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The recent advances in wireless communication have led to the problem of growing 

spectrum scarcity. The available wireless spectrum has become scarcer due to 

increasing spectrum demand for new wireless applications. The large portion of the 

allocated spectrum is sporadically used leading to underutilization of significant 

amount of spectrum. To improve the spectrum efficiency, the idea of cognitive radio 

technology was introduced. This concept of cognitive radio provides a promising 

solution for the spectrum scarcity issues in wireless networks. Meanwhile, the security 

issues of cognitive radio have received more attentions recently since the inherent 

properties of CR networks would pose new challenges to wireless communications. In 

this MS thesis, general concepts of security threats to the cognitive radio networks are 

briefly reviewed. Performances for primary user emulation attacks are studied from 

Neyman-Pearson criterion point of view. A novel system model with different 

configurations of the primary users has been proposed and studied. Our experimental 

results demonstrate the statistical characteristics of the probability of false alarm and 

miss detection in the proposed system. I will make performance comparison with 

others’ research in the future.
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Chapter 1.  Introduction  

1.1 Background 

The recent development in wireless communication has led to the problem of growing 

spectrum scarcity. Due to increasing spectrum demand for new wireless applications 

the available radio frequency spectrum has become scarcer. A significant amount of 

allocated radio frequency spectrum is used sporadically, causing underutilization of 

spectrum. Cognitive radio technology provides a promising solution for the spectrum 

scarcity issues in wireless networks. It allows the efficient use of the finite usable radio 

frequency spectrum. In cognitive radio terminology, Licensed users/Primary users are 

defined as users who have right to use the spectrum band whereas unlicensed 

users/Secondary users are defined as users who can use the spectrum which is 

temporarily not used by licensed users, without causing interference to them. At the 

same time, the security concerns of cognitive radio have received more attentions as the 

inherent properties of CR networks would pose new challenges to wireless 

communications. In cognitive radio network, an attack can be defined as an activity that 

can cause interference to the primary users or licensed users [2]. In this dissertation we 

also provide a brief explanation of most of the attacks that make use of one of the 

inherent properties of cognitive radio. 
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1.2 Benefits of Cognitive Radio Network 

Why cognitive radio? 

Spectrum is the lifeblood of communication systems. Without spectrum there is no 

electromagnetic communication. The radio frequency spectrum is the medium between 

the transmitters and receivers in wireless communication. The US spectrum is managed 

either by the FCC for non-governmental applications or by the NTIA for governmental 

applications [32].  As shown in Fig. 1.1 the radio frequency spectrum is characterized 

into different frequency bands. The frequency spectrum ranging from 300 kHz to 535 

kHz is used for aeronautical and maritime communications and the frequency spectrum 

from 535 kHz and 1605 kHz is used for AM radio. The radio spectrum is becoming 

scarce due to the increasing growth of the wireless communication technology and the 

high requirement of capacity and date rates for various applications.  We know that the 

amount of useable spectrum is limited. Due to vast improvement in wireless technology, 

radio spectrum will no longer be available for allocation for new services. Following 

Fig. 1.1 shows the radio frequency spectrum allocation in United States. 
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Figure 1.1 Radio frequency spectrum allocations in United States [21]. 

Figure 1.2 Spectrum Utilization [5]. 
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From Fig. 1.2 we can conclude that significant portion of allotted spectrum is unused.  

There are portions of assigned spectrum that are concentrated in certain geographical 

areas. Certain portion of the wireless spectrum is unutilized. Studies reveal that a 

straightforward reuse of this unused radio frequency spectrum can provide an 

improvement in available capacity. Now the issue is not that spectrum is scarce – the 

issue is that we do not have the technology to effectively access the unused or wasted 

spectrum. This unused frequency spectrum can be used and accessed in an 

opportunistic manner by the secondary user. This gave a rise to new technology called 

“cognitive radio”. 

What is cognitive radio? 

“A radio frequency transceiver designed to intelligently detect whether a particular 

segment of radio spectrum is in use and to jump into and out of temporarily unused 

spectrum very rapidly without interfering with the transmission of other authorized 

users. Cognitive radio enables secondary user to sense which portion of spectrum are 

available, select best available channel, coordinate spectrum access with other users 

and vacate the channel when a primary user reclaims the spectrum usage rights"[31].  
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Figure 1.3. Cognitive radio Scenario [35] 

Spectrum Sensing is a key step used in cognitive radio network. Basic requirement of 

cognitive radio is to scan the radio frequency spectrum and determine fallow bands 

which can be used in an opportunistic manner to increase spectrum efficiency [2]. The 

most efficient way to identify white space is to detect primary users. Primary user 

network & secondary user network are physically separate from each other. Secondary 

users do not get direct feedback from the primary users about their transmission. So in 

order to detect primary user transmission the secondary users have to depend on their 

sensing ability to [2]. Spectrum sensing is one of the most challenging issues in 

cognitive radio systems and has gained new aspects with cognitive radio and spectrum 

access concepts. Following are the features of cognitive radio [33],  

 Frequency agility: It is the ability of a radio to change its operating frequency. 

 Dynamic frequency selection: It is the ability of a radio to sense signals from 

nearby transmitters in order to choose best operating conditions. 

 Location awareness: Determine its location, determine permission to transmit, 
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select parameters such as power, frequency allowed etc. 

 Adaptive Modulation:  Ability to modify transmission characteristics. 

 Transmit power control: constrains the transmitter to a lower level to allow 

greater sharing of spectrum. 

 Cognitive radio Cycle 

 

 

 

 

 

 

 

 

Figure 1.4. Cognitive radio cycle [34] 

In cognitive radio cycle a cognitive radio scans the radio frequency spectrum, gathers 

information, and then identifies the vacant channels. Through spectrum sensing the 

properties of the vacant channels are evaluated. Then, the appropriate spectrum band is 
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chosen according to the spectrum characteristics and user requirements. The 

communication can be carried out after determining the operating frequency band. The 

four main functions of cognitive radio are as follows, 

 Spectrum sensing: Spectrum sensing allows the CR users to adapt to the 

environment by detecting spectrum holes without causing interference to the 

primary network. One of the primary requirements of a cognitive radio is that, it 

should scan the radio frequency spectrum and identify “white spaces” [1]. 

 Spectrum decision: After sensing the frequency spectrum and identifying the 

“white spaces” Cognitive radio user should decide which frequency spectrum is 

the best among the available bands according to the Qos requirements for the 

applications. [1]. 

 Spectrum sharing : “Since there may be multiple cognitive radio users trying to 

access the spectrum, network access should be coordinated to prevent multiple 

users colliding in overlapping portions of the spectrum” [1]. Spectrum sharing 

can be classified as centralized or decentralized spectrum sharing, Cooperative 

or non-cooperative, overlay or underlay. 

 Spectrum mobility: One of the primary requirements of cognitive radio is that, it 

should vacate the licensed band when the primary transmitter reappears and 

should search for another vacant frequency band in order to carry out its 

transmission. Thus spectrum mobility is defined as the ability of CR user to 
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switch between spectrum bands when the channel condition becomes worse or 

the primary user reappears. 

 Cognitive Radio Network Architecture 

This section provides a detailed description of the CR network architecture. 

Unlicensed band

Licensed band I

Licensed band II
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Primary base 

station
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network 
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network 
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Cognitive radio 

network (without 

infrastructure)

Cognitive radio 

network (with 

infrastructure)

Spectrum band

Figure 1.5. Cognitive radio network architecture [1]. 
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According to the architecture, cognitive radio networks can be classified as Centralized 

or Distributed networks. According to operations point of view, cognitive radio 

networks can be classified as licensed band operation and unlicensed band operation. 

According to Access type, cognitive radio network can be classified as CR network 

access, CR ad-hoc access, and primary network access. 

 Centralized cognitive network: As shown in Fig. 1.5, the network is 

infrastructure oriented. A base station is used to manage each CR user in the 

network. The base station communicates directly with each user and controls 

the medium access and the secondary users in the network. 

 Distributed cognitive network: As shown in Fig. 1.5, the CR users 

communicate with each other in an ad-hoc manner. Information is shared 

directly between the secondary users who fall within the communication range; 

otherwise information is shared over multiple hops. 

 Licensed band operation: This band is dedicated for the primary users in the 

network. It can be used by the unlicensed user if not occupied by the primary 

user. CR user must vacate the licensed band if the primary user reappears then 

and move to another vacant spectrum band. 

 Unlicensed band operation: The unlicensed users have the same right to use 

the unlicensed band. There is no need to vacate the spectrum for the licensed 

users. 
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 Cognitive radio network access: As shown in Fig. 1.5, the cognitive users can 

share information with their base station on the licensed as well as the 

unlicensed spectrum band. 

 Cognitive radio ad-hoc access: As shown in Fig. 1.5, the cognitive users in the 

network can share information with each other in ad-hoc manner on both the 

licensed and unlicensed spectrum band. 

 Primary network access: As shown in Fig. 1.5, the CR users can also 

communicate with the primary base station on the licensed spectrum band with 

an adaptive medium access control protocol. 

1.3 Security issues in cognitive radio 

In comparison with traditional wireless networks, there are more chances open to 

attackers in cognitive radio technology. As a result, security in cognitive radio networks 

has become a challenging task. Quality of service (QoS) provisioning and security 

requirement for the entire network may be adversely affected by these weaknesses and 

vulnerable aspects, introduced by the nature of cognitive radio [3]. Many general 

schemes proposed in the past cannot satisfy such special network requirements, since 

the spectrum is used dynamically in cognitive radio. 

Cognitive radio network is similar to wireless network. Since the nature of the wireless 

media is open air, it is more vulnerable to attacks as compared to that of wired network. 
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The data in the wireless media may be eavesdropped or altered without notice and the 

channel might be jammed or overused by the adversaries. The cognitive radio 

technology opens more chances to attackers due to its intrinsic nature [3]. 

Inherent reliability Issues 

Certain inherent reliability issues of cognitive radio networks are discussed [2]. 

 High Sensitivity to primary user signal:  The secondary users should 

identify the primary transmission in order to prevent interference to the primary 

users. One of the stringent requirements for cognitive network is to predict the 

temperature interference on nearby primary receiver and keep it below a 

threshold. As a result of this the sensitivity towards the primary user signal is 

usually set to high. In case of energy based detection this high sensitivity 

increases false detections. 

 Unknown primary receiver Location: The secondary user must know 

where exactly the primary receiver is located, so that the interference to primary 

user is minimized. Unknown primary receiver location may lead to hidden node 

problem. By exploiting the receiver power leakage, the location of primary 

receiver can be identified.  
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1.4 Summary 

In this chapter we have given a brief description about how cognitive radio technology 

provides a promising solution for the spectrum scarcity issues in wireless networks. We 

have outlined the benefits of cognitive radio, the cognitive radio cycle, cognitive radio 

architecture. We have also discussed about the security issues in CR networks.   
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Chapter 2. Overview of security Threats in 

Cognitive Radio Networks 

2.1 Security and its requirements 

Attack always accompany with the security system, since security and attack interacts 

with each other. The main objective of the security system is to protect the 

communication from the malicious users. The cognitive radio network has the same 

security requirements as that of the general wireless networks because of the open air 

nature of wireless media [3]. The major difference between the cognitive radio network 

and the traditional wireless network is that it doesn’t operate on a fixed frequency 

spectrum i.e. the frequency spectrum is being used dynamically. While implementing 

security scheme in CR network various factors need to be taken into consideration 

because cognitive radio deals with the use of unused spectrum in an opportunistic 

manner with the unscheduled appearance of the primary users. In the following section 

we consider each protocol layer and the attacks associated with it. 

2.2 Security at different layers 

In this section we will briefly describe the attacks associated with the five layers in the 

protocol stack i.e., the physical layer, link layer, network layer, transport layer and 

application layer [2][3]. 
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 Physical layer 

Physical layer is the lowest layer and it provides an interface to the transmission 

medium. Cognitive radio network doesn’t operate on a fixed frequency that is signals 

can be transmitted and received at various frequencies across wide frequency spectrum 

band. The frequency spectrum is used dynamically. Thus, this makes the operation of 

physical layer in cognitive radio more complicated. Spectrum sensing is a key part 

cognitive radio, since it deals with identifying vacant bands or spectrum holes. 

Following are the possible attacks associated with physical layer. 

 Intentional jamming attack 

The malicious secondary user intentionally transmits signal in a licensed band and jams 

primary and other secondary users. The problem would be worse when the malicious 

mobile node launches attack in one geographical area and moves to another area before 

being identified [3]. 

Attack

 

Figure 2.1. Intentional jamming attack [3]. 
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 Primary receiver jamming attack 

Since the secondary user does not know the location of the primary receiver, the 

attacker can take advantage of this to launch a primary receiver jamming attack. For an 

example, the attacker may move closer to the primary receiver and requests 

transmission from the secondary users towards it. This will in turn cause interference to 

the primary receiver [3].  

Attack

Licensed user

 

Figure 2.2. Primary receiver jamming attack [3]. 

 Primary User Emulation Attack (PUE or PUEA) 

A malicious user can imitate the primary user, other secondary user in the network 

believes that the primary user reappears and they terminate their communication and 

release the frequency band. This prevents the secondary users from accessing that band 

[3]. 

 Overlapping secondary user attack 

In cognitive radio networks, multiple secondary networks may exist at the same time 

over the same region. The transmissions from malicious entities in one network can 

cause interference to the primary and secondary users of the other network. Since the 
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malicious users or attackers may not be under the direct supervision of the secondary 

base station of the victim network, this type of attack is very difficult to prevent [2]. 

Attack

 

Figure 2.3. Overlapping secondary user attack [3]. 

 Link layer 

Link layer sits just above physical layer in the protocol layer stack. This layer is 

responsible for transfer of data from one node to other in single hop. It ensures that 

initial connection has been set up, divides output data into data frames, and handles the 

acknowledgements from a receiver that the data arrived successfully. The MAC layer 

which controls channel assignment, is one of the important sub layers of the link layer. 

One of the important parameters to decide the fairness of a channel allocation scheme 

in traditional wireless environments is SNR. On the contrary, in cognitive network 

various parameters such as holding time, delay, Path loss, interference and link error 

rate are as important as the SNR. Hence channel assignment is a more complex 

operation in cognitive radio networks [2][3]. 
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 Biased utility attack 

A malicious secondary node may try to change the parameters of utility function in 

order to increase its own bandwidth. As a result of this the good secondary user is 

deprived of available bandwidth. 

 False feedback attack 

In a decentralized cognitive network, secondary user may make wrong decision due to 

false feedback from one malicious secondary user. This in turn will cause severe 

interference to the licensed user. For an example, a malicious node in the network may 

not tell the other secondary users in the network about the reappearance of the licensed 

user, who cannot sense the information due to fading or long distance. Such an attack is 

called as false feedback attack [2] [3]. 

 DOS attack 

The main objective of malicious node is to prevent good secondary nodes from 

accessing the vacant radio frequency band. An attacker may try to jam a network and 

thus reduce a legitimate user’s bandwidth, prevent access to a service, or disrupt service 

to a specific system or a user. 

 Network layer 

The main objective of network layer is end-to-end packet delivery. Functions of the 

network layer are routing, flow control, ensures quality of service (QoS). Every node 



18 

    

maintains routing information about its neighboring nodes in the network. Before 

establishing connection, every node identifies which of its neighbors should be the next 

link in the path towards the destination. An attacker in the path can drastically alter 

routing by either redirecting the packets in the wrong direction or by broadcasting 

incorrect routing information to its neighbors. Following are the possible attacks 

associated with the network layer. 

 Hole attack 

In the hole attack the node which pretends is called a hole. There are various types of 

hole attacks such as Black hole attack, Gray hole attack, Worm hole attack. Black hole 

attack is defined as attack in which the malicious node attracts/request packets from 

every other node and drops all the packets. The gray hole attack is defined as the attack 

in which the malicious node selectively drops the packets. The worm hole attack is 

defined as the attack in which the malicious user uses two pairs of nodes and there exist 

a private connection between the two pairs. The worm hole attack is a considered as 

dangerous attack amongst all. It can prevent route discovery where the source and the 

destination are more than two hops away. Protocols like Ariadne or secure AODV 

prevents such types of [2] [3].  

 Ripple effect attack 

The main objective of the malicious node is to provide wrong channel information so 

that the other nodes change their channel. This false information will transmit on hop 
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by hop basis and in turn the entire network will come to a confusing state. This can 

disrupt the traffic for long time. 

 Transport layer 

The transport layer is responsible for transfer of data between two end hosts. It is 

responsible for flow control, congestion control and end-to-end error recovery. Some 

attacks occur during session setup, while others happen during the period of sessions. 

Following are the attacks associated with this layer [2] [3]. 

 Key depletion attack 

Sessions in cognitive networks last only for a short period of time due to frequently 

occurring retransmissions. Therefore, large numbers of sessions are being initiated. 

Security protocols at the transport layer like SSL and TLS establish cryptographic keys 

at the beginning of every transport layer session. Since numbers of sessions in cognitive 

networks are large, large numbers of keys are established, thereby increasing the 

probability of using the same key twice. Key repetitions can be exploited to break the 

underlying cipher system. The WEP and TKIP protocols used in IEEE 802.11 are more 

prone to key repetition attacks [2] [3].  

 Application layer 

It is the top most layer of the protocol stack. It provides application services to the end 

users. Protocols that run at the application layer completely rely on the services 
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provided by the underlying lower layers. As a result, any attack on physical, link, 

network or transport layers may have an adverse affect on the application layer [2] [3]. 

2.3 Security mechanisms 

In this section we describe the security mechanisms and the architecture at different 

protocol layers. 

 Physical layer 

The security concerns mainly lies in the process of spectrum sensing. Factors such as, 

location of the transmitter, received signal strength can be used to identify attackers at 

this layer. In order to decide the location of the CR users in the network, Localization 

techniques can be used. There are various localization techniques which are listed as 

follows.  

 Range based localization: The travel time of the signal from source to 

destination is used to calculate the position. 

 Range free Localization: First we calculate the total number of hops in the 

network and then we convert it into physical distance. 

In order to locate the transmitter Received signal strength can also be used. In 

practice location information and the received signal strength are used together to 

detect the intruder. Two schemes based on RSS are used to detect the intruder: 

Distance ratio Test (DRT), Distance Difference Test (DDT) [3]. 
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 Link Layer 

MAC address is examined at this layer. Each channel has its own schedule for 

transmission. Unusual activity results when an adversary does not follow its schedule. 

Also the average packet rate is monitored. If the packet rate is higher and last for long 

period, then there is a possibility of some unusual activity [3]. 

 Network Layer 

Routing information can be encrypted using cryptographic protocols and authentication 

can be used to confirm the integrity of routing table and identity of the nodes. The 

scheme of watch dog can be implemented to monitor the data packets passing through 

the network [3]. 

Node 3 Node 2 Node 1

Packet Packet

Node 3 Node 2 Node 1

Packet Packet

Malicious 
User

Normal Behavior

Abnormal Behavior

Figure 2.4. Intrusion detection at network layer [3]. 

For example, Fig. 2.4 shows the normal and abnormal behavior at the network layer. In 

case of normal behavior, the packets are passed from node1 to node2 and then to node3. 
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In abnormal behavior node2 acts as a malicious node, that is it will either change the 

contents of the packets or just drop the packet after receiving from node1. As a result 

node 3 will get the altered packet or will never get the packet. The concept of watch dog 

is used to buffer the packet at node1. Node3 after receiving the packet will compare it 

with the buffered one. If there is any difference, it is regarded as abnormal activity and 

a log is created for further processing [3]. 

 Transport Layer 

The round trip time and the number of frequent retransmissions are monitored. If the 

retransmissions are occurring very frequently or the round trip time is longer than the 

average value, then we can say that there is some unusual activity in the network. An 

intrusion detection scheme based on RSS and RTT detection can be used to detect 

attacks at this layer [3]. 

 Application Layer 

Since the activity of other protocol layers may affect each other, so at this layer the 

multiple protocol layers can be monitored or data can be analyzed. For example if an 

application creates many connections without any real operations, such abnormal 

activity can be easily detected at application layer [3]. 

2.4 Summary 

In this chapter we discuss about the security and its requirement in CR networks. This 
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chapter relates to the characteristics of different protocol layers. We have also discussed 

the security mechanisms for different protocol layers.  
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Chapter 3. Performance Study for Primary 

User Emulation Attack in Spectrum 

Sensing Networks 

3.1 Introduction 

Security issues in cognitive radio networks are drawing more attention in recent years. 

Major issue associated with spectrum sensing is, how accurately it can differentiate 

incumbent signals from secondary user signals? An attacker can easily exploit the 

spectrum sensing process. For example, an attacker may imitate as an incumbent 

transmitter by transmitting unrecognizable signals in one of the licensed bands, thus 

preventing other secondary users from accessing that band [4]. 

Primary user emulation (PUE) attack is considered to be one of the severe threats to 

cognitive radio systems. It poses a great threat to spectrum sensing. In this attack, a 

malicious node transmits signals whose characteristics emulate those of incumbent 

signals. There are two types of behavior associated with the primary user emulation 

attack, which are discussed as follows [4]. 

 Selfish PUE attacks: The main objective is to maximize attacker’s bandwidth. 

For an instance, when malicious node identifies vacant band, it will prevent 

other secondary users from using that band by transmitting signals that 

resembles the incumbent signals [4].  
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 Malicious PUE attack: The main objective is to obstruct the secondary users 

from identifying and using vacant spectrum bands. Malicious attacker does not 

necessarily use vacant bands for its own communication purposes. It is 

important to note that in PUE attacks, malicious nodes only transmit in vacant 

bands [4]. 

3.2 Primary Exclusive Region 

One of the deployment schemes in current related research is the primary exclusive 

region (PER). It sets a safeguard for primary receivers. The secondary network must be 

deployed outside PER. The exclusive zone is also called as keep-out region. It gives 

primary receiver a protection area. It is a way of imposing a certain distance on 

cognitive users from the primary user thereby reducing interference to the primary 

receiver [36]. Within this region cognitive users are not allowed to transmit. This type 

of deployment scheme is suitable to a broadcast network. For an instance, network in 

which there is one primary transmitter communicating with multiple primary receivers. 

TV network or the downlinks in the cellular network are the good examples of a 

broadcast network. In such type of networks, primary receivers may be passive devices. 

Such a primary-exclusive region has been proposed for the upcoming spectrum sharing 

of the TV band [36]. The secondary users are randomly and uniformly distributed 

within a network radius from the primary transmitter, outside the PER .  



26 

    

3.3 System Model of CRN  

Primary Transmitter

Good Secondary User

Malicious Secondary User

Ro

R

Dp

 

Figure 3.1 System model of CRN [10] [14] 

Following assumptions are made for this system model [10] [14].There are M 

malicious users in the system and they transmits at power ‘𝑃𝑚’. The distance between 

primary transmitter & all the users is ‘𝐷𝑝’ and transmits at power ‘𝑃𝑡’. The position of 

secondary user is at the center of the exclusive region. Malicious users are uniformly 

distributed in circular region of radius R and are statistically independent of each other. 

Co-ordinates of primary transmitter are known to all the users and are fixed at (𝑟𝑝𝑡,𝜃𝑝𝑡). 

The transmission from primary transmitter and malicious users undergo path loss and 

log normal shadowing. The path loss exponent chosen for transmission from primary 

transmitter is 2 and from malicious user are 4. No malicious users are present within a 

circle of radius 𝑅𝑜, called as the exclusive radius from secondary user. There is no 

co-operation between the secondary users. 
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3.4 Analytical model 

The PDF of the received signal at the secondary user due to transmission by the primary 

and the malicious user is calculated.  

Consider M malicious users at (𝑟𝑗,𝜃𝑗) 1≤ 𝑗 ≤ M. The PDF of 𝑟𝑖 is given as [14], 

𝑝(𝑟𝑗) =
2𝑟𝑗

R2−𝑅𝑜
2                       𝑅𝑜   𝑟   𝑅                                       (3.9) 

𝜃𝑗  is uniformly distributed in (-π, π). The received power at the secondary user from 

the primary transmitter is given by, 

𝑝𝑟
(𝑝)
= 𝑃𝑡𝑑𝑝

−2𝐺𝑝
2                                                             (3.10) 

Where𝐺𝑝
2 = 10

Ɛ𝑝

10, 𝜀𝑝~𝑁(0, σ𝑝
2). Since Pt and dp are fixed the PDF of 𝑝𝑟

(𝑝)
 follows a 

log normal distribution and can be written as  

𝑝(𝑃𝑟)(𝛾) =
1

𝛾𝐴𝜎𝑝√2𝜋
 exp {−

(10 log10 𝛾 −𝜇𝑝)
2

2𝜎𝑝
2 }                              (3.11) 

Where A = 
ln 10

10
 and  

𝜇𝑝 = 10𝑙𝑜𝑔10 𝑃𝑡  −  20𝑙𝑜𝑔10 𝑑𝑝                                                  (3.12)                                                     

The total received power at the secondary user from all the malicious users is given by, 

𝑝𝑟
(𝑚)

= ∑ 𝑃𝑚 𝐷𝑗
−4𝐺𝑗

2𝑀
𝑗=1                                                     (3.13) 

𝐷𝑗  is the distance between the j
th

 malicious user and the secondary user. 𝐺𝑗
2 is the 

shadowing between the j
th

 malicious user and the secondary user. 
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𝐺𝑗
2 = 10

𝜀𝑗

10 where 𝜀𝑗~𝑁(0, σ𝑚
2 ). Each term in the right hand side of the Equ. (3.13) is 

log normally distributed random variable of the form 10
𝜔𝑗

10  where 𝜔𝑗~𝑁(𝜇𝑗, σ𝑚
2 ), 

where 𝜇𝑗 is given by , 

𝜇𝑗 = 10𝑙𝑜𝑔10 𝑃𝑚  −  40𝑙𝑜𝑔10 𝑑𝑗                                                    (3.14) 

The PDF of 𝑝𝑟
𝑚 conditioned on the positions of all malicious user can be written as, 

𝑝𝑥|𝑟
(𝑚)
 =  

1

𝑥𝐴𝜎𝑀√2𝛱
 exp {−

(10 log10 𝑥 −𝜇𝑀)
2

2𝜎𝑀
2 }                                 (3.15) 

r is the vector with elements 𝑟1,𝑟2,…,𝑟𝑀. And 𝜎𝑀
2  and 𝜇𝑀 are given as, 

𝜎𝑀
2 =

1

𝐴2
 ln  [1 +

(𝑒𝐴
2𝜎𝑚
2
−1) ∑ 𝑒

2𝐴 𝜇𝑗 𝑀
𝑗=1

(∑ 𝑒
𝐴  𝜇𝑗  𝑀

𝑗=1 )
2  ]                                        (3.16) 

𝜇𝑀 =
1

𝐴
ln  ( ∑ 𝑒𝐴𝜇𝑗) −

𝐴

2
(𝜎𝑀
2 − 𝜎𝑚

2 )𝑀
𝑗=1                                         (3.17) 

The PDF of the received power from all the malicious users, 𝑝𝑚(𝑥), can be obtained by 

averaging Equ.(3.15) over 𝑟1,𝑟2,…,𝑟𝑀 and is given by, 

𝑝𝑚(𝑥) = ∫ ∏  𝑝𝑥|𝑟
(𝑚)(𝑥|𝑟) 𝑀

 𝑗=1
𝑅

𝑅𝑜
 𝑝(𝑟𝑗) 𝑑𝑟𝑗                                 (3.18) 

Evaluating Equ.(3.18) is very complex so it is approximated to be a log normally 

distributed random variable with parameters 𝜇𝑥 and 𝜎𝑥 of the form, 

𝑝𝑚(𝑥) =  
1

𝑥𝐴𝜎𝑥√2𝜋
 exp {−

(10 log10  𝑥 −𝜇𝑥)
2

2𝜎𝑥
2 }                               (3.19) 

If 𝑝𝑟
(𝑚)

 is a log normally distributed random variable then 𝜎𝑥
2 and 𝜇𝑥 can be obtained 

as , 
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𝜎𝑥
2 =

1

𝐴2
(ln 𝐸[( 𝑝𝑟

(𝑚)
)
2

] − 2 ln 𝐸[𝑝𝑟
(𝑚)
])                                     (3.20) 

𝜇𝑥  =
1

𝐴
( 2 ln 𝐸[ 𝑝𝑟

(𝑚)
] −

1

2
ln 𝐸 [(𝑝𝑟

(𝑚)
)
2

] )                                  (3.21) 

From Equ.(3.15) The average probability of 𝑝𝑟
(𝑚)
, 𝐸[𝑝𝑟

(𝑚)
|𝑟] can be written as,  

E[𝑝𝑟
(𝑚)
|𝑟] = 𝑒𝐴𝜇𝑀+

1

2
𝐴2𝜎𝑀

2

 = 𝑒𝐴(𝜇𝑗−
𝐴

2
𝜎𝑀
2 +

𝐴

2
 𝜎𝑚
2 +

1

𝐴
ln𝑀)+

1

2
𝐴2𝜎𝑀

2

 

= 𝑒𝐴𝜇𝑗−
𝐴2

2
𝜎𝑀
2 +

𝐴2

2
 𝜎𝑚
2 +ln𝑀+

𝐴2

2
𝜎𝑀
2

 = 𝑒𝐴𝜇𝑗+
𝐴2

2
 𝜎𝑚
2 +ln𝑀 

E[𝑝𝑟
(𝑚)|𝑟] =  𝑀𝑒𝐴𝜇𝑗 ∗ 𝑒

𝐴2𝜎𝑚
2

2    

Where, 

𝜇𝑗 = 10𝑙𝑜𝑔10 𝑃𝑚 –  40𝑙𝑜𝑔10 𝐷𝑗 = 10 log10(𝑃𝑚 ∗ 𝐷𝑗
−4) 

𝑒𝐴𝜇𝑗 = 𝑒𝐴10 log10(𝑃𝑚∗𝐷𝑗
−4) = 1010 log10(𝑃𝑚∗𝐷𝑗

−4) /10  = 𝑃𝑚 ∗ 𝐷𝑗
−4 

E[𝑝𝑟
(𝑚)
|𝑟] =  M 𝑃𝑚 ∗ 𝐷𝑗

−4 ∗ 𝑒
𝐴2𝜎𝑚

2

2  

Integrating above equation over 𝑟1, 𝑟2, …, 𝑟𝑀, 

𝐸[𝑝𝑟
(𝑚)
] = ∫ M 𝑝(𝑟𝑗) 𝑃𝑚 𝐷𝑗

−4 𝑒
𝐴2𝜎𝑚

2

2

𝑅

𝑅𝑜

𝑑𝑟𝑗 

               = 𝑀𝑃𝑚𝑒
𝐴2𝜎𝑚

2

2 ∫  
2𝑟𝑗

R2 − 𝑅𝑜2
 ∗ 𝐷𝑗

−4
𝑅

𝑅𝑜

 𝑑𝑟𝑗   

Since secondary user is at position (0, 0), 𝐷𝑗  = 𝑟𝑗. 

𝐸[𝑝𝑟
(𝑚)] = 𝑀𝑃𝑚𝑒

𝐴2𝜎𝑚
2

2 ∫  
2𝑟𝑗

𝑅2 −  𝑅𝑜2
 ∗
1

𝑟𝑗
4

𝑅

𝑅𝑜

 𝑑𝑟𝑗  
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             =
𝑀𝑃𝑚𝑒

𝐴2𝜎𝑚
2

2

𝑅2 − 𝑅𝑜2
(2)∫  

1

𝑟𝑗
2

𝑅

𝑅𝑜

 𝑑𝑟𝑗 

               =
𝑀𝑃𝑚𝑒

𝐴2𝜎𝑚
2

2

𝑅2− 𝑅𝑜
2 (2) [

1

2
[
1

𝑅2
−

1

 𝑅𝑜
2]]  

= 
𝑀𝑃𝑚𝑒

𝐴2𝜎𝑚
2

2

𝑅2− 𝑅𝑜
2 (2) [

(−1)

2
[
 𝑅𝑜
2−𝑅2

𝑅2 𝑅𝑜
2 ]] 

                =
𝑀𝑃𝑚𝑒

𝐴2𝜎𝑚
2

2

𝑅2− 𝑅𝑜
2 [

𝑅2− 𝑅𝑜
2

𝑅2 𝑅𝑜
2 ]  

𝐸[𝑝𝑟
(𝑚)] =

𝑀𝑃𝑚
𝑅2 𝑅𝑜2

𝑒
𝐴2𝜎𝑚

2

2  

3.5 Neyman-Pearson Criterion for Detecting PUEA 

The two hypothesis in Neyman-Pearson decision criterion are given as follows, 

M1 : Primary Transmission in progress 

M2 : Emulation attack in progress 

There are two types of errors that secondary user can make in this hypothesis test. 

False alarm: The secondary makes a decision that the transmission is due to primary 

but the malicious user is transmitting. 

Miss Detection: The secondary makes a decision that the transmission is due to 

malicious user but the primary is transmitting. 

The power of the received signal is measured in order to calculate the decision variable 
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which is given by the ratio of Λ, 

𝛬 =  
𝑝(𝑚)(𝑥)

𝑝(𝑃𝑟)(𝑥)
 

Where 𝑝(𝑚)(𝑥) is defined in Equation (3.19) and 𝑝(𝑃𝑟)(𝑥) is defined in Equation 

(3.11). Λ is then compared with predefined threshold and the secondary decides the 

following 

Λ ≤ λ  D1 : Primary transmission 

Λ ≥ λ  D2 : PUEA in progress 

First, secondary user may decide D2 when M1 is true, and second secondary user may 

decide that D1 when M2 is true. Each of these errors has a probability associated with it 

which depends on the decision rule and condition densities. 

Miss Probability: P{D2|M1} = Probability of making decision D2 when M1 is true. 

False Alarm Probability: P{D1|M2} = Probability of making decision D1 when M2 is 

true. 

In terms of conditional densities these probabilities can be expressed as  

𝑃{𝐷2|𝑀1} = ∫  𝑝(𝑃𝑟)

Λ ≥ λ

(𝑥)𝑑𝑥 =  𝛼 

𝑃{𝐷1|𝑀2} = ∫ 𝑝(𝑚)

Λ ≤ λ

(𝑥)𝑑𝑥 
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Figure 3.2 Decision Rule  

Fig. 3.2 is a plot for Decision Rule showing Miss Probability and Probability of false 

alarm under Gaussian distribution. As shown in the figure, we can see the two 

conditional densities of the power received by the good secondary user from primary 

and malicious transmitters. The decision rule is then compared with the threshold value; 

Lambda (λ) and the two probabilities viz. miss probability and probability of false 

alarm are calculated accordingly. 
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3.6 Computed simulation Results and observations 

 

Figure 3.3 PDF of received power at the secondary receiver: Pr_p 

Fig. 3.3 shows the Probability Density Function (pdf) of the received power at the 

secondary user when the primary transmitter is at distance 100Km, Primary transmitter 

power 𝑃𝑡=100Kw, 𝜎𝑚= 5.5dB, 𝜎𝑝= 8dB, 𝑅0= 30m, R= 1000m, 𝑃𝑚= 4W. Probability 

Density Function of Received power is calculated for 10000 times. Both simulated and 

computed PDF are plotted in the same figure for easy comparision. Matlab simulation 

code can be found in Appendix A. 
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Figure 3.4 PDF of received power at the secondary receiver: Pr_m 

Fig. 3.4 shows the Probability Density Function of the received power at the secondary 

user due to malicious users with Primary transmitter power 𝑃𝑡=100Kw, 𝜎𝑚=5.5dB, 

𝜎𝑝=8dB, 𝑅0= 30m, R= 200m, 𝑃𝑚= 4W. Probability Density Function of Received 

power is calculated for 10000 numbers of simulations. Numbers of malicious users 

chosen are 10 and are randomly distributed in the outer radius. Matlab simulation code 

can be found in Appendix B. 

 



35 

    

 

Figure 3.5 PDF of received signal power in dB at the secondary receiver due to primary 

transmitter and malicious user. 

Fig. 3.5 shows the probability density plot of received signal power in dB at the 

secondary user due to primary transmitter and malicious user for M=5, R=400m, 

𝑅0=30m, 𝑃𝑡=100Kw, 𝑃𝑚=4w, 𝜎𝑚= 5.5dB, 𝜎𝑝= 8dB. To get the statistics we run the 

simulation over 10000 times. Matlab simulation code can be found in Appendix C. 
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Figure 3.6 Ratio of received power due to malicious user over received power due to 

Primary transmitter  

Fig. 3.6 shows the plot for Ratio of Received power in dB due to malicious users over 

Received power due to Primary transmitter, The radius of outer region is R=400m, 

Radius of primary exclusive region 𝑅0=30m, primary transmitter power 𝑃𝑡=100Kw, 

Malicious transmitter power is 𝑃𝑚=4w, 𝜎𝑚= 5.5dB, 𝜎𝑝=8dB. We run the simulation for 

10000 times. The number of malicious users in this case is M=5. Matlab simulation 

code can be found in Appendix C. 
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Figure 3.7 Probability of miss detection  

Fig. 3.7 is the plot for the probability of miss detection. The number of malicious users 

in this case is set to be M=5, The radius of outer region R=100m, Radius of primary 

exclusive region 𝑅0 =30m, primary transmitter power 𝑃𝑡 =100Kw, Malicious 

transmitter power 𝑃𝑚 =4w,  𝜎𝑚=5.5dB,  𝜎𝑝 = 8dB. Probability of miss detection is 

calculated for 500 times of simulations. The threshold value chosen for above 

simulation is set to 2, i.e. λ=2. Matlab simulation code can be found in Appendix C. 
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Figure 3.8 Probability of false alarm  

Fig. 3.8 shows the plot for probability of False Alarm. The number of malicious users in 

this case is M=10, The radius of outer region R=100m, Radius of primary exclusive 

region 𝑅0=30m, primary transmitter power  𝑃𝑡=100Kw, Malicious transmitter power 

𝑃𝑚=4w, 𝜎𝑚=5.5dB, 𝜎𝑝= 8dB. Probability of False Alarm is calculated for 500 numbers 

of simulations. The threshold value chosen for above simulation is set to 2 i.e. λ=2. 

Matlab simulation code can be found in Appendix C. 
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Figure 3.9 Probability of miss detection and false alarm  

Fig. 3.9 shows the plot for probability of miss detection and false alarm for, The radius 

of outer region is R=100m, Radius of primary exclusive region 𝑅0=30m, primary 

transmitter power 𝑃𝑡=100Kw, Malicious transmitter power is 𝑃𝑚=4w, 𝜎𝑚=5.5dB, 𝜎𝑝= 

8dB. Probability of miss detection and false alarm are calculated for 500 numbers of 

simulations. The threshold value chosen for above simulation is set to 2 i.e. λ=2. The 

number of malicious users in this case is M=5. Matlab simulation code can be found in 

Appendix C. 
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Case Study : Lambda(λ)= 2 

The following table shows the probabilities of false alarm and miss detection of 

primary receiver with different range of R. 

Number Of malicious users, M = 5 

Threshold Value, Lambda(λ)= 2 

R(meters) 100 200 300 400 500 600 700 

P_D1_H2 0.2728 0.0765 0.0486 0.3172 0.026 0.0015 5.71E-04 

P_D2_H1 0.317 0.0713 0.0373 0.1858 0.0203 0.0016 6.60E-04 

Number Of malicious users, M = 10 

Threshold Value, Lambda(λ)= 2 

R(meters) 100 200 300 400 500 600 700 

P_D1_H2 0.4054 0.4631 0.1458 0.0291 0.0288 0.0013 0.001 

P_D2_H1 0.3681 0.3338 0.1041 0.0264 0.0223 0.0017 0.0011 

M = 15 

Lambda = 2 

R(meters) 100 200 300 400 500 600 700 

P_D1_H2 0.1498 0.1997 0.2661 0.0948 0.0062 0.0869 0.0204 

P_D2_H1 0.7825 0.1558 0.1761 0.0698 0.0075 0.072 0.0177 

3.7 Summary 

In this chapter we have studied the analytical model for the primary user emulation 

attack in cognitive radio network. We have done a detailed analysis and simulation of 

the network for PUE attack. Simulations were carried out to determine the performance 

of the network for PUE attack in terms of probabilities of miss detection and false alarm. 

We discussed various results for our simulations and provided our Matlab codes for the 

simulations in the attached Appendices. 
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Chapter 4. Proposed PUE Attack Model 

with Maximum Likelihood Criterion 

4.1 Introduction 

Chapter 3 deals with the performance study of the analytical model for PUEA in 

cognitive radio. In this chapter we propose a new model for PUEA in CR network. 

Following assumptions are made for the new system model. 

1. There are M malicious users in the network and are randomly and uniformly 

distributed in the circular region. 

2. There are two primary transmitters 𝑃𝑡1 & 𝑃𝑡2, separated by a fixed distance 

and their transmission are independent. 

3. The distance between secondary user and 𝑃𝑡1 is 𝐷𝑝1, The distance between 

secondary user and 𝑃𝑡2 is 𝐷𝑝2. 

4. No malicious user is present between within the exclusive region for the 

secondary user. 

5. All the users in the network know about the location of primary transmitters. 

6. The RF signals from primary and malicious transmitters undergo path loss and 

log normal shadowing. 
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7. The position of the good secondary user changes, it moves away from primary 

transmiiter1 towards primary transmitter 2. 

4.2 Proposed System Model 

Primary Transmitter 1
Primary Transmitter 2

Good Secondary UserMalicious Secondary User

Ro

R

Dp1 Dp2

Figure 4.1 Proposed system model 

There are M malicious users in the system which transmits at power ‘𝑃𝑚’. The primary 

transmitter  𝑃𝑡1 is at distance ‘𝐷𝑝1’ and the primary transmitter  𝑃𝑡2 is at distance 

‘𝐷𝑝2’ from all the users and transmits at power ‘𝑃𝑡’. The positions of secondary and 

malicious users are uniformly distributed in circular region of radius R and are 

statistically independent of each other. Position of primary transmitter is known to all 

the users and is fixed at (𝑟𝑝,𝜃𝑝). The RF signals from primary transmitter and malicious 

users undergo path loss and log normal shadowing. The path loss exponent for 

transmission from primary transmitter is 2 and that from malicious user is 4. For any 

secondary user fixed at co-ordinates(r,𝜃) no malicious users are present within a circle 

of radius 𝑅𝑜 which is called the exclusive radius from secondary user. There is no 

co-operation between the secondary users. 

The received power at the secondary user from the primary transmitter1 is given by, 
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𝑝𝑟
(𝑝1)

= 𝑃𝑡1𝑑𝑝1
−2𝐺𝑝1

2                                                         

The received power at the secondary user from the primary transmitter1 is given by, 

𝑝𝑟
(𝑝2)

= 𝑃𝑡2𝑑𝑝2
−2𝐺𝑝2

2
 

The total power at receivers is then given by, 𝑝𝑟
(𝑝)
= 𝑝𝑟

(𝑝1)
+ 𝑝𝑟

(𝑝2)
 due to their 

independence. 

The total received power at the secondary user from all the malicious users is given by, 

𝑝𝑟
(𝑚)

= ∑ 𝑃𝑚 𝐷𝑗
−4𝐺𝑗

2𝑀
𝑗=1        

PDF of 𝑝𝑟
(𝑝)

 follows a log normal distribution and can be written as 

𝑝(𝑃𝑟)(𝛾) =
1

𝛾𝐴𝜎𝑝√2𝜋
 exp {−

(10 log10 𝛾 −𝜇𝑝)
2

2𝜎𝑝
2 }        

PDF of 𝑝𝑟
(𝑚)

 follows a log normal distribution and can be written as 

𝑝𝑚(𝑥) =  
1

𝑥𝐴𝜎𝑥√2𝜋
 exp {−

(10 log10  𝑥 −𝜇𝑥)
2

2𝜎𝑥
2 }                                                                     
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4.3 Computed simulation results and observations 

 

Figure 4.2 Probability for miss detection  

Fig. 4.2 shows a sample plot of probability for miss detection. The number of malicious 

users in this case is M=10, The radius of outer region R=200m, Radius of primary 

exclusive region 𝑅0 =30m, primary transmitter power 𝑃𝑡1 = 100𝐾𝑤 , primary 

transmitter power 𝑃𝑡2 = 50𝐾𝑤 , Malicious transmitter power 𝑃𝑚=4w, 𝜎𝑚1 = 8𝑑𝐵, 

𝜎𝑚2 = 10𝑑𝐵 . Probability of miss detection is calculated for 1000 numbers of 

simulations. It is observed that the probability of miss detection shows randomness 

between the range of 0.1 and 0.36. Matlab simulation code can be found in Appendix D. 
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Figure 4.3 Average probability for miss detection and false alarm 

Fig. 4.3 is the plot for average probability for miss detection and false alarm. The 

number of malicious users in this case is M=10, The radius of outer region R=200m, 

Radius of primary exclusive region 𝑅0 =30m, primary transmitter power 𝑃𝑡1 =

100𝐾𝑤 , primary transmitter power 𝑃𝑡2 = 100𝐾𝑤  , Malicious transmitter power 

𝑃𝑚 =4w,  𝜎𝑚1 = 8𝑑𝐵 , 𝜎𝑚2 = 8𝑑𝐵 . It is noted that the probability curves show 

symmetric around 75Km, because we set up two transmitters equally. Matlab 

simulation code can be found in Appendix D. 
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Figure 4.4 Average probability for miss detection and false alarm 

Fig. 4.4 shows the plot for average probability for miss detection and false alarm. The 

number of malicious users in this case is M=10, The radius of outer region R=200m, 

Radius of primary exclusive region 𝑅0 =30m, primary transmitter power 𝑃𝑡1 =

100𝐾𝑤 , primary transmitter power 𝑃𝑡2 = 50𝐾𝑤  , Malicious transmitter power 

𝑃𝑚=4w, 𝜎𝑚1 = 8𝑑𝐵, 𝜎𝑚2 = 10𝑑𝐵. It is observed that the probability of false alarm 

does not change too much over the distance 50Km to 100Km. But the probability of 

miss detection decrease with the distance. Matlab simulation code can be found in 

Appendix D. 
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4.4 Summary 

In this chapter we have discussed about the proposed network for the primary user 

emulation attack in cognitive radio network. We have done a detailed analysis and 

simulation of the network for PUE attack. Simulations were carried out to determine 

the performance of the proposed system model for PUEA attack in terms of 

probabilities of miss detection and false alarm. We showed various simulation results 

under different configuration of primary transmitters. Matlab codes for the simulations 

are attached in Appendices. 
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Chapter 5. Conclusion 

In this MS thesis research, I have first investigated the general concepts of security 

threats to the cognitive radio networks. Then, I studied the performances for primary 

user emulation attacks from Neyman-Pearson criterion point of view. After that , I 

proposed a novel system model with different configurations of the primary users and 

conduct research on maximum likelihood criterion. Our experimental results 

demonstrate the statistical characteristics of the probability of false alarm and miss 

detection in the proposed system. I plan to make comprehensive performance 

comparison with existing research results in the future work. 
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Appendix  A 

%Matlab code for Received power by secondary User due to primary 

Transmitter % 

% Primary Transmitter power = 100Kwatts 

% Malicious Transmitter Power = 4watts 

% Network Radius = 1000m 

% Distance between Primary transmitter and good secondary user = 100Km 

clear all; 

close all; 

clc; 

  

num_run = 10000;  %testing times 

format long; 

R =1000;  %radius of outer circle, changable 30:30:1500 meter 

R0 = 30;%radiu of inner circle 

sigma_p = 8;  %fixed value 

sigma_m = 5.5;  %fixed value 

Pt = 100e3; %%%%%% Primary transmitting power = 100 Kw 

Pm = 4;   % malicious user transmitting power 

dp = 100e3; %%%%% distance between primary transmitter and secondary user 

M = 15; %%%%  number of malicious users 

A = log(10)/10; 

E_p =  sigma_p*randn(1,num_run); 

Gp = 10.^(E_p/10); 

Pr_p_tmp = Pt*Gp*dp^(-2); %r. v. received power 

Pr_p = sort(Pr_p_tmp); 

mu_p = 10*log10(Pt) - 20*log10(dp); 

mu_p_2 = (10^(mu_p/10))^2; 

  

P_gama = 

(1./(A*Pr_p*sigma_p*sqrt(2*pi))).*exp(-((10*log10(Pr_p)-mu_p)/(sqrt(2)*sigma_p))

.^2); 

  

figure(1) 

[f2,x2] = hist(Pr_p_tmp,4000); 

bar(x2,f2/trapz(x2,f2)); 

axis([0 1e-4 0 max(P_gama)]);  

grid on, hold on; 

xlabel('Received power at the secondary receiver: Pr\_p') 
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ylabel('Probability density function of Pr\_p') 

plot(Pr_p, P_gama,'r');  

axis([0 1e-4 0 max(P_gama)]) 

legend('simulation', 'computation' )  
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Appendix  B 

%  Matlab code for Received power by secondary User due to Malicious Users % 

clear all; 

close all; 

clc; 

num_run = 10000;  %testing times 

format long; 

R =1000;  %radius of outer circle, changeable 30:30:1500 meter 

R0 = 30; %radius of inner circle 

sigma_p = 8;  %fixed value 

sigma_m = 5.5;  %fixed value 

  

Pt = 100e3; %%%%%% Primary transmitting power = 100 Kw 

Pm = 4;   %malicious user transmitting power 

dp = 100e3; %%%%% distance between primary transmitter and secondary user 

M = 10; %%%% number of malicious users 

A = log(10)/10; 

%%%% Random Points within circle with radius R & radius R0 

xCoordinates = []; 

yCoordinates = []; 

n = M; 

    while n > 0 

  

        x = unifrnd(-R,R,1,1); 

        y = unifrnd(-R,R,1,1); 

  

        norms = sqrt((x.^2) + (y.^2)); 

        inBounds = find((R0 <= norms) & (norms <= R)); 

  

        xCoordinates = [xCoordinates; x(inBounds)]; 

        yCoordinates = [yCoordinates; y(inBounds)]; 

         

  

        n = M - numel(xCoordinates); 

    end 

  

%%%%%%%%% Distance between jth malicious user and secondary 

user %%%%%%% 

for i= 1 : M % number of malicious users 
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    d(i)=sqrt((xCoordinates(i))^2 + (yCoordinates(i))^2); 

end 

%%%%% Received power at secondary user from malicious users %%%%%% 

for kk = 1:num_run 

E_j= sigma_m*randn(M,1); 

G = 10.^(E_j/10); 

for j = 1:M 

    P(j) = Pm*(d(j)^(-4))*G(j); 

end 

   Pr_m_tmp(kk)= sum(P); 

end 

  

Pr_m = sort(Pr_m_tmp); 

[f1,x1] = hist(Pr_m_tmp,4000); 

figure(2) 

bar(x1,f1/trapz(x1,f1)); 

axis([0 max(x1) 0 max(f1/trapz(x1,f1))]) 

grid on; hold on; 

xlabel('Received power at the secondary receiver from malicious users: Pr\_m') 

ylabel('simulated pdf. Probability density function of Pr\_m') 

  

sigma_x_2 = (1/A^2)*(log(mean(Pr_m.^2)) - 2*log(mean(Pr_m))); 

mu_x = (1/A)*(2*log(mean(Pr_m)) - 0.5*log(mean(Pr_m.^2))); 

P_m_gama = 

(1./(A*Pr_m*sqrt(sigma_x_2)*sqrt(2*pi))).*exp(-((10*log10(Pr_m)-mu_x)).^2/(2*si

gma_x_2)); %Equ (11) 

plot(Pr_m, P_m_gama,'r-.'); 

xlabel('Received power at the secondary receiver from malicious users: ') 

ylabel('calculated pdf')% axis([0 max(Pr_m) 0 max(P_m_gama)]) 

legend('simulation', 'computation' )  
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Appendix C 

% Matlab code for Calculating Probabilities of false alarm and miss detection % 

clear all; 

close all; 

clc; 

P_D1_H2=[]; 

P_D2_H1=[]; 

  

num_run = 10000;  %testing times 

  

M = 15; %%%% number of malicious users 

R =500;  %radius of outer circle, changeable 30:30:1500 meter 

R0 = 30;%radiu of inner circle 

sigma_p = 8;  %fixed dB 

sigma_m = 5.5;  %fixed value dB 

sigma_p_2= (10^(sigma_p/10))^2;   

sigma_m_2= (10^(sigma_m/10))^2; 

Pt = 100e3; %%%%%% Primary transmitting power = 100 Kw 

Pm = 4;   %malicious user transmitting power 40watts 

dp = 100e3; %%%%% distance between primary transmitter and secondary user 

A = log(10)/10; 

x0 = 1e-9:1e-9:1e-3; %all x axis variables 

 

%%%% Random Points within circle with radius R & radius R0 

 

xCoordinates = []; 

yCoordinates = []; 

n = M; 

    while n > 0 

  

        x = unifrnd(-R,R,1,1); 

        y = unifrnd(-R,R,1,1); 

  

        norms = sqrt((x.^2) + (y.^2)); 

        inBounds = find((R0 <= norms) & (norms <= R)); 

  

        xCoordinates = [xCoordinates; x(inBounds)]; 

        yCoordinates = [yCoordinates; y(inBounds)]; 
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        n = M - numel(xCoordinates); 

    end 

%%%%%%%%% Distance between jth malicious user and secondary 

user %%%%%%% 

for i= 1 : M % number of malicious users 

    d(i)=sqrt((xCoordinates(i))^2 + (yCoordinates(i))^2); 

end 

 

N=500; %N loop numbers 

for J=1:1:N 

%%%%% Received power at secondary user from primary transmitter %%%%%% 

E_p =  sigma_p*randn(1,num_run); %E_p dB in lognormal distribution 

Gp = 10.^(E_p/10); 

Pr_p_tmp = Pt*Gp*dp^(-2); %r. v. received power (watts) r.v. 

  

Pr_p = sort(Pr_p_tmp); 

mean_Pr_p=mean(10*log10((Pr_p))); %mean power in dB 

  

mu_p = 10*log10(Pt) - 20*log10(dp); %calculation=mean(Pr_p) in db =mean_Pr_p 

mu_p_2 = (10^(mu_p/10))^2; 

  

P_gama = 

(1./(A*x0*sigma_p*sqrt(2*pi))).*exp(-((10*log10(x0)-mu_p)/(sqrt(2)*sigma_p)).^2); 

%%%%% Received power at secondary user from Malicious users %%%%%% 

for kk = 1:num_run 

E_j= sigma_m*randn(M,1); 

G = 10.^(E_j/10); 

    P = Pm*d.^(-4).*G'; 

   Pr_m_tmp(kk)= sum(P); 

end 

Pr_m = sort(Pr_m_tmp); 

sigma_x_2 = (1/A^2)*(log(mean(Pr_m.^2)) - 2*log(mean(Pr_m))); 

mu_x = (1/A)*(2*log(mean(Pr_m)) - 0.5*log(mean(Pr_m.^2))); 

P_m_gama = 

(1./(A*x0*sqrt(sigma_x_2)*sqrt(2*pi))).*exp(-((10*log10(x0)-mu_x)).^2/(2*sigma_x

_2)); %Equ (11) same x0 

z= P_m_gama./P_gama; 

lambda=2; 

index= max(find(z >= lambda)); 

x_threshold = x0(index); 

t0=1e-9:1e-9:x_threshold; %t0 is from 0 to lamdba 
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P_D2_H1_tmp = trapz(t0,P_gama(1:index)); 

P_D2_H1=[P_D2_H1;P_D2_H1_tmp]; 

tt_size= round((1e-3-x0(index))/1e-9); %tt is index from lambda to right end value 

tt = x0(index+(1:1:tt_size)); 

P_D1_H2_tmp = trapz(tt,P_m_gama(index+(1:1:tt_size))); 

  

P_D1_H2 =[P_D1_H2; P_D1_H2_tmp]; 

% close all 

end; 

P_D1=sort(P_D1_H2); 

P_D2=sort(P_D2_H1); 

plot(P_D1, (0:1/N:1-1/N), 'r', P_D2, (0:1/N:1-1/N),'k'); 

xlabel('Probability of miss detection and false alarm M=10, R=700m, R_0=30m ') 

ylabel('CDF') 

legend('P\_D1', 'P\_D2' ); 

MeanP_D1=mean(P_D1_H2) 

MeanP_D2=mean(P_D2_H1) 

figure (2) 

plot(P_D1_H2) 

xlabel('Number of simulation times ') 

ylabel('Probability of False alarm') 

figure (3) 

plot(P_D2_H1) 

xlabel('Number of simulation times ') 

ylabel('Probability of Miss Detection') 
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Appendix D 

% Matlab code for Chapter 4 % 

clear all; 

close all; 

clc; 

MeanP_D1=[]; 

MeanP_D2=[]; 

num_run = 5000;  %testing times 

N=100; %N loop numbers  

M = 10; %%%%  number of malicious users 

R =200;  %radius of outer circle, changeable 30:30:1500 meter 

R0 = 30;%radius of inner circle 

sigma_p1 = 8;  %fixed dB 

sigma_p2 = 10;  %fixed dB 

sigma_m = 5.5;  %fixed value dB 

sigma_p1_2= (10^(sigma_p1/10))^2;  

sigma_p2_2= (10^(sigma_p2/10))^2;  

  

xCoordinates = []; 

yCoordinates = []; 

n = M; 

    while n > 0 

  

        x = unifrnd(-R,R,1,1); 

        y = unifrnd(-R,R,1,1); 

  

        norms = sqrt((x.^2) + (y.^2)); 

        inBounds = find((R0 <= norms) & (norms <= R)); 

  

        xCoordinates = [xCoordinates; x(inBounds)]; 

        yCoordinates = [yCoordinates; y(inBounds)]; 

        n = M - numel(xCoordinates); 

    end 

%%%%%%%%% Distance between j
th

 malicious user and secondary 

user %%%%%%% 

for i= 1 : M % number of malicious users 

    d(i)=sqrt((xCoordinates(i))^2 + (yCoordinates(i))^2); 

end  

sigma_m_2= (10^(sigma_m/10))^2; 

Pt1 = 100e3; %%%%%% Primary transmitting power = 100 Kw 

Pt2 = 50e3; %%%%%% Primary transmitting power = 100 Kw 



57 

    

A = log(10)/10; 

x0 = 1e-9:1e-9:1e-3; %all x axis variables 

Pm = 4;   %malicious user transmitting power 40watts 

for dp1 = 1e3*(50:5:100); %%%%% distance between primary transmitter and 

secondary user 

P_D1_H2=[]; %initialize at a new location of d1 

P_D2_H1=[]; 

dp2=150e3 - dp1 

for J=1:1:N 

%%%%% Received power at secondary user from primary transmitter %%%%%% 

E_p1 =  sigma_p1*randn(1,num_run); %E_p dB in lognormal distribution 

Gp1 = 10.^(E_p1/10); 

Pr_p_tmp1 = Pt1*Gp1*dp1^(-2); %r. v. received power (watts) r.v. 

E_p2 =  sigma_p2*randn(1,num_run); %E_p dB in lognormal distribution 

Gp2 = 10.^(E_p2/10); 

Pr_p_tmp2 = Pt2*Gp2*dp2^(-2); %r. v. received power (watts) r.v. 

Pr_p_tmp=Pr_p_tmp1+Pr_p_tmp2; 

Pr_p = sort(Pr_p_tmp); 

mean_Pr_p=mean(10*log10((Pr_p))); %mean power in dB 

mu_p1 = 10*log10(Pt1) - 20*log10(dp1); %calculation=mean(Pr_p) in db 

=mean_Pr_p 

mu_p2 = 10*log10(Pt2) - 20*log10(dp2); %calculation=mean(Pr_p) in db 

=mean_Pr_p 

mu_p= mu_p1+mu_p2; 

mu_p_2 = (10^(mu_p/10))^2; 

sigma_p12 = (1/A^2)*(log(mean(Pr_p.^2)) - 2*log(mean(Pr_p)));  

P_gama = 

(1./(A*x0*sigma_p12*sqrt(2*pi))).*exp(-((10*log10(x0)-mu_p)/(sqrt(2)*sigma_p12)

).^2); 

%%%%% Received power at secondary user from Malicious users %%%%%% 

for kk = 1:num_run 

E_j= sigma_m*randn(M,1); 

G = 10.^(E_j/10); 

    P = Pm*d.^(-4).*G'; 

   Pr_m_tmp(kk)= sum(P); 

end 

Pr_m = sort(Pr_m_tmp); 

sigma_x_2 = (1/A^2)*(log(mean(Pr_m.^2)) - 2*log(mean(Pr_m))); 

%Mu_x = 10*log10(Pm) - mean(40*log10(d)); %this mean is not correct. 

mu_x = (1/A)*(2*log(mean(Pr_m)) - 0.5*log(mean(Pr_m.^2))); 
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P_m_gama = 

(1./(A*x0*sqrt(sigma_x_2)*sqrt(2*pi))).*exp(-((10*log10(x0)-mu_x)).^2/(2*sigma_x

_2)); %Equ (11) same x0 

z= P_m_gama./P_gama; 

semilogx(x0,z); grid on; 

lambda=2; 

index= max(find(z >= lambda)); 

x_threshold = x0(index); 

t0=1e-9:1e-9:x_threshold; %t0 is from 0 to lamdba 

P_D2_H1_tmp = trapz(t0,P_gama(1:index)); 

P_D2_H1=[P_D2_H1;P_D2_H1_tmp]; 

  

tt_size= round((1e-3-x0(index))/1e-9); %tt is index from lambda to right end value 

tt = x0(index+(1:1:tt_size)); 

P_D1_H2_tmp = trapz(tt,P_m_gama(index+(1:1:tt_size))); 

P_D1_H2 =[P_D1_H2; P_D1_H2_tmp]; 

end; 

MeanP_D1= [MeanP_D1; mean(P_D1_H2)] 

MeanP_D2= [MeanP_D2; mean(P_D2_H1)] 

end 

plot(50:5:100, MeanP_D1,'r'); hold on; plot(50:5:100, MeanP_D2, '--'); grid on; 

xlabel('Distance between Pt1 to the secondary receiver (km) ') 

ylabel('Probability of false almarm and miss detection') 

axis([50 100 0 0.5]); 

legend('P\_D1', 'P\_D2') 
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