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ABSTRACT
Data from 7 coastwide and regional benthic surveys were combined and used to assess the number and distribution of

estuarine benthic macrofaunal assemblages of the western United States. Q-mode cluster analysis was applied to 714 samples

and site groupings were tested for differences in 4 habitat factors (latitude, salinity, sediment grain size, and depth). Eight

macrofaunal assemblages, structured primarily by latitude, salinity, and sediment grain size, were identified: (A) Puget Sound

fine sediment, (B) Puget Sound coarse sediment, (C) southern California marine bays, (D) polyhaline central San Francisco Bay,

(E) shallow estuaries and wetlands, (F) saline very coarse sediment, (G) mesohaline San Francisco Bay, and (H) limnetic and

oligohaline. The Puget Sound, southern California, and San Francisco Bay assemblages were geographically distinct, while

Assemblages E, F and H were distributed widely along the entire coast. A second Q-mode cluster analysis was conducted

after adding replicate samples that were available from some of the sites and temporal replicates that were available for sites

that were sampled in successive years. Variabilities due to small spatial scale habitat heterogeneity and temporal change

were both low in Puget Sound, but temporal variability was high in the San Francisco estuary where large fluctuations in

freshwater inputs and salinity among years leads to spatial relocation of the assemblages. Integr Environ Assess Manag

2012;8:638–648. � 2010 SETAC

Keywords: Habitat-related benthic assemblages US west coast bays estuaries

INTRODUCTION
Although individual species are typically distributed in

complex ways along environmental gradients, the combined
result is often a series of identifiable assemblages that
partition available habitat along gradients of a few variables
(Boesch 1973, 1977; Orloci 1975; Whittaker 1978; Smith
et al. 1988; Thompson et al. 2000; Bergen et al. 2001; Llansó
et al. 2002; Hyland et al. 2004). Identification of assemblages

along habitat gradients has recently taken on an applied
significance, as biocriteria have become a central focus of
ecological assessments in the United States (USEPA 1991;
Jackson and Davis 1994; Gibson et al. 2000). Similar
measures are being developed in Europe under the Water
Framework Directive (EC 2000). Biocriteria require defini-
tions of reference conditions, which typically vary among
habitats because species composition and abundances also
differ naturally between habitats (Weisberg et al. 1997; Van
Dolah et al. 1999). Therefore, determining the habitat
variables that are most important in structuring biological
assemblages and identifying the threshold values of these
variables that result in natural breaks in biological assemblages
are necessary components of defining reference conditions
(Hughes et al. 1986; Bald et al. 2005). Information on the
state of ecosystem condition contributes to the baseline

Integrated Environmental Assessment and Management — Volume 8, Number 4—pp. 638–648
638 � 2010 SETAC
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needed for implementation of ecosystem based management
(EBM), a rapidly evolving paradigm for managing coastal
resources in the United States and elsewhere (UNESCO
2006; Murawski 2007).

Although benthic macrofauna have long been used as
indicators of human impacts in marine environments, macro-
benthic assemblages of the western United States bays and
estuaries are poorly described, at least from a coastwide
perspective. There have been previous regional studies of
benthic assemblages in Puget Sound (Llansó et al. 1998) and
San Francisco Bay (Thompson et al. 2000), but there are
substantial data gaps along the 12 654 km of western US
shoreline (NOAA 1975) that have prevented a coastwide
estuarine assessment. In addition, combining data from the
regional studies has been difficult because of differences in the
types of sampling gear and sieve mesh sizes that were used.

The US Environmental Protection Agency’s (USEPA)
Coastal 2000 initiative led to a west coastwide benthic
sampling effort with compatible sampling designs and
collection methods. Here we use those data, in combination
with data from several regional programs that were collected
using similar methods, to: (a) identify the benthic assemblages
that occur naturally in bays and estuaries of the western USA,
and (b) identify the habitat factors that are associated with
assemblage differences. Additional data from programs that
collected replicates in space and time were used to evaluate
the effects of small spatial scale heterogeneity and interannual
variability on assemblage similarity.

METHODS
We used hierarchical cluster analysis of macrobenthic

species abundance data to identify the benthic assemblages
that occur naturally in bays and estuaries of the western USA
and the habitat factors that structure them. These analyses
were based on 1086 benthic samples from 7 coastwide and
regional projects with similar sampling regimes conducted
between 1994 and 2003 (Table 1). All but 1 included
probability-based sampling designs, so that all subtidal bay
and estuary areas had known chances of inclusion.

All samples were collected with a 0.1m2 Van Veen grab,
except in San Francisco Bay, where data from two 0.05m2 Van
Veen grabs at each station were combined. Samples with a
penetration depth of at least 5 cm and no evidence of
postsampling disturbance (i.e., washing or slumping) were
sieved through 1-mmmesh screens. Sieve contents were placed
in a relaxant for 30min and then preserved in 10% sodium
borate buffered formalin. Samples were rinsed and transferred
from formalin to 70% ethanol after approximately 1week.
Specimens were then identified to the lowest practical taxon,
most often species, and enumerated. Taxonomic inconsisten-
cies among projects were eliminated by cross-correlating the
species lists, identifying differences in nomenclature, and
resolving discrepancies by consulting project taxonomists.
Taxonomic nomenclature for provisional taxa (e.g., Cossura
sp A) followed SCAMIT Edition 4 (Southern California
Association of Marine Invertebrate Taxonomists 2001).

Habitat data collected with each sample included depth,
bottom water salinity and dissolved oxygen concentration
measurements. Sediments from the top 2 cm of additional grab
samples were analyzed for grain size distribution, contaminant
concentrations (trace metals, dichloro-diphenyl-trichloro-
ethane (DDT), polychlorinated biphenyls (PCBs), and poly-
cyclic aromatic hydrocarbons (PAHs)), total organic carbon
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(TOC), and acute toxicity to amphipods using standard
methods (Schiff 2000; Long et al. 2003; Schiff et al. 2006).
All data were evaluated for methodological consistency and
normalized for units of measure.

As our objective was to define natural groupings of samples
with similar species composition, potentially polluted sites
were eliminated before analysis. The criteria for eliminating a
site as potentially polluted followed from those of Bergen
et al. (2001): 1) more than 3 chemicals exceeded Long
et al. (1995) effects range low (ERL) values, 2) 1 or more
chemicals exceeded Long et al. (1995) effects range median
(ERM) values, 3) bottom dissolved oxygen was <2 ppm, 4)
amphipod survival in 10-day acute toxicity tests was <50%,
or 5) the site was located within 3 km of a known highly
contaminated area or a storm water or municipal wastewater
outfall. Ni and DDT were not included in the exclusion
criteria because the ERM and ERL values for these chemicals
are known to be poor predictors of biological responses (Long
et al. 1995; Vidal and Bay 2005). After eliminating potentially
contaminated sites, data from 714 samples remained for
analysis (Table 1).

Groups of samples with similar species composition were
identified by cluster analysis and the groups were tested for
habitat differentiation using nonparametric statistical methods.
Q-mode cluster analyses were conducted using flexible sorting
of Bray-Curtis dissimilarity values with b¼�0.25 (Bray and
Curtis 1957; Lance andWilliams 1967; Clifford and Stephenson
1975). Before analysis, the influence of dominant species was
reduced by cube-root transformation of species abundances and
nodal analysis (2-way table) interpretation was facilitated by
standardization of abundances by the species mean across
all samples for abundance values higher than zero (Smith
1976; Smith et al. 1988). The step-across distance reestima-
tion procedure (Williamson 1978; Bradfield and Kenkel
1987) was applied to dissimilarity values higher than 0.80 to
reduce the distortion of ecological distances caused by joint
absences of a high proportion of species; distortion occurs due to
the nonmonotonic truncated joint species distribution. Before
cluster analysis, species occurring only at 1 site were eliminated.

Habitat-related assemblages were identified by sequentially
examining splits in the cluster analysis dendrogram, starting
with the first split and proceeding along branches, to assess
whether each split reflected habitat differentiation. Habitat
differentiation was defined as: (1) a significant (p< 0.05)
Mann-Whitney-Wilcoxon difference in median for any of 4
habitat variables (bottom salinity, bottom depth, percent fine
(<63m grain size) sediments, and latitude) between the 2
sample groupings defined by the dendrogram split, and (2)
accurate segregation of more than 90% of the samples in the
split according to criteria based on significant habitat variables.
Probabilities were not adjusted to account for multiple testing
because we were only interested in controlling the comparison-
wise error rate.

For each habitat-related assemblage, abundant and charac-
teristic taxa were identified as those with a mean assemblage
abundance >10 per 0.1m2 sample and fidelity >50% or
exclusivity >80%. Fidelity was calculated as the frequency of
occurrence of a taxon in assemblage samples, expressed as a
percentage. Exclusivity was the abundance of a taxon in
assemblage samples, expressed as a percentage of its total
abundance in all samples.

A second cluster analysis was used to evaluate the effects
of small spatial scale heterogeneity and interannual variability

on assemblage fidelity. In this analysis, data used in the
first analysis were supplemented by triplicate samples from
10 Puget Sound sites that were collected each year from
1997 to 2002 and San Francisco Bay temporal replicates
that were sampled 10–13 times from 1994 to 2001. The
sampling and laboratory methods for benthic species abun-
dance and habitat data, and the cluster analysis details, were
the same as for the first analysis. The relative magnitude
of small spatial scale assemblage variability and stability
over time were evaluated by measuring the percentage of
samples from a site that occurred next to each other in the
dendrogram.

RESULTS
Sequential analysis of the spatial dendrogram yielded

8 habitat-related benthic macrofaunal assemblages in western
US bays and estuaries (Figure 1). Statistically significant
(p> 0.05) differences existed for bottom water salinity,
bottom depth, percent fines, or latitude across each of the
7 dendrogram splits labeled in Figure 1 (Table 2). Split 1 and
Split 7 were significantly different for all 4 habitat variables,
while Splits 2, 3, 4, and 5 were significantly different for 3.
Split 6 was significant only for salinity and percent fines.
Medians for latitude and percent fines were significantly

Figure 1. Dendrogram showing the habitat-related assemblages (A–H)

identified by cluster analysis. (A) Puget Sound fine sediment assemblage;

(B) Puget Sound coarse sediment assemblage; (C) Southern California marine

bay assemblage; (D) Polyhaline San Francisco Bay assemblage; (E) Estuaries

and wetlands assemblage; (F) Saline very coarse sediment assemblage; (G)

Mesohaline San Francisco Bay assemblage; (H) Limnetic and oligohaline (tidal

freshwater) assemblage. The number of samples for each assemblage is

presented under the assemblage letter. Splits 1–7 identify dendrogram

branch points referred to in the text and tables. Habitat factors separating

samples across splits are summarized in italicized text. SFB: San Francisco Bay;

N: North; S: South.
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different across 6 of the 7 splits, while medians for salinity and
depth were significant across 5 splits.

The habitat criteria classified samples across splits with
greater than 90% accuracy for 5 of the 7 splits in the species
abundance dendrogram (Table 3). Classification accuracy was
>98% for 2 splits. The splits with less than 90% accuracy
separated heterogeneous branches with multiple assemblages
that separated with higher accuracy in subsequent splits. The
lowest accuracy of 76.8% was for Split 3, where each branch
included 3 assemblages that separated with accuracy >94% in
subsequent splits.

Although there were assemblage differences associated
with all 4 habitat variables (Figure 2), habitat criteria
separating samples across splits were associated primarily
with differences in latitude, bottom water salinity, and
sediment composition (Table 3). Latitude was included in
the habitat criteria for separating assemblages across 4 of the 7
splits, while bottom water salinity and sediment type were
each included for 2 splits. Bottom depth was included only in
1 criterion, and even then only as a modifier of sediment type
under limited circumstances.

The 2 assemblages including all the Puget Sound benthos
were distinct from the other 6 western bay and estuarine
benthic assemblages, separating from them at the first
dendrogram branch (Split 1 in Figure 1, Table 3). The Puget
Sound benthos then separated at Split 2 into 2 assemblages
that were distinguished by a combination of sediment type
and bottom depth. Although Assemblage A, the Puget Sound
fine sediment assemblage, and Assemblage B, the Puget
Sound coarse sediment assemblage, separated well at depths
greater than 40m, the 2 assemblages commingled at lesser
depths (Figure 3).

The 6 benthic assemblages from outside Puget Sound split
first on salinity criteria (Table 3) although differences in

numbers of taxa were the most likely biological factor.
Assemblages C, D, and E, with, on average, 43.3, 24.5, and
15.9 taxa per sample, respectively, separated from Assemb-
lages F, G, and H, which had 8.9, 5.4, and 5.0 taxa per sample,
respectively (Table 4). Assemblage F, which included benthos
from mesohaline and higher salinity habitats with very coarse
sediments, grouped with the other low diversity assemblages
from limnetic, oligohaline, and mesohaline habitats rather than
higher salinity Assemblages C, D, and E.

Subsequent dendrogram splits in the non-Puget Sound
benthos were clearly related to geographic and habitat factors.
The higher diversity branch split into the southern California
marine bays (Assemblage C), the polyhaline central San
Francisco Bay (Assemblage D), and the geographically
widespread shallow estuaries and wetland Assemblage E
(Figure 1). The low diversity branch split into the saline
habitats with very coarse sediments (Assemblage F), the
mesohaline San Francisco Bay Assemblage G, and the geo-
graphically widespread limnetic and oligohaline Assem-
blage H.

Five of the assemblages included samples from narrow
geographic distributions. These included the Puget Sound fine
and coarse sediment assemblages (Assemblages A and B), the
southern California marine bay assemblage (C), and the San
Francisco Bay polyhaline (D) and mesohaline (G) assemblages
(Figure 2B). The other 3 assemblages had broad geographic
distributions and included the shallow estuaries and wetland
Assemblage E, mesohaline and higher salinity habitats with
very coarse sediments (Assemblage F), and limnetic and
oligohaline Assemblage H.

Different macrobenthic taxa were characteristic of the
8 assemblages (Table 5). More than half the abundant and
characteristic taxa in each assemblage had high exclusivity,
with >80% of the abundance of those taxa occurring in that

Table 2. Ranges of values for salinity, depth, percent fines, and latitude for samples across splits in the spatial dendrogram (Figure 1).
Underlined numbers indicate significant (p<0.05) differences in median across the dendrogram splits that were identified by Mann-

Whitney-Wilcoxon tests

Split Assemblage N Salinity (psu) Depth (m) Fines (%) Latitude (Decimal degrees)

1 AB 209 25.7–33.0 2.1–250 0.0–99.6 38.0023–48.9950

CDEFGH 505 0.0–39.4 0.0–26.7 0.0–100 32.5568–48.3137

2 A 121 28.5–33.0 2.4–250 13.5–99.6 47.0575–48.9950

B 88 25.7–32.5 2.1–213 0.0–93.7 38.0023–48.9842

3 CDE 287 3.8–39.4 0.0–23.0 1.2–100 32.6213–47.0053

FGH 218 0.0–38.0 0.4–26.7 0.0–99.7 32.5568–48.3137

4 C 105 27.2–39.4 0.4–23.0 2.8–100 32.6213–34.1801

DE 182 3.8–34.0 0.0–16.0 1.2–99.5 32.7585–47.0053

5 D 75 9.7–34.0 1.0–16.0 3.5–99.5 37.5591–46.9665

E 107 3.8–34.0 0.0–13.8 1.2–99.4 32.7585–47.0053

6 F 73 0.1–33.2 0.4–26.5 0.0–63.0 32.5568–48.3137

GH 145 0.0–38.0 0.5–26.7 0.0–99.7 34.0326–46.3017

7 G 63 0.0–38.0 0.7–12.0 0.0–99.7 37.4928–38.2089

H 82 0.0–32.0 0.5–26.7 0.0–97.2 34.0326–46.3017

Benthic Assemblages of US West Coast Bays— Integr Environ Assess Manag 8, 2012 641



assemblage alone. Only 4 of 69 characteristic taxa were
abundant in more than 1 assemblage, including the capitellid
polychaete Mediomastus spp. and annelids of the Class
Oligochaeta. Each was abundant and characteristic in 3
assemblages. Mediomastus spp. occurred in 45% or more of
the samples in 5 of the 6 higher salinity assemblages
(Assemblages A–E) and 22% of the samples of the sixth
(Assemblage F). The taxon includes 2 species, M. californiensis
and M. ambiseta, which have similar habitat distributions and
are distinguishable only by setae on posterior segments that
often break off as fragments during sample processing. The
apparent broad distribution is likely true for both species,
rather than an artifact due to uncertainty of species identity.
Oligochaetes occurred in >30% of the samples in 7 of the
8 habitats and in 18% of the samples in the other (Assemblage
F), and were not identified further. The broad oligochaete
distribution likely reflects a combination of Tubificoides spp. at
mesohaline and higher salinities with a broad diversity of
oligochaetes in limnetic and oligohaline salinities (Brinkhurst
1982; Llansó et al. 2002). The ostracod Euphilomedes
carcharodonta and the syllid polychaete Exogone lourei were
each characteristic of 2 assemblages and were abundant and
occurred frequently in a third. E. carcharodonta was charac-
teristic of Assemblages B and C and also occurred at abundance
in 31% of the Assemblage A samples. E. lourei was character-
istic of Assemblages C and D and occurred at abundance in
36% of the Assemblage B samples.

In the second cluster analysis, samples from stations in the
supplementary Puget Sound data clustered together on the

dendrogram, forming a single group together with the Puget
Sound stations that were separated from all the other samples by
the first split in the dendrogram. For 9 of the 10 supplementary
stations, all samples clustered together (Table 6). For the tenth
station, 17 of 18 samples clustered together, with the eighteenth
sample separated by 26 stations in the dendrogram. In contrast,
only approximately 50% of the San Francisco Bay samples
clustered adjacent to their temporal replicates. All the temporal
replicates clustered together at Station BC21 in Horseshoe Bay,
which is located near the mouth of San Francisco Bay and
presumably under the stabilizing influence of the Pacific Ocean.
In contrast, only 40–50% of the temporal replicates clustered
together at the other 4 stations, which are located away from the
bay mouth and more strongly influenced by freshwater flows
(Thompson et al. 2000).

DISCUSSION
The results of our analysis are consistent with those of

other macrobenthic assemblage analyses, indicating that
latitude, salinity, and sediment grain size are among the
primary determinants structuring assemblages over broad
geographic areas with large latitudinal gradients (Van Dolah
et al. 1999; Bergen et al. 2001; Llansó et al. 2002; Hyland
et al. 2004). Our polyhaline and mesohaline San Francisco
Bay assemblages are essentially the same as the marine and
estuarine assemblages of Thompson et al. (2000), and our
Puget Sound assemblages are similar to those of Llansó et al.
(1998). We also observed the same faunal break at Point
Conception that Briggs (1974, 1995) and Cross and Allen

Table 3. Habitat classification accuracy for samples across splits in the spatial dendrogram

Split Assemblage Description N Habitat Criteria Accuracy (%)

1 AB Puget Sound 209 Latitude >478N and
Longitude <123.58W

98.9

CDEFGH Not Puget Sound 505 Latitude � 478N and
Longitude � 123.58W

2 A Puget Sound fine sediments 121 Fines>45% or Fines>45–Depth�0.75 91.9

B Puget Sound coarse sediments 88 Fines <15% or Fines<45–Depth�0.75

3 CDE High salinity 287 Salinity >25.0 psu 76.8

FGH Low salinity 218 Salinity � 25.0 psu

4 C Southern California 105 Latitude <34.58N 94.1

DE North of southern California 182 Latitude � 34.58N

5 D San Francisco Bay Polyhaline
assemblage

75 Latitude>37.58N and <38.08N 94.5

E North or south of San Francisco Bay 107 Latitude � 37.58N or � 38.08N

6 F Very coarse sediments in mesohaline
and higher salinity habitats

73 Salinity >5 psu and Fines � 7.5% 87.6

GH Limnetic & oligohaline salinities, and
mesohaline samples with fine
sediments

145 Salinity �5 psu or Fines >7.5%

7 G San Francisco Bay mesohaline
assemblages

63 Latitude 37.08N-38.58N 98.6

H Limnetic and oligohaline assem-
blages elsewhere

82 Latitude <37.08N or >38.58N

642 Integr Environ Assess Manag 8, 2012—JA Ranasinghe et al.



(1993) observed for gastropod and marine fish species.
However, we did not observe the Cape Mendocino faunal
break described for gastropods by Briggs (1974, 1995).
Gastropods are mostly broadcast spawners with pelagic larvae
that are strongly influenced by ocean currents, whereas many
benthic infaunal taxonomic groups brood their young and are
less influenced by currents.

Latitude was the dominant physical factor differentiating
habitats across 4 of the 7 dendrogram splits (Table 3), but the
effect of salinity is probably understated because of con-
founding between latitude and salinity. For instance, the
mesohaline San Francisco Bay assemblage was geographically
restricted, but San Pablo and Suisun Bays in the San Francisco
Bay estuary are the only extensive mesohaline salinity habitats
on the west coast. Similarly, the paucity of rainfall in southern
California creates a high salinity environment that predom-
inates in that area. Further evidence for the importance of
salinity as a structuring factor is the difference in assemblage
stability between the temporal replicates in Puget Sound and
those in San Francisco Bay. Puget Sound has a relatively stable
salinity regime that is reflective of the consistently high
rainfall of the region. In contrast, rainfall in the San Francisco
estuary watershed is episodic and large intrabasin transfers for

Figure 2. Box and whisker plots of habitat variables for each assemblage. (A) Salinity. (B) Latitude. (C) Sediment grain size (% fines). (D) Water depth. Boxes

indicate quartiles and medians. Whiskers join the box to the most extreme point within 1.5 interquartile ranges.

Figure 3. Distribution of assemblages across dendrogram Split 2 (see

Figure 1) relative to depth and sediment type. Black dots indicate samples

from Assemblage A, the Puget Sound Fine Sediments Assemblage, while open

green triangles indicate samples from Assemblage B, the Puget Sound Coarse

Sediments Assemblage.
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agriculture and drinking water exacerbate salinity fluctuations
(Cloern and Nichols 1985; Conomos et al. 1985). The
assemblages apparently are responding to salinity conditions
at sites, rather than the geographic position of sites within the
estuary; species dominating limnetic and oligohaline assemb-
lages move downstream in response to seasonal freshwater
outflows and move upstream during dry weather (Nichols and
Thompson 1985).

We found that substrate was of lesser importance for
differentiating assemblages in lower salinities than it was in
higher salinities, consistent with the findings of Weisberg
et al. (1997). Sediment grain-size differences, on the other
hand, differentiated the saline very coarse sediment assem-
blage fauna from the fauna of other habitats, and the Puget
Sound fine and coarse sediment assemblages. Sediment
differences may also play a role, together with salinity and
bottom depth, in differentiating the estuarine and wetland
assemblages which live at shallower depths (Figure 2D)
than other assemblages. Bottom depth was important only as
a modifier of sediment grain-size differences in shallow areas
of Puget Sound (Figure 3). The lack of a strong depth
influence on assemblage separation is most likely due to the
relatively narrow depth range of stations outside Puget
Sound; 95% of the samples for Assemblages C–H occurred
at depths <15m.

One of the concerns regarding assemblage identification is
the dependence of cluster analysis results on methodological
choices. Recent benthic macrofauna clustering algorithms
usually include the Bray-Curtiss similarity index and flexible
sorting with b¼�0.25 (Bergen et al. 2001; Clarke and
Warwick 2001; Hyland et al. 2004), but the results may be
affected by algorithms chosen for data transformation, data
standardization, and step-across distance reestimation. To
evaluate the effect of these choices, we compared assemblage
classification consistency and dendrogram sequence order of
samples for 6 variations of our chosen cluster analysis
protocol, altering 1 choice for each variation. The variations
eliminated step across distance reestimation or data stand-
ardization, or transformed abundance values by presence-
absence, fourth root, square root, or log transformations
instead of a cube root transformation. Sample classifications
and dendrogram sequences were consistent among the
analyses. The variations classified an average of 84.6% of the
samples within the contiguous groups identified as assemb-

lages in the main analysis, with a minimum of 82.2% and a
maximum of 89.1%. For the 8 assemblages, average compo-
sition consistency ranged from 72.7% to 97.4% with a mean
of 84.6%. Assemblages separating along steep biological
gradients rich in species and organisms (e.g., Assemblage B:
Puget Sound coarse sediment assemblage) and depauperate
assemblages (e.g., Assemblage F: Saline very coarse sedi-
ments; Table 4) were most affected by algorithm choices. In
the species rich gradients, the method variations slid the
assemblage separation points along the sample sequences in
the absence of sharp biological discontinuities. Depauperate
assemblage separation was more haphazard, reflecting a
paucity of consistent information. Rank correlation coeffi-
cients for the sample dendrogram sequence order between the
original analysis and variations ranged from 0.86 to 0.94,
averaging 0.91. These results suggest that the physical habitat
variables driving species composition result in consistent
broad scale assemblage clusters regardless of the statistical
method used, although outliers in susceptible assemblages
may migrate between adjacent clusters.

There were large differences in species richness among the
8 assemblages we identified. The assemblages with the highest
species richness were from higher, marine salinity environ-
ments in Puget Sound and southern California marine bays.
The 2 lower salinity assemblages averaged only approximately
5 species per sample, whereas the higher salinity assemblages
averaged as many as 69 species per sample. The low-salinity
assemblages also had few characteristic species, with the
bivalve Corbula amurensis and the polychaete Marenzelleria
viridis the only taxa characteristic of the mesohaline San
Francisco Bay assemblage. M. viridis is also common in east
coast mesohaline habitats in Chesapeake Bay (Weisberg et al.
1997) and North Carolina (Hyland et al. 2004). Some of the
lower species richness may have been due to the smaller size
sampling gear used in the San Francisco estuary and because
the freshwater Oligochaeta, Chironomidae, and Insecta were
not identified to the genus or species level because of the time
it takes to permanently mount individual organisms on
microscope slides for identification, and also because of the
marine faunal experience of the organizations conducting the
sampling programs. However, lower species richness in low
salinity environments is characteristic of the estuarine benthos
(e.g., Boesch 1977) and is typically associated with the
osmotic stress of that environment.

Table 4. Species richness and abundance (mean� SE) for each assemblage

Assemblage Habitat-Related Assemblage Description Samples

No. of taxa
Total abundance

(0.1m�2)Overall Mean (0.1m�2)

A Puget Sound fine sediments 121 410 42.2�1.5 601.3�57.3

B Puget Sound coarse sediments 88 628 69.2�2.4 865.1�112.8

C Southern California marine bays 105 501 43.3�1.7 835.0�80.1

D Polyhaline central San Francisco Bay 75 235 24.5�1.3 1768.0�324.9

E Estuaries and wetlands 107 268 15.9�0.8 2260.9�534.0

F Saline very coarse sediments 73 181 8.9�0.8 84.7�12.7

G Mesohaline San Francisco Bay 63 60 5.4�0.4 791.0�204.1

H Limnetic and oligohaline 82 75 5.0�0.4 404.7�66.7

644 Integr Environ Assess Manag 8, 2012—JA Ranasinghe et al.



Table 5. Exclusivity values for abundant (mean abundance>100m�2) taxa with fidelity >50% or exclusivity >80% in each assemblage.
Taxonomic nomenclature for provisional taxa (e.g., Cossura sp. A) follows SCAMIT Edition 4 Southern California Association of Marine

Invertebrate Taxonomists 2001

Taxon Higher Taxon

Assemblage

A B C D E F G H

Euphilomedes producta Arthropoda: Ostracoda 92

Eudorella pacifica Arthropoda: Cumacea 91

Axinopsida serricata Mollusca: Bivalvia 89

Protomedeia articulata Complex Arthropoda: Amphipoda 89

Protomedeia grandimana Arthropoda: Amphipoda 82

Amphiodia spp. Echinodermata: Ophiuroidea 73

Prionospio (Minuspio) lighti Annelida: Polychaeta 68

Levinsenia gracilis Annelida: Polychaeta 47

Ericthonius rubricornis Arthropoda: Amphipoda 100

Phyllochaetopterus prolifica Annelida: Polychaeta 100

Ampelisca agassizi Arthropoda: Amphipoda 100

Alvania compacta Mollusca: Gastropoda 94

Tellina modesta Mollusca: Bivalvia 89

Rochefortia tumida Mollusca: Bivalvia 84

Aphelochaeta glandaria Complex Annelida: Polychaeta 81

Prionospio (Prionospio) dubia Annelida: Polychaeta 71

Nutricola lordi Mollusca: Bivalvia 63

Parvilucina tenuisculpta Mollusca: Bivalvia 55

Euphilomedes carcharodonta Arthropoda: Ostracoda 49 15

Mediomastus spp. Annelida: Polychaeta 9 42 16

Amphideutopus oculatus Arthropoda: Amphipoda 100

Caecum californicum Mollusca: Gastropoda 100

Cossura sp. A Annelida: Polychaeta 100

Barleeia spp. Mollusca: Gastropoda 100

Synaptotanais notabilis Arthropoda: Tanaidacea 100

Scoletoma sp. C Annelida: Polychaeta 100

Paracerceis sculpta Arthropoda: Isopoda 99

Prionospio (Prionospio) heterobranchia Annelida: Polychaeta 99

Fabricinuda limnicola Annelida: Polychaeta 99

Tagelus subteres Mollusca: Bivalvia 96

Pseudopolydora paucibranchiata Annelida: Polychaeta 89

Musculista senhousia Mollusca: Bivalvia 87

Theora lubrica Mollusca: Bivalvia 72

Pista percyi Annelida: Polychaeta 65

Leitoscoloplos pugettensis Annelida: Polychaeta 63
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Taxon Higher Taxon

Assemblage

A B C D E F G H

Euchone limnicola Annelida: Polychaeta 45

Exogone lourei Annelida: Polychaeta 28 56

Crepidula convexa Mollusca: Gastropoda 100

Sabaco elongatus Annelida: Polychaeta 99

Ampelisca abdita Arthropoda: Amphipoda 94

Caprella spp. Arthropoda: Amphipoda 94

Sinocorophium heteroceratum Arthropoda: Amphipoda 94

Molgula spp. Chordata: Ascidiacea 92

Photis brevipes Arthropoda: Amphipoda 90

Sphaerosyllis californiensis Annelida: Polychaeta 87

Monocorophium acherusicum Arthropoda: Amphipoda 84

Leptochelia dubia Arthropoda: Tanaidacea 72

Oligochaeta Annelida: Oligochaeta 8 60 19

Americorophium stimpsoni Arthropoda: Amphipoda 100

Pygospio elegans Annelida: Polychaeta 99

Eogammarus confervicolus Complex Arthropoda: Amphipoda 99

Americorophium spinicorne Arthropoda: Amphipoda 98

Hobsonia florida Annelida: Polychaeta 97

Gnorimosphaeroma insulare Arthropoda: Isopoda 97

Potamopyrgus antipodarum Mollusca: Gastropoda 93

Cryptomya californica Mollusca: Bivalvia 91

Pseudopolydora kempi Annelida: Polychaeta 91

Neanthes limnicola Annelida: Polychaeta 87

Gnorimosphaeroma oregonense Arthropoda: Isopoda 83

Macoma balthica Mollusca: Bivalvia 82

Capitella capitata Complex Annelida: Polychaeta 82

Eohaustorius estuarius Arthropoda: Amphipoda 90

Corbula amurensis Mollusca: Bivalvia 99

Marenzelleria viridis Annelida: Polychaeta 98

Insecta Arthropoda: Insecta 99

Boccardiella ligerica Annelida: Polychaeta 93

Corbicula fluminea Mollusca: Bivalvia 92

Chironomidae Arthropoda: Chironomidae 86

Americorophium salmonis Arthropoda: Amphipoda 29

Table 5. (Continued)
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Although there was a high degree of similarity within the
8 assemblages identified, it is not clear that these are the
only assemblages occurring on the west coast. The sampling
programs on which our analyses were based were extensive,
but they all had probability-based sampling designs. As such,
spatially rare habitats, such as the shallow margins of
estuaries, were not well represented. In addition, the cluster
analysis was conducted on a coastwide data set, potentially
masking microhabitat assemblages that might be more
apparent in large data sets within a single estuary. However,
our large, coastwide data set allows identification of the major
assemblages of the west coast and the principal factors that
structure them.

The State of California developed habitat specific methods
to assess benthic condition based on the habitat factors
structuring the major assemblages that were identified in this
study. Benthic assessment tools were developed in 2 California
habitats where sufficient data for index development were
available (Ranasinghe et al. 2009), and used to assess sediment
quality in combination with sediment contaminants and
sediment toxicity using a triad approach (Bay and Weisberg
2010). Our findings suggest that some assemblages span several
states and California benthic assessment approaches may,
therefore, also be applicable in other states. Conversely,
developing habitat specific benthic assessment tools uncon-
strained by state borders provides additional data for tool
development, likely resulting in more robust assessment tools
that will also provide opportunities for multistate regional
assessments on uniform scales.
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