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APPLICATION OF GIS AND GEOGRAPHICALLY WEIGHTED

REGRESSION TO EVALUATE THE SPATIAL NON‐STATIONARITY

RELATIONSHIPS BETWEEN PRECIPITATION VS. IRRIGATED

AND RAINFED MAIZE AND SOYBEAN YIELDS

V. Sharma,  A. Irmak,  I. Kabenge,  S. Irmak

ABSTRACT. Understanding the relationship between the spatial distribution of precipitation and crop yields on large scales
(i.e.,�county, state, regional) while accounting for the spatial non‐stationarity can help managers to better evaluate the long‐term
trends in agricultural productivity to make better assessments in food security, policy decisions, resource assessments, land and
water resources enhancement, and management decisions. A relatively new technique, geographically weighted regression (GWR),
has the ability to account for spatial non‐stationarity with space. While its application is growing in other scientific disciplines
(i.e., social sciences), the application of this new technique in agricultural settings has not been practiced. The geographic
information system (GIS), along with two different statistical techniques [GWR and conventional ordinary least square regression
(OLS)], was utilized to analyze the relationships between various precipitation categories and irrigated and rainfed maize and
soybean yields for all 93 counties in Nebraska from 1996 to 2008. Precipitation was spatially interpolated in ArcGIS using a spline
interpolation technique with zonal statistics. Both measured and GWR‐ and OLS‐predicted yields were correlated to spatially
interpolated annual (January 1 to December 31), seasonal (May 1 to September 30), and monthly (May, June, July, August, and
September) precipitation for each county. Statewide average annual precipitation in Nebraska from 1996 to 2008 was 564 mm,
with a maximum of 762 mm and minimum of 300 mm. Mean precipitation decreased gradually from May to September during the
growing season. County average yields followed the same temporal trends as precipitation. When the OLS regression model was
used, there was a general trend of linear correlation between observed yield and long‐term average mean annual total precipitation
with a varying coefficient of determination (R2). For rainfed crops, 67% of the variability in mean yield was explained by the mean
annual precipitation. About 23% and 17% of the variability in mean yield was explained by mean annual precipitation for irrigated
maize and soybean, respectively. However, the performance of the GWR technique in predicting the yields from spatially
interpolated precipitation for irrigated and rainfed maize and soybean was significantly better than the performance of the
OLS�model. For both rainfed maize and soybean, 77% to 80% of the variation in yield was explained by the mean annual
precipitation alone. For irrigated crops, 42% of the variation in the yield was explained by the mean annual precipitation. For
rainfed crops, there was a strong correlation between seasonal precipitation and yield, with R2 values of 0.73 and 0.76 for maize
and soybean, respectively. The mean annual total precipitation was a better predictor of rainfed maize yield than rainfed soybean
yield. On a statewide average, July precipitation as a predictor had the greatest correlation with yields of both maize and soybean.
June, July, and August precipitation had greater impact on maize yield than on soybean under rainfed conditions due to more
sensitivity of maize to water stress than soybean. For irrigated yields, July precipitation had more impact on soybean yield than
on maize. The performance of the GWR technique was superior to the OLS model in analyzing the relationship between yield and
precipitation. The superiority of the GWR technique to OLS is mainly due to its ability to account for the impact of spatial
non‐stationarity on the precipitation vs. yield relationships.

Keywords. Geographically weighted regression, GIS, Maize, Ordinary least square regression, Precipitation, Soybean, Spline.

ne of the important initial steps for evaluating the
variation in yield on a regional scale is to under‐
stand the relationships between yield and various
environmental factors. Precipitation is one of the

main drivers of crop productivity, and its variability in many

agricultural production areas, including Nebraska, is signifi-
cant. Both irrigated and rainfed maize and soybean lands
comprise a significant portion of the total cultivated lands in
Nebraska. The land area for these crops in 2002 and 2007
(table 1) shows changes in the last five years, with maize pro-
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Table 1. Irrigated and rainfed maize and soybean land area in 2007 and 2002 (USDA‐NASS, 2010).

Crop Type

Land Area (ha) in 2007 Land Area (ha) in 2002

Total Irrigated Rainfed Total Irrigated Rainfed

Maize for grain 1,505,466 956,254 549,212 1,202,832 737,871 464,961
Soybean for grain 628,028 257,134 370,894 748,676 314,937 433,739
Maize for silage 30,393 16,582 13,810 67,054 25,490 41,564

duction being dominant, covering over 1.5 million ha. While
extensive irrigation practices provide stable and high‐
yielding conditions on 3.4 million ha of land (USDA‐NASS,
2007), rainfed crop production also represents a significant
portion of agricultural productivity in Nebraska. Rainfed
yields show significant spatial and temporal variability due
to variability in both precipitation totals and distributions
during the growing season. In 2007, more than 900,000 ha of
rainfed maize and soybean crops were harvested, with signif‐
icant variability in crop productivity between the 93 counties
(USDA‐NASS, 2007). Annual precipitation in Nebraska also
varies significantly spatially and temporally, ranging from
800 mm in the southeastern part of the state to less than
350�mm in the western portion in the panhandle on a long‐
term average basis. Practical tools and methods are needed
for mapping, analyzing, and more importantly, predicting ir‐
rigated and rainfed crop yields and understanding the interac‐
tions between yield and primary climatic variables
(i.e.,�precipitation)  for decision makers to better plan, man‐
age, and allocate natural resources for crop production on
large scales.

The relationship between precipitation and yield is critical
for understanding present water needs, ensuring the avail‐
ability of water for future use, and evaluating the sustainabil‐
ity of production systems. Regional variation in yield can be
large because of the differences in irrigated and rainfed pro‐
ductivity. Relationships between yield and climate variables
on a spatial and temporal scale are extremely important to
make better assessments of food security, policy, and land
and water resources management decisions on large (wa‐
tershed, statewide, regional) scales. Variability in precipita‐
tion not only impacts productivity but also increases spatial
yield variability due to the interactions of precipitation with
other field properties, such as soil and terrain characteristics.
For example, Kaspar et al. (2003) reported that when precipi‐
tation was lower than the average, maize yield showed nega‐
tive correlations with elevation, slope, and soil curvature, and
when precipitation was above average, the yield was posi‐
tively correlated with those parameters. Kravchenko et al.
(2005) found that the coefficient of variation in yield in‐
creased in years with low precipitation (45% below normal)
and decreased in years with high precipitation (14% above
normal).

Various crop simulation models, such as crop‐specific
CERES‐Maize (Jones and Kiniry, 1986) and Hybrid‐Maize
(Yang et al., 2004), and generic models that include multiple
crops, such as DSSAT (Jones et al., 2003), are used to predict
crop yield by integrating various characteristic such as
weather, physical and/or chemical soil properties, genetic
background, management, and other agronomic practices
that operate at uniform or non‐uniform areas on a field scale
(Hansen and Jones, 2000; Irmak et al., 2001, 2002, 2005,
2006). While these models provide extremely powerful and
useful information on predicting spatial variability of crop
yields, they require a substantial number of input parameters

due to variability in soil, topographical conditions, weather,
and management practices at a regional scale. Several inves‐
tigators have demonstrated the strength of coupling crop
models with a geographic information system (GIS) for agri‐
cultural decision support and planning at various spatial
scales (Dent and Thornton, 1988; Curry et al., 1990; Thorn‐
ton, 1991; Sarangi et al., 2005). Hansen and Jones (2000)
demonstrated several approaches to scale‐up crop model pre‐
dictions to large scales. Other researchers (e.g., Lal et al.,
1993; Thornton et al., 1995; Carbone et al., 1996; Rosenthal
et al., 1998) applied various crop models in regional estima‐
tion of crop yield and variability. With the advances in GIS
and remote sensing techniques, utilization of these models
can be extended to broader spatial scales. This makes yield
predictions more practical and useful for regional planning
and management, and for application at various spatial scales
(Dent and Thornton, 1988; Curry et al., 1990; Moen et al.,
1994). For example, application of GIS for predicting and
mapping yield can enable state and federal agency personnel
to better assess the spatial and temporal information of crop
yields and their interactions with weather parameters. This
would enable them to better understand the magnitude and
variability of crop productivity between different locations
(counties) so that priority areas with limited productivity can
be identified and resource allocations to improve productiv‐
ity could be allocated or restructured.

One commonly used method to predict or map crop yields
at a regional scale is interpolation of point‐based information
to larger scales (Hoogenboom and Thornton, 1990; Thornton
and Baanante, 1991). Other variables such as soil and weath‐
er parameters that have impact on yield need to be interpo‐
lated for mapping regional crop productivity. Various
interpolation techniques are available to predict and interpo‐
late information or variables within pre‐determined bound‐
aries. Local interpolation techniques usually use weather
data from local stations and predict the variables of interest
at a given point by using data from nearby stations and mathe‐
matical functions (Borrough and McDonnell, 1998). For ex‐
ample, geostatistical techniques (Webster, 1985; Oliver and
Webster, 1991; McBratney and Pringle, 1997; Oliver, 1999)
enable spatial correlation between the data from various ob‐
servations. These techniques are similar interpolation tech‐
niques to those used with minimum spatial variance (Curran
et al., 1997; Curran and Atkinson, 1998). Among many other
examples, Lal et al. (1993), Gessler et al. (2000), Mueller and
Pierce (2003), Li et al. (2004), Sarangi et al. (2005), Flowers
et al. (2005), Lauzon et al. (2005), Kravchenko and Robert‐
son (2007), McKinion et al. (2010), and Irmak et al. (2010)
have used various interpolation techniques in combination
with GIS to spatially interpolate weather, soil physical and
chemical properties (including soil moisture, nutrients, pH,
and soil carbon), terrain (slope and elevation), plant proper‐
ties, and other parameters to predict the impact of these pa‐
rameters on crop yields and yield variability and to analyze
regional productivity.
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An important catalyst for better integration of GIS and
spatial data analysis for improved interpolation has been the
development of local spatial statistical techniques. One of the
newer non‐parametric modeling methods that provides
readily interpretable measures of sources of local variation
and reduces variable co‐linearity is the geographically
weighted regression (GWR) technique. GWR is among the
new developments of local spatial analytical techniques.
GWR (Fotheringham et al., 1998; Brunsdon et al., 2001; Fo‐
theringham et al., 2002) is a local spatial statistical technique
that relies on a form of kernel regression within a multiple lin‐
ear regression framework to develop local relationships be‐
tween the dependent and independent variables. When
modeling the spatial relationship between weather variables
and crop and surface characteristics (e.g., precipitation vs.
yield; precipitation vs. soil moisture; vegetation indices vs.
radiation or temperature, etc.), the spatial non‐stationarity of
these relationships has to be taken into account. Spatial non‐
stationarity is indicated when the measurement or estimation
of the relationships among variables differs from location to
location (Mennis, 2006). It indicates that the relationship be‐
tween the variables under study varies from one location to
another depending on physical factors of the environment,
which are spatially autocorrelated (Propastin et al., 2007).
The development of local spatial non‐stationary relation‐
ships between the variables facilitates an exploratory analy‐
sis of the stationary assumption of a global multiple linear
regression model. The commonly used regression models,
including conventional ordinary least squares (OLS), do not
account for the spatial non‐stationarity of variables. Unlike
OLS and other conventional regression models, which pro‐
vide a single regression equation to describe general relation‐
ships among the explanatory and dependent variables, GWR
generates spatial data that express the spatial variation in the
relationships among variables. Thus, maps generated from
these analyses play a key role in describing and interpreting
spatial non‐stationarity between the variables (Mennis,
2006).

Recently, a limited number of studies have demonstrated
the analytical utility of GWR for investigating a variety of

scientific areas, including climatology (Brunsdon et al.,
2001), ecological inference problem (Calvo and Escolar,
2003), urban poverty (Longley and Tobon, 2004), environ‐
mental justice (Mennis and Jordan, 2005), population density
vs. home value relationships (Mennis, 2006), and developing
relationships between vegetation (normalized difference
vegetation index, NDVI) and climate (precipitation) (Propas‐
tin et al., 2007). While these studies showed compelling ad‐
vantages of using the GWR technique in these topic areas, the
advantages of using the GWR technique in mapping yield
and other variables that can be spatially interpolated has not
yet been studied. The objectives of this research are to: (1) in‐
terpolate and map spatial distribution of long‐term irrigated
and rainfed maize and soybean yields for all 93 counties in
Nebraska using GWR, OLS, and GIS (spline interpolation
technique) and assess the variability of irrigated and rainfed
yields with respect to precipitation; (2) develop relationships
between monthly (May, June, July, August, or September),
seasonal (May 1 to September 30), and annual (January 1 to
December 31) precipitation and crop yields to determine both
irrigated and rainfed crop yield response to the magnitude of
the three precipitation categories; and (3) investigates the po‐
tential differences in using GWR over OLS in predicting crop
yields on a county scale.

MATERIALS AND METHODS
STUDY AREA

The study area is the state of Nebraska (latitude 40° N to
43° N, longitude 95° 19′ W to 104° 3′ W) (figs. 1a and 1b),
which has 93 counties with population of 1,796,620 (mean
population density of about 9 people km‐2). The state's
ground and surface water resources are regulated by the Ne‐
braska Department of Natural Resources and 23 natural re‐
sources districts. Nebraska is one of the leading farming and
ranching states in the U.S. The total area of the state is
approximately  200,356 km2, with a mean elevation of 793 m
above mean sea level. Nebraska's climate is mainly continen‐
tal and is divided into two main parts: the eastern and central
parts are humid/sub‐humid continental climate, and the
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technique (i.e., radial basis function, RBF).

western third has a semiarid/arid climate. The state experi‐
ences a wide range of seasonal variation in temperature and
precipitation.  In general, the weather in Nebraska is in‐
fluenced by cold dry continental air masses from Canada dur‐
ing winter and warm moist air from the Gulf of Mexico
during summer. The highest wind speed usually occurs from
January to late May and early June, with daily average wind
speed showing significant fluctuation ranging from 2 m s‐1 to
over 8 m s‐1. The lowest wind speeds usually occur in the
summer months. Summer months are usually hot and humid,
averaging 24°C in July, but hot, dry winds often drive sum‐
mer temperatures above 32°C (Irmak, 2010).

Regional differences in the environmental characteristics,
with the combined effect of climatic conditions and soil and
topographic characteristics, divides Nebraska into three
broad environmental regions: the eastern region is character‐
ized by relatively high amounts of precipitation with superior
silt‐loam soils rich in organic matter content (i.e., >2.5%) and
relatively high agronomic productivity; the central region is
generally characterized by rich silt loam soils with high or‐
ganic matter content with generally flat topography (except
sand hills) and moderate precipitation; and the western re‐
gion has less precipitation and soils with relatively lower po‐
tential for agronomic productivity as compared with the
eastern and central regions (Searcy and Longwell, 1964).
Sand hills area cover a large area of over 50,000 km2 of sandy
soils and dunes with mainly sparse grasslands. The sand hills
area covers 21 counties (Cherry, Grant, Hooker, Thomas,
Keya Paha, Brown, Rock, Boyd, Holt, Blaine, Loop, Gar‐
field, Wheeler, Arthur, McPherson, Logan, Custer, Valley,
Greeley, Sherman, and Howard) in the north and north‐

central part of the state (figs. 1a and 1b). Water availability
is the dominant yield‐reducing factor in western Nebraska,
where irrigation is necessary for producing average or high
yields.

USDA‐NASS CROP YIELD DATA

The USDA National Agricultural Statistical Service
(www.nass.usda.gov) is an important source of information
for long‐term yield data as the service provides yield data pre‐
dictions almost for every county in the U.S. Yield data for ir‐
rigated and rainfed maize and soybean crops were obtained
for the 93 counties in Nebraska from 1996 to 2008 from the
USDA‐NASS website. Yield was defined as the county aver‐
age yield for either rainfed or irrigated crops as reported. The
USDA‐NASS does not take into account the average irriga‐
tion amount applied per growing season; therefore, irrigation
and yield relationships were not included in our study.
County yield was averaged across the 13 years (1996 to
2008). Irrigated and rainfed crop yields were used as the de‐
pendent variables in the GWR model. The county yield was
defined as total harvested yield in kg divided by the total area
of harvested yield per year per county, so we expressed yield
as kg ha‐1. Some of the counties in Nebraska did not report
maize or soybean production from 1996 to 2008. In some
parts of Nebraska (northwest and northern edge of the state
near the sand hills), maize and soybean are not produced. In
some counties, there were incomplete or missing yield data.
Therefore, the counties with missing data were excluded
from our analysis. The number of counties (N) included were
91, 89, 80, and 79 for irrigated maize, rainfed maize, irrigated
soybean, and rainfed soybean, respectively.
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PRECIPITATION DATA
While other weather variables (i.e., solar radiation, air

temperature)  have significant impact on crop productivity,
precipitation is the main yield‐limiting factor in much of Ne‐
braska and was selected as the primary variable that impacts
yield and yield variability in this study. Precipitation data
were obtained from the High Plains Regional Climate Center
(HPRCC; http://hprcc1.unl.edu/cgi‐hpcc/home.cgi) auto‐
mated weather data network (AWDN) for 51 AWDN stations
distributed across the state (fig. 1b). To increase the precipita‐
tion data density and the robustness of the analyses, some
weather stations outside of Nebraska were also used to inter‐
polate precipitation across the boundaries of the Nebraska
counties. The stations outside of Nebraska were also part of
the HPRCC. Some of the counties did not have weather sta‐
tions, so a spline interpolation procedure was used to calcu‐
late the precipitation for all counties, as described in the next
section. Precipitation data were defined in three categories:
(1) long‐term monthly (May, June, July, August, or Septem‐
ber) average precipitation from 1996 to 2008, (2) long‐term
average seasonal (growing season) total precipitation from
1996 to 2008, and (3) long‐term annual total precipitation
from 1996 to 2008. Thus, yield vs. precipitation relationship
analyses were conducted for all three categories to evaluate
both irrigated and rainfed crop yield response to the magni‐
tudes of the three precipitation categories. The growing sea‐
son was considered from May 1 to September 30, which is
typical for maize and soybean production in the region. The
major assumption here is that the growing season was as‐
sumed to be the same across the state. Other assumptions in‐
clude similar maize hybrids and soybean varieties across
Nebraska. Disease and weed pressure or any other field man‐
agement issues, such as nitrogen deficiency, that may cause
yield reduction were not taken into account in the analyses.

SPATIAL INTERPOLATION OF PRECIPITATION

The spline method was used to predict the spatial distribu‐
tion of precipitation across Nebraska. This method is a deter‐
ministic interpolation method that fits a mathematical
function through input data to create a smooth surface. It can
generate accurate surfaces from only a few sampled points.
These functions allow users to decide between smooth curves
or tight straight edges between measured points. Each station
is omitted in turn from the estimation of the fitted surface, and
the mean square error is calculated. The mean square error
calculations are repeated for a range of values of a smoothing
parameter, and the value that minimizes the mean square er‐
ror is used to determine the optimum smoothing. This process
is called minimizing the generalized cross‐validation (GCV).
A regularized spline was selected for the analyses because it
creates smoother surface closely constrained with sample
data range. The following form of the generalized spline
function (Franke, 1982) was used:

 ∑
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where � is a weight parameter that varies between 0 and 0.5
with higher values representing smoother surfaces, r is the
distance between the point and the sample, Ko is a modified
Bessel function, and c is Euler's constant (0.577215). Coeffi‐
cients a1, a2, and a3 in equation 2 are found by the solution
of a system of linear equations. The weight parameter was op‐
timized using ArcGIS (ver. 9.3.1). In ArcGIS, the spline is the
radial basis function (RBF). The spline interpolation was
used to interpolate the precipitation data from January 1986
to December 2009 from 51 weather stations across Nebraska
and surrounding areas using ArcGIS.

GWR MODEL

The relationship between the yield and precipitation was
modeled by using the OLS regression and GWR. The model
derived by the OLS regression was assumed to apply globally
to the entire study region, from which measured data have
been taken, based on the assumption of spatial stationary in
the relationship between the variables under study (Foody,
2003). Spatial stationary assumes that statistical properties of
an attribute are independent of a location and that the mean
and variance of observed attribute values at different loca‐
tions across the study region are constant. For example, pre‐
cipitation might not vary across a small area. However, if
there is spatial non‐stationarity, then the global prediction of
spatial relationships using OLS regression will misrepresent
the relationship between precipitation and yield. Therefore,
the relationship between these two variables is also examined
with the GWR technique. GWR is a local spatial statistical
technique used to analyze spatial non‐stationarity when the
input variable differs from location to location. It provides a
local model to predict an independent variable or process
(e.g., plant growth, yield) by fitting a regression equation to
the available datasets of dependent variables. It enables iden‐
tification of the yield stability of a region as well as the asso‐
ciation of the independent environmental factors to the yield.
The main advantage of GWR over OLS regression is its abili‐
ty to deal with spatial non‐stationarity (Propastin et al.,
2007). Global regression techniques such as OLS may ignore
local information and, therefore, indicate incorrectly that a
large part of the variance in yield was unexplained.

GWR is a useful and practical tool for evaluating the spa‐
tial heterogeneity of a dependent variable. Spatial heteroge‐
neity can exist when the structure of the process being
modeled varies across the study area (county or state). The
GWR method constructs separate equations by incorporating
the dependent and explanatory variables of features falling
within the bandwidth (distance) of each target feature. The
shape and size of the bandwidth is dependent on user input for
the kernel type, bandwidth method, distance, and number of
features. Instead of calibrating a single equation, GWR gen‐
erates a separate regression equation for each observation
(i.e., spatially interpolated precipitation and yield) and thus
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Table 2. Statewide average intercept (�o) and linear coefficient (�1) for yield vs. precipitation.

Crop

Annual Seasonal May June July August September
βo β1 βo β1 βo β1 βo β1 βo β1 βo β1 βo β1

Rainfed maize ‐2408 13.26 ‐3318 23.1 ‐856.4 69.1 ‐3096 98.7 2616.6 43.3 487.8 69.7 4957.1 11.3
Rainfed soybean ‐828.8 5.05 ‐828.8 5.05 ‐265.6 26.5 ‐718.8 33.4 1138.6 16.5 537.1 23.8 1566.4 12.9
Irrigated maize 9302.9 2.18 8798.6 4.60 9273.2 13.7 9848.7 8.5 8857.8 24.5 9561.2 14.7 10538.9 ‐1.1

Irrigated soybean 3007.7 0.83 2683.1 2.09 2914.6 6.1 3470.4 0.45 2528.6 13.9 3156.7 4.9 3097.7 6.7

allows parameter values to vary continuously in geographical
space. Each equation is calibrated using a different weighting
of the observations contained in the dataset. Because the re‐
gression equation is calibrated independently for each ob‐
servation, a separate parameter prediction (z‐value) and R2

value are calculated for each observation. In GWR, a form of
kernel regression and multi‐linear regression was used to
build a model that can be generally expressed as:
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where Y(i) is the interpolated yield (kg ha‐1) at loca-
tion�i�(where i captures the coordinate location), �o is the in‐
tercept, �k(i) is the kth local parameter prediction at the ith
location (i.e., coefficient for the independent variable), XK(i)
is the kth independent variable (precipitation) value (mm) at
the ith location, and n represents the last location. In GWR,
the weight assigned to each observation is based on a distance
decay function centered on observation i. The distance decay
function, which may take a variety of forms, is modified by
a bandwidth setting at which distance the weight rapidly ap‐
proaches zero (Mennis, 2006). The coefficients in equation�4
vary with each county and period under consideration (annu‐
al, seasonal, monthly), and they are not presented in this ar‐
ticle. The statewide average values for �o and �1, are shown
in table 2.

A spatial kernel is used to provide the geographic weight‐
ing in the model. A key coefficient in the kernel is the band‐
width, which controls the size of the kernel. Bandwidths can
be considered as smoothing functions of the local parameter
predictions (Fotheringham et al., 2002). A fixed bandwidth
is based on a defined diameter of a circular search neighbor‐
hood. The diameter scalar units are the same as the location
variables. There are different choices for the bandwidth, in‐
cluding the Akaike Information Criterion (AIC). The com‐
plexity of a GWR model depends not only on the number of
variables in the model but also on the bandwidth. This inter‐
action between the bandwidth and the complexity of the
model is the reason for our preference for the AIC over the
other bandwidths. The geographic weighting occurs once a
regression model (Gaussian, Logistic, or Poisson), band‐
width, and kernel type are selected. The local parameter pre‐
dictions are derived from the regression of data points within
the bandwidth of a kernel. The influence of a data point on
the local parameter prediction is weighted on the basis of the
geographic distance from the regression point. Locations that
are close to the regression point of interest are weighted
heavier than points located farther away (Fotheringham et
al., 2002).

STATISTICAL ANALYSES
Mean annual, growing season, and monthly precipitation

values for each county are essential requirements of this

study. The zonal statistic was used to calculate the precipita‐
tion values for each county defined by name (string attribute
field) of the Nebraska county feature class based on the pre‐
cipitation value from the precipitation raster dataset. The
zonal statistics tool (Spatial Analyst tool of ArcGIS ver.
9.3.1) calculates statistics on the value of a raster within the
zone of another dataset. The zonal statistic tool summarizes
the value of the precipitation raster within the county and re‐
ports the result as the mean, maximum, minimum, and range
values. Some studies have used zonal statistics for computing
the average elevation, aspect, slope (topographic attributes),
and NDVI (Bakhash and Kanwar, 2004; Tiwari and Sharma,
2009). Other studies have used zonal analysis to calculate the
soybean yield for different grids (Kulkarni et al., 2008).

Moran's I index of spatial autocorrelation (Fortin and
Dale, 2005) in ArcGIS was used to determine whether the
pattern of mean yield among counties was randomly distrib‐
uted, evenly distributed, or clustered. It is possible that low
mean yield can occur in a stable system (Berzsenyi et al.,
2000; Mead et al., 1986). However, we hypothesized that the
mean county yields would be randomly distributed. The geo‐
graphic distribution of the mean yield of irrigated and rainfed
maize and soybean were clustered according to Moran's I test
(high z‐value and low p‐value). The GWR‐predicted mean
yields were also analyzed using Moran's I test to determine
if the predicted yields were significantly different from the
observed yields at the 5% significance level.

RESULTS AND DISCUSSION
The statewide average �o and �1 coefficients from equation

4 for annual, seasonal, and individual months (May, June, July,
August, and September) are presented in table 2. The GWR ap‐
proach produced four �o and four �1 coefficients (one for each
irrigated and rainfed maize and irrigated and rainfed soybean)
for each county as a result of producing a regression equation
for each of the yield vs. precipitation relationships. Irrigated
maize was produced in 91 of the 93�counties, and rainfed maize
was produced in 89 of the 93�counties. Irrigated soybean was
produced in 80 counties, and rainfed soybean was grown in 75
counties. Thus, a total of 364 and 356 �o and �1 values were cal‐
culated for irrigated maize and rainfed maize, respectively, and
a total of 320 and 300 �o and �1 values were calculated for irri‐
gated and rainfed soybean, respectively. These values were cal‐
culated for each precipitation category (annual, seasonal, and
individual months) vs. yield relationship. As a result, a total of
9,380 �o values and 9,380 �1 values were calculated for each
crop and each precipitation vs. yield category. Therefore, only
the statewide average �o and �1 coefficients are presented in
table�2.

PRECIPITATION AMOUNTS AND DISTRIBUTION

The spatial distributions of long‐term average annual
(January 1 to December 31) precipitation and long‐term
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(c) (d)

(e) (f)
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Figure 2. Variation of long‐term average (1996‐2008) (a) annual, (b) seasonal, (c) May, (d) June, (e) July, (f) August, and (g) September precipitation
(mm) across Nebraska.

Table 3. Precipitation (P) statistics for the observation period of 1996‐2008 for 93 counties in Nebraska.
Parameter Mean (mm) Max (mm) Min (mm) County with Max P County with Min P

Long‐term average annual P 564 762 301 Richardson Scotts Bluff
Long‐term average growing season P 364 469 197 Richardson Scotts Bluff

Long‐term average May P 86 111 44 Lancaster Scotts Bluff
Long‐term average June P 83 116 45 Richardson Scotts Bluff
Long‐term average July P 67 88 40 Nuckolls Scotts Bluff

Long‐term average August P 67 92 33 Richardson Sioux
Long‐term average September P 54 67 33 Richardson Sioux

average growing season (May 1 to September 30) total pre‐
cipitation for all Nebraska counties are presented in figures
2a and 2b, respectively. Long‐term monthly (May, June, July,
August, and September) average precipitation for all coun‐
ties is presented in figures 2c through 2g, respectively. The
quantitative values of precipitation are shown as a series of

graduated circles arranged from smallest to largest. The pre‐
cipitation data statistics are presented in table 3. Annual total
precipitation showed strong spatial patterns (trends) across
the state (fig. 2a). There was a gradual decrease in precipita‐
tion totals from the southeast part of the state to the northwest.
There was a 400 mm difference in the annual precipitation
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amounts between the southeast and northwest (see legend in
fig. 2a). From the middle of the state to the west, precipitation
becomes a limiting factor for crop production. There is also
a trend of decreasing precipitation from south to north in the
eastern edge of the state. The south‐central portion of Nebras‐
ka is the most extensively irrigated area in the state, and
approximately  75,000 of more than 105,000 irrigation wells
are located in the central and south‐central parts of the state.
Depending on the year, precipitation usually starts becoming
a limiting factor for crop production at the western edge of
central Nebraska. Based on the annual average precipitation
data, there was approximately a 25 mm decrease in precipita‐
tion for every 40 km going from east to west. The seasonal
total precipitation showed similar patterns as the annual pre‐
cipitation (fig. 2b vs. fig. 2a).

Average monthly precipitation for the months of May,
June, July, August, and September varied substantially across
Nebraska. In general, May was the wettest month, with an av‐
erage of 86 mm and ranging from 110 mm in Lancaster
county to 45 mm in Scotts Bluff county (figs. 2c through 2g).
Average annual precipitation in the state during the period of
1996 to 2008 was 564 mm, with a maximum of 762 mm in
Richardson county and minimum of 300 mm in Scotts Bluff
county (table 3, fig. 2a). Mean precipitation decreased gradu‐
ally from May through September during the growing season.
While significant variations exist with location, management
practices, and other factors, the typical average seasonal crop
water use for maize in south‐central Nebraska is about
640�mm (Irmak et al., 2008). With typical and dominant silt‐
loam soil type in south‐central Nebraska, approximately

165�mm of the seasonal crop water use can be supplied from
soil moisture available in the 0.90 m (typical maize crop root
zone) soil profile from spring precipitation. Thus, if state av‐
erage data are considered (table 3), about 110 mm [640 ‐ (364
+ 165) = 110 mm] is supplied with irrigation. However, soil
type and water‐holding capacity, crop evapotranspiration
amounts, irrigation methods, management practices, and
other factors that influence irrigation practices vary signifi‐
cantly across the state. Thus, the crop irrigation requirement
also varies substantially not only spatially but also temporal‐
ly. Since growing season precipitation varies significantly
across the state, the crop irrigation requirement also exhibits
significant spatial and temporal variability. We are in the pro‐
cess of quantifying long‐term average and spatial and tempo‐
ral variability in irrigation requirement of each county as a
follow‐up study.

IRRIGATED AND RAINFED MAIZE AND SOYBEAN YIELDS

The 13‐year average rainfed and irrigated maize and soy‐
bean yields are presented in figures 3a through 3d. Summary
statistics of historical crop yields are provided in table 4. The
white‐colored counties in figures 3a through 3d indicate
counties with no data. There was a general tendency for the
rainfed maize and soybean yields to be greater in the north‐
east part of the state and gradually decrease from the eastern
part toward the western part, following the precipitation
trends (table 3, figs. 2a and 2b). The highest irrigated maize
and soybean yields are both concentrated in the south‐central
part of the state, where the heaviest irrigation is concentrated.

(b)(a)

(c) (d)

Figure 3. Distribution of long‐term (1996‐2008) average mean yields (kg ha‐1) for (a) rainfed maize, (b) irrigated maize, (c) rainfed soybean, and (d)
irrigated soybean across Nebraska counties.

Table 4. Statewide average crop yield (kg ha‐1) statistics from 1996 to 2008 in Nebraska (N = number of counties; SD = standard deviation).

Crop N Mean Max Min SD Median Skewness

Rainfed maize 89 5,410 8,458 1,883 1,727 5,403 ‐0.069
Rainfed soybean 75 2,215 2,861 639 478 2,354 ‐0.8514
Irrigated maize 91 10,401 11,661 8,385 692 10,565 ‐0.9461

Irrigated soybean 80 3,432 3,910 2,098 290 3,435 ‐1.703
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Table 5. Statistics of spatial autocorrelation (Moran's
I test) for spatial randomness of the mean yields.

Mean
Rainfed
Maize
Yield

Mean
Irrigated
Maize
Yield

Mean
Rainfed
Soybean

Yield

Mean
Irrigated
Soybean

Yield

Moran's I (p‐value) 0.76 0.39 0.65 0.34
z‐value 18.76 8.11 9.68 8.43

Rainfed and irrigated maize and soybean yields varied great‐
ly over the 13‐year of study period across Nebraska (long‐
term yield data not shown). The rainfed maize yield ranged
from as high as 8,458 kg ha‐1 in Dakota county (northeast Ne‐
braska, fig. 1a) to as low as 1,883 kg ha‐1 in McPherson
county (west‐central Nebraska), with a mean values of
5,410�kg ha‐1. The statewide average irrigated maize yield
was 10,401 kg ha‐1, with a maximum of 11,661 kg ha‐1 in
Phelps county (south‐central Nebraska) and minimum of
8,385 kg ha‐1 in Kimball county (southwest Nebraska). Inter‐
estingly, rainfed soybean yields showed similar spatial pat‐
terns as irrigated maize. The statewide average yields for
rainfed soybean was 2,215 kg ha‐1, with a maximum of
2,861�kg ha‐1 in Cuming county (northeast Nebraska) and
minimum of 639 kg ha‐1 in Phelps county (south‐central Ne‐
braska). The irrigated soybean yield varied from 2,098 kg
ha‐1 in Cheyenne county (western Nebraska) to 3,910 kg ha‐1

in Hayes county (southwest Nebraska), with a statewide aver‐
age value of 3,432 kg ha‐1. On average, the irrigated soybean
yields were about 30% higher than the rainfed soybean
yields. Irrigated maize had a much higher (50%) rate of high‐
er yield than rainfed maize, indicating the higher level of sus‐
ceptibility of maize to water stress.

Yield distribution of all the crops exhibits a negative
skewness (table 4), where the number of counties with below‐
mean yield exceeded the number of counties with above‐
mean yield. The geographically weighted distribution of
long‐term average yield for all four crops was significantly
clustered with spatial randomness of mean yield (autocor‐
relation, Moran's I; table 5). Although Nebraska possesses
some of the best agricultural soils in the country (in general,
deep silt‐loam soils with high organic matter content and soil
water‐holding capacity), the skewness distribution of the
mean yields indicates that only several counties produce the
highest yields, or there are differences among counties in the
amount and use of marginal land. While the actual amount of
agronomic crop production on marginal land over the ob‐
servation period is unknown, the greater amount of marginal
land is in the western part of the state. Furthermore, the larg‐
est land use class (rainfed grassland/rangeland) covers about
57% of the state (CALMIT, 2005). The main reason for the
rainfed maize and soybean yields to be lower in the western

part of the state is the lower amount of precipitation as
compared with the eastern and central portions. Another rea‐
son is that the soils in the western part of Nebraska are a com‐
bination of Tassel‐Busher and rocky association generally
having the characteristics of strongly sloping to steep, exces‐
sively drained, weathered sandstone that has lower water‐
holding capacity and organic matter content as compared
with the soils in the west‐central, central, and eastern por‐
tions. Topography of the eastern and central parts is alluvial
lowlands with flat topography and soils with high organic
matter content and soil water‐holding capacity (i.e., mainly
silt loam soils with about 60 mm water per 0.30 m soil depth
water‐holding capacity). The north‐central part of the state,
which contains a large portion of the state's total land area,
is the sand hills area, which is generally covered by grass/
rangelands with very limited farming of agronomical crops.

PRECIPITATION VS. OBSERVED YIELD USING OLS
REGRESSION

The coefficient of determination (R2) between observed
yield and precipitation (using long‐term average mean annu‐
al, seasonal, and monthly total precipitation for each county)
for irrigated and rainfed maize and soybean using the OLS
model are presented in table 6. In the OLS model, two vari‐
ables that were related to each other were the county average
yield and precipitation. The performance of the observed
yield vs. long‐term average mean annual total precipitation
along with the R2 using OLS shows a good agreement for
rainfed maize and soybean. For rainfed crops, 67% of the
variability in mean yield is explained by the mean annual pre‐
cipitation.  About 23% and 17% of the variability in mean
yield was explained by mean annual precipitation for irri‐
gated maize and soybean, respectively. For rainfed crops,
there was a strong correlation between seasonal precipitation
and yield, with an R2 of 0.65 and 0.63 for maize and soybean,
respectively. The R2 was much lower for irrigated crops. As
found with the annual total precipitation and yield, the cor‐
relation between seasonal precipitation and yield for rainfed
crops was stronger than for irrigated crops (table 6). When
correlating to the yield, the annual precipitation may have an
advantage in that it accounts for the dormant season precipi‐
tation that is also carried over and available to the crop as
available soil moisture in the beginning of the growing sea‐
son. In terms of individual‐month total precipitation, the R2

for rainfed maize ranged from 0.57 to 0.67, except for July
where the R2 was 0.34. Similar results were found for rainfed
soybean, where R2 ranged from 0.35 to 0.70, with the excep‐
tion of August where yield and precipitation had poor cor‐
relation (R2 = 0.20).

Table 6. Relationships between observed yield vs. long‐term average mean annual,
seasonal, and monthly precipitation by OLS (N = number of counties).

Crop N

Coefficient of Determination (R2)

Annual Seasonal May June July August September

Rainfed maize 89 0.67 0.65 0.67 0.60 0.34 0.57 0.57
Rainfed soybean 75 0.67 0.63 0.66 0.36 0.36 0.20 0.41
Irrigated maize 91 0.23 0.27 0.23 0.19 0.30 0.28 0.09

Irrigated soybean 80 0.17 0.20 0.18 0.05 0.22 0.18 0.08
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y = 0.7162x + 610.31
R2 = 0.77
St. Error = 237 kg/ha
N = 75

1:1 line (b)

(d)1:1 line

y = 0.3336x + 2273.4
R2 = 0.42
St. Error = 226 kg/ha
N = 80

(d)

(c)

1:1 line

y = 0.3563x + 6657.7
R2 = 0.41
St. Error = 564 kg/ha
N = 91

(c)

y = 0.7249x + 1477.4
R2 = 0.80
St. Error = 865 kg/ha
N = 89

1:1 line (a)

(a)

(b)

Figure 4. Predicted vs. (a) observed rainfed maize, (b) rainfed soybean, (c) irrigated maize, and (d) irrigated soybean yields across Nebraska using
long‐term average annual precipitation. Data points in each graph represent the yield of each county. The color of the data points on the graphs (right)
is associated with the color of the counties (left). Residual maps on the left side of each graph show counties where yield is under‐ or overpredicted.

LONG‐TERM AVERAGE ANNUAL PRECIPITATION VS.
PREDICTED YIELD USING GWR

The following two sections evaluate the relationship be‐
tween the long‐term mean annual, seasonal total (May‐
September), and monthly precipitation vs. predicted rainfed
maize and soybean yields for each county using the GWR
model. The relationship between predicted yield and long‐
term average mean annual total precipitation and the residu‐
als of the regression between predicted and measured yield

for irrigated and rainfed maize and soybean are presented in
figures 4a through 4d. The results of the GWR model showed
very good performance for rainfed maize and soybean. The
residuals are spatially autocorrelated, as table 7 shows the
Moran's I value for the residuals for all four crops. There is
a general trend of strong linear correlation between predicted
and observed yield with varying R2 and SD values. The statis‐
tics between measured and predicted yield are presented in
table 8. For rainfed maize and soybean, about 80% and 77%
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Table 7. Value of spatial autocorrelation (Moran's I test)
for spatial randomness of mean yield vs. mean

annual precipitation GWR residuals.
Rainfed
Maize
Yield

Residual

Irrigated
Maize
Yield

Residual

Rainfed
Soybean

Yield
Residual

Irrigated
Soybean

Yield
Residual

Moran's I
(p‐value)

0.65
(<0.001)

0.22
(<0.001)

0.35
(<0.001)

0.30
(<0.001)

Table 8. Statistics for the state‐average observed vs. predicted yields
using GWR for the period of 1996‐2008. Yield was predicted

using mean annual precipitation (N = number of counties,
SE = standard error, and DF = degrees of freedom).

Crop N R2
SE

(kg ha‐1) DF F‐Ratio p > F

Rainfed maize 89 0.80 793 87 183.03 <0.0001
Rainfed soybean 75 0.77 237 73 150.45 <0.0001
Irrigated maize 91 0.41 564 89 27.86 <0.0001

Irrigated soybean 80 0.42 266 78 15.44 <0.0002

1:1 line

y = 0.7162x + 610.31
R2 = 0.76
St. Error = 237 kg/ha
N = 75

(b)

1:1 line

y = 0.3242x + 2305.1
R2 = 0.39
St. Error = 230 kg/ha
N = 80

(d)

1:1 line

y = 0.332x + 6912.4
R2 = 0.36
St. Error = 564 kg/ha
N = 91

(c)

1:1 line

y = 0.6738x + 1780.4
R2 = 0.73
St. Error = 919 kg/ha
N = 89

(a)

Figure 5. Predicted vs. (a) observed rainfed maize, (b) rainfed soybean, (c) irrigated maize, and (d) irrigated soybean yields across Nebraska using
long‐term average seasonal precipitation. Data points in each graph represent the yield of each county. The color of the data points on the graphs (right)
is associated with the color of the counties (left). Residual maps on the left side of each graph show counties where yield is under‐ or overpredicted.
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of the variation in yield was explained by the mean annual
precipitation alone. For irrigated maize and soybean crops,
about 41% to 42% of the variation in yield was explained by
the mean annual precipitation (table 8).

The results of the standard deviation (SD) of the GWR
predictions and the residual maps indicated that the residuals
(observed‐predicted yield) were within the 2.5 of the SD. For
all crops, less than 2% of the counties fell outside the 1.5 SD
range. GWR analysis with the observed and predicted yields
using mean annual precipitation showed a strong relationship
at 5% significance level (table 8). The t‐test showed that the
intercept and slope of the regression line were significantly
different from unity (p < 0.05). Further analyses of the regres‐
sion model showed that for most of the counties of the north‐
eastern part of the state (including Dixon, Dakota, Wayne,
Cuming, Thurston, and Burt), yields for rainfed crops were
underpredicted (higher value of residual SD) (figs. 4a and 4b)
even though precipitation is in the adequate range for crop
production in those counties (fig. 2a). This is because precipi‐
tation is not the only limiting factor driving crop yield, and
other factors such as evapotranspiration, air temperature, so‐
lar radiation, soil type and water‐holding capacity, organic
matter content, pH, irrigation management, crop characteris‐
tics, disease and pests pressure, soil management, and other
management  practices impact the yield, influencing the rela‐
tionship between precipitation and irrigated and rainfed
yields. Similarly for the irrigated crops, yield was underpre‐
dicted for the counties in the central part of the state. Since
precipitation is less in these counties as compared with the
counties in the eastern part, irrigation has more influence on
yield predictions. In general, the regression model overpre‐
dicted the yield for high‐yielding conditions and underpre‐
dicted for low‐yielding conditions. On a statewide average,
the R2 values were greater for rainfed maize and soybean than
for irrigated maize and soybean (i.e., R2 = 0.80, 0.77, 0.41,
and 0.42 for rainfed maize, rainfed soybean, irrigated maize,
and irrigated soybean, respectively; table 8).

When compared to the OLS predictions, the GWR tech‐
nique provided better predictions of yields for both irrigated
and rainfed crops. When the R2 values in table 6 and 8 are
considered, the R2 values for the GWR predictions were 13%
and 16% higher for irrigated maize and soybean than the R2

values for the OLS regression. The GWR predictions were
further improved for rainfed maize and soybean, with 44%
and 42% greater R2 for GWR as compared to the OLS regres‐
sion. The ability of GWR to account for spatial non‐
stationarity, especially for the rainfed conditions, provided
enhanced yield predictions across the Nebraska counties.

LONG‐TERM AVERAGE SEASONAL PRECIPITATION VS.

PREDICTED YIELD USING GWR
The measured and predicted maize and soybean yields for

irrigated and rainfed conditions using seasonal total (May 1
to September 30) precipitation are presented in figures 5a
through 5d. The values of spatial autocorrelation (Moran's
I�test) for the spatial randomness of the mean yield vs. mean
seasonal total precipitation are presented in table 9, and the
statistical analyses are presented in table 10. For rainfed
crops, there was a strong correlation between seasonal pre‐
cipitation and yield, with R2 of 0.73 and 0.76 for maize and
soybean, respectively. The residuals are spatially autocorre‐
lated for all four crops (table 9).

Table 9. Values of the spatial autocorrelation (Moran's
I test) for spatial randomness of mean yield vs.
mean seasonal precipitation GWR residuals.

Rainfed
Maize
Yield

Residual

Irrigated
Maize
Yield

Residual

Rainfed
Soybean

Yield
Residual

Irrigated
Soybean

Yield
Residual

Moran's I
(p‐value)

0.69
(<0.001)

0.25
(<0.001)

0.35
(<0.001)

0.42
(<0.001)

Table 10. Predicted yields for Nebraska counties for the observation
period of 1996‐2008 using mean seasonal total precipitation

(N = number of counties, SE = standard
error, and DF = degrees of freedom).

Crop N R2 SE DF F‐Ratio p > F

Rainfed maize 89 0.73 919 87 147.68 <0.0001
Rainfed soybean 75 0.76 237 73 150.44 <0.0001
Irrigated maize 91 0.36 564 89 32.35 <0.0001

Irrigated soybean 80 0.39 230 78 19.98 <0.0001

As found with yield vs. annual total precipitation, the cor‐
relation between seasonal precipitation and yield for rainfed
crops was stronger than for irrigated crops (table 9). For irri‐
gated crops, 36% of the variability in the mean yield was ex‐
plained by the mean seasonal precipitation for irrigated
maize and 39% for irrigated soybean. The GWR SD residual
maps indicate that the residuals were within the 2.5 SD range,
which was higher than the SD with the annual precipitation.
For all four crops, less than 2% of the counties fell outside the
1.5 SD range. The standard error of estimation for rainfed
maize was higher when using seasonal precipitation than
when using annual precipitation. The slopes of the regression
line between precipitation and yield were significantly dif‐
ferent from unity (p < 0.05).

LONG‐TERM AVERAGE MONTHLY PRECIPITATION VS.
PREDICTED YIELD USING GWR

Correlations between long‐term average monthly total
precipitation for May, June, July, August, and September vs.
long‐term county average yield for rainfed maize, rainfed
soybean, irrigated maize, and irrigated soybean are presented
in figures 6 through 9. The R2 values between monthly pre‐
cipitation and yields are summarized in figure 10. The residu‐
al maps for yield vs. precipitation for each month (May, June,
July, August, and September) for each county for rainfed
maize, rainfed soybean, irrigated maize, and irrigated soy‐
bean are presented in figures 11, 12, 13, and 14, respectively.
The R2 values ranged from 0.80 to 0.90 for rainfed crops and
from 0.65 to 0.75 for irrigated crops. There were differences
in the impact of individual monthly total precipitation on
crop yield across the state (i.e., the R2 between individual
months' precipitation vs. yield varied from the eastern part
to the western part; data not shown). This is because while the
precipitation varied from east to west, differences in the im‐
pact of precipitation on yield are also due to differences in the
planting date across the state. In the eastern part, maize hy‐
brids that have a longer maturity date (114 to 120 days) are
planted. The maturity date of the maize hybrids planted in the
central region is usually 112 to 113 days, and the maturity
date of the hybrids planted in the western portion of the state
is shorter (90 to 95 days). Depending on the location in the
state, planting date, climate conditions, and hybrid, the po‐
tential for kernel development for maize normally begins in
June, tasseling usually begins in mid‐July, silking/pollination

s-vsharma3
Highlight

s-vsharma3
Highlight
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1:1 line

y = 0.7442x + 1366.3
R2 = 0.83
St. Error = 752 kg/ha
N = 89

(d)1:1 line

y = 0.7517x + 1275.5
R2 = 0.87
St. Error = 653 kg/ha
N = 89

(c)

1:1 line

y = 0.6535x + 1902.6
R2 = 0.73
St. Error = 924 kg/ha
N = 89

(b)1:1 line

y = 0.7018x + 1621.1
R2 = 0.75
St. Error = 884 kg/ha
N = 89

(a)

1:1 line

y = 0.7443x + 1381
R2= 0.84
St. Error = 737 kg/ha
N = 89

(e)

Figure 6. Predicted vs. observed rainfed maize yields across Nebraska using geographically weighted regression from mean monthly precipitation for
(a) May, (b) June, (c) July, (d) August, and (e) September.

occurs in late July, and grain fill occurs during early to mid‐
August across the study region. The most critical growth
stage for maize is usually between tasseling and silking. Dur‐
ing this stage, plant water stress can delay silking relative to
pollen shedding and can reduce seed set. Usually, the water
stress during the vegetative growth period is not as critical as
the tasseling‐silking stage, and the stress during the grain fill
can be intermediate in terms of its impact on yield (Musick
and Dusek, 1980), although maintaining healthy plants in all
growth stages is important for achieving high yields.

Another variable that can cause spatial non‐stationarity of
the relationship between the yield and precipitation is the sig‐
nificant variations in tillage managements that are practiced
by maize and soybean farmers in Nebraska. Based on the sur‐
vey conducted by the USDA Natural Resources Conserva‐
tion Service (USDA‐NRCS, 2009), the tillage practices not
only change with locations but also show great variability for
the same location and same crop between farmers. For exam‐
ple, based on the assessment by the USDA‐NRCS, a larger

percentage of maize was planted on no‐till in the eastern part
of Nebraska than in the central and western parts. Counties
like Madison, Douglas, Johnson, Sarpy, Gage, and Jefferson
in eastern Nebraska had >77% of the planted maize as no‐till.
Only one county (Banner) in western Nebraska had more than
70% of the maize land area planted as no‐till. For soybean,
eastern Nebraska had a higher percentage of land planted on
no‐till than the central part. Soybean is not grown extensively
in western and north‐central Nebraska (USDA‐NRCS,
2009). Thus, there is a gradual decrease in both maize and
soybean no‐till planting land area from eastern to western Ne‐
braska. Interestingly, for maize, the percentage of no‐till
maize planting followed an opposite trend with precipitation.
Disk‐till is another commonly used tillage practice and is
usually concentrated in central and west‐central Nebraska.
These different tillage practices also impact the spatial non‐
stationarity relationships between precipitation and yield, as
tillage practice influence the available soil water and precipi‐
tation relationship (i.e., depending on several factors, disk‐
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1:1 line

y = 0.6965x + 674.77
R2 = 0.72
St. Error = 259 kg/ha
N = 75

(a)

1:1 line

y = 0.671x + 720.19
R2 = 0.80
St. Error = 223 kg/ha
N = 75

(c)

1:1 line

y = 0.6506x + 772.77
R2 = 0.73
St. Error = 260 kg/ha
N = 75

(d)

1:1 line

y = 0.4649x + 1181.6
R2 = 0.54
St. Error = 331 kg/ha
N = 75

(b)

1:1 line

y = 0.6767x + 712.86
R2 = 0.75
St. Error = 246 kg/ha
N = 75

(e)

Figure 7. Predicted vs. observed rainfed soybean yields across Nebraska using geographically weighted regression from mean monthly precipitation
for (a) May, (b) June, (c) July, (d) August, and (e) September.

Table 11. Predicted vs. observed yields for Nebraska counties for the period of 1996‐2008 using mean monthly precipitation (May 1 to
September 30). The intercept and slope were obtained from regression: Y = a + bx, where Y = predicted yield, and x = precipitation.

Crop N

Coefficient of Determination (R2) Standard Error (kg ha‐1)

May June July Aug. Sept. May June July Aug. Sept.

Rainfed maize 89 0.75 0.73 0.87 0.83 0.84 884 924 653 752 737
Rainfed soybean 75 0.72 0.54 0.80 0.73 0.75 259 331 223 260 246
Irrigated maize 91 0.35 0.40 0.56 0.47 0.50 567 548 485 526 510

Irrigated soybean 80 0.36 0.50 0.67 0.52 0.52 235 210 176 213 212

till fields, in general, may have greater soil evaporation than
no‐till fields).

The July precipitation was the most critical for the high
crop yield for both crops under irrigated and rainfed condi‐
tions. This is most likely related to the sensitivity of maize to
water stress during the critical growth stages (tasseling and
silking), which usually occurs in July, depending on the loca‐
tion in the state, as planting date varies from east to west. July
precipitation had more impact on maize yield than on soy‐
bean under rainfed conditions. In all months and in both irri‐
gated and rainfed treatments, yield was proportional to
precipitation.  For irrigated yields, July precipitation had

more impact on soybean yield than on maize. The R2 values
with standard error values are presented in table 11. For
rainfed maize, the initial precipitation in May is more impor‐
tant for setting potential for the number and size of kernels,
whereas the precipitation in July is most important for yield
potential. Counties with more July precipitation usually had
higher yields. Our findings are in agreement with those of
other researchers who also reported that less precipitation
during the months of July, August, and September in the
Great Plains region can reduce yield (Robin and Domingo,
1953; Denmead and Shaw, 1960; Musick and Dusek, 1980;
Schlenker and Roberts, 2006). In a field study with maize in
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1:1 line

y = 0.5135x + 5061.2
R2 = 0.56
St. Error = 485 kg/ha
N = 91

(c)

1:1 line

y = 0.4226x + 5986.7
R2 = 0.47
St. Error = 526 kg/ha
N = 91

(d)

1:1 line

y = 0.4119x + 6133.5
R2 = 0.50
St. Error = 510 kg/ha
N = 91

(e)

1:1 line

y = 0.3669x + 6546.9
R2 = 0.40
St. Error = 548 kg/ha
N = 91

(b)

1:1 line

y = 0.3014x + 7261.6
R2 = 0.35
St. Error = 567 kg/ha
N = 91

(a)

Figure 8. Predicted vs. observed irrigated maize yields across Nebraska using geographically weighted regression from mean monthly precipitation
for (a) May, (b) June, (c) July, (d) August, and (e) September.

west‐central Nebraska, Payero et al. (2009) found that irriga‐
tions applied in July had the highest positive correlation with
yield. This high correlation decreased considerably for ir‐
rigations applied in August and became negative for irriga‐
tions applied in September. The best positive correlation
between the soil water deficit factor and yield occurred dur‐
ing weeks 12 through 14 from crop emergence, during the
“milk” and “dough” growth stages. Yield was poorly corre‐
lated to stress during weeks 15 and 16, and the correlation be‐
came negative after week 17. They reported that if water is
limiting, then applying a larger proportion of the allocation
in July is a good strategy, which supports our findings that for
both irrigated and rainfed maize and soybean, July precipita‐
tion had the strongest correlation with yield (table 11, fig. 10).

The GWR SD residual maps indicate that the residuals
were usually within the 1.5 SD range (figs. 11 through 14).
The GWR analysis showed a significant relationship be‐
tween observed and predicted yield (table 11). The t‐test
showed that the predicted values for intercept and slope of the

regression line were significantly different from unity (p <
0.05). Similarly, for rainfed soybean, May precipitation is
important for the initial potential pod development, and July
precipitation is most important for maximum yield.

The R2 values were lower for irrigated maize and soybean
than for rainfed conditions and ranged from 0.30 to 0.70 and
from 0.56 and 0.67 for irrigated maize and soybean, respec‐
tively, for July. Counties with higher July precipitation had
higher yields. The GWR SD residual maps indicate that the
residuals for irrigated crops were usually within the 2.5 SD
range (figs. 11 through 14). When all the months are consid‐
ered, none of the counties fell outside the 2.5 SD range for
July. The relationship between observed and predicted yield
was significant (p < 0.05) (table 12). In most cases, the GWR
model performed well in predicting county‐average yields as
a function of precipitation across Nebraska, except for under‐
predicting for the northeast part of the state. In general, the
model overpredicted yields for high‐yielding conditions and
underpredicted for low‐yielding conditions.
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1:1 line

y = 0.4339x + 1945.7
R2 = 0.52
St. Error = 213 kg/ha
N = 80

(d)

1:1 line

y = 0.409x + 2010.1
R2 = 0.50
St. Error = 210 kg/ha
N = 80

(b)

1:1 line

y = 0.2823x + 2463.4
R2 = 0.36
St. Error = 235 kg/ha
N = 80

(a)

1:1 line

y = 0.5877x + 1420.3
R2 = 0.67
St. Error = 176 kg/ha
N = 80

(c)

1:1 line

y = 0.387x + 2112.9
R2 = 0.52
St. Error = 211 kg/ha
N = 80

(e)

Figure 9. Predicted vs. observed irrigated soybean yields across Nebraska using geographically weighted regression from mean monthly precipitation
for (a) May, (b) June, (c) July, (d) August, and (e) September.

Table 12. F‐ratio statistics of mean yields for observation period of 1996‐2008 using mean monthly precipitation (May 1 to September 30).

Crop N DF

F‐Ratio

p > FMay June July August September

Rainfed maize 89 87 169.45 115.32 46.36 111.57 53.51 <0.0001
Rainfed soybean 75 73 145.55 41.59 18.34 51.8 30.17 <0.0001
Irrigated maize 91 89 26.75 21.19 39.87 35.27 9.8 <0.0001

Irrigated soybean 80 78 17.92 4.9 22.8 17.22 6.88 <0.0001
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Figure 10. Coefficient of determination (R2) between observed and predicted irrigated and rainfed maize and soybean yields using geographically
weighted regression from mean monthly precipitation (May‐September).
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(b)(a)

(d)

(c)

(e)
< -2.5 Std. Dev.

-2.5 - -1.5 Std. Dev.

-1.5 - -0.5 Std. Dev.

-0.5 - 0.5 Std. Dev.

0.5 - 1.5 Std. Dev.

1.5 - 2.5 Std. Dev.

> 2.5 Std. Dev.

No Data

Figure 11. Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for rainfed maize showing counties where yield is under‐ or
overpredicted based on the data presented in figure 6.

(d) (e)
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Figure 12. Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for rainfed soybean showing counties where yield is under‐ or
overpredicted based on the data presented in figure 7.
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Figure 13. Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for irrigated maize showing counties where yield is under‐ or
overpredicted based on the data presented in figure 8.
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(e)(d)
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Figure 14. Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for irrigated soybean showing counties where yield is under‐
or overpredicted based on the data presented in figure 9.

CONCLUSIONS
Variations in irrigated and rainfed maize and soybean

yield at the county level were analyzed for the state of Ne‐
braska for 1996 to 2008. Geographically weighted regression
(GWR) and ordinary least square (OLS) models were used to
develop relationships between yield and precipitation. The
GWR techniques accounts for the spatial non‐stationarity of
the relationships between precipitation and crop yields. The
yields on a county level and statewide average basis were cor‐
related to both stationary (point measurements and spatially
interpolated)  annual (January to December), seasonal (May‐
September), and monthly (May, June, July, August, and Sep‐
tember) precipitation for all 93 counties. The spline method
was used to interpolate the spatial distribution of precipita‐
tion across the state. Precipitation was regressed with irri‐
gated and rainfed maize and soybean to describe the maize
and soybean yield as a function of precipitation. When GWR
model‐predicted  yields were considered, the performance of
GWR in estimating yield for both maize and soybean under
irrigated and rainfed conditions was significantly better than
the performance of OLS. When the OLS regression model
was used, there was a general trend of linear correlation be‐
tween observed yield and long‐term average mean annual to‐
tal precipitation, with a varying coefficient of determination
(R2). For rainfed crops, 67% of the variability in mean yield
was explained by the mean annual precipitation. About 23%
and 17% of the variability in mean yield was explained by
mean annual precipitation for irrigated maize and soybean,
respectively.

The performance of the GWR technique in predicting
yields was significantly better than the performance of OLS.
When the GWR technique was used, for both rainfed maize
and soybean, 77% to 80% of variation in yield was explained
by the mean annual precipitation alone. For irrigated crops,
42% of the variation in the yield was explained by the mean
annual precipitation. For rainfed crops, there was a strong
correlation between seasonal precipitation and yield, with R2

of 0.73 and 0.76 for maize and soybean, respectively. The
mean annual total precipitation was a better predictor of
rainfed maize yield than rainfed soybean yield. Correlation
between precipitation and yield were lower for irrigated

maize and soybean, and irrigated yields had lower standard
error of prediction than rainfed yields. On a statewide aver‐
age, July precipitation had the highest correlation with yield
for both maize and soybean. Our study showed the superiori‐
ty of the GWR technique over the conventional OLS regres‐
sion approach in analyzing the relationship between yield
and precipitation and predicting yields for irrigated and
rainfed maize and soybean. The analyses of this study can be
useful to predict maize and soybean yields as a function of
spatially interpolated monthly precipitation ahead of the har‐
vest season. The superiority of the GWR technique is mainly
due to accounting for the impact of the spatial non‐
stationarity of the precipitation vs. yield relationships. The
stationary attributes of the OLS model present a challenge in
predicting yields on large scales. In addition to the precipita‐
tion, further application and evaluations of the relatively new
GWR technique in similar agricultural research topics can
improve the yield predictions by accounting for the spatial
non‐stationarity  of other climatic variables (i.e., air tempera‐
ture, solar radiation, etc.) and management practices.
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