42359.45 98838.53 

L: high inflation rate 

K: high inflation rate 
144591.8 43377.55 101214.02 

 

As expected, total cost increased from scenario to scenario. The reason is that we assume 

more inflation from one to one.  

It should be noted that from scenario1 to 2, total labor cost increased, while the inflation 

rate of labor cost in the second scenario is less than that of the first one. The reason is that 
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because of its higher price, it assigns less labor and more equipment, so the total labor 

cost is less than the other one. 

     It should be noted that although these analysis are not specific for the case, but the 

conditions affect the results. For example, if     and    are changed, duration would be a 

new one. 

 

5.2.2.3. Considering Both Inflation rate and DRTS Efficiency 

     In this section, we again assume the same previous three scenarios; but this time 

    is again randomly distributed between 0.6 and 1.  

     In these cases, we consider both internal and external sources of uncertainties. That is, 

efficiency (   ) is assumed DRTS which is more compatible with the real world, and 

also we consider inflation for both labor and equipment costs. 

     As illustrated in Figures 19 through 24, like the case that we just assume uncertainty 

in efficiency of labor and equipment (internal sources of uncertainties), duration varied. 

So it can be understood from these figures that when there is an internal source of 

uncertainty which causes DRTS efficiency, model chooses different duration based on 

the summation of efficiencies. 
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Fig. 19. Total Cost (L: high inflation rate) (K: low inflation rate) 

 

Fig. 20. Duration (L: high inflation rate) (K: low inflation rate) 
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Fig. 21. Total Cost (L: low inflation rate) (K: high inflation rate) 

 

 

Fig. 22 Duration (L: low inflation rate) (K: high inflation rate) 
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Fig. 23. Total Cost (L: high inflation rate) (K: high inflation rate) 

  

Fig. 24. Duration (L: high inflation rate) (K: high inflation rate) 
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     According to Figures 25 through 30, as expected trend of the total cost and duration in 

all cases are the same as the cases when considering just one of internal or external risks. 

That is, duration tends to be 83 days when     goes to 1. Moreover, if the elasticity of 

labor and capital decreases significantly, the total cost arisen irrationally.  

     According to the fact there are thousands of points in each figure and it seems that the 

minimum of the total cost figures are 0, in order to avoid confusing of the figures of total 

cost in this section, table 7 summarizes the minimum and maximum costs of each 

scenario: 

 

 

Table 7. Min & Max Cost considering both DRTS efficiency & inflation 

                     Cost     

Scenario 

Min Cost Max Cost 

L: high inflation rate 

K: low inflation rate 
135203.9 6235722.3 

L: low inflation rate 

K: high inflation rate 
139669.879 6291923.88 

L: high inflation rate 

K: high inflation rate 
146545.386 6625296.95 

 

According to table 6, both the min and max of total cost increase from scenario to 

scenario. It is clear that since there is more inflation in the third scenario (high inflation 

rate for both labor and capital cost), it has more cost than the others. Moreover, range of 

the second scenario is higher than the first one, since equipment usually and also in this 

case, cost more. So, inflation in its cost has more impact on the total cost. 
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Fig. 25. Total Cost (L: high inflation rate) (K: low inflation rate) 

 

 

Fig. 26. Duration (L: high inflation rate) (K: low inflation rate) 

 

Fig. 27. Total Cost (L: low inflation rate) (K: high inflation rate) 
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Fig. 28. Duration (L: low inflation rate) (K: high inflation rate) 

 

Fig. 29. Total Cost (L: high inflation rate) (K: high inflation rate) 

 

Fig. 30. Total Cost (L: high inflation rate) (K: high inflation rate) 
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According to Table 8, it should be noted that the average of the total cost is different from 

cases that consider just one of internal or external sources of uncertainty. That is, in these 

cases, because of considering DRTS efficiencies, the average cost jumps significantly 

and they are in $1M range. These data are summarized in the following table: 

 

 

 

Table 8. Cost categories considering both DRTS efficiency & inflation 

                     Cost     

Scenario 

Total Cost Labor Cost Capital Cost 

L: high inflation rate 

K: low inflation rate 
1036815.59 330478.6 706336.99 

L: low inflation rate 

K: high inflation rate 
1162427.26 367175.51 795251.74 

L: high inflation rate 

K: high inflation rate 
1205331.92 369867.98 835463. 93 

 

Like the case that we just consider market cost inflation, from scenario 1 to 2, although 

the inflation rate of labor cost has been decreased, total labor cost increased. The reason 

is that because of higher cost of capital in this problem, model prefers to utilize more 

labor because in total, the total cost is less than that if utilize more equipment. 
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CHAPTER SIX 

Conclusion & Future Direction 

 

A framework using Cobb-Douglas production function (CDPF) to solve construction 

time-cost trade-off problem (TCTP) is proposed in this paper. Within the framework, a 

multi-objective optimization method utilizing Hybrid Genetic Algorithm is presented 

with a case application. The proposed algorithm tries to improve some deficiencies which 

were available in the previous studies such as improving the randomly generation of the 

initial solutions via 2-opt procedure, and using roulette wheel selection method. 

Then, sensitivity analysis on budget and duration needed for completion of the project 

was conducted. A significant advantage of introducing CDPF into TCTP is that CDPF 

can be used to quantitatively explain the origin of the crashing costs from both labor  and 

equipment perspective, which was a fundamental gap in previous research on TCTP.  

The results suggested that, by tying CDPF to TCTP, the proposed approach is capable 

to identify optimal labor and equipment allocation solution effectively to satisfy the need 

for duration reduction. Indeed, more than the combination of total cost and duration of a 

project, now we can analyze what combination of labor and equipment could minimize 

the total cost. 

Furthermore, sensitivity analysis on CDPF parameters demonstrates their impact on 

total cost and duration of a project. This will provide managers with an insight for budget 

planning considering different sources of uncertainty.  
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In this study, in three different categories, sensitivity of the model to the parameters 

are analyzed. First, only the internal sources of uncertainty are assumed. In doing so, it is 

assumed that the summation of   and   is DRTS (it is varied between 0.6 to 1). 

According to the fact that these parameters are have impact as power of labor and 

equipment regarding equation 1, they highly affect the total cost even to 50 times more 

than the case the summation of   and   is equal to 1. 

In order to analyze the market influence (fluctuation in labor and equipment costs), 

three different scenarios, high inflation rate for labor cost and low inflation rate for 

capital cost, the vice versa condition, and high inflation rate for both of them are 

considered. In doing so,  the total cost is influenced with this inflations, but duration stay 

remains. 

Finally, with combining both internal and external sources of uncertainty, the case is 

analyzed. In this case, the total cost is much more than the previous case even the first 

case since more than DRTS efficiency, we consider an inflation rate for each of labor and 

equipment costs. 

Although the presented case application is simple, the proposed approach is expected 

to work efficiently in larger and more complex applications.  

In future study, more complex cases can be investigated. Moreover, capacity 

constraint on labor and equipment can be considered in the future. In this study, it is 

assumed that we can hire as many labors as we need. The same story is true for 

equipment, while, in reality, there is a constraint on number of labors or equipments. So, 

it is more realistic to assume capacity constraint on labor and equipment. 
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For future study, different elasticity for each activity can be assumed. That is, in this 

study, it is assumed that  ,   are the same for all activities. While, it is more realistic to 

assume from activity to activity they can be varied. Experts can help decision makers for 

arranging specific values for   and  . Moreover, as stated earlier, using regression 

analysis, a range for each of those can be determined. In addition, the summation of   

and   can be different from an activity to an activity. 

In this study, like most studies in the literature, A, the impact of technology, is 

presumed as 1. In some projects there is a long period between planning and the time to 

start the project. So, it may be reasonable to assume different A. That is, there is high 

chance that a significant improvement is happened in the technology. For example, in 

that time, many new types of equipment are launched to do a task in a shorter time.  

Furthermore, in this study there is not constraint on time or cost of the project. That 

is, in this study, a multi-objective function is introduced. But, based on managers’ point 

of view, and specific conditions of a project it can be changed to a problem with a due 

date, then the objective is to minimize the total cost considering the due date, or the 

objective could be the minimum time to do a project considering a limited budget. 

In addition to the mentioned objective function, according to this study, we are now 

aware of the portion of labor and equipment cost. In a future, study, the objective 

function can be assumed as one of these costs (labor or equipment cost) considering a due 

date. 

     The conclusion is that introducing Cobb-Douglas function into time-cost tradeoff 

problem provides us extra capacity to further identify the optimal allocations of labor and 

equipment resources during crashing. Until now, no one in the literature consider the 
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impact of these factors in construction crashing cost. Considering these factors, managers 

can determine their priority to invest on labor and equipment in different projects for 

crashing. It means that, some managers may prefer to invest more in equipment which 

can be used in future projects, while sometimes, they just want to take care of the current 

projects. In doing so, they may prefer to add more labor to do their work in a shorter 

time. 
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APPENDIX A 

HGA Code 

clear 
clc 

  
%%%%%% Parameters  %%%%% 

 

*** In this section parameters are defined and  

 

 

*** n: number of activities 

*** option: number of activities’ options 

*** a: alpha 

*** b: beta 

*** PS: population size 

  
n=7; 
option=3; 

  
a=0.7; 
b=0.3; 

  
PS=100; 

 

*** W: workload 

  
W=[5000 500 600 6000 4500 5500 4700]; 
  

 

 

*** Cost: in each row, it defines the labor and equipment costs 

respectively for that activity 

 

 
Cost=[40 100 
    50 70 
    45 80 
    75 70 
    60 60 
    55 20 
    65 30]; 

  

 
% Table=[1  14  48523.399 
% 1 20  33966.38 
% 1 24  28305.316 
% 2 15  3997.706 
% 2 18  3331.421 
% 2 20  2998.279 
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% 3 15  4982.924 
% 3 22  3397.448 
% 3 33  2264.965 
% 4 12  70524.268 
% 4 16  52893.201 
% 4 20  40596.496 
% 5 22  24056.162 
% 5 24  22051.482 
% 5 28  18901.27 
% 6 14  23082.507 
% 6 18  17953.061 
% 6 24  13464.796 
% 7 9   41838.75 
% 7 15  25103.25 
% 7 18  20919.375]; 

  
  

*** Table: it determined different options for each activity. Fits 

colums shows the activity number, second column it shows duration, and 

the last one determined the total cost 

 
Table=[1    14  357.1428571 
1   20  250 
1   24  208.3333333 
2   15  33.33333333 
2   18  27.77777778 
2   20  25 
3   15  40 
3   22  27.27273 
3   33  18.18182 
4   12  500 
4   16  375 
4   20  300 
5   22  204.5455 
5   24  187.5 
5   28  160.7143 
6   14  392.8571 
6   18  305.5556 
6   24  229.1667 
7   9   522.2222 
7   15  313.3333 
7   18  261.1111]; 

  

  
% a=0.7 
% b=0.3 
% maxt=103; 
% mint=60; 
% maxc=203243.322; 
% minc=121206.829; 

  
% a=0.6 
% b=0.4 
 maxt=103; 
 mint=60; 
 maxc=205010.099; 
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 minc=120250.725; 

  
 *** w1 and w2 determined the priorities of cost and time respectively. 

  

routs=3; 

  
w1=0.4; 
w2=0.6; 

  

  
%%%% Initialization %%%%%%% 

 

*** in this phase, PS chromosomes are randomly generated 

  
for i=1:PS 
    for j=1:n 
        X(i,j)=floor(option*rand)+1; 
    end 
end 

     

  
%%%%%%%%  Improvement  %%%%%%%%%% 

 

*** in this stage, as stated in the cntext, 2opt procedure is applied 

to improve the randomly generated population 

  
for k=1:PS 

     
    Temp(1,:)=X(k,:); 
    opt1=floor(n*rand)+1; 
    opt2=floor(n*rand)+1; 
    Temp(2,:)=X(k,:); 
    temp=Temp(2,opt1); 
    Temp(2,opt1)=Temp(2,opt2); 
    Temp(2,opt2)=temp; 
    Temp(3,:)=Temp(2,:); 
    if opt1==1 
        Temp(4,:)=Temp(2,:); 
        TTemp=Temp(4,1); 
        Temp(4,1)=Temp(4,2); 
        Temp(4,2)=TTemp; 
    else 
        if opt1==n 
            Temp(4,:)=Temp(2,:); 
            TTemp=Temp(4,n); 
            Temp(4,n)=Temp(4,n-1); 
            Temp(4,n-1)=TTemp; 
        else 
            TTemp=Temp(3,opt1); 
            gh=opt1+1; 
            Temp(3,opt1)=Temp(3,gh); 
            Temp(3,gh)=TTemp; 
            Temp(4,:)=Temp(2,:); 
            TTemp=Temp(4,opt1); 
            jh=opt1-1; 
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            Temp(4,opt1)=Temp(4,jh); 
            Temp(4,jh)=TTemp; 
        end 
    end 
    Temp(5,:)=Temp(2,:); 
    if opt2==1 
        Temp(6,:)=Temp(2,:); 
        TTemp=Temp(6,1); 
        Temp(6,1)=Temp(6,2); 
        Temp(6,2)=TTemp; 
    else 
        if opt2==n 
            Temp(6,:)=Temp(2,:); 
            TTemp=Temp(6,n); 
            Temp(6,n)=Temp(6,n-1); 
            Temp(6,n-1)=TTemp; 
        else 
            TTemp=Temp(5,opt2); 
            ser=opt2+1; 
            Temp(5,opt2)=Temp(5,ser); 
            Temp(5,ser)=TTemp; 
            Temp(6,:)=Temp(2,:); 
            TTemp=Temp(6,opt2); 
            sre=opt2-1; 
            Temp(6,opt2)=Temp(6,sre); 
            Temp(6,sre)=TTemp; 
        end 
    end 

  

       

  

   
 *** after that the 2-opt procedure is done, the new solutions 

(offspring) are compared with the first solution, the best one is 

chosen. 

  
for tt=1:6 

     
    dd1=Temp(tt,1); 
    dd3=Temp(tt,2)+3; 
    dd6=Temp(tt,3)+6; 
    dd9=Temp(tt,4)+9; 
    dd12=Temp(tt,5)+12; 
    dd15=Temp(tt,6)+15; 
    dd18=Temp(tt,7)+18; 

     

     

    Eeval(tt,1)=Table(dd1,3)+Table(dd3,3)+Table(dd12,3)+Table(dd18,3); 
    Eeval(tt,2)=Table(dd1,3)+Table(dd6,3)+Table(dd12,3)+Table(dd18,3); 
    Eeval(tt,3)=Table(dd1,3)+Table(dd9,3)+Table(dd15,3)+Table(dd18,3); 
    Eeval(tt,4)=Table(dd1,2)+Table(dd3,2)+Table(dd12,2)+Table(dd18,2); 
    Eeval(tt,5)=Table(dd1,2)+Table(dd6,2)+Table(dd12,2)+Table(dd18,2); 
    Eeval(tt,6)=Table(dd1,2)+Table(dd9,2)+Table(dd15,2)+Table(dd18,2); 
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Eeval(tt,7)=Table(dd1,3)+Table(dd3,3)+Table(dd12,3)+Table(dd18,3)+Table

(dd6,3)+Table(dd9,3)+Table(dd15,3); 
    Eeval(tt,8)=max(Eeval(tt,4:6)); 
end 
% maxt=max(Eval(:,7)); 
% mint=min(Eval(:,7)); 
% maxc=max(Eval(:,8)); 
% minc=min(Eval(:,8)); 
%  
for ttt=1:6 
    Eeval(ttt,9)=(maxt-Eeval(ttt,8))/(maxt-mint); 
    Eeval(ttt,10)=(maxc-Eeval(ttt,7))/(maxc-minc); 
    Eeval(ttt,11)=w1*Eeval(ttt,9)+w2*Eeval(ttt,10); 
end 

  
X(k,:)=Temp(1,:); 

  
    Beste=max(Eeval(:,11)); 
    [sv,sd]=find(Eeval(:,11)==Beste); 
    sv=sv(1); 
    sd; 
    X(k,:)=Temp(sv,:); 

  

  

  
end 

  

  
%%%%%%%% Evaluation %%%%%%%%%%%%%% 

 

*** in this step, the objective values of all chromosomes in population 

are calculated. (Zi) 

 

 

 
roond=0; 
while roond~=100 

  
Eval=zeros(Genes,Genes); 
for kk=1:Genes 
    

Eval(kk,1)=(Table(X(kk,1),3)+Table(X(kk,2)+3,3)+Table(X(kk,5)+12,3)+Tab

le(X(kk,7)+18,3)); 
    

Eval(kk,2)=(Table(X(kk,1),3)+Table(X(kk,3)+6,3)+Table(X(kk,5)+12,3)+Tab

le(X(kk,7)+18,3)); 
    

Eval(kk,3)=(Table(X(kk,1),3)+Table(X(kk,4)+9,3)+Table(X(kk,6)+15,3)+Tab

le(X(kk,7)+18,3)); 
    

Eval(kk,4)=(Table(X(kk,1),2)+Table(X(kk,2)+3,2)+Table(X(kk,5)+12,2)+Tab

le(X(kk,7)+18,2)); 
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Eval(kk,5)=(Table(X(kk,1),2)+Table(X(kk,3)+6,2)+Table(X(kk,5)+12,2)+Tab

le(X(kk,7)+18,2)); 
    

Eval(kk,6)=(Table(X(kk,1),2)+Table(X(kk,4)+9,2)+Table(X(kk,6)+15,2)+Tab

le(X(kk,7)+18,2)); 
    

Eval(kk,7)=Table(X(kk,1),3)+Table(X(kk,2)+3,3)+Table(X(kk,3)+6,3)+Table

(X(kk,4)+9,3)+Table(X(kk,5)+12,3)+Table(X(kk,6)+15,3)+Table(X(kk,7)+18,

3); 
    Eval(kk,8)=max(Eval(kk,4:6)); 
end 
% maxt=max(Eval(:,7)); 
% mint=min(Eval(:,7)); 
% maxc=max(Eval(:,8)); 
% minc=min(Eval(:,8)); 

  
for jj=1:Genes 
    Eval(jj,9)=(maxt-Eval(jj,8))/(maxt-mint); 
    Eval(jj,10)=(maxc-Eval(jj,7))/(maxc-minc); 
    Eval(jj,11)=w1*Eval(jj,9)+w2*Eval(jj,10); 
end 
  

 

 

 

%%%%%%%% Selection    %%%%%%%%% 

  
*** Selection procedure is done on chromosomes in the population. The 

better a chromosome is the more chance it has to be selected. Selected 

chromosome are used in next steps for GA procedure. 

 

 

Total=sum(Eval(:,11)); 

  
for ii=1:Genes 
    p(ii)=(Total-Eval(i,11))/(Total*(100-1)); 
    q(ii)=sum(p(1:ii)); 
end 

  
r=rand(); 
kul=0; 
for rr=2:Genes 
    if q(rr-1)<r && r<=q(rr) 
        chromosome=X(rr,:); 
        ss1=rr; 
        kul=1; 

         
    end 
end 

  
if kul~=1 
    chromosome=X(1,:);   
        ss1=1; 
end 
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%hh=X(1,:) 
r2=rand(); 
kel=0; 
for pp=2:Genes 
    if p(pp-1)<r2 && r2<=q(pp) 
        chromosome(2,:)=X(pp,:); 
        ss2=pp; 
        kel=1; 

         
    end 
end 

  
if kel~=1 
    chromosome(2,:)=X(1,:); 
        ss2=1; 
end 

  
if chromosome(2,:)==chromosome(1,:) 
    if ss2~=Genes 
        ss2=ss2+1; 
        chromosome(2,:)=X(ss2,:); 
    else 
        ss2=ss2-1; 
        chromosome(2,:)=X(ss2,:);     
    end 

     
end 

  

  

     
%     chromosome(1,:); 
%     chromosome(2,:); 

  
%%%%%%%%      Algorithm      %%%%%%%%%%% 

  
*** from here to the end, GA procedure works containing crossover, and 

mutation procedures.  

  

%%%%%%%% Cross-over %%%%%%%%%%%%%%% 

  
 *** Order cross-over procedure is done on selected chromosomes. A 

random substring from the first parent is selected, and it is 

substituted with that substring from the second chromosome (parent). 

  
crossrate=rand(); 
cross=floor(n*crossrate)+1; 

  
%  if cross==4 
%      cross=3; 
%  end 
% cross 
% chromosome(3,:)=chromosome(1,:); 
% chromosome(4,:)=chromosome(2,:); 
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% mashi=1; 
% for ashi=cross:n 
%     chromtemp(1,mashi)=chromosome(1,ashi); 
% end 

  
chromosome(3,:)=chromosome(1,:); 
chromosome(4,:)=chromosome(2,:); 

  
chromtemp=chromosome(1,cross:n); 
chromosome(3,cross:n)=chromosome(4,cross:n); 
chromosome(4,cross:n)=chromtemp; 
  

 

 

 

 

*** New generated chromosomes are compared with their parents 

(chromosomes from the population). If the new ones are better, they 

will be substituted with current chromosomes in the population. 

 

 

 
for tt=1:4 
    

Eevall(tt,1)=(Table(chromosome(tt,1),3)+Table(chromosome(tt,2)+3,3)+Tab

le(chromosome(tt,5)+12,3)+Table(chromosome(tt,7)+18,3)); 
    

Eevall(tt,2)=(Table(chromosome(tt,1),3)+Table(chromosome(tt,3)+6,3)+Tab

le(chromosome(tt,5)+12,3)+Table(chromosome(tt,7)+18,3)); 
    

Eevall(tt,3)=(Table(chromosome(tt,1),3)+Table(chromosome(tt,4)+9,3)+Tab

le(chromosome(tt,6)+15,3)+Table(chromosome(tt,7)+18,3)); 
    

Eevall(tt,4)=(Table(chromosome(tt,1),2)+Table(chromosome(tt,2)+3,2)+Tab

le(chromosome(tt,5)+12,2)+Table(chromosome(tt,7)+18,2)); 
    

Eevall(tt,5)=(Table(chromosome(tt,1),2)+Table(chromosome(tt,3)+6,2)+Tab

le(chromosome(tt,5)+12,2)+Table(chromosome(tt,7)+18,2)); 
    

Eevall(tt,6)=(Table(chromosome(tt,1),2)+Table(chromosome(tt,4)+9,2)+Tab

le(chromosome(tt,6)+15,2)+Table(chromosome(tt,7)+18,2)); 
    

Eevall(tt,7)=Table(chromosome(tt,1),3)+Table(chromosome(tt,2)+3,3)+Tabl

e(chromosome(tt,3)+6,3)+Table(chromosome(tt,4)+9,3)+Table(chromosome(tt

,5)+12,3)+Table(chromosome(tt,6)+15,3)+Table(chromosome(tt,7)+18,3); 
    Eevall(tt,8)=max(Eevall(tt,4:6)); 
end 
% maxt=max(Evall(:,7)); 
% mint=min(Evall(:,7)); 
% maxc=max(Evall(:,8)); 
% minc=min(Evall(:,8)); 
%  
for ttt=1:4 
    Eevall(ttt,9)=(maxt-Eevall(ttt,8))/(maxt-mint); 
    Eevall(ttt,10)=(maxc-Eevall(ttt,7))/(maxc-minc); 
    Eevall(ttt,11)=w1*Eevall(ttt,9)+w2*Eevall(ttt,10); 
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end 

  
Eevall; 

  

if Eevall(3,11)>Eevall(1,11) 
    chromosome(1,:)=chromosome(3,:); 
end 

  

  
if Eevall(4,11)>Eevall(2,11) 
    chromosome(2,:)=chromosome(4,:); 
end 

  

  
% offspring4(heur3)=offspring4(heur1); 
% offspring4(heur1)=offtemp; 
%  
% offspring5=offspring4; 
% offtemp=offspring5(heur2); 
% offspring5(heur2)=offspring5(heur3); 
% offspring5(heur3)=offtemp; 
%  
%  offspring6=offspring2; 
%  offtemp=offspring6(heur3); 
%  offspring6(heur3)=offspring6(heur2); 
%  offspring6(heur2)=offtemp; 

  

  
%%%%%%%       Inversion Mutation   %%%%%%%%%%%%% 

 

 

*** In this procedure, a substring is randomly selected from a parent. 

And including substrings are flipping. 

 

 

  
chromosome(3,:)=chromosome(1,:); 
chromosome(4,:)=chromosome(2,:); 

  

% invmutation=chromosome(1,:); 
% invmutation2=chromosome(2,:); 
inv1=floor(n*rand)+1; 
inv2=floor(n*rand)+1; 
if inv1>inv2 
    matinv=chromosome(1,inv2:inv1); 
    matinv2=chromosome(2,inv2:inv1); 
    k=1; 
    for inv=inv2:inv1 
        chromosome(3,inv)=matinv(inv1-inv2+k); 
        chromosome(4,inv)=matinv2(inv1-inv2+k); 
        k=k-1; 
    end 
end 
if inv2>inv1 
    matinv=chromosome(1,inv1:inv2); 
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    matinv2=chromosome(2,inv1:inv2); 
    k=1; 
    for inv=inv1:inv2 
        chromosome(3,inv)=matinv(inv2-inv1+k); 
        chromosome(4,inv)=matinv2(inv2-inv1+k); 
        k=k-1; 
    end 
end                                       

         
 *** Generated chromosomes are compared with those in population 

(parents). If the generated ones are better, they will be substituted 

with the current ones. 

  
for isi=1:4 
    

Evall(isi,1)=(Table(chromosome(isi,1),3)+Table(chromosome(isi,2)+3,3)+T

able(chromosome(isi,5)+12,3)+Table(chromosome(isi,7)+18,3)); 
    

Evall(isi,2)=(Table(chromosome(isi,1),3)+Table(chromosome(isi,3)+6,3)+T

able(chromosome(isi,5)+12,3)+Table(chromosome(isi,7)+18,3)); 
    

Evall(isi,3)=(Table(chromosome(isi,1),3)+Table(chromosome(isi,4)+9,3)+T

able(chromosome(isi,6)+15,3)+Table(chromosome(isi,7)+18,3)); 
    

Evall(isi,4)=(Table(chromosome(isi,1),2)+Table(chromosome(isi,2)+3,2)+T

able(chromosome(isi,5)+12,2)+Table(chromosome(isi,7)+18,2)); 
    

Evall(isi,5)=(Table(chromosome(isi,1),2)+Table(chromosome(isi,3)+6,2)+T

able(chromosome(isi,5)+12,2)+Table(chromosome(isi,7)+18,2)); 
    

Evall(isi,6)=(Table(chromosome(isi,1),2)+Table(chromosome(isi,4)+9,2)+T

able(chromosome(isi,6)+15,2)+Table(chromosome(isi,7)+18,2)); 
    

Evall(isi,7)=Table(chromosome(isi,1),3)+Table(chromosome(isi,2)+3,3)+Ta

ble(chromosome(isi,3)+6,3)+Table(chromosome(isi,4)+9,3)+Table(chromosom

e(isi,5)+12,3)+Table(chromosome(isi,6)+15,3)+Table(chromosome(isi,7)+18

,3); 
    Evall(isi,8)=max(Evall(isi,4:6)); 
end 
% maxt=max(Evall(:,7)); 
% mint=min(Evall(:,7)); 
% maxc=max(Evall(:,8)); 
% minc=min(Evall(:,8)); 

  
for isit=1:4 
    Evall(isit,9)=(maxt-Evall(isit,8))/(maxt-mint); 
    Evall(isit,10)=(maxc-Evall(isit,7))/(maxc-minc); 
    Evall(isit,11)=w1*Evall(isit,9)+w2*Evall(isit,10); 
end 

  

  

  
if Evall(3,11)>Evall(1,11) 
    chromosome(1,:)=chromosome(3,:); 
end 
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if Evall(4,11)>Evall(2,11) 
    chromosome(2,:)=chromosome(4,:); 
end 

  
X(ss1,:)=chromosome(1,:); 
X(ss2,:)=chromosome(2,:); 

  

  
roond=roond+1; 
end 
  

 

*** to choose the best one, all available solutions in the population 

are check based on their objective values regarding the predefined 

priorities. 

 

 
Best=max(Eval(:,11)); 
[cv,cd]=find(Eval(:,11)==Best); 
BestSolution=X(cv,:); 

  

  
for che=1:4 
    if Evall(che,11)>Best 
        BestSolution=chromosome(che,:); 
        Best=Evall(che,11); 
    end 
end 

  
Best 
BestSolution(1,:) 
size(cv); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         



77 
 

APPENDIX B 

Simulation Code 

clear  
clc 

 

 

*** According to the fact that it needs to do some optimization stuff 

in this problem in every iteration of the simulation, it needs to set 

optimization assumptions correctly regardint the problem. 

  
opts = optimset('fmincon'); 
opts.LargeScale = 'off'; 
% opts.MediumScale = 'on'; 
opts.TolFun = 1.e-6; 

  
format long 

  
global Q 
global alpha 
global beta 
global act 
global cost 
global rep 

 

*** N: number of iterations 

  
N=1000; 
 

*** cost and time priorities are defined. 

  
w1=0.4; 
w2=1-w1; 

  
SERI=zeros(N,14); 
% alpha=0.3 
% beta=0.7 
  

 

 

*** In the new problem, according to the fact that alpha, beta, labor 

and equipment costs are stochastic, and they are generated randomly in 

their predefined ranges in each iteration, total cost is achivied after 

optimization calculations. So table here is different from the previous 

problem and the third row is empty which is set after optimization 

calculations. 

  
Table=[1    14 
1   20 
1   24 
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2   15 
2   18 
2   20 
3   15 
3   22 
3   33 
4   12 
4   16 
4   20 
5   22 
5   24 
5   28 
6   14 
6   18 
6   24 
7   9 
7   15 
7   18]; 

  

  
*** For the optimization purpose, regarding the total number of 

activities, initial points are defined. 

  
X00=[100 400 
    150 350 
    200 300 
    50 60 
    30 40 
    45 55 
    65 70 
    75 40 
    20 30 
    200 400 
    300 350 
    290 310 
    440 520 
    250 350 
    270 330 
    230 300 
    280 180 
    170 70 
    125 145 
    175 335 
    180 200]; 

  
  

 

*** For each activity option in case that labor and equipment costs are 

determined, FACTORCOST shows these costs. 

 

 

 

 
FACTORCOST=[40  100 
40  100 
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40  100 
50  70 
50  70 
50  70 
45  80 
45  80 
45  80 
75  70 
75  70 
75  70 
60  60 
60  60 
60  60 
55  20 
55  20 
55  20 
65  30 
65  30 
65  30]; 

  
  

 

*** TotalQ shows the Q rate of each activity’s option which is achieved 

from w/t. 

 

 

TotalQ=[357.1 
250.0 
208.3 
33.3 
27.8 
25.0 
40.0 
27.3 
18.2 
500.0 
375.0 
300.0 
204.5 
187.5 
160.7 
392.9 
305.6 
229.2 
522.2 
313.3 
261.1]; 

  

%   albeta(rep)=1; 
%     alpha(rep)=0.7; 
%     beta(rep)=albeta(rep)-alpha(rep); 
%  
%  
% for act=1:21 
%         act; 
%         x0=X00(act,:); 
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%          A=[]; 
%          b=[]; 
%          Aeq=[]; 
%          beq=[]; 
%           lb=[]; 
%           ub=[]; 
%         cost(act,:)=FACTORCOST(act,:); 
%         Q(act)=TotalQ(act); 
%         x(act,:)= fmincon(@Cobb,x0,A,b,Aeq,beq,lb,ub,@mycons); 
%      %   x(act,:)= fmincon(@Cobb,x0,A,b,Aeq,beq,@mycons) 
%         %x = 

fmincon(@(x)cost(1)*x(1)+cost(2)*x(2),x0,A,b,Aeq,beq,lb,ub,@mycons); 
%         LaborCost(act)=x(act,1)*cost(act,1); 
%         CapitalCost(act)=x(act,2)*cost(act,2); 
%         Table(act,3)=LaborCost(act)+CapitalCost(act); 
%  
% end 

  

  

 *** the simulation process starts from this point. 

  
for rep=1:N 
rep; 

  

  
% INFL(rep,1)=rand()*0.05+1.10; 
% INFL(rep,2)=rand()*0.05+1.10; 

  
% INFL(rep,1)=rand()*0.10+1.05; 
% INFL(rep,2)=1; 

  

  

INFL(rep,1)=1; 
INFL(rep,2)=1; 

  

  
%INFL(3)=rand()*0.03+1.03; 
%INFL(4)=rand()*0.03+1.04; 

  

  
SERI(rep,15)=INFL(rep,1); 
SERI(rep,16)=INFL(rep,2); 
%A(rep)=2; 
%while A(rep)>1 

 

 

*** One of the main steps in the simulation process is to define alpha, 

beta and summation of those. Based on the predefined ranges for each of 

those, random numbers are generated here. 

 

 
      albeta(rep)=0.4*rand()+0.6; 
      alpha(rep)=(0.2*rand()+0.2)*albeta(rep); 
      beta(rep)=albeta(rep)-alpha(rep); 
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if albeta(rep)>=0.6 && albeta(rep)<0.7 
      w1=0.1; 
else 
    if albeta(rep)>=0.7 && albeta(rep)<0.8  
        w1=0.2; 
    else 
        if albeta(rep)>=0.8 && albeta(rep)<0.9 
            w1=0.3; 
        else 
            w1=0.4; 
        end 
    end 
end 

         
      w2=1-w1; 

  

       
%     albeta(rep)=1; 
%     alpha(rep)=0.3; 
%     beta(rep)=albeta(rep)-alpha(rep); 

  

  

  
    SERI(rep,5)=alpha(rep); 
SERI(rep,6)=beta(rep); 
    SERI(rep,14)=albeta(rep); 

     
% alpha(rep)=0.3; 
% beta(rep)=0.7; 
% albeta(rep)=1; 

  

  
%end 

 

 

*** In each iteration, based on the determined values for alpha, beta, 

labor and equipment costs, the optimum values of labor cost, equipment 

cost, and total cost are calculated. 

 

 
for act=1:21 
        act; 
        x0=X00(act,:); 
         A=[]; 
         b=[]; 
         Aeq=[]; 
         beq=[]; 
          lb=[]; 
          ub=[]; 
        cost(act,1)=FACTORCOST(act,1)*INFL(rep,1); 
        cost(act,2)=FACTORCOST(act,2)*INFL(rep,2); 
        Q(act)=TotalQ(act); 
        x(act,:)= fmincon(@Cobb,x0,A,b,Aeq,beq,lb,ub,@mycons); 
     %   x(act,:)= fmincon(@Cobb,x0,A,b,Aeq,beq,@mycons) 
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        %x = 

fmincon(@(x)cost(1)*x(1)+cost(2)*x(2),x0,A,b,Aeq,beq,lb,ub,@mycons); 
        LaborCost(act)=x(act,1)*cost(act,1); 
        CapitalCost(act)=x(act,2)*cost(act,2); 
        Table(act,3)=LaborCost(act)+CapitalCost(act); 

  
end 
Table; 
kkk=1; 

 

 

 

*** Based on the determined values for parameters, optimum objective 

value is achives via checking all possible combinations of activities’ 

options. 

 

 

 
for i=1:3 
    for ii=1:3 
        for iii=1:3 
            for j=1:3 
                for jj=1:3 
                   for k=1:3 
                       for kk=1:3 

  

    

Eval(kkk,1)=(Table(i,3)+Table(ii+3,3)+Table(jj+12,3)+Table(kk+18,3)); 
    

Eval(kkk,2)=(Table(i,3)+Table(iii+6,3)+Table(jj+12,3)+Table(kk+18,3)); 
    Eval(kkk,3)=(Table(i,3)+Table(j+9,3)+Table(k+15,3)+Table(kk+18,3)); 
    

Eval(kkk,4)=(Table(i,2)+Table(ii+3,2)+Table(jj+12,2)+Table(kk+18,2)); 
    

Eval(kkk,5)=(Table(i,2)+Table(iii+6,2)+Table(jj+12,2)+Table(kk+18,2)); 
    Eval(kkk,6)=(Table(i,2)+Table(j+9,2)+Table(k+15,2)+Table(kk+18,2)); 
    

Eval(kkk,7)=Table(i,3)+Table(ii+3,3)+Table(jj+12,3)+Table(kk+18,3)+Tabl

e(iii+6,3)+Table(j+9,3)+Table(k+15,3); 
    Eval(kkk,8)=max(Eval(kkk,4:6)); 
    X(kkk,1)=i; 
    X(kkk,2)=ii; 
    X(kkk,3)=iii; 
    X(kkk,4)=j; 
    X(kkk,5)=jj; 
    X(kkk,6)=k; 
    X(kkk,7)=kk; 

     

       

         

     
    kkk=kkk+1; 
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                       end 
                   end 
                end 
            end 
        end 
    end 
end 

 

 

*** In order to calculate the objective value, according to equation 11 

and 12, max and min of time and cost are needed. They are calculated in 

this step. 

 

 
 maxt=max(Eval(:,8)); 
 mint=min(Eval(:,8)); 
 maxc=max(Eval(:,7)); 
 minc=min(Eval(:,7)); 

  
 SERI(rep,12)=maxt; 
  SERI(rep,13)=mint; 
   SERI(rep,11)=minc; 
    SERI(rep,10)=maxc; 

     

  

  
for ss=1:3^7 

     
%     if 59<Eval(ss,8) && Eval(ss,8)<70    
%         Eval(ss,7); 
%      Eval(ss,7)=Eval(ss,7)*INFL(1); 
%  else 
%      if 69<Eval(ss,8)&& Eval(ss,8)<80    
%                  Eval(ss,7); 
%          Eval(ss,7)=Eval(ss,7)*INFL(2); 
%      else 
%          if 79<Eval(ss,8)&& Eval(ss,8)<90    
%                      Eval(ss,7); 
%              Eval(ss,7)=Eval(ss,7)*INFL(3); 
%          else 
%                      Eval(ss,7); 
%              Eval(ss,7)=Eval(ss,7)*INFL(4); 
%          end 
%      end 
%     end 
%           
%      

    
    Eval(ss,9)=(maxt-Eval(ss,8))/(maxt-mint); 

     
    Eval(ss,10)=(maxc-Eval(ss,7))/(maxc-minc); 

     
    Eval(ss,11)=w1*Eval(ss,9)+w2*Eval(ss,10); 
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end 

  

  

  

 

*** Comparing all possible combination of activities’ options, the 

optimum objective value and corresponding activities’ options are 

chosen. 

 

 

         
Best(1)=max(Eval(:,11)); 

  
[cv,cd]=find(Eval(:,11)==Best(1)); 
CV=cv(1); 
cd; 
Eval(CV,9); 
Eval(CV,7); 
Eval(CV,8); 
Eval(CV,3); 
Eval(CV,10); 
BestSolution=X(CV,:); 

  
%%% SERI 1:time  2:cost   3:labor cost   4:capital cost 
Eval(CV,8); 

  
SERI(rep,1)=Eval(CV,8); 
SERI(rep,2)=Eval(CV,7); 
LCost=0; 
pop=0; 
 for asas=1:7 

  
     LCost=LaborCost(3*pop+BestSolution(1,asas))+LCost; 
     pop=pop+1; 
 end 
 SERI(rep,3)=LCost; 
 SERI(rep,4)=SERI(rep,2)-SERI(rep,3); 

  
SERI(rep,7)=Best; 
SERI(rep,8)=Eval(CV,9); 
SERI(rep,9)=Eval(CV,10); 

  
%SERI(rep,10)=Eval(CV,11); 

  
end 
100 

  
INFL; 
Table; 
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*** this function is one of the functions needed by MATLAB software to 

calculate the optimum value of total cost. 

 
In this function constrints of the model which is the CD function are 

presented. 

 

 

function [c ceq] = mycons(x) 

  
global Q 
global alpha 
global beta 
global act 
global rep 

  
c=[]; 
ceq=(x(1)^alpha(rep))*(x(2)^beta(rep))-Q(act); 

 

 

 

*** This function defined the objective function of the model. This 

function is called in the optimization process to calculate the optimum 

value of total cost. 

 

 

function f = Cobb(x) 

  
global cost 
global act 

  

  

f=cost(act,1)*x(1)+cost(act,2)*x(2); 
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