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BIOCHEMICAL EFFECTS OF LEAD, ZINC, AND CADMIUM FROM MINING ON FISH
IN THE TRI-STATES DISTRICT OF NORTHEASTERN OKLAHOMA, USA

CHRISTOPHER J. ScHMITT,* T JEFF J. WHYTE, £ WiLLIAM G. BRuMBAUGH,T and DoNALD E. TiLLiTTt
TU.S. Geological Survey, Columbia Environmental Research Center,
FfASci Corporation, c/o U.S. Geological Survey—Columbia Environmental Research Center, 4200 New Haven Road,
Columbia, Missouri 65201

(Received 1 July 2004; Accepted 7 December 2004)

Abstract—We assessed the exposure of fish from the Spring and Neosho Rivers in northeast Oklahoma, USA, to lead, zinc, and
cadmium from historical mining in the Tri-States Mining District (TSMD). Fish (n = 74) representing six species were collected
in October 2001 from six sites on the Spring and Neosho Rivers influenced to differing degrees by mining. Additional samples
were obtained from the Big River, a heavily contaminated stream in eastern Missouri, USA, and from reference sites. Blood from
each fish was analyzed for Pb, Zn, Cd, Fe, and hemoglobin (Hb). Blood also was analyzed for 3-aminolevulinic acid dehydratase
(ALA-D) activity. The activity of ALA-D, an enzyme involved in heme synthesis, is inhibited by Pb. Concentrations of Fe and
Hb were highly correlated (r = 0.89, p < 0.01) across all species and locations and typically were greater in common carp (Cyprinus
carpio) than in other taxa. Concentrations of Pb, Zn, and Cd typically were greatest in fish from sites most heavily affected by
mining and lowest in reference samples. The activity of ALA-D, but not concentrations of Hb or Fe, also differed significantly (p
< 0.01) among sites and species. Enzyme activity was lowest in fish from mining-contaminated sites and greatest in reference fish,
and was correlated negatively with Pb in most species. Statistically significant (p < 0.01) linear regression models that included
negative terms for blood Pb explained as much as 68% of the total variation in ALA-D activity, but differences among taxa were
highly evident. Positive correlations with Zn were documented in the combined data for channel catfish (Ictalurus punctatus) and
flathead catfish (Pylodictis olivaris), as has been reported for other taxa, but not in bass (Micropterus spp.) or carp. In channel
catfish, ALA-D activity appeared to be more sensitive to blood Pb than in the other speciesinvestigated (i.e., threshold concentrations
for inhibition were lower). Such among-species differences are consistent with previous studies. Enzyme activity was inhibited by
more than 50% relative to reference sites in channel catfish from several TSMD sites. Collectively, our results indicate that Pb is
both bioavailable and active biochemically in the Spring—Neosho River system.

Keywords—Metals Mining Iron 3-Aminolevulinic acid dehydratase activity Hemoglobin

INTRODUCTION

The Tri-States Mining District (TSMD) of Missouri, Kan-
sas, and Oklahoma, USA, was mined extensively for zinc, lead,
and other metals from the mid-1800s through the 1950s. L ead,
Zn, and cadmium, which can be toxic to aguatic organisms
and wildlife, have been released from historical mining and
related activities and have contaminated surface waters,
groundwater, stream sediments, and biotain parts of the Spring
River (SR) and Neosho River (NR) and their tributaries [1—
5]; Fig. 1). Effects on human health from exposure to mining-
derived metal s have been documented [6], as have biochemical
and ecological effects on aquatic biota [4,7].

Relative to the Missouri and Kansas portions of the TSMD,
metals contamination of aquatic resources in northeastern
Oklahoma has received limited study. The objectives of this
investigation, therefore, were to obtain preliminary informa-
tion on the exposure of fish in the Oklahoma portions of the
TSMD to metals from mining and to document effects of such
exposure. These objectives were achieved by collecting and
analyzing blood samples of several species of fish for Pb, Zn,
and Cd. Because of the well-known effects of Pb on heme
synthesis and iron metabolism, the blood samples also were
analyzed for hemoglobin (Hb), Fe, and the activity of the
enzyme d-aminolevulinic acid dehydratase (ALA-D, aso

4.2.1.24; http://lwww.ebi.ac.uk/intenz/index.html). This en-
zyme catalyzes the condensation of porphobilinogen (PBG),
a heme precursor, from aminolevulinic acid and is inhibited
by Pb [8,9]. The enzyme also requires Zn as a cofactor; Pb-
induced ALA-D inhibition is caused by the displacement of
Zn from the metal-binding site and aresulting change in quar-
ternary structure [9]. Erythrocyte ALA-D activity can readily
be measured and represents a well-documented biomarker of
Pb exposure in fish [4,10-17], birds [18], mammals [19,20],
and reptiles [21]. Lead also inhibits ferrochel atase (protoheme
ferrolyase, Enzyme Commission 4.99.1.1; http://www.ebi.ac.
uk/intenz/index.html), which catalyzes the insertion of Fe?*
into protoporphyrin X to form heme [8]. Inhibition ultimately
may cause porphyria, anemia, or both [8,20]. In this paper we
report the results of analyses of fish blood from the Oklahoma
waters of the TSMD for metals, ALA-D activity, and Hb as
indicators of contamination from historical mining and related
activities.

METHODS OF STUDY

Collection sites, species, and field procedures

Mining-derived contaminants enter the SR from flowing
mines and former ore-processing and tailings-disposal sitesin

known as porphobilinogen synthetase; Enzyme Commission

* To whom correspondence may be addressed
(cjschmitt@usgs.gov).

Missouri, Kansas, and Oklahoma (Fig. 1). In Oklahoma, these
sources are concentrated in the areadrained by Tar Creek (TC),
atributary of the NR (Fig. 1). Collection sites (n = 6) were
selected to bracket the range of exposure conditions present
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Fig. 1. Map of northeastern Oklahoma, USA, showing the location of collection sites (1-6) on the Spring and Neosho Rivers. Also shown is
the general boundary of the mining-affected area in the Tar Creek watershed (rectangle) and the reference and positive control sites (7—10) in
Missouri (inset). Additional mining-affected areas are drained by the Spring River in Kansas and Missouri, USA, upstream (north and northeast)

of the area shown in detail.

in TSMD-affected portions of the SR and NR in Oklahoma.
Two sites were located on each of the SR and NR upstream
of their confluence in Grand Lake. The other two were located
within Grand Lake and in the lower reaches of TC (Fig. 1,
Table 1). One NR site (Site 3) was upstream of known TSMD
pollution sources (Fig. 1, Table 1). Fish were collected by
electrofishing at all TSMD sites in October 2001. The collec-
tion target was four specimens of each of three primary species
at each site: Common carp (Cyprinus car pio, henceforth carp),

largemouth bass (Micropterus salmoides), and channel catfish
(Ictalurus punctatus). Spotted bass (Micropterus punctula-
tus), white crappie (Pomoxis annularis, henceforth crappie),
or both were substituted for largemouth bass, and flathead
catfish (Pylodictis olivaris) were substituted for channel cat-
fish when sufficient numbers of the primary species could not
be obtained.

Few studies of ALA-D inhibition by Pb have been con-
ducted with the fish used in this study, and thereis considerable

Table 1. Sitesin Missouri (MO) and Oklahoma (OK), USA, from which fish were collected. Also shown are collection dates and
water temperatures

Water
Site Latitude, temperature

no. Water body and location County (State) Date longitude? ©

1 Spring River near OK state line Ottawa (OK) 10/15/01 36°59'50.5"N, 154
94°42'37.4"W

2 Spring River at Blue Hole Ottawa (OK) 10/15/01 36°57'41.0'N, 154
94°43'20.6"W

3 Neosho River at Stepps Ford Bridge Ottawa (OK) 10/16/01 36°53'25.0'N, 14.0
94°55'38.5"W

4 Spring River at Promenade Bridge Ottawa (OK) 10/16/01 36°56'01.1"N, 13.0
94°44' 40.9"W

5 Neosho River at Twin Bridges (Grand Lake) Ottawa (OK) 10/16/01 36°47'56.0'N, 16.1
94°45'18.5"W

6 Tar Creek at Neosho River Ottawa (OK) 10/17/01 36°51'25.7"N, ND
94°51'39.2"W

7 USGS-CERC® (reference) Boone (MO) 10/22/01 38°54'41.5"N, 18.0
92°16'58.0"W

8 Osage Catfisheries (reference) Camden (MO) 10/23/01 38°07'38.9'N, 17.0
92°40'54.5"W

9 Big River at St. Francois State Park St. Francois (MO) 12/07/01 37°57'23.1"N, 12.0
(positive control) 90°32'29.5"W

10 Long Branch Lake (reference) Macon (MO) 07/10/03 39°46'00.0"N, 28.0
92°31'0.00"W

aFrom geological positioning system, datum = World Geodetic System, 1984.
b U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO.
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variation among taxa [12,16]. Therefore, reference fish from
putatively uncontaminated sites and positive controls from a
known contaminated site also were analyzed. Reference fish
included largemouth bass and channel catfish from our labo-
ratory and from a commercia source (Osage Catfisheries,
Osage Beach, MO, USA) obtained and processed contempo-
raneously with the fish from Oklahoma. Positive controls were
carp, largemouth bass, and spotted bass collected by electro-
fishing from the Big River (BR) in St. Francois County, Mis-
souri, USA in early December 2001 (Fig. 1, Table 1). Elevated
metal concentrations and inhibited ALA-D activity have been
reported in fish and other biota from the BR, which is heavily
contaminated by mine tailings [4,5,17,21,22]. Reference carp
were obtained by electrofishing in July 2003 from Long Branch
Lake (LB), a multiuse impoundment in rural Macon County,
Missouri, USA (Fig. 1, Table 1). Concentrations of Pb and Cd
in carp and other fish from LB historically have been low, but
Zn has not been measured (unpublished monitoring data ob-
tained in June 2003 from the Missouri Department of Con-
servation, Columbia, MO, USA).

Fish were transported alive to a central location and held
in ambient water until they were processed, generally within
4 to 12 h of capture. Blood (nominally 1-5 ml depending on
fish species and size) was obtained from each fish by caudal
veinipuncture using achilled, heparinized (6 |U/ml) disposable
needle and syringe. After removing the needle, one drop of
blood was dispensed onto a clean piece of Parafilm M® (Amer-
ican National Can, Menasha, WI, USA) and analyzed imme-
diately for Hb with a HemoCue® (HemoCue AB, Angelholm,
Sweden) portable blood photometer, which incorporates a mi-
croscale version of the azide-methemoglobin method [23].
About 0.2 to 0.5 ml was next dispensed into a preweighed,
acid-cleaned, 10-ml borosilicate glass test tube fitted with a
Teflon®-lined polyethylene screw cap. This subsample wasfro-
zenimmediately indry icefor analysis of metalsby inductively
coupled plasma mass spectrometry [2]. The remainder of the
blood was dispensed into a 5-ml Cryovia® (Corning, Corning,
NY, USA) and also frozen immediately in dry ice for analysis
of ALA-D activity.

Following blood collection, the fish was subdued with a
blow to the head, weighed (g), and measured (total length
[mm]). A scale sample (if present) was obtained for age de-
termination. The abdominal cavity of each fish was dissected
and its gender was determined by gonadal observation. Upon
return to the laboratory, blood samples to be analyzed for
metals were stored frozen (—20°C for metals, —80°C for ALA-
D activity) until prepared for analysis. Fish scales were dried
and read with the aid of a dissecting microscope, with age (y)
estimated as the number of completed annuli.

Temperature study

During July 2003 the waters of LB were warmer than those
from which the fish had been collected from the other sitesin
Fall 2001 (Table 1). The effects of temperature on ALA-D
activity in fish have not been reported, but acclimation tem-
perature is known to influence the rates of other enzyme-me-
diated processes [24]. To evaluate the effects of acclimation
temperature on ALA-D activity, the LB fish (n = 16) were
transported alive in ambient water to the laboratory and cooled
gradually over a 7-d period. Six fish were processed imme-
diately upon arrival (28°C). The remainder were transferred
to outdoor holding tanks supplied with well water from which
four were removed and processed after 5 d (25°C) and 7 d
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(21.5°C). All fish from LB were analyzed for ALA-D activity
and Hb, but blood metals were measured only in the fish sac-
rificed on the day of capture. Enzyme activity in carp from
LB did not differ significantly (p > 0.05) among the three
time—temperature periods evaluated. In contrast, Hb concen-
trations averaged 7.9 g/dL on day O, 6.6 g/dL on day 5, and
8.9 g/dL on day 7 (analysis of variance F, ;, = 5.58, p <
0.05). Because there were neither significant ALA-D differ-
ences nor clearly evident Hb trends, the day-0 data from LB
(n = 5; the small volume of blood obtained from one fish
injured during collection was not analyzed) were included in
the larger data set for analysis.

Laboratory methods

Elemental contaminants and moisture content. Frozen
blood samples were weighed in their tubes, freeze-dried, and
reweighed, then digested in their tubes at room temperature
by adding 1.0 ml of concentrated, sub-boiling, distilled HNO..
After 1 h, they were heated for 30 min at 110°C, cooled for
15 min, and 0.2 ml of high-purity H,0O, was added. The sam-
ples then were reheated at 110°C for 30 min, cooled again,
and diluted to 10 ml with ultrapure H,O for analysis by in-
ductively coupled plasma mass spectrometry using a PE/
SCIEX Elan 6000 (Perkin-Elmer Instrument, Norwalk, CT,
USA) equipped with a software-controlled CETAC A SX-500/
ADX-100 autosampler/autodiluter (CETAC Technologies,
Omaha, NE, USA) [2]. The instrument was programmed to
qguantify the following masses. >Fe and 5Fe, %Zn and %Zn,
11Cd and **Cd, and Pb as the sum of three masses (*Pb +
207Ph + 208Pp). All digestates were analyzed with 10-times
autodilution. Samples with a concentration exceeding the up-
per calibration standard for any element were further diluted
by 10-fold in serial fashion until all concentrations werewithin
the range of the calibration standards.

For each group of samples analyzed, quality control mea-
suresincorporated at the digestion stage included tissue blanks,
certified reference materials, replicates, and fortified samples
(spikes). Instrumental quality control included periodic anal-
ysis of calibration check solutions, laboratory-control solu-
tions, duplicate digestate analyses, analysis spikes, and inter-
ference checks; all were within acceptable limits.

Elemental concentrations were reported in both dry-weight
(dry wt) and wet-weight (wet wt) units, the latter based on
moisture loss of each sample during lyophilization. Method
limits of detection (LODs) were calculated assuming a diges-
tion of 50 mg of dry blood and 85% moisture. The LOD ranges
were Fe 1 to 60 pg/g dry weight, 0.2 to 9.0 ng/g wet weight;
Zn 0.3 to 5 wg/g dry weight, 0.04 to 0.8 n.g/g wet weight; Cd
0.002 to 0.009 pg/g dry weight, 0.0003 to 0.001 wg/g wet
weight; and Pb 0.004 to 0.02 n.g/g dry weight, 0.0006 to 0.003
ng/g wet weight.

ALA-D activity. Enzyme activity was assayed in 96-well
microtiter plates using a procedure adapted from [25] and [12].
Each sample was analyzed in triplicate. For quality control
purposes, one triplicate sample per plate was sel ected random-
ly for duplicate analysis in a separate location on the plate.
Blood samples stored at —80°C were thawed at 0°C and vor-
texed immediately before analysis. Into each of three micro-
centrifuge tubes containing either 25 wl of cold 0.2% Triton
X-100 in 0.1-M phosphate buffer solution ([PBS]; blank) or
25 pl of cold 0.2% Triton X-100 in 0.1-M PBS containing
670 pg/ml of 8-aminolevulinic acid—HCI, was added 5 .l of
whole blood homogenate. Samples were vortexed for 5 sec
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and incubated at 37°C for 1 h. The reactions were terminated
with the addition of 200 wl of trichloroacetic acid/N-ethyl-
maleimide solution (4.0 g trichloroacetic acid and 2.7 g N-
ethylmaleimide per 100 pl of H,0) [19]. Tubes were centri-
fuged at 1,000 X g for 5 min and 100 pl of the supernatant
was transferred in triplicate to a 96-well plate. Each well re-
ceived 100 pl of freshly prepared modified Ehrlich’s reagent
(8 ml dH,0O, 42 ml glacial acetic acid, 10 ml 70% perchloric
acid, 1 g p-dimethylamino benzaldehyde). Each plate also con-
tained an eight-point PBG standard curve (final concentration
range in the wells was 0-221 uM PBG); standards were pre-
pared using the same reagent concentrations as test samples.
Plates were incubated in the dark at room temperature on an
orbital plate shaker for 15 min, after which the PBG concen-
tration was determined by reading the absorbance at 540 nm
with an automated 96-well plate scanner (Bio-Rad Laborato-
ries Model 3550, Hercules, CA, USA). Enzyme activity in
each well was computed as nmol PBG/ul blood/h using the
sample absorbance reading and the parameters (slope and y-
intercept) from the regression of the PBG standard curve and
was reported as the arithmetic mean of the three observations
representing each sample. Enzyme activity also was standard-
ized to Hb concentration (as determined in the field by
HemoCue) and reported as nmol PBG/mg Hb/h.

Species composition, fish size, and age

Carp (n = 23) were obtained from all six Oklahoma sites,
the BR (n = 2), and LB (n = 16). Those analyzed for metals
and biomarkers (n = 5 from LB) were of relatively uniform
size and age; station means were 468 to 560 mm, 1,364 to
2,225 g, and two to 3.3 years old (data not shown). The LB
carp used in the later parts of the temperature study were
smaller and younger than most; however, they averaged 425
mm, 862 g, and 1.8 years old.

Channel catfish (n = 20) also were obtained from all six
Oklahoma sites and from reference sites (n = 15). Catfish were
not aged. Overall, channel catfish averaged 400 mm and 581
0, and the sizes of the reference fish bracketed the range rep-
resented by the fish from Oklahoma. Those from Oklahoma
were of relatively uniform size except for those from site 1,
which generally were smaller than most (mean = 372 mm,
371 g). The commercially obtained channel catfish (site 8, n
= 12) were slightly smaller (mean = 327 mm, 230 g) than
those from site 1, whereas those from our laboratory (site 7,
n = 3) were larger (mean = 434 mm, 1,033 g) as were those
from the other Oklahoma sites. Flathead catfish (n = 4) were
obtained only at Oklahoma sites 1 and 2 (data not shown),
and no reference fish were available for analysis. The fish from
site 1 (n = 2) were larger (605—-651 mm, 2,550-3,900 g) than
those from site 2 (470-525 mm, 1,115-1,450 g).

Largemouth bass (n = 8) were obtained from Oklahoma
sites 1, 5, and 6 and fromthe BR (n = 1). Referencelargemouth
bass (n = 12) from our laboratory also were analyzed. Those
from Oklahoma were all larger (243—456 mm, 152—1,600 Q)
than the specimen from the BR (208 mm, 103 g; data not
shown). However, one large fish (from site 6) contributed
greatly to the wide range. Largemouth bass from Oklahoma
were one to three years old; the reference fish were two to
three years old, and the fish from the BR was one year old.
Overall, the largemouth bass averaged 335 mm, 559 g, and
2.1 years old. Spotted bass (n = 7) were obtained from
Oklahoma sites 2, 4, and 5 and from the BR (n = 2). They
were 213 to 424 mm long, weighed 117 to 1,137 g, and were
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one to three years old. Like the largemouth bass, one large
fish (from site 1) contributed greatly to the wide range. In
contrast, the one spotted bass obtained from site 5 was smaller
than all others (213 mm, 117 g). Spotted bass from the BR
were similar in size (245-294 mm, 217-403 g) and age (1-3
years old) to most from Oklahoma. Overall, the spotted bass
included in the study (mean = 289 mm TL, 394 g) wereslightly
smaller than the largemouth bass, asistypical of these species.
No reference spotted bass were available for analysis.

Crappie (n = 12) were obtained from Oklahoma sites 3
through 6. They were 216 to 352 mm, weighed 117 to 739 g,
and were one to three years old (data not shown). Overall,
they averaged 284 mm, 353 g, and 1.8 years old. The crappie
from site 6 (n = 3) were larger (315-352 mm, 451739 Q)
than those from the other sites (216-315 mm, 117-388 g).
None were obtained from the BR or from any of the reference
sites.

Data management and statistical analysis

Elemental concentrationswere analyzed statistically asboth
dry weight and wet weight concentrations. For each variable,
species-station arithmetic means and standard errors were
computed and tabulated, aswere summary statistics by species.
All data representing elemental concentrations and ALA-D
activity were log,,-transformed before statistical analysis. A
value of 50% LOD was substituted for censored values (i.e.,
those <LOD) for all computations. A preliminary statistical
analysis was conducted using analysis of covariance to deter-
mine the influence of various factors on metal concentrations
and biomarkers. For these analyses, fish species, gender, col-
lection site, and the interactions of these variables were con-
sidered fixed effects, and total length, fish weight, and age
were considered continuous variables [26]. The preliminary
analysis of covariance indicated that many variables differed
among species and sites and that some interactions of species
with other factors were significant; however, few other factors
were significant (Table 2). All further statistical analyses,
therefore, were conducted separately for each species. One-
way analysis of variance was used to test for differencesamong
sites and groups of sites. In these analyses, site was considered
a fixed effect, differences among individual sites were tested
with Fisher’s protected L SD, and differences among groups of
sites were tested as planned nonorthogonal contrasts using
single degree-of-freedom F tests. Relations between and
among groups of variables (transformed as described previ-
ously) were examined through the use of Pearson correlation
coefficients, linear (least-squares) regression, and stepwise
multiple linear regression. In the latter, the forward selection
method was used and variables were allowed into the model
only if they significantly (p < 0.05) reduced the unexplained
sum of squares after accounting for all other factors already
included in the model (i.e., the type-1l sums of squares were
used) [26]. Closely related species (Ictaluridae [catfish]; Mi-
cropterus spp.) were combined for these analyses. Molar con-
centrations of Hb and blood Fe (i.e., [Hb] and [Fe]) were
computed on the basis of the approximate molecular weight
of carp Hb (65.88 kDa) [27] and the atomic weight of Fe
(55.85) and analyzed using simple linear regression and geo-
metric mean (functional) regression [28]. Release 8.2 of the
Statistical Analysis System [26] was used for all statistical
analyses.
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§§ and spotted bass from the BR than in those from any of the
38 T . Oklahoma sites, which did not differ from each other in either
G '§% SNERRNQI8RLS species (Table 3). Activity (as ALA-D/Hb) also was signifi-
a T|New—HdoomHdooo | cantly greater in reference largemouth bass than in those from
z ko) Oklahoma (Table 3), but no reference spotted bass were avail-
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%‘ %g f% 8NIER fg_ SNGY | (NR) and greatest at site;% (NR—re_fference), with the other two
= g dod-docomoocod | O sites (2 and 4, both SR) intermediate (Table 3); however, the
T % range of ALA-D/Hb in crappie was narrow relative to other
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° ok R e s E fish were obtained for comparison.
?@ _ g g Moisture content and metals
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N v © S [OF E ?S 5 Moisture. The moisture content of fish blood was consistent
% s B % <) [2BEORORY! ?.g aV g across the range of species and locations sampled; differences
C |858 | si8nBo8n832 |22 among stations and species were not significant (p > 0.05),
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Table 3. Hemoglobin (Hb) concentrations (g/dl), Hb-adjusted &-aminolevulinic acid dehydratase (ALA-D) activity (nmol porphobilinogen [PBG]/

mg Hb/h), unadjusted ALA-D activity (nmol PBG/pul/h), and moisture content (%) in the blood of six species of fish from the indicated sites

(Ref = reference; SR = Spring River; NR = Neosho River; TC = Tar Creek; BR = Big River; LB = Long Branch Lake [all USA]). Shown

are arithmetic station and river means (unweighted) and standard errors (SE), by species and site; and results of one-way analysis of variance

(ANOVA) asF values (** p = 0.01; * 0.01 < p = 0.05; not significant [NS] p > 0.05), coefficients of determination (r?), and degrees of freedom
(df). Within taxa, means followed by the same lettera are not significantly different (p > 0.05)

Hb ALA-D/Hb ALA-D Moisture
Species, site
and river n/df Mean = SE Mean + SE Mean = SE Mean = SE
Common carp 30 9.2 = 0.29 1.70 = 0.12 153 = 0.10 85.2 + 0.3
1 (SR) 4 9.6 = 0.39a 1.55 = 0.09 abc 150 = 0.15a 85.0 + 1.0a
2 (SR) 4 8.8 = 0.66 a 1.35 = 0.24 bc 119 = 0.23a 858 + 0.7a
4 (SR) 3 93+ 125a 222 + 0.39ab 1.99 = 0.29a 85.1+ 12a
All SR 3 9.2A 1.71AB 156 A 85.3A
3 (NR) 4 8.4 = 0.97a 2,55 + 0.07a 214 + 0.26a 86.2 + 0.8a
5 (NR) 3 11.1 = 0.61a 0.92 + 0.18c 1.04 = 0.26a 832+ 05a
6 (NR-TC) 5 10.0 = 0.58 a 1.28 = 0.30c 1.29 = 0.33a 85.0 + 0.6a
All NR 3 9.8A 1.58 A 149A 84.9A
9 (BR) 2 9.6 = 1.00 aA 1.34 = 0.05 abAB 1.29 = 0.18 A 84.6 + 0.6 aA
10 (LB) 5e 7.9 = 0.57aA 2.17 + 0.14 abB 1.68 = 0.07 @A 85.6 + 0.5aA
ANOVA 29 — — — —
F 7 1.85NS 4.06** 2.00NS 141 NS
r2 22 0.37 0.56 0.39 0.31
Channel catfish 35 6.9 = 0.21 1.44 += 0.09 0.97 = 0.05 86.3 = 0.3
1(SR) 5 7.0 = 0.50a 0.78 + 0.09 a 0.55 + 0.08 bc 874 + 11a
2 (SR) 1 85a 0.58a 0.49c 86.0a
4 (SR) 5 6.4 = 0.86 a 1.48 = 0.36b 0.90 + 0.17 ab 872+ 11la
All SR 3 73A 0.95A 0.65 A 85.9A
3 (NR) 4 75+ 1.02a 1.29 = 0.18b 0.96 + 0.16 ab 857 + 1.1a
5 (NR) 2 7.2 =+ 040a 149 + 0.12b 1.07 = 0.03 a 86.2 = 0.1a
6 (NR-TC) 3 75+ 0.84a 1.74 = 0.28b 127 = 0.17a 86.2 + 0.9a
All NR 3® 74 A 151B 1.10B 86.0 A
7 (Ref) 3 6.7 = 0.35a 1.97 = 0.28b 1.30 = 0.13a 85.6 + 0.6a
8 (Ref) 12 6.6 + 0.21a 1.60 + 0.08 b 1.04 + 0.05a 86.0 = 0.3a
All ref 20 6.6 A 1.79B 1.17B 85.8 A
ANOVA 34 — — — —
F 7 0.74 NS 5.34%** 4.30%* 0.73NS
r2 27 0.16 0.58 0.53 0.16
Flathead catfishd 4 59 +1.21 1.62 + 0.32 0.86 = 0.08 85.9 + 0.4
1(SR) 2 59 = 2.05 1.84 = 0.70 0.93 + 0.03 85.9 + 0.3
2 (SR) 2 6.0 = 2.15 1.39 = 0.23 0.78 = 0.16 85.9 = 0.09
Largemouth bass 21 6.5 = 0.29 4.61 = 0.37 2.92 + 0.19 86.0 + 0.4
1 (SR) 2 6.7 = 0.45a 4.49 = 1.17 abA 2.93 + 0.58 aA 85.3 + 1.3a
5 (NR) 2 8.0 = 0.55a 3.13 £ 0.05a 249 + 0.21a 845+ 11la
6 (NR-TC) 4 71+ 0.13a 4.25 = 0.23 ab 3.02 + 0.19a 852+ 0.1a
All NR 3 7.5aA 3.69A 276 A 84.8 aA
7 (Ref) 12 6.1 = 0.452A 5.25 + 0.51 bB 3.12 + 0.27 2A 86.6 = 0.6 aA
9 (BR) 1 6.6 aA 1.52cC 1.00 bB 86.3 aA
ANOVA 20 — — — —
F 4 1.09 NS 6.10** 3.19* 0.95NS
r2 16 0.21 0.60 0.44 0.19
Spotted bass 9 8.3 = 0.46 2.71 = 0.19 2.26 + 0.22 84.6 = 04
2 (SR) 3 9.1+ 042a 2.80 + 0.33ab 254 + 0.24a 842 + 0.6a
4 (SR) 3 80+ 11la 2.88 = 0.13a 230 £ 0.31a 849 £ 10a
All SR 20 8.6 A 2.84 A 242 A 84.6 A
5 (NR) 1 9.0aA 3.42 aA 3.08 aA 84.2 aA
9 (BR) 2 7.2 = 0.752A 1.96 = 0.08 bB 1.40 = 0.09 bB 84.8 + 0.6 aA
ANOVA 8 — — — —
F 3 0.96 NS 4.13** 5.60** 0.19NS
r2 5 0.32 0.72 0.77 0.10
White crappie 12 6.4 = 0.27 2.40 = 0.16 1.50 = 0.10 849 = 0.5
4 (SR) 3 59 = 0.77aA 2.49 + 0.20 abA 1.50 = 0.29 abA 87.3 + 0.6 aA
3 (NR) 2 6.0 + 0.30a 325+ 03la 1.94 + 0.09 & 849 = 06b
5 (NR) 4 6.4 = 0.55a 1.92 = 0.17b 1.21 = 0.09 be 832+ 06b
6 (NR-TC) 3 7.0 £+ 0.22a 2.39 = 0.09 ab 1.67 = 0.08ab 847 = 05hb
All NR 3 6.5A 252 A 1.61A 84.3B
ANOVA 11 — — — —
F 3 0.70NS 6.35%* 2.95 NS 9.32%*
r2 8 0.21 0.72 0.78

al owercase letters for site means, uppercase for river means; ALA-D and ALA-D/Hb log-transformed for statistical analysis.

5 No. of means.

¢One LB carp deleted due to low blood volume.

d Flathead catfish not analyzed statistically due to small n.

ep = 0.10.
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and neither length nor weight were significant factors (Table
2). Blood moisture ranged from 81.9% in a crappie from site
5 t0 93.1% in a reference largemouth bass (data not shown).
Differences among locations were significant only in crappie
(Table 3). These results indicate that most comparisons of wet
weight metal concentrations are not confounded with moisture
differences introduced in the conversion of dry weight to wet
weight concentrations.

Lead. Blood—Pb concentrations (wet wt and dry wt) differed
significantly among species and sites; trends were identical for
both wet weight and dry weight concentrations, and no other
factors were significant (Table 2). Lead was detected in all
samples at concentrations ranging from 0.003 n.g/g wet weight
in a reference channel catfish to 3.69 pg/g in a carp from the
BR (data not shown). At the Oklahoma sites, concentrations
generally were greatest in carp and lowest in crappie (Table
4), but no reference of crappie was obtained for comparison.
Blood—Pb concentrations in bass and catfish were intermediate
relative to those in carp and crappie (Table 4).

Blood—-Pb concentrations differed significantly among sites
in all species (Table 4). Concentrations averaged 3.39 pg/g in
carp from the BR and 0.04 p.g/g in carp from LB; both differed
significantly from all Oklahomasites, which wereintermediate
(Table 4). Among the Oklahoma sites, Pb concentrations in
carp from the SR (site means 0.20-0.36 .g/g) were signifi-
cantly greater than those from the NR (site means 0.10-0.19
rg/g), and site 3 (NR—reference) concentrations were signif-
icantly lower than those from site 5 but not from other
Oklahoma sites (Table 4).

Blood—-Pb concentrationsin channel catfish also were great-
er generaly at SR than at NR sites, and concentrations at all
Oklahoma sites exceeded those in both groups of reference
fish (Table 4). Among the Oklahoma sites, concentrations in
channel catfish were greatest at site 1 (SR, mean = 0.16 pg/
0) and lowest at sites 3 (NR—reference) and 5 (NR, means =
0.04 p.g/g). Overall, Pb concentrations in channel catfish from
the NR were significantly lower than in those from the SR
(Table 4). Concentrations in flathead catfish from SR sites 1
and 2 were lower than in channel catfish from those sites but
were not tested statistically (Table 4).

The blood—Pb concentration of the largemouth bass from
the BR (1.97 pg/g) was more than 50-fold greater than that
of most Oklahoma largemouth bass and as much as 200-fold
greater than reference fish (Table 4). Concentrations also were
significantly greater in largemouth bass from Oklahoma than
in reference fish, and those from sites 1 (SR) and 6 (NR-TC)
exceeded those from site 5 (NR); however, Pb concentrations
in largemouth bass from the SR and NR did not differ sig-
nificantly overall (Table 4).

In spotted bass and crappie, the blood—Pb trends at the
Oklahoma sites were similar to those observed in largemouth
bass, but no reference fish of either species were obtained, nor
were crappie obtained from the BR (Table 4). Blood—Pb con-
centrations in spotted bass from the BR (mean = 1.24 pg/g,
n = 2) were more than 10-fold greater than in all spotted bass
from Oklahoma, and also were significantly greater at site 2
(SR) than at site 4 (NR); however, as was true also for large-
mouth bass, the SR and NR did not differ significantly overall
(Table 4). Blood—Pb concentrations in crappie spanned a rel-
atively narrow range (0.01-0.05 pg/g) compared to the other
taxa (Table 4), even among Oklahoma sites. Neverthel ess, con-
centrationsin crappie from site 4 (SR) were significantly great-
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er than all NR sites except site 6 (NR-TC) and the NR sites
collectively (Table 4).

Cadmium. Blood—Cd concentrations (wet wt and dry wt)
differed significantly among species and sites but no other
factors were significant (Table 2). Concentrations generally
were greatest in carp and lowest in the centrarchids, ranging
from <0.001 pg/g (wet wt) in most reference fish to 0.050
ro/g in acarp from NR site 3. Blood—Cd concentrations were
>LOD in only 48 of 111 samples (43%), mostly in carp and
catfish. Consequently, results of statistical tests are only ap-
proximate.

Blood—Cd concentrations in carp differed significantly
among sites, but the differences were less evident than for
blood Pb (Table 4). Concentrations were lowest in fish from
LB and greatest in those from site 3 (NR—reference) and the
BR. Overall, the SR and NR did not differ significantly (Table
4). Concentrations in channel catfish also differed significantly
among sites; generaly they were greatest in the SR, inter-
mediate in the NR, and lowest in reference fish (Table 4).
Blood—Cd concentrations in channel catfish from the SR and
NR differed significantly from reference fish, but overall dif-
ferences between the SR and NR were not significant (Table
4). Concentrations in flathead catfish from SR sites 1 and 2
exceeded those in channel catfish from these sites (Table 4)
but were not tested statistically. Concentrations were univer-
sally low (<0.001-0.003 p.g/g) in al three centrarchid species.
Differences among sites were marginally significant (0.05 <
p < 0.10) in largemouth bass but not in spotted bass or crappie
(Table 4).

Zinc. Blood—Zn concentrations (wet wt and dry wt) differed
significantly among species and sites (Table 2). In addition,
species X gender interaction was significant for dry weight
blood Zn, indicating that concentrations differed between gen-
dersin at least one species; however, this term was not sig-
nificant for the wet-weight values, and neither length nor
weight were significant for either set of concentrations (Table
2). Concentrationsranged from 3.5 p.g/g (wet wt) in areference
largemouth bass to 29.9 wg/g in a carp from site 3 (NR—
reference), and were >LOD in all samples (data not shown),
and generally were greatest in carp and catfish and lowest in
the centrarchids (Table 4).

Compared to Pb and Cd, blood—Zn concentrations in carp
were relatively uniform across the range of stations sampled.
Site means ranged from 7.5 ng/g (wet wt) at LB to 14.9 pg/
g at site 3 (NR-reference), but differences among sites were
not statistically significant (Table 4). In contrast, blood—Zn
concentrations in channel catfish differed significantly among
sites; concentrations were significantly greater at sites 4 (SR)
and 6 (NR-TC) than at all other Oklahoma sites (Table 4).
Concentrations in fish from the SR were significantly lower
overall than those from the NR and the reference sites, but
the NR sites did not differ overall from the reference sites
(Table 4). Concentrations in flathead catfish from sites 1 and
2 exceeded those in channel catfish from these sites (Table 4)
but were not tested statistically. Blood—Zn concentrations in
largemouth bass also differed significantly among sites (Table
4). Concentrations were significantly greater in largemouth
bass from all Oklahoma sites than in those from either the BR
(one fish) or the reference site, but the Oklahoma sites did not
differ significantly among themselves (Table 4). Differences
in spotted bass and crappie were not statistically significant
(Table 4), but no reference fish of either species were analyzed
nor were any crappie from the BR.
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Table 4. Concentrations of zinc, cadmium, lead, and iron (all pg/g wet wt) in the blood of six species of fish from the indicated sites (Ref =

reference; SR = Spring River; NR = Neosho River; TC = Tar Creek; BR = Big River; LB = Long Branch Lake [al USA]). Shown are

arithmetic station and river means (unweighted) and standard errors (SE), by species and site; and results of one-way analysis of variance

(ANOVA) as F values (** p = 0.01; * 0.01 < p = 0.05; not significant [NS] p > 0.05), coefficients of determination (r2), and degrees of freedom
(df). Within taxa, means followed by the same letter2 are not significantly different (p > 0.05)

Zinc Cadmium Lead Iron
Species, site
and river n/df Mean + SE Mean + SE Mean + SE Mean + SE
Common carp 30 105 = 0.9 0.008 = 0.002 0.38 + 0.18 3195 = 8.7
1 (SR) 4 129 + 15a 0.013 = 0.008 abcd 0.20 = 0.04 bc 3435 *+ 23.2a
2 (SR) 4 87 *0.7a 0.008 = 0.001 abc 0.26 = 0.05 bc 308.6 = 24.4a
4 (SR) 3 115+ 15a 0.003 = 0.002 abcd 0.36 = 0.15b 309.6 = 36.7a
All SR 3p 11.0A 0.007 A 0.27 A 320.6 A
3 (NR) 4 149 =+ 51a 0.018 = 0.011 ab 0.10 + 0.01c 289.7 = 32.2a
5 (NR) 3 99 £ 0.2a 0.003 = 0.002 cd 0.18 + 0.06 bc 371.8 = 175a
6 (NR-TC) 5 95+ 26a 0.004 = 0.002 bcd 0.19 = 0.07 bc 3293 = 175a
All NR 3p 114 A 0.008 AB 0.15B 330.3A
9 (BR) 2 9.3 = 23aA 0.020 = 0.013 aB 3.39 + 0.30aC 305.0 = 13.4aA
10 (LB) 5e 75 = 0.6 A <0.001 = <0.011dC 0.04 + 0.01dD 303.2 = 17.2aA
ANOVA 29 — — — —
F 7 1.35NS 2.91* 16.27** 1.09 NS
r2 22 0.30 0.48 0.84 0.26
Channel catfish 35 14.8 = 0.5 0.02 + <0.001 0.06 = 0.01 2389 7.3
1 (SR) 5 115+ 1.1lac 0.003 = 0.001 a 0.16 + 0.01a 240.0 = 24.2a
2 (SR) 1 9.4 ac 0.003 a 0.09 a 285.6 a
4 (SR) 5 153 + 09b 0.003 = 0.002 ab 0.08 + 0.02b 2185 = 253 a
All SR 3P 12.1A 0.003 A 0.11A 248.0 A
3 (NR) 4 12.2 = 0.2ac 0.003 = 0.001 a 0.04 += 0.01 bc 286.6 = 32.7a
5 (NR) 2 14.8 = 2.0hc <0.001 = <0.001 bc 0.04 = 0.01 bc 240.8 = 3.8a
6 (NR-TC) 3 153 = 1.8b 0.003 = 0.002 a 0.08 + 0.02b 2465 = 25.0a
All NR 3 14.1B 0.002 A 0.05B 258.0 A
7 (Ref) 3 15.2 = 0.7 bc <0.001 = <0.001c <0.01 = <0.01d 209.0 = 6.4a
8 (Ref) 12 171 = 06b <0.001 = <0.001c 0.02 + <0.01c¢c 232.3 =+ 59a
All Ref 2° 16.2 B <0.001B 0.01C 220.6 A
ANOVA 34 — — — —
F 7 5.95** 5.76** 32.81** 1.28 NS
r2 27 0.61 0.59 0.89 0.25
Flathead catfishd 4 145 = 0.6 0.005 = 0.002 0.04 = 0.01 228.9 = 189
1 (SR) 2 14.6 + 0.8 0.004 = 0.001 0.04 + <0.01 236.5 = 11.9
2 (SR) 2 14.4 = 0.8 0.006 = 0.004 0.03 = 0.01 221.2 = 43.0
Largemouth bass 21 8.9 = 0.6 0.001 = <0.001 0.11 + 0.09 226.3 = 6.4
1 (SR) 2 10.9 = 1.9 abA 0.001 = <0.001 aA 0.04 = 0.01aA 231.7 = 14.7 aA
5 (NR) 2 10.3 = 1.1abc 0.001 += <0.001 ab 0.02 + <0.01b 2415 = 124 a
6 (NR-TC) 4 123 = 1.0ab <0.001 + <0.001 ab 0.04 + <0.01a 2376 = 4.2a
All NR 3p 11.3A 0.001 AB 0.03A 239.6 A
7 (Ref) 12 7.3+ 0.4cB <0.001 = <0.001 abA 0.01 + <0.01bB 222.2 = 10.1aA
9 (BR) 1 9.2 bcB <0.001 bB 1.97cC 189.1 aA
ANOVA 20 — — — —
F 4 4.92%* 2.62%e 39.68** 0.51 NS
r2 16 0.55 0.40 0.91 0.42
Spotted bass 9 12.2 = 0.5 0.001 = <0.001 0.33 = 0.17 2542 = 11.1
2 (SR) 3 119+ 0.1a 0.001 + <0.001 a 0.09 + 0.01a 276.4 = 16.3 a
4 (SR) 3 124 + 1.2a <0.001 = <0.001 a 0.06 = 0.0l ab 253.0 = 239a
All SR 2° 12.2 A 0.001 A 0.07 A 264.7 A
5 (NR) 1 13.2 2A <0.001 aA 0.04 bA 256.0 aA
9 (BR) 2 12.0 = 1.72A 0.002 + 0.001 aA 1.24 = 0.14cB 222.0 = 10.3 aA
ANOVA 8 — — — —
F 3 0.15NS 1.70NS 57.56** 1.22 NS
r2 5 0.08 0.50 0.97 0.42
White crappie 12 9.6 = 0.4 0.001 = <0.001 0.03 + <0.01 212.1 = 8.1
4 (SR) 3 83 + 1.0aA <0.001 = <0.001 aA 0.04 + <0.012A 184.4 + 18.2 aA
3 (NR) 2 105 = 0.8a <0.001 = 0.001 a 0.02 + 0.01b 206.8 = 6.8a
5 (NR) 4 96 = 04a <0.001 = <0.001 a 0.02 + <0.01b 2177 = 111a
6 (NR-TC) 3 102+ 11a <0.001 = <0.001a 0.03 =+ 0.0l ab 2359 = 13.0a
All NR 3p 10.1A 0.001 A 0.02B 220.1A
ANOVA 11 — — — —
F 3 1.25NS 0.46 NS 6.48* 2.34NS
r2 8 0.32 0.15 0.71 0.47

al owercase letters for site means, uppercase for river means; all variables log-transformed for statistical analysis.

b No. of means.

¢One LB carp with low blood volume deleted.

d Flathead catfish not analyzed statistically due to small n.

°p = 0.06.



Biochemical effects of metals from mining on fish

r=0.89,n=111,p<0.01
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Fig. 2. Molar concentrations of [Fe] and hemoglobin ([Hb]) in the
blood of fish of the indicated species. Also shown is the area of the
graph representing all carp (ellipse) and lines representing the least-
squares (A) and functional (geometric mean) relation (B). Also shown
(C) istheline representing [Fe] = 4[Hb], the expected relation based
on the tetrameric structure of Hb. See Table 5 for equations. Species:
Carp = common carp; ChC = channel catfish; FhC = flathead catfish;
LmB = largemouth bass; SpB = spotted bass; WhC = white crappie.

Iron. Blood—Fe concentrations (wet wt and dry wt) differed
significantly among species; however, only the dry-weight
concentrations differed among sites, and neither length nor
weight were significant factors (Table 2). Differences among
sites were not consistent among species, as indicated by the
significant species X site interaction (Table 2). Concentrations
ranged from 114.5 pg/g (wet wt) in a reference largemouth
bass to 404.1 pg/g in acarp from site 5 (NR) and were >LOD
in all samples (data not shown). Blood—Fe concentrations gen-
eraly were greater in carp (all =305 pg/g) than in all other
species (typically 200-300 wg/g), but differences among sites
were not significant in any species (Table 4).

Relations between and among variables

The molar concentrations of Fe and Hb were correlated
highly in al taxa, both individually (r = 0.76-0.89, p < 0.01)
and collectively (r = 0.89, p < 0.01; Fig. 2). Across all species
investigated, the relation between [Fe] and [Hb] was well-
described by least-squares and functional regressions, both of
which were highly significant (p < 0.01) and explained 79%
of the variability in [Fe] (Fig. 2, Table 5). In addition, the
slopes of these regressions were near 4.0 and the intercepts
near 0.0, the expected values based on the tetrameric structure
of Hb (Fig. 2, Table 5). Concentrations of Hb and Fe also were
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Fig. 3. Concentrations of Fe and Pb in blood of fish of the indicated
species. Also shown are areas of the graph illustrating all laboratory-
raised reference fish (A); al fish from Long Branch Lake (B) and the
Big River, USA (C); and all carp (D). Species: Carp = common carp;
ChC = channel catfish; FhC = flathead catfish; LmB = largemouth
bass; SpB = spotted bass; WhC = white crappie.

positively correlated with those of Zn in bass (r = 0.60, p <
0.01) and (weakly) in crappie (r = 0.48, p = 0.11). In contrast,
neither blood Fe nor Hb were correlated with blood Pb in any
taxa, and blood Pb was not elevated in fish with low Hb or
Fe (Figs. 2 and 3).

Blood Pb and ALA-D/Hb were negatively correlated in
catfish (r = —0.66, p < 0.01) and bass (r = —0.82, p < 0.01),
but not in carp (r = —0.26, p > 0.05) or crappie (r = 0.11,
p > 0.05; Fig. 4). However, the range of blood—Pb and ALA-
D values for crappie probably were not sufficient to document
a statistical relationship (Fig. 4). In carp, points representing
four fish (two each from sites 3 and 6) were conspicuously
outside the general trend of the data (Fig. 4). Without these
four points, the correlation improved (r = —0.53, p < 0.01).
Nevertheless, it is important to note that there was no a priori
reason to eliminate these fish (i.e., they appeared normal in
all other respects).

Stepwise multiple regression of ALA-D activity against
blood—metal concentrations (wet wt) and other variablesyield-
ed statistically significant improvements relative to the cor-
relations between pairs of variables, but not in al taxa. In bass
(largemouth and spotted combined), the data were well de-
scribed by models that included negative terms for blood Pb
after accounting for Hb differences between the species, either
by analyzing ALA-D/Hb or by including Hb as an independent

Table 5. Statistically significant (** p < 0.01; * p < 0.05) regression models describing relations between wet-weight (ww) concentrations of

hemoglobin (Hb), Fe, Pb, Zn, §-aminolevulinic acid dehydratase (ALA-D) activity, and Hb-adjusted ALA-D activity (ALA-D/Hb) in the blood

of bass (largemouth and spotted), catfish (channel and flathead), carp, and all species combined. Shown for each model areinterceptsand regression
coefficients (*standard errors), F values and degrees of freedom (df), and coefficients of determination (r?)

Taxon Model F (df) r2
All species [Fe] = 0.0009(*0.0002) + 3.4280(+0.1698)[Hb] 407.54 (1, 109)** 0.79
[Fe] = 0.2965(+0.0002) + 3.8570(+0.1698)[Hb] 407.54 (1, 109)** 0.79

Bass® log;,cALAD/Hb = 0.258(*0.045) — 0.219(*0.029)l0g,,Pb 58.51 (1, 27)** 0.68
log;,cALA-D = —0.161(*+0.102) — 0.198(=*0.028)l0og,,Pb + 0.040(*=0.12)Hb 26.55 (2, 27)** 0.66

Catfish® log,ocALA-D/Hb = —1.206(+0.229) — 0.237(+0.063)l0g,,Pb + 0.868(*0.226)|0g,0ZN, 30.20 (2, 33)** 0.65
log;,,ALA-D = —3.435(*+0.605) — 0.188(*0.062)l0g,,Pb + 0.845(*+0.221)l0g,,Zn 19.25 (3, 32)** 0.64

+ 0.903(+0.227)log,,Fe

Carp log;,ocALA-D/Hb = 0.153(+0.040) — 0.131(+0.043)log,,Pb 9.18 (1, 25)** 0.28
log;,,ALA-D = —0.155(*+0.159) — 0.109(=*0.046)log,,Pb + 0.030(*0.015)Hb 3.39 (3, 39)* 0.23

aLargemouth and smallmouth bass.
b Channel and flathead catfish.
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Fig. 4. Hemoglobin-adjusted 8-aminolevulinic acid dehydratase ac-
tivity versus blood-lead concentrations in fish of the indicated species.
Also shown is the area of the graph representing (A) all bass (Mi-
cropterus spp.), (B) al catfish (Ictaluridae), and (C) al fish from the
Big River, USA. Species: Carp = common carp; ChC = channel
catfish; FhC = flathead catfish; LmB = largemouth bass;, SpB =
spotted bass, WhC = white crappie.

variable. These models were highly significant (p < 0.01) and
accounted for 66 to 68% of the variation in ALA-D activity
in bass (Fig. 4, Table 5). No other variables met the p < 0.05
criterion for inclusion.

In catfish (channel and flathead combined), ALA-D activity
also was well described by blood Pb after accounting for Hb
differences and, in contrast to bass, blood Zn was statistically
significant (Table 5). Models for both ALA-D and ALA-D/Hb
were highly significant (p < 0.01) and accounted for 64 to
65% of the variation in ALA-D activity (Fig. 4, Table 5). No
other variables met the p < 0.05 criterion for inclusion. Blood
Fe was selected in lieu of Hb in catfish; however, as noted
previously, these variables were highly correlated (Fig. 2, Ta-
ble 5).

In crappie, models that included terms for blood Pb and
Zn were statistically significant (p < 0.05) and explained 52
to 61% of the variation in ALA-D activity (data not shown).
The models for crappie differed from all others in that the
coefficients for blood Pb were positive and those for Zn were
negative, which is contrary to expectations. These results prob-
ably are an artifact of the narrow range spanned by blood—Pb
concentrations and ALA-D activity in crappie, which were
obtained only from Oklahoma sites 3 to 6 (Fig. 4).

No statistically significant models resulted for carp when
al data (n = 30) and all variables were included. When the
four fish identified previously were excluded, models that in-
cluded blood Pb and Hb were statistically significant (p <
0.01-0.05) but nevertheless explained only 23 to 28% of the
variation in ALA-D activity (Table 5). No other variables met
the p < 0.05 criterion for inclusion.

DISCUSSION
Lead, zinc, and cadmium concentrations

Although several of the taxa analyzed in this study have
not been investigated previously with respect to blood metals
and ALA-D activity, it is nevertheless useful to compare
blood—metal concentrations as a general indicator of contam-
ination. Overall, our blood—metal concentrations were consis-
tent with those reported by others. In studies with suckers
(Pisces: Catostomidae) from streams in Missouri, Montana,
and Washington, USA, blood—Pb concentrationstypically were
0.05 to 0.15 pg/g (wet wt) at reference sites and 0.6 to 2.0
ng/g at sites heavily contaminated by mining and related ac-
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tivities [4,16,17]. These concentrations were bracketed by
those in 2001 carp from the SR and BR. Black redhorse (Mox-
ostoma duquesnii) from Center Creek, a SR tributary in Jasper
County, Missouri, averaged 0.14 to 0.26 pg/g [4] in 1981.
These latter values are nearly identical to blood—Pb concen-
trations in SR carp collected in 2001 (Fig. 4, Table 4). Blood—
Pb concentrations in carp from the BR (3.1-3.7 n.g/g) were
also nearly identical to maximum concentrationsin BR suckers
collected in 1981 [17], and those in carp from LB (mean =
0.04 ng/g) were similar to concentrations in suckers and other
species collected previously from reference streams in Mis-
souri [4,16].

Blood—Pb concentrations in centrarchids from Oklahoma
also were similar to those reported by previous studies. Con-
centrations averaged 0.03 p.g/g in longear sunfish (Lepomis
megalotis) collected from an uncontaminated BR site in 1980
and 0.4 to 0.9 pg/g at tailings-contaminated sites [22]. Our
reference bass contained slightly lower concentrations (0.01—
0.02 p.g/g) than reference longear sunfish from the BR, where-
as those in largemouth bass and crappie from Oklahoma were
about the same (0.01-0.05 pg/g; Fig. 4). However, blood—Pb
concentrations in spotted bass from the SR were greater (0.08—
0.10 pg/g) than those in reference longear sunfish. Concen-
trations in largemouth and spotted bass obtained from the BR
in 2001 also were greater (1.1-2.0 wg/g) than those in longear
sunfish collected from contaminated reaches in 1980 [22].

Blood—-Zn concentrations in carp from Oklahoma also were
similar to those in suckers collected from Center Creek in 1989
[4], which were all slightly greater than those in suckers from
even the most-contaminated streams in eastern Missouri sam-
pled in 1981 and 1989 [4,17]. However, the 2001 blood—Zn
concentrations in carp from the BR (mean = 9.3 ng/g) were
similar to previously reported values for BR suckers.

In contrast to Pb and Zn, blood—Cd concentrations in carp
from the Oklahoma sites were lower than those in suckers
from the BR and other mining-affected streamsin eastern Mis-
souri, as also was true of suckers collected from Center Creek
in 1989 [4,16,17]. Blood Zn and Cd concentrations in carp
from LB (mean = 7.5 p.g/g) also were about the same as those
in suckers and other speciesfrom reference streamsin Missouri
[4,17]. Only Pb was measured in longear sunfish blood by
Dwyer et al. [22], so there is no suitable basis against which
to compare our blood—Zn and —Cd concentrations in bass and

crappie.

Iron, hemoglobin, and ALA-D activity

Blood Fe and Hb concentrations were highly correlated
across the locations and species sampled, and the relation be-
tween them was consistent with the structure of Hb (Fig. 2,
Table 5). To our knowledge, no studies have compared Hb
measured with the HemoCue to traditional |aboratory methods
(e.g., [23]) in fish. In humans, carboxyhemoglobin has been
reported to cause the instrument to overestimate Hb [29]. The
strong correlation between Hb and blood Fe (Fig. 2, Table 5)
suggests that the HemoCue accurately measures Hb concen-
trations in fish blood collected and analyzed in the manner
reported here.

It always is difficult to compare enzyme activities among
investigations because variations in fish acclimation temper-
ature, whether or not activity is standardized (to Hb, hemat-
ocrit, etc.), and such assay-related variables as incubation tem-
perature, pH, and substrate concentration may be reflected as
differences in enzyme activity. In addition, ALA-D activity
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varies considerably among fish taxa[4,11,12,16]. Consequent-
ly, enzyme activity typically is compared to appropriate ref-
erence or control values generated independently within each
study. In wildlife, 50% ALA-D inhibition relative to relevant
reference or control activity is considered evidence of injury
associated with exposure to environmental Pb [30]. In our
study, ALA-D activity averaged 1.8 nmol PBG/mg Hb/h in
reference channel catfish (commercially obtained and labo-
ratory-raised) but only 0.78 nmol PBG/mg Hb/h at site 1 (48%
of reference) and 0.58 nmol PBG/mg Hb/h (32% of reference)
at site 2 (Table 3). Activity also was reduced, but by <50%,
in channel catfish from the other Oklahoma sites. In the only
other field study conducted with channel catfish, ALA-D ac-
tivity was not detected in fish collected either upstream or
downstream of a Pb smelter [16]. Collectively, these results
indicate that the normal level of ALA-D activity is lower in
channel catfish than in other species and that inhibition occurs
at lower Pb concentrations (Fig. 4).

Compared to laboratory-raised reference largemouth bass
(mean = 5.25 nmol PBG/mg Hb/h), ALA-D activity also was
inhibited by more than 50% in largemouth and spotted bass
from the BR (mean = 1.52 and 1.96 nmol PBG/mg Hb/h,
respectively) but not on average in either species of bass from
any of the Oklahoma sites (Table 3). The results for bass con-
firm earlier studies that showed =50% inhibition in other taxa
collected from contaminated reaches of the BR [4,17,22]. Nev-
ertheless, it isimportant to note that no reference spotted bass
were available for comparison. Mean ALA-D activity in crap-
pie averaged 3.25 nmol PBG/mg Hb/h at site 3 but only 1.92
nmol PBG/mg Hb/h at site 5, a difference of 41%. However,
fish of some taxa collected from site 3 contained greater-than-
expected concentrations of metals even though the site is up-
stream of known sources of mining-derived metals to the NR.
Hence, the full impact on white crappie cannot be determined
but may be >41%. No previous studies have documented
ALA-D activity in crappie or Micropterus spp.

The activity of ALA-D in carp was highly variable. It was
inhibited by >50% relative to reference values (LB) at site 5
(SR), but not at other sites where blood Pb concentrations
were greater (including BR). In addition, and in contrast to
the other taxa investigated, the correlation between ALA-D
activity and blood Pb was poor in carp, and the slope of the
regression relations between these variables was small com-
pared with other taxa (Fig. 4, Table 5). These results are con-
sistent with a previous field study with carp [16] in which
effects on ALA-D were not evident despite a wide range of
Pb concentrations. Hodson et a. [12] also found only a weak
effect of Pb on ALA-D activity in the closely related goldfish
(Carassius auratus). Our results, as well as those of Hodson
et al. [12] and Schmitt et al. [16], contradict the findings of a
laboratory investigation [15] that demonstrated high sensitivity
of ALA-D activity in carp to waterborne Pb. In the laboratory
study, ALA-D activity was inhibited by =50% over a range
of blood—Pb concentrations spanning about 0.1 to 10 p.g/g [15].
Our blood—Pb concentrations ranged from 0.03 to 0.06 ng/g
(LB) to 3.69 png/g (BR; Table 4), and, therefore, we expected
a more substantial response in carp.

Schmitt et al. [16] hypothesized that the normally greater
Zn concentrations present in wild carp relative to other fish
[31] protect ALA-D from inhibition by Pb, as has been reported
in laboratory studies with other taxa (e.g., [32]). Blood—Zn
differences among species were small, however (Table 4),
which was consistent with the fact that most of the elevated
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Zn burden in carp and closely related fish is localized in the
foregut; concentrations in blood, liver, and other tissues are
similar to those in other species [33]. Laboratory studies have
demonstrated that Cd and Hg [32] can somewhat inhibit ALA-
D activity in fish, but no previous field study has documented
a Cd effect on ALA-D activity. We did not measure Hg, but
elevated Hg concentrations in fish have not been reported in
fish from the TSMD. Therefore, we have no explanation for
the comparatively weak correlation between ALA-D activity
and blood Pb in wild carp, but also are not surprised by these
results in light of the many physiological differences among
fishes. Many factors, including but not limited to differences
in trace metal homeostasis, may be involved.

Effects of lead on fish

Effects on heme synthesis, as indicated by a 50% reduction
in ALA-D activity relative to control or reference levels, have
been associated with blood—Pb concentrations exceeding ap-
proximately 50 pg/dL (0.5 mg/L) and varying indirectly with
Zn in a number of fish species [4,16,17,22]. Largemouth and
spotted bass appear to conform to this pattern (Fig. 4). In
previous studies, suckerswere identified as more sensitive than
most taxa [16]. Our results indicate that channel catfish may
be more sensitive than suckers; effects in channel catfish were
evident at blood—Pb concentrations of <0.1 wng/g (Fig. 4). In
addition, and in contrast to the other species we investigated,
the channel catfish statistical model contained a positive term
for blood Zn (Table 5). Such findings have been interpreted
as indicative of possible ameliorative effects of Zn in other
taxa [4,17,22], which is consistent with results in mammals
indicating that Zn is required as a cofactor for the activation
of ALA-D [19]. However, results of laboratory studies have
been equivocal with respect to Zn activation of ALA-D in fish
[32,34,35].

Although ALA-D inhibition by environmental Pb is well-
documented, higher-level effects in fish only have been as-
sociated indirectly with Pb exposure and enzyme inhibition.
Behavioral changes were reported in fathead minnows (Pi-
mephales promelas) exposed to high concentrations of Pb in
the laboratory [36], whereas exposure of rainbow trout (On-
corhynchus mykiss) fry to more environmentally relevant con-
centrations inhibited ALA-D activity but caused no behavioral
effects [37]. Effects on bone strength, which may lead to im-
paired swimming performance and increased vulnerability to
predators, also were detected in wild longear sunfish at blood—
Pb concentrations of approximately 0.5 mg/L [22]. Black tail,
a neurological symptom that may portend other effects, was
associated with blood Pb of 1.7 mg/L and ALA-D inhibition
of 74% in laboratory-exposed rainbow trout [13]. Stippled
erythrocytes in carp [38] and spinal deformities in brook trout
(Salvelinus fontinalis) [39] also have been detected in fish
exposed to high Pb concentrations in the laboratory, as have
additional sublethal effects in other fish [13,34]. Population-
and community-level effectsand reduced ALA-D activity were
documented in two species of catfish (Pimelodidae) inhabiting
a stream in Brazil contaminated by mine tailings [40]. Blood
Pb was not measured in that study, but concentrations in fish
muscle were as great as 2.97 p.g/g. These concentrations are
about 10-fold greater than those in TSMD fish but within the
range reported for fish from the BR [4,5,17,22].

Consistent with the findings of most other field studies of
Pb contamination in fish, we failed to detect an effect on Hb
or blood Fe (Fig. 3). In birds and mammals (including hu-
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mans), prolonged exposure to Pb ultimately results in anemia.
Such effects only have been documented inconsistently in fish,
however. In black bullhead (Ictalurus [Amieurus] melas), a
species closely related to the channel catfish, reduced Hb con-
centrations and other hematological effects, including altered
erythrocyte morphology, resulted from laboratory exposure to
0.001% lead acetate for one month [41]. Exposure of rainbow
trout to 0.3 mg/L of Pb in water also reduced ALA-D activity
and Hb concentrations [42], whereas similar Pb concentrations
inhibited ALA-D activity but caused no hematol ogical changes
in the European eel (Anguilla anguilla) [43]. In the gray mullet
(Mugil auratus), both Hb and ALA-D activity were reduced
by exposure to Pb [14].

Previous field studies documenting ALA-D inhibition in
fish also have been inconsistent with respect to effects on Hb.
In Missouri streams contaminated by mine tailings, no effects
on Hb were noted despite 50 to 60% ALA-D inhibition relative
to reference sitesin several species|[4,17,22]. Both greater and
lesser Hb concentrations were found in several species of
whitefish (Salmonidae) collected from Pb-contaminated lakes
in Norway despite the fish having only 12 to 13% of reference
ALA-D activity [10]. Effects on Hb in fish collected from
streams contaminated by Pb smelters were inconsistent [16].
Collectively, these findings support the widely held belief that,
although ALA-D is very sensitive to inhibition by Pb, the
process catalyzed by this enzyme is not a rate-limiting step in
the synthesis of heme by fish. It also isimportant to note that
Hb concentrations and other endpoints traditionally used to
assess fish blood (e.g., cell counts, hematocrit) are relatively
crude [16,44]. More sensitive techniques have demonstrated
Cd effects on erythron status in laboratory studies [44], but
to date no thorough study of Pb effects on erythropoeisis in
fish has been reported.

CONCLUSION

We documented elevated blood—metal concentrations and
well-defined negative statistical relations between blood-Pb
concentrations and ALA-D activity in bass and catfish from
the TSMD. Relations in carp and crappie were not as evident.
These findings and those of previous studies indicate that Pb
and other metals from historical mining activity in the TSMD
have been transported to the SR and NR and accumulated by
aquatic organisms. Within the TSMD, metal concentrations
generally were greater in fish from the SR than the NR, but
there was considerable variability within and among sites.
Overall, blood-Pb concentrations in TSMD fish exceeded ref-
erence concentrations but were lower than those from the BR
and other historical mining areas in the United States and
elsewhere. Nevertheless, ALA-D activity was inhibited by
more than 50% in catfish from several TSMD sites, which is
evidence that Pb is both bioavailable and active biochemically.
Consistent with previous investigations, neither Hb nor blood—
Fe concentrations were affected over the range of blood—Pb
concentrations detected, further confirming the widely held
belief that the inhibition of ALA-D does not limit heme syn-
thesisin fish. However, and as noted, more sensitive indicators
of erythron status and erythropoeisis [44] eventually may dem-
onstrate otherwise. In addition, the biomarkers chosen for this
investigation (erythrocyte ALA-D activity, Hb, and blood Fe)
were selected because of the well-known effects of Pb on heme
synthesis and Fe metabolism [8,20]. No effort was made to
document direct effects of Cd, Zn, or other contaminants,
which could include metallothionein induction, lipid peroxi-

C.J. Schmitt et al.

dation, increased macrophage aggregate numbers and hyper-
plasia in the kidney, other histopathological lesions in the
brain, liver, and kidney, and effects on reproductive biomarkers
[45-48]. Future studiesin the TSMD, therefore, should include
endpoints diagnostic of exposure to Cd, Zn, and other metals
in combination with Pb and seek to document higher-level
effects in fish. In addition, the heme synthetic pathway is
lengthy and complex, and can be affected at many points by
a variety of pollutants beyond those discussed in this article
[49]. Future research, therefore, should investigate the effects
of metals on heme synthesis and erythropoeisis in a more
thorough and holistic manner.
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