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Latin Hypercube Approach to Estimate
Uncertainty in Ground Water Vulnerability
by Jason J. Gurdak1,2, John E. McCray3, Geoffrey Thyne4, and Sharon L. Qi5

Abstract
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability

models that were developed through an approach that coupled multivariate logistic regression with a geographic
information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of
input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability.
Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability
models is a function of input error propagation from uncertainty in the estimated logistic regression model coeffi-
cients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability
distributions that represent both model and data error sources of uncertainty were simultaneously sampled using
a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source con-
taminants in ground water. The resulting probability distribution represents the prediction intervals and associated
uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vul-
nerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant predic-
tion uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a
spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability.

Introduction
Interest in predicting nonpoint source (NPS) con-

tamination in ground water has increased because
of widespread detection of such contaminants and the
implications for human and aquatic health and resource

sustainability. NPS ground water contamination poses,
potentially, an even greater environmental concern than
those from point sources because of the associated environ-
mental implications of scale and variability (both spatial
and temporal) of an areally diffuse (NPS) contaminant
(Loague et al. 1996). Because ground water remediation is
expensive, slow, and often infeasible across moderate- to
large-scale aquifers, successful environmental manage-
ment toward prevention of NPS ground water contamina-
tion must identify and control contributing human
activities and delineate susceptible regions of the aquifer.

In response to NPS ground water contamination,
studies of ground water vulnerability have been abundant
in the literature during recent years. Although individual
approaches differ, ground water vulnerability assessments
often have the same fundamental goals of estimating the
potential for NPS ground water contamination, or areally
distributed point sources of pollution, and providing
scientifically defensible information to assist water re-
source managers during decisions regarding ground water
remediation, protection, or sustainable management.

Most assessments conceptualize two distinct compo-
nents to ground water vulnerability (Focazio et al. 2002):
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(1) intrinsic susceptibility, which defines the inherent
aquifer properties (e.g., hydraulic conductivity, porosity,
depth to water, soil type) of the ground water system and
the associated sources of water and stresses of the system
(i.e., rates and sources of recharge and discharge) and (2)
specific vulnerability, or simply vulnerability, which con-
siders the proximity of contaminant sources, fate and
transport properties of the contaminant, and other factors
that define potential loads of specified contaminants to
the aquifer. The magnitude and variability of both compo-
nents typically are approximated using best available
interpolation or extrapolation methods.

Approaches to ground water vulnerability assessment
can be classified as (1) index methods, which are often
subjective and biased because of predetermined control-
ling factors included in the index; (2) process-based
methods consisting of mathematical modeling to approxi-
mate contaminant fate and transport; and (3) empirically
based statistical methods that correlate ground water
chemistry and explanatory variables of the study area
(Zhang et al. 1996). One useful statistical approach employs
logistic regression.

Logistic regression modeling has been used exten-
sively by epidemiologists (Magder and Hughes 1997) to
estimate the effect of various predictors on some binary
outcome of medical interest, but the approach has
become more commonplace in environmental applica-
tions (Nolan et al. 2002), particularly for assessment of
ground water vulnerability (Gurdak and McCray 2004).
Logistic regression-based ground water vulnerability
models have been demonstrated successfully across
a range of systems, from subregional (Rupert 1998) to
national scale (Nolan 2001; Nolan et al. 2002), and for
a number of NPS contaminants. Eckhardt and Stackelberg
(1995) developed logistic regression models to character-
ize the probability of NPS ground water contamination
from volatile organic compounds, pesticides, and inor-
ganic constituents. Squillace and Moran (2000) used
logistic regression to estimate the likelihood of methyl
tert-butyl ether occurrence in ground water of the North-
east and Mid-Atlantic regions of the United States.
Although logistic regression has been widely used to pre-
dict ground water vulnerability to pesticides (Teso et al.
1996; Rupert 2003), nitrate is the most common NPS con-
taminant evaluated using logistic regression (Tesoriero
and Voss 1997; Gurdak and Qi 2006). Twarakavi and
Kaluarachchi (2005) used ordinal logistic regression,
which differs from (binary) logistic regression in that
multiple thresholds were considered while estimating
probabilities of exceedance, to predict the probability of
heavy metal occurrence in ground water. Additionally,
output from logistic regression models can be displayed
within a geographic information system (GIS) when the
explanatory variables within the model are represented in
geospatial databases. Thus, the coupling of logistic
regression and GIS provides the means to spatially repre-
sent the risk of NPS ground water contamination, often as
vulnerability maps.

Uncertainty is inherent to predictions of ground
water vulnerability (Loague 1991; Loague et al. 1996),
yet few ground water vulnerability assessments have

accounted for, or reported, associated uncertainty. Coupling
logistic regression modeling with a GIS extrapolation tech-
nique to predict ground water vulnerability has been a popu-
lar empirical methodology (Murray and McCray 2005);
however, to the knowledge of the authors, no prior assess-
ments using this approach have quantified uncertainty of
spatial vulnerability predictions. A significant benefit of
logistic regression analysis is that predictions of vulnerabil-
ity are expressed in probabilistic terms. However, all uncer-
tainty is not inherently represented within the resulting
probabilistic predictions because unavoidable model and
data errors propagate through logistic regression calcu-
lations, making predictions of vulnerability best estimates.
Error propagation and resulting uncertainty of ground
water vulnerability model predictions bear societal con-
sequences. Consider, for example, hypothetical questions
posed during site location of a proposed municipal well:
‘‘Does the quality of the ground water meet drinking water
standards?’’; ‘‘Are land-use activities impairing ground
water quality?’’; ‘‘How vulnerable is the ground water
to NPS contamination?’’. A ground water vulnerability
assessment can help answer such questions but with limited
confidence if associated prediction uncertainty is significant.
If results of ground water vulnerability assessments are to
carry any weight in resource decision making, the associ-
ated predictive uncertainty needs to be quantified.

The work presented here was part of a larger study
of ground water quality of the High Plains regional aqui-
fer (Dennehy 2000). This portion of the study presents a
novel method to estimate uncertainty associated with pre-
dictions of ground water vulnerability. Although the
method was developed and tested in the High Plains
regional aquifer, the analysis presented here can be
applied to other aquifers where NPS contamination is of
concern and logistic regression-based vulnerability as-
sessments using spatially distributed explanatory varia-
bles as input are warranted. The method uses a stochastic
approach for uncertainty estimation; Latin hypercube
sampling (LHS) technique (McKay et al. 1979) was used
to estimate selected prediction intervals for the vulnera-
bility model output. The fundamental assumption of this
method is that uncertainty in logistic regression pre-
dictions is a function of uncertainty in both the explana-
tory variables and regression coefficients, which can be
expressed as probability distribution functions within the
framework of logistic regression analysis of ground water
vulnerability.

The objectives of this article were to (1) identify
error propagation through coupled logistic regression
and GIS vulnerability models; (2) develop and test
a flexible methodology to estimate uncertainty due to
input error propagation; and (3) demonstrate the meth-
odology using actual data from a recent assessment of
ground water vulnerability of the High Plains aquifer to
elevated nitrate (more than 4 mg/L) in recently re-
charged (less than 50 years) ground water, which is
detailed by Gurdak and Qi (2006). This article describes
the use of LHS in uncertainty analysis as a simple yet
powerful approach and demonstrates its use in logis-
tic regression GIS coupled ground water vulnerability
models.
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Theory

Logistic Regression Modeling
Logistic regression analysis predicts the probability

of a binary or categorical response based on independent
or explanatory variables. Hosmer and Lemeshow (2000)
and Menard (2002) present thorough reviews of logistic
regression theory. Often, the objective of a ground water
vulnerability assessment is to predict the occurrence of
a water quality constituent above a certain level or thresh-
old. Therefore, logistic regression is well suited for ana-
lysis of ground water vulnerability assessment because
the binary response, or categorical response in the case of
ordinal logistic regression (Twarakavi and Kaluarachchi
2005), can be established using a threshold that represents
a drinking water standard, laboratory detection level, or
relative background concentration. The underlying
assumption of logistic regression is that the natural loga-
rithm of the odds ratio is linearly related to the explana-
tory variables. The odd ratio (Equation 1) is based on the
probability of being in a response category:

Odds ratio ¼ P

1 2 P
ð1Þ

where P is the probability of exceeding the selected
binary threshold value (Helsel and Hirsch 1992). The log
of the odds ratio, or logit, transforms a binary response
into a continuous variable that is a linear function of the
explanatory variables (Helsel and Hirsch 1992). The logit
transformation is as follows:

ln
P

1 2 P

� �
¼ bo 1 bx ð2Þ

where bo is the logistic regression constant, x is a vector
of k explanatory variable(s), and b is a vector of slope co-
efficients for the explanatory variables. Predicted values
of the response variable are converted back into probabil-
ity units by using the logistic transformation, with the
logistic regression model taking the form of:

P ¼ eðbo1bxÞ

1 1 eðbo1bxÞ ð3Þ

where P is the probability of the binary response event
given x, defined here as the probability of detecting
nitrate (as nitrogen) in ground water at a concentration
greater than or equal to 4 mg/L, and e is the base of natural
logarithm.

A number of statistical parameters are calculated
using logistic regression. These parameters aid the mod-
eler in deciding how well the overall model works, how
important each of the explanatory variables are in the
overall model, and if the form of the model appears to be
correct (Menard 2002). The log-likelihood ratio (LLR),
commonly called G statistic, measures the success and
statistical significance of the logistic regression model as
a whole by comparing observed with predicted values
(Hosmer and Lemeshow 2000). The highest LLR in-
dicates the most significant model, taking into account
the degrees of freedom (number of explanatory variable)

in the model. The p values of the LLR indicate model sig-
nificance of the model coefficients (null hypothesis is that
slope ¼ 0). Specifically, a of 0.05 indicates a significance
level of 5%; a of 0.01 indicates a significance level of
1%. Logistic regression model-fitting criteria include the
partial likelihood ratio, percent correct (PC) responses,
and model sensitivity (Hosmer and Lemeshow 2000). The
partial likelihood ratio is similar to the LLR but is evalu-
ated to determine the significance of adding one or more
new variables to an existing multivariate logistic regres-
sion model (Helsel and Hirsch 1992). A model with the
addition of one new variable is more significant than the
original model if the partial likelihood ratio is greater
than the value of the chi-square distribution with degrees
of freedom equal to one. The partial likelihood ratio was
used exclusively during the iterative processes of the mul-
tivariate logistic regression analysis to select the explana-
tory variables that produce the best fitting model. Because
of the large number of iterations, partial likelihood ratios
and corresponding preliminary multivariate models are
not listed in this article. The overall rate of correct clas-
sification, or PC responses, is the number of observed ex-
ceedances predicted by the model as exceedances, plus the
number of observed nonexceedances predicted as nonex-
ceedances, divided by the combined number of observed
exceedances and nonexceedances (Hosmer and Lemeshow
2000). Sensitivity is defined as the number of observed
exceedances predicted as exceedances divided by the
total number of observed exceedances. Higher values of
PC and sensitivity indicate better fitting models.

Estimation of Uncertainty and LHS
Uncertainty addresses the reliability surrounding the

prediction of ground water vulnerability and can be
broadly classified as related to either data or model
error. Ground water vulnerability predictions are esti-
mates that approximate the true risk of elevated NPS
contamination. Vulnerability estimates have inherent
prediction error, defined as the difference between the
true and estimated risk of vulnerability. The magnitude
of the prediction error is uncertain because the true risk
is never known exactly.

Prediction error, or uncertainty, is a function of data
error from GIS-based explanatory variables (expressed as
x in Equation 3) and model error of estimated logistic re-
gression coefficients (expressed as bo and b in Equation 3).
Within a GIS database, explanatory variables are im-
perfect representations of the real world because of
unavoidable errors in accuracy, which refers to the close-
ness of represented measurements or computations to
their ‘‘true’’ value, and precision, which refers to the num-
ber of digits used to report the measurement (Gottsegen
et al. 1999). Therefore, GIS-based explanatory variables
inherently introduce data error into logistic regression
models. In addition, logistic regression coefficients are
subject to estimation error (van Horssen et al. 2002). Both
sources of error propagate through the logistic regression
model to produce a combined uncertainty in the model
output, which is typically expressed as a ground water
vulnerability map.
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A stochastic modeling approach is presented to illus-
trate the propagation of input error and to estimate uncer-
tainty associated with output of the logistic regression-
based vulnerability models that are coupled with GIS
data. LHS is a widely used variation on the standard
Monte Carlo (MC) stochastic sampling method for per-
forming uncertainty analysis. The MC technique uses
simple random sampling of the input probability distribu-
tions and commonly requires a large number of realiza-
tions to approximate the input probability distribution.
In contrast, LHS uses a stratified sampling technique that
allows distribution of samples drawn to correspond more
closely with the input probability distribution. For the
same number of samples, the LHS correspondence pro-
duces an unbiased estimate of the mean and a smaller
variance, as compared to MC. This smaller variance trans-
lates in a greater confidence, fewer model simulations,
and faster computation times. This is especially beneficial
for complex model simulations because running enough
simulations to properly represent the input distribution may
be impractical using MC.

Site Description
The High Plains regional aquifer underlies an area

of about 450,700 km2 in parts of eight western states
(Figure 1) and can be subdivided into the Northern High
Plains (NHP), Central High Plains (CHP), and Southern

High Plains (SHP) aquifers. The predominant ground
water use of the aquifer supports a substantial agricultural
industry. The High Plains aquifer encompasses approxi-
mately 27% of the nation’s irrigated agricultural land and
yields 30% of the ground water used for irrigation in the
United States (Dennehy 2000).

The High Plains aquifer is generally unconfined. The
Ogallala Formation is the principal hydrogeologic unit
and underlies approximately 347,060 km2 (Luckey et al.
1986). This formation consists primarily of unconsoli-
dated clay, silt, sand, and gravel. Local and sometimes
extensive clay layers are present within the unsaturated
sediments and below the water table. In 2000, the depth to
water ranged from less than 3 to greater than 90 m below
land surface, and saturated thickness ranged from less
than 1 to greater than 365 m (Gurdak and Qi 2006).
Recharge occurs by infiltration of irrigation water, pre-
cipitation, storm water runoff through streambeds and
other topographic depressions, and upward movement of
water from underlying aquifers (McMahon 2001).

Similar to other aquifers beneath agricultural regions,
the ground water in the High Plains aquifer is vulnerable
to nitrate contamination. Nitrate concentrations above
background concentrations in ground water of the High
Plains aquifer have been documented by a number of
recent studies of ground water quality (McMahon et al.
2006; Bruce et al. 2003). Based on nitrate concentrations
in paleorecharged ground water of the High Plains aqui-
fer (McMahon et al. 2004), Gurdak and Qi (2006) esti-
mated the background nitrate concentration in recently
recharged ground water (less than 50 years) as less than
or equal to 4 mg/L (as N) and reported concentrations
ranging from 0.02 to 31 mg/L (median, 3.82 mg/L).
Approximately 48.2% (162 of 336) of these samples of
recently recharged ground water contain nitrate concen-
trations that exceed 4 mg/L, and approximately 12.7%
(43 of 336) of the samples have nitrate concentrations that
exceed the U.S. EPA established Maximum Contaminant
Level for nitrate in public drinking water of 10 mg/L
(as N) (U.S. EPA 2004). The spatial distribution of nitrate
in the High Plains aquifer is complex and poorly under-
stood. Generally, nitrate concentrations in ground water
vary spatially, and human activity during the past 50 years
has resulted in nitrate concentrations in recently re-
charged water that are significantly larger than concen-
trations in older water in the aquifer (McMahon et al.
2004; Gurdak and Qi 2006).

Methods
The methods for ground water vulnerability model

and map development using logistic regression coupled
with GIS are explained in detail by Gurdak and Qi (2006)
and Qi and Gurdak (2006) and are summarized as follows.
Ground water flow and particle-tracking simulations
using Visual MODFLOW 2.8 (Waterloo Hydrogeologic
1999) defined saturated zone depth criteria during selec-
tion of wells that intercept recently (less than 50 years)
recharged ground water and delineated the shape of the
contributing area for each well. All published ground
water quality data and GIS-based hydrogeologic and

Figure 1. Map showing the location of the High Plains
aquifer, location of monitoring wells, and associated nitrate
concentrations.
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anthropogenic explanatory variables (Gurdak and Qi
2006) were compiled for these wells (n ¼ 336) (Table 1).
Using a GIS and previously defined contributing areas,
explanatory data (Table 1) were extracted for each well.

These data were analyzed using SAS 8.02 (SAS Institute
1999) statistical software. Through a stepwise model
calibration approach using univariate and multivariate log-
istic regression analysis (Hosmer and Lemeshow 2000),

Table 1
Univariate Logistic Regression Analysis Results, Listing Logistic Regression Coefficients, and p Values

NHP Model
Coefficient (p value)

CHP and SHP Model
Coefficient (p value)

Explanatory Variable
Irrag Irrigated agricultural land in sector (%)1 0.007 (0.200) 0.001 (0.859)
NonIrrag Nonirrigated agricultural land in sector (%)1 0.012 (0.025) 0.010 (0.065)
Agland Irrigated and nonirrigated

agricultural land in sector (%)1
0.016 (0.002) 0.010 (0.069)

Nfert County-based expenditures on
commercial fertilizer (kg/county)2

22.55 3 1028 (0.425) 5.103 1028 (0.125)

Nmanr County-based expenditures on
manure (kg/county)2

21.12 3 1027 (0.086) 26.273 1028 (0.170)

Nfarmfert County-based expenditures on
fertilizer for agriculture (kg/county)3

22.43 3 1028 (0.465) 5.383 1028 (0.121)

Nnonffert County-based expenditures on fertilizer
for nonagriculture (kg/county)3

23.00 3 1025 (0.122) 5.063 1027(0.674)

ManCon County-based expenditures on manure
from confined animals (kg/county)3

26.22 3 1028 (0.482) 27.073 1028 (0.215)

ManUncon County-based expenditures on manure
from unconfined animals (kg/county)3

24.87 3 1027 (0.004) 22.783 1027 (0.119)

Atmdep Estimated atmospheric deposition
of nitrogen (kg/county)3

27.00 3 1025 (0.026) 27.003 1025 (0.100)

Nresfert Estimated residual nitrogen in soil from
commercial fertilizer (kg of N/acre)2

0.011 (0.616) 20.009 (0.749)

Nresmanr Estimated residual nitrogen in soil
from manure (kg of N/acre)2

0.010 (0.650) 20.016 (0.121)

Irrwells Number of irrigation wells in sector2 20.017 (0.699) 0.089 (0.548)
Withdrw Water withdrawal adjusted for irrigated land

(gal/d/acre of irrigated land)6
2.64 3 1024 (0.170) 21.703 1024 (0.363)

Hydrogeology
Precip Average annual precipitation (cm)5 0.046 (0.251) 0.029 (0.549)
Thick Soil thickness (m)6 0.064 (0.457) 0.005 (0.851)
Perm Soil permeability (cm/h)6 20.078 (0.131) 0.016 (0.824)
OM Soil organic matter content (% by weight)6 20.314 (0.670) 20.525 (0.440)
Awc Soil available water capacity (cm/cm)6 8.968 (0.055) 1.739 (0.797)
Clay Soil clay content (% of material less than 2 mm)6 0.036 (0.109) 20.033 (0.166)
K Universal soil loss factor (k)6 5.653 (0.017) 21.613 (0.605)
Drain Soil drainage6 20.024 (0.935) 0.131 (0.832)
Slope Soil surface slope (%)6 20.019 (0.687) 20.054 (0.502)
LL Soil liquid limit (% moisture by weight)6 0.043 (0.057) 20.050 (0.095)
Hydric Occurrence of hydric soils6 21.804 (0.422) 3.418 (0.440)
Hydro Soil hydrologic characteristics6 20.134 (0.749) 20.455 (0.171)
Flood Annual flood frequency of soil6 0.638 (0.056) 20.478 (0.609)
Uzclay Average clay content of unsaturated

zone in sector (%)2
0.015 (0.083) 20.005 (0.635)

Uzsand Average sand content of unsaturated
zone in sector (%)2

20.038 (0.033) 20.012 (0.891)

Dtw Depth to regional water table (m)2 3.94 3 1024 (0.892) 20.007 (0.006)
Sathik Aquifer saturated thickness (m)2 22.00 3 1025 (0.986) 0.002 (0.427)

Note: Bold values selected for initial multivariate logistic regression analysis.
1Qi et al. (2002).
2Qi and Gurdak (2006).
3Ruddy et al. (2006).
4Solley et al. (1998).
5Taylor et al. (1997).
6U.S. Department of Agriculture (1991).
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several preliminary multivariate models with various
combinations of explanatory variables were constructed
and evaluated. Using a randomly selected subset of wells
(n ¼ 232), model calibration was evaluated using the
degree of correspondence between the predicted probabil-
ities of nitrate exceeding the threshold and the actual
nitrate concentrations exceeding the threshold (Hosmer
and Lemeshow 2000). The Hosmer-Lemeshow (HL)
goodness-of-fit test statistic was used to evaluate the
model calibration. For the HL test, the data were grouped
into typically 10 deciles of risk or bins, with each bin
containing approximately 10% of the total number of
observations. The null hypothesis of the HL test is that
the model fits the data; therefore, a higher HL p value
indicates a well-calibrated model (Hosmer and Lemeshow
2000). The models that best predicted the occurrence
of nitrate concentrations greater than 4 mg/L in recently
recharged ground water were selected on the basis of
statistical significance (LLR p value), model fit (partial
likelihood ratio, PC, and sensitivity), and predictive ability
(Gurdak and Qi 2006). A randomly selected independent
set of nitrate concentration data from wells (n ¼ 104) that
intercept recently recharged ground water was used for
model validation to evaluate predictive ability. Using the
subset of validation wells that sample recently recharged
ground water, predicted probabilities were calculated with
the final models and compared to observed detections
of nitrate exceeding 4 mg/L. Nitrate concentrations
from the validation wells have a similar range as the wells
used for model development and calibration and were
converted to binary classification of ‘‘zero’’ for nitrate
concentration less than 4 mg/L and ‘‘one’’ for nitrate con-
centrations equaling or exceeding 4 mg/L. This binary
conversion allowed for the percentage of observed
detections to be calculated and compared to the average
predicted probabilities within each 10% decile.

Coefficients of the explanatory variables from the
final multivariate models were entered into the GIS, and
a vulnerability map was created through gridded (80 m)
GIS map-algebra techniques (Qi and Gurdak 2004, 2006).
The vulnerability model and map express the predicted
probability of detecting nitrate concentrations greater
than 4 mg/L in recently recharged (less than 50 years)
ground water of the High Plains Aquifer.

The following novel methodology produces corre-
sponding uncertainty estimates and maps for each vulnera-
bility model. LHS was used to develop the uncertainty
prediction intervals, which defines the error range sur-
rounding the estimates of predicted probability of ground
water vulnerability to nitrate concentrations greater than
4 mg/L in recently recharged ground water within each
80-m GIS grid cell. The 90% uncertainty prediction inter-
val range is commonly reported, defined by the difference
between the 5th and 95th percentile of the output probabil-
ity distribution, and represents the likelihood that the
true predicted probability of ground water vulnerability to
nitrate greater than 4 mg/L is within that uncertainty pre-
diction interval. Because the input errors, and thus the
propagated model output uncertainty, are spatially variable
(Phillips and Marks 1996), the uncertainty was calculated
at each GIS grid cell, and the 95% uncertainty prediction

intervals were presented as uncertainty maps to accompany
the final vulnerability map of the High Plains Aquifer.

Uncertainty was estimated at monitoring wells and
at each GIS grid cell of the study area during GIS map-
algebra calculations of probability by using the predicted
probability as input for the risk-analysis program @RISK
(Palisade Corporation 2002). Due to the excessively large
number of 80-m GIS grid cells (n ¼ 70.4[106]) within the
study area (450,658 km2), additional steps were taken to
reduce computational runtimes; thus, GIS data resolution
was decreased from 80-m (finest resolution explanatory
variable in the vulnerability models) to 500-m (coarsest
resolution explanatory variable in the vulnerability
model) grid spacing (Qi and Gurdak 2006). Results of
a Wilcoxon rank-sum test indicated that the change in res-
olution from 80-m to 500-m grid spacing did not signifi-
cantly (p > 0.05) change the data representing each
explanatory variable. Within this lower-resolution grid,
LHS was considerably more efficient than the traditional
MC sampling. The stratified sampling approach of LHS
allowed faster convergence on the input probability distri-
bution with fewer iterations than MC sampling. For each
model simulation, 1000 LHS iterations were run. As sug-
gested by Phillips and Marks (1996), all input probability
distributions were assumed normal; each distribution
mean was assigned as the estimated logistic regression
coefficient or explanatory variable for that GIS grid
cell. The estimation variance of the input probability distri-
butions was defined by a conservative range of errors for
each explanatory variable and by the Wald 95% confi-
dence intervals for logistic regression model coefficients,
summarized in Table 2. The Wald 95% confidence
interval was calculated using the maximum likelihood
estimate and the standard error estimate of the logistic
regression model coefficients (Hosmer and Lemeshow
2000).

Measures of errors are typically not available for spa-
tial databases; however, reasonable estimates of errors
were obtained for the explanatory variables that were
included in the vulnerability models selected as having
the most statistical significance and best model fit and
predictive ability. The errors for these explanatory varia-
bles ranged from 10% to 28% (Table 2) and were ob-
tained from various sources. Explanatory variable error
equal to 20% was used for both nonirrigated and irrigated
agricultural land, based on Qi et al. (2002) use of satellite
imagery from Landsat Thematic Mapper (nominal date
1992) and raw National Land Cover Data satellite data to
classify irrigated and nonirrigated land. Qi et al. (2002)
used ground reference information from 2500 km2 for
comparison against the classified irrigated land data and
reported an approximate 80% correct classification and
20% error estimate. Gurdak and Qi (2006) created unsatu-
rated zone lithology GIS data sets by interpolating 56,000
lithologic logs from wells across the High Plains using
ordinary kriging. Explanatory variable error for the unsat-
urated zone lithology was estimated at 28%, based on the
average root mean squared prediction error from cross-
validation during ordinary kriging. Explanatory variable
error of 10% for depth to water was estimated from
McGuire et al. (2003) use of ordinary kriging (average
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root mean squared prediction error from cross-validation)
to interpolate between ground water monitoring wells to
create a GIS data set of depth to water. A conservative
error estimate for soil organic matter was arbitrarily
selected as 20% because measures of uncertainty are not
available for STATSGO data (U.S. Department of Agri-
culture 1991). The explanatory variable errors largely
represent measurement accuracy within the GIS data sets.

A method originally presented by van Horssen et al.
(2002) to evaluate spatial interpolation during ordinary
block kriging was modified to evaluate uncertainty
contributions from model and data error sources by com-
paring the relative variance contributions due to the
regression (RVCr) and explanatory variables (RVCe). For
the predicted probability at any given monitoring well
or GIS grid cell, represented as P, the total prediction
variance, r2(P), is equal to the sum of the variance as a
result of uncertainty in the regression coefficient, r2r ðPÞ,
and variance as a result of uncertainty in explanatory
variables, r2eðPÞ. The general decomposition of the total
prediction variance is as follows:

r2ðPÞ ¼ r2r ðPÞ 1 r2eðPÞ 1 2 3 Cov
�
r2r ðPÞ; r2eðPÞ

�
ð4Þ

where 2 3 Cov
�
r2r ðPÞ; r2eðPÞ

�
is twice the covariance of

each pair of terms formed from the components of the
sum (Hosmer and Lemeshow 2000). Because the calcu-
lated covariance of each pair of terms is negligible (1 to 2
orders of magnitude less than uncertainty components),
it is reasonable to assume independence between the two
variance components. Therefore, the relative variance con-
tribution due to regression (RVCr) is calculated as follows:

RVCr ¼
r2r ðPÞ
r2ðPÞ 3 100% ð5Þ

and the relative variance contribution due to explanatory
variables (RVCe) is calculated as follows:

RVCe ¼
r2eðPÞ
r2ðPÞ 3 100% ð6Þ

If uncertainty due to regression coefficients and
explanatory variables contributes equally, the RVCr will

equal the RVCe. RVCr values greater than the RVCe val-
ues indicate locations of the aquifer where uncertainty
due to regression coefficients dominates the total uncer-
tainty. This result would indicate the need for additional
monitoring wells to better characterize the variability of
nitrate concentration and corresponding explanatory vari-
ables. RVCr values lower than the RVCe values indicate
locations of the aquifer where uncertainty due to errors in
explanatory variables dominates the total uncertainty.
Therefore, these locations of the aquifer represent where
improved measurement precision of GIS-based explan-
atory variables are needed to reduce RVCe and thus im-
proved vulnerability prediction uncertainty.

Results

Vulnerability Model and Map Development
Using univariate and multivariate logistic regression

analysis, models were developed that represent the vul-
nerability of recently recharged ground water in the High
Plains aquifer by using 336 wells, which were previously
identified by Gurdak and Qi (2006) as intercepting
ground water recharged during the past 50 years. The spa-
tial distribution and nitrate concentrations at these wells
are displayed in Figure 1. A summary of nitrate concen-
trations used for model calibration and validation is pre-
sented in Table 3. Approximately 48% of the wells were
identified as having nitrate concentrations that exceed the
relative background concentration of 4 mg/L (as N).

Univariate relations between nitrate concentration
greater than or equal to 4 mg/L and explanatory variables
were evaluated and are summarized in Table 1. The
logistic regression coefficients listed in Table 1 indicate
the nature of the univariate relation: coefficient values
greater than zero indicate positive relations, and coeffi-
cient values less than zero indicate inverse relations with
nitrate greater than or equal to 4 mg/L. An alpha level of
0.2 was chosen as the inclusion criterion for selecting
explanatory variables into the multivariate analysis rather
than the more traditional alpha level of 0.10. Hosmer and
Lemeshow (2000) suggest that an alpha level of 0.10 has
failed to identify variables known to be important during

Table 2
Wald 95% Confidence Intervals for Logistic Regression Constants and Estimated Explanatory

Variable Errors Used during Uncertainty Analysis

Explanatory Variables Model Constant Coefficient

Wald 95% Confidence Interval

Error (%)Lower Upper

NHP model –0.374 –1.477 0.729
Nonirrigated agricultural land (%) 0.023 0.009 0.036 20
Irrigated agricultural land (%) 0.017 0.004 0.030 20
Soil organic matter (% by weight) –1.487 –3.148 0.173 20

CHP and SHP model 1.158 –0.632 2.948
Depth to regional water table (m) –0.010 –0.017 –0.004 10
Nonirrigated agricultural land (%) 0.013 0.0004 0.026 20
Irrigated agricultural land (%) 0.011 –0.003 0.026 20
Average clay content, unsaturated zone (%) –0.019 –0.043 0.005 28
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some multiple logistic regression analyses. Twenty-one of
the 31 explanatory variables initially were carried forward
for multivariate analyses. However, all explanatory varia-
bles were evaluated later using the partial likelihood ratio
during multivariate analyses. The variable selection for
multivariate model development required too many itera-
tive steps to list. Using this stepwise selection process,
many multivariate models that represented different spa-
tial extents of the study area were tested for statistical sig-
nificance, model fit, and predictive ability. Spatial extents
tested included the entire High Plains aquifer, each sub-
region (NHP, CHP, and SHP), and various combinations
of the subregions.

Two final multivariate models were selected with the
best statistical significance, model fit, and predictive abil-
ity, and represent the NHP model and the combined CHP
and SHP models. The NHP model is expressed as follows:

PNHP ¼ e

h
2 0:374 1 ð0:023 3 NonIrragÞ

1 ð0:017 3 IrragÞ 1 ð 2 1:487 3 OMÞ

i

1 1 e

h
2 0:374 1 ð0:023 3 NonIrragÞ

1 ð0:017 3 IrragÞ 1 ð 2 1:487 3 OMÞ

i
0
BB@

1
CCA 3 100 ð7Þ

where PNHP is the predicted probability of detecting
nitrate greater than 4 mg/L in recently recharged ground
water of the NHP aquifer, NonIrrag is the percentage of
nonirrigated agricultural land in the contributing area,
Irrag is the percentage of irrigated agricultural land in the
contributing area, and OM is organic material in the soil.
The CHP and SHP model is expressed as follows:

PCHP and SHP

¼ e

h
1:158 1 ð 20:010 3 DTWÞ 1 ð0:013 3 NonIrragÞ

1 ð0:011 3 IrragÞ 1 ð 20:019 3 UzclayÞ

i

1 1 e

h
1:158 1 ð 20:010 3 DTWÞ 1 ð0:013 3 NonIrragÞ

1 ð0:011 3 IrragÞ 1 ð 20:019 3 UzclayÞ

i
0
BB@

1
CCA 3 100

ð8Þ

where PCHP and SHP is the predicted probability of de-
tecting nitrate greater than 4 mg/L in recently recharged
ground water of the CHP and SHP aquifer, DTW is depth
to regional water table, NonIrrag and Irrag are defined
previously, and Uzclay is percent clay in the unsaturated
zone. The LLR and p values for the NHP model (LLR ¼
13.9, p ¼ 0.003) and CHP and SHP model (LLR ¼ 16.2,
p ¼ 0.003) indicate high statistical significance (Table 4).
Model fit was good, indicated by reasonable PC (NHP

model ¼ 65.8%, CHP and SHP models ¼ 70.4%) and
sensitivity (NHP model ¼ 72.4%, CHP and SHP models ¼
58.0%) (Table 4). The overall model fit was excellent
(HL goodness-of-fit p value: NHP model ¼ 0.989, CHP
and SHP models ¼ 0.959) (Table 4). Linear regression
comparisons of the percentage of observed detections of
nitrate concentrations exceeding 4 mg/L and the average
predicted probabilities for each of 10 deciles calculated
for the NHP (Equation 7) and the CHP and SHP models
(Equation 8) are shown (Figure 2). The percentage of
observed detections of nitrate concentrations exceeding
4 mg/L was converted to binary classification of ‘‘zero’’
for nitrate concentrations less than 4 mg/L and ‘‘one’’ for
nitrate concentrations equaling or exceeding 4 mg/L for
each of the 10 deciles or bins, which contain approxi-
mately 10% of the total number of observations. This
binary conversion, ranking, and grouping of data into dec-
iles allowed for the direct comparison of the percentage
of observed detections to predicted probabilities (Rupert
2003; Gurdak and Qi 2006).

The predictive models were validated using a ran-
domly selected subset of wells that intercept recently
recharged ground water. The combined validation results
for both models show a good predictive ability, with an
r2 ¼ 0.834 and negligible systematic bias (Figure 3).

A vulnerability map representing the predicted occur-
rence probability of recently recharged ground water of the
High Plains aquifer having nitrate greater than 4 mg/L is
shown in Figure 4. The probabilities were calculated at
each grid cell in the study area through Equations 7 and 8.

Vulnerability Prediction Uncertainty
Simulation results from LHS of the input probability

distributions used in the logistic regression model identi-
fied propagation of input errors through the model calcu-
lations. This error propagation resulted in a substantial
prediction uncertainty for the calculated predicted proba-
bilities from Equations 7 and 8. Uncertainty predictions
are expressed as an output probability distribution and
show the relative likelihood of predicted occurrence of
elevated nitrate. The median value (50th percentile,
Figure 5) of the output probability distribution represents
the assumption of no input errors during calculations
(Equations 7 and 8) of ground water vulnerability.

Table 3
Summary of Nitrate Concentration Data Used in the Analysis and Number of Exceedances of the

Relative Background Concentration of 4 mg/L (as N)

Number of
Analyses/Number

of Wells
Number of Analyses
more than 4 (mg/L) N

Nitrate Concentration (mg/L)

Minimum Median Maximum

All data 336/336 162 0.02 3.82 31
NHP 192/192 96 0.02 4.00 31
CHP 91/91 39 0.02 3.66 27
SHP 53/53 27 0.21 4.03 22

Model calibration subset 232/232 108 0.02 3.63 29
Model validation subset 104/104 54 0.02 4.23 31
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Seven representative percentiles (5th, 25th, 40th,
50th, 60th, 75th, and 95th) were selected from the out-
put probability distribution at each calibration and vali-
dation monitoring well location for both models
(Equations 7 and 8) to evaluate the effect of input errors
on prediction uncertainty at the well locations (Figure 5).
The larger spread of the output probability distribution for
the wells used in the CHP and SHP model compared to
the wells used in the NHP model indicates that the overall
uncertainty is smaller for predictions of vulnerability
in the NHP than in the CHP and SHP subregions. This
may be attributed to the additional explanatory variable
(Uzclay) in the CHP and SHP model that has a relatively
high error percentage. A visual comparison of the output
probability distributions for both vulnerability models in
Figure 5 shows a lack of symmetry, or skewness, in the
uncertainty estimates across the range of predicted
ground water vulnerability. The uncertainty surrounding
the NHP model is positively skewed, meaning the uncer-
tainty is larger at predicted probabilities greater than 50
than at predicted probabilities less than 50. Conversely,
uncertainty surrounding CHP and SHP model predictions
is slightly negatively skewed, revealing the prediction
uncertainty to be slightly larger at predicted probabilities
less than 50 than for predicted probabilities greater
than 50.

To investigate the spatial variability of uncertainty
surrounding ground water vulnerability predictions, the
prediction interval was calculated at each GIS grid cell
within the High Plains aquifer and is shown as the pre-
diction interval map (Figure 6). The absolute uncertainty
surrounding ground water vulnerability predictions tends
to be larger within the CHP and SHP than in the NHP

(Figure 6). However, the intramodel variance of predic-
tion intervals tends to be larger for the NHP model than
the CHP and SHP model (Figure 6). The north-central
portion of the NHP subregion is dominated by rolling
hills and little agriculture, which was predicted with great
confidence as having a low probability of elevated nitrate
in ground water, despite few wells in this area. Conversely,
the central portion of the CHP subregion was predicted
as having a low probability of elevated nitrate, yet with
a larger uncertainty. The vulnerability map (Figure 4) used
in concert with the prediction interval map (Figure 6) re-
veals that predicted ground water vulnerability of the
High Plains aquifer varies spatially, as does its associated
prediction uncertainty.

Uncertainty Contributions
Comparison of the relative variance contributions

due to regression (RVCr) to the relative variance con-
tributions due to explanatory variables (RVCe) reveals that
relative input errors caused by the model contribute more
to the overall prediction uncertainty for the entire domain
(Figure 7). However, if the relative variance contributions
are calculated separately for the NHP model and the CHP
and SHP model (Figure 7), spatial patterns of uncertainty
contributions emerge. Using the Wilcoxon rank-sum test,
the RVCr was significantly (p < 0.001) greater than RVCe

for wells of the CHP and SHP model, indicating that spa-
tial patterns of prediction uncertainty across the CHP and
SHP subregions are largely due to a lack of monitoring
wells needed to most adequately describe the spatial vari-
ability of nitrate concentrations in recently recharged
ground water. A systematic, and possible cost-effective,
strategy for future ground water vulnerability assessment

Table 4
Logistic Regression Analysis Results, Listing Logistic Regression Coefficients,

p Values, and Model Fit Statistics

Explanatory Variables

Model Fit

Range Median
LLR

( p value)
Coefficient
( p value)

HL
( p value) r2 PC (%) Sensitivity (%)

NHP 13.9 (0.003) 0.989 0.910 65.8 72.4
Nonirrigated agricultural

land (NonIrrag) (%)
0–100 25.3 0.023 (0.001)

Irrigated agricultural
land (Irrag) (%)

0–100 7.78 0.017 (0.009)

Soil organic matter (OM)
(% by weight)

0.27–1.69 0.60 –1.487 (0.079)

CHP and SHP 16.2 (0.003) 0.959 0.891 70.4 58.0
Depth to regional water

table (DTW) (m)
2.27–96.3 40.8 –0.010 (0.002)

Nonirrigated agricultural
land (NonIrrag) (%)

0–100 35.0 0.013 (0.043)

Irrigated agricultural
land (Irrag) (%)

0–100 6.96 0.011 (0.122)

Average clay content of
unsaturated zone
(Uzclay) (%)

17.1–86.3 50.3 –0.019 (0.122)
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of the High Plains aquifer to reduce prediction uncer-
tainty across the CHP and SHP subregions may be to add
monitoring wells specifically in areas with the widest pre-
diction intervals, identified in Figure 6, followed by the
addition of monitoring wells in areas of the CHP and SHP
with smaller prediction intervals. Conversely, the RVCe of
the NHP model is significantly (p < 0.001) larger than
RVCr, indicating that errors associated with GIS explana-
tory variables are greater than errors caused by a lack of
spatial distribution of monitoring wells to adequately
describe spatial variability in nitrate concentrations. In the
NHP, a systematic, and possibly cost-effective, strategy to
reduce uncertainty would entail the use of GIS explana-
tory variables with smaller error, particularly in the north-
eastern area (Figure 6).

Discussion
As shown by the results of the High Plains aquifer

vulnerability assessment, input error propagation can lead
to substantial prediction uncertainty of logistic regression

ground water vulnerability models coupled with GIS.
The proposed LHS methodology is beneficial because it
identifies potential sources of uncertainty in ground water
vulnerability predictions and provides a quantitative
means for evaluating and managing the various sources
of uncertainty toward improved vulnerability predictions.

Figure 2. Percentage of observed nitrate detections greater
than the relative background concentration (4 mg/L) and the
average predicted probability of detecting nitrate greater
than 4 mg/L (calibration date) for deciles of the (a) NHP
model and (b) CHP and SHP model. The dashed line repre-
sents the 1:1 ratio.

Figure 3. Percentage of observed nitrate detections greater
than the relative background concentration (4 mg/L) and the
average predicted probability of detecting nitrate greater
than 4 mg/L (validation date) for deciles. The dashed line
represents the 1:1 ratio.

Figure 4. Spatial distribution of the probability of detecting
nitrate greater than 4 mg/L in recently recharged ground
water.
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For example, future vulnerability assessments of the High
Plains aquifer will benefit from increased spatial density
of monitoring wells located within the CHP and SHP and
from smaller errors in GIS-based explanatory variables
within the NHP.

The practical advantages and utility of using LHS to
quantify uncertainty associated with logistic regression
vulnerability model predictions are numerous. The pro-
posed method can easily be modified for application in
other hydrogeological settings. The explanatory variables,
and associated GIS-based errors, that control NPS con-
tamination and constrain the ground water vulnerability
model are likely to be different in other aquifers. The pro-
posed method allows for flexibility in defining the LHS
input probability distributions based on the errors of GIS-
based explanatory variables selected as most important to
an aquifer. Ground water vulnerability prediction uncer-
tainty presented as a probability distribution allows water
resource managers to define multiple ‘‘best case’’ and
‘‘worse case’’ probable scenarios of NPS contamination,

depending on any specified level of acceptable resource
management or sustainability risk. For example, water
resource managers who want a more conservative level of
acceptable risk may choose to use a smaller prediction
interval than the 90% uncertainty prediction interval used
in the High Plains aquifer example. Further, spatial
representations of the uncertainty as probability distribu-
tions within GIS (Figure 6) provide the necessary tools
for resource managers to allocate site-specific resources
to improve future assessments of NPS contamination of
ground water. The use of stochastic methods to estimate
ground water vulnerability is an improvement over other
uncertainty estimation methods, such as those that simply
assume prediction uncertainty is inversely related to the
number of observations (Bekesi and McConchie 2000).
LHS could also be implemented within an ordinal logistic
regression model if multiple thresholds of NPS con-
taminants are of interest.

The proposed method of uncertainty estimation has
some limitations. The commonly used approach of

Figure 5. Selected percentiles (5th, 25th, 40th, 50th, 60th, 75th, and 95th) from the output probability distribution for pre-
dicted probabilities of monitoring wells, sorted in ascending order of the 50th percentile, for the (a) NHP model and (b) CHP
and SHP model.
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assuming normal input probability distributions was used,
when in fact the true distribution shape of the input errors
is never known. Additionally, the associated errors of ge-
ospatial databases are rarely reported, limiting the num-
ber of GIS-based explanatory variables that may be used
in the uncertainty estimation. However, such methods

may advance the need for improved descriptions of inher-
ent errors in geospatial data. Although the proposed
methods used uncertainty estimates in the assessment
after selection of explanatory variables during logistic
regression model development, the authors suggest future
vulnerability assessments consider the inherent uncer-
tainty of explanatory variables during model calibration.
For example, an explanatory variable deemed statistically
significant during multivariate logistic regression analysis
may not be a desirable explanatory variable for the final
vulnerability model if the inherent error is exceptionally
larger than the other statistically significant variables.
Associated uncertainty of explanatory variables would
therefore become additional selection criteria for inclu-
sion in ground water vulnerability models.

The vulnerability and uncertainty maps provide tools
to help resource decision makers prioritize areas for
ground water quality monitoring or implement alternative
management practices. These maps of the High Plains
aquifer are intended for regional, subregional, or county-
scale use and may have several limitations for use at the
site scale or field scale. These maps are not appropriate at
any scale larger than 1:250,000, as determined by the
STATSGO soil data, which have the smallest scale
(1:250,000) of the explanatory variables used in the final
statistical models. The models and maps do not explicitly
account for local point sources of nitrate or features and
processes that may promote focused recharge, preferential
flow, or bypass mechanisms. Additionally, the spatial
distribution of wells used for model calibration was not
uniform across the entire aquifer. Therefore, models and
maps may not appropriately support local-scale decisions.

The probability and uncertainty maps were created
using nitrate data and explanatory variables that were col-
lected from 1990 to 2004 to illustrate spatial predictions
of nitrate vulnerability. Because agricultural practices
leading to nitrogen loading and mobilization have re-
mained relatively constant during this time period, this
vulnerability assessment represents the probability and
associated uncertainty of detecting nitrate under current
conditions. Temporal validation of these maps using data
collected from previous time periods has not been evalu-
ated. These maps were based on empirical observations
at point locations from a discrete time period; therefore,
forecasting of future aquifer vulnerability and uncertainty
using the presented models or maps may not be appropri-
ate and would require additional validation.

Conclusions
The proposed LHS method quantifies prediction

uncertainty associated with ground water vulnerability
models that use multivariate logistic regression with GIS.
As illustrated from the High Plains aquifer application,
the propagation of input errors through this type of
ground water vulnerability model can result in substantial
and spatially variable prediction uncertainty. For improved
confidence in model prediction, the LHS method systemat-
ically identifies specific areas of an aquifer where addi-
tional monitoring wells or improved GIS data with lower
error are needed to reduce the prediction uncertainty.

Figure 6. Spatial distribution of the 90% prediction interval
for the probability of detecting nitrate greater than 4 mg/L
in recently recharged ground water.

Figure 7. Comparison of RVCr and RVCe distributions by
location.
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Reducing ground water vulnerability model uncertainty
will lead to improved decisions about best management
practices and sustainability of ground water resources.
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