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Abstract This work presents a rigorous derivation
for the formulation of the J-integral in bond-based peri-
dynamics using the crack infinitesimal virtual exten-
sion approach. We give a detailed description of an
algorithm for computing this nonlocal version of the
J-integral. We present convergence studies (m-conver-
gence and δ-convergence) for two different geome-
tries: a single edge-notch configuration and a double
edge-notch sample. We compare the results with results
based on the classical J-integral and obtained from
FEM calculations that employ special elements near
the crack tip. We identify the size of the nonlocal region
for which the peridynamic J-integral value is near the
classical FEM solutions. We discuss how the boundary
conditions and the peridynamic “skin effect” may influ-
ence the peridynamic J-integral value. We also observe,
computationally, the path-independence of the peridy-
namic J-integral.
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1 Introduction

The J-integral formulation for a linear elastic body in
2D was introduced by Rice (1968). The J-integral value
was shown to be path independent and equivalent with
the energy release rate. The J-integral can be under-
stood both as a fracture energy parameter and as a stress
intensity parameter because J uniquely characterizes
crack-tip stresses and strains (Hutchinson 1968; Rice
and Rosengren 1968). The J-integral has been exten-
sively used to compute energy flow to the crack tip, to
estimate crack opening and as part of failure criteria for
ductile materials. Recently, the peridynamic theory was
introduced in order to handle problems with discontin-
uous fields (Silling 2000). Peridynamics is a nonlocal
formulation of classical mechanics which allows for a
natural treatment of crack initiation, growth and prop-
agation. The peridynamic theory has been successfully
applied to damage analysis of viscoplastic materials
(Foster et al. 2010, 2011) dynamic fracture and crack
branching in glass (Ha and Bobaru 2010, 2011), dam-
age in composite materials from impact or shock load-
ing (Xu et al. 2008; Kilic et al. 2009; Hu et al. 2011,
2012) and nano-scale structures (Silling and Bobaru
2005; Bobaru 2007). The main motivation for study-
ing the J-integral in peridynamics is that it allows com-
putation of the energy consumed by a growing crack
for any bond failure criterion, and for any dissipative
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196 W. Hu et al.

mechanisms and nonlinearities that may be occurring,
provided these occur sufficiently close to the crack tip.
Also, the J-integral itself could be used as a failure cri-
terion in computations: it is possible to use a critical
value of J as a criterion for breaking bonds.

While for problems in elastic domains without
cracks, peridynamics converges to classical elasticity
in the limit of the nonlocal region (the horizon) going to
zero, it is important to determine the size of this region
for which the peridynamic J-integral results are close
to those obtained from the classical J-integral. Silling
and Lehoucq (2010) presented a state-based peridy-
namic J-integral formulation based on energy balance
approach and related it to the Griffith criterion. In the
present study, we derive the nonlocal J-integral for
the bond-based peridynamic formulation by means of
an infinitesimal virtual crack extension. We describe
an algorithm for computing this nonlocal version of
the J-integral and perform several convergence stud-
ies in order to find the size of the nonlocal region (the
peridynamic horizon size) for which the nonlocal J-
integral value is nearing the classical J-integral value.
We also investigate the dependence of the peridynamic
J-integral value on: (1) the boundary conditions; (2) the
peridynamic “skin effect”, and (3) the location of the
integral contour (a path-independence study). We com-
pare our results with results obtained from FEM solu-
tions of the classical Linear Fracture Mechanics using
special elements. The special elements use the exact
analytical solution of linear elastic fracture mechanics.

The paper is organized as follows: in Sect. 2, we
review the basic formulation for bond-based peridy-
namics; in Sect. 3 we give the derivation for the peridy-
namic J-integral based on the infinitesimal virtual crack
extension; in Sect. 4 we present the algorithm used for
computing the peridynamic J-integral; in Sect. 5, we
perform two types of convergence (m-convergence and
δ-convergence) studies for a thin plate with single edge
notch and double edge notch and we compare the peri-
dynamic results with those obtained from finite element
calculations for the classical J-integral using Abaqus
6.10. Calculations related to the path-independence of
the nonlocal J-integral are also shown. Conclusions are
given in Sect. 6.

2 Introduction to the peridynamic theory

The peridynamic equations of motion are given as

ρü(x, t) =
∫

H

f(u(x̂, t)−u(x, t), x̂−x)dVx̂+b(x, t)

(1)

where f is the pairwise force function in the peridynam-
ic bond that connects point x̂ to x, and u is the displace-
ment vector field. ρ is the density and b is the body force
intensity. The integral is defined over a region H called
the “horizon region”. The horizon region is the com-
pact supported domain of the pairwise force function
around a point x, and is taken most often as a disk in
2D applications (and sphere in 3D). We will abuse the
language and call the radius δ of such a disk the hori-
zon. Then, the meaning of the word “horizon” should
be clear from the context. The interpretation, selection,
and use of the peridynamic horizon and its relation to
dynamic crack propagation is discussed in Bobaru and
Hu (2012).

A micro-elastic material (Silling 2000) is defined as
one for which the pairwise force derives from a poten-
tial ω:

f(η, ξ) = ∂ω(η, ξ)

∂η
(2)

where ξ = x̂−x is the relative position in the reference
configuration and η = û − u is the relative displace-
ment.

A linear micro-elastic potential, which leads to a lin-
ear relationship between the bond force and the relative
elongation of the bond, is obtained if we take

ω(η, ξ) = c(‖ξ‖)s2 ‖ξ‖
2

(3)

where s the bond relative elongation

s = ‖ξ + η‖ − ‖ξ‖
‖ξ‖ (4)

The corresponding pairwise force becomes

f(η, ξ) = ∂ω(η, ξ)

∂η
= c(‖ξ‖)s ∂ ‖ξ + η‖

∂η
(5)

with

∂ ‖ξ + η‖
∂η

= e

where e is the unit vector along the direction of the
deformed bond, ξ +η, between x̂ and x in the deformed
configuration.

The function c(||ξ ||) is called micromodulus func-
tion and it represents the bond elastic stiffness. Some
possible choices for the micromodulus function are
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The formulation and computation of the nonlocal J-integral 197

Fig. 1 The skin effect in peridynamics for points close to the
boundary

given in 1D (Bobaru et al. 2009), 2D (Ha and Bobaru
2010) and 3D (Silling and Askari 2005). These are
obtained by matching [see Eq. (6)] the elastic strain
energy density at a material point in the bulk (see point
A in Fig. 1) of a microelastic peridynamic material
to the elastic strain energy density from the classical
theory, when both materials are under the same homo-
geneous deformation.

Wclassical = 1

2

∫

H

c(‖ξ‖)s2 ‖ξ‖
2

dAx̂ (6)

For simplicity, we use the form of the micromodulus
function obtained for a point in the bulk for all points,
including those that are within δ from the surface (like
pointB inFig.1).This leadstoaneffectivelysoftermate-
rial close to the boundary, since now the integral in Eq.
(6) is over a smaller region and for the match to hold one
would have to increase the micromodulus value. There-
fore, thestrainswillbelargerfor the“skin”of thedomain
than in the bulk of the material, for a deformation that
classically would be homogeneous (see Bobaru and Ha
2011). We call this behavior in peridynamics the “skin
effect”.Theskineffectcanbecompensatedforbyapply-
ing a correction factor to the micromodulus of bonds
near a surface (Macek and Silling 2007; Kilic 2008). A
similar observation can be made about the effect of sur-
faces on the critical relative elongation parameter that is
correlated with the fracture energy of a material, as dis-
cussed in Ha and Bobaru (2011).

In this paper, we use the “conical” micromodulus
functions given below (see Fig. 2) since it gives better
convergence rates to the classical (local) solutions in
elasticity problems compared to the simpler, constant
micromodulus (see Bobaru et al. 2009; Ha and Bobaru
2010).

c (‖ξ‖) = C1

(
1 − ‖ξ‖

δ

)
= 24E

πδ3(1 − ν)

(
1 − ‖ξ‖

δ

)

(7)

Fig. 2 The conical micromodulus function

Fig. 3 Two-dimensional body containing a straight crack

where E and ν are Young’s modulus and Poisson’s
ratio, respectively. δ is horizon size.

3 Derivation of the peridynamic J-integral

In this section we derive the peridynamic J-integral for
a mode I crack that grows in a self similar manner in
a 2D microelastic peridynamic body. We consider a
certain domain �, which contains a straight crack of
length a, in equilibrium and zero body force density.
The peridynamic equations are:∫

�

f(u(x̂, t) − u(x, t), x̂ − x)dAx̂ = 0 (8)

where Ax̂ represents the nodal area in 2D instead nodal
volume Vx̂ in 3D.

The elastic energy density at any x in � for the
microelastic material is

W (x; a) = 1

2

∫

�(a)

ω(η, ξ)dAx̂ (9)

where a is the crack length (see Fig. 3).
Consider a fixed coordinate system (X1, X2) as in

Fig. 3. The local coordinate system (x1, x2) is attached
to the crack tip and moves as the crack grows. Assume
that the crack grows by an infinitesimal amount in the x1
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198 W. Hu et al.

direction. Considering the change in total elastic strain
energy resulting from an infinitesimal virtual extension
of the crack we get:

dU

da
= − d

da
�
∫

R(a)

W (x; a)dAx (10)

The right hand side of Eq. (10), by adding and subtract-
ing �∫

R(a) W (x; a + 	a)dAx, can be written as:

d

da
�
∫

R(a)

W (x; a + 	a)dAx = lim
	a→0

1

	a

×
⎡
⎢⎣ �

∫

R(a+	a)−R(a)

W (x; a+	a)dAx

+ �
∫

R(a)

W (x; a+	a) − W (x; a)dAx

⎤
⎥⎦

= �
∫

∂ R

W (x; a)n1d S + �
∫

R(a)

∂W (x; a)

∂a
dAx (11)

Consider now the second term on the right hand side
of Eq. (11) and by using Eqs. (9) and (2), we have

�
∫

R(a)

∂W (x; a)

∂a
dAx

= 1

2
�
∫

R(a)

�
∫

�(a)

f(η, ξ) ·
(

∂û
∂a

− ∂u
∂a

)
dAx

= 1

2
�
∫

R(a)

�
∫

�(a)

f(η, ξ) · ∂û
∂a

dAx̂dAx

−1

2
�
∫

R(a)

�
∫

�(a)

f(η, ξ)dAx̂dAx̂
∂u
∂a

dAx (12)

The second term on the right hand side of Eq. (12) is
equal to zero because of Eq. (8). Thus, Eq. (12) reduces
to

�
∫

R(a)

∂W (x; a)

∂a
dAx = 1

2
�
∫

�(a)

�
∫

R(a)

f(η, ξ)dAx
∂û
∂a

dAx̂

(13)

Defining the domain Q(a) = �(a)\R(a), the right hand
side of Eq. (13) can be rewritten as

1

2
�
∫

�(a)

�
∫

R(a)

f(η, ξ)dAx
∂û
∂a

dAx̂

= 1

2
�
∫

Q(a)

�
∫

R(a)

f(η, ξ)dAx
∂û
∂a

dAx̂

+1

2
�
∫

R(a)

�
∫

R(a)

f(η, ξ)dAx
∂û
∂a

dAx̂ (14)

Also, from Eq. (8), we have

�
∫

R(a)

f(η, ξ)dAx̂ = − �
∫

Q(a)

f(η, ξ)dAx̂ (15)

By the change of variables x̂ → x and using the linear
admissibility condition (see Silling 2000)

f(−η,−ξ) = −f(η, ξ) (16)

and employing Eqs. (15), (14) can be written as

1

2
�
∫

�(a)

�
∫

R(a)

f(η, ξ)dAx
∂û
∂a

dAx̂

= 1

2
�
∫

Q(a)

�
∫

R(a)

f(η, ξ)dAx
∂û
∂a

dAx̂

+1

2
�
∫

R(a)

�
∫

R(a)

f(−η,−ξ)dAx̂
∂u
∂a

dAx

= 1

2
�
∫

Q(a)

�
∫

R(a)

f(η, ξ)dAx
∂û
∂a

dAx̂

−1

2
�
∫

R(a)

�
∫

R(a)

f(η, ξ)dAx̂
∂u
∂a

dAx

= 1

2
�
∫

R(a)

�
∫

Q(a)

f(η, ξ).
∂û
∂a

dAx̂dAx

+1

2
�
∫

R(a)

�
∫

Q(a)

f(η, ξ).
∂u
∂a

dAx̂dAx

(17)

Substituting Eq. (17) into Eq. (12), we get

�
∫

R(a)

∂W (x; a)

∂a
dAx

= 1

2
�
∫

R(a)

�
∫

�(a)\R(a)

f(η, ξ).

(
∂û
∂a

+ ∂u
∂a

)
dAx̂dAx

(18)
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The formulation and computation of the nonlocal J-integral 199

Fig. 4 Integration domain for the peridynamic J-integral. The
red curve is the contour of integration

Since the coordinates (x1, x2) are attached at the crack
tip, and are defined by

x1 = X1 − a, x2 = X2

we have that ∂x1
∂a = −1

By using the chain rule, we obtain

∂û
∂a

= − ∂û
∂x1

,
∂u
∂a

= − ∂u
∂x1

(19)

Then, we place Eq. (19), (18), and (11) back into Eq.
(10) to get the peridynamic J-integral formula as fol-
low:

Jperi = �
∫

∂ R

W (x; a)n1d S − 1

2
�
∫

R(a)

�
∫

�(a)\R(a)

f(η, ξ)

·
(

∂û
∂x1

+ ∂u
∂x1

)
dAx̂dAx (20)

where W (x; a) is the strain energy density ∂ R is the
integral contour. R(a) is the region inside the integral
contour, and �(a)\R(a) is the region outside the inte-
gral contour (see Fig. 3). Silling and Lehoucq (2010)
obtained the state-based peridynamic J-integral formu-
lation based on an energy approach. We observe that
in the particular case of the bond-based theory, the for-
mula in Silling and Lehoucq (2010) coincides with the
one we obtained here in Eq. (20).

Discussion: The first term of peridynamic J-integral
[see Eq. (20)] is a contour integral, along ∂ R, where
R = R1UR2 (see red curve in Fig. 4). The set R2 is a
“band” of thickness δ inside the contour ∂ R, and R3 is
a band of thickness δ outside of the contour ∂ R. The
second term of the peridynamic J-integral is a double
domain integral. This domain integral is zero unless the
points in R are in R2, and the points in �\R are in R3.
Thus, Eq. (20) can be written as follows

Jperi = �
∫

∂ R

W (x; a)n1d S

−1

2
�
∫

R2

�
∫

R3

f(η, ξ)·
(

∂û
∂x1

+ ∂u
∂x1

)
dAx̂dAx

Clearly, when the horizon δ goes to zero, the domain
integral becomes a contour integral and the regions R2

and R3 reduce to the contour ∂ R. In this case, the for-
mulation of peridynamic J integral coincides with the
classical J-integral formula. Indeed, the peridynamic
J-integral formulation when horizon goes to zero is

Jperi = �
∫

∂ R

W (x; a)n1d S − �
∫

∂ R

∂u
∂x1

· τ (x, n)d S

where τ (x,n) is the force flux vector at any x in the
direction of unit vector n normal to the tangent of the
contour (see Lehoucq and Silling 2008).

Remark Notice that for a fixed horizon size, the con-
tour needs to be large enough so that the regions R2

and R3 exist as shown in Fig. 4. Examples of feasible
and unfeasible contours are shown in Sect. 5.

4 An algorithm for calculating the peridynamic
J-integral

We use a uniform discretization with grid spacing 	x
over the domain to compute the peridynamic J-inte-
gral. Non-uniform discretizations (and even variable
horizon size) are possible in peridynamics, see Bobaru
and Ha 2011, but for simplicity here we use uniform
grids. Using the mid-point integration scheme for the
domain integral in Eq. (20) and the trapezoidal rule for
the contour integral in Eq. (20) for the case when the
contour is piecewise linear, such as the rectangular box
in Fig. 6, leads to the following approximation in 2D:

Jperi ≈
nboundary∑

n=1

W n1	x

−1

2

ninner∑
i=1

nouter∑
j=1

(
f (u j

1−ui
1, x j

1 −xi
1)

(
∂u1

∂x1
+∂ û1

∂x1

)

+ f (u j
2−ui

2, x j
2 −xi

2)

(
∂u2

∂x1
+∂ û2

∂x1

))
A j Ai (21)

where ncontour and ninner are the number of nodes along
the integral contour boundary ∂ R and the number of
nodes in the inner region (the R2 region in Fig. 4),
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(a) m-convergence     (b) δ-convergence

Fig. 5 Graphical description for the m-convergence and δ—convergence in peridynamics. m = δ/ 	x

respectively. nouter is the number of nodes in the outer
region (the R3 region in Fig. 4). Ai is the nodal area
or node i . The central difference scheme is used for
∂u/∂x1 and ∂û/∂x1 as follows

∂u1(xi
1, xi

2)

∂xi
1

≈ u1(xi
1 + 	x, xi

2) − u1(xi
1 − 	x, xi

2)

2	x
,

∂u2(xi
1, xi

2)

∂xi
1

≈ u2(xi
1 + 	x, xi

2) − u2(xi
1 − 	x, xi

2)

2	x

∂ û1(x j
1 , x j

2 )

∂x j
1

≈ û1(x j
1 + 	x, x j

2 ) − û1(x j
1 − 	x, x j

2 )

2	x
,

∂ û2(x j
1 , x j

2 )

∂x j
1

≈ û2(x j
1 + 	x, x j

2 ) − û2(x j
1 − 	x, x j

2 )

2	x

We compute the peridynamic J-integral with the fol-
lowing algorithm based on Eq. (21).

5 Numerical examples: convergence studies,
path-independence, and effects
from the boundaries

In peridynamics, two types of convergence studies
are typically used: the δ-convergence (fix the num-
ber of nodes covered by a horizon, which is propor-
tional to m = δ /	x , and decrease the horizon size),
and m-convergence (keep the horizon size fixed and
increase m) (See Fig. 5 and Bobaru et al. 2009). It is
important to note that in m-convergence studies, the
peridynamic approximate solutions are not supposed
to converge to the classical solution, but to the non-
local solution for the particular horizon size for which
the m-convergence study is executed. In this instance,
comparing the results with the classical solution is only
made for illustration purposes. Convergence of the

peridynamic nonlocal solutions to the classical solu-
tion is expected in the limit of the horizon going to
zero. In this paper we perform convergence studies to
investigate for what horizon size, relative to the size of
the sample, and which m-values does the peridynam-
ic J-integral get close (with a relative difference of a
few percentages) to the classical value of the J-inte-
gral. We then analyze the influence of boundary con-
ditions (when symmetry conditions are used) and of
the peridynamic “skin effect” (see Sect. 2) on the non-
local J-integral. We compare the peridynamic results
with the classical J-integral value as approximately
given by Finite Element results using Abaqus with spe-
cial crack-tip elements for a plate with an edge notch
under tension. In order to investigate how symmetric
boundary conditions influence the peridynamic J-inte-
gral value we analyze a double-edge notch plate under
uniform tension, for which we use symmetry bound-
ary conditions. We also perform calculations that show
the path-independence of the peridynamic J-integral
(Table 1).

In following examples, we use the same material
parameters: Young’s modulus is 72 GPa and Poisson’s
ratio is 1/3. Along top and bottom boundaries of the two
different samples, a uniform tensile stress σ = 1 MPa
is applied. Uniform discretization is used for all com-
putations.

In order to test the correctness of the implementa-
tion, we compute the peridynamic J-integral for a plate
(see Fig. 6) without a notch, using the integral contour
in Fig. 6. In this case, peridynamic J-integral values are
in the range of 10−15 for any m-values and horizon size
we tried. For instance, the peridynamic J-integral value
is 3.3 × 10−15 Pa m for m = 9 and δ = 1.5 mm. The
J-integral on a closed contour in an elastic material is
zero.
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The formulation and computation of the nonlocal J-integral 201

Table 1 Algorithm to compute the peridynamic J-integral

1: Get the nodal displacements and elastic strain energy density
at all nodes

2: Define the geometry of the integral contour

3: Compute the first term (contour integral) of the peridynamic
J-integral
(a) Find nodes along the contour ∂ R and the corresponding
outer normal vector to the integral contour at such nodes
(b) Evaluate the line integral using trapezoidal rule

4: Compute the second term (domain double integral) of the
peridynamic J integral
(a) Define the inner region (R2): one horizon size inside of the
integral contour ∂ R
(b) Define the outer region (R3): one horizon size outside of
the integral contour ∂ R
(c) Search all viable source nodes xi in inner region

(d) Search all viable nodes xj in outer region

(e) Compute the second term based on the discretization in Eq.
(21)

5: Jperi = First_term–Second_term

Fig. 6 Geometry configuration for single edge-notched plate
(red square is the J-integral contour)

5.1 Single-notched specimen

Consider a single edge-notch square plate with dimen-
sion of 10 cm × 10 cm with a length of the notch of
5 cm, as shown in Fig. 6. We use the square contour
shown in Fig. 6 to compute the peridynamic J-inte-
gral and the corresponding classical value with Abaqus.
In Abaqus, we use the “seam crack” option to create
the crack and use special crack-tip quadratic elements
around the crack tip as shown in Fig. 7. In the actual
FEM computation, the total number of nodes is about
30,000 (many more nodes than shown in Fig. 7), which

Fig. 7 A sample Abaqus mesh with special elements around the
crack tip, used to compute the classical J-integral value. The dark
solid line is the crack

gives us a converged value for the classical J-integral
of about 19.76 Pa m.

Since the J-integral involves the components of the
displacement field, it is of interest to compare the dis-
placements obtained from peridynamics with a “large”
and a “small” horizon size with the classical displace-
ments obtained from a sufficiently fine FEM mesh. As
shown in Figs. 8 and 9, the x- and y-displacements
from peridynamic computation are almost identical to
the FEM calculations when the horizon size, relative to
the sample size and crack size is below 1/20. In these
figures the same legend is used for both the peridynamic
results and the finite element results. The legend levels
are produced automatically by Abaqus, and we set the
same values in Tecplot to post-process the peridynamic
results.

Two types of convergence studies (m-convergence
and δ-convergence) are shown in Table 2 and Fig. 10.
For a fixed m, the peridynamic J-integral approaches
the classical solution when the horizon size decreases,
so we do observe δ-convergence to the classical J-inte-
gral value. We also note that the m-convergence curves
(for a fixed δ) start to level off when m becomes larger
than 6. Increasing m for a fixed horizon size delivers
solutions that approach the exact nonlocal solution. The
results of Fig.10 indicate good candidates for both δ and
m to use in order to obtain the peridynamic J-integral
values within a few percentages from the FEM results.
We stress that, in general, the FEM results may also
be a few percentages away from an analytical solution
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Fig. 8 Comparison of vertical displacements obtained with: a
the FEM (about 30,000 nodes) , b peridynamics using δ =
1.5 mm, m = 9 (about 360,000 nodes), and c peridynamics using

δ = 24 mm, m = 3 (about 144 nodes) (geometry and loading as
given in Fig. 6). The legend is in meters

Fig. 9 Comparison for horizontal displacements obtained with: a the FEM, b peridynamics using δ = 1.5 mm, m = 9, and c peridy-
namics using δ = 24 mm, m = 3 (geometry and loading as given in Fig. 6). The legend is in meters

of the classical model. Thus, when the intention is to
obtain peridynamic J-integral values close to the clas-
sical ones, an m of about 6 and a horizon size smaller
than 6 mm (a ratio of at least 1/10 to the crack length,
and 1/20 to the sample dimensions) are good choices.

Remark the peridynamic “skin effect” mentioned in
Sect. 2 exists on the crack surfaces. Hence, we expect
peridynamic J-integral results to be higher than the
FEM results since we effectively have a softer mate-
rial (Young’s modulus value half of that in the bulk)
around the crack tip than the material in the bulk. We
assigned a softer material to a thin region, of thickness
equal to 1.5 mm, the same as the size of the smallest
peridynamic horizon used here, around the crack line
in the FEM model and the J-integral value from the
Abaqus calculation increased by about 2 %.

5.2 Double-notched specimen

In this section, we consider a double-notch plate with
dimensions 20 cm × 10 cm. The length of each notch
is 5 cm. By making use of symmetry, we can reduce
the problem to analyzing the same configuration as
before (see Fig. 6) except that now we impose sym-
metry conditions on the displacements along the right-
hand boundary (see Fig. 11). We use the same integral
contour as in Sect. 5.1 and three different horizon sizes
δ = 6 mm, δ = 3 mm, and δ = 1.5 mm and m = 3, 6,
and 9 to observe how convergence is influenced by the
presence of the symmetry boundary condition. While
in a classical model discretized with finite elements
the symmetry boundary condition is simply imposed
on the boundary nodes where zero horizontal displace-
ments are enforced, in a nonlocal peridynamic model
this type of condition is more delicate. In principle, in
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Table 2 Peridynamic
J-integral values for the
single edge notched
specimen

δ = 24 mm δ = 12 mm δ = 6 mm δ = 3 mm δ = 1.5 mm

m = 3 30.15 Pa m 23.64 Pa m 21.74 Pa m 20.83 Pa m 20.41 Pa m

m = 6 26.52 Pa m 23.05 Pa m 21.54 Pa m 20.85 Pa m 20.51 Pa m

m = 9 26.17 Pa m 22.95 Pa m 21.53 Pa m 20.86 Pa m 20.53 Pa m

Fig. 10 The relative difference between the peridynamic results
for the single-notch sample and the classical J-integral obtained
with the FEM (Abaqus)

the discrete peridynamic model we should enforce the
boundary nodes to have zero horizontal displacements,
but in addition to that, for a sliver of thickness δ on
the corresponding boundary we should also prescribe
the horizontal displacement field (see Silling 2000 for a
discussion on nonlocal Dirichlet boundary conditions).
The problem is that those values are not known. Ways
around this are possible: for example, one could set zero
horizontal displacements for all nodes in the region of
thickness δ, and in the limit of the horizon going to
zero this willapproach the actual symmetry condition
desired; alternatively, one could impose zero horizon-
tal displacements only on the boundary nodes, just like
in a finite element model. We choose the latter strategy
because of simplicity and similarity to the way bound-
ary conditions are imposed for the classical model.

The finite element solution from Abaqus with
special crack-tip elements is 12.90 Pa m.

As shown in Fig. 12, the strain energy density
obtained with peridynamics for a sufficiently small
horizon size is very close to that given by a converged
FEM solution. However, some high strain energy den-
sity values are observed from the peridynamic result on

Fig. 11 The double edge notched specimen with symmetric
boundary conditions and the J-integral contour

the right-hand boundary, where the symmetric bound-
ary condition is applied (see Fig. 12). This influences,
to a certain extent, the results for the J-integral, as we
will see below. We also notice that the difference in
brightness between the FEM and peridynamics results
are not due to differences in the values, but are caused
by differences in the colors used by Abaqus (for the
FEM results) and Tecplot (which we used to post-pro-
cess the peridynamic results).

The m-convergence trends are the same for all three
cases as shown in Fig. 13. We stress again that in
m-convergence studies, the peridynamic approximate
solutions are not supposed to converge to the classical
solution, but to the nonlocal solution for the particu-
lar horizon size for which the m-convergence study is
performed. Since we do not have the exact solution for
the nonlocal problem, we compare the results with the
classical solution for illustration purposes. See also the
comments in Bobaru and Duangpanya (2010, 2012),
on a peridynamic model for diffusion processes. The
data in Table 3 shows that the peridynamic solutions are
all larger than the FEM result, which is consistent with
the results obtained in section 5.1. The effectively softer
material around the crack tip (induced by the peridy-
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Fig. 12 Strain energy density results with: a FEM (30,000 nodes), b peridynamics with δ = 1.5 mm, m = 9 (about 360,000 nodes)
c peridynamics with δ = 6 mm, m = 3 (about 2700 nodes)

Fig. 13 The relative difference between peridynamic results for
the double edge-notch (with symmetric boundary conditions)
and the classical J-integral value obtained from a FEM (Abaqus)
analysis

namic “skin effect”) is responsible for this. In addition,
for a given m-value, the smaller the horizon size the
closer the peridynamic result is to the classical value,
confirming that δ-convergence takes place. With a suf-
ficiently small horizon, the relative difference between
the classical J-integral value and the peridynamic J-
integral becomes smaller than a few percentages. The
differences between the peridynamic results and the
classical J-integral value are, however, larger now than
before, for a similar horizon size. The likely motive for
this change is the imposition of the symmetric boundary
conditions. The influence of the imposition of the sym-
metric boundary conditions on the calculation of the
peridynamic J-integral is further investigated in the next

Table 3 Convergence study with double edge notched specimen

δ = 6 mm δ = 3 mm δ = 1.5 mm

m = 3 14.83 Pa m 14.01 Pa m 13.58 Pa m

m = 6 15.49 Pa m 14.50 Pa m 13.99 Pa m

m = 9 15.90 Pa m 14.77 Pa m 14.17 Pa m

section by choosing different integration paths around
the crack tip.

5.3 The path-independence of the peridynamic
J-integral

As the peridynamic J-integral over a closed contour in
a micro-elastic material is zero, analytically, the peri-
dynamic J-integral is path independent. We test here
different contours to observe if, and by how much, the
value of the peridynamic J-integral (computed using the
algorithm in Table 1) changes with changing the inte-
gration contour. For these tests we use the smallest hori-
zon and finest grid from the computations above (m =
9 and δ = 1.5 mm) and perform calculations for the
single edge-notch problem and the double edge-notch
problem with symmetry boundary conditions. We use
the three different contours shown in Fig. 14: the clos-
est contour to the crack tip that remains feasible from
the point of view of evaluating the integrals in Eq. (20)
(see also Fig. 4), another away from the crack tip and
the boundaries, and finally one near the boundaries, but
at least one horizon size away from the boundaries to
remain feasible. Thus, contour (a) in Fig. 14 is one hori-
zon size away from the crack tip, contour (b) is in the
middle of the structure, and contour (c) is one horizon
away from the boundary of the sample (Table 4).
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Fig. 14 Three different
integral contours to
compute peridynamic J
integral (top). Feasible and
unfeasible contours (bottom
row) for the computation of
the nonlocal J-integral (see
the remark at the end of
Sect. 3) near the crack tip
and near a domain boundary

Table 4 Values of the peridynamic J-integral on the three dif-
ferent contours from Fig. 14

Contour (a) Contour (b) Contour (c)

Single edge-notch 20.11 Pa m 20.54 Pa m 19.84 Pa m

Double
edge-notch
(using
symmetric
b.c.’s)

13.88 Pa m 14.17 Pa m 13.37 Pa m

We measure the relative difference between the val-
ues obtained based on contour (b) and those on contours
(a) and (c). As shown in Table 5, the relative differences
between contour (a) and contour (b) for both the single
edge-notch and double edge-notch specimens are very
similar, equal to about 2 %. However, the relative dif-
ference between contour (c) and contour (b) is larger in
the double-edge case (with symmetric boundary con-
ditions) than in the single edge-notch case. The reason
is likely the way the nonlocal Dirichlet boundary con-
dition is enforced and the peridynamic “skin-effect”.
Notice that the results on contour (c) are actually closer
to the classical results obtained with the FEM, but these
trends should not be misinterpreted. The horizon size,
the number of nodes in the horizon, and the type of
boundary conditions, all “influence” the approximate
solutions of nonlocal models, and these results may
be lower than a classical value for some m-values,
and higher for some other m-values. We recall that in
m-convergence, as m tends to infinity, the numerical

Table 5 Relative difference between the peridynamic J-integral
on contours (a) and (c) in Fig. 14 and the corresponding values
obtained on contour (b)

Contour (a) Contour (c)

Single edge-notch 2.09 % 3.41 %

Double edge-notch
(using symmetric
boundary conditions)

2.05 % 5.65 %

approximation is supposed to approach the exact solu-
tion of the nonlocal problem and not the exact solution
of the classical problem. It is known that, in certain
cases, nonlocal results may be closer to the classical
results for some δ1 and m1, and higher for a δ2 < δ1

and m2 > m1. This means that we may match the exact
classical solution for some finite δ3 in [δ2, δ1] and m3

in [m1, m2] (see also Bobaru and Duangpanya 2010,
2012).

In conclusion, a contour for computing the peridy-
namic J-integral needs to avoid the boundary region
because of the skin effect and imposition of nonlocal
Dirichlet boundary conditions. On the other hand, the
contour may be selected near the crack tip, with the only
condition being the feasibility requirement mentioned
in the remark in Sect. 3 and shown in Fig. 14.

6 Conclusions

In this paper we derived the 2D peridynamic J-integral
formulation based on the infinitesimal virtual extension
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of the mode-I crack. We discussed the computation of
the peridynamic J-integral value which involves a dou-
ble integral in contrast with the classical J-integral. We
showed that the peridynamic J-integral converges to
the classical J-integral formulation when the horizon
size goes to zero. Using a simple discretization, we
performed convergence studies (m-convergence and
δ-convergence) for two specimens: a single edge-notch
and a double edge-notch sample, for which symmetry
boundary conditions were enforced. We observed that
the peridynamic results approach within a few percent-
ages the classical J-integral values obtained using the
FEM with special element around the crack tip, when
the horizon size is less than about 1/20 of the crack size
and sample size. In particular, we discussed the influ-
ence of the peridynamic “skin-effect” around the crack
tip and along the boundaries, on the value of the peri-
dynamic J-integral. We computed the peridynamic J-
integral along different paths and very small variations
were seen (attributable to the approximation error)
between the contours, except when the integration path
was within a horizon distance from the boundaries. Due
to nonlocality, special care also needs to be paid when
symmetric boundary conditions are imposed.
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