
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Theses and Dissertations in Biochemistry Biochemistry, Department of 

11-2012 

Phylogenetic Engineering of the Ribulose-1,5-bisphosphate Phylogenetic Engineering of the Ribulose-1,5-bisphosphate 

Carboxylase/Oxygenase Large Subunit in Carboxylase/Oxygenase Large Subunit in Chlamydomonas Chlamydomonas 

Reinhardtii Reinhardtii 

Boon Hoe Lim 
University of Nebraska-Lincoln, lim@huskers.unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/biochemdiss 

 Part of the Biochemistry Commons, and the Structural Biology Commons 

Lim, Boon Hoe, "Phylogenetic Engineering of the Ribulose-1,5-bisphosphate Carboxylase/Oxygenase 
Large Subunit in Chlamydomonas Reinhardtii" (2012). Theses and Dissertations in Biochemistry. 11. 
https://digitalcommons.unl.edu/biochemdiss/11 

This Article is brought to you for free and open access by the Biochemistry, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses and Dissertations in 
Biochemistry by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/biochemdiss
https://digitalcommons.unl.edu/biochemistry
https://digitalcommons.unl.edu/biochemdiss?utm_source=digitalcommons.unl.edu%2Fbiochemdiss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=digitalcommons.unl.edu%2Fbiochemdiss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=digitalcommons.unl.edu%2Fbiochemdiss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biochemdiss/11?utm_source=digitalcommons.unl.edu%2Fbiochemdiss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages


 

PHYLOGENETIC ENGINEERING OF THE RIBULOSE-1,5-BISPHOSPHATE 

CARBOXYLASE/OXYGENASE LARGE SUBUNIT IN CHLAMYDOMONAS 

REINHARDTII 

 

by 

Boon Hoe Lim 

 

A DISSERTATION 

 

Presented to the Faculty of 

The Graduate College of the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Doctor of Philosophy 

 

Major: Biochemistry 

 

Under the Supervision of Professor Robert J. Spreitzer 

 

Lincoln, Nebraska 

 

November 2012 

 



 

PHYLOGENETIC ENGINEERING OF THE RIBULOSE-1,5-BISPHOSPHATE 

CARBOXYLASE/OXYGENASE LARGE SUBUNIT IN CHLAMYDOMONAS 

REINHARDTII 

Boon Hoe Lim, Ph. D. 

University of Nebraska, 2012 

Advisor: Robert J. Spreitzer 

 Thirty-four residues in the large subunit of ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) may account for the kinetic differences between 

Rubisco enzyme from green algae and land plants.  By substituting these "phylogenetic 

residues" as groups and combinations of groups in the large subunit of the green alga 

Chlamydomonas reinhardtii with those of land-plant Rubisco, the functions and 

relationships of these "phylogenetic groups" were determined. 

 A phylogenetic-group substitution at the base of catalytic loop 6 of the large 

subunit decreases the CO2/O2 specificity of the enzyme, but function is restored by a 

further phylogenetic-group substitution at the carboxy-terminal tail.  Therefore, these two 

regions of the large subunit, which sandwich loop 6, are complementary.  In addition, 

combining substitutions at the base of loop 6 and the large/small-subunit interface region 

produces a mutant enzyme that has to be complemented by the land-plant small subunit 

for function in Chlamydomonas.  On the other hand, substitutions in -helix G of the 

large subunit reduce the holoenzyme level, and,  because Chlamydomonas mutants with 

additional substitutions in α-helices 7 and 8 cannot be recovered as photosynthetic-

transformants, the three α helices appear to influence holoenzyme assembly. 

 A previous study showed that substituting five large-subunit residues and a small-



 

subunit loop with land-plant identities produced an enzyme (termed "penta/ABSO") with 

land-plant catalytic properties.  In the present study, through structural dissection, it is 

concluded that all the residues substituted in penta/ABSO are required for the shift 

towards land-plant catalysis.  Among the residues substituted in penta/ABSO is methyl-

Cys-256, which indicates that posttranslational modifications of the large subunit may 

also play a role in catalysis.  Further study of cysteine methylation and proline 

hydroxylation showed that mutations of methyl-Cys-256 and hydroxy-Pro-104 influence 

catalysis. 

 The current study complements previous knowledge about Rubisco, and provides 

further structural targets for the beneficial engineering of Rubisco. 
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INTRODUCTION 

 

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE 

Biological importance and function 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) is the 

most abundant protein on earth (Ellis, 1979) and is found in all photosynthetic organisms 

within all three domains of life (Eukarya, Bacteria, Archaea) (Tabita, 1999) from 

unicellular photosynthetic bacteria and algae to multicellular C3 and C4 plants (Andersson 

and Backlund, 2008).  In earlier experiments, Rubisco was identified as “Fraction 1 

protein” because it was the first and only protein to precipitate out of leaf extracts at 35% 

ammonium sulfate saturation (Wildman and Bonner, 1947; Wildman, 2002).  This is not 

surprising considering that as much as 50% of leaf nitrogen is used by plants to 

synthesize Rubisco (Ellis, 1979; Spreitzer and Salvucci, 2002).  For autotrophic 

prokaryotes, as much as 40% of total soluble protein can be Rubisco (Ellis, 1979; Tabita 

et al., 2007).  Overall, it is estimated that Rubisco makes up 0.2% of the total protein in 

our planet’s biomass (Ellis, 1979). 

The primary function of Rubisco is the reduction of CO2 via the Calvin-Benson-

Bassham reductive pentose phosphate pathway (Tabita et al., 2008a).  Rubisco captures 

CO2 by fixing the gaseous molecule onto ribulose 1,5-bisphosphate (RuBP), which is 

further metabolized into other organic compounds.  Although various organisms can 

reduce CO2 via three other pathways, which are the reductive tricarboxylic acid cycle, the 

Wood-Ljungdahl acetyl coenzyme A pathway, and the hydroxypropionate pathway, most 

carbon on earth is fixed through the Calvin cycle (Tabita et al., 2007).  Therefore, 
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Rubisco is also obviously the most important enzyme for all life on Earth (Ellis, 1979).  

However, the catalytic rate of Rubisco has been unfavorably described as sluggish (Ellis, 

1979) because while most enzymes have catalytic rates, kcat, of over thousands per second 

(Wolfenden and Snider, 2001), Rubisco has a carboxylation kcat of only several per 

second, which is at least two orders of magnitude lower (Tabita et al., 2007).  Moreover, 

the enzyme sometimes fixes O2 instead of CO2, leading to the nonessential, energy-

expending and CO2-losing photorespiratory pathway (Bowes et al., 1971).  Therefore, 

there is much interest in understanding and improving the enzyme by overcoming its 

unusual limitations, especially because the potential benefits of such endeavors include 

greatly increasing crop and renewable-energy production, and decelerating the rapid rise 

of atmospheric CO2 levels (reviewed by Spreitzer and Salvucci, 2002). 

 

CO2/O2 specificity factor and diversity of kinetic properties 

 The CO2/O2 specificity factor of Rubisco is the ratio of the rate constants for 

carboxylation (kc) and oxygenation (ko), and is represented by the symbol Ω (Chen and 

Spreitzer, 1991; Spreitzer, 1993):  

Ω = kc/ko 

 Ω is also defined by the Vmax for carboxylation (Vc), Vmax for oxygenation (Vo), 

Km CO2 (Kc) and Km O2 (Ko) (Laing et al., 1974):  

Ω = VcKo/VoKc 

 In addition, Ω is related to the difference in the free energy of activation for 

oxygenation (∆Go
‡
) and the free energy of activation for carboxylation (∆Gc

‡
) (Chen and 

Spreitzer, 1991):  
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Ω = e
(∆Go‡-∆Gc‡)/RT

 

where R is the gas constant and T is the absolute temperature.  The ∆Go
‡
-∆Gc

‡
 term is 

directly related to the difference in the free energy of the transition states of the 

oxygenation and carboxylation reactions of Rubisco (Chen and Spreitzer, 1991, 1992).  

Consequently, altering the relative stabilities of the Rubisco transition-state complex of 

the two reactions through amino-acid modifications or substitutions, environmental pH 

changes, or metal-cofactor replacements are potential means of altering Ω (Chen and 

Spreitzer, 1992).  Specifically, Ω could be increased by increasing the stability of the 

Rubisco transition-state complex for carboxylation or decreasing the stability of the 

complex for oxygenation (Chen and Spreitzer, 1991).  Because the highest-resolution x-

ray crystal structures of Rubisco from various species and Rubisco mutants can be 

obtained only when the holoenzyme is in complex with 2-carboxyarabinitol 1,5-

bisphosphate (CABP), which is a carboxylation transition-state analog, the structure-

function relationships of the holoenzyme are mapped by relating differences in measured 

Ω values to subtle structural changes that alter the holoenzyme-CABP interactions in 

these crystal structures (Andersson and Backlund, 2008).  Unsurprisingly, there is also a 

direct relation between Ω and tightness of CABP binding by Rubisco (Satagopan and 

Spreitzer, 2004).  Also, from the Ω-and-free-energy equation, Ω decreases with increased 

temperature (T) (Chen and Spreitzer, 1992), so increased global temperature would 

reduce the Ω value of Rubisco in plants. 

 Even though Ω is a useful measurement in studying the structure-function 

relationships in Rubisco, the only measurement to model plant growth based on the 
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kinetic properties of Rubisco is provided by net CO2 fixation, denoted Pn (Laing et al., 

1974; Spreitzer, 1993):  

Pn = VcKo ([CO2]-t/Ω [O2]) / (KcKo + Kc[O2] + Ko[CO2]) 

where t is the fraction of CO2 released in photorespiration.  From the Pn equation, net 

CO2 fixation is not dependent on only Ω, but also on Vc, Kc, and Ko (Spreitzer, 1993).  

More importantly, varying the kinetic properties of Rubisco optimizes net CO2 fixation in 

different photoautotrophic organisms because of the differences in intracellular gaseous 

CO2 and O2 concentrations around Rubisco (Spreitzer, 1999).  Some plants, such as C4 

and Crassulacean acid metabolism (CAM) plants, and some photoautotrophic microbes, 

such as microalgae and cyanobacteria, have biochemical and physiological adaptations 

that increase the CO2 concentration around Rubisco. 

 There is an observed trade-off between Vc and Ω in Rubisco from different 

species, which is like the inverse relationship between activity and specificity that is 

common among other enzymes (Table 1).  Generally, Ω is higher but Vc is lower among 

eukaryotic Rubiscos compared to the prokaryotic enzymes (Table 1) (Jordan and Ogren, 

1981b; Spreitzer and Salvucci, 2002).  Therefore, even if a Rubisco with increased Ω was 

engineered, the resulting decreased Vc might be less than optimal for photosynthetic 

growth (Spreitzer and Salvucci, 2002).  A better understanding of the structure-function 

relationships of Rubisco is required before attempting to improve the enzyme, bearing in 

mind that the ultimate measurement for any beneficial improvement is Pn (Spreitzer, 

1993). 
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Table 1: Diversity of Rubisco kinetic properties.  Values are from Jordan and Ogren 

(1981b), Andrews and Lorimer (1985), Read and Tabita (1994), Whitney et al. (2001), 

Kubien et al. (2008), Genkov et al. (2010), and Savir et al. (2010). 

Species Ω Vc Kc Ko 

 VcKo/VoKc µmol/hr/mg µM CO2 µM O2 

Land plants     

Spinacia oleracea 80 79 23 520 

Arabidopsis thaliana 77 72 22 474 

Helianthus anuus 77 69 19 640 

Nicotiana tabacum 82 65 11 295 

Zea mays 78 84 34 810 

Amaranthus edulis 78 79 18 289 

Flaveria australisica 77 73 22 309 

Green algae     

Chlamydomonas reinhardtii 61 112 31 498 

Cyanobacteria     

Synechococcus 7002 52 255 246 1300 

Synechococcus 6301 43 224 340 972 
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Holoenzyme structure 

 There are three forms of Rubisco, which are usually found in different species 

(Fig. 1) (Tabita, 1999; Tabita et. al., 2007, 2008a).  Form-I Rubisco, which is the focus of 

this research, has the highest Ω value, and is the common type found in plants, algae, and 

most autotrophic prokaryotes (Tabita, 1999; Tabita et al., 2007, 2008a; Andersson, 2008, 

Andersson and Backlund, 2008).  The presence of small subunits, and the 

heterohexadecameric holoenzyme structure composed of eight large subunits and eight 

small subunits, distinguish form-I Rubisco from the other forms (Fig. 1) (Knight et al., 

1990; Schneider et al., 1990; Taylor et al., 2001).  The form-I holoenzyme is a ring of 

four large-subunit dimers, with each open end of the ring capped by four small subunits.  

A solvent channel runs through the fourfold axis in the middle of the ring (Fig. 1) (Knight 

et al., 1990). 

 Unlike form-I Rubisco, forms-II and III Rubisco enzymes lack small subunits.  

Form II Rubisco, which is found in some photosynthetic prokaryotes and dinoflagellates, 

is composed of large-subunit dimers (Fig. 1) (Tabita et al., 2008a).  The first Rubisco 

crystal structure solved was for the form-II Rubisco from Rhodospirillum rubrum 

(Schneider et al., 1986).  On the other hand, form-III Rubisco, which is found only in 

archaea, is composed of large-subunit octamers (four dimers in a ring) or decamers (five 

dimers in a ring), depending on species (Fig. 1) (Andersson, 2008).  The unique multi-

dimeric structure of form-III Rubisco contributes to the thermostability of the 

holoenzyme, especially important for the extreme environments where thermophilic 

archaea would thrive (Maeda et al., 2002).  The carboxylase activity of the form-III 

Rubisco is highly susceptible to O2 inhibition because most archaea with the form-III 
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Figure 1: Rubisco holoenzyme structures for form-I, II, and III Rubisco.  Form-I 

Rubisco is represented by that of Chlamydomonas (PDB 1GK8), form-II by that of R. 

rubrum (PDB 9RUB) and form-III by that of Thermococcus kodakaraensis (PDB 1GEH).  

The areas in red denote the active-site regions.  For Chlamydomonas Rubisco, small 

subunits are in yellow and orange, with the variable βA-βB loop that surrounds the 

central solvent channel also shown as ribbons. 
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Rubisco are adapted to anaerobic habitats.  Based on phylogenetic analysis, form-III 

Rubisco is the putative ancestor for all Rubisco proteins (Tabita et al., 2008a).  Another 

class of proteins, known as Rubisco-like proteins or form-IV Rubisco, is similarly 

derived from the form-III ancestral Rubisco, but these proteins lack half of the active-site 

residues of bona fide Rubisco, and do not catalyze carbon fixation (Saito et al., 2009). 

 In all forms of Rubisco, the active sites are located in the large subunits (Fig. 1) 

(Knight et al., 1990).  Rubisco large subunits are 440-480 amino acids in length 

(depending on species) and 50-55 kDa in molecular mass (Andersson and Backlund, 

2008).  The large subunit has an amino-terminal domain composed of a five-stranded 

mixed -sheet packed by two  helices on one face of the sheet, and a longer carboxy-

terminal domain composed of an eight-stranded parallel /-barrel structure (Knight et 

al., 1990; Andersson and Backlund, 2008). 

 Despite the structural similarities of the large subunits and active sites, the 

different forms of Rubisco share as little as 30% protein-sequence identity (Tabita et al., 

2008a).  However, some photosynthetic prokaryotes such as Rhodobacter sphaeroides, R. 

capsulatus, and Hydrogenovibrio marinus harbor both form-I and II Rubisco, but 

preferentially synthesize the higher-Ω form-I Rubisco under CO2-limiting conditions 

(Gibson and Tabita, 1977; Tabita, 1999; Tabita et al., 2008a; Andersson, 2008; 

Andersson and Backlund, 2008). 

 Among plants and green algae, the Rubisco holoenzyme is localized in the 

chloroplast stroma, where one large subunit rbcL gene is found on each copy of the 

multicopy chloroplast genome.  On the other hand, a family of Rubisco small-subunit 

rbcS genes, ranging from 2 to over 22 genes depending on the species, are found in the 
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nucleus (Spreitzer, 2003).  Nuclear-encoded Rubisco small-subunit proteins have 

cleavable transit peptides to target and translocate the precursors into the chloroplast for 

assembly (Schmidt and Mishkind, 1986).  The only exception among eukaryotes for 

separate compartmentalization of the rbcL and rbcS genes is among non-green algae, 

which have both small and large subunit genes in a chloroplast rbcLS operon (Tabita, 

1999; Spreitzer, 2003).  Among prokaryotes with form-I Rubisco, the two subunits are 

cotranscribed in a larger operon containing genes of several other Calvin cycle enzymes 

(Tabita, 1999). 

 Most Rubisco small subunits, which are 110-180 amino acids in length and 12-18 

kDa in molecular mass, are composed of a four-stranded anti-parallel -sheet (denoted 

strands A to D) with two  helices packed on one face of the sheet (Fig. 2).  Small 

subunits from non-green algae and certain prokaryotes also have a longer carboxy-

terminal extension with two additional -strands, which are denoted strands E and F (Fig. 

2) (Spreitzer, 2003; Andersson, 2008).  A loop between β-strands A and B of the small 

subunit, known as the βA-βB loop, and a loop between β-strands E and F (when present), 

known as the βE-βF loop, surround the opening of the the central solvent channel and 

determine the channel's aperture based on the bulkiness and length of the loops (Fig. 1) 

(Knight et al., 1990; Spreitzer, 2003).  Because the highest measured Ω value is for red-

algal Rubisco with the βE-βF loop, and because form-I Rubisco, which has small 

subunits, has higher Ω than the other Rubisco forms, the architecture of the central 

solvent channel and the small subunits can influence catalysis (Uemura, 1997; Spreitzer, 

2003; Genkov et al., 2010).  In addition to playing a role in catalysis, the small subunit is 

also responsible for aggregating Rubisco molecules into proteinaceous structures known  
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Figure 2: Alignment of Rubisco small subunits from Chlamydomonas (yellow) (PDB 

1GK8), spinach (blue) (PDB 8RUC) and non-green alga Galdieria partita (green) 

(PDB ID 1BWV).  In the structural alignment, the loops between β-strands A and B, and 

between C and D, and between E and F, which is only in non-green algae, are labeled.  In 

the sequence alignment, the residue positions at the top are based on the Chlamydomonas 

small-subunit sequence, and the secondary structures are shaded and labeled at the 

bottom. 
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                       10        20        30        40 
                        |         |         |         | 
Chlamydomonas  MMVWTPVNNKMFETFSYLPPLTDEQIAAQVDYIVANGWIP 
Spinach        MQVWPILNLKKYETLSYLPPLTTDQLARQVDYLLNNKWVP 
Galdieria      -------VRITQGTFSFLPDLTDEQIKKQIDYMISKKLAI 
                                           A            
 
                       50         60        70         
                        |          |         |         
Chlamydomonas  CLEFAEADKAYVSNESA-IRFGSVSCLYYDNRYWTMWKLP 
Spinach        CLEFET-DHGFVYREHHN------SPGYYDGRYWTMWKLP 
Galdieria      GIEYTN--DIHPR-----------------NAYWEIWGLP 
               A                                 B     
 
              80        90       100       110        
               |         |         |         |          
Chlamydomonas  MFGCRDPMQVLREIVACTKAFPDAYVRLVAFDNQ--KQVQ 
Spinach        MFGCTDPAQVLNELEECKKEYPNAFIRIIGFDSN--REVQ 
Galdieria      LFDVTDPAAVLFEINACRKARSNFYIKVVGFSSVRGIEST 
                           B             C            
 

               120       130       140       150        
                 |         |         |         |        
Chlamydomonas  IMGFLVQRPKTARDFQPANKRSV----------------- 
Spinach        CISFIAYKPAGY---------------------------- 
Galdieria      IISFIVNRPKHEPGFNLMRQEDKSRSIKYTIHSYESYKPE 
                 D             E          F            
 
               160                                        
                 | 
Chlamydomonas  ---- 
Spinach        ---- 
Galdieria      DERY 
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as pyrenoids in algae where CO2 is concentrated to be more efficiently fixed by Rubisco 

(Genkov et al., 2010). 

 

Posttranslational modifications 

Posttranslational modifications of the Rubisco holoenzyme have mainly been 

observed and studied in form-I Rubisco (Houtz et al., 2008).  The most important 

posttranslational modification of the Rubisco large subunit is the carbamylation of 

catalytic Lys-201 by non-substrate CO2 to activate the enzyme (Lorimer, 1981; Cleland et 

al., 1998).  Besides that, the first two residues of the Rubisco large subunit from plants 

and green algae are cleaved off by a dipeptidase, and the third residue (Pro-3) is N-

acetylated (Houtz et al., 1989).  The putative role of this amino-terminal modification is 

the protection of the protein from proteolysis (Houtz et al., 2008).  Amino-terminal 

modifications of the Rubisco small-subunit also occur, the most obvious being the 

removal of the transit peptide, which is followed by N-methylation of Met-1 in the 

mature small subunit (Schmidt and Mishkind, 1986; Houtz et al., 2008). 

 Other posttranslational modifications occur in the large subunit.  Lys-14 of some 

plant large subunits is Nε-trimethylated by a methyltransferase, but the role of this 

modification is unknown (Houtz et al., 1989, 2008).  In the high-resolution crystal 

structure of Rubisco from the green alga Chlamydomonas reinhardtii, four additional 

posttranslational modifications of the large subunit were observed (Taylor et al., 2001).  

These include S-methylation of Cys-256 and Cys-369, and 4-hydroxylation of Pro-104 

and Pro-151 (Taylor et al., 2001).  Recently, determination of lysine acetylation in 

Arabidopsis proteins using generic anti-LysAc antibody immunodetection followed by 
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liquid chromatography-tandem mass spectrometry discovered nine acetylated lysine 

residues in the Rubisco large subunit and one acetylated lysine residue in the small 

subunit (Finkmeier et al., 2011), which is surprising considering that acetylation of 

lysines have never been observed in any of the Rubisco crystal structures from diverse 

species (Schneider et al., 1986; Knight et al., 1990; Taylor et al., 2001; Andersson, 

2008). 

 Despite the vast knowledge on Rubisco posttranslational modification, much is 

still unknown about the functions or proteins involved.  For example, several nuclear 

mutations in Chlamydomonas change the kinetic constants of Rubisco, and decrease , 

but the genetic loci of these mutations are yet to be identified.  These mutations must 

affect Rubisco posttranslationally (Spreitzer et al., 1988a; Spreitzer et al., 1992; Gotor et 

al., 1994). 

 

Holoenzyme assembly 

Assembly of Rubisco is initiated by the folding of large-subunit monomers in an 

ATP-dependent process, which is mediated by the GroEL/GroES-type chaperonins 

(Goloubinoff et al., 1989).  For form-II Rubisco, the properly-folded large subunits will 

spontaneously dimerize to form active Rubisco upon release from the chaperonin cage 

(Goloubinoff et al., 1989).  For the hexadecameric form-I Rubisco, an additional 

chaperone, RbcX, is also involved (Saschenbrecker et al., 2007).  The RbcX chaperone 

binds to the carboxy-terminal tail of the Rubisco large subunit, and facilitates and 

stabilizes the formation of octameric large subunits after the GroEL/GroES-mediated step 

(Saschenbrecker et al., 2007; Liu et al., 2010).  RbcX is then displaced from the Rubisco 
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large-subunit octamers by Rubisco small subunits (Liu et al., 2010).  In cyanobacteria, 

the RbcX gene is found in the same operon as the Rubisco large and small-subunit genes 

(Tabita, 1999) whereas, in plants, the RbcX gene is found in the nucleus (Kolesinski et 

al., 2011). 

 

Reaction mechanism and active-site residues 

 The carboxylation of RuBP by Rubisco involves five steps, which are enolization, 

carboxylation, hydration, C2-C3 bond scission, and stereospecific protonation (Fig. 3).  

The sequence of steps and the nature of the reaction intermediates were mainly deduced 

by radiolabeling and borohydride trapping experiments, and, more recently, by quantum-

chemical modelling, whereas the positions and roles of the active-site residues were 

identified by chemical affinity labeling, site-directed mutagenesis, and crystal-structure 

analysis (Miziorko and Lorimer, 1983; Knight et al, 1990; Taylor and Andersson, 1997; 

Kannappan and Gready, 2008).  The active sites are located in the interface regions 

between two large subunits that are assembled head-to-tail.  The twenty active-site 

residues, which are Glu-60, Thr-65, Trp-66, Asn-123, Thr-173, Lys-175, Lys-177, Lys-

201, Asp-203, Glu-204, His-294, Arg-295, His-327, Lys-334, Leu-335, Ser-379, Gly-

380, Gly-381, Gly-403 and Gly-404, are mainly located in flexible loops in the Rubisco 

large-subunit.  They form electrostatic interactions with the carboxylation transition-state 

analog CABP, as observed in x-ray crystal structures of CABP-bound Rubisco (Knight et 

al., 1990; Taylor et al., 2001).  Active-site residues Glu-60, Thr-65, Trp-66 and Asn-123, 

which are from the amino-terminal domain of one large subunit, and the other active-site 

residues, which are from the carboxy-terminal domain of an adjacent large subunit, form  
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Figure 3: Reaction mechanism for Rubisco-catalyzed carboxylation or oxygenation 

of ribulose 1,5-bisphosphate (Chen and Spreitzer, 1992; Andersson, 2008; 

Kannappan and Gready, 2008).  Carbon positions are indicated for the substrate 

ribulose bisphosphate.  Reaction steps are in italics and bold. 
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each active-site pocket.  Thus, each dimer of large subunits has two active sites, and each 

hexadecameric holoenzyme has eight active sites (Knight et al., 1990; Taylor et al., 

2001). 

 Before catalysis, Rubisco has to be activated by CO2 through the carbamylation of 

Nε of Lys-201 (numbering based on form-I Rubisco).  The activator CO2 is distinct from 

the substrate CO2 used for RuBP carboxylation.  After Lys-201 carbamylation, which is 

reversible, Mg
2+

 binds in the Rubisco active-site, stabilized by the negatively-charged 

carbamate (Lorimer, 1981).  This is followed by RuBP binding to the active-site.  If 

RuBP binds to the unactivated enzyme (i.e. before the carbamylation of Lys-201), a dead-

end enzyme-substrate complex is formed that has to be opened by a protein known as 

Rubisco activase to release the unreacted RuBP (Salvucci et al., 1985). 

 Lys-201 is essential for the first enolization step in Rubisco catalysis (Fig. 3).  To 

initiate the enolization of RuBP, Lys-201 is carbamylated to enable the abstraction of a 

proton from the C-3 carbon of RuBP by the negatively-charged carbamate side-group.  In 

addition to that, carbamylation of Lys-201 enables binding of Mg
2+

 at the active site.  

Two other active-site residues, Asp-203 and Glu-204, also provide negatively-charged 

side-chains for coordination with the Mg
2+

 cofactor (Gutteridge et al., 1988).  Lys-175 is 

also essential for enolization (Taylor and Andersson, 1997). Based on the atomic 

coordinates of Lys-175 in the x-ray crystal structures of Rubisco, the position of Lys-175 

is close enough to reprotonate the oxygen carbonyl at the C-2 position of RuBP, 

concurrent with the deprotonation of the C-3 carbon by Lys-201 during enolization 

(Taylor and Andersson, 1997).  Also, Lys-175 forms electrostatic interaction with another 

active-site residue, Asp-203, which in turn coordinates with the Mg
2+

 cofactor. 
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 The second step in Rubisco catalysis is carboxylation (or oxygenation) of the 2,3-

enediol intermediate (Fig. 3).  Lys-334 is essential for polarizing the substrate CO2 to 

facilitate the nucleophilic addition of the gaseous substrate to the C-2 carbon of the 

enediol intermediate in the carboxylation step, or for polarizing O2 in the corresponding 

oxygenation step (Gutteridge et al., 1993).  Changing Lys-334 to arginine, which would 

still retain the positive charge on position 334, reduces carboxylation almost completely, 

but does not affect oxygenation significantly (Gutteridge et al., 1993). 

 The third and fourth step in Rubisco catalysis are hydration of the 

ketocarboxyarabinitol bisphosphate (or ketoperoxyarabinitol bisphosphate) intermediate 

to form a gem-diol, and C2-C3 bond scission of the gem-diol to form one substrate 

molecule of 3-PGA and one of an aci-acid intermediate (or, for oxygenation, 3-PGA and 

2-PG) (Fig. 3).  There is an additional fifth step in Rubisco catalysis for carboxylation, 

which is the stereospecific protonation of the three-carbon aci-acid intermediate to form 

another 3-PGA molecule, with Lys-175 as the proton donor (Fig. 3) (Harpel et al., 2002; 

Kannappan and Gready, 2008).  Engineered Rubisco enzymes with mutations at Lys-175 

are deficient in the enolization of RuBP, and produce pyruvate instead of 3-PGA in the 

final stereospecific protonation step (Harpel et al., 2002). 

 The precise roles of other active-site residues in Rubisco catalysis are less 

defined.  For example, because the imidazole side-chain of His-294 is suitably positioned 

to either accept or donate a proton to the C-3 hydroxyl group of RuBP, His-294 could 

play a role in the gas addition, hydration, or C2-C3 bond scission steps (Kannappan and 

Gready, 2008).  However, mutations of His-294 eliminate enolization of RuBP (Harpel et 

al., 1998).  Therefore, through electrostatic interactions, His-294 could also affect the 
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spatial position and the pKa of carbamate-Lys-201 that is directly responsible for 

enolization (Kannappan and Gready, 2008).  There are other electrostatic interactions 

between the active-site residues that could affect the pKas of the interacting side chains, 

such as between Glu-60 and Lys-334, Thr-173 and Lys-201, and Lys-175 and Lys-177.  

Also, a number of active-site residues, which are Thr-65, Trp-66, Asn-123, Arg-295, His-

327, Ser-379, Gly-380, Gly-381, Gly-403 and Gly-404, interact with the negatively-

charged terminal phosphates of RuBP (Knight et al., 1990). 

 

Structural rearrangements during catalysis 

 The substrate-free Rubisco holoenzyme is in an initial "open" state whereby the 

catalytic loop 6 of the large subunit is retracted (Duff et al., 2000).  Thus, in the open 

state, the active site of Rubisco is exposed to solvent (Duff et al., 2000).  Substrates 

RuBP and CO2, and the cofactor Mg
2+

, can access the active site only in the open state 

(Schreuder et al., 1993; Duff et al., 2000). 

 Upon binding of substrate RuBP or any organophosphate inhibitor to the Rubisco 

active site, global conformational changes involving domain movements occur.  First, 

catalytic loop 6 of Rubisco extends over the active site at the top of the large-subunit /-

barrel.  The Rubisco large-subunit carboxy terminus (from residue 462 onwards) folds 

over loop 6.  The amino-terminal domain (residues 1-150) from an adjacent large subunit 

also rotates toward the carboxy-terminal domain to cover the top of the /-barrel, with a 

corresponding shift of the small subunit (Duff et al., 2000).  As a result, the active site of 

Rubisco is shielded from solvent, and the active-site residues from two adjacent large 
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subunits are also near enough to substrate RuBP to catalyze the reaction (Schreuder et al., 

1993; Duff et al., 2000). 

 The solvent-occluded state of Rubisco is known as the "closed" state.  Catalysis 

takes place during the closed state where there is less chance of the reaction intermediates 

being released prematurely or being misprotonated by external solvent (Schreuder et al., 

1993).  Crystal structures of the closed state of Rubisco most often contain the 

carboxylation transition-state analog CABP, which is analogous to the 

ketocarboxyarabinitol-bisphosphate intermediate (Andersson and Backlund, 2008).  Loop 

6 and the carboxy-terminal tail are ordered in the closed state, but these structural 

elements are disordered in the open state.  The conformational stabilization of loop 6 and 

the carboxy terminus in the closed state occurs because of interactions between loop 6, 

RuBP, reaction intermediates, the carboxy terminus, and residues from an adjacent large 

subunit.  Specifically, Lys-334 in loop 6 forms electrostatic interactions with a terminal 

phosphate of RuBP, the carboxylate group in the ketocarboxyarabinitol bisphosphate 

intermediate, and also Glu-60 and Thr-65 from an adjacent large subunit.  Glu-338 in 

loop 6 also interacts with Asp-473 in the carboxy-terminal tail of Rubisco (Schreuder et 

al., 1993; Duff et al., 2000).  Mutations of Asp-473 produce functional Rubisco, but 

caused the carboxy terminus to be disordered in the crystal structures (Satagopan and 

Spreitzer, 2004; Karkehabadi et al., 2007).  

 The closed state of Rubisco becomes open only when the six-carbon 

ketocarboxyarabinitol-bisphosphate intermediate of RuBP is converted into two three-

carbon 3-PGA carboxylation products or into the single three-carbon 3-PGA and two-

carbon 2-PG oxygenation products within the active site.  Duff et al. (2000) proposed that 
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the shift from a closed-state Rubisco to an open state is caused by the increased distance 

between the terminal phosphates after scission of the six-carbon ketocarboxyarabinitol 

bisphosphate, but this was disproved by subsequent mutagenesis experiments involving 

the carboxy terminus (Satagopan and Spreitzer, 2004).  

 

DISSECTION OF RUBISCO 

Random mutant screening and genetic selection 

 Early genetic studies of Rubisco were focused on attempts to select a better 

enzyme (Somerville and Ogren, 1982; Spreitzer et al., 1982).  However, no Rubisco 

mutants were recovered by screening or selection in Arabidopsis (Somerville and Ogren, 

1982).  In contrast, screening of Chlamydomonas for mutants that were photosynthesis-

deficient yielded the first Rubisco large-subunit mutant, which has a Gly-171-to-Asp 

(G171D) substitution (Spreitzer and Mets, 1980; Dron et al., 1983).  The G171D 

substitution eliminates the activity of the holoenzyme without affecting structural 

stability (Spreitzer and Mets, 1980).  A multitude of other mutations in Chlamydomonas 

Rubisco that negatively affect holoenzyme activity and/or stability were isolated using 

this prolific screen (Spreitzer, 1993).  Mutants T173I and G237S lacked Rubisco activity, 

whereas G54D and R217S lacked the holoenzyme (Spreitzer et al., 1988b; Spreitzer, 

1993; Thow et al., 1994).  Several mutants with nonsense mutations at amino-acid 

positions 45, 66, and 451 were also isolated through this screen (Spreitzer and Chastain, 

1987).  However, unlike the other Chlamydomonas Rubisco mutants discovered by 

random mutant screening, mutants V331A and L290F, had measurable but decreased 

carboxylase activity and Ω (Chen et al., 1988; Chen and Spreitzer, 1989).  Rubisco-
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mutant V331A was isolated by screening for photosynthesis-deficient mutants, but 

L290F was isolated by screening for mutants that were photosynthesis-deficient only at 

elevated temperature (Chen et al., 1988; Chen and Spreitzer, 1989). 

 The Chlamydomonas missense mutations are distributed in four regions of the 

Rubisco large subunit.  The first region, highlighted by the G54D mutation, is in the 

amino-terminal domain near the loop containing active-site residues Glu-60, Thr-65, and 

Trp-66 (Spreitzer et al., 1995).  The second region, highlighted by the R217S and G237S 

mutations, is near the active-site residue Lys-201 that has to be activated for catalysis 

(Thow et al., 1994).  The third region, highlighted by the V331A mutation, is near 

catalytic loop 6 (Chen and Spreitzer, 1989).  Finally, the fourth region, highlighted by the 

L290F mutation, is at the bottom of the large-subunit /-barrel (Chen et al., 1988).  

Unlike the other three regions, which are in close proximity to the Rubisco active-site, the 

region at the bottom of the barrel is 20 Å from the active-site, thus providing the first 

indication that residues far from the active site could affect catalysis (Du and Spreitzer, 

2000). 

 Reversion experiments were carried out on the photosynthesis-deficient Rubisco 

mutants by subjecting the mutant cells to photosynthetic selection (Spreitzer et al., 1982).  

The basis for the reversion experiments was that suppressor mutations in the Rubisco 

primary-structure would be isolated if these suppressor residues complement and interact 

with the original mutated residue to restore Rubisco function in vivo (Spreitzer et al., 

1985).  From the reversion experiments, it was discovered that the V331A substitution, 

which is at the amino-terminal end of loop 6 is complemented by suppressor mutations 

T342I and G344S, which are on the carboxy-terminal end of the loop (Chen and 
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Spreitzer, 1989; Chen et al., 1991).  On the other hand, mutation R217S, which affects 

Rubisco assembly, is complemented by A242V, and, because both the mutation and 

suppressor residues are within the hydrophobic wall of the /-barrel, the residues could 

influence the structure of the barrel (Thow et al., 1994).  Another significant result from 

the reversion experiments is that Rubisco large-subunit mutation L290F, which causes a 

decrease in Ω, can be complemented by A222T and V262L suppressor substitutions in 

the large subunit as well as by N54S, A57V, and C65S substitutions in the small subunit, 

indicating that the small subunit can affect Ω through interactions with the large subunit 

(Hong and Spreitzer, 1997; Du and Spreitzer, 2000; Du et al., 2000; Genkov et al., 2006).  

Unlike the other Rubisco mutations, G54D within the hydrophobic core of the amino-

terminal domain cannot be complemented by other suppressor-residue substitutions.  

Instead, the mutated residue can pseudorevert to alanine or valine, which are non-polar 

residues, signifying the role of residue 54 in retaining the hydrophobicity of the structural 

core (Spreitzer et al., 1995). 

 Screening for photosynthesis-deficient Chlamydomonas mutants also found other 

non-Rubisco nuclear-gene mutations that could reduce the mRNA level and 

posttranslationally affect the kinetic properties of Rubisco (Spreitzer et al., 1988a; Gotor 

et al., 1994; Hong and Spreitzer, 1994).  The mutated proteins likely play a role in 

Rubisco transcription and posttranslational modification, but, as of yet, only one of the 

mutations has been identified, and found to have occurred in an mRNA-stabilizing 

protein that has orthologs in plants (Johnson et al., 2010). 

 

 



25 

Directed mutagenesis 

 Site-directed mutagenesis studies of Rubisco active-site residues have been 

extensively carried out on prokaryotic Rubisco from R. rubrum and Synechococcus, but 

the prokaryotic enzymes were expressed only in Escherichia coli for study (Hartman and 

Harpel, 1994; Gutteridge et al., 1993; Harpel et al., 2002).  Eukaryotic Rubisco cannot be 

expressed in E. coli, and the reason for that is still unclear (Cloney et al., 1993).  

Mutations of the prokaryotic Rubisco active-site residues eliminate activity, which 

indicates that the active-site residues are immutable for proper function, consistent with 

the fact that these residues are almost 100% conserved among species (Hartman and 

Harpel, 1994).  Similarly, mutating the active-site residues of eukaryotic Rubisco in 

Chlamydomonas decreases the carboxylase activity to less than 5% and Ω to less than 

30% of the wild type value, and eliminates photosynthetic growth of the organism (Zhu 

and Spreitzer, 1994). 

 Directed mutagenesis of non-active-site residues, guided by phylogenetic data, 

has also been pursued to understand the structure-function relationships of Rubisco.  

Certain stretches of Rubisco amino-acid sequences were changed from one species to that 

of another, with the expectation of a corresponding shift in kinetic properties.  The non-

active-site residues in and around loop 6 were one of the earlier targets for these directed-

mutagenesis experiments because earlier mutant screening in Chlamydomonas found that 

changes in the region, specifically V331A, could modify Ω (Chen and Spreitzer, 1989).  

A stretch of four amino acids, from residue 338 to 341, at the carboxy-terminal end of 

loop 6, was changed in Rubisco of the cyanobacterium Synechococcus to the sequence 

found in plants, but did not cause any alterations in kinetic properties, even though the 
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plant Rubisco should have higher Ω and lower Vc (Gutteridge et al., 1993).  On the other 

hand, mutating residues that flank loop 6 in Chlamydomonas Rubisco to that of plants 

decreased Ω and Vc (Zhu and Spreitzer, 1996).  Creating the suppressor substitutions of 

V331A in Chlamydomonas Rubisco, which are T342I and G344S, alone decreased Ω and 

Vc, even though these substitutions improve the catalytic properties of the previous 

V331A mutant enzyme (Karkehabadi et al., 2007).  Therefore, residue engineering in the 

region around loop 6 does not improve the net CO2 fixation of the enzyme, but, instead, 

is deleterious to catalysis. 

 Because substitutions in the amino-terminal domain of the Rubisco large subunit 

affect both Ω and enzyme stability, evidenced by the G54D Rubisco-deficient 

Clamydomonas mutant and the pseudorevertant G54V, which has a 17% decrease in Ω, a 

couple of variable non-active-site residues in the region were targeted for directed-

mutagenesis studies (Spreitzer et al., 1995; Du et al., 2003).  Met-42 and Cys-53 were 

changed singly or as a pair to the Val-42 and Ala-53 residues of plants, but the mutant 

enzymes had no significant changes in catalysis (Du et al., 2003).  Thus, residue 

differences in the amino-terminal domain alone cannot account for the differences in 

Rubisco kinetic properties among species. 

 Because of the phylogenetic diversity in the Rubisco large-subunit carboxy-

terminus, which folds over loop 6 during catalysis, site-directed mutagenesis experiments 

of this region have been pursued extensively (Gutteridge et al., 1993; Zhu et al., 1998; 

Satagopan and Spreitzer, 2008).  When the carboxy terminus, residues 470-475, of the 

Chlamydomonas large subunit was substituted with the residues from spinach, there was 

an increase in Ω by 10%, but a decrease in carboxylation catalytic efficiency (Satagopan 



27 

and Spreitzer, 2008).  On the other hand, no significant increase in Ω was measured when 

the carboxy terminus of Synechococcus Rubisco was changed to that of plants 

(Gutteridge et al., 1993).  Also, because red-algal Rubisco has 10 additional residues at 

the carboxy terminus and higher Ω when compared to Synechococcus Rubisco, the extra 

residues were engineered into the Synechococcus enzyme, but did not cause a marked 

increase in Ω (Zhu et al., 1998).  Truncations of the carboxy-terminal region of the 

Synechococcus and R. rubrum enzymes eliminate enzymatic activity, and for the R. 

rubrum Rubisco, also alter the quarternary structure of the holoenzyme (Ranty et al., 

1990; Gutteridge et al., 1993).  Thus, the carboxy terminus most likely plays a role in 

Rubisco catalysis, possibly through interactions with loop 6, which is also evidenced by 

the fact that mutations of Asp-473, a latch residue that holds the carboxy terminus over 

loop 6, decrease Ω (Duff et al., 2000; Satagopan and Spreitzer, 2004; Karkehabadi et al., 

2007). 

 Directed mutagenesis experiments of Rubisco should also consider the 

interactions between Rubisco and Rubisco activase (Spreitzer and Salvucci, 2002).  

Activase from Solanaceae species (e.g. tobacco) will not activate Rubisco from non-

Solanaceae species (e.g. Chlamydomonas and spinach), and vice versa (Wang et al., 

1992).  In fact, substitutions P89R and D94K in the Chlamydomonas Rubisco large 

subunit produced enzymes that could be activated by activase from tobacco but not 

spinach, effectively switching the activase-recognition site from that of non-Solanaceae 

to Solanaceae (Larson et al., 1997; Ott et al., 2000).  Because changes in other residues 

around this region may also affect activase interaction with Rubisco, future experiments 

should keep that possibility in mind. 
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The penta/ABSO mutant and the large/small-subunit interface 

 Another region of the Rubisco holoenzyme analyzed by site-directed mutagenesis 

experiments is the interface between the large and small subunit, at the bottom of the / 

barrel, which is on the opposite end from the active site (Du and Spreitzer, 2000; 

Spreitzer et al., 2005; Genkov et al., 2006).  The large/small-subunit interface region 

became of interest when it was discovered that an L290F mutation in the region is the 

cause for photosynthesis deficiency at elevated temperatures in a Chlamydomonas mutant 

(Chen et al., 1988; Spreitzer et al., 1988a).  Further reversion experiments and site-

directed mutagenesis studies indicated that the region affects both catalysis and stability 

of Rubisco (Chen et al., 1988; Hong and Spreitzer, 1997; Du et al., 2000; Du and 

Spreitzer, 2000; Genkov et al., 2006).  More importantly, a phylogenetic 

Chlamydomonas-to-plant substitution involving five residues of the Rubisco large-

subunit, V221C/V235I/C256F/K258R/I265V, together with changing the small-subunit 

loop between β-strands A and B to that of spinach (Spinacia oleracea) (ABSO), all at the 

interface region, produces a Rubisco mutant in Chlamydomonas, named "penta/ABSO", 

with kinetic properties shifted towards the plant Rubisco properties, marked by an 

increase in Ω and decrease in Vc (Table 1) (Spreitzer et al., 2005). 

 

Hybrid enzymes 

 A more elaborate directed-engineering approach for studying Rubisco structure-

function relationships is swapping the whole large or small subunit of Rubisco from 

different species, which have different catalytic properties (Table 1) (Jordan and Ogren, 

1981b; Read and Tabita, 1992; Kanevski et al., 1999; Whitney et al., 2001, 2011; 
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Genkov et al., 2010).  However, a limitation to swapping the whole subunit is that 

prokaryotic Rubisco large subunits cannot be expressed in eukaryotes and vice versa, 

with the exception of the prokaryotic R. rubrum Rubisco, which can be expressed in 

tobacco plants, but the transgenic plants require elevated CO2 (5% v/v in air) for growth 

(Cloney et al., 1993; Whitney and Andrews, 2001).  Even transgenic tobacco plants that 

express the sunflower or Flaveria Rubisco large subunits produce less than 50% of wild-

type holoenzyme level, and mainly require elevated CO2 or sucrose supplementation for 

growth (Kanevski et al., 1999; Whitney et al., 2011).  Moreover, even though the 

Rubisco small subunit is not hindered by the eukaryotic/prokaryotic-expression barrier, 

plant Rubisco small subunits are encoded by a family of nuclear genes (Spreitzer et al., 

2003).  Thus, the native small subunits are still present in experiments where transgenic 

plants were transformed with foreign small subunits, which complicates the analysis of 

the experiments (Read and Tabita, 1992; Getzoff et al., 1998; Ishikawa et al., 2011).  On 

the other hand, all the native Rubisco small-subunit genes in Chlamydomonas have been 

successfully knocked out and replaced by the foreign small-subunit genes from 

Arabidopsis, spinach, and sunflower, and the mutant Rubisco enzymes have increases in 

Ω by 3-11% (Genkov et al., 2010).  When the cyanobacterial Synechococcus Rubisco 

small subunit was replaced with that from marine algae, an increase in Ω was also 

observed (Read and Tabita, 1992).  Thus, even though the active-site region is located in 

the Rubisco large subunit, the small subunit also influences catalysis (Read and Tabita, 

1992; Karkehabadi et al., 2005; Spreitzer et al., 2005; Genkov et al., 2010). 
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Directed evolution 

 The first directed-evolution experiment that specifically targeted the Rubisco 

genes was performed in the photosynthetic bacteria Rhodobacter capsulatus using a 

library of cyanobacterial Synechococcus Rubisco large and small-subunit genes that were 

mutagenized in the E. coli mutator-strain XL-1 Red (Smith and Tabita, 2003).  Because 

the R. capsulatus mutant depends on Synechococcus Rubisco for photosynthetic growth 

at elevated CO2 (5%), any Synechococcus Rubisco mutant enzyme that enabled the R. 

capsulatus strain to grow at lower CO2 (1.5%) should harbor positive mutations that 

increased CO2 fixation of the enzyme in vivo (Smith and Tabita, 2003).  Instead of 

changes in kinetic properties with regard to CO2 fixation, the positive Rubisco mutants 

had increased affinity for the substrate RuBP (Smith and Tabita, 2003).  In other Rubisco 

selection experiments, Rubisco-dependent E. coli strains were engineered by expressing 

the enzyme phosphoribulose kinase, which diverted carbon to RuBP (Parikh et al., 2006; 

Mueller-Cajar et al., 2007; Mueller-Cajar and Whitney, 2008).  Rubisco libraries created 

by PCR-based mutagenesis were transformed into the Rubisco-dependent E. coli, and the 

fastest-growing colonies were picked for analysis (Parikh et al., 2006; Mueller-Cajar et 

al., 2007; Mueller-Cajar and Whitney, 2008).  Similar to the R. capsulatus selection 

system, the E. coli Rubisco selection system selected for enzymes with improved 

expression and RuBP affinity, but not catalysis (Parikh et al., 2006; Mueller-Cajar et al., 

2007; Mueller-Cajar and Whitney, 2008).  On the other hand, improvements in Ω and Vc 

of Rubisco by 20% and 50%, respectively, were reported after screening 60,000 

Chlamydomonas transformants that were transformed with a library of gene-shuffled 

Rubisco variants, but the residue-substitutions were not included in the report (Zhu et al., 
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2005).  Therefore, selection strategies with Rubisco have yet to produce a better plant 

enzyme. 

 

Chlamydomonas reinhardtii as a model organism 

 The most well-developed and expedient genetic system for study of eukaryotic 

Rubisco is the green alga Chlamydomonas, with the goal of eventually transferring any 

identified improvements into crops (Spreitzer, 1998).  Unlike plants, which are obligate 

photoautotrophs, Chlamydomonas can grow heterotrophically when supplemented with 

acetate as an alternate carbon source, thus allowing expression and analysis of defective 

Rubisco mutants (Spreitzer and Mets, 1980, 1981).  More importantly, the Rubisco large 

and small-subunit genes have been knocked out in Chlamydomonas to create hosts for 

transformation with genetically-engineered Rubisco genes (Spreitzer and Mets, 1980; 

Newman et al., 1991; Khrebtukova and Spreitzer, 1996; Dent et al., 2005; Zhu et al., 

2005).  Chloroplast and nuclear transformation of the Rubisco large and small-subunit 

genes, respectively, have been routinely carried out for Chlamydomonas (Zhu and 

Spreitzer, 1994, 1996; Satagopan and Spreitzer, 2004; Genkov et al., 2006).  Even though 

genetic studies of eukaryotic Rubisco have also been carried out in tobacco, there are 

several drawbacks to the tobacco system.  There is a need to use a co-transformation 

system with a selectable antibiotic-resistance marker instead of direct selection for 

photoautotrophy, an inability to fully replace the family of native Rubisco small-subunit 

genes, and a longer transformation time of three weeks (Svab and Maliga, 1993; Whitney 

and Andrews, 2001).  Also, more Rubisco mutants can be screened or selected for in 
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Chlamydomonas compared to plants (Spreitzer and Mets, 1980; Somerville and Ogren, 

1982).   

 Mating of Chlamydomonas mutants is also an available tool to combine several 

non-allelic mutations into a single strain.  Tetrad analysis can be done to determine 

genetic linkage, and, through the inheritance pattern, the organelle-localization of the 

mutations (Spreitzer and Mets, 1980; Hong and Spreitzer, 1994).   

 The wealth of bioinformatics resources also benefits Chlamydomonas Rubisco 

research. The availability of both the chloroplast and nuclear-genome sequences 

facilitates genetic analysis and engineering of mutants (Maul et al., 2002; Merchant et al., 

2007).  In addition, the availability of over ten x-ray crystal-structures of separate 

Chlamydomonas mutant Rubisco enzymes provides extensive data for structural studies 

(Andersson and Backlund, 2008). 

 

Bioinformatics analysis 

 With the increased abundance of rbcL sequences, more elaborate and intricate 

computational phylogenetic analysis can be undertaken to define catalysis-influencing 

residue changes within the Rubisco large subunit.  One of the studies, which coupled 

phylogenetic and crystal structure data, forms the basis for the present study and for the 

engineering of the penta/ABSO mutant (Du et al., 2003; Spreitzer et al., 2005). 

 In a recent phylogenetic analysis, Kapralov et al. (2011) sought to determine the 

residues that could be responsible for the differences in kinetic properties between 

Rubisco enzymes from the C3 and C4 species within the Flaveria genus.  Changes in 

large-subunit residues 149 and 309 correlate with changes in Rubisco kinetic properties, 



33 

though large-subunit residue 265 and small-subunit residues 20, 24 and 57 are also 

changed in different Flaveria species (Kapralov et al., 2011).  To test the importance of 

residues 149 and 309, Whitney et al. (2011) expressed the Flaveria rbcL gene in tobacco, 

and changed residues 149 and 309 separately to that of either the C3 or C4 species, and 

found that only residue 309 is responsible for the switch in the kinetic properties. 

 However, most of the other phylogenetic studies of Rubisco did not necessarily 

focus on evolutionary forces acting on the kinetic properties of Rubisco (Nozaki et al., 

2002; Yu et al., 2005; Kapralov and Filatov, 2006, 2007).  Instead, the positively-selected 

residues from these studies could play a role in Rubisco stability, or interaction with 

activase or other molecules.  For example, Nozaki et al. (2002) sought to determine the 

large-subunit residues that could explain the presence or absence of the pyrenoid within 

the green algal Chloromonas lineage.  Kapralov and Filatov (2006) sought to determine 

the residues that could facilitate the environmental adaptation of the Hawaiian-plant 

genus Schiedea between rainforest and dry coastal cliffs.  Yu et al. (2005) sought to 

determine the clusters of surface residues that differentiate green plants, cyanobacteria 

and non-green algae Rubiscos.  Additional bioinformatics-based, site-directed 

mutagenesis and biochemical analysis of Rubisco is required. 

 

RATIONALE AND OBJECTIVES 

 The structural basis for the differences in kinetic properties between Rubisco from 

diverse species has yet to be elucidated (Spreitzer, 1993, 1999; Spreitzer and Salvucci, 

2002).  Understanding the structure-function relationship of Rubisco would allow future 

engineering of the holoenzyme for improved photosynthesis in crops (Spreitzer and 
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Salvucci, 2002).  In other words, defining the structural regions or residues in Rubisco to 

be targeted for engineering is crucial. 

 The active-site residues are almost 100% conserved among the ~2500 Rubisco 

large-subunit sequences in the NCBI Entrez Proteins database.  Moreover, crystal-

structure data indicate that all Rubisco holoenzymes adopt similar tertiary folds 

(Andersson and Backlund, 2008).  Therefore, differences in the non-active-site residues 

of Rubisco, which cause subtle structural changes, must account for the differences in 

kinetic properties, and, because the small subunit is too divergent, it is reasonable to 

focus on differences within only the large subunit.  Moreover, the catalytic subunit of 

Rubisco is the large subunit (Knight et al., 1990). 

 Because site-directed mutagenesis and transformation of Rubisco in 

Chlamydomonas is well-established, and the crystal structures of various mutant forms of 

Chlamydomonas Rubisco have been solved, including the highest-resolution structure, 

Chlamydomonas has been extensively used for structure-function and genetic-

engineering studies (Zhu and Spreitzer, 1994, 1996; Taylor et al., 2001; Andersson and 

Backlund, 2008).  The kinetic properties of Chlamydomonas Rubisco are different from 

plants, but most strikingly, for Chlamydomonas Rubisco, Ω  60, whereas for plants, Ω  

80-100 (Jordan and Ogren, 1981b; Genkov et al., 2010).  Therefore, knowing the 

phylogenetic-residue changes responsible for the differences in kinetic properties 

between Chlamydomonas and plant Rubiscos could be important for defining genetic-

engineering targets. 

 Even though the phylogenetic residues changed in the penta/ABSO enzyme are 

suitable targets for genetic engineering, there are other diverse residues within the large 
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subunit that may also influence catalysis.  Therefore, a global subunit-wide inquiry, that 

would encompass all the other phylogenetically-diverse residues of the Rubisco large 

subunit, might identify other residues that contribute to phylogenetic differences in 

catalysis.  This is the first global structure-function study of the Rubisco large subunit by 

directed mutagenesis.  The only other Rubisco study to attempt such a broad scope 

focused on substituting only conserved glycine residues with alanines and prolines 

(Cheng and McFadden, 1998). 
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MATERIALS AND METHODS 

 

MATERIALS 

Molecular biology 

 DNA-miniprep kits for plasmid purification and gel-extraction kits for agarose-

gel-embedded DNA-fragment purification were purchased from Qiagen.  Restriction 

endonucleases and T4 DNA ligase for plasmid recombination were from New England 

Biolabs.  Taq DNA polymerase was from Invitrogen.  Pfu Turbo DNA Polymerase and 

the Quikchange Mutagenesis Kit for site-directed mutagenesis were from Stratagene.  

Oligonucleotides for site-directed mutagenesis and for sequencing were from Sigma-

Aldrich.  Tungsten (M-10, 0.7 µm) for chloroplast transformation was from Biorad 

Laboratories.  

 

Biochemistry 

 Most reagents, including 2-phosphoglycolate (tri(monocyclohexylammonium) 

salt) (2-PG), 3-phosphoglycerate (sodium salt) (3-PGA), and ribulose 1,5-bisphosphate 

(sodium salt hydrate) (RuBP), and enzymes for synthesis of D-[1-
3
H]ribulose 1,5-

bisphosphate ([1-
3
H]RuBP), which are hexokinase, glucose 6-phosphate dehydrogenase, 

6-phosphogluconate dehydrogenase, phosphoribulokinase and pyruvate kinase, were 

purchased from Sigma-Aldrich.  NaH
14

CO3 was from ViTrax. D-[2-
3
H]glucose was from 

Amersham Bioscience.  
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STRAINS AND CULTURE CONDITIONS 

 Chlamydomonas reinhardtii 2137 mt+ was used as the wild-type strain (Spreitzer 

and Mets, 1981) and, in most cases, MX3312 mt+ was used as the host for chloroplast 

transformation with mutant rbcL genes (Satagopan and Spreitzer, 2004; Zhu et al., 2005).  

Chlamydomonas MX3312 has the chloroplast 1428-bp rbcL gene replaced by the 786-bp 

bacterial aadA gene, which confers spectinomycin resistance (Hollingshead and Vapnek, 

1985).  Except for the photosynthesis-deficient, acetate-requiring phenotype,  the 

MX3312 strain is indistinguishable from wild type because the rbcL gene knock-out was 

created in Chlamydomonas 2137 mt+ through homologous recombination, preserving the 

rbcL 5' and 3' flanking sequences (Satagopan and Spreitzer, 2004; Zhu et al., 2005).  For 

co-expression of engineered large subunits with the small-subunit A-B loop from 

spinach (Spinacia oleracea), the rbcL∆/ABSO transformation host was used, which was 

created by replacing the rbcL gene of Chlamydomonas penta/ABSO with the aadA gene 

(Spreitzer et al., 2005; Genkov and Spreitzer, unpublished).  For co-expression of mutant 

large subunits with the entire small subunit from Arabidopsis, the rbcL∆/SSAT 

transformation host was used, which was created by replacing the rbcL gene with the 

aadA gene in a cell-walled SSAT strain (Genkov et al., 2010; Genkov and Spreitzer, 

unpublished).  All strains were maintained in the dark at 25C on medium containing 10 

mM acetate solidified with 1.5% Difco Bacto-Agar (Spreitzer and Mets, 1981). 

 Electrocompetent Escherichia coli XL-1 Blue was used for propagating plasmid 

DNA (Stratagene).  XL-1 Blue was prepared for electrocompetence in Biorad's Gene 

Pulser Xcell system (Miller and Nickoloff, 1995).  Briefly, a starter culture of cells was 

grown overnight at 37ºC in 5 mL of LB medium with 10 µg/mL tetracycline, shaking at 
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280 RPM.  The starter culture was then poured into 500 mL of LB medium, and the new 

culture was grown until the OD was between 0.4-0.7, which took about 4 hr.  The cells 

were pelleted and washed twice with 10% ice-cold glycerol, and finally resuspended in 2 

mL of 10% ice-cold glycerol.  Aliquots of cells (50 µL) were stored at -80ºC for at least 6 

months. 

 

MOLECULAR-BIOLOGY METHODS 

Site-directed mutagenesis and mutant-plasmid construction 

 Site-directed mutagenesis was performed using the Quikchange Mutagenesis Kit 

(Papworth et al., 1996).  A 25-µL PCR reaction mix was made consisting of 1.25 U Pfu 

Turbo DNA Polymerase, 1X Pfu Turbo buffer (20 mM, Tris-HCl, pH 8.8, 10 mM KCl, 

10 mM (NH4)2SO4, 2 mM MgSO4, 1.0% Triton X-100 and 1 mg/mL BSA), 25 ng of 

template DNA, 62.5 ng each of a pair of complementary 30-40 bp primers, which contain 

the desired base changes, and 0.4 mM of each dNTP.  The mix was heated to 95ºC for 

30 sec, followed by 18 cycles of 95ºC for 30 sec, 55ºC for 1 min, and 68ºC for 6 min.  

Then, 5 U of restriction-endonuclease DpnI was added to the PCR mix and incubated at 

37ºC for 1 hr to fully digest the template DNA.  Finally, 1 µL of the reaction mix was 

electroporated into E. coli XL-1 Blue, and transformants were selected on LB medium 

containing 100 µg/mL ampicillin at 37ºC overnight.  E. coli colonies were inoculated into 

7 mL of liquid LB medium for DNA miniprep using the Qiagen kit, which is based on the 

alkaline lysis procedure (Birnboim and Doly, 1979), and mutant plasmids were screened 

by restriction-enzyme digestion. 

 The template DNA used for site-directed mutagenesis is the pLS-H plasmid, 
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which consists of a 2670-bp HpaI fragment of Chlamydomonas chloroplast DNA, 

including the Rubisco rbcL gene, cloned into the SmaI site of the pUC19 plasmid 

(Yanisch-Perron et al., 1985; Du and Spreitzer, 2000).  Codon changes were strictly 

limited to only those codons commonly used in rbcL, and, when possible, introduced or 

removed a restriction site for ease of mutant-plasmid screening.  In certain cases, a silent 

mutation was introduced at a second site, to alter the restriction pattern for mutant 

screening.  Mutations were combined by restriction-enzyme digestion and ligation. 

 

Chloroplast transformation 

 Chloroplast transformation was performed using a particle-inflow gun (Finer et 

al., 1992; Zhu and Spreitzer, 1994, 1996).  Strains MX3312, rbcL∆/ABSO, or 

rbcL∆/SSAT were grown in 50 mL of liquid acetate medium in the dark at 25ºC on a 

rotary shaker at 220 RPM until they reached the late-log phase of growth (~2.5 X 10
6
 

cells/mL).  The cells were pelleted, resuspended at a concentration of 2.5 X 10
8
 cells/mL 

in liquid minimal medium (without acetate), and 0.5 X 10
7
 cells were plated on solid 

acetate medium.  When the plates were dry, the cells were bombarded with DNA-coated 

tungsten.  The tungsten particles were coated with DNA by mixing 2.5 µg of plasmid, 25 

µL of tungsten (60 mg/mL in H2O), 25 µL of 2.5 M CaCl2 and 10 µL of 0.1 M 

spermidine (free base).  The tungsten-DNA suspension was allowed to sediment at room 

temperature for 30 min.  Forty microliters of the supernatant was removed, and the 

tungsten-DNA sediment was resuspended in the remaining liquid and loaded for 

bombardment, which was performed at a vacuum of 28 inches Hg and helium pressure of 

70 PSI (Boynton et al., 1988; Boynton and Gillham, 1993; Finer et al., 1992). 
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 To select for photosynthetic Chlamydomonas transformants, cells were scraped 

off the plate and replated on six minimal-medium plates, which were incubated at 25C 

under 80 microeinsteins/m
2
/s fluorescent lamps.  The Chlamydomonas SSAT strain 

required 5% CO2 for growth.  For the other Chlamydomonas strains, incubation at 5% 

CO2 reduced transformation time to 6 days, from 2-4 weeks, before colonies were visible.  

Transformant colonies were picked and maintained on acetate medium in darkness.  

Because there are multiple copies of the chloroplast genome, all transformants were 

cloned to homoplasmicity by plating on acetate medium to obtain single colonies and 

then by replica-plating on minimal medium to screen for photosynthetic growth.  Cells 

were usually homoplasmic after three cloning cycles, which was confirmed by PCR. 

  

DNA extraction from Chlamydomonas 

 Extraction of DNA from Chlamydomnas was carried out according to a 

previously-established protocol with slight modifications (Newman et al., 1990).  Briefly, 

a whole 100-mm acetate-medium plate of fresh Chlamydomonas cells, which had been 

growing for less than a week, was scraped and resuspended in 0.5 mL of 150 mM NaCl, 

10 mM EDTA and 10 mM Tris-HCl, pH 8.0.  Cells were pelleted by spinning at 14,000 

RPM for 10 sec, and the supernatant was discarded.  The pelleted cells were then 

completely lysed by vortexing in 0.45 mL of 1.3% SDS, 250 mM NaCl, 25 mM EDTA, 

and 66 mM Tris-HCl, pH 8.0.  The cell lysate was phenol/chloroform extracted with 350 

µL of 1:1 phenol:chloroform three times, keeping the aqueous layer each time.  DNA 

from the final clear, aqueous solution was precipitated with 800 µL of 100% ethanol at  

-20ºC overnight, washed with 200 µL of 70% ethanol, and dissolved in 40 µL of H2O. 
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PCR and sequencing of the Chlamydomonas rbcL gene 

 PCR was carried out in a 100-µL reaction mix consisting of 5 µL of genomic 

DNA, 2.5 U Taq DNA polymerase, 20 mM Tris-HCl, pH 8.4, 50 mM KCl, 0.2 mM of 

each dNTP, 3 mM of MgCl2, and 0.5 µM each of a pair of primers flanking the rbcL gene 

(5'-GTAAGACGACCGACATATACCTAAAGGCC-3' and 5'-CGCACTCTACCGATT 

GAGTTACATCCGC-3').  The PCR steps were 94C initial denaturation for 3 min, 

followed by 30 cycles of 94C for 1 min, 56ºC for 2 min, and 72ºC for 2 min.  A final 

72C extension was performed for 10 min.  The 1907-bp PCR product was run on a 1% 

agarose TAE gel, purified with a Qiagen Gel Extraction kit, and sequenced by Eurofins 

MWG Operon or the University of Nebraska DNA sequencing facility.  

 

BIOCHEMICAL-ANALYSIS METHODS 

Protein extraction and Rubisco purification from Chlamydomonas (Spreitzer and 

Chastain, 1987) 

 Chlamydomonas for protein extraction was grown in 250-500 mL of acetate 

medium in the dark at 25C on a rotary shaker at 220 RPM until late-log phase of growth 

(~2.5 X 10
6
 cells/ml).  Cells were pelleted by centrifuging at 1,500 g at 4ºC, washed once 

with 4ºC H2O, pelleted again, resuspended in 1.5 mL of ice-cold extraction buffer (2 mM 

DTT, 50 mM Bicine-NaOH, pH 8.0, 10 mM MgCl2, 10 mM NaHCO3), and sonicated for 

3 min in an ice bath with 30-sec pulses.  Sonicated cells were centrifuged at 30,000 g for 

15 min at 4ºC to sediment the cell debris, and the supernatant containing total soluble 

protein was transferred to a new 4ºC pre-chilled microfuge tube and kept on ice.  Protein 
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concentration was determined with the Coomassie Brilliant Blue binding assay with BSA 

as the standard (Bradford, 1976).  Proteins were kept at -80ºC. 

 To further purify Rubisco from the soluble cell protein, 1 mL of the protein 

solution was separated in a linear 10% to 30% 12-mL sucrose gradient (2 mM DTT, 50 

mM Bicine-NaOH, pH 8.0, 10 mM MgCl2, 10 mM NaHCO3) at 37,000 RPM for 20 hr at 

4C using a SW40 Ti swinging-bucket rotor (Beckman Coulter).  The protein gradient 

was fractionated with a Model 185 density-gradient fractionator (ISCO, Inc.) while 

scanning at 280 nm with a UA-5 absorbance/fluorescence monitor (ISCO, Inc.).  The 

hexadecameric-Rubisco fraction, which forms a distinct peak, was collected.  Rubisco 

was dialyzed overnight at 4C in 2 mM DTT, 50 mM Bicine-NaOH, pH 8.0, 10 mM 

MgCl2, and 10 mM NaHCO3 (or 2 mM NaHCO3 for enzyme assays), to remove the 

sucrose, and re-concentrated to ~100 µL using a Centricon YM-100 column (Amicon).  

Purified Rubisco was used directly in enzyme assays or stored at -20ºC. 

 

Determination of Rubisco N2/O2 ratio 

 The Rubisco N2/O2 ratio, is the ratio of the carboxylase activity in the absence of 

O2 divided by the activity in the presence of O2.  The N2/O2 ratio is a measurement of the 

susceptibility of Rubisco carboxylation to inhibition by O2 (Spreitzer and Chastain, 1987; 

Chen et al., 1988).  Briefly, 20 µg of purified Rubisco in 10 µL of 1 mM DTT, 50 mM 

Bicine-NaOH, pH 8.0, 10 mM MgCl2, and 2 mM NaHCO3 was injected with a Hamilton 

syringe into a rubber-stopper-sealed 7-mL scintillation vial containing reaction buffer for 

a total of 0.5 mL of reaction mix (20 µg of purified Rubisco, 0.4 mM RuBP, 50 mM 

Bicine-NaOH, pH 8.0, 10 mM MgCl2, 0.98 mM NaHCO3).  The reaction buffers were 
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gassed at 7 PSI for 15 min with either 100% N2 (to create an environment without O2) or 

100% O2, before adding NaHCO3, which included trace amounts of radiolabeled 

NaH
14

CO3 (7.2 Ci/mol).  The reaction was allowed to proceed for 1 min in a 25ºC water-

bath, and then stopped with 400 µL of 3 M formic acid in methanol.  The rubber stopper 

was removed from the scintillation vial, and the reaction mix was dried in a force-draft 

oven at 65ºC overnight.  Then, 250 L of 0.25 M HCl was added to the dried product, 

and the acid-stable 
14

CO2 was measured in a liquid scintillation counter (after addition of 

5 mL of scintillation cocktail).  A third reaction was also carried out to measure the 

specific activity of Rubisco, with a similar procedure, except that a saturating 12.4 mM 

NaHCO3 concentration was used, and the reaction was pre-gassed with 100% N2. 

 

Determination of Rubisco specificity factor (Ω) 

 The Rubisco Ω assay is based on the simultaneous measurement of 
14

C DPM for 

carboxylation and 
3
H DPM for oxygenation of [1-

3
H]RuBP (Jordan and Ogren, 1981a; 

Spreitzer et al., 1982).  A  reaction mix containing Rubisco, [1-
3
H]RuBP, 

14
CO2 from 

NaH
14

CO3, and O2 is incubated, and then the carboxylation product, [1-

14
C]phosphoglycerate, and oxygenation product, [1-

3
H]phosphoglycolate, are measured 

by liquid scintillation spectroscopy (Jordan and Ogren, 1981a).   

 Briefly, 10 µL (22 nmol, 0.34 µCi) of [1-
3
H]RuBP  was injected with a Hamilton 

syringe into a rubber-stopper-sealed 7-mL scintillation vial at 25ºC containing reaction 

buffer for a total of 0.5 mL of reaction-mix (20 µg of purified Rubisco, 50 mM Bicine-

NaOH pH 8.3, 10 mM MgCl2, 2 mM of 5 Ci/mol NaH
14

CO3).  The reaction buffer was 

gassed with 100% O2 at 7 PSI for 15 min before the addition of the NaH
14

CO3 and 
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Rubisco.  The reaction was allowed to proceed for 30 min in a 25ºC water bath, and then 

stopped with 0.1 ml of 50 mM ZnSO4 in 0.5 M HCl.  The reaction mix was adjusted to 

pH 6.3 with 0.1 mL of 1.5 M sodium cacodylate, added with 0.1 mL of 0.2 M 3-PGA/0.5 

mM 2-PG, 0.1 mL (0.25 units) of phosphoglycolate phosphatase, and incubated at 30C 

for 30 min in a water bath to convert the [1-
3
H]phosphoglycolate into [1-

3
H]glycolate.  

The phosphatase reaction was stopped with the addition of 0.9 mL of 1 M formic acid, 

which brings the total reaction volume to 1.8 mL.  Of the 1.8 mL reaction-mix, 0.75 mL 

was mixed with 0.1 mL of 1 M HCl, dried in a force-draft oven at 65ºC overnight, 

redissolved in 350 µL H2O, and the acid-stable 
14

CO2 was measured by liquid 

scintillation spectroscopy.  Another 0.75 mL of the 1.8-mL reaction mix was loaded onto 

a Dowex AG 1-X8 formate column (Biorad) that was pre-equilibrated with H2O, and the 

flow-through was collected.  The column was further eluted with 3 mL of 1 M formic 

acid, collecting a total of 3.75 mL of flow-through, which contained the uncharged non-

phosphorylated [1-
3
H]glycolate.  Two separate 1.5-mL aliquots of flow-through was 

lyophilized at -40ºC overnight, re-dissolved in 250 L of H2O, and the 
3
H measured by 

liquid scintillation spectroscopy.  Ω is simply calculated as the rate of carboxylation (vc) 

per the rate of oxygenation (vo) times the concentration of O2 per CO2 (Laing et al., 

1974): 

Ω = vc/vo x [O2]/[CO2] 

where vc/vo is equivalent to the moles of CO2 fixed per moles of phosphoglycolate 

formed, [O2] is 1.15 mM, and [CO2] is 30 µM (Jordan and Ogren, 1981a).  However, 

even before the specificity-factor assay can be carried out, the [1-
3
H]RuBP had to be 



45 

synthesized and the phosphoglycolate phosphatase enzyme had to be partially purified 

(Christeller and Tolbert, 1978; Kuehn and Hsu, 1978; Jordan and Ogren, 1981a). 

 [1-
3
H]RuBP was previously synthesized by Dr. Todor N. Genkov from D-[2-

3
H]glucose according to an established method (Kuehn and Hsu, 1978; Jordan and Ogren, 

1981a).  An 8-mL reaction mixture comprised of 40 mM Hepes-NaOH, pH 7.6, 5 mM 

MgCl2, 1 mM KCl, 2 mM ATP, 15 mM phosphoenol pyruvate, 15 mM NADP, 2 mM 

DTT, 0.2 mM EDTA, and 6 mM D-glucose was prepared at 0C and adjusted to pH 7.6 

with 1 M NaOH.  Then, 1 mg of BSA, 100 U of pyruvate kinase, 150 U of glucose-6-

phosphate dehydrogenase, 25 U of 6-phosphogluconate dehydrogenase, 25 U of 

phosphoribulokinase, and 1 mCi of D-[2-
3
H]glucose were added.  When the reaction mix 

returned to room temperature, the pH was adjusted to 7.6 with 1 M NaOH, and RuBP-

synthesis was initiated by the addition of 325 U of hexokinase.  During RuBP synthesis, 

which took about 45 min, the mixture was continuously stirred, and the pH was 

monitored and maintained at 7.6 with drop-wise additions of 1 M NaOH until there was 

no further change in pH, indicating the completion of the reaction.  The reaction mix was 

adjusted to pH 3.5 using 3 M HCl, loaded onto a Dowex AG 1-X8 Cl
-
 column (200-400 

mesh) that was pre-equilibrated with H2O, and sequentially washed with 300 mL of H2O, 

300 mL of 10 mM LiCl/1 mM HCl, and 200 mL of 10 mM to 100 mM LiCl/1 mM HCl 

as a linear gradient.  [1-
3
H]RuBP fractions, which were eluted with 300 mL of 100 mM 

to 350 mM LiCl/1 mM HCl as a linear gradient, were identified by liquid scintillation 

spectroscopy, concentrated to 20 mL by lyophilization at -40ºC, and then adjusted to pH 

6.5 with Ba(OH)2.  To precipitate out the [1-
3
H]RuBP, 1 mL of 1 M barium acetate and 

20 mL of 100% ethanol were added.  The [1-
3
H]RuBP was pelleted, resuspended in 1 mL 
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H2O and mixed with 0.75 g AG 50W-X4 H
+
- resin, which had been prewashed with H2O.  

The flow-through from the resin mix was collected, and the resin mix was further eluted 

with 5 mL H2O, collecting the flow-through as well.  The total flow-through, which 

contained [1-
3
H]RuBP, was adjusted to pH 6.5 with 1 M NaOH.  The mole-amount of [1-

3
H]RuBP was determined by measuring the [

14
C]carboxylation product in a Rubisco 

reaction with unknown but limited amount of substrate [1-
3
H]RuBP, but excess amounts 

of Rubisco and NaH
14

CO3.  [1-
3
H]RuBP was stored at -20ºC. 

 The phosphoglycolate phosphatase enzyme was partially purified from tobacco 

leaves (Christeller and Tolbert, 1978; Jordan and Ogren, 1981a).  Homogenate from 300 

g of leaves ground in 1 L of Buffer A (20 mM sodium cacodylate pH 6.3, 2 mM ZnSO4, 

2 mM citrate), with 2% w/v polyvinylpolypyrrolidone added, was filtered through 

cheesecloth and centrifuged at 12,000 g for 20 min at 4C to pellet leaf debris.  The 

supernatant containing the leaf extract was acetone-precipitated, and the precipitate 

between 25% to 40% v/v acetone was pelleted, air-dried, dissolved in 50 mL of Buffer A 

and loaded on a Buffer A-equilibrated DEAE-cellulose column (2.5 X 30 cm).  The 

column was then washed with 150 mL of Buffer A and the phosphoglycolate phosphatase 

was eluted with a linear gradient of 0 M to 0.4 M KCl in Buffer A.  Eluate-fractions were 

assayed for phosphoglycolate phosphatase activity by adding 50 µL of eluate to 0.5 mL 

of Buffer A containing 2 µmol of MgCl2 and 1 µmol of 2-phosphoglycolate, incubated at 

30ºC for 5 min, and stopped with 0.2 mL of 10% w/v trichloroacetic acid.  To determine 

the phosphatase activity, absorbance at 820 nm by free inorganic-phosphate released 

from 2-phosphoglycolate was measured and compared to a phosphate standard curve.  

Eluate fractions containing peak phosphatase activities were pooled and subjected to 
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ammonium-sulfate fractionation.  The precipitate between 50% and 80% ammonium 

sulfate, which contained phosphoglycolate phosphatase, was pelleted, resuspended in 10 

mL of Buffer A, and stored at -80ºC.  When needed for the Rubisco Ω assay, the required 

amount of phosphoglycolate phosphatase was adjusted to 2.5 U/mL with Buffer A. 

 

Determination of Rubisco kinetic-properties 

 The kinetic properties of Rubisco were determined from measurements of 

Rubisco carboxylase activity at six different CO2 concentrations with or without O2 

(Chen et al., 1988).  Vo was calculated from the Ω value (VcKo/VoKc) and the Vc, Kc, and 

Ko values (Laing et al., 1974; Chen et al., 1988).  Purified Rubisco (10 µg) in 20 µL of 

buffer (1 mM DTT, 50 mM Bicine-NaOH, pH 8.0, 10 mM MgCl2, 10 mM NaHCO3) was 

injected with a Hamilton syringe into a rubber-stopper-sealed 7-mL scintillation vial 

containing reaction buffer for a total of 1 mL of reaction mix (10 µg Rubisco, 0.4 mM 

RuBP, 50 mM Bicine-NaOH, pH 8.0, 10 mM MgCl2, and NaHCO3 concentrations of 0.6 

mM, 1.6 mM, 2.6 mM, 4.6 mM, 8.6 mM, or 16.6 mM).  The reaction buffers had been 

gassed at 7 PSI for 15 min with either 100% N2 (to create an environment without O2) or 

100% O2 before the addition of the NaHCO3, which included 25 µL of radiolabeled 

NaH
14

CO3 (0.4 mCi/mL, 60 Ci/mol).  The reaction was allowed to proceed for 1 min in a 

25ºC water bath, and then stopped with 1 mL of 3 M formic acid in methanol.  The 

rubber stopper was removed from the scintillation vial, the reaction mix was dried in a 

force-draft oven at 65ºC overnight, 350 L of 0.25 M HCl was added to the dried 

product, and the remaining fixed, acid-stable 
14

CO2 was measured by liquid scintillation 

spectroscopy.  The Vc and Kc values were determined from the double-reciprocal plot of 
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1/[CO2] (x-axis) to 1/vc (y-axis) for the 100% N2-gassed O2-free carboxylase reactions.  

Vc is the 1/x-intercept and Kc is the Vc times the slope.  Ko is determined from the relation 

between [CO2] and the ratio (R) of the carboxylase activity in the absence and presence 

of O2 where R = 1 + Kc[O2]/(KcKo+Ko[CO2]), which can be rearranged as 1/(R-1) = 

Ko[CO2]/Kc[O2] + Ko/[O2]. (Chen et al., 1988).  By plotting [CO2] (x-axis) to 1/(R-1) (y-

axis), Ko is simply the x-intercept times 1.15 mM, which is [O2] for the 100% O2-gassed 

reactions (Jordan and Ogren, 1981a; Chen et al., 1988). 

 

Determination of Rubisco thermostability 

 Rubisco stability was determined with a thermostability assay (Chen et al., 1993).  

Purified Rubisco (5 µg) in 50 µL of buffer (1 mM DTT, 50 mM Bicine-NaOH, pH 8.0, 

10 mM MgCl2, 10 mM NaHCO3) was incubated at 35ºC, 45ºC, 50ºC, 55ºC, 60ºC, 65ºC, 

or 70ºC for 10 min, cooled on ice for 5 min, and then injected with a Hamilton syringe 

into a rubber-stopper-sealed 7-mL scintillation vial containing reaction buffer for a total 

of 0.5 mL of reaction-mix (5 µg of purified Rubisco, 0.4 mM RuBP, 50 mM Bicine-

NaOH, pH 8.0, 10 mM MgCl2, 10 mM of 2 Ci/mol NaH
14

CO3).  The reaction was 

allowed to proceed for 1 min in a 25ºC water bath, and then stopped with 0.5 mL of 3 M 

formic acid in methanol.  The rubber stopper was removed from the scintillation vial, the 

reaction mix was dried in a force-draft oven at 65ºC overnight, 350 L of 0.25 M HCl 

was added to the dried product, and the remaining fixed, acid-stable 
14

CO2 measured by 

liquid scintillation spectroscopy. 

 

 



49 

SDS-PAGE of Chlamydomonas total soluble proteins 

 Total soluble proteins from sonicated Chlamydomonas cells were separated with a 

linear-gradient SDS-PAGE method that gives high resolution of chloroplast stromal 

proteins (Chua, 1980).  A 14 x 16 x 0.15-cm gel was poured consisting of 28 mL of 

resolving linear-gradient gel of 7.5% to 15% w/v polyacrylamide/N,N'-methylene-bis-

acrylamide (37.5:1), 5% to 17% w/v sucrose, 85 mM Tris-HCl, pH 9.18, and 0.1% w/v 

SDS.  The resolving gel was then overlaid with 6 mL of stacking gel of 6% w/v 

acrylamide/N,N'-methylene-bis-acrylamide (37.5:1), 13.5 mM Tris-H2SO4, pH 6.1, and 

0.1% w/v SDS.  The lower reservoir buffer was 85 mM Tris-HCl, pH 9.18, and 0.1% w/v 

SDS whereas the upper reservoir buffer was 2 mM Tris-borate, pH 8.64.  Each well of 

the gel was loaded with 60 µg of Chlamydomonas protein, which had been mixed with 

sample loading buffer (5% w/v SDS, 30% w/v sucrose, 0.05% w/v bromophenol blue, 

100 mM DTT) at a 3:2 ratio and boiled for 3 min.  Electrophoresis was carried out at 

25ºC, and initially set to 15 mA per gel, but turned up to 30 mA per gel after the dye front 

had passed the stacking/resolving gel interface.  Electrophoresis was stopped as soon as 

the dye front moved off the end of the gel.  The gel was stained overnight with 0.25% 

w/v Coomassie Brilliant Blue R, 50% v/v methanol, and 7% v/v acetic acid (Chua, 1980).  

Destaining was then carried out with a solution of 40% v/v methanol and 7% v/v acetic 

acid until bands were visible.  The gel was then further destained and stored in 10% 

acetic acid. 

 

Western blotting of Rubisco 

 SDS-PAGE gels were run in duplicate, and one was used for western blotting 
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(Towbin et al., 1979).  Proteins from the gel were transferred to a nitrocellulose 

membrane at 15 V for 12 hr at 4ºC in blotting buffer (25 mM Tris, 192 mM glycine, 20% 

v/v methanol).  Then, the membrane was blocked with 3% w/v gelatin in TBS buffer 

(500 mM NaCl, 20 mM Tris-HCl, pH 7.4) for 1 hr at room temperature.  The membrane 

was probed with rabbit anti-Chlamydomonas Rubisco large (0.76 µg) and small-subunit 

IgGs (0.68 µg) (Karkehabadi et al., 2005) in 50 mL of 1% w/v gelatin in TBS buffer for 7 

hr.  It was then washed with TTBS buffer (0.05% v/v Tween 20 in TBS buffer), 

incubated with 12.5 µL of goat anti-rabbit IgG/horseradish peroxidase conjugate (Biorad) 

in 1% w/v gelatin in 50 mL TBS buffer for 2 hr, washed with TTBS buffer, washed with 

TBS buffer, and visualized on an x-ray film using horseradish peroxidase 

chemiluminescence (National Diagnostics). 
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RESULTS AND DISCUSSION 

 

PHYLOGENETIC GROUPS 

Defining phylogenetic groups 

 Protein-sequence alignment of the Rubisco large subunit of Chlamydomonas with 

500 flowering-plant large subunits showed that there are 34 "phylogenetic residues" that 

differ between Chlamydomonas and plants (Du et al., 2003).  Phylogenetic residues are 

those that differ between Chlamydomonas Rubisco and over 95% of the 500 flowering-

plant sequences (Du et al., 2003).  These phylogenetic residues may account for the 

differences in kinetic properties between algae and plants, and are potential targets for 

engineering.  A direct approach to determine the phylogenetic-residue combinations that 

can influence Rubisco catalysis would be to change the Chlamydomonas residues to plant 

residues, and then assay the mutant enzymes for changes in kinetic properties.  However, 

site-directed mutagenesis of all possible combinations of the 34 phylogenetic residues 

would involve creating 2
34

 mutant enzymes, which is over 17 billion mutant strains (Du 

et al., 2003). 

 Instead, to simplify the problem, phylogenetic residues can be first clustered into 

"phylogenetic groups" based on the closeness of the residues in the highest-resolution, 

1.4-Å x-ray crystal structure of Chlamydomonas Rubisco (Table 2 and Fig. 4) (Taylor et 

al., 2001; Du et al., 2003).  Specifically, a phylogenetic group consists of phylogenetic 

residues within 5 Å of each other (Du et al., 2003).  Each phylogenetic group defines a 

structural region, and directed mutagenesis of each group as a whole would determine 

whether a structural region influences catalysis.  Single-residue changes are often not 
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Table 2: Phylogenetic groups in the catalytic large subunit of Chlamydomonas 

Rubisco (Du et al., 2003). 

Group number 
a
 Group notation 

b
 Residue substitutions 

1 11 A11V 

2 30-32 V30E, V31T, R32K 

-- 42-53 M42V, C53A 

3 86 D86H 

4 105-369 
c
 I105L, C369V 

c
 

5 149-282 V149Q, I282H 

6 168-399 G168P, L326I, M349L, M375L, A398S, C399V 

7 221 V221C 

-- 235 V235I 

-- 256-258 C256F, K258R 

-- 265 I265V 

8 305-474 R305K, D470E, T471A, I472M, K474T 

-- 341 V341I 

9 391-428 V391T, T428V 

10 442-447 G442N, D443E, V444I, S447E 

 

a
 Group number, which is based on the order of the phylogenetic groups, will be used for 

labeling of western-blot and phenotype-data figures where space is limited.  Mutant 

phylogenetic groups that were previously created and analyzed are designated "--" (Zhu 

and Spreitzer, 1996; Du et al., 2003; Spreitzer et al., 2005). 

b
 Group notation, which is based on the first and last residue substituted in a phylogenetic 

group, is the favored method for referring to specific phylogenetic groups throughout the 

text. 

c
 The phylogenetic-residues Ile-105 and Cys-369 are from neighboring large-subunits. 
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Figure 4: Distribution of the 34 phylogenetic residues, which cluster into 15 groups, 

in the large subunit of Chlamydomonas Rubisco (PDB 1GK8) (Taylor et al., 2001).  

Each color represents a phylogenetic group.  Only one large subunit is shown with the 

backbone represented as white ribbon.  At the left is the N-terminal domain.  At the right 

is the C-terminal α/β-barrel active-site domain with the bound transition-state analog 

CABP shown as black sticks.  Residues Ile-105 and Cys-369 are in contact between two 

large subunits.  The βA-βB loops from two different small subunits are shown as yellow 

and orange ribbons at the bottom right of the figure.  These loops vary in size among 

species, and interact with phylogenetic groups 256-258 and 235 at the bottom of the α/β 

barrel (Spreitzer et al., 2005).  
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sufficient to cause a noticeable change in catalysis, but residue-group changes have 

greater effects on structure (Zhu and Spreitzer, 1996; Du et al., 2003; Spreitzer et al., 

2005; Satagopan and Spreitzer, 2008). 

 The objective of the first phase of this study was to determine which phylogenetic 

groups contribute to the differences in kinetic properties between Chlamydomonas and 

plant Rubisco enzymes, and possibly determine their other roles in Rubisco structure and 

function.  Some of the groups have only one residue (i.e., groups 11, 86, 221, 235, 265 

and 341) (Table 2 and Fig. 4).  Five of the phylogenetic groups (i.e., groups 42-53, 235, 

256-258, 265 and 341) were studied previously, but did not result in any significant 

changes in catalysis (Zhu and Spreitzer, 1996; Du et al., 2003; Spreitzer et al., 2005).  

Thus, only ten remaining phylogenetic-group mutants needed to be created and analyzed 

in this study. 

 

Recovery of phylogenetic-group mutants and their phenotypes 

 Chlamydomonas phylogenetic-group mutants were recovered by chloroplast 

transformation of the MX3312 rbcL-knockout strain (Satagopan and Spreitzer, 2004, 

2008; Zhu et al., 2005) followed by photosynthetic selection.  All ten phylogenetic-group 

mutant strains could grow photoautotrophically, and the transformation frequencies with 

the mutant genes were not significantly different from that of wild type rbcL (1 X 10
-6

 per 

cells shot).  Thus, none of the mutations affected essential functions of Rubisco (Fig. 5).  

Moreover, similar to wild-type rbcL transformation, all the phylogenetic-group mutant 

transformants started appearing as photosynthetic colonies on minimal medium within 2 

to 4 weeks. 
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Figure 5: Growth phenotypes of Chlamydomonas wild type (WT) and phylogenetic-

group mutants.  About 2 X 10
5
 cells were spotted at each position, and grown for one 

week with the conditions indicated (Spreitzer and Mets, 1981).  Spot numbering is based 

on Table 2. 
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 Comparison of the growth phenotypes of the phylogenetic-group mutants 

(Spreitzer and Mets, 1981) indicated that only the 442-447 phylogenetic-group mutant 

(G442N/D443E/V444I/S447E) had reduced photosynthetic growth on minimal medium 

in the light (spot 10, Fig. 5).  When grown heterotrophically on acetate medium in the 

dark, the 442-447 mutant-Rubisco strain was indistinguishable from wild type indicating 

that the reduction in growth on minimal medium must result from a decrease in 

photosynthesis. 

 

Rubisco holoenzyme level 

 To determine the effects of the mutations on the amount of Rubisco in vivo, which 

would depend on holoenzyme expression, stability, or assembly, cell extracts were 

subjected to SDS-PAGE and western blotting (Fig. 6).  The amount of assembled 

Rubisco in vivo is directly related to the observed subunit levels in vitro because free 

small subunits are rapidly degraded in vivo, and expression of large subunits is blocked at 

translation in the absence of small subunits (Spreitzer et al., 1985; Khrebtukova and 

Spreitzer, 1996).  Almost all the phylogenetic-group mutant strains expressed equal 

amounts of Rubisco when compared with wild type except for the 442-447 mutant strain, 

which had reduced in vivo holoenzyme level as evidenced by the western blot (lane 10, 

Fig. 6).  Thus, the decreased holoenzyme level of the 442-447 mutant strain could 

account for its decreased photosynthetic growth (spot 10, Fig. 5). 

 A thermal-inactivation experiment (Chen et al., 1993) was performed with the 

442-447 mutant Rubisco to determine whether the enzyme was unstable.  As shown in 

Fig. 7, the wild-type and 442-447 mutant enzymes have similar thermal inactivation. 
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Figure 6: SDS-PAGE (left) and western-blot (right) analysis of total soluble protein 

from Chlamydomonas wild type (WT) and phylogenetic-group mutants (lanes 1 

through 10).  Sixty micrograms of total soluble protein from sonicated dark-grown cells 

were run in each lane.  Mutant numbering is based on Table 2.  LS denotes the Rubisco 

large subunit, and SS denotes the small subunit. 
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Figure 7:  Thermal inactivation of Rubisco purified from Chlamydomonas wild type 

(WT) and the 442-447 phylogenetic-group mutant.  Five micrograms of Rubisco were 

pre-incubated at the indicated temperatures for 10 min, and then cooled on ice for 5 min, 

before assaying carboxylase activity at 25ºC for 1 min.  The measured activity was 

normalized to that of the 35ºC pre-incubation.  The specific activity after the 35ºC pre-

incubation was 1.1 µmol CO2 fixed/min/mg protein for wild-type Rubisco, and 0.9 

µmol/min/mg for the mutant enzyme. 
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Therefore, the phylogenetic substitutions G442N/D443E/V444I/S447E in the 442-447 

mutant do not affect stability in vitro, but may affect structure leading to degradation in 

vivo. 

 

Kinetic properties 

 Despite the reduced holoenzyme level of the 442-447 phylogenetic-group mutant, 

sufficient amounts of Rubisco could be purified from all the mutants for kinetic analysis.  

An initial N2/O2-ratio assay (Spreitzer and Chastain, 1987) was performed with all the 

phylogenetic-group mutant enzymes to determine whether the phylogenetic substitutions 

affected the O2 sensitivity of Rubisco (Ratio A/B, Table 3).  Carboxylase specific 

activities were measured at saturating CO2 (12.4 mM NaHCO3, Table 3), and the Ω 

values were also measured (Table 3). 

 Only the 168-399, 305-474 and 442-447 phylogenetic-group mutant enzymes 

have altered O2-sensitivity in comparison with wild type Rubisco, which has an N2/O2 

ratio of 2.4 (Table 3).  The rest of the phylogenetic mutants have ratios within ±10% of 

the wild-type value.  The 168-399 and 442-447 mutants have increases in the N2/O2 ratio 

to 3.2 and 2.9, respectively, which indicates that the phylogenetic substitution 

G168P/L326I/M349L/M375L/A398S/C399V in phylogenetic-group 168-399, close to 

catalytic loop-6, increased the sensitivity of Rubisco to O2, causing the carboxylase 

reaction to be more prone to O2 inhibition (Table 3).  The phylogenetic substitution 

G442N/D443E/V444I/S447E in phylogenetic-group 442-447 also caused a similar but 

less pronounced increase in O2 inhibition.  On the other hand, phylogenetic-group 305-

474, consisting of R305K/D470E/T471A/I472M/K474T substitutions at the carboxy 
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Table 3: Ω values, specific activities, and oxygen inhibition of Rubisco purified from 

Chlamydomonas wild type and phylogenetic-group mutants. Values are the means 

±S.D. (n - 1) of three separate enzyme preparations. 

Enzyme 

 

Ω 

VcKo/VoKc 

RuBP carboxylase activity 

Ratio 

(A/B) 

100% N2 

12.4 mM 

NaHCO3 

100% N2 

0.98 mM 

NaHCO3 

(A) 
 

100% O2 

0.98 mM 

NaHCO3 

(B) 
 

  µmol CO2/hr/mg of protein  

Wild type 59 ± 1 101 ± 2 28.6 ± 0.4 11.8 ± 1.0 2.4 

11 62 ± 3 115 ± 5 33.6 ± 0.4 13.7 ± 0.8 2.5 

30-32 61 ± 3 107 ± 9 31.1 ± 0.4 13.0 ± 0.3 2.4 

86 58 ± 2 92 ± 5 22.8 ± 1.3 8.7 ± 1.2 2.6 

105-369 63 ± 2 115 ± 16 35.5 ± 1.0 13.8 ± 0.3 2.6 

149-282 61 ± 1 122 ± 7 33.7 ± 2.9 13.3 ± 1.6 2.5 

168-399 56 ± 2 46 ± 4 10.7 ± 1.1 3.3 ± 0.3 3.2 

221 59 ± 1 116 ± 10 32.3 ± 2.0 14.6 ± 0.8 2.2 

305-474 61 ± 2 99 ± 16 21.7 ± 0.8 11.5 ± 0.4 1.9 

391-428 62 ± 3 57 ± 9 18.1 ± 1.1 8.3 ± 0.2 2.2 

442-447 61 ± 4 98 ± 11 28.5 ± 2.9 9.9 ± 1.2 2.9 
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terminus of the Rubisco large subunit, decreased the sensitivity of Rubisco to O2, 

evidenced by the reduction of the N2/O2 ratio to 1.9 (Table 3).  Of the three phylogenetic 

mutants 168-399, 305-474 and 442-447, only the 168-399 mutant has a decrease in 

specific carboxylase activity, which is over 50% (Table 3). 

 Because of the decrease in specific activity and increase in oxygen sensitivity, the 

168-399 mutant enzyme has the lowest Ω value among the phylogenetic-group mutants, 

with Ω = 59 for the wild-type enzyme, and Ω = 56 for the 168-399 mutant enzyme (Table 

3).  On the other hand, it was surprising that none of the phylogenetic substitutions 

increases Ω by at least 10% considering that plant Rubisco enzymes have Ω values at 

least 15% higher than that of Chlamydomonas Rubisco (Jordan and Ogren, 1981b; 

Genkov et al., 2010).  Perhaps further combinations of phylogenetic-group substitutions 

are required to achieve the shift in catalytic properties observed between Chlamydomonas 

and plant Rubisco enzymes. 

 Detailed kinetic analysis was performed on the 168-399, 305-474 and 442-447 

phylogenetic-group mutant Rubisco enzymes to determine the specific changes in kinetic 

constants (Table 4).  For the 168-399 and 442-447 mutants, which have increases in O2 

inhibition, the Ko values are decreased to 386 and 352 µM O2, respectively, compared 

with 458 µM O2 for the wild-type enzyme (Table 4). 

 For the 305-474 mutant, which has a decrease in O2-inhibition, Ko is increased to 

637 µM O2 (Table 4).  However, the beneficial decrease in O2 sensitivity of the 305-474 

mutant is offset by an increase in Kc to 58 µM CO2, compared to 35 µM CO2 for the 

wild-type enzyme (Table 4).  In addition, for the 168-399 mutant, Vc is reduced to 65 

µmol CO2 fixed/hr/mg protein, from 105 µmol/hr/mg for the wild-type enzyme, which, 
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Table 4: Kinetic properties of Rubisco purified from Chlamydomonas wild type and 

three phylogenetic-group mutants with altered oxygen inhibition. 

Enzyme Ω 
a,b

 

VcKo/VoKc 

Vc 
b
 Kc 

b
 Ko 

b
 Vc/Kc 

c
 Ko/Kc 

c
 Vc/Vo 

c
 

  
 

µmol/hr/mg 
 

µM CO2 
 

µM O2 
   

Wild type 59 ± 1 105 ± 2 35 ± 1 458 ± 3 3.0 13 4.5 

168-399 56 ± 2 65 ± 11 36 ± 3 386 ± 29 1.8 11 5.1 

305-474 61 ± 2 96 ± 10 58 ± 7 637 ± 7 1.7 11 5.5 

442-447 61 ± 4 82 ± 8 34 ± 4 352 ± 32 2.4 10 6.1 

 

a
 Values are from Table 3. 

b
 Values are the means ± S.D. (n - 1) of three separate enzyme preparations. 

c
 Calculated values. 
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together with the reduced Ko, contributes to a lower Ω (Table 4). 

 

Structural analysis of the phylogenetic-group mutant enzymes 

 The decrease in Ω caused by the 168-399 phylogenetic-group substitutions 

(G168P/L326I/M349L/M375L/A398S/C399V) (Table 4), at the base and flank of 

catalytic loop 6 (Fig. 8), is reminiscent of the decreased Ω previously observed for an 

L326I/M349L mutant enzyme (Zhu and Spreitzer, 1996).  The side chains of Leu-326 

and Met-349 are in van der Waals contact, and, because the two residues are located in β-

strand 6 and α-helix 6, respectively (Fig. 8), substituting the two residues could directly 

affect the flexibility of the loop, and affect the stability of the interactions between Lys-

334 and the gaseous substrates (Gutteridge et al., 1993; Zhu and Spreitzer, 1996).  

Besides that, changes of Leu-326 could also affect the adjacent active-site residue His-

327 (Fig. 8).  Mutations of His-327 have been previously found to weaken the binding of 

the CABP carboxylation transition-state analog to Rubisco, which would decrease  

(Harpel et al., 1991). 

Because the base-of-loop-6 phylogenetic-group 168-399 mutant enzyme, which 

has four substitutions G168P/M375L/A398S/C399V additional to the previous 

L326I/M349L, does not have  restored to the wild-type value or increased to plant 

values (Table 4), it must be concluded that these additional phylogenetic-residue changes 

are not sufficient to complement the L326I/M349L substitutions in terms of Ω (Zhu and 

Spreitzer, 1996).  The four additional phylogenetic-residue substitutions are at the amino-

terminal ends of the β strands forming the -sheet wall of the active-site barrel (Fig. 8).  

In fact, as part of the network of hydrogen bonds keeping the β-sheet intact, there is a 
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Figure 8: Structural comparison of residues in the 168-399 phylogenetic group (red) 

at the base of catalytic loop 6 between Chlamydomonas (left, PDB 1GK8) and 

spinach Rubisco (right, PDB 8RUC).  Except for Leu-326 and Met-349, which flank 

loop 6, the other phylogenetic residues are at the N-terminal ends of β-strands β1, β8, and 

β7, which are also part of the α/β-barrel active-site domain.  The CABP carboxylation 

transition-state analog denotes the active site with the side chain of Lys-334 stabilizing 

the partial negative charge on the CO2 (or O2) moiety that is represented by a carboxylate 

side group of CABP.  His-327 at the C-terminal end of β6, adjacent to Leu-326, is 

another active-site residue that can influence Ω (Harpel et al., 1991). 
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hydrogen bond between the backbone carbonyl oxygen of Met-375 and the amide 

nitrogen of Leu-326, suggesting that there could be some other complementary effects 

between the phylogenetic residues unrelated to Ω. 

 As for the phylogenetic-group 305-474 substitutions (R305K/D470E/T471A/ 

I472M/K474T) at the carboxy terminus, the increase in Ko (Table 4) is reminiscent of the 

increased Ko observed in a previous mutant Chlamydomonas Rubisco that had the 

carboxy terminus changed to that of spinach (D470P/T471A/I472M/K474T) (Satagopan 

and Spreitzer, 2008).  Whereas the previous D470P/T471A/I472M/K474T mutant 

enzyme had a 10% increase in Ω (Satagopan and Spreitzer, 2008), the 305-474 

phylogenetic-group  mutant enzyme has no change in Ω despite an increase in Ko because 

of a concomitant increase in Kc (Table 4). 

 The 305-474 mutant enzyme (R305K/D470E/T471A/I472M/K474T) is different 

from the previous D470P/T471A/I472M/K474T enzyme in that Asp-470 was replaced 

with Glu-470, found in 41% of plant-Rubisco sequences, as opposed to being replaced 

with Pro-470, found in only 18% of the plant sequences including spinach (Du et al., 

2003).  Also, an additional Arg-305-to-Lys substitution was included in the 305-474 

mutant because Arg-305 in Chlamydomonas Rubisco is in van der Waals contact with 

Lys-474 (Fig. 9).  It was previously suggested that the increase in  for 

D470P/T471A/I472M/K474T might be attributed to an increase in carboxy-terminal 

flexibility caused by the elimination of the salt bridge between Asp-470 and Lys-474 

(Satagopan and Spreitzer, 2008).  For the 305-474 mutant enzyme, even though the salt 

bridge between residue 470 and 474 is disrupted, the increased flexibility of the carboxy 

terminus could be offset by the formation of an ionic interaction between Thr-474 and  
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Figure 9: Structural comparison of residues in phylogenetic group 305-474 (green) 

at the carboxy-terminal tail between Chlamydomonas (top) and spinach Rubisco 

(bottom).  The Asp-470-Lys-474 salt bridge present in Chlamydomonas is absent among 

plants.  Instead, Lys-305 and Thr-474 form an ionic interaction in plants.  Phe-467 packs 

against catalytic Lys-334, which interacts with the carboxylation transition-state analog 

CABP.  Residues Glu-336 and Glu-338 in loop 6 interact with the 305-474 phylogenetic 

residues, and could be responsible for transmitting changes in 305-474 directly to the 

loop, especially to Glu-338, which has a different conformation between Chlamydomonas 

and spinach Rubisco.  
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Lys-305, which was an additional phylogenetic substitution in the 305-474 mutant (Fig. 

9).  Nonetheless, the conformational rigidity of the carboxy terminus could affect Phe-

467, which packs against active-site Lys-334, thus transmitting changes in the carboxy 

terminus to the active-site (Fig. 9).  Also, interactions between the 305-474 residues and 

Glu-336 and 338 directly affects catalytic loop 6 (Fig. 9). 

 As for 442-447 mutant Rubisco, the phylogenetic substitutions are mainly in α-

helix G, on the surface of the large-subunit, over 20Å away from the active-site. Thus, it 

is difficult to map the network of interactions between the 442-447 phylogenetic group 

and the active site to account for the decreased Ko of the mutant enzyme (Table 4).  

Nevertheless, the 442-447 phylogenetic group could play a greater role in holoenzyme 

assembly, which would account for the decreased growth and in vivo Rubisco level of the 

mutant strain (Figs. 5 and 6). 

 Even though phylogenetic groups 168-399, 305-474 and 442-447 do play a role in 

Rubisco catalysis, more extensive combinations of phylogenetic groups could be 

responsible for the shift in kinetic properties between Chlamydomonas and plant Rubisco. 
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ASSOCIATED GROUPS 

Defining associated groups 

 Because individual phylogenetic-group substitutions in Chlamydomonas Rubisco 

do not produce plant Rubisco kinetics, combinations of the phylogenetic groups might be 

required (Tables 3 and 4).  However, to create all possible combinations of the 15 

phylogenetic groups, which is 2
15

 or over 32,000 combinations, would still be 

overwhelming.  Instead, phylogenetic groups can be combined into "associated groups," 

which are each defined as a combination of a phylogenetic group and all other 

surrounding phylogenetic groups (Table 5).  To be included in an associated-group, the 

surrounding phylogenetic groups have to be within interacting distance (5 Å) of a non-

phylogenetic residue that also interacts with the center phylogenetic group (Table 5).  It is 

not possible for two separate phylogenetic groups to interact with a common 

phylogenetic residue directly, because the two groups, including the bridging 

phylogenetic residue, would have been clustered as one phylogenetic group. 

 Because the previous penta/ABSO mutant had plant-like kinetic properties, the 

small-subunit βA-βB loop also influences catalysis (Spreitzer et al., 2005).  Therefore, 

this loop was also considered in the associated-group analysis.  The βA-βB loop is 

variable between Chlamydomonas and plant Rubisco enzymes (Spreitzer, 2003).  The 

penta/ABSO mutant was created by combining five phylogenetic-residue substitutions 

and a chimeric Rubisco small subunit that has the βA-βB loop from spinach (Spreitzer et 

al., 2005).  To test the possible role of the βA-βB loop in the associated groups, any 

associated-group mutants that have the center phylogenetic group in direct contact with 

the βA-βB loop was combined with the chimeric Rubisco small subunit that has the 
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Table 5: Associated groups in Chlamydomonas Rubisco.  Phylogenetic groups are based on 
Table 2.  Residue substitutions are listed in Table 6.  

Center 

phylogenetic 

group 

Surrounding 

phylogenetic 

groups 

Shared non-phylogenetic 

residues between groups 
a
 

Associated groups 

Name Letter 

11 None None   

30-32 
86 Y85 

30-32Assoc A 
105-369 T34 

42-53 
86 A99 

42-53Assoc B 
305-474 R41 

86 
30-32 Y85 

86Assoc C 
42-53 A99 

105-369 
30-32 T34 

105-369Assoc D 
149-282 M371 

149-282 

105-369 M371 

149-282Assoc E 256-258 Y283 

265 L280, C284 

168-399 

265 Y239 

168-399Assoc F 341 F345 

391-428 F394, L424 

221 
256-258 F218 

221Assoc G 
265 L240 

235 βA-βB loop 
b
 Direct contact 235Assoc H 

256-258 

149-282 Y283 

256-258Assoc I 
221 F218 

265 A257 

βA-βB loop 
b
 Direct contact 

265 

149-282 L280, C284 

265Assoc J 
c
 

168-399 Y239 

221 L240 

256-258 A257 

305-474 
42-53 R41 

305-474Assoc K 
341 L475 

341 
168-399 F345 

341Assoc L 
305-474 L475 

391-428 
168-399 F394, L424 

391-428Assoc --  
d
 

442-447 A426, A430 

442-447 391-428 A426, A430 442-447Assoc --  
d
 

a 
Shared non-phylogenetic residues are within 5 Å from both the center and surrounding 

phylogenetic groups. 
 
b 

Because the βA-βB loop from the Rubisco small subunit also influences catalysis, phylogenetic-
groups that interact with residues in the βA-βB loop are combined with the spinach βA-βB loop 
when substituted as associated groups. 
 
c 

The 265Assoc associated group alone cannot be recovered by photosynthetic selection, but, 
when combined with the Rubisco small subunit from Arabidopsis, can support photosynthesis.  
Thus, this strain is noted as "J" in further studies. 
 
d 

The 391-428Assoc and 442-447Assoc associated groups cannot be recovered by photosynthetic 
selection, and thus, cannot be analyzed. 
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spinach βA-βB loop.  Therefore, the βA-βB loop was also considered a phylogenetic 

group with regard to associated groups, but it is included in an associated group only if 

residues of the βA-βB loop are in contact with a phylogenetic group (Table 5). 

 Different regions of Rubisco can interact.  Thus, directed mutagenesis of the 

associated groups as a whole, coupled with data from separately substituting each 

phylogenetic group, may provide information about complementation between regions of 

the holoenzyme.  Perhaps combinations of structurally-related phylogenetic groups 

complement to produce catalytic changes, which might not be obvious from separate 

phylogenetic-group substitution. 

 Because each phylogenetic group and the other surrounding phylogenetic groups 

form each associated group, like the number of phylogenetic groups, there are 15 

associated group, for which mutant enzymes can be created and analyzed.  However, for 

phylogenetic group 11, Ala-11 is too distant from any other phylogenetic groups to form 

an associated group (Table 5).  Thus, only 14 associated-group mutants need to be 

created. 

 

Recovery of associated-group mutants and their phenotypes 

 Chlamydomonas associated-group mutants were recovered by chloroplast 

transformation of the MX3312 (Satagopan and Spreitzer, 2004, 2008; Zhu et al., 2005) 

and rbcL∆/ABSO rbcL-knockout strains followed by photosynthetic selection.  The 

rbcL∆/ABSO strain, which has the spinach-substituted Rubisco small-subunit βA-βB 

loop (Spreitzer et al., 2005), was used to create associated-group mutants that involve the 

βA-βB loop (235Assoc and 256-258Assoc) (Table 5).  Eleven of the fourteen associated-
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group mutant strains could grow photoautotrophically.  The 265Assoc, 442-447Assoc, 

and 391-428Assoc mutants could not be recovered (Table 5).  For the mutants that could 

be recovered, the transformation frequencies were 1-3 X 10
-6

 per cells transformed, and 

the transformants started appearing as photosynthetic colonies on minimal medium 

within 2 to 4 weeks, which was similarly observed for the wild-type rbcL transformants. 

 Comparison of the growth phenotypes between the associated-group mutants and 

wild-type Chlamydomonas by spot tests (Spreitzer and Mets, 1981) indicated that the 30-

32Assoc, 86Assoc, 149-282Assoc, and 221Assoc mutants have reduced photosynthetic 

growth on minimal medium in the light at the restrictive temperature of 35ºC (spots A, C, 

E, and G, respectively, Fig. 10).  Because these "temperature-conditional phenotypes" are 

limited to photosynthetic growth, but not heterotrophic growth at 35ºC (Fig. 10), the 

temperature sensitivity must be specific to a defect in Rubisco.  Considering that the 30-

32Assoc mutant (V30E/V31T/R32K/D86H/I105L/C369V) and the 86Assoc mutant 

(D86H/V30E/V31T/R32K/M42V/C53A) have substitutions V30E/V31T/R32K/D86H in 

common, which is also a combination of phylogenetic groups 30-32 and 86 (Tables 2 and 

5), the temperature-conditional phenotypes might be caused by combining the 30-32 and 

86 phylogenetic-group substitutions.  Similarly, considering that the 149-282Assoc 

mutant (V149Q/I282H/I105L/C369V/C256F/K258R/I265V) and the 221Assoc mutant 

(V221C/C256F/K258R/I265V) have substitutions C256F/K258R/I265V in common, 

which is a combination of phylogenetic groups 256-258 and 265 (Tables 2 and 5), the 

temperature-conditional phenotypes might be caused by combining the 256-258 and 265 

phylogenetic-group substitutions.  Moreover, a previous study has shown that combining 
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Figure 10: Growth phenotypes of Chlamydomonas wild type (WT) and associated-

group mutants (spots A through L).  About 2 X 10
5
 cells were spotted at each position 

at the conditions indicated (Spreitzer and Mets, 1981).  Panel A (top) cells were grown 

for a week.  Panel B (bottom) cells were supplemented with 5% CO2 in air and scanned 

after one week (bottom-left) and after two weeks (bottom-right).  Spot letter is based on 

Table 5. 
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the 256-258 and 265 phylogenetic-group substitutions does produce a temperature-

conditional Chlamydomonas mutant (Spreitzer et al., 2005).  On the other hand, the 

temperature-conditional phenotypes of the 30-32Assoc and 86Assoc mutant strains could 

be attributed to phylogenetic substitutions in a region that affects the interaction between 

Rubisco and Rubisco activase (Larson et al., 1997; Ott et al., 2000). 

 For the associated-group mutants that could not be recovered, attempts were also 

made to transform into the rbcL∆/ABSO and rbcL∆/SSAT strains (Dent et al., 2005; 

Genkov et al., 2010; Genkov and Spreitzer, unpublished).  Interestingly, the 265Assoc 

mutant produced photosynthetic colonies when transformed in the cell-walled 

rbcL∆/SSAT strain, which has the Rubisco small subunit substituted with that of 

Arabidopsis (Dent et al., 2005; Genkov et al., 2010; Genkov and Spreitzer, unpublished).  

However, this 265Assoc/SSAT transformant required 5% v/v CO2 in air for growth, and 

colonies were visible only after three weeks compared to six days for the wild-type rbcL 

transformants.  In fact, spot tests indicated that the 265Assoc/SSAT strain has less 

photosynthetic growth than wild type even after two weeks on minimal medium with 5% 

CO2 (spot J, Fig. 10).  The other two associated-group mutants, 391-428Assoc and 442-

447Assoc, could not be recovered in any of the transformation hosts. 

 

 

Rubisco holoenzyme level 

 To determine the effects of the mutations on the amount of Rubisco in vivo, SDS-

PAGE and western blotting were performed.  Almost all the associated-group mutant 

strains expressed equal amounts of Rubisco when compared with wild type except for the 
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265Assoc/SSAT mutant strain, which had reduced in vivo holoenzyme level as evidenced 

on the western blots (lane J, Fig. 11).  The decreased Rubisco holoenzyme level of the 

265Assoc/SSAT mutant strain could account for the high-CO2-requiring phenotype (spot 

J, Fig. 10). 

 A thermal-inactivation experiment (Chen et al., 1993) was performed to see 

whether the 265Assoc/SSAT mutant enzyme was unstable (Fig. 12).  Whereas the wild-

type enzyme was unaffected by a 55ºC incubation, the mutant enzyme lost 80% of its 

activity at this temperature.  Thus, the phylogenetic substitutions I265V/V149Q/I282H/ 

G168P/L326I/M349L/M375L/A398S/C399V/V221C/C256F/K258R, together with the 

Arabidopsis small subunit, caused the 265Assoc/SSAT mutant enzyme to be more 

unstable than the wild-type enzyme (Fig. 12). 

 Reductions in holoenzyme levels for 35ºC-grown Chlamydomonas cells were 

observed in the western blots for the 149-282Assoc and 221Assoc mutant strains (lanes E 

and G, respectively, Fig. 11), which would explain their temperature-conditional 

phenotypes (spots E and G, respectively, Fig. 10).  A previous study has shown that the 

C256F/K258R/I265V substitutions, which are present in the 149-282Assoc and 221Assoc 

associated-group mutants, caused a similar reduction in holoenzyme level in 

Chlamydomonas cells grown at 35ºC (Spreitzer et al., 2005).  However, the reduction in 

holoenzyme level was not caused by increased holoenzyme instability, but likely due to 

increased susceptibility to proteolysis (Du et al., 2003; Spreitzer et al., 2005).  Thus, the 

149-282Assoc and 221Assoc associated-group substitutions might also alter Rubisco 

structure sufficiently to increase the susceptibility of the enzymes to proteolysis in vivo, 

especially at elevated 35ºC. 
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Figure 11: SDS-PAGE (left) and western-blot analysis (right) of total soluble 

proteins from Chlamydomonas wild type (WT) and associated-group mutants (A to 

L).  Sixty micrograms of total soluble protein from cells grown in the dark at 25ºC (top) 

or 35ºC (bottom) were run in each lane.  Mutant letter is based on Table 5.  LS denotes 

the Rubisco large subunit, and SS denotes the small subunit. 
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Figure 12:  Thermal inactivation of Rubisco purified from Chlamydomonas wild 

type (WT) and the 265Assoc/SSAT mutant.  Five micrograms of Rubisco were pre-

incubated at the indicated temperatures for 10 min, and then cooled on ice for 5 min 

before assaying for carboxylase activity at 25ºC for 1 min.  The measured activity after 

each pre-incubation temperature was normalized to that of 35ºC-pre-incubation.  The 

specific activity after the 35ºC pre-incubation was 1.1 µmol CO2 fixed/min/mg protein 

for wild-type Rubisco, and 0.1 µmol/min/mg for the 265Assoc/SSAT enzyme. 
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Kinetic properties 

 Because Ω defines the rate-limiting step of the carboxylation and oxygenation 

reactions of Rubisco, and differs between land-plant and Chlamydomonas enzymes, Ω 

was measured for all the associated-group mutant enzymes.  Similar to the phylogenetic-

group mutant enzymes, none of the associated-group mutant enzymes have increased Ω  

values (Table 6).  The 265Assoc/SSAT mutant enzyme has an increased Ω (Table 6), but 

this 10% increase can be attributed to substituting the entire small subunit from 

Arabidopsis (Genkov et al., 2010). 

 Phylogenetic-group mutant 168-399 has a decrease in Ω (Table 3), but when 

combined with phylogenetic groups 305-474 and 341 to produce the 341Assoc 

associated-group mutant, the resulting mutant enzyme has Ω restored to the wild-type 

value (Table 6).  Therefore, the 168-399 group substitutions are complemented by the 

305-474 and 341 groups.  More likely, the 305-474 substitutions are responsible for 

restoring the Ω value of the 168-399 mutant enzyme because the 305-474 mutant enzyme 

has an increased Ko (Tables 3 and 4) whereas the 341 mutant enzyme (V341I) has kinetic 

properties indistinguishable from wild-type Rubisco (Zhu and Spreitzer, 1996). 

 

Structural analysis of the associated-group mutants 

 The Ω-reducing 168-399 phylogenetic-group (G168P/L326I/M349L/M375L/ 

A398S/C399V) is at the base of loop 6 (Figs. 8 and 13).  The other complementary 

phylogenetic groups 305-474 (R305K/D470E/T471A/I472M/K474T) and 341 (V341I), 

which restore the Ω value as demonstrated by the 341Assoc associated-group mutant 
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Table 6: Ω values of Rubisco purified from Chlamydomonas wild type and 

associated-group mutants. 

Enzymes (Letter) Residue substitutions Ω 
a
 

(VcKo/VoKc) 

Wild type None 61  2 

30-32Assoc (A) V30E/V31T/R32K/D86H/I105L/C369V 61  2 

42-53Assoc (B) M42V/C53A/D86H/R305K/D470E/T471A/I472M/ 

K474T 
60  2 

86Assoc (C) D86H/V30E/V31T/R32K/M42V/C53A 55  2 

105-369Assoc (D) I105L/C369V/V30E/V31T/R32K/V149Q/I282H 63  2 

149-282Assoc (E) V149Q/I282H/I105L/C369V/C256F/K258R/I265V 61  2 

168-399Assoc (F) G168P/L326I/M349L/M375L/A398S/C399V/I265V/ 

V341I/V391T/T428V 
57  4 

221Assoc (G) V221C/C256F/K258R/I265V 54  2 

235Assoc (H) V235I/ABSO (spinach small-subunit βA-βB loop) 56  1 

256-258Assoc (I) C256F/K258R/V149Q/I282H/V221C/I265V/ 

ABSO (spinach small-subunit βA-βB loop) 
60  2 

265Assoc/ 

SSAT (J) 

I265V/V221C/V149Q/I282H/G168P/L326I/M349L/ 

M375L/A398S/C399V/C256F/K258R/ 

SSAT (Arabidopsis small-subunit) 

66  2 

305-474Assoc (K) R305K/D470E/T471A/I472M/K474T/M42V/C53A/ 

V341I 
62  3 

341Assoc (L) V341I/G168P/L326I/M349L/M375L/A398S/C399V/ 

R305K/D470E/T471A/I472M/K474T 
64  2 

 
a
 Values are the means ± S.D. (n - 1) of three separate enzyme preparations. 
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Figure 13: Structural comparison of residues in associated group 341Assoc 

consisting of phylogenetic groups 168-399 (red) at the base of catalytic loop 6, 305-

474 (green) at the carboxy-terminal tail, and 341 (blue) in α-helix 6.  Glu-338 in α-

helix 6 is in van der Waals contact with Ala-471 in Chlamydomonas Rubisco, but caps 

the N-terminal end of α-helix 6 in spinach Rubisco.  The CABP transition-state analog 

denotes the active site. 
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enzyme, are in the carboxy terminus (Figs. 9 and 13) and α-helix 6 of the Rubisco large 

subunit, respectively (Fig. 13).  Comparison of the x-ray crystal structures of 

Chlamydomonas and spinach Rubisco indicates that the T471A substitution could change 

the conformation of the carboxylate side chain of Glu-338 at the amino-terminal end of 

α-helix 6 (Fig. 13).  In spinach Rubisco, Ala-471 is in van der Waals contact with Glu-

338, but in Chlamydomonas, the bulkier Thr-471 prevents the carboxylate side chain of 

Glu-338 from occupying the same space.  Instead, the negatively-charged side chain is 

turned towards the amino-terminal end of α-helix 6, and may neutralize the partial 

positive charge from the α-helix dipole (Fig. 13). 

 In addition, the phylogenetic V341I substitution enables residue 341 in α-helix 6 

to form van der Waal contact with residue 474 in the carboxy terminus through the longer 

isoleucine side chain as seen in spinach Rubisco (Fig. 13).  This may strengthen the 

interaction between α-helix 6 and the carboxy terminus.  Perhaps the increased 

interaction between α-helix 6 and the carboxy terminus, namely between Glu-338 and 

Ala-471, and between Ile-341 and Thr-474, complements some subtle structural 

perturbations caused by the 168-399 phylogenetic substitutions at the base of loop 6 (Fig. 

13). 

 In the 265Assoc associated-group mutant, a combination of the 168-399 

phylogenetic-group substitutions (G168P/L326I/M349L/M375L/A398S/C399V) at the 

base of loop 6 with phylogenetic groups 149-282, 221, 256-258, and 265 (V149Q/I282H, 

V221C, C256F/K258R and I265V) near the interface between large and small subunits 

cannot be recovered through photosynthetic selection.  However, transforming the 

265Assoc mutant gene into a Chlamydomonas strain that expresses the Arabidopsis small 
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subunit (Genkov and Spreitzer, unpublished) produces a mutant strain that can grow 

photosynthetically, albeit at only 5% CO2 in air (Fig. 10).  In other words, the land-plant 

small subunit complements the large-subunit phylogenetic changes in the 265Assoc 

associated group in Chlamydomonas.  Because replacement of the small-subunit βA-βB 

loop with that of spinach complements the large-subunit changes in the penta/ABSO 

enzyme to produce plant-like kinetic properties (Spreitzer et al., 2005), an attempt was 

made to transform the 265Assoc mutant gene into the rbcL∆/ABSO Chlamydomonas 

strain to determine whether replacement of the βA-βB loop with that of spinach was 

sufficient to complement the 265Assoc large-subunit substitutions.  Moreover, among the 

residue changes in 265Assoc are V221C/C256F/K258R/I265V, which are four of the five 

phylogenetic substitutions in the large subunit of the penta/ABSO mutant (Spreitzer et 

al., 2005).  However, no photosynthetic transformants were recovered in this experiment.  

Therefore, some other regions of the Rubisco small subunit may complement the 

265Assoc substitutions.  Because the loop between -strands C and D of the small 

subunit, the βC-βD loop, is also variable among species, with photosynthetic bacteria and 

non-green algae having two additional residues in the loop (Spreitzer, 2003), changes in 

the βC-βD loop could be responsible for complementing the 265Assoc substitutions (Fig. 

14).  The Chlamydomonas small subunit has Lys-114 in the βC-βD loop, and the 

corresponding plant residue is Arg-108.  Both of these residues form a salt bridge with 

Asp-397 in the large subunit. 

 For the 391-428Assoc and 442-447Assoc associated-group substitutions, which 

cannot be recovered by photosynthetic selection, the substitutions common to both 

associated groups are V391T/T428V/G442N/D443E/V444I/S447E (Table 6).  These are  
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Figure 14: Structural comparison of residues in the associated group 265Assoc 

consisting of phylogenetic groups 149-282 (pale green), 168-399 (red), 221 (bright 

green), 256-258 (pink), and 265 (purple).  The entire small subunit is colored yellow.  

Non-phylogenetic residues at the interface between large and small subunits are shown as 

faded sticks.  Residues of the βC-βD loop of the small subunit are labeled (112 to 115 in 

Chlamydomonas; 106 to 109 in spinach).  The CABP transition-state analog denotes the 

active site. 
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a combination of the 391-428 and 442-447 phylogenetic-group substitutions (Tables 2 

and 5).  The 442-447 residues are in α-helix G of the Rubisco large subunit whereas the 

391 and 428 residues are in α-helices 7 and 8, respectively (Fig. 15). 

 Of the 391-428 and 442-447 phylogenetic groups, only phylogenetic residues 

Gly-442, Asp-443, and Ser-447, which are all in α-helix G, are on the surface of the 

holoenzyme (Fig. 13).  Phylogenetic residues Gly-442 and Asp-443 are substituted with 

Asn-442 and Glu-443 in most land plants, effectively replacing the residue side chains 

with longer polar functional groups, thus allowing for better interaction with Arg-446 

(Fig. 13).  Similarly, phylogenetic residue Ser-447 is more commonly Asp-447 in land 

plants, which forms a salt bridge with Arg-435 (Fig. 13).  Another residue in α-helix G, 

Trp-451, also has a different conformation between Chlamydomonas and Spinach 

Rubisco (Fig. 13).  Because the 442-447 phylogenetic-group substitutions, 

G442N/D443E/V444I/S447E, caused a decrease in Rubisco holoenzyme level (Fig. 4), 

and the mutant strain has reduced photosynthetic growth (Fig. 3), changes in electrostatic 

interactions on the surface of α-helix G involving phylogenetic residues 442, 443 and 447 

might affect interactions with chaperones or other protein molecules that assist in the 

assembly of the hexadecameric Rubisco. 

 Perhaps the addition of other phylogenetic-residue substitutions in the 391-

428Assoc and 442-447Assoc associated-group mutants exacerbate the reduction in 

Rubisco holoenzyme assembly, which would explain the inability to recover the 

associated-group mutants in Chlamydomonas through photosynthetic selection.  The 

other non-surface phylogenetic residues common to the 391-428Assoc and 442-447Assoc 

phylogenetic-groups are Val-391, Thr-428, and Val-444.  Of these residues, Thr-428 is in 
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Figure 15: Structural comparison of phylogenetic residues common to both the 391-

428Assoc and 442-447Assoc associated groups consisting of phylogenetic groups 

391-428 (brown) in α-helices 7 and 8, and 442-447 (blue) in α-helix G.  Non-

phylogenetic residues that might be altered in their interactions because of the 

phylogenetic changes are shown as white sticks for the large-subunit or yellow sticks for 

the small subunit.  The backbone of large-subunit α-helices 7, 8, and G, and small-

subunit N-terminal loop (residues 1-22) are represented as ribbons. 
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van der Waals contact with Phe-15 from the Rubisco small subunit (Fig. 13).  In land 

plants, large-subunit phylogenetic-residue Thr-428 is substituted with Val-428, small-

subunit residue Phe-15 is substituted with Leu-15, and the distance between the two 

residues is greater in plant Rubisco (Fig. 13).  A previous study showed that a Rubisco 

mutant with a small-subunit L18A substitution, which might affect the interaction with 

residue 15, lacked holoenzyme even though the subunits were expressed (Genkov and 

Spreitzer, 2009). 

 A switch in species-specific intermolecular interactions between Rubisco and 

Rubisco activase was also observed when the surface residues 89 and 94 of the Rubisco 

large subunit were changed from those of Chlamydomonas (non-Solanaceae) to those of 

tobacco (Solanaceae) (Larson et al., 1997; Ott et al., 2000).  Similarly, the surface 

residues in the 442-447 phylogenetic-group on α-helix G could define a switch region for 

species-specific interactions between Rubisco and chaperones.  Flaveria and sunflower 

Rubisco large subunits can be expressed and assembled in tobacco, and all three species 

are identical for the surface phylogenetic-residues 442, 443, and 447 in the 442-447 

phylogenetic group (Kanevski et al., 1999; Whitney et al., 2011).  On the other hand, the 

Rubisco large subunits from the rhodophyte Galdieria sulphuraria and the diatom 

Phaeodactylum tricornutum can be expressed but not assembled in tobacco, and the 

identities of the residues 442, 443 and 447 from the foreign Rubiscos are different from 

tobacco (Whitney et al., 2001).  Rubisco chaperone RbcX binds specifically to a stretch 

of seven amino acids in the carboxy terminus of the Synechococcus large subunit 

(Saschenbrecker et al., 2007), which corresponds to residues 464-470 in 

Chlamydomonas.  However, a subsequent study indicated that α-helices 8, G, and H 
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could be involved in chaperone release by undergoing a conformational change of as 

much as 8 Å (Saschenbrecker et al., 2007; Liu et al., 2010). 

 It is surprising that none of the associated-group substitutions have significant 

increases in Ω characteristic of plant Rubisco even though the holoenzyme is being 

structurally altered to mimic the plant enzyme.  The phylogenetic substitutions in the 

penta/ABSO mutant, and the large/small-subunit region defined by the substitutions, 

must be truly unique because penta/ABSO is the only phylogenetic mutant enzyme with 

kinetic properties similar to those of plants (Spreitzer et al., 2005). 
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PENTA/ABSO DISSECTION 

Penta/ABSO 

 The success of the phylogenetic approach was demonstrated by a previous study 

in which a Rubisco Chlamydomonas-to-plant substitution of five large-subunit 

phylogenetic residues (V221C/V235I/C256F/K258R/I265V), together with the spinach 

small-subunit A-B loop, produced a mutant enzyme with kinetic properties similar to 

those of plants (Spreitzer et al., 2005).  This penta/ABSO enzyme had an increase in Ω 

by 17% and a decrease in Vc by 50% (Spreitzer et al., 2005).  To determine the minimal 

number of phylogenetic changes that actually plays a role in the catalytic shift of the 

penta/ABSO enzyme, further dissection of the interactions within the phylogenetic 

residues and A-B loop is warranted.  Because five large-subunit phylogenetic residues 

and the βA-βB loop are changed in the penta/ABSO mutant enzyme, to dissect the 

structural interactions by creating all possible combinations would require the creation 

and analysis of 2
6
 (= 64) mutant enzymes.  Instead, the five large-subunit phylogenetic 

residues can be grouped into four phylogenetic groups, and the βA-βB loop can be 

considered an additional group.  To be specific, the residue substitutions in penta/ABSO, 

V221C/V235I/C256F/ K258R/I265V/ABSO, can be separated into substitutions of 

phylogenetic groups 221, 235, 256-258, 265, and ABSO (Table 2).  Previous studies have 

shown that just substituting the five separate groups alone do not produce plant-Rubisco 

kinetic-properties (Du et al., 2003; Karkehabadi et al., 2005; Spreitzer et al., 2005).  At a 

next level, pairwise combinations of the groups could be substituted, but that would still 

require creating and analyzing ten mutant enzymes.  Instead, if only pairs of associated 

phylogenetic groups are considered, then only five mutant enzymes need to be created 
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(Table 7).  One of these mutant enzymes, C256F/K258R/I265V, was created previously, 

but it had a 10% decrease in Ω rather than the >30% increase characteristic of plant 

Rubisco (Du et al., 2003; Spreitzer et al., 2005).  The V235I/ABSO mutant enzyme was 

created as the 235Assoc enzyme (Tables 5 and 6).  Thus, only three additional mutant 

enzymes remained to be created and analyzed. 

 

Recovery of penta/ABSO-dissection mutants and their phenotypes 

 Chlamydomonas penta/ABSO-dissection mutants were recovered by chloroplast 

transformation of the MX3312 (Zhu et al., 2005; Satagopan and Spreitzer, 2004, 2008) 

and rbcL∆/ABSO rbcL-knockout strains followed by photosynthetic selection.  The 

rbcL∆/ABSO strain, which has the small-subunit βA-βB loop from spinach (Spreitzer et 

al., 2005), was used to create the V235I/ABSO and C256F/K258R/ABSO mutants (Table 

7).  All the penta/ABSO-dissection mutant strains could grow photoautotrophically, and 

transformation frequencies were 1-3 X 10
-6

 per cells shot.  Transformants started to 

appear on minimal medium within 2 to 4 weeks, which was also observed for wild-type 

rbcL transformants. 

 Comparison of the growth phenotype between the penta/ABSO-dissection 

mutants and wild-type Chlamydomonas by spot tests (Spreitzer and Mets, 1981) indicated 

that the C256F/K258R/I265V mutant had reduced photosynthetic growth (spot 4, Fig. 16) 

as observed previously (Du et al., 2003; Spreitzer et al., 2005).  The rest of the mutant 

strains had somewhat reduced growth on minimal medium at 35ºC in comparison to wild 

type (Fig. 16).  When grown on acetate medium in the dark, the mutant strains were 

indistinguishable from wild type (Fig. 16).  Therefore, the reduction in growth must be 
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Table 7: Pairwise combinations of associated phylogenetic groups created to dissect 

the penta/ABSO mutant.  Phylogenetic groups are defined in Table 2. 

First 

phylogenetic 

group 

Second 

Phylogenetic 

group 

Shared non-phylogenetic 

residues between groups 
a
 

Necessary residue 

substitutions 

221 256-258 F218 V221C/C256F/K258R 

221 265 L240 V221C/I265V 

235 βA-βB loop 
b
 Direct contact V235I/ABSO 

c
 

256-258 265 A257 C256F/K258R/I265V 
d
 

256-258 βA-βB loop 
b
 Direct contact C256F/K258R/ABSO 

 
a
 Shared non-phylogenetic residues are within 5 Å from both phylogenetic groups. 

b
 Because the small-subunit βA-βB loop also influences catalysis, it is included as a 

phylogenetic group. 

c
 V235I/ABSO was created and analyzed as the 235Assoc mutant enzyme (Tables 5 and 

Table 6). 

d
 The C256F/K258R/I265V mutant strain was created and analyzed previously (Du et al., 

2003; Spreitzer et al., 2005). 
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Figure 16: Growth phenotypes of Chlamydomonas wild type (WT), penta/ABSO-

dissection mutants V221C/C256F/K258R (spot 1), V221C/I265V (spot 2), 

V235I/ABSO (spot 3), C256F/K258R/I265V (spot 4) and C256F/K258R/ABSO (spot 

5), and penta/ABSO (V221C/V235I/C256F/K258R/I265V/ABSO) (spot 6).  About 2 

X 10
5
 cells were spotted at each position, and grown for one week on minimal medium at 

4000 Lux or acetate medium in darkness at either 25 or 35ºC. 
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specific to a defect in Rubisco.  Previous studies showed that the reduced growth of the 

C256F/K258R/I265V mutant strain is caused by a decrease in the amount and activity of 

Rubisco in vivo (Du et al., 2003; Spreitzer et al., 2005). 

 

Kinetic properties 

 All the penta/ABSO-dissection mutant enzymes have reduced carboxylase 

specific activities when measured with saturating CO2 (12.4 mM NaHCO3) (Table 8).  

The V221C/C256F/K258R, V221C/I265V, V235I/ABSO, and C256F/K258R/ABSO 

mutant enzymes have carboxylase specific activities of 30%, 64%, 56%, and 44%, 

respectively, in comparison with the wild-type enzyme.  In fact, even the 

C256F/K258R/I265V enzyme that was analyzed previously had a Vc decreased to 46% of 

the wild-type value (Du et al., 2003; Spreitzer et al., 2005).  Considering that the 

penta/ABSO enzyme has only 57% of the Vc value of the wild-type enzyme (Spreitzer et 

al., 2005), the reduction in carboxylase activity seems to be a common feature of 

changing several phylogenetic residues at a time.  However, whereas the penta/ABSO 

mutant has an Ω value increased by 17% (Spreitzer et al., 2005), none of the dissection 

mutants has an increase in Ω.  Instead, Ω is either unchanged, or reduced by 12% and 7% 

for the V221C/C256F/K258R and V235I/ABSO mutant enzymes, respectively.  There 

are no significant changes in O2 inhibition among the dissection-mutant enzymes when 

compared to the wild-type enzyme.  However, for the penta/ABSO enzyme, because of a 

beneficial increase in Ko and decrease in Kc, a decrease in O2 inhibition would be 

expected (Spreitzer et al., 2005).  Perhaps all the phylogenetic-residue substitutions in the 

penta/ABSO mutant are required for the 17% increase in Ω, 54% decrease in Vc, 30% 
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Table 8: Ω, specific activity, and oxygen inhibition of Rubisco purified from 

Chlamydomonas wild type and penta/ABSO-dissection mutants. 

Enzyme 

 
RuBP carboxylase activity 

Ratio 

(A/B) 

Ω
 a
 

VcKo/VoKc 

100% N2 

12.4 mM 

NaHCO3 

100% N2 

0.98 mM 

NaHCO3 

(A) 
 

100% O2 

0.98 mM 

NaHCO3 

(B) 
 

 µmol CO2/hr/mg of protein 

 

  

Wild type 103.7 28.2 11.2 2.5 60 ± 1 

V221C/V235I/C256F/K258R/I265V/ABSO (Penta/ABSO)   70 ± 2
 b
 

V221C/C256F/K258R 29.8 5.7 2.7 2.1 53 ± 1 

V221C/I265V 64.9 17.0 7.2 2.4 58 ± 1 

V235I/ABSO 56.4 6.8 2.8 2.4 56 ± 1 

C256F/K258R/I265V   54 ± 2
 b
 

C256F/K258R/ABSO 44.0 9.9 4.4 2.3 59 ± 1 

 
a
 Values are the means ± S.D. (n - 1) of three separate enzyme preparations. 

b
 Values are from a previous study (Spreitzer et al., 2005). 
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decrease in Kc, 6% increase in Ko, and 37% decrease in Vo (Spreitzer et al., 2005), which 

represent a shift to the kinetic properties of plant Rubisco.  In conclusion, future genetic 

engineering aimed at improving Rubisco should target all the penta/ABSO phylogenetic 

residues and the small-subunit βA-βB loop. 

 It is interesting that Cys-256, which is one of the penta/ABSO residues in van der 

Waals contact with the small-subunit βA-βB loop, is S-methylated (Taylor et al., 2001).  

Because plant Rubisco has Phe-256 in place of Cys-256, perhaps S-methylation, which 

also occurs at phylogenetic residue Cys-369 in Chlamydomonas Rubisco (Taylor et al., 

2001), is another cause for the differences in kinetic properties between algal and plant 

Rubisco enzymes.  Another posttranslational modification observed in Chlamydomonas 

Rubisco but not in plant Rubisco is hydroxylation of Pro-104 and Pro-151, which are 

conserved among algal and plant Rubisco enzymes (Taylor et al., 2001). 
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POSTTRANSLATIONAL MODIFICATIONS 

Posttranslational modification residues 

 Four new posttranslational modifications of the Rubisco large subunit were 

observed in the highest-resolution 1.4-Å x-ray crystal structure of Chlamydomonas 

Rubisco (Taylor et al., 2001).  The C atoms of Pro-104 and Pro-151 are hydroxylated, 

and the S atoms of Cys-256 and Cys-369 are methylated (Taylor et al., 2001; Mizohata 

et al., 2002).  The function of these posttranslational modifications is unknown. 

 Even though the Pro-104 and Pro-151 residues are conserved among species, 

hydroxylation of the prolines has not been observed in Rubisco crystal structures from 

other species (Knight et al., 1990; Taylor et al., 2001; Andersson and Backlund, 2008).  

Though unlikely, it is also possible that the other Rubisco structures are less well-defined, 

thus obscuring the hydroxylation modification.  Proline hydroxylation has a history of 

serving as a cellular mechanism for sensing O2 such as for tagging the hypoxia-inducible 

factor transcription complex for degradation (Jaakkola et al., 2001).  In addition, because 

hydroxyprolines stabilize the triple-helix conformation of collagen (Motooka et al., 

2012), the hydroxylation of Pro-104 and Pro-151 in Rubisco could also have a structural 

effect on the holoenzyme in response to O2 levels.  The additional hydroxyl groups might 

provide extra hydrogen-bonding partners or increase the hydrophilicity of the residues.  A 

chloroplast-localized prolyl 4-hydroxylase has been identified in Chlamydomonas that is 

expressed under anaerobic conditions (Terashima et al., 2010).  However, ten other prolyl 

4-hydroxylases were also identified in Chlamydomonas (Keskiaho et al., 2007), and a 

crystal-structure is available for one of them (Koski et al., 2007).  One of these prolyl 4-

hydroxylases plays a role in cell-wall assembly (Keskiaho et al., 2007). 
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 The methylated Cys-256 and Cys-369 residues are phylogenetic residues that are 

replaced by Phe-256 and Val-369 in plants (Taylor et al., 2001; Du et al., 2003).  Perhaps 

these residues might account for the kinetic differences between algal and plant Rubisco 

(Jordan and Ogren, 1981b).  Methylation of the cysteine residues could prevent formation 

of disulfide bridges.  Methyltransferases have been identified in some plant species, but 

these chloroplast-localized methyltransferases only methylate Lys-14 of the Rubisco 

large subunit in plants (Houtz et al., 2008). 

 Pro-104 and Cys-369 are solvent exposed at the large-subunit interdimeric 

interface (Knight et al., 1990; Taylor et al., 2001) (Fig. 17).  The modification of these 

residues could occur after formation of the Rubisco holoenzyme.  However, because Pro-

151 and Cys-256 are inaccessible to solvent, modifications of these residues must occur 

before assembly.  Pro-151 is buried in the large subunit whereas Cys-256, which is in van 

der Waals contact with small-subunit Val-63, is only slightly exposed to the interior 

cavity of the holoenzyme at the large/small-subunit interface (Taylor et al., 2001; 

Spreitzer et al., 2005) (Fig. 17). 

 To test the importance of the posttranslationally-modified residues, each was 

separately changed to alanine in Chlamydomonas Rubisco.  P104A/P151A and 

C256A/C369A double mutants were also created to assess the essentiality of 

hydroxylation and methylation.  Because Cys-256 and Cys-369 are phylogenetic 

residues, they were also changed to the common plant residues Phe-256 and Val-369 

either singly or as a pair to determine the effect of the plant residues. 
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Figure 17: Distribution of posttranslationally modified residues in Chlamydomonas 

Rubisco (PDB 1GK8).  Large subunits are represented in gray and white whereas small 

subunits are represented in orange and yellow.  Surface residues hydroxy-Pro-104 (red) 

and methyl-Cys-369 (cyan) are shown in the holoenzyme (top).  Residues hydroxy-Pro-

151 (light green) and methyl-Cys-256 (pink) in the interior are shown by removing four 

of the front large subunits (bottom). 
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Recovery of modified-residue mutants and their phenotypes 

 The Chlamydomonas mutants P104A, P151A, P104A/P151A, C256A, C369A, 

C256A/C369A, C256F, and C256F/C369V were created previously (Spreitzer et al., 

unpublished), but only the C256F mutant had been analyzed (Du et al., 2003).  The 

C369V Rubisco mutant was created in the current study by chloroplast transformation of 

the MX3312 rbcL-knockout strain followed by photosynthetic selection. 

 Comparison of the growth phenotypes between the directed mutants and wild type 

indicated that only the C256A and C256A/C369A mutants had reduced photosynthetic 

growth, which was even more pronounced at 35ºC (spots 4 and 6 respectively, Fig. 18).  

The P104A and P104A/P151A mutants also had reduced growth, but only at 35ºC (spots 

1 and 3 respectively, Fig. 18). 

 

Rubisco holoenzyme level 

 To determine the effects of the mutant substitutions on the amount of Rubisco in 

vivo, which would depend on holoenzyme expression, stability, or assembly, SDS-PAGE 

and western analysis were performed.  Only the C256A and C256A/C369A mutant 

strains had reduced holoenzyme levels when grown at both 25 and 35ºC (lanes 4 and 6 

respectively, Fig. 19).  The P104A/P151A mutant had some decrease in holoenzyme at 

35ºC (lane 3, Fig. 19).  The decreased Rubisco holoenzyme levels of the C256A and 

C256A/C369A  mutant strains could account for their decreased photosynthetic growth at 

25 and 35ºC (spots 4 and 6, Fig. 18).  The slight decrease in holoenzyme level of the 

35ºC-grown P104A/P151A mutant (lane 3, Fig. 19) may account for its decreased growth 

at 35ºC (spot 3, Fig. 18). 
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Figure 18: Growth phenotypes of Chlamydomonas wild type (WT) and 

posttranslational-residue mutants P104A (spot 1), P151A (spot 2), P104A/P151A 

(spot 3), C256A (spot 4), C369A (spot 5), C256A/C369A (spot 6), C256F (spot 7), 

C369V (spot 8) and C256F/C369V (spot 9).  About 2 X 10
5
 cells were spotted on each 

position, and grown for one week at the conditions indicated. 
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Figure 19: SDS-PAGE (left) and western-blot analysis (right) of total soluble protein 

from Chlamydomonas wild type (WT) and posttranslational-residue mutants P104A 

(lane 1), P151A (lane 2), P104A/P151A (lane 3), C256A (lane 4), C369A (lane 5), 

C256A/C369A (lane 6), C256F (lane 7), C369V (lane 8) and C256F/C369V (lane 9).  

Sixty micrograms of total soluble protein from dark-grown cells were run in each lane.  

LS denotes the Rubisco large subunit, and SS denotes the small subunit. 
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 Thermal inactivation experiments (Chen et al., 1993) were performed to 

determine whether the mutant enzymes are unstable (Fig. 20).  All the mutant enzymes 

had similar temperature inactivation profiles (Fig. 20), indicating that they are not 

inherently unstable.  Perhaps the P104A/P151, C256A, and C256A/C369A mutants have 

reduced holoenzyme levels because the mutations increase the susceptibility of the 

holoenzyme to proteolysis in vivo. 

 

Kinetic properties 

 Among the hydroxy-Pro-to-Ala mutant enzymes, only P104A and P104A/P151A 

have reduced Vc of over 50%, and increased Kc of 18% and 36%, respectively, which are 

compensated by increased Ko of about 80% (Table 9).  Because the P104A/P151A 

enzyme has kinetic properties similar to those of the P104A enzyme, the changes in 

kinetic properties may be caused by the P104A mutation alone.  The kinetic properties of 

the P151A enzyme are similar to those of the wild-type enzyme.  The P151A and 

P104A/P151A enzymes have significant reductions in Ω of 5% and 8%, respectively 

(Table 9). 

 More pronounced changes in kinetic properties were observed for the methyl-

Cys-to-Ala mutant enzymes.  C256A and C256A/C369A enzymes have reduced Vc of 

over 79%, and increased Kc of 29% and 39%, respectively.  These negative effects are 

compensated by increased Ko values of 36% and 70%, respectively (Table 9).  Because 

the kinetic properties of the C256A and C256A/C369A enzymes are similar, changes in 

the kinetic properties of the C256A/C369A enzyme may be caused by the C256A 

substitution alone.  Methyl-Cys-256 is one of the phylogenetically-substituted residue in 
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Figure 20:  Thermal inactivation of Rubisco purified from Chlamydomonas wild 

type (WT) and posttranslational-residue mutants P104A, P151A, P104A/P151A, 

C256A, C369A, C256A/C369A, C256F, C369V, and C256F/C369V.  Five micrograms 

of Rubisco were pre-incubated at the indicated temperatures for 10 min, cooled on ice for 

5 min, and assayed for carboxylase activity at 25ºC for 1 min.  The measured activity 

after each pre-incubation temperature was normalized to that of the 35ºC pre-incubation.  

The specific activity after the 35ºC pre-incubation was 1.1 µmol CO2/min/mg protein for 

wild-type Rubisco, 0.8 µmol CO2/min/mg for mutant P104A, 1.3 µmol CO2/min/mg for 

mutant P151A, 0.9 µmol CO2/min/mg for mutant P104A/P151A, 0.5 µmol CO2/min/mg 

for mutant C256A, 1.4 µmol CO2/min/mg for mutant C369A, 0.3 µmol CO2/min/mg for 

mutant C256A/C369A, 0.9 µmol CO2/min/mg for mutant C256F, 1.0 µmol CO2/min/mg 

for mutant C369V, and 1.1 µmol CO2/min/mg for mutant C256F/C369V. 
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Table 9: Kinetic properties of Rubisco purified from Chlamydomonas wild type and 

posttranslational mutants. 

Enzyme      Ω 
a
 Vc 

a
 Kc 

a
 Ko 

a
 Vc/Kc 

b
 Ko/Kc

 b
 Vc/Vo 

b
 

 VcKo/VoKc µmol/hr/mg µM CO2 µM O2    

WT 60 ± 1 134 ± 12 28 ± 2 569 ± 51 4.9 21 2.9 

P104A 58 ± 2 50 ± 2 33 ± 5 1062 ± 62 1.5 32 1.8 

P151A 57 ± 1 98 ± 14 24 ± 4 574 ± 42 4.1 24 2.3 

P104A/P151A 55 ± 3 55 ± 8 38 ± 6 1031 ± 306 1.5 27 2.0 

C256A 50 ± 3 28 ± 7 36 ± 6 771 ± 174 0.8 22 2.3 

C369A 51 ± 2 113 ± 15 28 ± 2 581 ± 61 4.1 21 2.5 

C256A/C369A 54 ± 3 24 ± 6 39 ± 8 965 ± 71 0.6 25 2.2 

C256F
 c 

    59 91 34 602 2.7 18 3.3 

C369V 65 ± 3 124 ± 22 21 ± 4 582 ± 30 5.9 28 2.3 

C256F/C369V 58 ± 4 86 ± 16 31 ± 2 645 ± 69 2.8 21 2.8 

 

a
 Values are the means ± S.D. (n - 1) of three separate enzyme preparations. 

b
 Calculated values. 

c
 Values are from Du et al. (2003). 
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the penta/ABSO mutant (Spreitzer et al., 2005).  In terms of Ω, the C256A, C369A and 

C256A/C369A enzymes have decreases by 17%, 15%, and 10%, respectively (Table 9).  

In contrast,  the phylogenetic substitutions of the methyl-Cys residues (C256F, C369V 

and C256F/C369V) do not cause any significant changes to the kinetic properties of the 

enzymes except for a small increase in Ω for the C369V mutant. 

 

Structural analysis of posttranslationally-modified mutant enzymes 

 Of the two hydroxylated proline residues in Chlamydomonas Rubisco, only Pro-

104 seems to play a role in catalysis based on the measured kinetic properties of the Pro-

to-Ala mutants (Table 9).  Moreover, unlike Pro-151, Pro-104 is solvent exposed, which 

would allow the modification to take place after the assembly of the holoenzyme, and 

might provide a means for modulating enzyme activity in response to environmental 

conditions such as CO2 and O2 concentrations.  The hydroxyl group of hydroxy-Pro-104 

is in van der Waals contact with the backbone carbonyl oxygens of large-subunit residues 

Arg-79 and Lys-81 (Fig. 21), which are both in a stretch of loop region known as the 60s 

loop in the N-terminal domain of the large subunit (Knight et al., 1990; Duff et al., 2000; 

Spreitzer and Salvucci, 2002).  Active-site residues Glu-60, Thr-65, and Trp-66 are also 

located in the 60s loop (Knight et al., 1990; Duff et al., 2000; Spreitzer and Salvucci, 

2002).  Perhaps hydroxy-Pro-104 influences catalysis through the interaction with the 60s 

loop.  In addition to being located in the 60s loop, Arg-79 forms a hydrogen bond with 

the carbonyl oxygen of Gln-113 in the small-subunit βC-βD loop (Fig. 21).  Therefore, 

the modification state of Pro-104 might also influence small-subunit structure. 

 Of the two methylated cysteine residues in Chlamydomonas Rubisco, only 
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Figure 21: Structural interactions from hydroxy-Pro-104 (red) to the catalytic 60s 

loop and the small subunit.  The large-subunit 60s loop is represented in white ribbon.  

Residues that interact with hydroxy-Pro-104 (Arg-79, Lys-81 and Ile/Leu-105) or active-

site residues (Glu-60, Thr-65 and Trp-66) are represented as sticks.  The small subunit is 

represented in yellow.  Small-subunit residue Gln-113/Asn-107 that interacts with Arg-79 

is represented as sticks.  The CABP transition-state analog (black) denotes the active site. 
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Cys-256 influences catalysis (Table 9).  The methylation of Cys-256 enables contact with 

small-subunit residue Val-63, which is absent in the shorter βA-βB loop of plants (Fig. 

22).  Changes in the interaction between the small-subunit βA-βB loop and the large 

subunit could partially account for the shift in kinetic properties of the penta/ABSO 

mutant enzyme (Spreitzer et al., 2005).  Therefore, Cys-256 could be one of the large-

subunit residues mediating the interaction between the large and small subunits in a 

methylation-dependent manner.  Moreover, when Cys-256 is replaced with the 

phylogenetically-related Phe-256, which has a longer and bulkier side chain, the changes 

in kinetic properties are less drastic than that of replacing with Ala-256, which has a 

shorter side chain.  Perhaps the loss of interaction between residue 256 and small-subunit 

residue 63 is the reason for this change in catalysis. 

 In conclusion, among the four posttranslational modifications observed in the 

large subunit of Chlamydomonas Rubisco, only hydroxylation of Pro-104 and 

methylation of Cys-256 provide potential mechanisms for controlling Rubisco catalysis.  

Hydroxy-Pro-104 and methyl-Cys-256 can form networks of interactions to the small-

subunit βC-βD and βA-βB loops, respectively, whereas the unmodified Pro-104 and Cys-

256 are unable to participate in the interactions.  Based on a previous study (Spreitzer et 

al., 2005) and also the analysis of the 265Assoc/SSAT associated-group mutant enzyme 

(Fig. 14), interactions between the large subunit and small-subunit βA-βB and βC-βD 

loops could affect the function of Rubisco. 
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Figure 22: Comparison of structural interactions of methyl-Cys-256/Phe-256 (red) 

and the small subunit.  The large subunit is represented in white.  Residues within 4 Å 

of methyl-Cys/Phe-256 are represented as sticks.  The small subunit is represented in 

yellow.  The CABP transition-state analog (black) that denotes the active site is 20Å 

away from this region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 

 

 

 

 

 

 

 

 

 

 

 

 



126 

CONCLUSION 

 Ever since the discovery of the role that Rubisco plays in photosynthesis and 

photorespiration (Bowes et al., 1971), engineering the enzyme for increased 

photosynthesis or decreased photorespiration has been touted as a means to increase crop 

productivity (Spreitzer and Salvucci, 2002).  Considering that the kinetic properties of 

Rubisco are variable among species (Jordan and Ogren, 1981b), modifying the enzyme to 

produce the desired kinetic properties seems possible.  However, the active-site residues, 

which at first glance would seem like obvious targets for engineering, are conserved 

among species, and any changes in the active-site residues are detrimental to Rubisco 

function (Gutteridge et al., 1993; Hartman and Harpel, 1994; Zhu and Spreitzer, 1994).  

Therefore, the variable non-active-site residues, known as phylogenetic residues, and the 

corresponding structural regions of the holoenzyme must define targets for engineering.  

Because engineering of eukaryotic Rubisco is most amenable in Chlamydomonas, this 

alga is a suitable host for testing out engineered Rubisco enzymes, and also provides a 

system for genetic selection.  In the present study, phylogenetic residues, grouped 

according to their distribution in the x-ray crystal structure of Chlamydomonas Rubisco 

(Taylor et al., 2001) were changed to those most common in land plants.  Phylogenetic 

substitutions that altered the kinetic properties of Rubisco defined non-active-site regions 

of the holoenzyme that influence catalysis.  Complementary phylogenetic substitutions 

between separate regions of the holoenzyme were also observed. 

 Phylogenetic substitutions (G168P/L326I/M349L/M375L/A398S/C399V) at the 

base of loop 6 reduced Ω by 5%, which was consistent with a previous study in the same 

region of the holoenzyme (Zhu and Spreitzer, 1996).  Further substitutions 
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(R305K/D470E/T471A/I472M/K474T) at the carboxy terminus of the large subunit 

complement the base-of-loop-6 substitutions, and restore the Ω value of the enzyme back 

to normal.  This indicates that the phylogenetic residues at the base of loop 6 and at the 

carboxy terminus form complementary interactions, possibly affecting catalytic loop 6, 

which is located between the two structural regions.  However, because land plant 

Rubisco has a greater Ω value, other regions of the holoenzyme must also affect catalysis. 

 When the base-of-loop-6 substitutions were combined with several substitutions 

at the large/small-subunit interface region at the bottom of the / barrel, a mutant 

enzyme was created that requires the presence of the land-plant Arabidopsis small 

subunit to enable viable photosynthetic growth in Chlamydomonas.  Perhaps the large-

subunit residues that were changed in the mutant enzyme define a network of interactions 

between the small subunit and the active site.  Though the βA-βB and βC-βD loops of the 

small subunit could be involved in the large/small-subunit interaction, defining the exact 

small-subunit residues that are responsible for complementing the large-subunit changes 

would be an avenue for future research. 

 A couple of associated-group mutants with phylogenetic substitutions in α-helices 

7, 8, and G cannot be recovered as photosynthetic transformants in any of the available 

Chlamydomonas rbcL-knockout hosts.  Therefore, phylogenetic differences in the three α 

helices, especially surface α-helix G, might be important for species-specific assembly of 

the holoenzyme.  In fact, creating all the other phylogenetic substitutions did not 

complement the changes in the three α helices, and failed to produce a functional Rubisco 

enzyme in Chlamydomonas.  If the species-specific assembly region of Rubisco could be 

defined in the future, it might be possible to express the high-Ω non-green algal Rubisco 
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in crop plants, which might increase net CO2 fixation, and it might also be possible to 

express eukaryotic Rubisco in E. coli, which would expedite structure-function studies of 

the enzyme. 

 Because none of the phylogenetic substitutions in the current study produced a 

corresponding shift in the kinetic properties of Rubisco, the focus was turned to the 

previously created penta/ABSO phylogenetic mutant that has plant-like kinetic 

properties.  Further dissection of the substitutions within the penta/ABSO mutant 

indicated that all of the residue substitutions are required for the shift in catalysis, which 

means that the five large-subunit phylogenetic residues at the bottom of the α/β barrel, 

and the small-subunit βA-βB loop in the same region, are important targets for attempts 

at engineering an improved Rubisco enzyme. 

 Some of the posttranslationally-modified residues also play a role in Rubisco 

catalysis.  Alanine substitutions of hydroxy-Pro-104 and methyl-Cys-256 affect the 

kinetic properties of Rubisco negatively by reducing Vc and Ω values.  Therefore, 

targeting the modified residues or the modification states of the residues might be another 

avenue for Rubisco engineering.  A variety of nuclear non-RbcS mutations that affect 

Rubisco properties were previously recovered in Chlamydomonas (Spreitzer et al., 1992; 

Gotor et al., 1994), and may have lesions in the posttranslational modification pathway of 

Rubisco.  If the genetic loci of the catalysis-influencing nuclear mutations could be 

identified in the future, other players that are involved in the modification of Rubisco 

might be defined, and serve as additional targets for engineering. 

 In conclusion, the present study narrowed down the primary region for Rubisco 

engineering to only the interface area between the large-subunit bottom-of-the-/-barrel 
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region and the small-subunit A-B loop.  Other structural interactions, such as those 

between the large-subunit regions at the base of loop 6 and the carboxy terminus, and 

between the base of loop 6, the bottom of the / barrel and the small-subunit C-D 

loop, also influence Rubisco function.  These regions may also be worthy targets for 

molecular-evolution experiments. 
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