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1. Introduction

Remote sensing has been used to estimate crop biophysical 
parameters (CBP) such as green leaf area index (GLAI), can-
opy chlorophyll content, the fraction of photosynthetically ac-
tive radiation absorbed by the crop, biomass, vegetation cover, 
and gross primary production using different vegetation indi-
ces, VIs (e.g., Hatfield et al., 2008). Most of the VIs are com-
binations of reflectance in the visible or photosynthetically 
active radiation spectral range (400–700  nm), especially red 
reflectance (620–700  nm), and the near infrared range (NIR; 
750–1300 nm). The most widely used VI in agricultural appli-
cations is the normalized difference vegetation index, NDVI 
(Rouse et al., 1974). Myneni et al. (1997) developed a physi-
cally based algorithm for the estimation of GLAI from NDVI 
observations. As the authors noted, “the algorithm must be 
viewed within a framework dominated largely by practi-
cal consideration and to a lesser extent by accuracy”. The re-
lationship between NDVI and GLAI is essentially nonlinear 
and exhibits significant variations among various vegetation 
types. When GLAI exceeds 2 m2 m−2, NDVI is generally insen-
sitive for assessing changes in GLAI in grasses, cereal crops, 

and broadleaf crops (Myneni et al., 1997; Gitelson, 2004). New 
approaches have been proposed using spectral regions in the 
green and red edge (Buschman and Nagel, 1993; Gitelson et 
al., 1996; Dash and Curran, 2004; Gitelson, 2004). However, 
data from the red edge spectral region are not available from 
the widely used the moderate resolution imaging spectroradi-
ometer (MODIS) sensor and the green band is only available 
in the 500-m resolution MODIS product.

Huete et al. (1997) introduced the enhanced vegetation in-
dex (EVI), which has a higher sensitivity to moderate-to-high 
vegetation biomass; EVI is a widely used product of the MO-
DIS system:

          EVI =           2.5 × (ρNIR – ρred)

           1 + ρNIR + 6 × ρred – 7.5 × ρblue                            
(1a)

The modification of EVI, EVI2, uses only red and NIR bands 
(Jiang et al., 2008):

          EVI2 =      2.5 × (ρNIR – ρred)

             1 + ρNIR + 2.4 × ρred                                             (1b)
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Abstract
The seasonal patterns of green leaf area index (GLAI) can be used to assess crop physiological and phenological sta-
tus, to assess yield potential, and to incorporate in crop simulation models. This study focused on examining the po-
tential capabilities and limitations of satellite data retrieved from the moderate resolution imaging spectroradiometer 
(MODIS) 8- and 16-day composite products to quantitatively estimate GLAI over maize (Zea mays L.) fields. Results, 
based on the nine years of data used in this study, indicated a wide variability of temporal resolution obtained from 
MODIS 8- and 16-day composite periods and highlighted the importance of information about day of MODIS prod-
ucts pixel composite for monitoring agricultural crops. Due to high maize GLAI temporal variability, the inclusion of 
day of pixel composite is necessary to decrease substantial uncertainties in estimating GLAI. Results also indicated 
that maize GLAI can be accurately retrieved from the 250-m resolution MODIS products (MOD13Q1 and MOD09Q1) 
by a wide dynamic range vegetation index with root mean square error (RMSE) below 0.60 m2 m−2 or by the enhanced 
vegetation index with RMSE below 0.70 m2 m−2.
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Gitelson (2004) proposed a nonlinear transformation 
of NDVI, called the wide dynamic range vegetation index 
(WDRVI), in the form:
                 WDRVI   =   × ρNIR – ρred

                   × ρNIR + ρred                                         (2a)
The weighting coefficient,  is introduced to attenuate the con-
tribution of the NIR reflectance at moderate-to-high green bio-
mass, and to make it comparable to that of the red reflectance. 
It was shown that WDRVI retrieved from close range (6  m 
above the canopy) and from MODIS data is linearly related to 
GLAI (Gitelson et al., 2007; Gitelson, 2011). WDRVI can be cal-
culated using MODIS red and NIR reflectances (Equation (2a)) 
or directly from NDVI (Viña and Gitelson, 2005):

                  WDRVI  =  ( + 1) × NDVI + ( – 1) 
                   ( – 1) × NDVI + ( + 1)                        (2b)

The accuracy of CBP estimates depends on the satellite sys-
tem’s temporal and spatial resolutions, and the quality of the 
data due to appearance of clouds, low viewing angles, and 
poor geometry (Chen et al., 2002, 2003; Duchemin and Mai-
songrande, 2002). It has been demonstrated that without cloud 
contamination NDVI is able to quite accurately detect max-
imum values of maize GLAI (e.g., Chen et al., 2003). In addi-
tion to atmospheric interference (e.g., clouds, haze, etc.), NDVI 
also could be affected by contamination from surrounding areas 
due to limited spatial resolution. Smoothing the data obtained 
from VIs over study areas reduces effects of contaminated sig-
nals (Swets et al., 1999; Funk and Budde, 2009). An alternative 
to reduce or eliminate pixel contamination is the selection of 
finer spatial resolution. Data obtained from a spatial resolution 
of 250-m (area is about 6.25 ha) allow quite accurate identifica-
tion of pixels covered by specific crops (Gitelson et al., 2007).

The estimation of CBP and the detection of developmen-
tal stages of agricultural crops are important for government 
agencies, private industry, and researchers. MODIS prod-
ucts offer high quality data at consistent spatial resolutions 
and temporal resolutions derived every 8 or 16 days (Huete et 
al., 1999, 2002; Didan and Huete, 2006). MODIS 8- and 16-day 
composites contain the best possible observations obtained 
during the composite period based on several parameters such 
as view angle, absence of clouds or cloud shadows and aero-
sols (Vermote and Kotchennova, 2008). MODIS 8- and 16-day 
composite data have been used in many agricultural appli-
cations to develop land cover/land use products (Lobell and 
Asner, 2004; Sedano et al., 2005; Lunetta et al., 2006), monitor 
phenology (Zhang et al., 2003; Sakamoto et al., 2005; Wardlow 
et al., 2006), and estimate CBP (Zhu et al., 2005; Chen et al., 
2006; Rochdi and Fernandes, 2010).

MODIS products have also been used to estimate GLAI for 
crop modeling applications. Fang et al. (2008) utilized the MO-
DIS LAI 1000-m product to incorporate into a maize crop sim-
ulation model. Doraiswamy et al. (2004) used data retrieved 
from MODIS 250-m surface reflectance 8-day composite in a 
radiative transfer model to estimate GLAI during the growing 
season and then incorporated GLAI into a maize crop simu-
lation model. Chen et al. (2006) evaluated the potential use of 
data retrieved from MODIS at 250-, 500- and 1000-m resolu-
tions to track maize GLAI and phenology for crop modeling 
applications. However, a detailed evaluation of the effects of 
MODIS temporal resolution on the accuracy of crop GLAI esti-
mates has not been reported to date.

Monitoring of maize GLAI requires a good understanding 
of GLAI changes at each phenological stage in order to evalu-
ate potential capabilities and limitations of the satellite data re-
trieved from MODIS 8- and 16-day composite periods. A pe-

riod of 8 and/or 16 days may represent significant changes in 
maize GLAI especially during the vegetative stage. For exam-
ple, maximum observed rate of maize GLAI change during the 
period of this study was as large as 0.30 m2 m−2 day−1. Con-
sequently, information on day of pixel composite (DPC), in-
cluded in some MODIS products, would appear to be very 
useful for accurately estimating GLAI in maize.

The main goal of this study was to evaluate the accuracy of 
maize GLAI estimates from three MODIS products: (a) MODIS 
vegetation index 16-day composite 250-m (MOD13Q1), (b) MO-
DIS surface reflectance 8-day composite 250-m (MOD09Q1), 
and (c) MODIS surface reflectance 8-day composite 500-m 
(MOD09A1). Specifically, we (i) investigated real temporal res-
olution of 8- and 16-day composite periods and demonstrated 
the importance of the day of pixel composite information for 
increasing the accuracy of maize GLAI estimates; and (ii) cali-
brated and validated models for estimating maize GLAI.

2. Materials and methods

2.1. Field measurements

This research used field data from the Carbon Sequestra-
tion Project at the University of Nebraska-Lincoln located at 
the Agricultural Research and Development Center in Saun-
ders County, Nebraska, USA. Field data were collected over 
three large study sites with different cropping systems. Site 
1 (41°09′54.2″N, 96°28′35.9″W, 361  m) was 48.7  ha planted in 
continuous maize from 2001 until 2009 under irrigated (cen-
ter pivot) conditions. Site 2 (41°09′53.5″N, 96°28′12.3″W, 
362  m) was planted in maize-soybean rotation over an area 
of 52.4  ha under center pivot irrigation. Site 3 (41°10′46.8″N, 
96°26′22.7″W, 362 m) was 65.4 ha planted in a maize-soybean 
rotation under rain-fed conditions. The soils at the three sites 
are deep silty clay loams consisting of four soil series: Yu-
tan (fine-silty, mixed, superactive, mesic Mollic Hapludalfs), 
Tomek (fine, smectitic, mesic Pachic Argialbolls), Filbert (fine, 
smectitic, mesic Vertic Argialbolls), and Filmore (fine, smec-
titic, mesic Vertic Argialbolls). Nitrogen (N) was applied in 
one application at the rain-fed site (site 3) and three applica-
tions at the irrigated sites (sites 1 and 2) according to guide-
lines recommended in Shapiro et al. (2001). This study used 
nine years of data (2001–2009) from site 1 and five years 
of data (2001, 2003, 2005, 2007, and 2009) from sites 2 and 3. 
Within each site, six plot areas (20 m × 20 m) were established 
and called intensive management zones (IMZs) for detailed 
process-level studies (details in Verma et al., 2005). Destruc-
tive samples consisting of five or more continuous plants were 
collected from a 1 m linear row section in the six IMZs for each 
site at 10- to 14-day intervals until maturity. Leaves were sep-
arated into green and non-green portions and total and green 
leaf areas harvested per plant (m2  plant−1) were measured 
with an area meter (Model LI-3100, LI-COR, Inc., Lincoln, NE). 
In each IMZ, the total and green LAI were calculated using the 
plant population density (plants m−2) by:

          Total LAI =  plant population × total leaf area
                            plant                                       (3)

                 GLAI =  plant population × green leaf area
              plant                                       (4)

Total LAI and green LAI were obtained by averaging all 
six IMZ measurements at each site. The mean standard error 
of GLAI measurements was less than 0.15 m2 m−2 during the 
nine years of study. Cubic spline interpolation (in MATLAB®) 
was used to estimate daily values of total LAI and GLAI.
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2.2. Remote sensing data

A time series of MODIS Terra vegetation index 16-day com-
posite 250-m (MOD13Q1), MODIS surface reflectance 8-day 
composite 250-m (MOD09Q1), and MODIS surface reflec-
tance 8-day composite 500-m (MOD09A1) images were down-
loaded from the National Aeronautic and Space Administration 
(NASA) Land Process Distributed Active Archive Center (LP-
DAAC) ( https://lpdaac.usgs.gov/lpdaac/get_data/data_pool 
) for the study area for the April through October period from 
2001 until 2009 (MODIS tile h10v04). All MODIS images were 
processed, reprojected, and converted to the GeoTIFF format 
using the MODIS Reprojection Tool Version 4.0 (MRT) down-
loaded from LPAAC ( https://lpdaac.usgs.gov/lpdaac/tools ). 
The day of year (DOY) for each MODIS image represents the 
first day of the period of the 8- or 16-day composite. The day 
during the composite period when the best observation is re-
corded is called the day of pixel composite. Information on DPC 
is included in the MOD09A1 and MOD13Q1 products but it is 
not available in the MOD09Q1 product. We assumed that the 
DPC during the 8-day composite periods for the MOD09Q1 
product were the same as for the MOD09A1 product.

MOD09A1 provides surface reflectance in 7 bands (band 
1 = 620–670 nm; band 2 = 841–876 nm; band 3 = 459–479 nm; 
band 4 = 545–565 nm; band 5 = 1230–1250 nm; band 6 = 1628–
1652  nm; band 7  =  2105–2155  nm) with resolution of 500-m. 
MOD09Q1 provides reflectance values for bands 1 and 2. 
MOD13Q1 included data for NDVI and EVI, and surface re-
flectances from bands 1, 2, 3, and 7 with 250-m resolution. 
Each study site was geolocated on each MOD13Q1 (Figure 1). 
To avoid pixel contamination, we used NDVI and EVI from 
pixels located as close as possible to the center of the field. Be-
cause the spatial resolution of MOD13Q1 and MOD09Q1 is the 

same (250-m), the locations of selected pixels from MOD13Q1 
were also used to retrieve reflectance data from MOD09Q1 
over the study sites. A similar technique was used to retrieve 
data from MOD09A1 (Figure 2). However, due to the size of 
the field sites, it was not possible to select an uncontaminated 
pixel in each 500-m resolution image.

Surface reflectances from bands 1 and 2 were extracted 
from MOD09Q1 and MOD09A1 products and NDVI and 
WDRVI were calculated for the selected pixels in each study 
site from 2001 until 2009. EVI and EVI2 (Jiang et al., 2008) were 
calculated using MOD09A1 and MOD09Q1 products. Average 
values of NDVI, EVI, and WDRVI of the selected pixels were 
used for further analysis.

EVI and EVI2 were very closely related: determination 
coefficient, R2, was above 0.96 for MOD09A1 and 0.99 for 
MOD13Q1. Thus, from this point onward EVI2 will be referred 
to as EVI for data retrieved from the MOD09Q1 product.

Direct measurements of GLAI under rain-fed and irrigated 
conditions from 2001 until 2004 were used to calibrate mod-
els for GLAI estimation using NDVI, EVI, and WDRVI. The 
WDRVI was calculated using Equations (2a) and (2b) with two 
weighting coefficients  = 0.1 and 0.2. The models were vali-
dated with independent field data taken from 2005 to 2009 un-
der rain-fed and irrigated conditions and the root mean square 
error (RMSE) of GLAI prediction was found for each model.

To test the applicability of VIs to estimate GLAI using dif-
ferent MODIS products with no re-parameterization of the 
GLAI vs. VIs relationship, we performed an analysis of vari-
ance (ANOVA) between the coefficients of the best-fit func-
tions for three products (8- and 16-day composites with 250-m 
resolution and 8-day composite with 500-m resolution) com-
bined vs. the coefficients obtained for each individual product 
(Ritz and Streibig, 2008).

Figure 1. MODIS 250-m 16-day composite (MOD13Q1) pixel locations 
superimposed over study sites in Mead, Nebraska.

Figure 2. MODIS 500-m 8-day composite (MOD09A1) pixel locations 
superimposed over study sites in Mead, Nebraska.
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To determine the accuracy of GLAI estimation, we em-
ployed the noise equivalent (NE) of GLAI (Govaerts et al., 
1999; Viña and Gitelson, 2005) that was calculated as:

            NE ∆GLAI =   RMSE(VIs vs. GLAI)
                           [d(VIs)/d(LAI]                                      (5)

       
where d(VIs)/d(GLAI) is the first derivative of VIs with respect 
to GLAI and RMSE(VIs vs. GLAI) is the root mean square er-
ror of the VIs vs. GLAI relationship. The NE ΔGLAI provides 
a measure of how well the VIs responds to GLAI across its en-
tire range of its variation. NE ΔGLAI takes into account not 
only the RMSE of the GLAI estimation but also accounts for 
the sensitivity of the VIs to GLAI, thus providing a metric 
accounting for both scattering of the points from the best fit 
function and the slope of the best fit function.

3. Results and discussion

3.1. Temporal resolution

Temporal behavior of maize GLAI as a function of day 
of year is shown in Figure 3. The DPC from MOD13Q1 and 
MOD09A1 products is represented by solid bars while the first 
day of the 16- and 8-day composites is represented by dashed 
bars. The real MODIS temporal resolution is a period between 
two consecutive observations, i.e., between two successive 

days of pixel composite, thus, the number of days between the 
solid bars. It can be seen that during the growing season the 
temporal resolution changed widely and may exceed the 8- or 
16-day composite period. During the nine years of the study, 
the real observed temporal resolution of the MOD09A1 prod-
uct (8-day composite) ranged from 1 to 14 days and 50% of the 
observations (116 of 231) had a resolution of more than 8 days. 
The real observed temporal resolution of MOD13Q1 (16-day 
composite) varied from 2 to 30 days with more than 50% of 
the observations (35 of 66) having a resolution of more than 
16 days. In other words, MODIS 8- and 16-day composites did 
not provide data every 8 or 16 consecutive days as has been 
assumed in previous studies (e.g., Chen et al., 2006; Wardlow 
et al., 2006). For example, the MOD13Q1 data retrieved from 
images taken at DOY 209 and 225 were composed on day 223 
and 225, respectively, which represents 2 days between the 
images (Figure 3a) and data retrieved from images taken at 
DOY 161 and 177 were composed on day 161 and 186, thus, a 
period of 25 days occurred between the information retrieved 
from these images (Figure 3a).

The DPC for composite period of 8 or 16 days may repre-
sent significant changes in maize GLAI especially during the 
vegetative stage. Maize GLAI dynamics change according 
to the crop development stage (Figure 3). During vegetative 
stages, maize GLAI changes rapidly; in this study daily values 
of d(GLAI)/d(DOY) ranged from 0.20 to 0.30 m2 m−2 day−1 un-
der rain-fed and irrigated conditions, respectively.

Figure 3. Green leaf area index (GLAI) plotted vs. of day of year (DOY). Solid bars correspond to MODIS day of pixel composite and dashed lines 
correspond to MODIS first day of composite period. MODIS vegetation index 250-m 16-day composite (MOD13Q1) in 2001 (a), 2003 (c) and MO-
DIS surface reflectance 500-m 8-day composite (MOD09A1) in 2001 (b) and 2003 (d).
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The real temporal resolution of MOD09A1 and MOD13Q1 
products varies for each pixel in the image. It can be seen that 
the DPC changed without any predictable pattern (Figure 
4 and Figure 5a). This contradicts assumptions of previous stud-
ies that assumed either the first, last, or mean day of the com-
posite period was appropriate (Chen et al., 2006; Wardlow et 
al., 2006). The real temporal resolution has significant implica-
tions in detecting phenology of agricultural crops. Due to the 
variability in the first derivative of GLAI with respect to DOY, 
d(GLAI)/d(DOY), during growing season, differences in GLAI 
values in a period between two consecutive observations might 
vary widely depending on the development stage (Figures 4b & 
5b). For example, during a 9-day period between two consecu-
tive observations (16-day composite data), change in GLAI may 
be up to 4 m2 m−2 during the vegetative stages while it could be 
less than 1 m2 m−2 during reproductive stages (Figure 4b). Sim-
ilar results were observed for the 8-day composite data where 
changes in maize GLAI were larger during vegetative stages 
compare to reproductive stages (Figure 5b). However, even us-
ing the 8-day composite data, one cannot avoid large uncertain-
ties in GLAI values, ranging from 1 to 3.5 m2 m−2, when the real 
temporal resolution —the period between successive observa-
tions—exceeds 7 days (Figure 5b). These results highlight that 
the real temporal resolution of MODIS composite products 
must be taken into account when MODIS data are used to es-

timate rapidly changing biophysical characteristics (e.g., GLAI) 
of agricultural crops such as maize.

MODIS VIs 16-day composites have been used in many ag-
ricultural applications such as phenology detection (Zhang et 
al., 2003; Sakamoto et al., 2005; Wardlow et al., 2006); however, 
none of these studies mentioned the importance of a period of 
16 days on agricultural crop dynamics especially during the 
vegetative stage. The MODIS 16-day composite (MOD13Q1) 
data might not be able to detect critical developmental stages 
of agricultural crops due to periods between observations 
of up to 30 days (Figure 4a). To evaluate crop condition and 
yield, a technique comparing NDVI values obtained in a cur-
rent growing season with historical NDVI values for the same 
study site has been widely used (e.g., Kastens et al., 2005; Li 
et al., 2007). However, analyses of historical NDVI data that 
do not consider DPC may also lead to erroneous interpreta-
tions. For instance, during the nine years of observation in our 
study, NDVI values obtained from MODIS 16-day composite 
over site 1 on DOY 161 ranged from 0.31 to 0.85.

3.2. Estimation of maize green leaf area index

The first step in testing performance of vegetation indices 
retrieved from MODIS products was to understand how spa-
tial and temporal resolutions affect the accuracy of GLAI esti-

Figure 4.  (a) Number of days between two consecutive observations 
plotted vs. the first day of MODIS composite period (DOY) for MODIS 
vegetation index 250-m 16-day composite period data (MOD13Q1). (b) 
Changes in green leaf area index (GLAI) plotted vs. number of days 
between two consecutive observations.

Figure 5.  (a) Number of days between two consecutive observations 
plotted vs. first day of MODIS composite period (DOY) for MODIS 
surface reflectance 250-m 8-day composite period data (MOD09Q1). 
(b) Changes in green leaf area index (GLAI) plotted vs. number of 
days between two consecutive observations.
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mation by different VIs. We compared relationships of VIs vs. 
GLAI, in which GLAI corresponded to (a) the first day of com-
posite period (denoted as DOY), and (b) the day of pixel com-
posite (denoted as DPC). The GLAI values were obtained by 
cubic spline interpolation of the relationship between destruc-
tively measured GLAI and DOY (Figure 3). In Table 1, deter-
mination coefficients (R2), root mean square errors of GLAI es-
timation, and coefficients of variation (CV) are presented for 
relationships between GLAI and three vegetation indices, EVI 
and WDRVI=0.2 and WDRVI=0.1, retrieved from three MODIS 
products. Data taken in 2001 through 2004 under irrigated and 
rain-fed conditions were used in the analyses.

The main results of the analyses are as follows.
(i) When GLAI at day of pixel composite was used, RMSE of 

GLAI estimation decreased considerably compared with 
the use of GLAI taken at the first day of the composite. For 
250-m 16-day composite data RMSE decreases two-fold.

(ii) An increase in spatial resolution (250-m vs. 500-m) led to 
increasing accuracy; RMSE decrease was 40% for EVI and 
46% for WDRVI.
These findings help to explain results presented by Chen et 

al. (2006) who reported that data obtained from MODIS 250-m 
did not provide more accurate GLAI estimation over maize 
fields compared with MODIS 500-m resolution data. Our anal-
ysis showed similar RMSE of maize GLAI estimation using 
250-m and 500-m resolution without the incorporation of DPC 
data. However, the results presented in Table 1 with the incor-
poration of DPC data clearly show that MODIS 250-m resolu-
tion did provide estimates that are more accurate over agricul-
tural crops compared with MODIS 500-m resolution.

Relationships were established between vegetation indices 
and GLAI, taken at day of pixel composite, for all three MO-
DIS products. Figure 6 presents the relationships between veg-
etation indices (NDVI, EVI, WDRVI=0.2 and WDRVI=0.1) and 
GLAI under rain-fed and irrigated conditions in 2001–2004. 
The relationships between NDVI and GLAI were essentially 
nonlinear for all three MODIS products. While having high 
sensitivity to GLAI below 3 m2 m−2, NDVI tends to saturate as 
GLAI exceeds 3 m2 m−2. As GLAI varied from 4 to 6 m2 m−2, 
NDVI changed from 0.84 to 0.86. This result is in accord with 

results of previous studies (Maas, 1993; Buschman and Nagel, 
1993; Myneni et al., 1997; Gitelson et al., 2003). The relation-
ships of EVI and WDRVI=0.2 with GLAI were also nonlinear; 
however, decreases in sensitivity of VIs to GLAI >3  m2  m−2 
were less pronounced than with NDVI. For all three MODIS 
products, WDRVI=0.1 had linear relationships with GLAI and 
determination coefficient above 0.93 for 250 m data and above 
0.77 for 500 m data (Table 2).

An analysis of variance between the coefficients of the best-
fit functions for three products (250-m 8- and 16-day com-
posites and 500-m 8-day composite) combined vs. the coeffi-
cients obtained for each individual product showed that for 
8- and 16-day 250-m products the relationships between all 
VIs used (NDVI, EVI and WDRVIs) and GLAI are statistically 
similar (NDVI: p  >  0.58; EVI: p  >  0.5, WDRVI=0.2: p  >  0.63; 
WDRVI=0.1: p  >  0.80). Thus, established equations (Table 2) 
can be applied to MODIS 250-m products with no re-param-
eterization. However, relationships between GLAI and VIs 
for 250-m and 500-m resolution products are statistically dif-
ferent with ρ < 0.01 (Table 2). Important to note, for the same 
GLAI, all VIs are consistently higher for 250-m products than 
for 500-m products (Figure 6e–h). This is understandable tak-
ing into account that 500-m data is contaminated by surround-
ing areas with no vegetation (roads) or less vegetation than in 
the fields as is seen in Figure 2.

The determination coefficient, R2, and RMSE of GLAI es-
timation represent the dispersion of the points from the best-
fit regression lines. They constitute measures of how good the 
regression model (best-fit function) is in capturing the rela-
tionship between GLAI and VIs. However, when the best-fit 
function is nonlinear, as in case of NDVI, EVI and WDRVI=0.2 
(Figure 6), both R2 and RMSE values may be misleading. For 
example, although the relationship of NDVI vs. GLAI showed 
values of R2 above 0.90 (Table 2 and Figure 6a), the slope of the 
relationship decreased drastically as GLAI exceeded 3 m2 m−2. 
The relationships of GLAI vs. VIs had similar R2 and RMSE 
(Table 2) but very different shapes (e.g., asymptotic behavior 
in NDVI vs. linear in WDRVI=0.1). Therefore, a different accu-
racy metric was needed to compare the performance of VIs in 
estimating GLAI over the whole range of its variation. We ap-

Table 1. Root mean square error (RMSE), coefficient of variation (CV = RMSE/mean GLAI), and determination coefficient (R2) of the relation-
ships between vegetation indices, VIs (EVI, WDRVI=0.2 and WDRVI=0.1) and green leaf area index (GLAI). VIs were retrieved at the first day of 
the period of the 8- or 16-day composite (defined here as DOY) and at the day during the composite period when the best observation was re-
corded (defined here as day of pixel composite, DPC).

Vegetation index and day of VIs retrieval      MOD09A1, 500 m, 8 d    		  MOD13Q1, 250 m, 16 d; MOD09Q1, 250 m, 8 d
		  RMSE (m2 m−2)	 CV (%)	 R2	 RMSE (m2 m−2)	 CV (%)	 R2

EVI	 DOY	 1.04	 29.02	 0.72	 1.01	 29.54	 0.75
	 DPC	 0.80	 21.79	 0.82	 0.58	 16.31	 0.91
WDRVI=0.2	 DOY	 1.03	 28.73	 0.72	 0.92	 26.96	 0.79
	 DPC	 0.84	 22.94	 0.80	 0.50	 13.95	 0.94
WDRVI=0.1	 DOY	 1.07	 29.91	 0.70	 0.92	 26.91	 0.79
	 DPC	 0.90	 24.50	 0.77	 0.50	 14.08	 0.93

Table 2. Established relationships between green leaf area index (GLAI) and vegetation indices retrieved from three MODIS products. Root mean 
square error (RMSE), coefficient of variation, CV (RMSE/mean GLAI), and determination coefficients (R2) are also presented.

Vegetation index		  Model equation	 RMSE (m2 m−2)	 CV (%)	 R2

	 NDVI	 GLAI = 1.94 − 10.84 × NDVI + 16.53 × NDVI2	 0.49	 13.80	 0.94
MOD13Q1, 250-m, 16 d; 	 EVI	 GLAI = −1.84 + 9.05 × EVI + 0.94 × EVI2	 0.58	 16.31	 0.91 
MOD09Q1, 250-m, 8 d	 WDRVI=0.2	 GLAI = 2.12 + 5.29 × WDRVI=0.2 + 1.29 × WDRVI2

=0.2	 0.50	 13.95	 0.94
	 WDRVI=0.1	 GLAI = 3.96 + 5.69 × WDRVI=0.1	 0.50	 14.08	 0.93

	 NDVI	 GLAI = −0.82 − 1.56 × NDVI + 9.79 × NDVI2	 1.02	 27.79	 0.73
MOD09A1, 500-m 8 d	 EVI	 GLAI = 11.25 × EVI − 2.47	 0.80	 21.79	 0.82
	 WDRVI=0.2	 GLAI = 5.80 × WDRVI=0.2 + 2.63	 0.84	 22.88	 0.80
	 WDRVI=0.1	 GLAI = 5.81 × WDRVI=0.1 + 4.46	 0.90	 24.52	 0.77
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plied the noise equivalent as an indicator of the accuracy of 
GLAI estimation that provides a metric accounting for both 
scattering of the points from the best-fit function and the slope 
of the best-fit function.

Figure 7 shows noise equivalent of GLAI estimation by 
different indices retrieved from MODIS 250-m 8- and 16-day 
composites. NDVI had the lowest NE (highest accuracy) when 
GLAI < 2.5 m2 m−2, while NE increased drastically when GLAI 

Figure 6. Vegetation indices plotted vs. green leaf area index (GLAI) for 250-m resolution data (left column) and 500-m resolution (right column); 
solid lines are best-fit functions. Dashed lines are best-fit functions for 8- and 16-day 250-m resolution data plotted for comparison with 500-m 
data. (a) and (e) normalized difference vegetation index (NDVI), (b) and (f) enhanced vegetation index (EVI), (c) and (g) wide dynamic range veg-
etation index (WDRVI) with  = 0.2, (d) and (h) wide dynamic range vegetation index (WDRVI) with  = 0.1.
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was above 3  m2  m−2. The behavior of the NE of WDRVI=0.2 
was almost the same as NDVI for GLAI < 2.5 m2 m−2, however, 
the rate of NE increase for GLAI > 3 m2 m−2 was much lower. 
The relationship WDRVI=0.1 vs. GLAI was linear (Figure 6d 
& h, Table 2), thus, NE remained constant over the whole 
dynamic range of GLAI (Figure 7). It was the lowest among 
the VIs used for LAI  >  3  m2  m−2. In Table 3 we presented 
NE values for different VIs corresponding to GLAI from 1 to 
6  m2  m−2. It can be seen that NDVI was superior in estimat-
ing GLAI over the range from 0 to 2.5 m2 m−2 (NE was below 
0.46 m2 m−2) and WDRVI=0.1 had the highest accuracy (NE be-
low 0.49 m2 m−2) when GLAI > 3 m2 m−2. Thus, applying the 
NE metric allows direct quantitative comparison among dif-
ferent indices with different scales and dynamic ranges.

We validated the models for GLAI estimation using EVI 
and WDRVI (  =  0.1 and   =  0.2) with independent data 
sets taken from 2005 through 2009. We did not validate the 
NDVI model due to its very low accuracy for estimating 
GLAI  >  3  m2  m−2. VIs values from the validation data sets 
were used to calculate GLAI employing established calibrated 
equations (Table 2) and these predicted GLAI values were 
compared to GLAI measured destructively. Figures 8, 9, & 10 
show the results of the validations. The GLAI vs. EVI model 
was able to estimate GLAI with RMSE below 0.9 m2 m−2 for all 
MODIS products. The linear models of GLAI vs. WDRVI=0.1 
and polynomial models of GLAI vs. WDRVI=0.2 brought 
RMSE below 0.87 for the 500-m resolution product and were 
much more accurate in GLAI estimation using the 250-m res-
olution products: RMSE was below 0.60  m2  m−2 (Figure 11). 
Validation results confirmed that more accurate estimates of 
maize GLAI can be obtained using data taken with higher spa-
tial resolution: the 250-m (MOD13Q1 and MOD09Q1), com-
pared to the MODIS product 500-m resolution (MOD09A1). 
The reason for higher uncertainties of GLAI estimation using  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500-m resolution data is most likely signal contamination by 
surrounding areas (Figure 2).

WDRVI ( = 0.1 and  = 0.2) and EVI allowed more accu-
rate estimation of GLAI taken at DPC than has been reported 
in previous studies using MODIS 250-m resolution products. 
Doraiswamy et al. (2004) estimated maize GLAI with a RMSE 
of 1.11 and 0.63  m2  m−2 using MODIS 250-m and field can-
opy reflectance, respectively. They attributed the difference 

Figure 7.  Noise equivalent of green LAI estimated by NDVI, EVI, 
WDRVI with  = 0.1 and  = 0.2, retrieved from MODIS surface reflec-
tance 250-m 8-day composite (MOD09Q1) and MODIS vegetation in-
dex 250-m 16-day composite (MOD13Q1).

Figure 8. Green leaf area index (GLAI) predicted by established algo-
rithms (Table 2) (a) enhanced vegetation index (EVI), and wide dy-
namic range vegetation index (WDRVI) with (b)  = 0.1 and (c)  = 0.2 
plotted vs. measured GLAI of maize grown under irrigated and rain-
fed conditions from 2005 to 2009. VIs were retrieved from MODIS veg-
etation index 250-m 16-day product (MOD13Q1).

Table 3. Noise equivalent in m2 m−2 of green leaf area index (GLAI) 
estimation by vegetation indices calculated using 250-m 8- and 16-day 
composite MODIS products.

GLAI (m2 m−2)	 NDVI	 EVI	 WDRVI  = 0.2	 WDRVI  = 0.1

1	 0.31	 0.48	 0.38	 0.49
2	 0.4	 0.56	 0.44	 0.49
2.5	 0.46	 0.6	 0.48	 0.49
3	 0.55	 0.66	 0.53	 0.49
4	 0.90	 0.8	 0.67	 0.49
5	 2.43	 1.01	 0.89	 0.49
6		  1.39	 1.36	 0.49
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in RMSE between field and satellite estimation to potential er-
rors associated with MODIS atmospheric correction. On the 
other hand, Zhu et al. (2005) reported a linear relationship in 
grass between GLAI and 250-m resolution MODIS-retrieved 
EVI and NDVI with R2 = 0.82 and 0.78, respectively. Neither of 
these studies mentioned whether information on DPC was in-
cluded in their analyses.

The results presented in this study clearly show that MO-
DIS 250-m spatial resolution products (MOD13Q1 and 

MOD09Q1) can provide more accurate estimates of critical 
growth stages and GLAI for crop modeling applications than 
the MODIS 500-m spatial resolution product (MOD09A1). 
Results obtained during nine years of observation showed 
that maize GLAI can be monitored during the entire grow-
ing season using the EVI and the WDRVI=0.2 quadratic mod-
els and WDRVI=0.1 linear models using data retrieved from 
the MODIS VIs 16-day composite product (MOD13Q1). The 
MODIS surface reflectance 8-day composite 250-m product 

Figure 9. Green leaf area index (GLAI) predicted by established algo-
rithms (Table 2) (a) enhanced vegetation index (EVI), and wide dy-
namic range vegetation index (WDRVI) with (b)  = 0.1 and (c)  = 0.2 
plotted vs. measured GLAI of maize grown under irrigated and rain-
fed conditions from 2005 to 2009. VIs were retrieved from MODIS sur-
face reflectance 250-m 8-day product (MOD09Q1).

Figure 10. Green leaf area index (GLAI) predicted by established al-
gorithms (Table 2) (a) enhanced vegetation index (EVI), and wide dy-
namic range vegetation index (WDRVI) with (b)  = 0.1 and (c)  = 0.2 
plotted vs. measured GLAI of maize grown under irrigated and rain-
fed conditions from 2005 to 2009. VIs were retrieved from MODIS sur-
face reflectance 500-m 8-day product (MOD009A1).
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(MOD09Q1) brings more frequent observations that should 
provide an opportunity for better estimation of crop critical 
stages; however, knowledge of the DPC would dramatically 
enhance its utility in many agricultural applications.

The relationships of GLAI vs. VIs (Table 2) were developed 
on the basis of results obtained in three Nebraska sites during 
four years of observation in 2001–2004. The algorithms were 
validated using data obtained in 2005–2009. We cannot answer 
the question whether these equations can be applied with no 
re-parameterization to estimate GLAI in maize grown in dif-
ferent climatic conditions. However, the algorithms were de-
veloped and validated for maize grown under both irrigation 
management and rain-fed conditions. The nine-year study pe-
riod represents wet years as well as normal and dry years, in 
which the maize in the rain-fed site might suffer from water 
stress to different degrees, while the maize in irrigated sites 
was relatively stress-free. In addition, the density of planting 
in the rain-fed site was much lower than in the irrigated sites 
in order to account for differences in water-limited attainable 
yield. Thus, during the nine years of observations the physio-
logical conditions of crops varied drastically. Despite all these 
differences, as well as wide changes in weather conditions, in 
composition of incident irradiation, and in viewing zenith an-
gle among others, the models presented in the paper were able 
to accurately estimate GLAI with RMSE below 0.60  m2  m−2. 
Thus, the models as presented may likely be applied for maize 
grown in different climatic conditions. However, further stud-
ies should address questions about whether the algorithms re-
quire re-parameterization or not.

4. Conclusions

This study evaluated performance of three MODIS products 
(MOD13Q1, MOD09A1, and MOD09Q1) to quantify green leaf 
area index in maize. The temporal resolution of MODIS data 
(period between two consecutive observations) for this study 
varied widely and reached 15 days for 8-day composites and 30 
days for 16-day composites. Due to maize leaf area index dy-
namics and unpredictable changes in MODIS real temporal res-
olution, the inclusion of day of pixel composite is necessary to 
increase the accuracy of green leaf area index estimates in ag-
ricultural crops. Analysis of noise equivalent of established re-
lationships between VIs and green leaf area index showed that 
accuracy of green leaf area index estimation by NDVI, EVI and 
WDRVI=0.2 varied significantly for different canopy densities. 
Among the vegetation indices studied, only WDRVI=0.1 had a 
linear relationship with green leaf area index and, thus, a con-
stant noise equivalent value below 0.5 m2 m−2 over the whole 
range of green leaf area index from 0 to more than 6 m2 m−2. 
The established relationships using day of pixel composite 
data were validated by independent data sets taken in 2005–
2009. Using MODIS 250-m resolution data, maize green LAI 
was predicted by EVI with RMSE below 0.7 m2 m−2 and by both 
WDRVIs with RMSE below 0.6  m2  m−2. Results also showed 
that MODIS 250-m resolution provides more accurate estimates 
of maize green leaf area index compared to MODIS 500-m res-
olution. Using MODIS 500-m resolution data allows estimates 
of green leaf area index with RMSE around 0.80 m2 m−2 by both 
EVI and WDRVI. Results from this study also suggested that 
the MOD09Q1 product could be the better product to moni-
tor agricultural crops due to higher spatial and temporal reso-
lutions; however, this product does not include information on 
day of pixel composite (collection 5).
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