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Abstract

Claudication is the most common symptomatic manifestation of peripheral arterial disease (PAD), producing significant ambulatory

compromise. The purpose of this study was to use advanced biomechanical gait analysis to determine the gait alterations occurring in

claudicating patients both before and after onset of claudication pain in their legs. Hip, knee, and ankle joint moments were measured in

claudicating patients (age: 64.4678.47 years; body mass: 80.70712.64 kg; body height: 1.7270.08m) and were compared to

gender–age–body mass–height-matched healthy controls (age 66.2779.22 years; body mass: 77.89710.65 kg; body height:

1.7470.08m). The claudicating patients were evaluated both before (pain-free (PF) condition) and after (pain condition) onset of

claudication pain in their legs. Thirteen symptomatic PAD patients (26 claudicating limbs) with bilateral intermittent claudication (IC)

and 11 healthy controls (22 control limbs) were tested during level walking at their self-selected speed. Compared to controls, PAD hip

and ankle joints demonstrated significant angular kinematics and net internal moment changes. Alterations were present both in PF and

pain conditions with several of them becoming worse in the pain condition. Both PF and pain conditions resulted in significantly reduced

peak hip extensor moment (5.6271.40 and 5.6371.33% BW�BH, respectively) during early stance as compared to controls

(7.5371.16% BW�BH). In the pain condition, PAD patients had a significantly reduced ankle plantar flexor moment (7.5671.41%

BW�BH) during late stance as compared to controls (8.6571.27% BW�BH). Furthermore, when comparing PF to pain conditions,

there was a decreased peak plantar flexor moment (PF condition: 8.2371.37 vs. pain condition: 7.5671.41% BW�BH) during late

stance. The findings point to a weakness in the posterior compartment muscles of the hip and calf as being the key factor underlying the

PAD gait adaptations.

Our findings establish a detailed baseline description of the changes present in PAD patient’s joint angles and moments during

walking. Since IC is primarily a gait disability, better understanding of the abnormalities in joint and muscle function will enhance our

understanding of the gait impairment and may lead to novel, gait-specific treatments.

r 2008 Elsevier Ltd. All rights reserved.

Keywords: Peripheral arterial disease; Claudication; Joint moment; Biomechanics; Gait

1. Introduction

Intermittent claudication (IC) is the most common
symptomatic manifestation of peripheral arterial disease
(PAD) presenting as ischemic leg muscle pain and gait

dysfunction. Claudication pain is the result of exercise-
induced reduction in blood supply to the working muscle
of the lower extremity (Meru et al., 2006). This ischemic
pain is induced by physical activity (i.e. walking) and
relieved during rest. IC and its associated ambulatory
dysfunction are associated with poor health outcomes,
physical dependence (Atkins and Gardner, 2004; Gardner
and Clancy, 2006) and impaired quality of life (Liles et al.,
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2006; Menard et al., 2004). Currently, baseline ambulatory
impairment and success of treatment (e.g., supervised
treadmill based exercise, angioplasty, bypass) are evaluated
using limited clinical (resting Ankle–Brachial Index (ABI),
walking distance evaluation) (Oka et al., 2005) and
rudimentary time–distance tools (Gardner et al., 2001;
McDermott et al., 2001). Previous work has demon-
strated that PAD patients walk slower with a decreased
cadence, increased stance time, shorter stride length
and a narrower step width as compared with controls
(Gardner et al., 2001; McDermott et al., 2001).
However, these changes are unable to describe in detail
the specific physical impairments of claudicating
patients and in our understanding of its underlying
pathophysiology.

Detailed quantitative evaluation of gait can be provided
using advanced biomechanical analysis with joint kinetics
and kinematics (Fosang and Baker, 2006; Winter, 2005).
This analysis has been used extensively to characterize gait
abnormalities of patients with cerebral palsy (Chang et al.,
2006), stroke (McGinley et al., 2006; Yavuzer et al., 2006),
head injury (Basford et al., 2003; Vallée et al., 2006) and
other neuromuscular disorders (Barker et al., 2006; Runge
and Hunter, 2006). Furthermore, advanced biomechanical
analysis has been used to guide rehabilitation and surgical
treatment (Baker, 2006; Jöbges et al., 2004) and assess
therapeutic outcomes (Georgoulis et al., 2007; Stergiou
et al., 2007). Therefore, the purpose of the present study
was to utilize advanced biomechanical analysis in order to
determine the gait impairment of claudicating PAD
patients. Joint kinetic and kinematic parameters were
evaluated in PAD patients before and after the onset of
claudication pain while walking in pain-free (PF) and pain
(P) conditions, respectively. The PAD patients were
compared to gender-, height-, mass-, and age-matched
healthy controls. We also explored the relationships
between ABI, the Walking Impairment Questionnaire
(WIQ) subscale scores, and peak joint moments while
walking. We hypothesized that as patients experienced pain
due to lack of blood flow in the claudicating limbs, the gait
parameters would be significantly altered as compared to
baseline ambulation and healthy controls. We also
hypothesized that the resting ABI and WIQ scores would
positively correlate with the peak joint moments.

2. Methods

2.1. Subject inclusion and exclusion criteria

Thirteen male and female symptomatic PAD patients (age: 64.4678.47

years, body mass: 80.70712.64 kg; body height: 1.7270.08m) diagnosed

with moderate arterial occlusive disease and bilateral claudication were

recruited from the vascular surgery clinics of the local Medical Centers. In

addition, 11 gender-, age-, body mass-, and height-matched healthy

controls (age: 66.2779.22 years, body mass: 77.89710.65 kg; body

height: 1.7470.08m) volunteered to participate. Patients and controls

were screened and evaluated by two board certified vascular surgeons.

Those PAD patients with ambulation limiting cardiac, pulmonary,

neuromuscular, or musculoskeletal disease or those who experienced

pain or discomfort during walking for any reason other than claudication

(i.e. arthritis, low back pain, musculoskeletal problems, neuropathy) were

excluded. Patient evaluation included resting ABI (a measurement below

0.90 was present in all subjects with claudication), detailed history,

physical exam, and direct assessment/observation of the patient’s walking

impairment. A vascular surgeon observed the patient walking and

recorded all symptoms and signs affecting ambulation to ensure limitation

was secondary to claudication pain.

Control subjects had an ABI greater than 0.90 and no subjective or

objective ambulatory dysfunction. Controls were screened in a similar

fashion as PAD patients and were excluded for the same ambulation

limiting problems or if pain was experienced during walking. Informed

consent was obtained from all subjects prior to data collection according

to the guidelines of the University’s Institutional Review Board. The gait

of all recruited participants was tested in the Biomechanics Laboratory.

In addition to gait analysis, the self-administered modified WIQ (Coyne

et al., 2003) including the four subscales of (a) pain severity, (b) walking

distance, (c) speed, and (d) stair climbing was obtained from all recruited

patients.

2.2. Experimental procedure and data collection

Prior to data collection, reflective markers were placed at specific

anatomical locations of each subject’s lower limb utilizing the modified

Helen Hayes marker set (Houck et al., 2004). Each subject was directed to

walk using their self-selected pace over a 10m pathway, while three-

dimensional (3D) marker trajectories and ground reaction force data were

simultaneously collected. The 3D marker trajectories were captured with a

six high-speed real-time camera system (EvaRT 5.0, Motion Analysis

Corporation, Santa Rosa, CA) sampling at 60Hz. The ground reaction

force data were acquired with a Kistler force platform sampling at 600Hz.

Each patient was tested in the ‘‘PF’’ condition and then in the pain (P)-

induced condition. During PF testing, mandatory rest occurred between

walking trials to ensure that all trials were in a PF condition. Once patients

completed all PF trials, P trials were performed. In order to accomplish

this, a common clinical protocol was used where each patient was asked to

walk on an inclined treadmill with 10% grade at a speed of 1.5mph

(DiBianco et al., 1984) until claudication pain was established. The

patients were then immediately removed from the treadmill and returned

to the collection walk-way to acquire the data for the P condition without

the mandatory resting periods. Controls completed only the PF condition

trials. A total of five successful walking trials was collected from each leg

of the subjects for each condition. A successful walking trial was

determined by the subject’s foot being completely within the force

platform.

2.3. Data analysis

Peak values of the joint kinetics and kinematics measured in the sagittal

plane during the early and late stance phases were analyzed (Figs. 1 and 2).

Time–distance parameters were also analyzed from one complete stride of

each subject and for each testing condition. A low-pass fourth-order

Butterworth filter with a 6Hz cutoff was used to smooth the marker

trajectories during post-data processing. The OrthoTrak 6.29 software

package (Motion Analysis Corporation, Santa Rosa, CA) was used to

calculate the time–distance parameters, the joint kinetics, and kinematics

of each subject. The joint kinetics was scaled to body weight and body

height.

2.4. Statistical analysis

Group means of the peak joint kinetics, peak joint kinematics, and the

time–distance parameters were calculated for each testing condition (PF

and P conditions) by combining all legs of each group. Thus, an N of 26

limbs was generated for the PAD group and an N of 22 limbs for the
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control group. Paired t-tests were used to detect the effects of induced

claudication pain, and independent t-tests were used to examine group

effects for each dependent variable. Pearson correlations were performed

to evaluate the relationships between the patients’ ABIs, the peak joint

moments, and the WIQ four subscales in the PF and P conditions. The

level of significance was set at 0.05. Parametric statistics were utilized

because gait analysis data have been shown to demonstrate normality

(Benedetti et al., 1998).
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Fig. 1. The ensemble-average flexion and extension of both supporting limbs for the PAD patients (Pt: pain free and pain; N ¼ 26 limbs) and the controls

(Ctrl: N ¼ 22 limbs) during the stance phase for the (a) hip, (b) knee, and (c) ankle joints. Note: HFp1/HEp2: hip flexion/extension peak 1 and peak 2

during the early and late stance phases, respectively. KFp1/KEp2: knee flexion/extension peak 1 and peak 2 during the early and late stance phases,

respectively. APFp1/ADFp2: ankle plantar flexion/dorsiflexion peak 1 and peak 2 during the early and late stance phases, respectively. *po0.05,

significant differences between testing conditions (PF vs. P). **po0.05, significant differences between groups (patient PF condition vs. control PF).

***po0.05, significant differences between groups (patient P condition vs. control PF).
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Fig. 2. The ensemble-average net extensor/flexor moment curves of both supporting limbs for the patients (Pt: pain free and pain; N ¼ 26 limbs) and the controls

(Ctrl: N ¼ 22 limbs) during the stance phase for the (a) hip, (b) knee, and (c) ankle joints. A positive (+) value indicates a net internal extensor/plantar flexor

moment, and a negative (�) value indicates a net internal flexor/dorsiflexor moment. Moments are normalized to body weight (BW) and body height (BH). Note:

HEM p1/HFM p2: hip extension/flexion moment peak 1 and peak 2 during the early and late stance phases, respectively. KEM p1/KFM p2: knee extension/

flexion moment peak 1 and peak 2 during the early and late stance phases, respectively. ADFM p1/APFM p2: ankle dorsiflexion/plantar flexion moment peak 1

and peak 2 during the early and late stance phases, respectively. *po0.05, significant differences between testing conditions (PF vs. P). **po0.05, significant

differences between groups (patient PF condition vs. control PF). ***po0.05, significant differences between groups (patient P condition vs. control PF).

S.-J. Chen et al. / Journal of Biomechanics 41 (2008) 2506–2514 2509



3. Results

3.1. Time–distance gait measurements

The baseline clinical characteristics of the patients
(N ¼ 26 limbs) and the healthy controls (N ¼ 22 limbs)
are presented in Table 1. When compared to controls,
patients showed significant decreases in gait velocity, stride
length, and cadence and a significant increase in double
support time in the PF condition (Table 2). The differences
for the same parameters were further amplified when the P
condition was compared with the controls. Additional
significant differences were also present with increased
stance phase, increased double support phase, and
decreased swing phase (Table 2). No significant differences

were found for step width. Comparing the PF to P
conditions, there was a significant decrease in the gait
velocity and stride length (Table 2).

3.2. Joint angles

Several changes were noted both in the early stance (after
heel contact or braking phase) and the late stance (before
toe off or propulsion phase). In comparison with controls,
patients in the PF condition showed a significantly
decreased hip peak flexion (34.75177.1 vs. 30.95175.20,
respectively) during the early stance, a significantly
increased peak ankle plantar flexion (2.43172.11 vs.
3.63171.86, respectively) during the early stance, and a
significantly increased peak ankle dorsiflexion
(15.09173.01 vs. 17.14172.89, respectively) during late
stance. Once in the P condition, the results for the same
parameters remained significantly different compared to
healthy controls (Fig. 1). Furthermore when comparing PF
to P conditions, there was significantly increased peak hip
flexion (PF: 30.95175.20 vs. P: 32.41175.32) at the early
stance and significantly decreased peak hip extension at
late stance for the patients (Fig. 1). In addition, the P
condition resulted in a significantly increased peak ankle
dorsiflexion during the late stance.

3.3. Joint moments

Patients in the PF condition had a significantly reduced
peak hip extensor moment (5.6271.40% BW�BH) during
early stance as compared to controls (7.5371.16%
BW�BH) (Fig. 2a). In the P condition, patients were found
to have a significantly reduced peak hip extensor moment
(5.6371.33% BW�BH) during early stance and a sig-
nificantly reduced ankle plantar flexor moment
(7.5671.41% BW�BH) during late stance as compared to
controls (7.5371.16 and 8.6571.27, respectively; Fig. 2a and
c). Furthermore, when comparing PF to P, there was a
decreased peak plantar flexor moment (PF: 8.2371.37 vs. P:
7.5671.41) during the late stance (Fig. 2c).
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Table 2

Time–distance gait measurements for both patient and control groups

Patient (N ¼ 26 limbs) Control (N ¼ 22 limbs)

Pain free (PF) Pain (P) Pain free (PF)

Gait velocity (m/s) 1.1470.14�,�� 1.0770.11��� 1.3770.15

Stride length (m) 1.3470.11�,�� 1.2870.10��� 1.5270.10

Cadence (steps/min) 102.1978.49�� 100.7177.36��� 108.3479.05

Step width (m) 0.1470.04 0.1570.03 1.3270.03

Stance phase (%) 61.4572.57 61.7272.61��� 59.7573.04

Swing phase (%) 38.6272.59 38.3172.61��� 40.2573.04

Double support (%) 11.8771.95�� 12.3872.52��� 10.2171.97

�po0.05, significant differences between testing conditions (PF vs. P).
��po0.05, significant differences between groups (patient PF condition vs. control PF).
���po0.05, significant differences between groups (patient P condition vs. control PF).

Table 1

Baseline characteristics of bilateral claudicating PAD patients and healthy

control subjects

Clinical characteristics Patient (26 limbs) Control (22 limbs)

Gender (male/female) 12/1 10/1

Age (years) 64.4678.47 66.2779.22

Body mass (kg) 80.70712.64 77.89710.65

Body height (m) 1.7270.08 1.7470.08

Disease duration (years) 6.2573.84 0

ABI

Right limb 0.4970.16 1.170.11

Left limb 0.5670.17 1.170.09

Smokers, n (%) 0 (0) 0 (0)

Hypertension, n (%) 11 (84.6) 0 (0)

Diabetes mellitus, n (%) 0 (0) 0 (0)

Hyperlipidemia, n (%) 12 (92.3) 0 (0)

BMI 27.1674.51 25.6072.94

WIQ domains

Claudication pain 57.69715.76 n/a

Walking distance 47.37723.29 n/a

Walking speed 47.44728.31 n/a

Stair climbing 52.57725.77 n/a

Note: ABI: Ankle–Brachial Index; BMI: Body Mass Index; WIQ: Walking

Impairment Questionnaires; n: a number of subjects.
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3.4. Correlations

The ABI was found to have a moderate positive
correlation with the WIQ subcategory of distance
(r ¼ 0.67; Table 3). During the PF condition, the peak
ankle plantar flexor moment had moderate negative
correlations with the WIQ subcategories of speed
(r ¼ �0.65) and stairs (r ¼ �0.56). However, these correla-
tions became non-significant in the P condition. Moderate
positive correlations were found between the knee extensor
moment and the WIQ subcategories of pain (r ¼ 0.71) and
speed (r ¼ 0.70) in the PF condition. In the P condition,
an additional moderate positive correlation was found
between the WIQ subcategory stairs and the peak knee
extension moment (r ¼ 0.60). Knee flexion moment was
found to have a significant and moderate positive correla-
tion with the WIQ subcategory of pain (r ¼ 0.66) during
the PF condition, and the WIQ subcategory of speed
(r ¼ 0.68) as well as the WIQ subcategory of stairs
(r ¼ 0.71) during the P condition.

4. Discussion

The purpose of this study was to utilize advanced
biomechanical analysis to determine the gait impairment of
claudicating PAD patients. The present study is the first to
provide a detailed quantitative evaluation of the joint
kinematic and kinetic changes in PAD patients with
bilateral intermittent claudication. Other studies have
utilized either just joint kinematics from two-dimensional
gait analysis (Crowther et al., 2007) or just ground reaction
forces for a kinetic evaluation (Scott-Pandorf et al., 2007),
thus providing a limited functional evaluation in gait. Joint

kinetics and kinematics were examined while PAD patients
walked both with and without claudication pains and were
compared to those of gender-, age-, body mass-, and
height-matched controls. Our data demonstrate that the
gait of claudicating patients is significantly affected
both before and after they experience claudication symp-
toms in their legs. Taken literally, the gait of PAD patients
is abnormal from the first step they take. The character of
the PAD gait based on our time–distance data appears
overall ‘‘sluggish and tired’’ with the majority of the
changes becoming most apparent at the level of the hip
and ankle joints. The most important findings of this
work, however, lie with our joint angle and joint moment
data. These data in combination with our time–distance
findings suggest that the underlying mechanism in the
abnormal PAD gait is a weakness of the hip extensors
(gluteal and posterior thigh muscles) and ankle plantar
flexors (posterior calf compartment muscles). This weak-
ness appears to be the operating mechanism behind the
observed decreased hip extensor and ankle plantar flexor
moments. These are then translated at the hip level to
decreased hip joint flexion and at the ankle level to
increased ankle plantar flexion after heel contact (braking
period) and increased ankle dorsiflexion during push off,
finally producing the ‘‘sluggish and tired’’ appearing gait of
claudicating patients. Gait adaptations, but not ABI,
correlated well with all four WIQ subscales indicating
that gait impairment quantification via advanced biome-
chanical analysis may be the most clinically relevant
corollary of quality of life deterioration in claudicating
patients. ABI did not correlate well with the advanced
biomechanical parameters, suggesting that as a hemody-
namic index ABI is unable to capture the complexity of the
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Table 3

Pearson correlations (r) among the peak joint moments at hip, knee, and ankle during walking without pain (PF) and with pain (P) claudication

conditions, resting ABI, and the four WIQ subscales for pain, walking distance, speed, and stairs

Pain condition ABI WIQ pain WIQ distance WIQ speed WIQ stairs ADFM p1 APFM p2 KEM p1 KFM p2 HEM p1 HFM p2

Pain free (PF)

ABI 0.476 0.67� 0.45 0.21 0.44 �.17 0.25 0.09 0.19 0.05

WIQ: pain 0.59� 0.57� 0.24 �0.13 �0.075 0.71� 0.66� 0.00 �0.32

WIQ: distance 0.62� 0.35 0.20 �0.325 0.51 0.20 �0.11 �0.01

WIQ: speed 0.71� �0.06 �0.65� 0.70� 0.06 �0.43 �0.04

WIQ: stairs �0.35 �0.56� 0.54 �0.02 �0.23 �0.08

Pain (P)

ABI 0.32 �0.18 0.27 0.10 0.19 0.13

WIQ: pain �0.14 0.10 0.68� 0.09 0.03 �0.27

WIQ: distance 0.24 �0.15 0.41 0.13 �0.07 0.04

WIQ: speed 0.09 �0.53 0.71� 0.68� �0.42 0.15

WIQ: stairs �0.36 �0.53 0.60� 0.71� �0.29 �0.03

ADFM p1: ankle dorsiflexion/plantar flexion moment peak 1 during early stance phase.

APFM p2: ankle dorsiflexion/plantar flexion moment peak 2 during late stance phase.

KEM p1: knee extension/flexion moment peak 1 during early stance phase.

KFM p2: knee extension/flexion moment peak 2 during late stance phase.

HEM p1: hip extension/flexion moment peak 1 during early stance phase.

HFM p2: hip extension/flexion moment peak 2 during late stance phase.
�Correlation is significant at the 0.05 level (2-tailed).
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PAD effects on the locomotor pathophysiology of the
claudicating limb.

Regarding time–distance parameters, our data demon-
strate that compared with healthy controls, PAD patients
walk slower, with decreased cadence and decreased stride
length, thus spending more time in double support. This all
occurs while the PAD patient is walking PF and worsens
when the patient experiences claudication leg pain at which
time the PAD patient also experiences an increase in stance
time and a decrease of the swing phase. Our results are in
agreement with those of other studies in PAD patients
(Gardner et al., 2001; McDermott et al., 2001) and confirm
there is a definite and significant alteration in gait function
in patients with PAD at baseline.

Regarding joint kinematics and kinetics, our data
demonstrate that compared to healthy controls, PAD
patients had reduced peak hip flexion and an increased
peak ankle plantar flexion during braking followed by an
increased peak ankle dorsiflexion during propulsion.
Similarly, compared to healthy controls, PAD patients
had reduced peak hip extensor and peak ankle plantar
flexor moment. These joint angle and moment changes
were present while walking without pain and remained
significantly different or even worse with induced pain.
The reduced peak hip extensor moment is probably the
result of weakness and pain in the extensor muscle group
(gluteal and posterior hip compartment muscles). Further-
more, decreased ankle plantar flexor moment suggests
weakness of the posterior calf compartment muscles that
are unable to adequately propel the claudicating limb.
Taken together, these muscle group abnormalities can
explain the need claudicants have for shorter steps and
spending more time in double support, which in turn
results in decreased hip flexion during the braking phase
and hip extension during the propulsion phase of walking.
The increased ankle dorsiflexion prior to toe off maybe the
result of plantar flexor weakness or a mechanism that
allows further stretching of the posterior calf compartment
muscles in an attempt to assist them in propulsion.
Similarly, the initial increased ankle plantar flexion may
reflect weakness of the anterior calf compartment muscles
that are unable to hold the foot flexed after heel touch
down.

Our finding of reduced hip extensor moment is similar to
results from elderly populations (Kerrigan et al., 1998;
Riley et al., 2001). This result may also explain the
contradiction that is found in the literature regarding the
hip moment in the elderly, where two studies conducted by
Kerrigan et al. (1998) and Riley et al. (2001) have shown
deficiencies at the hip for the elderly, while Judge et al.
(1996) reported no significant differences at the hip.
Because PAD screening has not been performed in these
studies, it is possible that the results have been confounded
by PAD being present in different subsets of the patients
enrolled in these studies. It has been shown that 20–30% of
the elderly population above the age of 65 have PAD in
different stages (McDermott, 2002). Therefore, it becomes

obvious that appropriate patient screening with exclusion
of PAD patients ought to be a necessary step in the design
of future gait evaluation studies in the elderly. Decreased
plantar flexor moment is a finding observed not only in the
elderly (Kerrigan et al., 1998; Riley et al., 2001) but also in
disabled patients suffering mostly from osteoarthritis
(Kaufman et al., 2001; McGibbon et al., 2001). Reduced
plantar flexor function could affect swing initiation
(a significant decrease in swing phase has been observed
in this study) and trunk progression late in stance (Neptune
et al., 2001). Overall, the altered hip and ankle joint
kinematics and kinetics we have identified suggest that the
propulsion muscles of the leg are weak and fail to support
the body in forward progression. This hypothesis is
supported by previous findings in our and other labora-
tories demonstrating PAD patients have significantly
decreased propulsion forces (Scott-Pandorf et al., 2007)
and ankle plantar flexor strength (Scott-Okafor et al.,
2001).
As current guidelines recommend the use of qualitative

self-reported measures during studies performed for
claudication (Norgren et al., 2007), we evaluated the
correlation of advanced biomechanical parameters, ABI
and the WIQ subscales. The resting ABI is commonly used
as a measure of the hemodynamic compromise seen with
PAD (Bauman and Arthur, 1997; Gardner et al., 1997),
with a lower ABI value thought to indicate worse
claudication effects. ABI did not correlate well with any
of the advanced biomechanical parameters, but correlated
only with the WIQ subcategory of claudication distance.
This finding is in agreement with the results from
Izquierdo-Porrera et al. (2005). The above findings con-
tinue to underscore that ABI cannot adequately capture
the complexity of the PAD (Green, 2002; McKenna et al.,
1991). The small numbers of the significant correlations
(5 out of 24 correlations) found between the WIQ
subcategories and the joint kinetics may be attributed to
the subjective nature of the WIQ evaluation. The small
insignificant correlations between the ABI and the joint
kinetics suggest that the clinical ABI measurement may be
limited to provide a direct functional evaluation of PAD
patients’ walking.
Our work points to a weakness in the posterior

compartment muscles of the hip and calf as being the key
factor underlying the multitude of alterations that chara-
cterize PAD gait. Interestingly, this weakness is present
before and appears to worsen after the onset of claudica-
tion. This finding is consistent with previous reports that
demonstrate a muscle metabolic myopathy (Brass and
Hiatt, 2000) and an axonal polyneuropathy in the lower
extremities of PAD patients (Weber and Ziegler, 2002).
Specifically, a number of reports have documented a
metabolic myopathy in the PAD muscle that appears to
be secondary to defective mitochondrial bioenergetics and
related oxidative damage to skeletal muscle structures and
components (Pipinos et al., 2006). Mitochondria in PAD
muscle have abnormal ultrastructure (Marbini et al., 1986),
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damaged DNA (Bhat et al., 1999), altered enzyme
expression and activity, and abnormally high intermediates
of oxidative metabolism (Lundgren et al., 1988).
Most importantly, evaluations of claudicating muscle
mitochondrial bioenergetics demonstrate specific defects
in the complexes of electron transport chain with
associated compromised mitochondrial respiration
(oxidative phosphorylation) and ATP production
(Kemp, 2004; Pipinos et al., 2006). This is very similar to
those seen in mitochondrial myopathies (Kemp, 2004;
Pipinos et al., 2006). Recent work also demonstrates that
the mitochondriopathy of PAD muscle is associated with
evidence of significant oxidative damage to the muscle
components (Pipinos et al., 2006). Furthermore,
there is accumulating evidence suggesting that chronic
ischemia in PAD patients results in a consistent pattern of
electrodiagnostic abnormalities indicating axonal nerve
loss (Koopman et al., 1996; Weber and Ziegler, 2002).
Therefore, the impairments we have identified at baseline
may be reflecting a combination of myopathy and
neuropathy in the PAD limbs that becomes worse
when exercise-induced ischemia produces progressively
worsening ischemic muscle pain and restriction of the
lower extremity bioenergetics. The nature of these myo-
pathic and neuropathic changes and the way they are
related to the clinical biomechanical findings of leg
dysfunction should be the focus of intense future investiga-
tion and may hold the key to understanding PAD
pathophysiology.

In summary, biomechanical gait analysis indicates
significant abnormalities in the gait of claudicating
patients. These abnormalities are present both before and
after the onset of claudication with several of them
becoming worse after claudication onset. Our work points
to a weakness in the posterior compartment muscles of the
hip and calf as being the key factor underlying the
multitude of adaptations that characterize PAD gait. These
findings introduce new insights into the pathophysiology of
claudicating gait and suggest that biomechanical evalua-
tion may provide a firm foundation for optimal clinical
decision-making and assist in an objective measurement of
functional outcomes after medical and surgical therapy.
For example, vascular surgeons could use the altered gait
revealing a specific joint dysfunction of PAD patients to
further gain a close scrutinizing procedure about the level
of the occlusion prior to a vascular treatment. The altered
gait provides a better quantification of the gait abnorm-
ality, which subsequently can be addressed surgically to
further evaluate gait improvement for the patients by
comparing the data before and after treatment. More
importantly, the clinicians could use the altered gait to
provide a specific joint rehabilitation for PAD patients
instead of giving a whole body exercise on treadmill. Thus,
biomechanical analysis may facilitate the identification of
optimal rehabilitative regimens that could correct the
abnormal gait patterns, allowing for greater exercise
tolerance.
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