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Abstract. Remote sensing provides critical information for broad scale assessments of 
wildlife habitat distribution and conservation. However, such efforts have been typically 
unable to incorporate information about vegetation structure, a variable important for 
explaining the distribution of many wildlife species. We evaluated the consequences of 
incorporating remotely sensed information about horizontal vegetation structure into current 
assessments of wildlife habitat distribution and conservation. For this, we integrated the new 
NLCD tree canopy cover product into the US GAP Analysis database, using avian species and 
the finished Idaho GAP Analysis as a case study. We found: (1) a 15-68% decrease in the 
extent of the predicted habitat for avian species associated with specific tree canopy 
conditions, (2) a marked decrease in the species richness values predicted at the Landsat pixel 
scale, but not at coarser scales, (3) a modified distribution of biodiversity hotspots, and (4) 
surprising results in conservation assessment: despite the strong changes in the species 
predicted habitats, their distribution in relation to the reserves network remained the same. 
This study highlights the value of area wide vegetation structure data for refined biodiversity 
and conservation analyses. We discuss further opportunities and limitations for the use of the 
NLCD data in wildlife habitat studies. 

Keywords: species distribution model, National Land Cover Database, avian habitat, GAP, 
horizontal vegetation structure, wildlife conservation. 

1 INTRODUCTION 
 
Maps describing the distribution of wildlife species are of great importance for biodiversity 
and conservation assessments. Because remote sensing provides the only means for 
measuring a range of habitat characteristics across broad scales, scientists commonly use 
remote sensing data to model species distribution [1-4]. Specifically, because vegetation 
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characteristics hold great predictive potential for the distribution of wildlife species [5-7], 
satellite based land cover and vegetation maps are actively used in the modeling process [8-
10]. An example of these efforts is the Gap Analysis Program (GAP) in the United States, a 
major governmental initiative to model the distribution of wildlife species with remote 
sensing and associated geospatial datasets, with the main purpose of assessing species 
conservation for the country [11-13]. Furthermore, the GAP approach has been applied 
worldwide [14,15]. 

Although land cover maps are considered adequate to derive species distribution models 
[11,16] they may not adequately represent the relevant vegetation characteristics for many 
species’ habitats. For example, ecologists have long understood that the presence of certain 
bird and mammal species can be highly dependent on particular conditions of forest structure, 
such as those related to tree canopy cover [17,18]. However, land cover and vegetation maps 
typically do not characterize forest structure. If geospatial data used to support habitat models 
are not adequate to represent the relevant species-environment relationships, the final 
distribution maps may not match the observed or expected distributions [19-21], affecting 
subsequent conservation or biodiversity assessments generated from those maps. The lack of 
accurate, high spatial resolution biophysical data is considered a major limitation to producing 
more reliable predictions of species distribution [21]. For broad scale modeling efforts such as 
those from GAP, detailed information about percent tree canopy cover has been recognized as 
a major need [22,23]. 

The recently completed tree canopy cover product of the 2001 National Land Cover 
Database (NLCD 2001 [24], herein after NLCD_TCC), provides new information about 
horizontal vegetation structure in the United States, and therefore may serve to fill this 
important need in wildlife habitat modeling. Originally developed to support land cover 
requirements for the country, the NLCD_TCC is a nationwide map containing information 
about the percentage of tree canopy cover at a Landsat spatial resolution (i.e. 30-meter pixel). 
Evaluating the consequences of incorporating forest structure information into broad scale 
predictions of species distribution is important given the significance that these maps have for 
supporting conservation and biodiversity assessments.     

In this study, we integrated GAP and NLCD2001data in order to (1) quantify differences 
in accuracy of GAP predictions of species distribution given the inclusion of tree canopy 
cover data (i.e. NLCD_TCC), (2) quantify differences in GAP estimates of species 
distributions and species richness patterns given the inclusion of tree canopy cover data, and 
(3) quantify differences in the GAP estimates about the species representation within the 
network of protected lands.  

We addressed these questions using a case study comprised of data from the finished 
Idaho GAP Analysis (ID-GAP, [22]). Idaho contains a diverse array of ecosystems and 
environmental gradients, and is therefore a good test bed for understanding the general 
applicability of these questions. From a total of 238 species of birds that occur in Idaho, the 
ID-GAP identified 37 species that are known to occur under specific tree canopy cover 
conditions, equivalent to 1 in every 7 birds species present in the state. The authors indicated 
that the predicted distribution of these 37 species was likely overestimated because the models 
did not incorporate tree canopy cover constraints [22], but no formal evaluation was made. 
Our study is an attempt to evaluate the consequences for GAP assessments brought about by 
the inclusion of novel remote sensing data about vegetation structure. We worked from a GAP 
perspective because GAP projects are developed across the United States (although the 
approach has been applied internationally), and because data from GAP are actively used in 
conservation and planning efforts. However, lessons from this study do not relate solely to 
GAP and/or the United States; they may also help to assess the value of remote sensing 
products for advancing biodiversity and conservation assessments regardless of geographic 
location worldwide. 
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2 MATERIALS AND METHODS 

2.1 GAP predictions of species distribution and the NLCD2001 tree canopy 
cover product 
GAP predictive maps of species distribution are developed at a State or regional (i.e. multi-
State) scale, using a two-step process [25]. First, the species’ geographic range is determined 
by placing the known species occurrences (from GPS points from field surveys, recent 
museum records, and species lists) in geographic subunits (represented typically by the 635-
km2 hexagon grid from the Environmental Protection Agency Ecological Mapping and 
Assessment Program, or EPA-EMAP). About four hundred hexagons are needed, for 
example, to cover Idaho. Second, information about species-habitat associations (from the 
scientific literature) is used to identify the suite of (Landsat derived) land cover types, special 
habitat features (e.g. riparian areas, distance to water bodies, distance to roads) and/or other 
environmental variables that are suitable for the particular species. The predicted species 
distribution maps are obtained by intersecting the hexagon based range map with the fine 
scale habitat requirements. For more information please see the GAP web page 
<http://GAPanalysis.nbii.gov>). 

The NLCD_TCC product [24] characterizes nationwide vegetation characteristics for the 
year 2001. The product was developed using Landsat 7 ETM+ satellite imagery in 66 
different mapping zones. Within each zone, multiple digital orthophotoquads (DOQ’s) were 
classified into either tree canopy or non-tree canopy areas at 1-m resolution, and these values 
were then aggregated to the 30 meter scale to determine the percentage of tree canopy [24]. 
By combining these DOQ derived training data with Landsat spectral data and ancillary 
information, tree canopy cover predictions were developed using regression tree algorithms. 
Predictions were applied in areas corresponding to deciduous, coniferous, and mixed forests, 
woody wetlands, and developed open space. A cross-validation procedure reported an 
accuracy of about 85%. For more information please see the Multi-Resolution Land 
Characteristics (MRLC) Consortium website <http://www.mrlc.gov>. 

2.2 Study area 
Idaho encompasses about 216,000 km2 in the northwestern United States. Forests 

represent about 78,000 km2 (~40% of the state), are comprised mostly of coniferous species, 
and occur principally in the mountainous regions of the north and central part of the state (Fig. 
1). The southern portion of Idaho is dominated by sagebrush and shrub-steppe vegetation 
(33% of the state), and grasslands and agricultural lands (24%). Riparian vegetation, 
wetlands, and urban areas cover less than 4% (Scott et al., 2002b). Protected lands (i.e. 
reserves) represent about 12% of the state. About 70% of the lands in Idaho are public with a 
majority under US Forest Service management. Excluding riparian areas, forests support the 
highest wildlife diversity [22]. Forests are subject to a variety of anthropogenic and natural 
processes that can influence structure and function, such as such as those related to timber 
extraction, wildfires, blowdowns and landslides.  

2.3 Data 
The data used in this study are of public domain. Data from the ID-GAP were obtained from 
the GAP server <http://www.GAPanalysis.nbii.gov>, including: (1) species geographic range 
maps, (2) predicted species distribution models and maps, (3) land cover classification map 
(developed from Landsat imagery from 1996-1998) (see Fig. 1), (4) map of protected areas, 
(5) ID-GAP Final Report, and (6) metadata. The MRLC Consortium’s portal 
<http://www.mrlc.gov> provided the NLCD_TCC coverage for Idaho (zones 01 and 03) (see 
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Fig. 1). We used ArcGIS V9.2 (1999-2006 ESRI Inc.) and ERDAS IMAGINE V9.1 (Leica 
Geosystems) to process the data. 
 

 
Fig. 1. Simplified land cover map and tree canopy for Idaho. 

2.4 Approach 
The overall approach of this study can be summarized in 3 major steps: (1) identification of 
the species’ tree canopy cover preference, (2) prediction of the species distribution with the 
new biophysical data (e.g. the NLCD_TCC), and (3) evaluation of species conservation and 
biodiversity patterns. Steps one and two focused on the 37 bird species identified by the ID-
GAP as depending on specific conditions on tree canopy cover (and whose habitats have been 
probably overestimated due to the lack of such data layers). Step three was conducted at two 
different levels: one that considered the 37 species, and other that included the entire pool of 
bird species in Idaho (n=238).  

First, we identified the tree canopy preferences for the 37 species of birds using a 
classification system suggested by the ID-GAP [22], which includes 3 categories: low tree 
canopy cover (<=40%), medium tree canopy cover (>40% and <=70%), and high tree canopy 
cover (>70%). The ID-GAP provides tree canopy preferences for 20 of the 37 species. We 
provided information for the other 17 species using (1) internet based scientific reviews, such 
as The Birds of North America Online <http://bna.birds.cornell.edu/BNA/>, the Point Reyes 
Bird Observatory (PRBO) Conservation Science <http://www.prbo.org>, and reports from the 
US Forest Service Timber Management and Wildlife Interactions Project and Fire Effects 
Information System database <http://www.fs.fed.us/>; (2) recent studies (e.g. [26.27]), and 
(3) expert opinion. 

Second, we refined the ID-GAP species distribution models by adding the NLCD_TCC 
data. This is equivalent to subtracting from the original ID-GAP species distribution maps 
those areas that did not meet the species’ habitat preferences in terms of tree canopy cover. As 
a result, we developed 37 new species distribution maps. We assumed no changes in 
vegetation between 1998 (the year of the ID-GAP data) and 2001 (the year of the NLCD 
data).  

Third, we compared the original (i.e. ID-GAP) and the refined (i.e. with the NLCD_TCC) 
predicted distribution maps. We evaluated the changes in terms of total extent of the predicted 

Journal of Applied Remote Sensing, Vol. 3, 033568 (2009)                                                                                                                                    Page 4



habitat as well as in the proportion of the predicted habitat that occur within the network of 
protected lands. We created maps of species richness for the 37 species before and after the 
NLCD_TCC, as well as for the entire pool of species (n=238). For the entire species pool, we 
used two different spatial scales of analysis: GAP hexagon (635 km2) and Landsat pixel (900 
m2). We compared the new maps of species richness with the original from the ID-GAP in 
terms of number of species and regional distribution of biodiversity patterns.  

2.5 Accuracy assessment of the new maps of bird species distribution 
We followed the GAP protocol for accuracy assessment [11], using the independent reference 
data provided by the ID-GAP. GAP uses reference information from locations where high 
confidence lists of species occurrences have been compiled [25]. Species lists are used 
because GAP projects develop maps for hundreds of species and over millions of hectares, 
which makes it impossible to conduct a thorough, field based accuracy assessment of each 
species map using randomly sampled locations [25]. With this, GAP provides a measure of 
overall agreement between the predictions and the set of known species locations, and a 
measure of omission error (failure to predict a species that was present). However, GAP 
assessments do not provide an estimate of commission errors (prediction of species 
occurrence in unoccupied area), which is an inherent limitation of GAP [11,25]. In species 
distribution assessments, commission is more difficult to measure than omission due to the 
challenges associated with the true and apparent absences in the reference data [28-30]. 
Although [31] suggested that commission errors can be considered risk-aversive for GAP-
related purposes, information about both commission and omission errors is ultimately 
important for species distribution maps used in conservation assessment and planning [19,32]. 
Finally, if five or fewer reference sites are available for assessing the accuracy of a given 
species, the accuracy assessment for that species is considered not reliable [25]. 

The independent reference data (i.e. species list) from the ID-GAP encompasses 62 sites. 
We calculated the % of correct predictions (CP%) and the % of omissions (OM%) for each of 
the new 37 species maps, and compared the predictions’ accuracy (i.e. CP% and OM%) 
before and after the inclusion of tree canopy cover data. Evaluating omission error is 
important for this study because incorporating tree canopy constraints in the original ID-GAP 
species-habitat models will likely reduce the extent of the predicted habitats in different 
amounts.  

In addition, we were able to evaluate commission errors. The ID-GAP indicated that the 
initial distribution of the 37 species was likely overestimated because the models did not 
incorporate tree canopy cover data [22], but no formal evaluation of the commission error was 
conducted because of the GAP limitations previously mentioned. We evaluated the magnitude 
of the initial commission errors by quantifying the changes in the extent of the predicted 
habitats after adding the tree canopy data. If omission errors are not added after including the 
tree canopy constraints, any reduction in the predicted habitat will be a consequence of a 
decrease in original overestimations, and thus, in commission errors. This estimate of 
commission error is not a result of an accuracy assessment using independent data, but rather 
is a measure of improvement that arises from interpreting the outputs from the original 
species-habitat models with the new, more precise ones. 

3 RESULTS 

3.1 Observed species-habitat associations based on NLCD_TCC and expected 
distribution patterns 
Five major groups of species emerged after evaluating the species-habitat relationships with 
respect to land over type (simplified to forest/non-forest) and tree canopy cover (i.e. 
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NLCD_TCC) for the 37 avian species (Fig.2). The groups covered a wide range of habitat 
characteristics; from groups of species that occur both in non-forests and open forests (i.e. 
forest cover <40%, group 1), to groups of species that occur only in closed forests (i.e. >70% 
tree canopy cover, group 5). The number of species in each group was variable, with more 
species in groups associated with forest and non-forest lands (groups 1 and 2) than in groups 
exclusive from forests (groups 3, 4, and 5). These groupings provided insights about potential 
patterns of species richness for these 37 species: including (1) open forest pixels were 
expected to support more species than closed forest pixels, and (2) incorporating tree canopy 
cover data might produce small changes in open forest pixels, but relatively larger changes in 
closed forest pixels (see Fig.2). 
 

 
Fig. 2. Distribution of the 37 avian species according to land cover (simplified to 

forest/non-forest) and tree canopy cover preferences (three classes). Five groups of 
species were identified based on similar species-habitat relationships. Potential 
values of maximum species richness for scenarios with and without tree canopy 

information are also shown. Overestimation range refers to areas (in terms of habitat 
associations) where the distributions of the species have been overestimated 

according to the knowledge of the species’ natural history. 

3.2 Predicted species distribution incorporating NLCD_TCC data  
The extent of the predicted species distributions decreased markedly after incorporating the 
tree canopy cover data. For thirty of the thirty-seven bird species, the new predicted habitat 
was 15% to 68% smaller than the original predicted by the ID-GAP (Table 1). For species 
associated with both non-forested and forested lands (i.e. groups 1 and 2), the decrease in 
predicted habitat became larger as forest affiliation increased. For example, the smallest 
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reductions in habitat (<=5%) occurred in six avian species that typically occur in grasslands 
and/or shrublands but use some forests marginally (e.g. Lark sparrow; Table 1).  

Table 1. Predicted habitats before and after the NLCD_TCC. The table includes estimates of total 
habitat area, and area predicted within protected lands (i.e. reserves). Area unit corresponds to thousands 

of km2. The species are presented by groups (denoted by the letter “G”) similar to Fig. 2. 

Species common name B
ef

or
e

A
ft

er

%
 D

iff
.

B
ef

or
e

A
ft

er

%
 D

iff
.

B
ef

or
e

A
ft

er

D
iff

.

Lark sparrow 100 99 -0.6 6 6 -0.9 5.6 5.6 0.0
Loggerhead shrike 109 108 -0.6 6 6 -0.5 5.1 5.1 0.0
Common nighthawk 120 119 -1.0 8 8 -1.7 6.4 6.4 0.0
Common poorwill 86 83 -3.2 6 5 -1.6 6.4 6.5 -0.1
Golden eagle 206 152 -26.3 25 14 -45.8 12.2 8.9 3.2
Common raven 212 154 -27.3 25 14 -45.7 11.9 8.9 3.0
Brown-headed cowbird 208 150 -27.9 24 13 -47.6 11.7 8.5 3.2
Long-eared owl 143 96 -32.5 21 10 -49.7 14.5 10.8 3.7
Lazuli bunting 158 100 -36.6 22 11 -52.4 14.0 10.5 3.5
Cedar waxwing 123 66 -46.3 18 6 -64.5 14.5 9.6 4.9
Broad-tailed hummingbird 62 27 -56.8 9 3 -60.9 13.8 12.5 1.3
Western tanager 84 27 -67.8 16 5 -69.9 19.6 18.3 1.2
Blue-gray gnatcatcher 31.0 30.9 -0.1 3 3 0.0 8.3 8.3 0.0
Brewer's blackbird 131 130 -0.9 9 9 -1.0 6.8 6.8 0.0
Black-capped chickadee 16 15 -8.3 1 1 -5.2 8.8 9.1 -0.3
Peregrine falcon 138 116 -15.8 19 14 -23.6 13.5 12.2 1.2
Red-tailed hawk 213 177 -16.8 25 18 -28.3 11.9 10.3 1.7
Northern flicker 209 173 -17.1 24 17 -29.4 11.6 9.9 1.7
Turkey vulture 188 155 -17.5 20 14 -31.0 10.7 9.0 1.8
Blue grouse 114 79 -31.1 19 12 -37.9 16.6 14.9 1.6
Dusky flycatcher 96 61 -36.9 17 10 -41.8 17.8 16.4 1.4
Chipping sparrow 96 60 -37.1 18 10 -40.7 18.4 17.3 1.0
Oregon (Dark-eyed) junco 95 60 -37.1 18 10 -40.8 18.4 17.3 1.1
Black-headed grosbeak 75 46 -38.4 14 8 -42.7 18.3 17.0 1.3
Fox sparrow 90 54 -39.4 17 10 -42.4 18.7 17.8 0.9
Cassin's finch 88 54 -39.5 17 10 -41.2 19.6 19.1 0.5
Northern saw-whet owl 78 43 -44.4 16 9 -44.2 20.7 20.8 0.0
Great gray owl 76 42 -44.8 16 9 -44.3 21.0 21.2 -0.2
Flammulated owl 37 22 -40.9 6 3 -45.1 16.9 15.7 1.2
Cassin's vireo 81 46 -43.5 16 8 -45.7 19.2 18.4 0.8
Clark's nutcracker 73 39 -46.7 15 8 -46.3 21.0 21.1 -0.2
Chestnut-backed chickadee 47 39 -15.2 10 8 -15.8 21.0 20.8 0.1
Cordilleran flycatcher 74 58 -22.4 15 12 -22.5 20.6 20.6 0.0
Northern goshawk 80 61 -23.7 16 12 -22.6 19.4 19.7 -0.3
Red-breasted nuthatch 80 61 -23.9 16 12 -22.6 19.6 19.9 -0.3
Pileated woodpecker 70 36 -48.6 15 8 -50.2 21.9 21.2 0.7
Northern pygmy-owl 78 38 -50.8 15 8 -50.7 19.8 19.9 -0.1

Predicted habitat 
area within 

protected lands

% of habitat 
within protected 

lands

G
4

G
2

G
3

G
5

Predicted 
habitat area

G
1

 
Generalist species such as the Common raven, Golden eagle, or Brown headed cowbird,  
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which are known to occur in almost any type of land cover, reported intermediate decreases in 
habitat size (15% to 30%), while species that utilize forested areas more frequently (yet 
occasionally use some non-forest lands; e.g. Cedar waxwing) reported the highest changes in 
habitat size (decreasing between 30% and 68% from the original estimates). Finally, for those 
species that occur exclusively in forests (groups 3, 4, 5), the changes in the predicted habitat 
differed depending on the tree canopy preferences. The predicted habitat for species which are 
thought to occur in forests with tree canopy density <70% or >70% showed a similar decrease 
in habitat (between 40% and 50%), while those species that occur in forests with tree canopy 
density >40% showed a smaller habitat reduction (between 15% and 25%). 

3.3 Model evaluation 
The accuracy assessment of the 37 new predictive species distribution models revealed 

that the incorporation of the tree canopy cover constraints did not result in the addition of 
omission errors. This was true for all of the species. As a result, neither the percent of correct 
predictions (CP%) nor the percentage of omission (OM%) changed after incorporating the 
tree canopy cover data (Table 2). Because model refinement resulted in habitat reduction 
without the incorporation of omission errors, the observed changes can be attributed to a 
decrease in previous commission errors/overestimations. Most of the species models were 
assessed with 10 to 40 reference sites. Only 3 species were below the ideal minimum of 5 
sites (sensu Jennings, 2000), and thus, their accuracy assessment might be unreliable.  

Table 2. Accuracy assessment of the initial (i.e. ID-GAP) and refined (i.e. ID-GAP + NLCD_TCC) 
predicted species distributions, including the number of sites used for evaluation, the % of correct 

predictions (CP%), and the % of omissions (OM%). 

  ID-GAP ID-GAP + NLCD_TCC 
Species common name 

Reference 
sites (#) CP% OM% CP% OM% 

Black-capped chickadee 25 100 0 100 0 
Black-headed grosbeak 18 94 6 94 6 
Blue grouse 18 100 0 100 0 
Blue-gray gnatcatcher 1 0 100 0 100 
Brewer's blackbird 32 97 3 97 3 
Broad-tailed hummingbird 8 75 25 75 25 
Brown-headed cowbird 31 100 0 100 0 
Cassin's finch 14 100 0 100 0 
Cassin's vireo 14 93 7 93 7 
Cedar waxwing 17 100 0 100 0 
Chestnut-backed chickadee 5 100 0 100 0 
Chipping sparrow 26 92 8 92 8 
Clark's nutcracker 15 93 7 93 7 
Common nighthawk 25 96 4 96 4 
Common poorwill 9 100 0 100 0 
Common raven 29 100 0 100 0 
Cordilleran flycatcher 5 100 0 100 0 
Dusky flycatcher 13 100 0 100 0 
Flammulated owl 4 100 0 100 0 
Fox sparrow 10 100 0 100 0 
Golden eagle 25 100 0 100 0 
Great gray owl 5 100 0 100 0 
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Lark sparrow 11 100 0 100 0 
Lazuli bunting 19 100 0 100 0 
Loggerhead shrike 10 100 0 100 0 
Long-eared owl 14 100 0 100 0 
Northern flicker 40 100 0 100 0 
Northern goshawk 15 100 0 100 0 
Northern pygmy-owl 11 100 0 100 0 
Northern saw-whet owl 14 100 0 100 0 
Oregon (Dark-eyed) junco 21 100 0 100 0 
Peregrine falcon 2 100 0 100 0 
Pileated woodpecker 13 100 0 100 0 
Red-breasted nuthatch 16 100 0 100 0 
Red-tailed hawk 38 100 0 100 0 
Turkey vulture 21 100 0 100 0 
Western tanager 20 100 0 100 0 

3.4 Species representation within the network of protected lands 
The extent of the species’ predicted habitat within protected lands decreased markedly 

after incorporating the tree canopy cover constraints (Table 1). For most species, these 
reductions were equivalent to 20% and 60% of the original area. Few species from groups 1 
and 2 showed changes smaller than 5%. However, when evaluating the percentage of the 
predicted habitat within protected lands, we found practically no differences between the 
original ID-GAP estimates and the new ones incorporating tree canopy cover data (t = 1.48, p 
= 0.15) (Table 3). In this sense, the changes in the estimates of the species representation 
within the network of protected lands (i.e. before and after the NLCD_TCC data) did not 
surpass 5% (see last column in Table 1).  

3.5 Patterns of species richness after adding NLCD_TCC data 
The species richness values at the pixel scale changed after incorporating tree canopy 

cover information (Fig. 3). In the map of species richness created with the original predictions 
for the 37 species (i.e. from the ID-GAP), all the forested pixels appeared to support a high, 
and relatively constant, number of species (between 25 and 30). In the map that incorporated 
vegetation structure (i.e. NLCD_TCC), the number of species per pixel was considerably 
lower (between 8 and 22 for most of the forested pixels) (Fig. 3). The difference between the 
two maps revealed that the number of species decreased in practically all the forested pixels 
after incorporating tree canopy constraints, with the largest reductions occurring in areas 
corresponding to closed forests (the north and center part of the state).  Less severe reductions 
occurred in areas dominated by open forests (e.g. the south-central portion of Idaho). 

 The pixel based values of species richness including all the birds in Idaho (n=238) also 
changed after incorporating the 37 new models (Fig. 4 top). Forested pixels showed a 
decrease in the number of bird species, in proportions that ranged mostly between 5% and 
35%. In the original GAP map, forests were dominated by species richness values between 55 
and 80 in the northern and central region, and by slightly lower values in the south. The new 
map (i.e. after the NLCD_TCC) exhibited lower values of species richness in forests, mostly 
ranging between 40 and 60. The changes were higher in areas dominated by closed forests 
than in areas dominated by moderate density or open forests (see Fig. 4 center). When 
evaluating the location of species richness hotspots in the forests of Idaho in relationship with 
the protected lands, the most evident change after adding the tree canopy data was that the 
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richest and largest hotspot shifted towards non protected lands, a pattern that differed from the 
original GAP outputs.  
 

 
Fig. 3. Pixel based, species richness maps for the 37 avian species, including from 
the original ID-GAP predicted habitats and from the new ones incorporating the 
NLCD_TCC. The comparison of species richness between these products is also 

presented. 
 At the hexagon scale, the species composition remained unchanged after adding the tree 

canopy cover data. After refining the predicted distributions of the 37 species with the 
NLCD_TCC there was still some habitat available for all of the original species listed in the 
hexagons. Although the predicted habitat per species decreased within the hexagon, this 
change never resulted in an absence of habitat. The changes observed were a function of the 
species’ preferences and of the characteristics of the dominant vegetation. Hexagons in areas 
dominated by closed forests experienced higher habitat reductions for species associated with 
non-forests and open forests (groups 1, 2, and 3) and smaller reductions in the habitat for 
species associated with denser forests (groups 4 and 5), while the opposite was observed in 
areas of open vegetation (see Fig. 4). Only 6 of the 404 hexagons showed some decrease in 
the species composition, however these were not the typical 635-km2 GAP-hexagons, but 
rather smaller fractions of those hexagons located along the state border (data not shown). 

4 DISCUSSION AND CONCLUSIONS 
Remote sensing data provide vital information for mapping the distribution of wildlife 
species, which is a common requisite for assessing species conservation and biodiversity 
patterns. However, broad scale assessments such as the US GAP Analysis have been 
conducted using species distribution models that do not incorporate information about 
vegetation structure, an important variables explaining the distribution of many birds and 
mammals [5,6,17,26]. In this sense, geospatial layers reflecting tree canopy closure has been 
recognized as a major data need for improving GAP assessments [22,23]. In this study, we 
evaluated the consequences for broad scale species distribution and conservation assessments 
brought about by the inclusion of novel remote sensing data about vegetation structure. We 
integrated the new tree canopy product from the NLCD2001 [24] into GAP species-habitat 
models, using the state of Idaho as a case study. 
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Fig. 4. Pixel based, species richness layers for all the birds in Idaho (n=238), before 

and after incorporating the NLCD_TCC. Subsets of areas dominated by closed 
forest and mid-open forest are shown in the center. Patterns of species richness and 

distribution of protected lands are displayed in the bottom. 

Journal of Applied Remote Sensing, Vol. 3, 033568 (2009)                                                                                                                                    Page 11



The incorporation of the NLCD_TCC into the GAP habitat assessment protocol resulted 
in: (1) remarkable changes in the predicted distribution of many avian species, (2) changes in 
the values of avian species richness at a certain scale, (3) a modified distribution of pixel 
based biodiversity hotspots in forested areas, and (4) surprising results in conservation 
assessment. We improved the predicted distribution models of 37 avian species with the 
NLCD_TCC data, allowing us to represent more precise species-habitat relationships, and 
reducing previous habitat overestimations without incorporating omission errors. As a result, 
the assessments of species distribution and conservation based on these refined predictions 
differed from the original ID-GAP ones (Table 3). Some assessments, however, were not 
sensitive to model refinement. For example, the most representative GAP measure of 
conservation, that is, the percentage of the species habitat occurring within the network of 
protected lands, did not change despite remarkable decreases in the predicted habitat after the 
NLCD_TCC was added (Table 3). 

 Table 3. Summary table of the consequences for GAP assessments brought about by the inclusion of 
broad scale remote sensing data about vegetation structure.  

GAP estimates/assessments
Predicted Species Distribution Maps
  Area Decreased
  Omission error No change
  Commission error Decreased
  Overall accuracy Increased
Species Richness 
  Pixel-based richness Decreased
  Hexagon-based richness No change
Species Conservation Assessment
  Predicted habitat within the network of protected lands (in km2) Decreased
  Predicted habitat within the network of protected lands (in %) No change

Outcome after adding 
the NLCD_TCC

 
At the scale of this study (216,000 km2, with 78,000 km2 of forests) the addition of 

geospatial data of vegetation structure represented the difference between a significant habitat 
overestimation and a more accurate prediction for certain bird species. Modeling the 
distribution of wildlife species that depend on specific conditions of tree canopy closure in the 
absence of such data resulted in large overestimation errors. Similar consequences have been 
observed in other studies with different variables of forest structure For example, [33] noted 
that giant panda (Ailuropoda melanoleuca) distributions were significantly overestimated 
without the inclusion of information about understory vegetation. Similarly, the potential 
distributions of the endangered Delmarva fox squirrel (Sciurus niger cinereus) decreased 
considerably when adding constraints about forest canopy height [34]. Reductions in habitat 
size may have consequences for assessing habitat connectivity [33] or for evaluating the 
species’ conservation status based on available habitat. In this sense, our study showed 
significant habitat reductions for two species listed with the Idaho Department of Fish and 
Game as in greatest conservation need: the Peregrine falcon (Falco peregrinus anatum) and 
the Flammulated owl (Otus flammeolus). While our analysis did not evaluate the size and 
configuration of the new predicted habitats, we speculate that because available habitat 
became more fragmented after incorporating the NLCD_TCC data, our estimates of habitat 
reductions are conservative and could be further refined using, for example, concepts of 
minimum patch size and patch isolation.                  
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It was surprising to find that, after the large reductions in the predicted distributions for 
the 37 avian species that resulted from adding the NLCD_TCC data, the estimates of the 
percentage of the species’ habitats occurring within protected lands remained practically the 
same. The reason for this resides in the similar proportion of tree canopy classes inside and 
outside protected lands, observed in the forests of Idaho. While some forest types were denser 
within protected lands (such as Mixed Subalpine Forest or Mesic Forest), others more open 
(such as Ponderosa pine or Douglas-fir/Lodgepole Pine) and others were relatively similar 
(such as Douglas-fir or Aspen), the combination of all the forest types canceled such 
structural differences; as a result, the proportion of low, medium or high tree canopy cover 
was the same for the forests located inside or outside protected lands (data not shown). The 
inclusion of NLCD_TCC data in the species habitat modeling process therefore reduced the 
predicted habitat in a similar fashion inside and outside the reserves, maintaining the original 
proportions (i.e. by the ID-GAP). In absolute terms, however, the extent of the species 
predicted habitat (for both inside and outside reserves) decreased markedly after including the 
NLCD_TCC. Further study is warranted to evaluate these issues in other regions (e.g. 
broadleaf forests).  

For the assessments of species richness, the modification of the predicted distributions of 
the 37 species produced discernable changes in the pixel based map habitat patterns for all the 
birds in Idaho (n=238). The number of bird species predicted to occur in forested pixels 
decreased as a result of adding tree canopy information. These changes were not 
homogeneously distributed, and in general, areas dominated by closed forests (mainly in the 
Rocky Mountains in the north and central part of the state) were more affected than areas 
dominated by open forests (the southern part). The reason for this is that the majority of the 
original 37 species are associated with open forests and not with closed forests, and thus, 
higher overestimations and changes were observed (see Fig. 4) and expected (see Fig. 2) in 
closed forests. Areas with open forests, including the southern region of the state, exhibited 
smaller changes. A previous study in an open forest area comparable to the southern part of 
Idaho (e.g. a mix of shrublands, sparse forests, some closed forests, and grasslands) found that 
incorporating tree canopy cover in predictive distribution models of avian species did not 
result in significant changes [16]. However, while model refinement decreased the number of 
bird species predicted at the pixel level, it did not alter the number of species predicted at the 
hexagon scale. Differences in responses and patterns of species richness are expected because 
these products represent information with different spatial resolution (hexagon vs. pixel) [35]. 
Between these two spatial scales, there will likely exist a new spatial scale at which the 
consequences of model refinement are still imperceptible for species richness analysis. 

Because the reserve network solution from conservation planning efforts is highly 
sensitive to the quality of the environmental layers and species distribution maps [32,36], 
further research should evaluate the impacts that novel remote sensing derived data have on 
the outputs of reserve design analyses. In our study, for example, the new map of bird species 
richness at the pixel scale revealed the presence of a large biodiversity hotspot located outside 
of the protected lands (see Fig. 5), a pattern not evident in the original ID-GAP data due to the 
habitat overestimation problem that occurs in much of the forests. The importance of this 
hotspot for conservation actions may increase when considering that Idaho is one of the 
fastest growing states in terms of human population and land development.  

The implications of this study, including the potential use of NLCD_TCC data in wildlife 
habitat assessment, reach beyond bird species. Certain mammals are also known to occur 
under specific tree canopy cover conditions; for instance the ID-GAP identified nine species 
whose habitats have been likely overestimated due the lack of tree canopy cover data [22]. 
The list includes species of major economic importance such as elk (Cervus elaphus) and 
mule deer (Odocoileus hemionus), and the fisher (Martes pennanti), which is a candidate to 
be listed under the Endangered Species Act. Considering the relevance of the information 
about the distribution of these species for supporting conservation and management decisions, 
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continue evaluating the incorporation of tree canopy data emerges as an important task for 
Idaho and beyond.  

There is great potential for the immediate application of the NLCD_TCC data for large 
scale biodiversity mapping and conservation assessments. For instance, the US GAP is 
developing a second generation of species distribution models for the North Western states, 
including Oregon, Washington, Idaho, Montana, Wyoming, and California (J. Aycrigg, 
personal communication). In addition, agencies such as the US Fish and Game are focusing 
efforts to improve the predicted habitat maps for their species of interest, such as elk and mule 
deer. Finally, the nationwide development of the State Wildlife Action Plans (SWAP), 
mandated by the US Congress, might provide an additional framework for species-specific 
applications. Global assessments looking for tree canopy data, on the other hand, can 
potentially benefit from the global-1km product developed by the Global Land Cover Facility 
[37].  

The date of the NLCD_TCC data (2001) can be a limitation for analyses seeking to reflect 
the current (i.e. year 2009) landscape. However, for species that depend on some specific 
condition of tree canopy cover, the incorporation of the NLCD_TCC may be more relevant 
than a new land cover that does not reflect vegetation horizontal structure, even if the 
structural layer is few years old. An additional limitation of the use of these data for wildlife 
habitat assessment is spatial extent. The product does not provide information about the 
percent tree canopy cover in areas dominated by grasslands or shrublands, which represent 
about 35% of the United States [24]. These areas can contain some tree cover (< 20%), which 
represent important features for certain wildlife species. The lack of this type of information 
when predicting species distribution in rangelands has been identified as a potential cause of 
omission errors [22].  

The avian modeling refinements made possible by incorporating tree canopy cover data in 
this study highlight the utility of wide area vegetation structure data products for improved 
species distribution and conservation assessments. Although our study focused on the 
horizontal component of forest structure, many species select habitat based on 3-dimensional 
forest canopy structure [5,6]. Information about understory conditions, location of old growth 
forests, and canopy height have been identified, among others, as important variables for 
improving the habitat predictions for some wildlife species [22,23,33,34]. While obtaining 
such information from satellite imagery has been difficult, the relatively new airborne lidar 
(light detection and ranging, or laser altimeter) data may be a potential answer to that problem 
[38]. The availability of such datasets over regions, nations, or continents will open myriad 
novel avenues for advancing biodiversity and conservation assessments. 
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