
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

1990

High-Level Microprogramming: An Optimising C
Compiler for a Processing Element of a CAD
Accelerator
Paul Kenyon
University of Nebraska - Lincoln

Prathima Agrawal
AT&T Bell Labratories

Sharad Seth
University of Nebraska - Lincoln, seth@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Kenyon, Paul; Agrawal, Prathima; and Seth, Sharad, "High-Level Microprogramming: An Optimising C Compiler for a Processing
Element of a CAD Accelerator" (1990). CSE Journal Articles. 64.
http://digitalcommons.unl.edu/csearticles/64

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17270469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/64?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages

High-Level Microprogramming: An Optimising C Compiler for a Processing
Element of a CAD Accelerator

Paul Kenyon Prathima Agrawal Sharad Seth
AT&T Bell Lakratorier

Lincoln, Nebrarka Murray Hill, New Jerrey Lincoln, Nebraska
Univerrity Nebrarko - Lincoln Univerrity Nebrarko - Lincoln

Abstract: The development of a high-level lan-
guage compiler for a micro-programmable process-
ing element (PE) in the MARS multicomputer is de-
scribed. MARS, an MIMD message passing machine,
was designed to speed up VLSI CAD and similar
other non-numerical applications. The need for sup
port of a high-level language at the PE level of a mul-
ticomputer is considered, and the choice of C as an
appropriate programming language is justified. Spe-
cial features found in VLSI processors are examined
along with compiler support for them.

Conventional retargetable compiler techniques are
shown to be inadequate for the highly concurrent
micro-programmable PE. These techniques must be
extended for microcode generation. The design of
the MARS compiler is outlined. Performance data
is provided to evaluate the benefit of various com-
piler optimisations, and to compare compiler gener-
ated microcode to hand generated microcode in terms
of space and time performance
Keywords: Microcode compiler, Code Generation,
Front-Znd DAG Compiler, Hand vs. Compiled Mi-
crocode, Performance Data, Space/Time Overhead,
Hardware Accelerator, Programming Environment
for CAD

1 Introduction

The long-term goal of our research is to demonstrate
the effectiveness of high-level language support for
a microprogrammable multiprocessor designed to ac-
celerate computer aided design tools for VLSI. This
research involves the development of a C compiler
for a processing element (PE), a C++ compiler for a
cluster of PES, and source-code level simulation and
debugging tools.

This paper describes the first stage of that research,
the development of a C language compiler for the
processing element of the MARS multicomputer [6].

The first step in supporting a high-level language
on an MIMD (Multiple Instruction Stream, Multi-
ple Data Stream) message passing machine such as
MARS is to be able to generate efficient, accurate
code for each PE of the multicomputer. Good code
generation at the PE level is needed before any work
in compilation for the entire multicomputer can be
attempted. The PE compiler can be used directly
by a programmer who partitions a problem on to the
processors, allocates the communication usage, and
balances the computational load. Or, it can be used
by a higher-level multicomputer compiler that per-
forms these tasks and generates output code for com-
pilation onto the PES.

While our work deals with MARS, only a small,
easily-identifiable part of our implementation is spe-
cific to its architecture. Thus, our method has wider

The problem of high-level language support for multi-
computers is one of the major limitations in applying
the computational power of these machines to new

applicab%' to other microprogrammable processors
and can be the basis for development of a retargetable
compiler.

applications. Two major developments, which have
been driven by VLSI technology, lend urgency to this
task: (a) New parallel architectures have proliferated
and are increasingly being used by programmers who
are not intimately familiar with their low-level archi-
tectural details. (b) The design of specialised VLSI
multiprocessors to accelerate computationally inten-
sive tasks is becoming more common. The problem
of software support for these machines will continue
to grow.

There is much reported work on high-level micropro-
gramming and retargetable compilers (see Section 4).
The focus of the past work, however, is markedly dif-
ferent from ours. We are concerned with an envi-
ronment in which a variety of applications are imple-
mented by a programmer who is far removed from
the designers of the microprogrammable PE. By con-
trast, earlier work has dealt with firmware develop
ment carried out in the context of a processor design.

0194-1895/90/0000/0097/$01 .OO 0 IEEE 97

Proceedings of the 23rd Annual Workshop and Symposium., Workshop on Microprogramming and Microarchitecture. Micro 23.
doi: 10.1109/MICRO.1990.151431

2 MARS Background

MARS, a microprogrammable accelerator for rapid
simulation, is a messagepawing multicomputer with
micro-programmable PES [SI. MARS was developed
to accelerate logic simulation of digital circuits, but
its generality and programmabfity allow it to per-
form a wide variety of problems. The currently imple-
mented MARS applications include logic simulation
[4], hult simulation [SI, and speech recognition [ll].
The architectural featurea in MARS lend themselves
to non-numeric applications such as graph search.

MARS is a messagepassing multicomputer with par-
allelism at three levels. At the highest level MARS is
proposed as a hypercube network of processor clus-
ters. The currently implemented hardware represents
one of these clusters, and is physically a plug-in VME
board. The cluster level of MARS is a collection of 16
PES and a house-keeper processor. The PES are mi-
croprogrammable VLSI custom processors, each with
its own local data memory which is accessible only by
it and the housekeeper processor.

MARS Cluster Architecture
The PES within a cluster communicate with one an-
other via a message passing network which is con-
nected by a 16 x 16 full crossbar. A PE can address
the destination of its transmitted messages, transmit
a message into the crossbar, and receive messages
from the crossbar. All three of these actions are con-
trolled dynamically by the PE’s program. The cross-
bar handles 16-bit messages from PE to PE with only
one clock cycle latency. The crossbar messages are
buffered at transmission and reception with an eight-
message deep total buffer sise per PE. The channel
control logic includes a channel hold which provides a
blocking non-interruptible channel between two PES.

The house-keeper processor performs 1/0 and s u p
port functions for the cluster. For example, the
house-keeper may perform data transfers from one
PE data memory to another, or between a PE data
memory and disk storage. The house-keeper also
handles cluster-wide control such as loading PE pro-
grams, starting and stopping PES (individually or en
masse), and receiving and responding to PE level in-
terrupts. The CPU of the host Sun work-station acts
as house-keeper in the VME board implementation.
Figure 1 shows a block diagram of the MARS cluster
architecture.

System
Level

266 Node
8 - Cube

C l u t a
LCVCl

I PE14 I MEMl4 1 I .

Figure 1: System and Cluster Architecture

MARS PE Architecture
The MARS PE has a parallel architecture and a hori-
rontal (64 bit), writable microcontrol store. The par-
allel micro-architecture includes several special fea-
tures. Among these is, the ability to perform arith-
metic and logical operations quickly on variably offiet
bit fields of sise 1, 2, 4, and 8 bits using a field o p
eration unit (FOU) which operates independently of
the 16-bit address arithmetic unit (AAU). An exam-
ple bit field operation would be to take bit positions
0 and 1 from register number 16 and bits 7 and 8
from register number 17 add the two pairs as two bit
integers, and place the result in bit positions 13 and
14 of register number 18. When properly configured
this can be performed by the FOU in one cycle.

A second special feature of the PE is reading and
writing bit fields to and from a variable aspect ratio
memory. The hardware supports memory access as
if the memory were 1, 2, 4, 8, or 16 bits wide. Such
an access capability accelerates operations on tables
of packed bit fields.

The PE also provides special hardware to transmit
and receive words directly over the message passing
network. The hardware makes it possible to have
two control flow threads active in the PE at the same
time. This is managed by hardware which generates
a trap when the input buffer is not empty or when the
output buffer is not full. This trap switches control to
a second thread which can process the data transfer
to or from the crossbar and then return control to the
main control flow thread.

98

The writable control store was provided to make
MARS a versatile machine instead of a dedicated
hardware simulator. The store is 04 bits wide with
only 64 entries in the current implementation and can
be read and written by the house-keeper. However,
writing to the control store causes a hardware reset
on the PE, which clears its state and register files.
Programmability was included at the microcode level
to achieve high-speed processing as a pipeline stage in
simulation problems. This horbontal microcode, the
multiple buses, and the availability of parallel micro-
architecture hardware give the PE the ability to per-
form up to five operations per clock cycle under the
control of the programmer [5].

MARS Soaware
The software for the MARS project has been devel-
oped in several stages. Prior to development of the
current compiler, there existed several tools to s u p
port micro-programming. First, a functional simula-
tor was developed previous to the production of the
hardware and is used for debugging programs. It sim-
ulates the 15 PE’s and the message passing network
in a cluster at the clock phase level. Second, a micro-
assembler for translating symbolic micreprograms
into microcode files was written. Micro-assembler
programming is supported by a macro facility along
with a library of macros for simple operations. Third,
the Housokeeper/PE interhe has been supported by
a library of system routines for accessing and control-
ling the MARS VME board as a device. The routines
provide a means of transferring data and programs
between the host work-station process and the PE
memories. Together these tools provided a basic en-
vironment for developing several applications, imple-
mented in microcode, which currently run on MARS.

The compiler work for MARS is being performed in
three stages. The first stage involves the develop
ment of a compiler which inputs the C language and
generates microcode. The remainder of this paper
describes the design and implementation of this PE
level compiler. The second stage of the research wil l
be the design and implementation of a duster-level
compiler which maps (~11 algorithm onto the set of 16
PES. The third stage of the compiler work will be to
explore data parallel methods of mapping algorithms
onto multiple clusters at the system level. See Fig-
ure 2.

3 PE Compiler Requirements
The VLSI processors used in multicomputers often
include specialised hardware features. These features

Parallel Algorithm

I High Level Programming I
I

Parallel Langpage Program

+ 1 Microcode Compression 1
I I

I
Horizontal Micro-Assembler

I Micro-Assembler I
I

Microcyde File

Figure 2: MARS Software Overview

are included to support operations that commonly oc-
cur in the problem domain being targeted, to enhance
the processor’s speed performance, and to support in-
teraction of the PES in the multicomputer. For ex-
ample, the MARS PE provides special hardware for
bit-field operations, for accessing data memory with
a variable aspect ratio, and for interrupting the pro-
cessor flow of control to handle message traffic.

The challenge of the PE level compiler is to represent
the features of the hardware in an efficient and easy-
to-use manner. The MARS compiler represents the
specialised features of the PE hardware to the PE
level programmer and/or overlaying tools in a way
that is independent of the machine. The PE is s u p
ported in a machine-independent manner, in order
to reduce the attention the programmer must pay to
low-level architecture and to abstract hardware fea-
tures, thus reducing the complexity of cluster-level
compiler code generation. This abstraction is also
important for portability of programs between revi-
sions of the hardware, and to different architectures.

The MARS architecture presents three major chal-
lenges to writing or generating good microcode.

1. Object Code Compaction:
The small program memory in the current im-
plementation makes object code sise very impor-

tant. Since reducing object code sise reduces ex-
ecution time [lo], object code sise compression
is the primary optimisation criteria for the final
microcode.

Register Allocation:
MARS provides few registers. There are 8
general-purpose registers, with 24 registers in all.
This, combined with the latency of memory ac-
cesses, makes good register allocation essential
to efficient code generation.

Instruction Scheduling:
MARS has a limited instruction set. It has no
complex addressing modes; in fact, the only ex-
ternal memory addressing mode is register indi-
rect (from one of two memory address registers)
with an offset of 0 to 7. The compiler must sched-
ule instructions for memory access to keep pace
with data traveling through internal pipelines.

Language Choice
The input language of the MARS PE level compiler
is the C programming language. The C language
was chosen for several reasons. Though a single PE
contains parallel hardware, it follows a single flow of
control; sequential language b sufficient to represent
this control flow. The C language is capable of di-
rectly expressing all of the operations of the MARS
PE architecture: C bit-fields are used to represent
field operation unit (FOU) bit manipulations on 1, 2,
4, and 8 bit entities; and special library functions are
made available to provide access to the communica-
tion hardware and to interrupt control. C allows for
direct description of bit manipulations and low-level
operations. C is a good language for automatic pr-
gram generation by any overlaying cluster-level com-
piler. Furthermore, it is already known by the com-
munity of programmers who will program MARS.

More importantly, software written for MARS can
be tested on other C compilers with software simu-
lation of the MARS library calls. The extensions of
C needed for MARS take the form of special library
function calls which have low-level, high-speed action
on MARS. These function calls can be implemented
on another system to access a software simulator of
the special function, to read and to write from a Ne,
or to perform other debugging activities. Another
advantage of C is that compiler front-ends for the
language are readily available. which greatly reduce
implementation time. Ako, using C makes it ea%
ier to test and debug the PE compiler by comparing
program results against those from other machines.

Compiler Retarget ing
A secondary objective of our work is to explore re-
targetable microcode generating compilers. While
our research has not attempted to produce a com-
piler generator based on a machine description lan-
guage, the compiler development has isolated com-
piler translation rules that depend upon the target
micrtxuchitecture. (See Section 5 for a complete de-
scription of compiler implementation.)

The first requirement of a retargetable compiler is
a well designed compiler parser and front-end. Re-
targetable compiler front-ends generally reduce the
input language to a machine independent interme-
diate code. Within the compiler back-end, interme-
diate optimisations are performed to customise the
intermediate code to the target architecture. These
optimisation rules are based on the compiler archi-
tecture and are generated by hand in the current im-
plementation. In a retargetable implementation of
a microcode generating compiler, the optimisations
would be driven by an explicit rule database. This
rule set could then be automatically generated from
an architecture description. Several such compilers
have been constructed for traditional architectures
and while these compilers are not directly able to s u p
port microcode generation (sec section 3) the meth-
ods of supporting retargeting should be applicable to
microcode generation.

4 Previous Work
Since the construction of a compiler for the MARS
PE is by definition a machine s p d c problem, only
solutions to slightly similar problems are found in the
literature. Furthermore, there exist many good bibli-
ographies of work in the field of compilers for various
parallel machines.

Inadequacy of Traditional Compilers
One approach to applying existing compiler technol-
ogy to the construction of the PE level compiler was
to look at currently available retargetable compil-
ers and consider the feasibility of targeting them to
MARS. Retargetable compilers have the ability to
generate assembly code for many different architec-
tures. Notable examples of these systems are pcc, the
standard AT&T UNIX portable C compiler [6], and
gcc, the Free Software Foundation GNU project C
compiler, which have been modified to generate code
for many different architectures.

100

More recently compilers have been developed which
are retargetable to a new architecture simply by writ-
ing detailed descriptions of the architecture instruc-
tion set [14] [15]. Retargetable compilers provide a
straightforward method of constructing in a relatively
short time a compiler for a new architecture. How-
ever, these compilers make certain assumptions defin-
ing what the compiler writers consider to be a gen-
eral purpose computer. Commonly used assumptions
are a von-Neumann computer architecture, (with pro-
gram and data memory and one instruction counter)
and instructions of the form “operation, addresses”.
The address fields in instructions can at different
times refer to a constant, a register, an absolute mem-
ory location, a memory location addressed by a reg-
ister with optional constant offset, or a memory lo-
cation addressed by another memory location. Even
RISC architectures, which reduce complexity of oper-
ations and addressing modes, still provide addressing
modes such as register indirect addressing (into mem-
ory) with an offset.

The MARS PE, being microprogrammable cannot be
said to have addressing modes in the traditional sense
but the following three operations describe the range
of possibilities: loading a constant onto a bus, loading
the contents of a register onto a bus, and storing the
contents of a bus into a register. These operations
are of a much lower level than the high-level address-
ing modes that retargetable code generators require
traditional architectures to provide.

VLIW Architecture Compiler
Fisher [13] and Ellis [12] describe the design and pro-
duction of a compiler for a Very Large Instruction
Word (VLIW) Architecture. Ellis describes trace
scheduling, a technique for code generation for a
VLIW machine. A trace is a path through the flow of
control graph of the program. In trace scheduling, in-
structions are reordered and scheduled within a trace
rather than within a basic block because more code
reordering can be found within a trace. Reordering
the code within a trace involves moving instructions
across basic block boundaries. This movement causes
inconsistencies between the code trace and the basic
blocks adjoining it in the control-flow graph. Correct-
ing these differences requires additional code in the
basic blocks that flow into and out of the trace being
scheduled.

A second recent compiler technique is described by
Lam [l9]. Lam describes a compiler for a sys-
tolic array of microprogrammable processors which

uses a technique called software pipelining. Soft-
ware pipelining considers the code resulting from a
source language function aa a directed graph, with
nodes representing operations and edges representing
flow of control. Software pipelining first schedules
the instructions within an inner loop of a program.
The completely scheduled instructions are then col-
lapsed into a single node and the scheduling contin-
ues. The scheduling algorithm and node collapsing
are repeated until the entire graph is one node and
the function is scheduled.

High- Level Microprogramming
Hopkins, Horton and Arnold [17] describe a sys-
tem for high-level microprogramming which is sim-
ilar to ours but with the aim of producing microcode
firmware which will execute a higher-level machine
language on the hardware. Their objectives are to
support the development of firmware programs across
evolutionary changes of the underlying hardware and
to produce tools that can be retargeted to new archi-
tectures. This is in contrast to the case in MARS,
where the goal of the compiler is to target applica-
tion programs directly to microcode. Since the users
of our compiler are not familiar with the details of its
microarchitecture, it is important for the compiler to
hide the low-level details of the architecture from the
application program.

Hopkins et al. describe the design of a microcode
producing compiler whose input is a subset of the C
language. A good case is made for writing firmware
programs in C instead of directly in microcode. Ad-
mittedly there is a code-sbe and run-time overhead in
the use of a high-level language but it is pointed out
that recoding just 10% of a program in efficient hand
microcode often reduces a 100% run-time overhead to
just lo%, (this is sometimes called the 90/10 rule).
In the case of MARS we find that the 90/10 rule is
doubly valid. First, within one PE’s microprogram,
inner loops can be identified which account for much
of the processing time. Second, across a multiple-
PE program - often organized as a pipeline - one or
two stages may be identified that act as bottlenecks
in the system. If these PE programs are rewritten
in efficient microcode overall performance will be im-
proved and further optimieation of the non-critical
PES is not beneficial.

5 Implementation
Figure 3 shows a block diagram of the compiler. The
PE Compiler is organised much like the compiler for
a conventional architecture with a few additions. The

101

Source File

C Preprocessor

Token 'stream

m a g Customination I

Horisontal Microcode

Figure 3: Compiler Block Diagram

h t part of the compilation process (lexical analysis,
symbol table construction, parsing, parse tree gen-
eration, and intermediate code generation) is carried
out by the compiler front-end. This front-end b from
a portable ANSI-standard C compiler [16]. The use
of a previously developed compiler front-end greatly
reduces compiler development work. It ale0 helps to
ensure an accurate implementation of the language.

After translating a section of the input program, the
front-end produces a directed acyclic graph (DAG)
representation of the code. The nodes of the DAG
represent operations, and the edges represent data
dependencies. A sequence of these DAGS b the in-
termediate code which the front-end passes to the
compiler back-end for microcode generation. Each
sequence of DAGS is a data-dependency graph for a
flow-control-free basic block of code. The ordering of
a DAG sequence represents normal control flow. La-
b& which are the targets of a branch may separate
DAG sequences, and a DAG sequence may end with a
conditional or unconditional branch. A function c d
may appear as a node in the DAG.

1: i o <
2: int a, b, c;
3: b = 1;
4: c = 2;
6: a = b + c ;
6: while (a>O)
7: a=a-I ;
8 : 1

Figure 4: Example C code

d il d
N u m b a by the root nodca indicate the DAG sequence.

Figure 6: DAG from lines 3 - 6 of the example C cod

For example, when the C code listed in Figure 4 is
parsed by the front-end, the code in linea 1 and 2
gives rise to a series of back-end calls. These com-
municate a function begin, a block begin, and three
local variable definitions. Lines 3, 4 and 6 translate
into a DAG sequence. The while loop in lines 6 and 7
is translated to test and branch code containing an-
other two DAGS. Line 8 generates a block end and a
function end call to the back-end. Figure 6 shows the
DAG sequence resulting from lines 3, 4 and 6.

DAG Customilaation
When an intermediatecode DAG sequence is emitted
from the front-end, the operations represented by the
nodes are from a relatively small set of 38 operations
over 8 supported data types. These machine indepen-
dent operations represent a RISC-like machine model
that has 3 address instructions (e.g. A := B op C)
and no complex addressing modes. The 8 data types
supported by the intermediate code DAG sequences

102

I d (C T)
J I

Numbem by the root nodes indicate the DAG sequence.
Bold face Indicates MARS-specilic DAG node operations.

Figure 6: Customised DAG from lines 3 to 5 of the
example C code

are: character, short integer, integer, unsigned inte-
ger, float, double, structure, and pointer.

The first step in the compiler back-end is to customise
each DAG to the PE architecture. In general terms
this process involves searching for opportunities to
take advantage of the special hardware features avail-
able in the PE. Figure 6 shows the DAG from Figure 5
after it has been customised for MARS. During the
customisation process, the DAG node operations are
members of the set which is the union of the front-end
generated operations and the MARSspecific DAG
node operations. MARS-specific operations repre-
sent hardware features that exist in a MARS PE but
not in the generalised machine model for which the
front-end produced code. Example MARS-specific
DAG node operations are: GET (fetch value from
an address), PUT (store value to address), INC (in-
crement), DEC (decrement), and BZ (branch ifrero).

The bit-field datatypes are very well supported in
MARS and must be added to the operator set p r e
duced by the front end. A bit-field may be 1 ,2 ,4 , or 8
bits long. MARS can perform all integer arithmetic
operations and memory load/stores on bit-fields as
easily as on 16-bit integers by using the field opera-
tion unit and variable-aspect-ratio memory hardware.

Other alterations made during the DAG customisa-
tion are performed not SO much to improve the ef-

fiCiezcy cf !kt a ~ c c t ! y hilt kQ C?EULe au_beeqgent
code generation. They also reduce the improvements
required from the later code optimisation.

The DAG sequence is customised by traversing
through each node in the graph, and attempting to
match the current node (and the subtree of nodes im-
mediately under it) against various templates. A tem-
plate is a matching rule for a small section of tree. For
example there is a template/substitution rule which
says: "If an ADD has one argument which is a CNST
whose symbol is 1, then dereference the CNST node,
and change the ADD node to an INC node."

When a section of the DAG matches a template it
is substituted with another section of DAG using
PE operations. The substituted section is then re-
scanned for any other possible matches. Specifically,
the DAG customisation algorithm is:

0 Form a list of all nodes in a DAG se-
quence in p r e k order

0 For each node, NI in this list

- For each substitution template
* If a template match is found,

perform the corresponding
substitution

- If any match was found at node NI
retest all templates

Dereferencing the CNST node means that the pointer
for its use here is removed and its reference count re-
duced. If a node's reference count is reduced to zero
then it is completely removed from the graph and all
of its children are dereferenced. The time complexity
of this graph search is given by:
1 DAGNodes 1 x I Templater I x I Tranrfmmr I
In the worst case, I Transforma I is bounded by:
I RulerTemplates 1'
Where DAGNoder is the number of nodes in the cur-
rent DAG, Templater is the number of templates to
be attempted, and Tranr f ormr is the number of suc-
cessful template matches and DAG transformations.

Microcode Generat ion
After the DAG sequence has been customised for
MARS architecture, microcode is generated from it.
The code generation follows a straightforward alge
rithm: For each DAG in a DAG sequence, a code
generation routine gen-node is called on the root node
of the DAG. This routine takes two arguments: the

node for which to generate code, and the location at
which to place the result of the operation.

The gen-node routine performs as follows: The node
is b t checked to see if it has been processed by
gen-node, and its result value left in a register. If
the value was left in a register, code is produced to
move the value to the current target location. At this
point processing for the node is complete.

If no stored value from a previous processing step is
found, the node is checked to see if it is referenced
more than once. If it is multiply referenced, and the
requested destination for its results is not a general
DAGnode temporary register, then a general DAG
node temporary regiater is allocated to the node to be
stored for later use. The next action varies according
to the node’s operation. In general, for each child of
the node code generation for the child is recursively
requested by calling gen-node and taking the child
node as the node argument. The result placement ar-
gument for gen-node is the location from which this
operation could best use the child’s result value. Af-
ter code has been generated for all of the children,
the code to perform the current node’s operation is
produced. Finally, the results from this operation are
moved from where this operation creates them to the
node’s storage location (if any) and to the location
requested in the code generation call.

This code generation algorithm was designed to bal-
ance the need to use as few registers as possible for
DAG temporaries with the need to reduce the amount
of code generated simply to do data transfers. Many
of the operations represented by DAG nodes can be
performed in several different ways by the PE hard-
ware. The choice of method is based on where the
result is to be placed after the operation is finished.

Microcode Compression
As MARS assembly code is generated in the code-
generation pass, peephole optimisation is performed
on it [6] [lo]. Peephole processing performs small lo-
calised changes on the generated code; it does not al-
ter the operations performed, but simply changes the
instruction sequencing. The optimisation identifies
adjacent instructions that have no data dependen-
cies between them and no hardware conflicts. If two
instructions fitting these properties are found, they
are merged together into one instruction. This poet-
processing increases the utilisation of the hohontal
micro-instruction available in MARS.

:,f:

:U:
:12:

$dei ault$ dei ault-ht
$origin$ 0
conrt ,f mt conrt -b(--Ep-baEO,addrOEIJ

conrt ,f mt conrt ,a(di a-drt (B-22) ;
conrt-fmt conrt-a(d2) a-drt(B-21) ;
c-rrc(B-22) a-rrc(B-21) aau-add

conrt-fmt conrt,a(:12:) ccdrt(PIB) ;
nop i
a-rrc(B-23) aau-doc c-drt (B-23) ;
conat-fmt conrt-b(:li:) b-drt(B-18) ;
b-rrc(B-23) c,8rc(ft,i8) C,dEt(PU)

nop ;

b,drt(SP) ;

c-drt (B-23) ;

c-dirable b-por ;

:BID: HILT
end

Figure 7: Microcode fiom Example C code

Optimising the use of the horiaontal control of the PE
microcode is done as a poet-processing step to avoid
complications in the code generation algorithm. A
drawback of this approach is that artificial data d o
pendencies are introduced into the code during code
generation. These data dependencies result fiom
variables sharing registers in a sequential manner.
Since the horiaontal compression optimiser works on
the generated microcode and not on the original o p
eration DAG multiple uses of a register by differ
ent variables are seen as data dependencies and thus
limit possible pardelisation. Figure 7 shows the mi-
crocode generated by the compiler for the C code
listed in Figure 4.

6 Results
The PE compiler is currently being tested by imple-
menting various applications under it. a b l e 1 gives
a list of program segments that have been compiled.
The table gives the lines of C code for each program
Ne, followed by the lines of microcode generated un-
der three different levels of optimisation. In optimists-
tion “00”, all optimisation is turned off. Optimists-
tion “01” enables DAG rewrite rules that place local
variables in data registers and optimise the accesses
to them. Optimisation “02” enables DAG rewrite
rules that substitute increments and decrements for
small additions and subtractions, and DAG rewrite
rules that substitute shifts and adds for multiplica-
tion by a constant. “02” is the dehult optimisation
level; other values are given for comparison only.

Test
Ale

name 0 0
102
170
89

107
96

221
36

200
7
9

101
108

countl
count2

d i V
mod
mult
sieve
small
table

test
xbar

squares
sumtbl

01
17
33
62
79
67
81
16
44

7
8

44
42

Lines
of c

source
11
16
19
20
18
39

8
22

9
5

17
19

Lines of microcode OptimirationLevell

43

41
38

Table 1: Code size using Merent optimisations

Of the program segments listed in Table 1 several are
of special note. “mult” and “div” show the greatest
gains from optimiraation level “01” to “02”. Each
of these programs contains several multiplication or
division operations where one argument is a constant.
These operations are reduced to shorter sequences of
shifts and adds.

Many Merent code segments in the table, particu-
larly “countl”, “count2”, and “table”, show large
improvements from optimisation level “00” to “01”.
These programs contain many accesses to local vari-
ables which can be placed in registers. Since ad-
dress calculations and memory fetch must be explic-
itly coded in microcode, each fetch or store that can
be eliminated saves several instructions.

The compiler is also being tested by comparing com-
piler generated microcode programs with assembler
code produced by hand. Table 2 lists five programs
that have been written in C and in micro-assembler.
Each program was compiled using the C compiler,
run on MARS Hardware and timed against a real-
time clock. The microcode resulting from each com-
pilation was then reorganised and optimized by hand,
and the resulting programs were run and timed.

The test results for these and other programs indi-
cate that the compiler generates code about twice the
size of hand generated code (100 % overhead). Fur-
thermore, the run-time data gathered for these pro-
grams show that run-time overhead is approximately
the same as code sise overhead.

Further optimisations are being added to the com-
piler. The peephole horieontal compressions are be-

Test Lines Lines of Run Time in
Ale of C microcode milli-seconds

bubble
indexed 39 64 36 19940 13000

sieve 37 65 29 320 130

Table 2: Code sise and run time, compiled vs. hand
optimbed

ing implemented. DAG optimisation templates are
added to the DAG rewrite section by identifying
hand-improvements which can be made in the com-
piler output. It is hoped that further tuning of the
optimisations wil l reduce the microcontrol size to the
goal of one and one-half times (50% overhead) hand-
generated code. This may seem severe to anyone fa-
miliar with 0 - 25% code overhead of the compilers for
traditional sequential architectures. The additional
overhead for MARS results from targeting microcode
instructions instead of a higher-level assembler.

7 Summary
Special purpose multicomputers often use custom
VLSI processing elements. The processors incorpo-
rate special architecture features to speed up targeted
applications. These features represent a challenge to
effective compiler design. The MARS PE compiler
was designed by using retargetable compiler tech-
niques and extending them for the special features of
the MARS architecture. A reusable compiler front-
end, including lexical analyser, parser, and symbol
table is used to generate intermediate code, which is
stored as sequences of DAGS. These DAGS are cus-
tombed to fit the MARS instruction set and then
translated into microcode using a DAG walking algo-
rithm. Peephole optimiraation is then performed on
this microcode.

Test results indicate a 50% - 100% code size overhead
in compiler vs. hand-generated microcode. Run-time
overhead is also in the same range. These numbers
are higher then commonly encountered in compilers
for traditional RISC and CISC architectures due to
the difficulty involved in microcode generation. Fur-
ther optimisations, currently being implemented, are
expected to bring the average code and run-time over-
head to the 50% range.

105

Bibliography [l l] S. Chatt4ee and P. A g r a d . Connected rpeeeh
recognition on a multiple pmcuaor pipeline. In
Proceedinga of the IEEE International Confer-
ence on Acowticr, Speech, and Signal Procerr-
ing, 1989.

[l] S. Abraham and K. Padmanabhan. Instruction
reorganination for a variablelength pipelined mi-
croprocemor. In IEEE International Conference
on Computer Derign, volume ICCD-88, 1988.

D. P. Agrawal and J. Mauney. Structure of
a parallclising compiler for the B-HIVE multi-
computer. In Microrocerring and Microprogram-
ming. North-Holland, 1988.

P. Agrawal, V. Agrawal, and IC. T. Cheng. Fault
simulation in a pipelined multiprocessor sys-
tem. In Proceedingr of the IEEE International
Tert Conference, volume ITC-89, pages 727-734,
1989.

P. Agrawal and W. J. Dally. A hardware
logic simulation syatem. IEEE 'Ransactiom
on Computer-Aided Design, 9(1):19-29, January
1990.

P. Agrawal et al. MARS: A multiprocessor-
based programmable accelerator. IEEE Deign
& Test of Computers, 4(6):2&56, October 1987.

A. Aho, R. Sethi, and J. Ullman. Compilerr,
Principler, Techniquer, and Took. Addison-
Wesley, Resding, M d u s e t t s , 1986.

A. Aiken and A. Nicolau. A development envi-
ronment for horisontal microcode programs. In
Pmeedingr Micro-lfi, 1986.

R. Allen and S. Johnson. Compiling C for vec-
torisation, parallclisation, and inline expansion.
In Proceeding8 of the Conference on Program-
ming Language Derign and Implementation, vol-

R. P. Atkin. Improved instruction formation in
the exhaustive local microcode compaction algo-
rithm. In Proceedingr Micro-17, 1984.

ume SIGPLAN-88, page^ 241-249,1988.

[lo] D. K. Baneqji and J. Raymond. Elementr of
Micro-Prqmmming. PrenticeHall Inc., Engle
wood cliffb, NJ, 1982.

[12] J. Ellis. Bulldug: A compiler for VJIW Amhi-
tecturer. The MIT Press, Cambridge, MA, 1986.
Originally presented as the author'r the& (doc-

[13] J. Fisher. Trace achedpling: a technique for
global microcode compaction. IEEE Transac-
tiona on Computers, G50(7):478-490, July 1981.

[14] C. W. Frsser. A language for writing code gen-
erators. In Proceedingr of the Conference on
Programming Language Derign and Implementa-
tion, volume SIGPLAN-89, pages 256246, June
1989.

[16] C. W. haser and A. L. Wendt. Automatic gen-
eration of fast optimhing code generators. In
Proceedingr of the Conference on Prqmmming
Language Derign and Implementation, volume

[16] R. Gurd. Experience developing microcode us-
ing a high level language. In Pmceedingr Mi-
16, 1983.

[17] W. C. Hopkins, M. J. Horton, and C. S.
Arnold. fluget-independent high-level micro-
programming. In Proceedingr Micro-18,1985.

[18] M. Lam. Software pipelining: An effective
scheduling technique for VLIW machines. In
Proceedingr of the Conference on Programming
Language Derign and Implementation, volume

[19] M. Lam. A Syrtolie A m p Optimizing Compiler.
Kluwer Academic Publishers, Boston, MA, 1989.

toral) - Yale Univedty, 1986.

SIGPLAN-88, p~ger, 7944,1988.

SIGPLAN-88, page^ 316328,1988.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1990

	High-Level Microprogramming: An Optimising C Compiler for a Processing Element of a CAD Accelerator
	Paul Kenyon
	Prathima Agrawal
	Sharad Seth

	High-level microprogramming: an optimizing C compiler for a processing element of a CAD accelerator - Microprogramming and Microarchitecture. Micro 23. Proceedings of the 23rd Annual Workshop and Symp

