
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

2012 

Identification Of The Western Tarnished Plant Bug (Identification Of The Western Tarnished Plant Bug (Lygus Lygus 

HesperusHesperus) Olfactory Co-Receptor Orco: Expression Profile And ) Olfactory Co-Receptor Orco: Expression Profile And 

Confirmation Of Atypical Membrane Topology Confirmation Of Atypical Membrane Topology 

J. Joe Hull 
USDA-ARS, joe.hull@ars.usda.gov 

Eric J. Hoffmann 
USDA-ARS, eric.hoffmann@ars.usda.gov 

Omaththage P. Perera 
USDA-ARS, op.perera@ars.usda.gov 

Gordon L. Snodgrass 
USDA-ARS, gordon.snodgrass@ars.usda.gov 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

Hull, J. Joe; Hoffmann, Eric J.; Perera, Omaththage P.; and Snodgrass, Gordon L., "Identification Of The 
Western Tarnished Plant Bug (Lygus Hesperus) Olfactory Co-Receptor Orco: Expression Profile And 
Confirmation Of Atypical Membrane Topology" (2012). Publications from USDA-ARS / UNL Faculty. 1103. 
https://digitalcommons.unl.edu/usdaarsfacpub/1103 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 
Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17270521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/1103?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages


A r t i c l e

IDENTIFICATION OF THE WESTERN
TARNISHED PLANT BUG (Lygus
hesperus) OLFACTORY
CO-RECEPTOR ORCO:
EXPRESSION PROFILE AND
CONFIRMATION OF ATYPICAL
MEMBRANE TOPOLOGY
J. Joe Hull and Eric J. Hoffmann
USDA-ARS Arid Land Agricultural Research Center, Maricopa, Arizona

Omaththage P. Perera and Gordon L. Snodgrass
USDA-ARS, Southern Insect Management Research Unit, Stoneville,
Mississippi

Lygus hesperus (western tarnished plant bug) is an agronomically
important pest species of numerous cropping systems. Similar to other
insects, a critical component underlying behaviors is the perception and
discrimination of olfactory cues. Consequently, the molecular basis of
olfaction in this species is of interest. To begin to address this issue, we
utilized homology-based PCR as a commonly accepted abbreviation but if
necessary it is polymerase chain reaction methods to identify the L.
hesperus olfactory receptor co-receptor (Orco) ortholog, a receptor that has
been shown to be essential for olfaction. The L. hesperus Orco (LhOrco)
shares significant sequence homology with known Orco proteins in other
insects. Parallel experiments using the sympatric sister species, Lygus
lineolaris (tarnished plant bug), revealed that the Lygus Orco gene was
completely conserved. Surprisingly, a majority of the membrane topology
prediction algorithms used in the study predicted LhOrco to have both the
N and C terminus intracellular. In vitro immunofluorescent microscopy
experiments designed to probe the membrane topology of transiently
expressed LhOrco, however, refuted those predictions and confirmed that the
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protein adopts the inverted topology (intracellular N terminus and an
extracellular C terminus) characteristic of Orco proteins. RT-PCR analyses
indicated that LhOrco transcripts are predominantly expressed in adult
antennae and to a lesser degree in traditionally nonolfactory chemosensory
tissues of the proboscis and legs. Expression is not developmentally
regulated because transcripts were detected in all nymphal stages as well as
eggs. Taken together, the results suggest that LhOrco likely plays a critical
role in mediating L. hesperus odorant perception and discrimination.

C© 2012 Wiley Periodicals, Inc.

Keywords: Lygus hesperus; olfactory co-receptor; olfaction; immunofluorescent
microscopy; membrane topology

INTRODUCTION

The western tarnished plant bug, Lygus hesperus, belongs to a large complex of morpholog-
ically similar Lygus plant bug species from the Miridae family that includes Lygus lineolaris,
L. elisus, L. shulli, and L. rugulipennis among others (Schwartz and Foottit, 1998). They are
an economically important polyphagous hemipteran pest that primarily cause damage by
feeding on plant reproductive tissue resulting in deformation of developing fruit, reduced
vegetative growth, and feeding site necrosis (Strong, 1970). Lygus spp. affect more than
150 host plants including traditional crops such as cotton, strawberries, and alfalfa (Scott,
1977; Wheeler, 2001) as well as emerging oilseed crops that have significant potential as
biofuel feedstocks (Butts and Lamb, 1990; Turnock et al., 1995; Naranjo et al., 2008; Ritter
et al., 2010; Naranjo et al., 2011).

Like most insects, Lygus spp. interactions with their environment are predominantly
governed by chemical signals. Female L. hesperus have been shown to be strongly attracted
to volatiles from flowering alfalfa that have sustained feeding damage (Blackmer et al.,
2004; Blackmer and Cañas, 2005) as well as to volatiles from flowering lesquerella (Black-
mer and Byers, 2009). Female L. rugulipennis (European tarnished plant bug) are likewise
attracted to volatiles released by fava bean (Vicia faba) (Frati et al., 2008). Volatiles also trig-
ger sex specific responses. Putative sex pheromone components of L. rugulipennis females
have been shown to have an attractive effect on males in field tests (Innocenzi et al., 2005).
These behavioral responses are strongly correlated with the antenneal olfactory system.
Electrophysiological recordings of L. lineolaris antennal responses (electroantennograms;
EAG) showed that insect-produced butyrates and plant-derived green leaf volatiles both
triggered electrical activity (Chinta et al., 1994). Antennae in L. rugulipennis were likewise
reported to respond to volatiles from damaged and nondamaged host plants (Frati et al.,
2009) while male L. rugulipennis antennae were significantly more responsive than female
antennae to putative sex pheromone components (Innocenzi et al., 2004). In L. hesperus,
Williams et al. (2010) observed a correlation between EAG responses and behavioral re-
sponses for (E, E)-α-farnesene and (E)-β-ocimene, two plant volatiles emitted by alfalfa
(i.e., host plant) in response to damage.

In insects, olfactory detection of chemical odorants involves the activation of odorant
receptors (ORs) expressed within the olfactory sensory neurons of the antennae. Surpris-
ingly, insect ORs has been shown to be mechanistically and structurally distinct from their
mammalian counterparts (Ha and Smith, 2009; Nakagawa and Vosshall, 2009; Sato and
Touhara, 2009; Kaupp, 2010). Similar to G protein-coupled receptors (GPCRs), insect
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ORs contain seven transmembrane helices (TM). They, however, exhibit a unique mem-
brane topology in which the N terminus is intracellular and the C terminus is extracellular
(GPCRs exhibit the opposite topology) (Benton et al., 2006; Lundin et al., 2007; Smart
et al., 2008; Tsitoura et al., 2010) and share no sequence homology with vertebrate ORs
or vertebrate GPCRs (Wistrand et al., 2006). Insect ORs are frequently co-expressed with
a nonconventional OR previously referred to as OR83b in Drosophila melanogaster, OR2 in
Bombyx mori, and OR7 in mosquitoes, but which has recently been renamed olfactory re-
ceptor co-receptor (Orco) (Vosshall and Hansson, 2011). Unlike other insect ORs, which
exhibit little sequence homology, Orco is strikingly well conserved across insect species
(Sato and Touhara, 2009). Orco interacts with conventional ligand-specific ORs to form
heterodimeric complexes that are critical for stabilization and trafficking of conventional
ORs (Larsson et al., 2004; Benton et al., 2006). The OR-Orco complex forms a ligand-
gated ion channel at the plasma membrane that opens in response to odorant binding
with the odorant binding site likely residing in the conventional OR subunit (Nakagawa
et al., 2005; Sato et al., 2008; Wicher et al., 2008; Nichols et al., 2011). Despite contribut-
ing little to odorant binding and/or discrimination, the Orco subunit is critical for ion
channel formation (Larsson et al., 2004; Jones et al., 2011). Indeed, disruption of Orco
expression in Drosophila significantly impairs odorant responses (Larsson et al., 2004).
Consequently, identification of Orco genes in problematic insect species could facilitate
the development of novel pest management strategies.

In Lygus spp., little is known at the molecular level of olfaction beyond a single protein
termed Lygus antennal protein (LAP) (Dickens et al., 1995; Dickens et al., 1998; Vogt et al.,
1999), which as an odorant binding protein is thought to mediate the movement of apolar
chemical odorants through the aqueous antennae sensillum to the ORs housed within
the olfactory sensory neurons (Rützler and Zwiebel, 2005; Pelosi et al., 2006). Nothing
is known of Lygus spp. ORs. Furthermore, while Orco orthologs have been identified in
lice (Kirkness et al., 2010) and aphids (Smadja et al., 2009) (members of the hemipteroid
assemblage which also includes bugs), no bug Orco has been identified. Consequently, to
gain a better understanding of olfaction within L. hesperus specifically and bugs in general,
we sought to identify the Lygus Orco gene product and to determine its expression profile.

MATERIALS AND METHODS

Insect Rearing

Lygus hesperus were obtained from a laboratory colony maintained at the USDA-ARS
Arid Land Agricultural Research Center (Maricopa, AZ) that is periodically outbred with
locally caught conspecifics. Insects were reared on green beans and an artificial diet mix
(Debolt, 1982) in disposable packs as described (Patana, 1982). Insects were maintained
at 25◦C under 20% humidity and a L14:D10 photoperiod. L. lineolaris were obtained from
a laboratory colony maintained at the USDA-ARS Southern Insect Management Research
Unit (Stoneville, MS) under conditions similar to those described for L. hesperus.

Total RNA Extraction, cDNA Synthesis, and Degenerate PCR

Antennae were harvested from day 5–7 adult male and female L. hesperus, frozen im-
mediately and stored at −80◦C. Total RNA was isolated from frozen tissues using
TRI Reagent RNA Isolation Reagent (Sigma-Aldrich, St. Louis, MO) according to the
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manufacturer’s instructions. First strand cDNA was synthesized from approximately 1 μg
of total RNA using Thermoscript reverse transcriptase (Invitrogen, Carlsbad, CA) and
random hexamers using conditions recommended by the manufacturer. To identify the
L. hesperus Orco sequence, degenerate primers (F: 5′ATHAARGCNTGGTAYCCNTGG;
R: 5′CYTTYTGRCAYTGYTGRCANAC) were designed to conserved amino acid stretches
(IKAWYPW and VCQQCQK) of previously identified Orco sequences. Amplification was
performed using 0.7 μL of the cDNA template and 5 μL of each primer with ExTaq
DNA polymerase (Takara Bio Inc./Clontech, Madison, WI) and thermocycler conditions
consisting of 95◦C for 2 min followed by 5 cycles at 94◦C for 30 s, 60◦C for 30 s, and
72◦C for 60 s, then 5 cycles at 94◦C for 30 s, 55◦C for 30 s, and 72◦C for 60 s, then 35
cycles at 94◦C for 30 s, 50◦C for 30 s, and 72◦C for 60 s, and a final 5 min incubation
at 72◦C. PCR products were electrophoresed on a 1.3% agarose gel and visualized with
SYBR Safe (Invitrogen). Amplimers of the expected sizes were gel-excised using an EZNA
Gel Extraction kit (Omega Bio-Tek Inc., Norcross, GA), cloned into the pCR4TOPO-TA
cloning vector (Invitrogen), and sequenced.

Rapid Amplification of cDNA Ends (RACE)

To obtain the 5′ and 3′ ends of the L. hesperus Orco sequence, RACE PCR was per-
formed using cDNAs prepared from 2 μg DNase I-treated antennal RNA with a SMARTer
RACE cDNA Amplification kit (Clontech, Mountain View, CA) according to the manu-
facturer’s instructions. Touchdown PCR was performed using ExTaq with 0.5 μL cDNA
and the Universal Primer Mix 1 (UPM1) with gene specific primers (LH OR83b F1
RACE—5′ CGCTCTTGACTCGGTCGTACCCAA; LH OR83b R1 RACE—5′ ATCCGTCG-
TACCAGTGGCAACTGT) and thermocycler conditions consisting of: 95◦C for 2 min
followed by 5 cycles at 94◦C for 30 s, 70◦C for 20 s, and 72◦C for 90 s, then 5 cycles at
94◦C for 30 s, 68◦C for 20 s, and 72◦C for 90 s, then 30 cycles at 94◦C for 30 s, 62◦C
for 20 s, and 72◦C for 90 s, and a final 5 min incubation at 72◦C. Nested PCR was
then performed with a 0.5 μL aliquot of the first round PCR product using ExTaq and
UPM2 with gene specific primers (LH OR83b F2 RACE—5′ GTCGTACCCAACTCCGGC-
GACCT; LH OR83b F3 RACE—5′ CAGGAGTTGCTGGTCCGCTCTGC; LH OR83b R2
RACE—5′ CAGATGTTTCAGCTGCTCGCAAGC; LH OR83b R3 RACE—5′ GCAGAGCG-
GACCAGCAACTCCTG) and thermocycler conditions identical to those above. PCR prod-
ucts were electrophoresed on a 1.5% agarose gel and visualized as before. Amplimers of
the expected sizes were gel excised, subcloned into the pGEM-T Easy cloning vector
(Promega, Madison, WI), and sequenced. Merging the resulting 5′ and 3′ RACE se-
quence data with the internal fragment identified above gave a full-length cDNA with a
single open reading frame (ORF) of the expected size. Gene specific primers designed to
encompass the putative start and stop codons (LH OR83b start F—5′ ATGCAGAAAGT-
GAAGATGCAC and LH OR83b stop R—5′ TTATTTGAGCTGCACCAACAC) were used
in multiple independent reactions to amplify the LhOrco ORF. The same primer set was
used to amplify the L. lineolaris sequence from adult antennae derived cDNAs. Consensus
nucleotide sequence data have been deposited with the GenBank database under the
accession numbers: LhOrco, JQ639213; and LlOrco, JQ639214.

Sequence Analysis

Comparison of the LhOrco gene sequence with database sequences was performed
using BLASTx (http://blast.ncbi.nlm.nih.gov/). Sequences were aligned using the
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L-INS-I strategy in MAFFT (Katoh et al., 2005) and rendered with Jalview (Water-
house et al., 2009). Phylogenetic analysis was performed on the phylgeny.fr server
(http://www.phylogeny.fr) (Castresana, 2000; Guindon and Gascuel, 2003; Edgar, 2004;
Anisimova and Gascuel, 2006; Chevenet et al., 2006; Dereeper et al., 2010; 2008) using
52 sequences identified from BLAST analysis of the LhOrco sequence. Sequences were
aligned with MUSCLE v3.7 and the alignment curated using Gblocks v0.91b with default
settings. The phylogenetic tree was constructed using the maximum likelihood method
implemented in PhyML v3.0 with default settings and the graphical representation
generated using TreeDyn v198.3. Topology and transmembrane domain predictions were
performed using TMPred (http://www.ch.embnet.org/software/TMPRED_form.html)
(Hofmann and Stoffel, 1993), TMHMM v2.0 (http://www.cbs.dtu.dk/services/TMHMM/)
(Krogh et al., 2001), Phobius (http://phobius.sbc.su.se/) (Käll et al., 2007),
RHYTHM (http://proteinformatics.charite.de/rhythm/) (Rose et al., 2009),
TOPCONS (http://topcons.cbr.su.se/) (Bernsel et al., 2009), HMMTOP v2.0
(http://www.enzim.hu/hmmtop/) (Tusnády and Simon, 2001), and TopPred II
(http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::toppred) (von Heijne, 1992; Claros
and von Heijne, 1994).

RT-PCR Expression Profile of LhOrco

Total RNA was extracted using TRI Reagent RNA Isolation Reagent (Sigma-Aldrich) from
adult male or female L. hesperus antennae (100), legs (150–200), proboscis (50), day 6–
9 adult denuded heads (25 heads lacking antennae and proboscis), and day 6–9 adult
denuded bodies (3 bodies without heads, legs, or wings). Total RNA was also isolated
from the five nymphal developmental stages as well as eggs. First-strand cDNA synthesis
was performed using a SuperScript III First-Strand Synthesis System (Invitrogen) with
500 ng DNase I-treated total RNAs and random pentadecamers. A fragment of LhOrco
(nt 741–1264) was amplified from the resulting cDNAs using internal primers described
above. For control purposes, a fragment of the L. hesperus actin ORF (nt 1–554) was ampli-
fied using primers (F—ATGTGCGACGAAGAAGTTG; R—GTCACGGCCAGCCAAATC)
designed to the L. lineolaris sequence (DQ386914). PCR was performed using Sapphire
Amp Fast PCR Master Mix (Clontech) with thermocycler conditions consisting of 95◦C
for 2 min followed by 35 cycles at 94◦C for 20 s, 58◦C for 20 s, and 72◦C for 30 s. Products
were electrophoresed on a 1.5% agarose gel and visualized as before.

Construction of Insect Expression Plasmids

Insect expression vectors were constructed to examine the cellular localization and topol-
ogy of LhOrco. Initially, a fluorescent chimera of LhOrco tagged at either the N or
C terminus with enhanced green fluorescent protein (EGFP) was generated via overlap
extension-PCR (OE-PCR) (Wurch et al., 1998) using KOD Hot Start DNA polymerase (Toy-
obo/Novagen, EMD Biosciences, San Diego, CA). N-terminally tagged EGFP-LhOrco was
generated using a sense EGFP specific primer (EGFP F—5′ATGGTGAGCAAGGGCG)
with a chimeric antisense primer (EGFP-LHOR83b R—5′ GCATCTTCACTTTCTG-
CATCTTGTACAGCTCGTCC) and a chimeric sense primer (EGFP-LHOR83b F 5′—
GGACGAGCTGTACAAGATGCAGAAAGTGAAGATGC) with the gene specific antisense
LH OR83b stop R primer above. C-terminally tagged LhOrco-EGFP was generated
using the gene specific sense LH OR83b start F primer above with a chimeric an-
tisense primer (LHOR83b-EGFP R—5′ CTCGCCCTTGCTCACCATTTTGAGCTGCAC-
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CAACAC) and a chimeric sense primer (LHOR83b-EGFP F—5′ GTGTTGGTGCAGCT-
CAAAATGGTGAGCAAGGGCGAG) with a gene specific antisense EGFP primer (EGFP
R—5′TTACTTGTACAGCTCGTCCATG). The initial thermocycler conditions consisted
of: 95◦C for 2 min followed by 21 cycles at 95◦C for 20 s, 58◦C for 10 s, and 70◦C for
15 s with a final 5 min incubation at 72◦C. Thermocycler conditions for joining the re-
spective fragments consisted of: 95◦C for 2 min followed by 21 cycles at 95◦C for 20 s,
58◦C for 10 s, and 70◦C for 45 s with a final 5 min incubation at 72◦C. The resulting
PCR products were gel excised, treated with ExTaq DNA polymerase, cloned into the
pIB/V5-His TOPO TA insect expression vector (Invitrogen), and sequence verified. In
parallel experiments, PCR primers were used to attach a 6x-His epitope tag to the N
terminus of LhOrco. N-terminally tagged LhOrco (His-LhOrco) was generated using a
sense primer (His-StuI-LhOR83b F—5′ ATGCATCATCACCATCACCATAGGCCTATGCA-
GAAAGTGAAG) containing a new start codon, the 6x-His epitope tag, and a StuI site
upstream of the LhOrco sequence and the gene specific antisense LH OR83b stop R
primer. As before, PCR was performed using plasmid DNA as a template with KOD Hot
Start DNA polymerase and thermocycler conditions consisting of: 95◦C for 2 min followed
by 21 cycles at 95◦C for 20 s, 58◦C for 10 s, and 70◦C for 30 s with a final 5 min incubation
at 72◦C. The resulting PCR product was gel excised, treated with ExTaq DNA polymerase,
cloned into the pIB/V5-His vector, and sequence verified. C-terminally tagged LhOrco
(LhOrco-His) was constructed by subcloning the complete LhOrco ORF minus the stop
codon into the pIB/V5-His vector such that the 6x-His epitope tag is derived from the
vector sequence; this results in a 45 amino acid C-terminal addition that includes the
6x-His tag. The resulting plasmid was sequence verified as before. For a positive control,
a L. hesperus Gαi gene product lacking the endogenous stop codon was likewise inserted
into the pIB/V5-His expression vector using primers (F—TAATGGGTTGCGCGATCAG;
R—GAATAGGCCACAATTTTTTAAGTTT) designed to LhGαi (JF273641).

Transient Expression in Cultured Insect Cells

Trichoplusia ni (Tni) cells (Orbigen Inc., San Diego, CA) were maintained as adherent
cultures in serum-free insect culture media (Orbigen Inc.). Tni cells seeded into 35 mm
#1.5 glass bottom dishes (In Vitro Scientific, Sunnyvale, CA) were transfected with 2 μg
plasmid using 4 μL Insect Gene Juice transfection reagent (Novagen, EMD Biosciences,
San Diego, CA) for 5 h. Transfection media was then removed, the cells washed twice
with 1 mL serum-free media and maintained in serum-free media for 48 h at 28◦C. Cells
transfected with the EGFP-LhOrco and LhOrco-EGFP chimeras were washed twice with
1 mL IPL-41 insect media (Invitrogen) and imaged in 2 mL IPL-41 using an Olympus
FSX-100 fluorescence microscope with FSX-BSW imaging software (Olympus, Center
Valley, PA).

Immunocytochemistry

To examine the cellular location of the 6x-His tagged LhOrco constructs, cells 48 h
post-transfection were washed twice with 1 mL IPL-41 insect media and then fixed in
3.5% formalin/IPL-41 for 15 min at 4◦C. Cells were washed 4× with 1 mL phosphate-
buffered saline (PBS) and then blocked for 1 h at 25◦C in PBS/10% fetal bovine serum
or permeabilized with PBS/10% fetal bovine serum/0.1% Triton X-100. Cells were then
incubated for 2 h at 25◦C with a rabbit polyclonal anti-His antibody (SC-804, 200 μg/mL;
Santa Cruz Biotech. Inc., Santa Cruz, CA) diluted 1:50. After washing, the cells were
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incubated for another 2 h at 25◦C with a 1:100 dilution of goat anti-rabbit IgG-TRITC
(1 mg/mL; SouthernBiotech, Birmingham, AL). Cells were washed again and imaged in
2 mL IPL-41 on an Olympus FSX-100 fluorescence microscope. Images were processed
in Adobe Photoshop 7.0 by manually increasing the contrast to +40.

RESULTS

Molecular Cloning and Sequence Analysis of the L. hesperus Orco

To gain a better understanding of the molecular basis of olfaction in Lygus, we sought to
clone and characterize L. hesperus Orco (LhOrco). Using degenerate primers designed
to conserved amino acid stretches of known Orco homologs in conjunction with cDNAs
generated from adult L. hesperus antennae total RNAs, we obtained an amplimer of the
expected fragment size (∼760 bp). Sequence analysis revealed that the amplimer was
homologous to known Orco sequences. Assembling 5′ and 3′ RACE data generated a
1710 nt cDNA encompassing a 1422 nt ORF with a 249 nt 5′ untranslated region and a
39 nt 3′ UTR/polyA tail. Gene specific primers designed to the putative start and stop
codons generated an amplimer of the expected size. The LhOrco ORF encodes a protein
of 473 amino acids that has significant sequence identity with Orco proteins from various
insect species across a number of orders. Highest sequence identity (63%) was observed
with the Tribolium castaneum olfactory receptor 16 (CAM84014.1) while 58% identity was
observed with D. melanogaster OR83b (AAT71306.1), the first Orco identified. Given the
functional importance of Orco in mediating insect olfaction, we sought to determine the
degree of sequence conservation in the closely related species, L. lineolaris. Using the same
primer set used to clone the LhOrco ORF, we generated an amplimer of identical length
from adult L. lineolaris antennae cDNAs. Sequence comparison between the LhOrco and
LlOrco coding sequences revealed that they were 100% identical (Fig. 1), supporting the
essential function this gene product has in insect olfaction.

An atypical membrane topology (intracellular N terminus and extracellular C termi-
nus) has been demonstrated for both the D. melanogaster Orco (DmOrco) and Anopheles
gambiae Orco (AgOrco) (Benton et al., 2006; Lundin et al., 2007; Tsitoura et al., 2010). We
consequently sought to computationally determine the membrane topology of LhOrco.
TMHMM2.0 has been frequently used to predict the membrane topology and TM location
of Orco orthologs (Krieger et al., 2003; Lu et al., 2009; Wang et al., 2012); however, the pro-
gram predicted 6TMs for LhOrco with both termini intracellular (Fig. 2). To reconfirm
the utility of the prediction algorithm, the DmOrco and the putative Sitobion avenae Orco
(ACT37280) sequences were likewise analyzed. Both were predicted to contain 7TMs with
the expected atypical membrane topology (data not shown) suggesting that there may be
some unique feature to the LhOrco sequence. We therefore sought to obtain a consensus
across several prediction algorithms. HMMTOP, RHYTHM, and TOPCONS, the latter of
which provides a consensus prediction based on five other programs, all predicted 6TMs
with intracellular N and C terminal tails (Fig. 2). Phobius predicted an intracellular N
terminus and an extracellular C terminus but found only 5TMs, whereas TMpred and
TopPred II predicted 7TMs and the characteristic atypical membrane topology.

Aligning the LhOrco amino acid sequence with Orco sequences from insect species
representing six different insect orders (Diptera, Lepidoptera, Coleoptera, Hemiptera,
Hymenoptera, and Orthoptera), revealed significant sequence conservation and sug-
gested the likely presence of 7TMs (Fig. 3). Indeed, residues that comprise portions of
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***

Figure 1. Nucleotide alignment of the Lygus hesperus and Lygus lineolaris olfactory co-receptor (Orco) ORFs.
The start codon (ATG) is shown boxed and the stop codon is indicated by ***.

TMs 6 and 7 are reasonably conserved in LhOrco in terms of position and side-chain
character. More specifically, residues 393–399 (TVVGYLG) in DmOrco TM6 are thought
to comprise an ion selectivity motif with Val395 and Leu398 playing critical roles (Wicher
et al., 2008). This motif is moderately conserved in LhOrco (residues 380–386; STIGYLV)
with the Leu398 position absolutely conserved and the hydrophobic character of the
Val395 position conserved (Ile vs. Val); only the GYL portion of the ion selectivity mo-
tif appears to be absolutely conserved across species. In addition, a Tyr residue (Y464)
located in B. mori Orco TM7 that was recently identified as essential for ion channel func-
tion (Nakagawa et al., 2012) is likewise conserved in LhOrco (Y465) (Fig. 3). Significant
sequence conservation was also observed in ICL3 (i.e., residues 398–446), a region that
is thought to mediate Orco interactions with conventional ORs (Benton et al., 2006).
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Figure 2. Predicted topology and transmembrane domain location of LhOrco. Topology and transmembrane
domain predictions based on the LhOrco coding sequence were performed with TMHMM v2.0 (Krogh et al.,
2001), HMMTOP v2.0 (Tusnády and Simon, 2001), RHYTHM (Rose et al., 2009), TOPCONS (Bernsel et al.,
2009), Phobius (Käll et al., 2007), TMPred (Hofmann and Stoffel, 1993), and TopPred II (von Heijne, 1992;
Claros and von Heijne, 1994). Portions of the sequence predicted to be intracellular are indicated by solid lines
and extracellular by dotted lines. Numbered TM domains are indicated by boxes with those predicted to exhibit
an in–out orientation shown in white and those with an out–in orientation shown in black.

Similar to other Orco sequences, the extended LhOrco ICL2 (117 amino acids compris-
ing residues 217–333 is reasonably well conserved, which is consistent with a potential
role in coupling Orco to intracellular transport mechanisms (Benton et al., 2006).

Phylogenetic analysis of the LhOrco sequence using a neighbor-joining tree (maxi-
mum likelihood method implemented in PhyML) was consistent with the inferred phy-
logeny of the species analyzed with the holometabolous coleopteran, hymenopteran,
dipteran, and lepidopteran Orcos clustering together. In contrast, both Lygus sequences
clustered as expected with the hemimetabolous insects including other members of the
hemipteran assemblage (i.e., aphids, lice, and bugs) and orthopterans (Fig. 4).

RT-PCR Expression Profile of LhOrco

Orco transcripts are frequently expressed in multiple olfactory tissues. We consequently
performed nonquantitative RT-PCR to examine the spatial, sex specific, and temporal
expression of LhOrco. Sequence specific primers were designed to amplify either a 524
bp fragment of LhOrco or a 555 bp fragment of the control gene (actin). In adult
males, LhOrco expression was highest in antennae (Fig. 5A). Less robust expression
was observed in adult male legs, proboscis, and bodies trimmed of legs, heads, and
wings. No amplimer was observed in adult male heads trimmed of antennae. Sequence
analysis of a second, higher molecular weight (703 bp) amplimer observed in male bodies,
and to a lesser degree in male legs, indicated that it was the product of nonspecific
amplification. In adult females, LhOrco expression was likewise highest in antennae (Fig.
5A). Lower levels of expression were observed in female legs and bodies and LhOrco
expression in female proboscis was barely detectable. A faint but distinct amplimer was
detected in female heads (Fig. 5A). LhOrco expression was not restricted to adults as
amplimers of the expected size were clearly detected in eggs and throughout nymphal
development (Fig. 5B). As a measure of cDNA integrity, the cytoplasmic actin gene was
amplified in tandem with LhOrco. In all cases a robust product of the expected size was
observed.
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Figure 3. Amino acid sequence alignment of LhOrco with representative Orco orthologs from six insect or-
ders. Sequences were aligned using the L-INS-I strategy in MAFFT (Katoh et al., 2005) and rendered with
Jalview (Waterhouse et al., 2009). Numbers to the left indicate the position of the first residue in each line.
Abbreviations—Lh, Lygus hesperus (JQ639213—Hemiptera); Dm, Drosophila melanogaster (NP524235—Diptera);
Ha, Helicoverpa armigera (ADQ13177—Lepidoptera); Tc, Tribolium castaneum (CAM84014—Coleoptera), Sa, Sito-
bion avenae (ACT37280—Hemiptera); Ap, Apis mellifera (NP001128415—Hymenoptera); and Sg, Schistocerca
gregaria (AEX28371—Orthoptera). The positions of the putative transmembrane domains (TM1–7) are indi-
cated in relation to the DmOrco sequence. Arrows indicate the position and orientation of the degenerate
primers used in cloning LhOrco; asterisks (*) indicate the location of putative protein kinase C sites (Ser291
and Thr314) in ICL2 that may be involved in the regulation of Orco function.
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Figure 4. Neighbor-joining tree of Orco orthologs from various insect species. Phylogenetic analysis was
performed using 52 sequences identified from BLAST analysis of the LhOrco sequence. Sequences were aligned
with MUSCLE v3.7 and the alignment curated using Gblocks with default settings. The phylogenetic tree was
constructed using the maximum likelihood method implemented in PhyML v3.0 with default settings and the
graphical representation generated using TreeDyn. Bootstrap support values above 65% are shown. Accession
numbers are indicated in parenthesis to the right of each species with the representative insect order clustering
indicated. The LhOrco and LlOrco sequences are shown in bold.
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Figure 5. RT-PCR transcript expression profile of LhOrco. (A) Expression in adult male and female tissues.
cDNAs prepared from: day 6–9 bodies lacking heads, legs, and wings (B); antennae (A); proboscis (P); legs (L);
day 6–9 heads lacking antennae and proboscis (H), no template (NT). (B) Developmental expression profile.
cDNAs prepared from: eggs (E); first through fourth instar nymphs (1–4); fifth instar male nymphs (5M), fifth
instar female nymphs (5F), no template (NT). The Lygus actin gene was amplified from each tissue as an internal
control. Products were analyzed on 1.5% agarose gels and stained with SYBR Safe.

Subcellular Localization and Membrane Topology of LhOrco

Despite significant sequence identity with known Orco proteins, the consensus mem-
brane topology predicted for LhOrco was for both the N and C termini to be intracellular
(Fig. 2). We consequently sought to examine the validity of these prediction algorithms
using immunofluorescent microscopy with differentially tagged LhOrco proteins tran-
siently expressed in cultured insect cells. A similar methodology was previously used to
experimentally confirm the atypical topologies of DmORs and AgOrco (Smart et al.,
2008; Tsitoura et al., 2010). To facilitate confirmation of expression and to provide in-
sights into LhOrco intracellular trafficking, we initially tried to examine the localization
of LhOrco chimeras tagged at either the N or C terminus with EGFP. Each construct was
transiently expressed in cultured Tni cells and the fluorescence expression profile exam-
ined 48 h after transfection. Both N-terminally tagged EGFP-LhOrco and C-terminally
tagged LhOrco-EGFP exhibited a diffuse cytosolic fluorescence profile reminiscent of
that described (Thomas et al., 1998) for endoplasmic reticulum localization (Fig. 6A).
Neither construct exhibited the cell surface expression profile expected, suggesting that
normal trafficking of the receptor had been impaired by addition of the bulky EGFP
tag. To eliminate these adverse localization affects, we replaced the EGFP tag with a
6x-His tag. N-terminally tagged LhOrco (His-LhOrco) was generated by OE-PCR while C-
terminally tagged LhOrco (LhOrco-His) was generated by removing the endogenous stop
codon from the LhOrco sequence, thereby allowing introduction of the plasmid-derived
6x-His tag. Prior to GPCR activation, the Gα subunits of heterotrimeric G proteins are
frequently localized to the intracellular surface of the plasma membrane (Marrari et al.,
2007). We consequently generated a L. hesperus Gαi (JF273641) construct incorporating
a C terminal 6x-His tag for use as a positive control. Immunofluorescence analyses were
performed in Tni cells 48 h after transfection using a polyclonal anti-His antibody in
conjunction with a TRITC-tagged anti-rabbit antibody. In the absence of cell permeabi-
lization, plasma membrane-associated fluorescence was only observed in cells expressing
LhOrco-His (Fig. 6B). No fluorescence was observed in nontransfected cells, cells trans-
fected with the control His-Gαi protein, or cells transfected with His-LhOrco. In contrast,
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Figure 6. Localization and topological orientation of transiently expressed LhOrco in cultured Tni cells. (A)
Expression of LhOrco-EGFP fluorescent chimeras. Chimeras were generated by OE-PCR with EGFP at the N
terminus (EGFP-LhOrco) or C terminus (LhOrco-EGFP). No cell surface localization was observed in either
construct. (B) Fluorescent immunohistochemistry of 6x-His tagged LhOrco in the absence of cell permeabi-
lization. Fixed Tni cells transfected with plasmids encoding LhGαi-His (C-terminal 6x-His tag), His-LhOrco
(N-terminal 6x-His tag), LhOrco-His (C-terminal 6x-His tag), or mock transfected (Tni alone) were probed
with a polyclonal mouse anti-His antibody (primary) and a goat anti-mouse IgG-TRITC antibody (secondary).
In the absence of cell permeabilization, fluorescence was only observed in cells expressing LhOrco-His, indi-
cating an extracellular C terminus. (C) Fluorescent immunohistochemistry of 6x-His tagged LhOrco following
cell permeabilization. Cells are as in (B). In the presence of cell permeabilization, fluorescence is seen in the
His-LhOrco cells, indicating an intracellular N terminus. Fluorescence, as expected, was also observed in the
LhGαi-His expressing cells. Scale bar represents 20 μm. Images are representative of multiple independent
transfections.

plasma membrane-associated fluorescence was observed in both His-Gαi transfected cells
and His-LhOrco cells following permeabilization with 0.1% Triton-X100 (Fig. 6C). Taken
together, these results demonstrate that the LhOrco C terminus is extracellular while the
N terminus is intracellular. LhOrco thus adopts the atypical membrane topology similar
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to that reported for other Orco proteins, a topology that was predicted by only three of
seven prediction algorithms.

DISCUSSION

In this study, we cloned and characterized Orco orthologs from two agronomically im-
portant pest species, the western tarnished plant bug (L. hesperus) and its sympatric sister
species the tarnished plant bug (L. lineolaris). Despite millions of years of evolutionary
separation, the two Lygus Orco sequences exhibit significant conservation with Orco or-
thologs identified in other insect species (Krieger et al., 2003; Melo et al., 2004; Pitts
et al., 2004; Jones et al., 2005; Smadja et al., 2009; Kirkness et al., 2010; Wang et al., 2012;
Yang et al., 2012). This conservation has been shown to extend beyond primary sequence
to include functionality as diverse Orco genes were able to functionally complement
Orco-deficient D. melanogaster (Jones et al., 2005). The heteromeric complexes formed
following Orco interactions with ligand-specific ORs are ligand-gated ion channels that
open in response to odorants (Nichols et al., 2011; Pask et al., 2011; Nakagawa et al., 2012).
Consistent with this mechanistic view of odorant perception, LhOrco exhibits significant
sequence conservation (Fig. 3) across ICL3 and portions of TMs 6–7, regions of Orco that
have been shown to be important for forming interactions with ligand-specific ORs and
ion pore functionality (Benton et al., 2006; Wicher et al., 2008; Nakagawa et al., 2012). In
addition, DmOrco has recently been shown to be regulated by protein kinase C depen-
dent phosphorylation (Sargsyan et al., 2011). Two of the potentially phosphorylated sites
in DmOrco are conserved in LhOrco ICL2 (Ser291 and Thr314).

Despite exhibiting the 7TM domain feature characteristic of GPCRs, Orco differs
from GPCRs in that it has an inverted membrane topology, a feature that has been
experimentally confirmed for both DmOrco and AgOrco (Benton et al., 2006; Lundin
et al., 2007; Tsitoura et al., 2010). The atypical membrane topology has also been predicted
for Orco orthologs from a number of insect species with TMHMM2.0 and HMMTOP
among the most frequently cited prediction algorithms (Benton et al., 2006; Lundin et al.,
2007; Malpel et al., 2008; Lu et al., 2009; Wang et al., 2012). The two algorithms, however,
predicted LhOrco to exhibit a membrane topology with both termini intracellular (Fig.
2). Similar results were obtained using a number of other algorithms with two of five
additional programs predicting the N-in C-in topology. In vitro experiments designed
to probe the membrane topology of LhOrco with an antibody under permeabilized
and non-permeabilized conditions invalidated those predictions and demonstrated that
LhOrco assumes the atypical inverted membrane topology characteristic of Orco proteins
(Fig. 6B and C). Consequently, our study suggests that TMpred and TopPred II are the
best-adapted algorithms for predicting Orco TM topology. While Phobius was the only
other program to accurately predict LhOrco topology, it was less robust at predicting TM
location and number.

Previous studies examining Orco topology were conducted in cultured insect
cells; Drosophila S2 cells with DmOrco (Benton et al., 2006; Lundin et al., 2007) and
lepidopteran-derived cell lines (Bm5 and High Five) with AgOrco (Tsitoura et al., 2010).
Another lepidopteran cell line, Sf9, was employed to examine the topology of Drosophila
ligand-specific ORs (Smart et al., 2008). The latter two studies demonstrated the utility
of lepidopteran cell lines for heterologous expression of dipteran ORs/Orco. In the cur-
rent study, we expanded on that utility by using cultured Tni cells (a cell line derived
from cabbage looper ovarian cells) to determine the membrane topology of LhOrco.
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As discussed above, His-tagged LhOrco was expressed at the cell surface as expected.
The cell line, however, proved inadequate for expressing LhOrco-EGFP chimeras (Fig.
6A). Fluorescent proteins are frequently used to facilitate the localization of cell surface
receptors with minimal affects on trafficking (Giepmans et al., 2006). Indeed, Benton
et al. (2006) demonstrated cell surface expression of DmOrco fluorescent chimeras in
both salivary gland cells and olfactory sensory neurons. We therefore suspect that the
observed impaired trafficking of the LhOrco-EGFP chimeras either resulted from protein
misfolding due to occlusion of protein stabilization sites or that a critical plasma mem-
brane targeting sequence was hidden. In both cases, our data suggest that the Tni cell
line may lack certain components of the intracellular transport machinery endogenous
to salivary gland cells and olfactory sensory neurons that facilitated the translocation of
fluorescent Orco chimeras.

Consistent with a role in olfaction, LhOrco transcripts were predominantly localized
to the chemosensory organs (i.e., antennae, proboscis, and legs) with highest expression
observed in adult antennae. Even though sexual dimorphism in antennae length and
antennal sensilla number has been reported in L. lineolaris (Chinta et al., 1997) no
sex-based differences in LhOrco antennae expression were observed (Fig. 5A). Male
dominant LhOrco expression, however, was observed in the adult proboscis. While the
proboscis is generally associated with gustatory perception, the expression of Orco in
this chemosensory organ is not without precedence (Krieger et al., 2003; Melo et al.,
2004; Pitts et al., 2004; Xia and Zwiebel, 2006; Malpel et al., 2008; Wang et al., 2012) and
may reflect an olfactory function similar to that described for the olfactory neurons in the
A. gambiae proboscis that respond to human-derived odors (Kwon et al., 2006). Potentially
in support of this role, the labium tip of L. rugulipennis (European tarnished plant bug) has
been shown to be important for detecting cues regarding plant health prior to oviposition
(Conti et al., 2011). LhOrco expression in the proboscis and legs could also be indicative of
a role in contact chemosensory perception. A subset of Drosophila sensory neurons that co-
express Orco along with ORs and gustatory receptors has been identified (Fishilevich and
Vosshall, 2005) and Orco transcripts have been amplified from the legs of a wide number
of species including locusts (Yang et al., 2012), fig wasps (Lu et al., 2009), mosquitoes
(Melo et al., 2004; Pitts et al., 2004; Xia and Zwiebel, 2006), and the blowfly (Wang
et al., 2012). The presence of LhOrco transcripts in eggs (Fig. 5B) is likewise in agreement
with previous findings as Orco orthologs have been detected in blowfly eggs (Wang et al.,
2012) and embryonic stages of the fruitfly and yellow fever mosquito (Larsson et al., 2004;
Melo et al., 2004). The continuous expression of LhOrco throughout the nymphal stages
is also consistent with that reported for other hemimetabolous insects (Yang et al., 2012).
Orco orthologs in holometabolous insects, in contrast, appear to undergo a significant
decline during the pupal stage (Melo et al., 2004; Wang et al., 2012)

Based on similarities in sequence, membrane topology and expression profile, we
feel that it is reasonable to conclude that LhOrco, similar to that of Orco orthologs in
other insects, plays a critical role in mediating odorant perception and discrimination.
Consequently, targeted disruption of this functionality could present a novel means of
controlling pest populations (Jones et al., 2005). In support of this approach, Drosophila
expressing Orco null mutants were reported to exhibit severely impaired responses to
behaviorally active single odors (Larsson et al., 2004). In addition, RNA interference-
mediated knockdown of Orco orthologs in a parasitic wasp (Microplitis mediator) and a
striped flea beetle (Phyllotreta striolata) affected Y-tube olfactometer responses (Li et al.,
2012) and behavioral discrimination of attractant and repellent stimuli (Zhao et al., 2010).
Disruption of normal Orco function has also been achieved with a small molecule agonist
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that triggers the opening of Orco-based ion channels, an effect that could potentially
overwhelm the insect sensory system and thus make odor differentiation difficult (Jones
et al., 2011). Given the relative success of these approaches, it is likely that similar methods
may be used to facilitate the development of novel control strategies that specifically
target Lygus spp. populations in the field. Further studies of LhOrco are also expected
to significantly advance not only our molecular understanding of olfaction within Lygus
species, which is currently limited to a single odorant binding protein, but also our
understanding of hemipteran olfactory systems.
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Rützler M, Zwiebel LJ. 2005. Molecular biology of insect olfaction: recent progress and conceptual
models. J Comp Physiol A 191:777–790.

Sargsyan V, Getahun MN, Llanos SL, Olsson SB, Hansson BS, Wicher D. 2011. Phosphorylation via
PKC regulates the function of the Drosophila odorant co-receptor. Front Cell Neurosci 5:5.

Sato K, Touhara K. 2009. Insect olfaction: receptors, signal transduction, and behavior. Results
Probl Cell Differ 47:121–138.

Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. 2008. Insect olfactory
receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006.

Schwartz MD, Foottit RG. 1998. Revision of the Nearctic species of the genus Lygus Hahn, with
a review of the Palaearctic species (Heteroptera: Miridae). Gainesville: Associated Publishers.
428 p.

Scott DR. 1977. An annotated listing of host plants of Lygus hesperus Knight. Entomo Soc Am Bull
23:19–22.

Smadja C, Shi P, Butlin RK, Robertson HM. 2009. Large gene family expansions and adaptive
evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol
Evol 26:2073–2086.

Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb
RD, Warr CG. 2008. Drosophila odorant receptors are novel seven transmembrane domain
proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol
38:770–780.

Strong FE. 1970. Physiology of injury caused by Lygus hesperus. J Econ Entomol 63:808–814.
Thomas CJ, Brown HL, Hawes CR, Lee BY, Min MK, King LA, Possee RD. 1998. Localization of

a baculovirus-induced chitinase in the insect cell endoplasmic reticulum. J Virol 72:10207–
10212.

Tsitoura P, Andronopoulou E, Tsikou D, Agalou A, Papakonstantinou MP, Kotzia GA, Labropoulou
V, Swevers L, Georgoussi Z, Iatrou K. 2010. Expression and membrane topology of Anopheles
gambiae odorant receptors in lepidopteran insect cells. PLoS ONE 5:e15428.

Turnock WJ, Gerber GH, Timlick BH, Lamb RJ. 1995. Losses of canola seeds from feeding by Lygus
species [Heteroptera: Miridae] in Manitoba. Can J Plant Sci 75:731–736.
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