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Leaf area index (LAI) is a key forest structural characteristic that serves as a primary control for exchanges of
mass and energy within a vegetated ecosystem. Most previous attempts to estimate LAI from remotely
sensed data have relied on empirical relationships between field-measured observations and various spectral
vegetation indices (SVIs) derived from optical imagery or the inversion of canopy radiative transfer models.
However, as biomass within an ecosystem increases, accurate LAI estimates are difficult to quantify. Here we
use lidar data in conjunction with SPOT5-derived spectral vegetation indices (SVIs) to examine the extent to
which integration of both lidar and spectral datasets can estimate specific LAI quantities over a broad range of
conifer forest stands in the northern Rocky Mountains. Our results show that SPOT5-derived SVIs performed
poorly across our study areas, explaining less than 50% of variation in observed LAI, while lidar-only models
account for a significant amount of variation across the two study areas located in northern Idaho; the St. Joe
Woodlands (R2=0.86; RMSE=0.76) and the Nez Perce Reservation (R2=0.69; RMSE=0.61). Further, we found
that LAI models derived from lidar metrics were only incrementally improved with the inclusion of SPOT 5-
derived SVIs; increases in R2 ranged from 0.02–0.04, though model RMSE values decreased for most models
(0–11.76% decrease). Significant lidar-only models tended to utilize a common set of predictor variables such
as canopy percentile heights and percentile height differences, percent canopy cover metrics, and covariates
that described lidar height distributional parameters. All integrated lidar-SPOT 5 models included textural
measures of the visible wavelengths (e.g. green and red reflectance). Due to the limited amount of LAI model
improvement when adding SPOT 5 metrics to lidar data, we conclude that lidar data alone can provide
superior estimates of LAI for our study areas.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The foliage component of a forest canopy is the primary surface
that controls mass, energy, and gas exchange between photosynthe-
tically active vegetation and the atmosphere (Fournier et al., 2003). A
thorough characterization of leaf area index (LAI; the ratio of half of
the total needle surface area per unit ground area) can therefore
provide valuable information about nutrient cycling, hydrologic
forecasting, and biogeochemical processes in a forested ecosystem.
As a key vegetation structural characteristic that drives many
vegetation functions, LAI is a primary parameter used in ecophysio-
logical and biogeochemical models to describe plant canopies (Chen
et al., 1997). For example, process-based models such as BIOMASS
(McMurtrie & Landsberg, 1992), FOREST-BGC (Running & Coughlan,
1988) and RHESSys (Band et al., 1991) use LAI as a primary or
intermediate variable for forest growth and productivity. Additionally,
LAI is often employed as a critical calibration variable for remote

sensing datasets to differentiate vegetation characteristics over awide
range of biomes (Coops et al., 2004). LAI has also been used to
characterize forest radiation regimes and the amount of light available
to the understory in tropical (e.g. Rich et al., 1993; Vierling &
Wessman, 2000) and temperate conifer (e.g. Law et al., 2001a) and
deciduous forests (e.g. Ellsworth & Reich, 1993). Given the role of LAI
in determining many forest ecosystem processes, several techniques
have been developed for rapid LAI estimation.

The most commonly employed methods for estimating LAI across
landscapes rely on the relationships between LAI and various
manipulations of spectral information from aircraft or satellite-
based imagery. A significant amount of research has been dedicated
to quantifying the connections between spectral vegetation indices
(SVIs) that associate foliar composition in the visible red waveband,
which is absorbed by chlorophyll a and b, and the near-infrared
waveband, which is scattered by plant cellular structures. The
normalized difference vegetation index (NDVI) (Rouse et al., 1974)
and the simple ratio (SR) (Birth & McVey, 1968) are the most
frequently used SVIs to estimate LAI for a variety of ecosystem types
including coniferous forests (Chen et al., 1997; Curran et al., 1992),
grasslands (Friedl et al., 1994) and deciduous forests (Coops et al.,
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2004). Recent studies have incorporated more complex vegetation
indices by including spectral response from additional wavelengths in
an effort to minimize the influences of atmospheric disparities and
canopy background noise. For example, a mid-infrared correction
proposed by Nemani et al. (1993) to NDVI and SR have been found by
White et al. (1997) and Pocewicz et al. (2004) to improve LAI estimates
in montane and temperate coniferous forests. Lymburner et al. (2000)
developed the specific leaf area vegetation index (SLAVI) to account
for mid-infrared sensitivity to varying canopy structure for hetero-
geneous forest/woodland compositions. Chen et al. (2004) examined
the use of the enhanced vegetation index (EVI; Huete et al., 1997) to
improve LAI and vegetation cover estimates in a ponderosa pine
forest. The reduced simple ratio (RSR) has demonstrated success for
estimating LAI in pine and spruce stands (Stenberg et al., 2004) and for
a post-fire chronosequence in Siberia (Chen et al., 2005b).

Overall, commonly used SVIs serve as suitable surrogates to
approximate LAI for canopies with relatively low LAI (e.g. LAI=3–5)
(Chen & Cihlar, 1996; Turner et al., 1999). However, for values above
this LAI threshold, many SVIs tend to saturate such that LAI estimates
for high biomass forests may be grossly underestimated. For most
temperate coniferous forests, the ability to discriminate higher LAI
values from optical remote sensing data has been a major challenge.

Lidar data provide an alternative approach for estimating LAI across
the landscape. Throughout the past decade, many researchers have
reported the utility of lidar data to estimate a suite of forest biophysical
characteristics such as canopy height, basal area, crown closure, wood
volume, stem density, and biomass (Maclean & Krabill, 1986; Means
et al., 2000; Naesset & Bjerknes, 2001; Nelson et al., 1988; Popescu
et al., 2003) over a range of forest structural types and regional (Lefsky
et al., 2005a) to sub-regional scales (Jensen et al., 2006). More recently,
researchers have attempted to relate the three-dimensional structural
information captured with lidar data to both direct and indirect
estimates of LAI based on various analytical methods. For instance,
Magnussen and Boudewyn (1998) found that the proportion of lidar
returns corresponding to calculated canopy heights was correlated
with the fractional leaf area above canopy-specific height thresholds.
Lefsky et al. (1999) explored a three-dimensional (volumetric) analysis
of waveform lidar data to estimate leaf area index within a multiple
regression framework. Chen et al. (2004) investigated the relationships
between trees identified with lidar data tree cover response obtained
by a discrete-return system to spectrally-derived vegetation indices
and LAI. Riano et al. (2004) and Morsdorf et al. (2006) assessed the
capacity of lidar and variable-radius plots to estimate LAI. Lefsky et al.
(2005a) developed robust empirical estimates based on waveform
lidar and regional LAImeasurements for the U.S. Pacific Northwest and
Koetz et al. (2006) inverted both actual and simulated 3-D lidar
waveform models to estimate LAI and other biophysical parameters
within a radiative transfer model.

LAI can be estimated from a variety of remote sensing datasets,
warranting the exploration of lidar andmultispectral data integration.
Lidar/multispectral data integration (also referred to as data fusion or
synergy) has been explored for retrieval of other forest characteristics
such as canopy height (Hudak et al., 2002; Popescu & Wynne, 2004;
Wulder & Seemann, 2003), volume and biomass (Hudak et al., 2006;
Popescu et al., 2004), stand density (McCombs et al., 2003), forest
productivity (Lefsky et al., 2005b), canopy change detection (Wulder
et al., 2007) and characterization of foliage pigments (Blackburn,
2002). However, the potential for spatial and spectral data integration
remains significantly unaddressed in terms of quantifying and
mapping LAI in moderate to high biomass coniferous forests.

Previous studies of LAI in northern Idaho conifer forests have
reported LAI ranging from 0 to 13, with the majority of observations
exceeding LAI=4 (Duursma et al., 2003; Pocewicz et al., 2004). In terms
of geographic significance, the northern Idaho mountain ranges may
represent the region of highest carbon uptake in the Rocky Mountain
range, and thus the most substantial carbon sink between the Cascade

Mountains and the Midwestern U.S. (Schimel et al., 2002). Therefore,
accurate and reliable estimates of LAI are vital to adequately characterize
ecosystem processes and monitor trajectories of change. Currently,
operational LAI products from theMODIS sensor and SPOT VEGETATION
provide repeat spatial and temporal coverage of biophysical variables
used to describe vegetation structure (Baret et al., 2007; Yang et al.,
2006), but at a much coarser spatial resolution such that heterogeneity
of fine-to-medium scale landscape features is lost.

The specific objectives of our research are to determine 1) the
capability of lidar-derived covariates to estimate measured and
corrected LAI quantities, 2) the extent to which SPOT 5 spectral data
may improve lidar-based LAI estimates, and 3) the applicability of a
regional model to quantify LAI in northern Rocky Mountain forests.

2. Materials and methods

2.1. Study areas

Forested regions of northern Idaho exhibit a wide range of stand
characteristics representative of conifer forests in the Northern Rocky
mountains, and more generally, the western United States. A diverse
range of topographic and climatic conditions combined with forest
management practices serve to determine species composition and
land-use patterns in the Intermountain West. To meet our research
objectives, two distinct forested areas were selected to represent the
broader range of forest characteristics found throughout the region.
Though relatively close in geographic proximity, each study area
exhibits contrasting characteristics with regard to topography, species
composition, and forest management practices. The St. JoeWoodlands
(SJW) study area was selected to represent a cooler, wetter climate
regime while the Nez Perce Reservation (NPR) study area charac-
terizes the lower elevation climate of warmer and drier conditions
along the western edge of the Rocky Mountains range.

The SJW study area is located between N47°07′–N47°17′and
W115°58′–W116° 22′ and totals approximately 58,684 ha (Fig. 1). In
order of dominance by percent basal area conifer species found in the
SJW include Thuja plicata (THPL), Abies grandis (ABGR), Pseudotsuga
menziesii (PSME), Larix occidentalis (LAOC), Tsuga heterophylla (TSHE),
Abies lasiocarpa (ABLA), Picea engelmanni (PIEN), Pinus contorta (PICO),
Pinus ponderosa (PIPO), Pinus monticola (PIMO). Elevation in the SJW
ranges from658–2000mwith amean and standard deviation of 1140m
and 244 m respectively. In general, slopes are relatively steep, ranging
from 0–50.9° with a mean of 16.9°. Mean annual temperature and total
annual precipitation are 8.5 °C and 124.4 cm respectively.

The NPR study area, located between N46°09′–N46°22′ and
W116°28′–W116°49′, is subdivided into 5 smaller forested study units
totaling approximately 13,350 ha. In order of dominance, conifer species
occurring throughout theNPRstudyarea includePSME,PIPO,ABGR, LAOC,
PICO, PIEN, andTaxus brevifolia (TABR). Elevation ranges from277–1479m
with a mean and standard deviation of 843 m and 256 m respectively.
Slopes range from0°–48.4°,withameanof8.6°.Meanannual temperature
and total annual precipitation are 9.8 °C and 64.5 cm respectively.

Overall, both study areas are managed for commercial timber
production, though more intensive management is practiced throughout
the SJW. Active rotations of large tracts of forest land are common, with a
considerable number of selective thinning and clear-cut operations
occurring throughout the year. Compared to the SJW, forest stands on
the NPR occupy a considerably smaller area and are less intensively
managed. Common stand treatments on the NPR include selective
thinning and mechanical fuel reduction. Additionally, cattle and goat
grazing are also permitted for selected forest stands.

2.2. Field data collection and processing

Weestablished15m-radius plots in the SJW(n=46) andacross thefive
separate study units on the NPR (n=50). Both study areas are sites of
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previous studies that utilized lidar data to estimate forest biophysical
characteristics. A subset of previously inventoried forest plots were
selected for LAImeasurements using a stratified random approach to best
represent the diversity of species, size, and stand density in proportion to
their occurrence. Plots from the SJW were initially established by Hudak
et al. (2006) for a lidar-multispectral data integration study to estimate
basal area and stem density. Plots from the NPR were previously
established by Jensen et al. (2006) to estimate operational forest
characteristics from discrete return lidar data. A total of 96 candidate
plots were revisited throughout the summer and fall of 2006 and 2007 to
collect LAI data for this study. Average distance between plots on the NPR
was 729 m and 1.36 km at the SJW.

2.2.1. LAI data collection and processing
LAI sampling protocol followed the design illustrated in Fig. 2. Effective

LAI (LAIe) measurements were obtained by employing two LAI-2000 units
in remote mode. The LAI-2000 Plant Canopy Analyzer utilizes a fisheye
optical sensor comprised of 5 concentric silicon detector rings for a 148°
field of view. The instrument simultaneously measures attenuation of
diffusesolar radiationas it is transmittedthrougha forest canopyatmultiple
view angles (Welles & Norman,1991). The instrument is fitted with a filter
designed to reject wavelengths greater than 490 nm to minimize the
contribution of solar radiation transmitted and scattered by foliage.

The first sensor was mounted and leveled on a tripod in a nearby
clearing and programmed to automatically log readings of sky condition
at 15 second intervals, while the second sensor was used to rove within
forest plots to manually collect temporally coincident below canopy
readings. To help mitigate the challenge of obtaining above canopy
readings in limited clearings and to minimize slope effects, 45-degree
view restrictors were affixed to each sensor. Both sets of measurements
were obtained with each sensor pointed in the same azimuthal
direction. Measurements were obtained during diffuse sky conditions.

Within each plot, three measurements were obtained 1 m on
either side of the six LAI sample points, with the sensor held
approximately 1.4 m above the ground. In this manner, a total of 36
LAI-2000 instrument readings were obtained per plot. LAI-2000 data
were post-processed using the vendor-provided software FV-2000.
The first and fifth rings were excluded from LAI calculation due to the
sensitivity of Ring 1 to sensor position with respect to crown
projection (Law et al., 2001b) and additional contribution of diffuse
light in Ring 5 from multiple scattering (Chen et al., 1997).

Since LAI measured by the LAI-2000 instrument assumes a random
foliage distribution, it is necessary to correct for clumping and
contribution of woody components. Ancillary data used for this analysis
included species, DBH, and height information for each treewithin each
plot. DBH and height were used to calculate species-specific basal area,

Fig. 1. The SJW and NPR study areas in northern Idaho. The SJW study unit is enlarged (top) to graphically convey landscape heterogeneity expressed as lidar-derived mean canopy
height. Minimum canopy height for all NPR units is zero; maximum heights (m) for individual study units are: 1) 23.9, 2) 22.8, 3) 17.6, 4) 17.8, 5) 17.1, and 6) 20.1.
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classify dominant species, and species composition. These measures
were used to calculate species-specific weighting factors for plot-level
γE (needle-to-shoot ratio) and α (woody-to-total area ratio) values
(Table 1). For this study, a few species are present for which there are no
published values for γE and α. In such cases, values were inferred from
previously published values of structurally and taxonomically similar
species. We computed corrected LAI (LAIc) and foliage-only LAI (LAIf) by
applying a correction factors developed by Chen et al. (1997):

LAIc ¼ XE=γEð Þ4LAIe ð1Þ
where ΩE is foliage clumping at scales larger than the shoot, discussed
in detail in Section 2.2.2.

LAIf ¼ 1−αð Þ4LAIc ð2Þ

2.2.2. TRAC data collection and processing
The Tracing Radiation and Architecture of Canopies (TRAC)

instrument developed by Chen and Chilar (1995) is an optical
instrument designed to account for the non-randomness of forest
canopies by quantifying both canopy gap fraction and gap size, or the
physical dimension of gaps in the forest canopy. The canopy gap size
distribution is important because it contains information about canopy
spatial structure and can be used to quantify foliage clumping effect, or
the effect of foliage clumping at scales larger than the shoot, denoted
by ΩE (Chen et al., 1997). Gap size can be derived by recording rapid

(32 Hz) variations in the photosynthetic photon flux density (PPFD)
while walking along a transect at a steady pace. A gap size distribution
is generated from the spikes caused byhigh PPFDvalues (gaps) and low
PPFD values (intercepted radiation). Based on the gap size distribution,
gaps related to non-randomness are identified and excluded from the
total gap fraction using a gap removalmethod. The clumping effect,ΩE,
is calculated as the difference between measured gap fraction and the
gap fraction after non-random gaps have been removed.

TRAC measurements were obtained by walking the three transects
established for every plot during clear sky conditions and with solar
zenith angle ranging between 30 and 60 degrees. Immediately before or
after a set of plot measurements, a reference reading was collected in an
open clearing as near the plot as possible.Within the plot, the sensorwas
carried alongeach transect at aminimumspeedof 1mper 3 s in the same
direction (SW–NE) for each transect. TRAC data were post-processed
using the analysis software TRACWin (Version 3.9.0). The three transects
obtained for each plot were averaged to represent plot-level ΩE.

2.3. Lidar data collection and processing

Lidar datawere acquired during the summers of 2002 and 2003 for
the NPR and SJW respectively. Both data missions employed a Leica
ALS40 lidar sensor and similar acquisition parameters (Table 2). Raw
lidar data containing the X, Y, and Z coordinates for each return were
delivered in ASCII format for individual flightlines and imported into
ArcInfo (ESRI, Redlands, CA) to classify ground versus non-ground
returns using the Multi Curvature Classification (MCC) method (Evans
& Hudak, 2007) to generate digital terrain surface layers. Canopy
heights were calculated by subtracting corresponding MCC-generated
terrain surfaces from the original (unclassified) lidar datasets. Finally,
the calculated canopy height returns were clipped from each dataset
to correspond with the field measured sample plots.

Calculated canopy heights were extracted for individual plots and
processed to produce standard lidar regression covariates including
mean, variance, coefficient of variation, skewness, kurtosis, and the
25th, 50th, 75th and 95th percentile values of all returns and returns
greater than 1.4 m. Additional metrics summarizing the difference in
percentile heights were computed to characterize where biomass was
distributed within the canopy. Lastly, metrics corresponding to the
percentage of returnswithin specified height intervals were computed
based on height thresholds equivalent to standard tree-size diameter
breaks. Refer to Table 3 for a summary of lidar-derived metrics.

2.4. SPOT 5 data acquisition and processing

Two SPOT 5 Level 1B images were acquired over the NPR on June
28, 2003 and a single SPOT 5 Level 1A image was acquired for the SJW
August 20, 2006. SPOT 5 data are 10 m spatial resolution in the green
(500–590 nm), red (610–680 nm), and near-infrared (780–890 nm)
portion of the electromagnetic spectrum and 20 m spatial resolution

Fig. 2. LAI and TRAC sampling design within a 15 m-radius (0.07 ha) sample plot.

Table 1
Species specific needle-to-shoot ratio (γE) and woody-to-total area ratio (α) used to
correct LAIe

Species γE α Source

Abies grandis 2.35 0.12–0.17a (Gower et al., 1999; Roberts et al., 2004)
Abies lasiocarpa 2.35 0.12–0.17a (Gower & Norman, 1991; Roberts et al., 2004)
Larix occidentalisb 1.49 0.12–0.17a (Gower & Norman, 1991)
Picea engelmanniib 1.57 0.12–0.17a (Chen et al., 2006; Gower et al., 1999)
Pinus contortab 2.08 0.28 Hall et al. (2003)
Pinus monticola 3.4 0.11–0.34a (Frazer et al., 2000; Gower et al., 1999)
Pinus ponderosa 1.25 0.27 Law et al. (2001a,b)
Pseudotsuga
menziesii

1.77 0.08 Gower et al. (1999)

Thuja plicata 1.01 0.15 Roberts et al. (2004)
Tsuga heterophylla 1.38 0.15c Frazer et al. (2000)
Tsuga mertensianab 1.38 0.15c Frazer et al. (2000)

a Multiple reported values; average used for analysis.
b Correction based on similar species.
c Based on species similarity.

Table 2
Lidar acquisition parameters

Acquisition parameter SJW NPR

Date acquired 2003 2002
Sensor Leica ALS40 Leica ALS40
Wavelength (nm) 1064 1064
Flight height (m)⁎ 2438 1828
Footprint diameter (cm) 30 60
Post-spacing (m) 1.95 2.0
Scan/Pulse rates (Hz/kHz) 17.1/20.0 17.1/20.0
Scan angle (°) +/−20⁎⁎ +/−12.5
Average swath width (m) 904 810.77
Average point density (m2) 0.26 0.36

⁎ Above mean terrain.
⁎⁎ Scan angles N15° were discarded (after Hudak et al., 2006).
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in the shortwave infrared (1580–1750 nm). All images were acquired
with scan angles b5° and b10% cloud cover. Images were orthor-
ectified to corresponding digital orthoimagery quarter quadrangles
(DOQQs) and re-projected to the UTM (Zone 11) coordinate system
defined for the lidar acquisition. Raw image data were radiometrically
corrected and converted to exoatmospheric reflectance to reduce
between-scene variability owing to variation in solar irradiance at the
time of acquisition. The 10 m spatial resolution of SPOT imagery

facilitated calculation and inclusion of textural measures for LAI
models, whereas this would not be possible with at the same level of
detail with coarser-resolution imagery such as Landsat ETM+. Wulder
et al. (1998) suggested that textural information could improve
characterization of forest structure, particularly as the strength of
standard SVI-LAI relationships weakens.

A series of SVIs were calculated for each image as well as average
reflectance and texture information for each band. The ZONALSTATS
tool in ArcINFO was used to extract plot-level SVI and reflectance
average values of all pixels that intersected the plot area. The standard
deviation (BAND_STDEV) of individual band reflectancewas taken as a
direct statistic based on the same plot-pixel intersection method. On
average, information from seven SPOT 5 10 m pixels were used for
each SPOT 5 (hereto referred to as SPOT) covariate. Refer to Table 4 for
a list of SPOT model covariates calculated for analysis.

Table 3
Lidar-derived model covariates

Metric classification Threshold
(m)

Label

Canopy height metrics
Canopy percentiles All points CAN25ile, CAN50ile, CAN75ile, CAN95ile,

MAX_HEIGHT (CAN100ile).
Upper-story
percentiles

N1.37 LUPP25ile, LUPP50ile, LUPP75ile, LUPP95ile

Fixed percentile
differences

All points
and N1.37

DIFF25, DIFF50, DIFF75, DIFF95 — Difference
between upper-story percentiles and
corresponding canopy percentiles

Variable percentile
differences

All points
and N1.37

L95_C25, L75_C25, L50_C25, …etc. Difference
between upper-story percentiles and various
canopy percentiles

Canopy cover metrics
% Understory cover 0.03–1.37 LUSC
% Canopy cover 1 1.38–10.67 LCCO1
% Canopy cover 2 10.68–

18.29
LCCO2

% Canopy cover 3 18.30–
28.96

LCCO3

% Canopy cover 4 N28.96 LCCO4
% Canopy cover 123 N1.38–

28.96
LCCO123

% Canopy cover
above

N1.37 LCCOABOVE

Total % canopy cover N0.03 LCCOTOTAL

Height distribution metrics
Mean All points LHMean

Variance All points LHVar

Coefficient of
variation

All points LHCoef

Kurtosis All points LHKurt

Upper-story Mean N1.37 LUPPMean

Upper-story variance N1.37 LUPPVar
Upper-story
coefficient of variation

N1.37 LUPPCoef

Upper-story kurtosis N1.37 LUPPKurt

Values are calculated per plot based on calculated vegetation heights.

Table 4
SPOT-derived model covariates

Metric Equation Reference

BAND_MEAN Average spectral response within a plot (e.g.
GREEN, RED, NIR, MIR)

BAND_STDEV Standard deviation of spectral responses
within a plot (e.g. GREEN, RED, NIR, MIR)

Normalized Difference
Vegetation Index (NDVI)

NDVI ¼ ρnir−ρred
ρnirþρred Rouse et al.

(1974)
Mid-Infrared Corrected
NDVI (NDVIc)

NDVIc ¼ ρnir−ρred
ρnirþρred � 1− ρMIR−ρMIRminð Þ

ρMIRmaxþρMIRminð Þ
h i

Nemani et al.
(1993)

Simple Ratio (SR) SR ¼ ρnir
ρred Birth and

McVey
(1968)

Reduced Simple Ratio
(RSR)

RSR ¼ ρnir
ρred � 1− ρSWIR−ρSWIRminð Þ

ρSWIRmaxþρSWIRminð Þ
h i

Chen et al.
(2002)

Mid-Infrared Corrected
SR (SRc)

SRc ¼ ρnir
ρred � 1− ρMIR−ρMIRminð Þ

ρSWIRmax−ρSWIRminð Þ
h i

Brown et al.
(2000)

Green–Red Vegetation
Index (GRVI)

GRVI ¼ ρgreen−ρred
ρgreenþρred Tucker et al.

(1979)

Values based on exo-atmospheric reflectance.

Table 5
Field-obtained effective LAI (LAIe) and corrected values calculated from plot- and
species-specific correction factors

Dataset LAIe LAIc LAIf

SJW Mean(S.D.) 3.44(1.47) 6.37(2.51) 5.41(2.21)
n=46 Range 0.70–6.1 1.1–10.9 1.0–9.2
NPR Mean(S.D.) 1.89(1.05) 3.92(2.35) 3.35(2.13)
n=50 Range 0.40–4.8 0.40–10.4 0.40–9.6
COMBINED Mean(S.D.) 2.63(1.48) 5.01(2.72) 4.26(2.40)
n=96 Range 0.40–6.1 0.40–10.9 0.40–9.6

Fig. 3. Cumulative distribution functions and univariate statistics of canopy-level
clumping index values, ΩE by study area.
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2.5. Statistical analysis

The NPR and SJW were analyzed separately and as a combined
dataset within a multiple regression framework. The statistical
analysis software (SAS) package (SAS Institute, Cary N.C.) was
employed to model leaf area index quantities (i.e. LAIe, LAIc, and LAIf)
using the best subsets regression procedure available in PROC REG.
Several criteria were used to examine potential models including R2

and adjusted R2, root mean square error (RSME) and AICc (Suguira,
1978). Once candidate models were identified, a more rigorous
selection approach was applied, including individual covariate
significance, (Type III error t tests, α=0.05), absence of multicollinear-
ity (i.e. toleranceN0.1, Neter et al., 1985), and residual homoscedasti-
city. All criteria had to be satisfied for final model consideration. The
Predicted Residual Sum of Squares (PRESS) statistic (Allen, 1971) was
used to assess the prediction error of candidate models. The PRESS
statistic is effectively a leave-one-out cross validation approach, where
the model is re-parameterized with n−1 observations, and the n−1
model is used to predict the excluded response. Final models were
those that exhibited a combination of the lowest AICc, smallest
changes in R2 to adjusted R2 and the lowest full-dataset RMSE to PRESS
RMSE ratio, while still satisfying individual covariate criteria. These
model selection criteria were applied in an effort to develop robust
models and prevent model overfit from inclusion of excessive or
redundant covariate terms. AICc is an information criterion that
addresses model dimensionality, providing a relative comparison of
covariate multicollinearity effects. Exclusion of redundant covariates
was also addressed by examination of individual tolerance values.
Model validity in multivariate linear regression relies partly on the
ratio of the number of observations to the number ofmodel covariates.
Since adjusted R2 is more conservative than R2, we sought models that
exhibited small changes between the two statistics. Lidarmodels were

selected first based on the criteria outlined above. After the lidarmodel
selection, SPOT band data and indices were added to the analysis. The
best subset methodwas still used, however only those covariates from
the selected lidar model were included in the analysis with SPOT data.
Resultantmodels were subject to the same criteria used to select lidar-
only models. In addition, to determine if the selected SPOT variables
added significant predictive value to the final models, a subset of
regression coefficients were tested using the complete (lidar-SPOT)
and reduced (lidar-only) models.

3. Results

Exploratory data analysis indicated that LAI quantities were not
normally distributed; thus, response data were transformed to satisfy
the normality assumption for linear regression. A natural log
transformationwas used for the SJWand a square root transformation
for the NPR. The combined dataset used the square root and natural
log transformation for LAIe and corrected LAI quantities, respectively.
Different transformations were required for the combined dataset
because a single transformation did not result in a normal distribution
for all LAI quantities. LAI estimates were back-transformed using the
appropriate algorithm.

Results for each study area and as a combined dataset (denoted
‘COMBINED’) are summarized for specific LAI quantities and the
specific regression-based analysis (i.e. lidar-only, SPOT-only, and lidar-
SPOT models).

3.1. Effective LAI, TRAC measurements, and corrected LAI quantities

LAIe for all plots sampled from both study areas (i.e. COMBINED),
ranged from 0.40–6.1 (mean 2.63, S.D. 1.48). Overall, LAIe measured on
the NPR had a smaller range and mean value than plots measured in
the SJW; mean LAIe of plots on the SJW was 3.44, nearly twice that of
the NPR (1.89). When LAIe was corrected for clumping, the range of
LAIc values increased for both study areas. Table 5 provides univariate
statistics for all LAI quantities.

Table 6
Results of lidar-only regression analysis of specific LAI quantities

Dataset Variable Lidar model R2 Adj.
R2

RSME

SJW n=46 (ln)LAI 1.2271−0.1234 (LHKURT)−0.0470
(LUPP25ILE)+0.0787(MAX_HEIGHT)−
0.1079(L95_C25)

0.8612 0.8476 0.76

(ln)LAIc 1.2491−0.1536(LHKURT)+ .6363
(LUPPCOEF)+ .0540(MAX_HEIGHT)−
0.1052(L95_C25)

0.7430 0.7179 1.8

(ln)LAIf 1.0941−0.1587(LHKURT)+ .6728
(LUPPCOEF)+0514(MAX_HEIGHT)−
0.1028(L95_C25)

0.7098 0.6815 1.7

NPR n=50 (sqrt)
LAI

1.2963−1.4051(LCCO3)+0.0266
(MAX_HEIGHT)+0.7982
(LCCOABOVE)−0.0154(L25_C25)−
0.0378(L95_C50)+0.0276(L50_C50)

0.8612 0.8476 0.76

(sqrt)
LAIc

1.5249−3.0071(LCCO3)+1.4242
(LCCOABOVE)+0.0060(LUPPVAR)+
0.0360(MAX_HEIGHT)−0.0747
(L95_C25)+0.0465(L50_C50)

0.7430 0.7179 1.8

(sqrt)
LAIf

1.3938−2.8703(LCCO3)+1.3430
(LCCOABOVE)+0.0055(LUPPVAR)+
0.0360(MAX_HEIGHT)−0.0711
(L95_C25)+0.0449(L50_C50)

0.7098 0.6815 1.7

COMBINED
n=96

(sqrt)
LAI

1.8562+0.7436 (LCCOABOVE)−
0.6955 (LUPPCOEF)−0.0314
(LUPP25ILE)+0.0355 (MAX_HEIGHT)−
0.0396 (L95_C25)

0.6971 0.6548 0.61

(ln)LAIc 2.3053−0.3057(LHSKEW)+0.0065
(LUPPVAR)−0.0563(LUPP75ILE)+
0.0404(MAX_HEIGHT)−0.0387
(L95_C25)

0.7230 0.6843 1.3

(ln)LAIf 2.1316−0.2919 (LHSKEW)+0.0060
(LUPPVAR)−0.0548 (LUPP75ILE)+
0.0401 (MAX_HEIGHT)−0.0370
(L95_C25)

0.7191 0.6799 1.1

All model covariates significant for p≤0.05.

Table 7
Results of SPOT-only regression analysis of specific LAI quantities

Dataset Variable SPOT Covariate R2 RSME

SJW n=46 (ln) LAIe NDVIc 0.4918 2.7
(ln) LAIc NDVIc 0.3341 2.4
(ln) LAIf NDVIc 0.2972 2.1

NPR n=50 (sqrt) LAIe RSR 0.2747 1.5
(sqrt) LAIc RED_MEAN 0.2740 2.0
(sqrt) LAIf RED_MEAN 0.2653 1.8

COMBINED n=96 (sqrt) LAIe MIR_MEAN 0.4631 1.5
(ln) LAIc MIR_MEAN 0.3617 3.2
(ln) LAIf MIR_MEAN 0.3459 2.9

⁎ pb0.0001.

Table 8
Lidar-SPOT model results for specific LAI quantities

Dataset Lidar-
only R2⁎

Lidar-
SPOT
R2⁎

Lidar-
only
RMSE

Lidar-
SPOT
RSME

F-stat (PrNF) full vs.
reduced model

SJW n=46 LAIe 0.8612 0.8821 0.76 0.71 7.09 (p=0.0111)
LAIc 0.7430 0.7806 1.8 1.7 6.85 (p=0.0124)
LAIf 0.7098 0.7513 1.7 1.5 6.68 (p=0.0135)

NPR n=50 LAIe 0.6971 0.7246 0.61 0.58 4.13 (p=0.0231)
LAIc 0.7230 No Imp. 1.3 N/A
LAIf 0.7191 No Imp. 1.1 N/A

COMBINED
n=96

LAIe 0.7513 0.7882 0.75 0.69 7.66 (p=0.0009)
LAIc 0.6315 0.6494 1.8 1.7 4.53 (p=0.0360)
LAIf 0.5964 0.6179 1.6 1.6 5.00 (p=0.0278)

⁎ pb0.0001.
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The cumulative distribution functions in Fig. 3 illustrate the
proportion of plots at or above a specified canopy clumping value,
ΩE. A larger value typically indicates less canopy-level clumping and
thus a more random distribution of foliage. However, larger ΩE values
for our study appear to be indicative of a more open canopy structure,
whereas smaller ΩE values appear to correspond with a more closed
overstory canopy. Plot-averaged TRAC measurements ranged from
0.58 to 1 and 0.63 to 1 on the NPR and SJW, respectively, with similar
mean, median, and standard deviations among the study areas.

3.2. Lidar-only LAI estimates

Lidar model covariates performed well, with all models significant
at pb0.0001. In terms of effective LAI, the lidar-only model for the SJW

was the best, explaining 86% variation in measured values. Differences
in R2 between the SJW and NPR datasets were non-negligible. Given a
similar number of measured plots and within-area species variability,
the SJW LAIe lidar model accounted for 15% more variation than the
NPR equivalent. However, RMSEs among selected lidar-only models
were lower for the NPR. As anticipated, the COMBINED model
performance was intermediate to the performance of models from
the individual study areas, explaining 75% of variation in observed LAI.

Both R2 and RMSE decreased considerably between LAIe and LAIc/
LAIf in both the SJWand COMBINED datasets. The R2 increased for these
quantities on the NPR, while RMSE exhibits a similar trend to that of the
other statistics. For all cases, RMSE increased by a factor of two for
corrected LAI quantities when compared to LAIe errors. Refer to Table 6
for a summary of lidar-only model covariates and analysis results.

Fig. 4. Scatterplots of Lidar-SPOT integration to estimate specific LAI quantities for individual datasets. Line indicates 1:1 relationship.
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3.3. SPOT-only LAI estimates

Regression of individual SPOT model covariates resulted in poor
model performance overall. Table 7 summarizes results of SPOT-only
regressions for specific LAI quantities. Best model fits were obtained
from selection of the mid-infrared corrected NDVI (NDVIc) for the SJW
and RSR and average visible red reflectance at the NPR. For the
COMBINED dataset, average mid-infrared (MIR_MEAN) reflectance
produced the best model fits. Although all SPOT models were
statistically significant (pb0.0001), R2 values were very low overall;
the maximum R2 obtained from optically-derived SPOT imagery was
0.4918 (pb0.0001) for SJW LAIe.

3.4. Lidar-SPOT integrated LAI estimates

Individual SPOT band data and SVIs described in Table 4 were
added to the regressions once a suitable lidar-only model was
selected. Overall, addition of SPOT data increased the overall R2 and
decreased RMSE for most models, although the improvements for all
cases were slight. For instance, the SJW integrated LAI model
improved R2 by roughly 2% and decreased RMSE by 0.05. No
improvement was noted for LAIc or LAIf on the NPR with the addition
of SPOT data.

For all cases except NPR and COMBINED LAI, a single SPOT
covariate was added to the model while still satisfying model
suitability criteria (e.g. individual variable significanceb0.05 and
toleranceN0.1). In the case of integrated LAIe estimates for the NPR
and COMBINED datasets, two SPOT covariates were added to each
model (a single lidar covariate was removed). For all SJW models and
COMBINED LAIc and LAIf, the only significant SPOT variable added to
the lidar models was the standard deviation of the green band
(GREEN_STDEV). The NPR LAIe model showed slight improvement by
adding mean red reflectance and GRVI as covariates. The COMBINED
LAI model also showed slight improvement by including the mean red
spectral response and RSR for LAI. Table 8 summarizes the differences
between lidar-only and lidar-SPOT integrated datasets as well as
results for complete and reduced model tests. Fig. 4 provides
scatterplots of the integrated models and corresponding model
equations.

4. Discussion

4.1. Regression analysis

Lidar-derived covariates explained the largest proportion of
variation in LAI and corrected quantities among the three datasets
used in this analysis. Although existing methods to estimate LAI often
rely on a single optically-derived SVI, the relationships are often
asymptotic and can result in unreliable estimates for moderate to high
biomass forests. The number of lidar covariates selected for each
model was a balance between parsimony and relevance, or the
explanatory value of individual model terms. Although covariates
included in the lidar-only models differed for specific quantities and
among study areas, the types of metrics combined in eachmodel were
similar. For example, all models (with the exception of lidar-only and
integrated LAIe models on the NPR) included a minimum of one
covariate from the each of following three categories: 1) canopy
height metrics (e.g. LUPP25ile), 2) height distribution metrics (e.g.
LHSKEW), and 3) canopy cover metrics (e.g. LCCOABOVE).

Most models incorporated lidar covariates associated with
upperstory metrics.

The lidar covariate, MAX_HEIGHT, is present in every LAI model. Its
inclusion follows a line of logic: increases in canopy height should
correlate to increases in LAI, however as an independent covariate,
MAX_HEIGHT does not significantly correlate with LAI quantities.
Inclusion of upper-canopy related metrics is sensible: upperstory

metrics were computed from lidar-derived heights at or above a
threshold of 1.4m (4.5 ft), which corresponds to the standard height at
which DBH is measured for most forest survey and inventory
applications. Additionally, for most forest types, the bulk of vegetation
biomass is located above this height threshold. By implementing this
minimum height threshold for upperstory metrics, within-plot lidar
returns and the correspondingmetrics are limited to the vertical space
in which the greatest amount of foliage is distributed. Similarly, LAI
observations collected in the field were collected at the same height
(1.4 m).

In terms of vertical foliage distribution, a similar line of logic was
followed via the calculation of differences in percentile heights (e.g.
LUPP95ile–CAN25ile). We presumed that from multiple-return lidar
data, the difference in corresponding percentile heights would yield
an indication of the vertical distribution of vegetation biomass within
each plot. Although we used a combinatorial approach of percentile
height differences, the approach can be likened to an index derived by
Lefsky et al. (1999) in which canopy height range was computed from
an array of lidar waveforms. Since discrete-return lidar only samples
the landscape, we tried several combinations to “maximum-mini-
mum” height metrics. As with the MAX_HEIGHT metric, L95_C25 is
included in every LAI model.

Percent cover metrics (e.g. LCCO3; LCCOAbove) included in the
selected LAI models also correspond to upperstory lidar metrics, again
where we expect the greatest density of foliage biomass. Height-
threshold subclasses associated with percent height metrics corre-
spond to standard tree-size diameter breaks derived from tree height
and diameter regressions developed by the Nez Perce Tribal Forestry
Department. Though initially developed to categorize trees for saw-
log volume divisions, the height thresholds also capture the height–
diameter relationships related to age classes, where larger saw-log
volumes are characteristic of moremature stands. Similar, temporally-
extensive forest inventory datawere not available for the SJW. As such,
height-diameter class breaks and percent cover lidar-height thresh-
olds were not modeled, though we acknowledge that differences in
species composition, silvicultural prescription, and site quality will
influence tree height and diameter relationships. In that regard, final
lidar-only models did not include any of the percent cover metrics,
however, candidate models from the best subset procedure did
occasionally incorporate LCCOAbove.

Lidar models for the SJW required fewer covariates (4) to estimate
a larger range of LAIe than the NPR, which required 6 terms even
though the variance on the NPR is half that of the SJW. Thismay be due
in part to the foliage density and leaf orientation of most-dominant
species present in each study area. Though species composition is
mixed for both study areas, THPL, which has a relatively flat, leaf-like
structure, is dominant at the SJW, as opposed to PIPO and PSME, the
two most dominant species on the NPR. Leaf geometry and crown
structural properties of THPL may provide a larger, more uniform
reflective surface as opposed to species that exhibit increase foliage
clumping. The leaf-like structure of THPL may result in less scattering
of the lidar pulse, thus reflecting a sufficient amount of energy to
trigger a first return higher in the canopy.

A second consideration with regard to lidar covariate selection
between study areas is the structural characteristics of individual
species. For example, many species present on the SJW, and to a lesser
extent the NPR, have a relatively uniform crown shape that
homogeneously extends from the top of the canopy well toward
the understory. Conversely, many of the plots on the NPR are
comprised of PIPO, a shade-intolerant species that tends to self-
prune, or shed lower branchwhorls as it matures. This often results in
a tree that may be 30m tall, but have only 7 m of live foliage. In terms
of LAI estimation, percentile heights may be relatively large but LAI is
unexpectedly low, whereas for a PSME- or THPL-dominated stand
with similar stem density, LAI would be much larger. It should be
noted, however, that PIPO is not the only species to exhibit such
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physical attributes and that other species may display similar crown
characteristics due to other factors such as stocking density.
However, in general, the frequency of PIPO occurrence and observa-
tions of anomalous crown characteristics are more prevalent on the
NPR.

Lidar-only and integrated models to estimate LAIc and LAIf for the
SJW and COMBINED datasets did not perform as well as the model for
LAIe (e.g. lower R2 and higher residual errors). This is likely due to the
increased variance resulting from applying plot- and species-specific
correction factors to LAIe to account for clumping. For instance, the
variance of LAIc increased 190% compared to LAIe for the SJW. With a
larger range of values to estimate, lower R2 values and higher residual
errors should be expected. However this is not the case for the NPR,
where LAIc and LAIf estimates were improved despite a near 400%
increase in variance between LAIe and LAIc. We believe this is due to
the near-homogeneity of species-specific correction factors applied to
plots on the NPR versus the SJW.

The overall correction factor applied to LAIe to correct for clumping
is more strongly influenced by the species-specific γE than plot-
measured ΩE. Mean foliage clumping γE values for the SJW were
lower due in large part to the leaf-like properties of THPL (γE=1.014),
the most dominant species in the study area. Increases in LAI when
γE=1.014 are small when compared to other species such as PSME
(γE=1.77) or ABGR (γE=2.35). We expect that an increase in LAI would
be accompanied by a corresponding increase in canopy height or
percent cover. However, on the SJW, clumping corrections did not
follow such logic. Corrections applied toTHPL-dominated plots did not
significantly increase the LAI in the same manner as AGBR- or PSME-
dominated corrections. Plots on the NPR were commonly character-
ized by a single dominant species. As such apply correction factors to
LAIe for clumping on the NPR simply applied a uniform scalar to 80% of
the plots in the study area.

Lidar data can provide valuable canopy information such as
height and percent cover but, as anticipated, did not distinguish
relative changes in foliage-level geometry (i.e. needle-to-shoot
ratios) that contribute to the determination of individual clumping
factors. When clumping is accounted for by basal area weighted
correction factors over mixed-species stands, it results in an
increase in observed LAI that is not readily detected by the lidar
system.

4.2. Addition of SPOT covariates

Integrating SPOT-derived SVIs only slightly improved the LAI
estimates relative to those obtained via lidar metrics alone. Given that
the red and near infrared bands, and at times, the mid-infrared are the
most common wavelengths used to characterize vegetation amount,
health, and productivity, we anticipated that their integration with
lidar would serve to significantly increase the model capacity to
estimate LAI. However, only the LAIe models for the NPR and the
COMBINED dataset utilized information related to red reflectance.

Only spectral information calculated with bands from the visible
portion of the electromagnetic spectrum (EMS) were selected as
covariates in the integrated lidar-SPOT models. GREEN_STDEV,
representative of texture, was the most prevalent SPOT covariate
included in integrated models. Green leaf/needle spectral response is
characterized by high absorptance of photosynthetically active
radiation in the blue and red spectra and peak reflectance in the
green spectra. Inclusion of green spectral response to estimate LAI,
while not as common as red or NIR reflectance, is not unprecedented.
For instance, Gitelson et al. (2004) developed a SVI that incorporated
green reflectance because it was found to remain sensitive to changes
in LAI for maize canopies (particularly LAIN3), and Walthall et al.
(2004) applied Gitelson et al.'s (2004) index to estimate LAI of corn
and soybean canopies. Falkowski et al. (2005) found that information
contained in the visible portion of the EMS (e.g. green and red

wavelengths; GRVI) had increased predictive value compared to NDVI
and SR for estimating canopy closure of mixed conifer stands in
northern Idaho. Cosmopoulos and King (2004) included green and red
textural covariates derived from high resolution digital camera
imagery to improve prediction of a forest structural index developed
by Olthof and King (2000) in a mixed boreal forest in northern
Ontario, Canada. Image texture information is not limited to visible
information contained in visible wavelengths. Wulder et al. (1998), in
a study of LAI for mixed-wood stand in southeast New Brunswick,
Canada, reported maximum improvement to R2 from inclusion of
textural measures derived from both red and near infrared wave-
lengths obtained from the compact airborne spectrographic imager
(CASI).

4.3. Consideration of error sources

Several sources of error are considered within the scope of
interpreting results of our study. First, there are temporal discrepan-
cies between the lidar, SPOT, and LAI data acquisitions. Maximum
temporal differences in lidar acquisition versus LAI measurements
range from 4 to 5 years for the SJW and NPR, respectively.
Furthermore, SPOT data for the NPR were collected to correspond
with the study area's lidar acquisition; however this was early in the
summer of 2002, while LAI measurements for the area were collected
in the late summer and/or fall of 2006 and 2007. The SJW SPOT 5
image was collected in August 2006 to correspond with the field
sampling but 3 years after the lidar acquisition. Issues corresponding
to vegetation phenology, particularly for understory vegetation and
deciduous components, may have influenced the capacity of the SPOT
5 data to more accurately quantify LAI. We mitigated some of these
discrepancies by only sampling plots that were not treated (e.g.
cleared, thinned, mechanical fuel reduction, etc.) between lidar and
field data acquisitions. Very young stands were also excluded from our
analysis based on the rationale that young stands would grow at a
more rapid rate, and thus exhibit greater differences than more
mature stands. Despite the temporal inconsistencies, models were
able to account for a significant proportion of variation in LAI for both
study areas and the region as awhole because changes in LAI of conifer
stands, excluding disturbance, are gradual and typically occur over the
course of several growing seasons. This is consistent with the findings
of Grier and Running (1977) who, in a study of leaf area of mature
conifer forests in the Pacific Northwest, cited previous research to
state that “leaf area of forest communities reaches a more of less
steady state early in succession.”

Additional sources of error may be attributed to data acquisition
parameters and processing techniques. For instance, relationships
among biophysical characteristics and satellite imagery can be
influenced by solar elevation, viewing geometry, soil background
and moisture concentrations (Jacquemoud et al., 1995) and atmo-
spheric corrections (Running et al., 1986). Errors in LAI sampling
strategy and measurement theory may also influence empirical
relationships. Topographic characteristics, consistency between refer-
ence (i.e. above-canopy) and under-canopy readings, and canopy
architecture can contribute to uncertainty. While reasonable efforts
were taken to lessen potential error sources some situations are
seemingly unavoidable. For instance, since PIPO exist in relatively
open canopy systems, the LAI-2000 sensor is more likely to under-
estimate LAI in mature dominant and co-dominant PIPO stands due to
disproportionate weighting of canopy gaps observed on one side of
the sensor compared to relatively few contactsmeasured from a single
or few PIPOs within a plot.

Lastly, the suitability and reliability of ordinary least squares
regression, whilst the most commonly employed empirical estimation
tool to relate remote-sensing data to field observations has been
questioned due to ambiguity in variable specification and measure-
ment error of predictor variables (Curran & Hay, 1986). Several recent
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studies (Cohen et al., 2003; Fernandes & Leblanc, 2005; Lefsky et al.,
2005a; Pocewicz et al., 2007) have examined alternative empirical
regression procedures to estimate forest structural characteristics in
consideration of such issues. Finally, alternativemethods to regression
have also been evaluated. For example, Magnussen and Boudewyn
(1998) found that plot-level LAI could be described as a function of the
vertical distribution of lidar pulse returns within a plot. In general,
analysis of foliage height profiles to characterize LAI and other canopy
structure characteristics is a topic of interest (Coops et al., 2007; Lefsky
et al., 1999; Lovell et al., 2003) as is relating lidar data to canopy gap
fraction theory for LAI estimation using both aircraft (Hopkinson &
Chasmer, 2007) and ground-based lidar (Clawges et al., 2007; Danson
et al., 2007).

5. Conclusion

The two selected study areas represent a diverse assemblage of
ecoregional characteristics, climatic conditions, and anthropogenic
influences includingmanagement ideology and implementation. Such
factors control the type, density, and location of vegetation both
within an individual stand and the region as a whole. Despite this
matrix of variable forest conditions, lidar datawere able to account for
a significant amount of variation in measured LAI for both individual
study areas and when generalized to a region. SPOT data, when added
to lidar-derived models, only slightly increased overall performance,
yet contributed no additional predictive value for others aside from
slightly reducing residual errors. Of notable importance, however,
were the robust estimates of LAI quantities for the COMBINED dataset,
which incorporated lidar data with slightly different acquisition
parameters. This study has demonstrated the potential for lidar
datasets with similar acquisition parameters to be merged for region-
wide estimates of LAI. This finding is significant because it indicates
that lidar data sharing through regional collaboration among agencies,
corporations, and research institutionsmay facilitate the development
of improved LAI datasets for specific ecosystems and regions.

LAI modeling within a multiple regression framework resulted in
robust estimates across a range of physiographic conditions present in
north Idaho, though generalized errors of corrected LAI were
substantially larger than effective LAI. Because the RMSE for corrected
LAI was 1.8 and 1.3 (i.e. 35% and 52% of the mean lidar-estimated LAI
values) for the SJW and NPR, respectively, the application of a global
regression model to map corrected LAI would result in area-wide
estimates that could still introduce substantial error into subsequent
ecological and/or biophysical modeling scenarios. As a result, future
LAI mapping efforts that incorporate the fundamental contribution of
species- and canopy architecture-specific clumping indices need to be
taken into account to generate spatially-distributed estimates for this
region and beyond (Chen et al., 2005a).
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