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ARTICLE INFO ABSTRACT
Afﬁle-’ history: Many endangered species laws provide exceptions to legislated prohibitions through incidental take pro-
Received 7 May 2010 visions as long as take is the result of unintended consequences of an otherwise legal activity. These
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allowances presumably invoke the theory of demographic compensation, commonly applied to harvested
species, by allowing limited harm as long as the probability of the species’ survival or recovery is not
reduced appreciably. Demographic compensation requires some density-dependent limits on survival
or reproduction in a species’ annual cycle that can be alleviated through incidental take. Using a popula-

Keywords: ) tion model for piping plovers in the Great Plains, we found that when the population is in rapid decline or

Endangered species . . o . R . s
Compensation yvhen there is no density dependencg, thg probablllty'of qua51—e)§tmct10n mgreased linearly w1th increas-
Piping plover ing take. However, when the population is near stability and subject to density-dependent survival, there
Charadrius melodus was no relationship between quasi-extinction probability and take rates. We note however, that a brief
Population modeling examination of piping plover demography and annual cycles suggests little room for compensatory
capacity. We argue that a population’s capacity for demographic compensation of incidental take should
be evaluated when considering incidental allowances because compensation is the only mechanism
whereby a population can absorb the negative effects of take without incurring a reduction in the prob-
ability of survival in the wild. With many endangered species there is probably little known about density
dependence and compensatory capacity. Under these circumstances, using multiple system models (with
and without compensation) to predict the population’s response to incidental take and implementing fol-
low-up monitoring to assess species response may be valuable in increasing knowledge and improving

future decision making.

Published by Elsevier Ltd.
1. Introduction species) (50 CFR § 17.22 and § 17.32). Similarly, incidental taking
associated with federal agency actions may be permissible under
Endangered species laws of industrialized nations typically pro- US-ESA Section 7, provided the agency assures that the impacts

hibit the killing, harassment, or habitat destruction of any species of the action, including any cumulative effects and any reasonable
protected under those laws, yet also allow for some exception to and prudent measures necessary to minimize such impacts, will
those prohibitions under ‘incidental taking’ allowances. Under not jeopardize the species (50 CFR § 402.12).

the United States’ Endangered Species Act (US-ESA), for example, The concept of authorized take is widely used in endangered
taking of listed species that is otherwise prohibited may be permit- species legislation in other industrialized nations as well. In the
ted under Section 10 if various provisions are met, including: (1) European Union, the Bern Convention on the Conservation of
such taking is incidental to and not the purpose of the otherwise European Wildlife and Natural Habitats prohibits destruction of
lawful activity, (2) the taking will be minimized and mitigated to protected species, but permits exceptions in order “to prevent seri-
the maximum extent practicable, and (3) the taking will not appre- ous damage to crops, livestock, forest, fisheries, water and other
ciably reduce the likelihood of the survival and recovery of the spe- forms of property...” as long as “the exception will not be detri-
cies in the wild (e.g., ‘jeopardize’ the continued existence of the mental to the survival of the population concerned” (Convention

on the Conservation of European Wildlife and Natural Habitats,
Bern, 19.1X.1979, Article 9). The Australian Environment Protection
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language for exceptions to endangered species protections. Japan’s
endangered species protection law, adopted in 1992, also allows
the government to issue permits to individuals for exceptions to
the prohibitions of the law (Takahashi, 2009).

Despite the prevalence of incidental take allowances in endan-
gered species legislation there have been few examinations of the
incidental take concept, as applied to endangered species, in the
scientific literature (McGowan and Ryan, 2009), with one notable
and important exception. The US Marine Mammal Protection Act
of 1972 (MMPA) prohibits the taking of marine mammals, but
allows for incidental take provided it is “negligible” (16 USC
1371(a)(5)(A)), or, for commercial fisheries, provided it is less
than the Potential Biological Removal (PBR) and approaching zero
mortality (16 USC 1387). A quantitative interpretation of PBR is
provided in the Act (16 USC 1362 (20)), and is based on a substan-
tial body of scientific literature, the central point of which is that
compensation allows sustainable take (Wade, 1998; Taylor et al.,
2000). Nevertheless, the application of these concepts more
broadly to take of endangered species has not been investigated.

In this paper, we focus on the US-ESA because documentation of
government implementation of this policy is abundant (e.g.,
USFWS, 1998). But, the concepts we discuss are applicable to all
endangered species laws that contain incidental take allowances.
Inherent in the concept of incidental take is the notion that endan-
gered populations can withstand a limited harm to individuals
without affecting the population or species as a whole - in other
words, the population can compensate for the individual taking
(Czech and Krausman, 1998).

1.1. Compensation theory

Compensation occurs when harm to or taking of individual ani-
mals is buffered to some extent at the population level (Boyce
et al.,, 1999). Compensation can come in many forms: it can be
behavioral or demographic; it can occur through changes in repro-
duction, survival, or dispersal; and it can be immediate or delayed.
Behavioral responses, such as habituation by individuals to human
disturbance, could be a mechanism for animals to buffer the poten-
tially negative effects of human disturbance (Whitacker and
Knight, 1998). In the case of habitat destruction, individuals may
be able to move to other non-degraded areas in response to some
human alteration to their habitat, which could compensate for
habitat destruction as long as there are no density-dependent ef-
fects created in the newly settled non-degraded habitat.

Demographic compensation can theoretically act via increases
in reproductive success or decreases in juvenile or adult mortality
(Nichols, 2000; Williams et al., 2002), and can occur under any cir-
cumstances where natural density dependence is alleviated by
some human action (Sinclair and Pech, 1996). Density-dependent
demographic processes will induce partial compensation and are
the basis of some sustainable harvest schemes (Runge et al.,
2004, 2009). The fundamental notion is that take of individuals re-
duces the population size, freeing up resources that other individ-
uals can use to increase their survival and reproductive rates, and
thus the reduction in the population is offset to some degree by
compensatory increases in the growth rate of the population. In
some fields, the term compensation is used to refer to full compen-
sation, a case when the individual losses are not felt at all at the
population level; such compensation requires special demographic
mechanisms (Boyce et al., 1999). This use of the term is not ubig-
uitous, however, so some care is required to understand what a
particular writer means. In this paper, we use compensation in
the broader sense that includes partial compensation.

Often compensation is lagged. It may occur across years, for in-
stance, if population productivity increases following an anthropo-
genic mortality event in the previous year because fewer

individuals are competing for limited breeding territories, food,
or other resources. Compensation can occur across seasons if den-
sity dependence is seasonal and occurs after take. For example, fall
harvest mortality can be compensated if natural over-winter mor-
tality is decreased because fewer individuals are competing for
limited winter food resources. Demographic compensation can
also be fairly immediate and occur within seasons if some density
dependence is immediately alleviated and the remaining individu-
als in the population have higher productivity or survival. Compen-
sation can also occur over space if localized anthropogenic
mortality somehow alleviates demographic density dependence
elsewhere.

One of the most commonly discussed forms of compensation is
compensatory mortality, where seasonal density-dependent mor-
tality is alleviated through some human-caused mortality such as
harvest (Nichols, 2000). Compensatory mortality theory in predi-
cated on the notion that a population may annually produce more
individuals than the environment can sustain and when the popu-
lation exceeds that capacity, competition for resources and re-
duced survival ensue (Trost, 1987; Sinclair and Pech, 1996;
Nichols, 2000; Williams et al., 2002). Compensatory theory postu-
lates that anthropogenic mortality alleviates natural density-
dependent mortality and that the effects of harvest on population
size and growth are moderated (Trost, 1987; Sinclair and Pech,
1996; Nichols, 2000). In the extreme, full compensation can arise
through some mechanisms, like a population bottleneck above
which excess individuals are culled. Conversely, additive mortality
occurs when a population does not produce a doomed surplus or
cannot compensate for harvest mortality via alleviation of some
natural density dependence; with additive mortality, natural mor-
tality and reproductive rates do not change in response to popula-
tion density to compensate for the added mortality (Williams et al.,
2002).

Density-dependent population dynamics are difficult to mea-
sure and study in wildlife populations and annual fluctuations in
timing and magnitude of density-dependent factors are highly
probable (Sinclair and Pech, 1996). Thus the ability of a population
to compensate for anthropogenic mortality or other negative fac-
tors could also vary annually and seasonally.

1.2. Compensation and incidental take

We argue that regulatory ‘incidental take’ is essentially the con-
cept of demographic compensation applied to protected species at
risk of extinction. Under US-ESA, compensation theory is especially
relevant to incidental take provision 3 and, to a lesser extent, pro-
vision 2 described above. The process of authorizing incidental
take involves first determining whether an action will affect any
individuals of an endangered species adversely (e.g., cause ‘take’),
and if so, that this take will not rise to unacceptable levels of
demographic and population effects (i.e., under the US-ESA, the
take will not cause jeopardy). If individuals are harmed or taken,
the population could theoretically absorb those effects through
compensatory mechanisms. We argue that the statement in legis-
lation allowing take of a protected species as long as the take “will
not reduce appreciably the likelihood of survival and recovery of
the species in the wild” (provision 3) implies that protected popu-
lations have at least some capacity to compensate for take, or
rather that, authorization of take should only occur if the evidence
for that compensation is compelling. Further, the statement that
take “will be minimized and mitigated to the maximum extent
practicable” (provision 2) implies that managers could potentially
create compensation opportunity though mitigation actions that
increase population growth to counteract take. Even in situations
where permitted take applies to habitat destruction or individual
“harassment” without direct mortality, the implication is that
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any individual effects would be compensated through population
demographics or behavioral responses. For example, for a one-time
habitat destruction event, a disturbance-dependent species might
initially suffer reproductive failure when a habitat patch is first dis-
turbed (e.g., timber is harvested or a river corridor is flooded) but
experience elevated productivity in the years following the distur-
bance. The central question related to take of an endangered spe-
cies should be: ‘Does this species have the reproductive capacity
or density-dependent mortality to buffer the effects of incidental
take such that the population’s survival and recovery are not
affected?’

The concept of compensation is the basis of sustainable harvest
of most game species. Harvested game species tend to have high
reproductive rates and correspondingly high juvenile mortality,
hence ‘surplus’ production consistent with the compensatory mor-
tality paradigm (Baldassarre and Bolen, 1994; Williams et al.,
2002). The relationship between hunting mortality and annual sur-
vival has been studied extensively for mallards (Anas platyrhyn-
chos) in North America (Burnham et al, 1984; Trost, 1987;
Nichols, 2000). For example, Nichols et al. (2007) presented evi-
dence for both compensatory and additive mortality in continental
mallard populations. Gibson et al. (in press) recently concluded
that compensation did not occur for hunting mortality in a har-
vested population of sage grouse (Centrocercus urophasianus),
whereas Devers et al. (2007) concluded that ruffed grouse (Bonasa
umbellus) populations in the Appalachian region did compensate
for harvest mortality.

Applying the compensation paradigm to endangered species
management sounds like a reasonable application of classical wild-
life management concepts that attempt to balance resource uses in
the short and long terms by allowing (or even ‘maximizing’) har-
vest of ‘excess’ animals while sustaining persistent populations
over time. However, compensatory mortality and natality are
theoretical concepts that do not apply to all species in the same
way (Sinclair and Pech, 1996; Boyce et al., 1999; Xu et al., 2005).
Compensation probably varies across species and years, and likely
only for species with high reproductive capacity (Kokko et al.,
2001; Poysa et al., 2004). Czech and Krausman (1998) discussed
the applicability of the compensation paradigm to endangered
species and questioned whether compensation was a safe and rea-
sonable assumption for incidental take and endangered species
management.

Generally, rare and threatened species do not have excess
reproduction, but rather have high adult survival and low annual
productivity (Rabinowitz, 1981; Purvis et al., 2000). Additionally
many have small population sizes and currently declining popula-
tion trends, further suggesting limited capacity for compensation.
Small populations (i.e., highly endangered species) may have their
natural compensatory mechanisms undermined by high levels of
environmental and demographic stochasticity. For example, one
unexpectedly bad year for reproduction due to severe drought
may be compounded by incidental take of adult breeders which
at larger population sizes would have been compensated for by
density-dependent non-breeding season mortality. We argue that
without compensation these populations cannot sustain harm
from incidental take without adverse population effects unless
take is fully offset by mitigation designed to create compensation
opportunity (Rohlf, 2001).

In this paper we use a population simulation model to examine
how density-dependent mortality might alleviate the negative ef-
fects of take on threatened populations. McGowan and Ryan
(2009) used a population model to show that piping plovers are
in decline and that permitted take of plover eggs in the Missouri
River due to US Army Corps of Engineers (USACE) activities further
depressed population growth and increased extinction probability.
We modified McGowan and Ryan’s (2009) model by adding a

density-dependent function to post-fledging winter survival to
examine how potential levels of take affect population dynamics
with and without density dependence. We further examine
whether populations in decline have less capacity for compensa-
tion than do stable or growing populations. Our goal is to investi-
gate and understand the ecological basis for the legislative
directives of incidental take and to use ecological theory to im-
prove incidental take management and decision making for pro-
tected species in the future.

2. Methods

McGowan and Ryan (2009) used a population model to assess
the effect of permitted and probable take actions in the Missouri
River on piping plover population viability in the Great Plains. They
used a two-stage population model that annually split the popula-
tion into three habitat types (McGowan, 2008; McGowan and
Ryan, 2009) in order to isolate the Missouri River habitat, where
take was permitted, from the rest of the population. McGowan
and Ryan (2009) give a full description of the simulation model,;
the basic population model, based on a pre-breeding census, was
as follows:

Nii1 = (PwiFwe + PumcFme + PreFre)NeSic + NiSay, (1)

where N is the total population size, t is the annual time step, P,,, Py,
and P, are the proportions of the population breeding in alkali wet-
lands (w), Missouri River (M) and other river (r) habitats, F,, is the
fecundity at wetland sites (average number of females fledged per
breeding female, mean = 0.56), F; is the fecundity at Missouri River
sites, and F; is the fecundity at other river habitat sites. S; is annual
survival of first-year birds (mean = 0.48), and S, is the annual sur-
vival of adult birds (mean =0.737). This was a female-only model
with a simple ceiling type density dependence function limiting
the population to 10,000 individual females. Though density depen-
dence and habitat limitation almost certainly exist for this popula-
tion we do not have estimates for those relationships. Following the
precedent of McGowan and Ryan (2009) we used a simple ceiling
type density dependence function to limit population growth be-
yond an arbitrarily high ceiling to prevent unchecked exponential
population growth. Further studies and analyses on habitat limita-
tions to population growth may benefit management efforts for this
species and also provide insight on opportunities for demographic
compensation in this population.

We created a hierarchical loop structure where the population
was replicated 10,000 times in the outer loop (the iteration loop)
and projected 30 years into the future in the inner loop (the annual
loop). The model included both temporal and sampling variation in
survival and fecundity parameters (White, 2000; McGowan and
Ryan, 2009) where sampling variance was included in the iteration
loop of the simulation model according to the methods described
by White (2000) and McGowan et al. (submitted for publication).
This approach was needed to accurately reflect uncertainty regard-
ing population demographics.

In the model the population redistributed across the three hab-
itat types at random with no inter-year correlations. No published
studies present information on settlement patterns or density-re-
lated habitat selection; thus, we used a stochastic process for
assigning habitat distributions based on reported proportions of
the breeding population that nest in each habitat type (Haig
et al. 2005, Larson et al., 2002; McGowan and Ryan, 2009). Survival
of first-year birds and adult birds was the same across habitats
(there is no empirical basis for differing survival across habitats),
but fecundity differed. Larson et al. (2002) and McGowan and Ryan
(2009) reported large differences in breeding success between al-
kali wetlands and riverine habitats. Fecundity in the Missouri River
was modeled according to the recommendations of Noon and
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Sauer (1992) with some modifications to account for precocial
birds and to allow for incidental take of eggs and chicks. Fecundity
was calculated as follows:

(((NtPM.[RtCt) - Te)sn,t - Tc)sc.t

Fu = (NePae) ’ @

where R is the number of nests per breeding female (mean =1.2), C
is the mean clutch size (mean = 3.4 eggs), T, is the number of eggs
taken by USACE actions (T, = p,(N:PumR:C:), where p, is the propor-
tion of eggs taken), S,, is the nest survival rate (survival to hatching,
mean = 0.52), T, is the number of chicks taken by USACE activities
(for these simulations T, was set to 0), and S, is the chick survival
rate (survival to fledging, mean = 0.16, McGowan et al., 2009). The
USACE is permitted, under a series of biological opinions issued
by the USFWS, to take on average 9.2% of eggs laid in the Missouri
River annually with a maximum of 42% or 294 eggs in any single
year (whichever is smaller); additional take of chicks was not ad-
dressed in the biological opinion (USFWS, 2000, 2003; McGowan
and Ryan, 2009). Fecundity at other river habitats was modeled
the same way, but without the incidental take subtractions and
with a lower probability of survival to hatching (S, = 0.33, McGo-
wan and Ryan, 2009). McGowan and Ryan (2009) ran a series of
simulations with varying levels of take and through regression anal-
yses estimated that permitted take was significantly reducing pop-
ulation growth rate and projected abundance 30 years in the future,
as well as significantly increasing the probability of quasi-extinc-
tion. Their model assumed additive mortality due to take caused
by USACE actions (McGowan and Ryan, 2009).

If natural mortality is density-dependent and follows incidental
take in the annual cycle it should allow the population to compen-
sate for at least some harmful effects of take (Kokko et al., 1998; Xu
et al., 2005). To investigate these potential compensatory mecha-
nisms, we modified the model to include a density-dependent neg-
ative linear logistic function on first-year survival, so that as winter
population abundance increased, first-year survival decreased.
Winter survival of juveniles declined as total population abun-
dance after the breeding season increased, as follows:

. exp (o0 = B(N¢ + N¢(PwFw + PuFu + PiFr)))
"7 1+ (exp(& — B(N; + N (PyFyy + PyFy + P.F,))))’

(3)

where the regression parameter o was set to 0.1 and g was set to
5.0 x 107, Although there are no empirical estimates of this den-
sity-dependent survival relationship, we were able to choose «
and p values for which the plots of the resulting first-year survival
encompassed the variability of published first-winter survival esti-
mates for this species (Ryan et al., 1993; Larson et al., 2000, 2002).
Using the baseline nesting, clutch size, and survival rates cited
above, we simulated the population with and without density
dependence under a variety of incidental take levels (0-14% of Mis-
souri River eggs).

All previous models of the piping plover population in the Great
Plains estimated between 3% and 12% annual declines (Ryan et al.,
1993; Plissner and Haig, 2000; Larson et al., 2002; McGowan and
Ryan, 2009). If the population is, in fact, in such rapid decline then
either: (1) it is not producing a “doomed surplus” annually and
therefore cannot compensate for incidental take, (2) the population
can sustain take and is just in a temporary transition to a lower
equilibrium point, or (3) the existing take already exceeds the
capacity for compensation. It is not the purpose of this paper to
discern those hypotheses, so to test the applicability of the com-
pensation paradigm to stable as well as declining populations,
we simulated another hypothetical piping plover population that
was approximately stable in size over time and might be able to
compensate for take. We increased the mean annual adult survival

(Sq) from ~0.737 baseline to ~0.832, and the mean number of nests
per female (R) from ~1.2 baseline to ~1.45 nests per female.

Thus, in all, we ran four different permutations of the popula-
tion simulations: (1) low annual adult survival with no density
dependence, (2) low annual adult survival with density-dependent
juvenile survival, (3) high annual adult survival with no density
dependence, and (4) high annual adult survival with density-
dependent juvenile survival. Within each of the four scenarios,
we applied eight levels of annual egg take (p. =0, 0.02, 0.04, 0.06,
0.08, 0.10, 0.12, and 0.14 of the eggs laid in the Missouri River).
We replicated each simulation 10,000 times and simulated
30 years into the future. We chose a 30-year projection time frame
following McGowan and Ryan (2009). We argue that a 30-year
time frame balances the potential interest in long-term accumulat-
ing effects of incidental take against the increasing uncertainty in
model projections as duration of the simulation increases (Morris
and Doak, 2002). The 32 scenarios (4 models x 8 levels of egg take)
were modeled so that each of the eight levels of egg take would be
applied to the same values of the survival and habitat distribution
parameters taken from the sampling distributions. Juvenile sur-
vival differed across take scenarios because it was modeled as a
density-dependent parameter in two of the four models, and
fecundity differed (Fy, F;) across take scenarios, because that
parameter was dependent on population size and take amount in
our model (see Eq. 2). Thus, for each year in each replication we
simulated 32 different population and incidental take scenarios.
This approach induced a parallel structure to the simulation that
greatly reduced variation across simulated scenarios; the resulting
patterns in the simulated data required minimal statistical inter-
pretation. All simulations were done in program R (R Core Devel-
opment Team, 2009).

Similar to McGowan and Ryan (2009), we used regression mod-
els to examine the effect of increasing egg take rates on the prob-
ability of quasi-extinction at 30 years (probability of falling below
a 100 female abundance threshold at any time during the
30 years). If compensation was alleviating the harmful effects of
all take we would expect no significant relationship between qua-
si-extinction probability and take. We also examined the percent
decline in abundance due to increasing take by comparing abun-
dance at 30 years for each level of take to a simulation with no
take. If take is compensated by density-dependent juvenile sur-
vival we would expect little or no decline in abundance, or if some
low levels of the take were compensated by the density-dependent
post-fledging mortality we would expect ~0% decline under the
low take rate simulations.

3. Results

In all the simulations except the scenario with high survival and
no juvenile survival density dependence, the median population
abundance declined over 30 years even when no incidental take
was applied. The scenarios with low survival and density-depen-
dent juvenile survival predicted the greatest declines and highest
extinction probabilities (quasi-extinction ~21%, Fig. 1a), followed
by the scenarios with low survival and no density dependence
(quasi-extinction ~17%, Fig. 1a). The scenarios with high adult sur-
vival had very low quasi-extinction probabilities, between 0.7%
and 1.0% (Fig. 1b). Regression analysis showed that scenarios with
low adult survival and no density dependence had significantly po-
sitive associations between modeled egg take and resulting quasi-
extinction probability (f;=0.09, F=481.2, p<0.01, df=6,
r? = 0.98, Fig. 1a). Similarly, scenarios with low adult survival with
density-dependent juvenile survival had a positive association be-
tween egg take and quasi-extinction probability (3, = 0.11, F=53.5,
p < 0.01, df=6, r*=0.88, Fig. 1a) and so did scenarios with high
adult survival and no density dependence (f;=7.7 x 1073,
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Fig. 1. Plot of the probability of quasi-extinction (decline below 100 adult females at at any time during 30 years) against the percent of eggs incidentally taken for a piping
plover population with density-dependent juvenile survival (® markers) and without density-dependent juvenile survival (4 markers) under scenarios with a) low annual

adult survival and b) high annual adult survival.
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Fig. 2. The simulated percent decline in median abundance at 30 years, relative to
the no-take scenario, under 0% (baseline), 2%, 4%, 6%, 8%, 10%, 12%, and 14% of eggs
incidentally taken for piping plovers in the Great Plains, with low or high adult
survival, and with or without density-dependent juvenile survival.

F=45.0, p < 0.01, df = 6, 1* = 0.86, Fig. 1b). The scenarios with high
adult survival and density-dependent juvenile survival showed no
significant association between percent of eggs taken and quasi-
extinction probability (8, =0.007, F=1.7, p=0.23, df =6, 1* = 0.09,
Fig. 1b).

The scenarios without density-dependent juvenile survival
showed the greatest percent decline in abundance as egg take rates
increased (Fig. 2). The scenarios with high adult survival and den-
sity-dependent juvenile survival had only a 3.6% decline in abun-
dance as take increased from 0% to 14% of eggs laid (under T,
N30 = 1054 and under T4z, Ni=30 = 1016, Fig. 2), whereas, the sce-
nario with low adult survival and no density dependence on juve-
nile survival had a 10.7% decline as take increased from 0% to 14%

of eggs laid (under Ty, Ni30=712 and under Ty4y, Ni30=636,
Fig. 2).

4. Discussion

Our simulations show that when density dependence exists and
the piping plover population is not rapidly declining, some levels of
incidental take might be compensated. For the simulations with a
nearly stable population and post-fledging density-dependent sur-
vival, the regression model showed no relationship between egg
take and quasi-extinction probability. Simulations with no den-
sity-dependent juvenile survival and/or with declining population
trends had significant positive relationships between quasi-extinc-
tion probabilities and egg take rate.

The simulations lacking density-dependent juvenile survival
also had the greatest percent decline in abundance due to increases
in egg take. Though final abundance declined with increasing egg
take for the simulations with density dependence, these declines
were small compared with the declines observed under the scenar-
ios lacking density dependence. Furthermore, for the high survival
and density dependence scenarios, those declines in abundance did
not translate into increased quasi-extinction probabilities.

From our simulation analyses, we can conclude that if density-
dependent juvenile mortality exists for piping plovers in the Great
Plains, and the populations were not rapidly declining, some level
of egg take might be compensated and not affect the probability of
quasi-extinction. However, a brief examination of the annual and
life cycles of piping plovers suggests that few opportunities for
compensation exist. The species exhibits high within-season sur-
vival during the winter on the Gulf Coast in Texas (Drake et al.,
2001). Birds forage in small feeding flocks during the non-breeding
season (Zonick, 2000), suggesting a non-limiting food source dur-
ing that time period (Brown, 1964) and therefore food-mediated
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density dependence is unlikely. There have been no reported den-
sity related disease out-breaks for this species. Adams et al. (2003)
studied records of carcass cleanup efforts following botulism epi-
demics in shorebirds and no piping plover carcasses were reported.
Little is known about the migration route of piping plovers in the
Great Plains, but it is probable that most birds make the migration
to the Gulf Coast in one non-stop flight in most years (Haig and
Elliott-Smith, 2004). If migration flights are non-stop, then most
mortality during this time period would likely be caused by largely
density-independent, weather-related factors. Pre-migratory body
condition could affect an individual’s survival during migration,
and that could be a function of food availability and density-depen-
dent, conspecific competition in breeding or staging habitats (Aler-
stam and Lindstrom, 1990). There also may be mortality during
migration due to raptor predation, which could be a density-
dependent factor. However, these factors are considered minor
contributors to mortality in piping plovers (Haig and Elliott-Smith,
2004). Piping plovers may also experience some limited density-
dependent mortality during the breeding season and so it is possi-
ble that the population might be able to compensate for low levels
of incidental take of eggs and chicks during the breeding season.

In summary, the known ecology of piping plovers suggests little
opportunity for compensation, although there is considerable
uncertainty about certain periods of the annual cycle. If there is
capacity for compensation, we think it is most likely in first-year
survival or in density-dependent reproduction. Estimation of
first-year, over-winter survival in relation to population density
or overall abundance over a number of years would directly assess
the potential for piping plovers to compensate for incidental take
of eggs. Studies of productivity as a function of population size
would also be valuable. Alternatively, an adaptive management ap-
proach with competing population models (one with density-
dependent juvenile mortality and one without) could be used to
learn about system function while allowing take to proceed cau-
tiously (Nichols et al., 2007).

Modeling efforts predict that this population is likely in rapid
decline (Ryan et al., 1993; Plissner and Haig, 2000; Larson et al.,
2002; McGowan and Ryan, 2009). It is likely that either annual sur-
vival or productivity is already too low to sustain the population
without intense management (Larson et al., 2003). If this is the
case, then either the population is not capable of producing a sur-
plus, or that surplus has already been exceeded by existing take;
either wayi, it is unlikely the population could compensate for addi-
tional mortality caused by incidental take. For the rapidly declining
populations in our simulations, any potentially compensatory
capabilities of the population were overwhelmed and obfuscated
by low adult survival rates or overall low productivity. However,
recent efforts to estimate population size for piping plover have
indicated substantial population increases in the Great Plains since
2001, which means that there may indeed be compensation oppor-
tunities (Elliott-Smith et al., 2009).

Intensive management and protection efforts are ongoing for
piping plovers throughout the Great Plains, and it is possible that
any compensatory capabilities in this population are being created
by predator management efforts elsewhere in the range. Such con-
ditions have the potential to create conflicts amongst agencies and
partners where one agency is investing time and money to protect
nests and improve population productivity while another is seek-
ing permits to destroy eggs and potentially cancel out other con-
servation efforts. Perhaps such competing efforts should be
considered as part of incidental take assessments and ongoing
off-site management could be considered as mitigation and identi-
fied in incidental take permits under provision 2 (discussed in the
Section 1 of this paper).

Our primary goal for the piping plover simulations was to ex-
plore and discuss the role and implications of compensation in

incidental take asssessment, not necessarily to affect management
of piping plovers in the Great Plains. The metrics of extinction and
quasi-extinction probability match well with the “probability of
survival in the wild” language used in endangered species protec-
tion legislation (McGowan and Ryan, 2010). The regression slope
parameters from the analyses presented herein reflect relatively
small increases (<2%) in quasi-extinction probability in relation
to increases in incidental take rates. We make no judgments as
to whether such increases in quasi-extinction probability would
be large enough to constitute jeopardy under current regulations
for implementing the US-ESA, e.g., enough to “reduce appreciably”
the likelihood of survival and recovery in the wild (50 CFR §
402.02). The USFWS and National Marine Fisheries Service have
not defined a level of increase in extinction risk that would be
“appreciable” enough to trigger jeopardy. If the law is interpreted
to mean that some increase in extinction probability is below an
appreciable threshold and, thus, acceptable, then demographic
compensation is not necessary for incidental take to avoid jeopardy
and be authorized. However, this interpretation requires the appli-
cation of some standard or threshold for acceptable increases in
extinction probability, which may cumulatively degrade species’
status over time (Rohlf, 2001; Ruhl, 2004; Wood, 2004). An inter-
pretation that jeopardy means no increase in extinction risk (‘no
further harm’) requires no normative thresholds (Wood, 2004),
but this definition relies strongly on the compensation concept
since incidental take could only be authorized if it is fully
compensated.

Further, the goal of the US-ESA is species recovery, which typi-
cally means increasing population sizes and distribution. So any
population productivity that is ‘excess’ in terms of local population
stability could be conserved for population growth and expansion
rather than permitted as incidental take. Here the policy judgment
is how much take appreciably reduces the likelihood of recovery.

Notwithstanding these possible alternative interpretations of
the US-ESA jeopardy language, we argue that the compensation
paradigm is the inherent yet largely unacknowledged basis for
the incidental take allowances of many endangered species protec-
tion laws. As we have illustrated with the piping plover example,
decision makers need to consider a species’ ability to compensate
for any proposed incidental take. Such an analysis should consider
the seasonality of take and how it fits into the annual cycle of the
species being managed (Kokko and Lindstrom, 1998; Boyce et al.,
1999; Kokko et al., 1998; Xu et al., 2005). If the incidental taking
occurs after the majority of density-dependent mortality has hap-
pened in the annual cycle, the compensation will be weaker and
the take more likely to affect the probability of “survival in the
wild.” Or, if take of adults occurs before individuals have had the
opportunity to breed in the annual cycle, take will also have a
greater impact on the population than will take at other seasons
(Kokko and Lindstrom, 1998; Boyce et al., 1999; Kokko et al.,
1998; Xu et al., 2005). Take at different life-stages may also have
different impacts on the population: take from life-stages with
higher reproductive value would have greater effects on the popu-
lation and require stronger density dependence to avoid popula-
tion effects (McGowan, 2008). For example, taking adult piping
plovers - the most important life stage in this species for popula-
tion viability (Ryan et al., 1993; Larson et al., 2002) - would require
high levels of compensatory mortality for the population to be buf-
fered and the take to have no population effects. Lastly, it is impor-
tant for managers to remember that environmental and
demographic stochasticity tend to dampen population growth
(Morris and Doak, 2002) and may undermine compensatory mech-
anisms, adding uncertainty to predictions and decision making
(Goodman, 2002). Appropriate population models can be used to
consider the effects of uncertainty and stochasticity on long-term
population outcomes.



736 C.P. McGowan et al./Biological Conservation 144 (2011) 730-737

With endangered species there is likely uncertainty about the
existence and magnitude of density-dependent demographics
and about the applicability of compensatory theory to any given
species. Under these circumstances managers could apply the tools
of structured decision making and adaptive management, using
multiple system models (i.e., one with density dependence and
one without) for decision making and follow-up monitoring of
population response to begin learning about a population’s capac-
ity to compensate for incidental take (Nichols et al., 2007). The
models and the monitoring would be case- and species-specific,
but the general framework of adaptive management (using models
to predict the effects of management actions and monitoring the
system to measure the response) can be quite successful despite
high uncertainty (Nichols et al., 2007, McGowan et al., in press).
Though potentially costly, follow-up monitoring to evaluate the
existence of (or strength of) demographic compensation or the im-
pact of mitigation to create compensation opportunity could be
important to understanding the species ecology and improving fu-
ture incidental take decision making. If using a structured decision
making or adaptive management approach to reduce uncertainty
about the strength of compensation for incidental take decisions,
we argue monitoring plans designed specifically to evaluate com-
pensation should be an explicit part of the incidental permitting
process.

Compensatory theory and its implications for population
dynamics and endangered species management may not be limited
to incidental take allowances. Demographic compensation might
affect recovery feasibility and management strategies for achieving
recovery. With piping plovers for example, in the Great Plains pop-
ulation much of the management and recovery effort is targeted at
increasing productivity through nest and chick protection efforts.
However if there is strong over-winter density dependence on
first-year survival, efforts to increase productivity may have no
net effect on population growth, abundance or recovery probabil-
ity. Managers should consider the possible impacts of demographic
compensation not only in the case of incidental take assessments
but perhaps in many aspects of endangered species decision mak-
ing and management.

In conclusion, wildlife managers and incidental take decision
makers should consider the applicability of compensatory theory
to each endangered species and each incidental take permit. Man-
agers and decision makers should consider whether a species has
the capacity to buffer incidental take through excess reproduction,
or if the population likely experiences some density-dependent
mortality after the take occurs. If none of these buffers are likely
to exist naturally it may be possible to create compensation via
mitigation in habitat management and species protection (e.g.,
reducing natural mortality), but careful assessment of compensa-
tory capacity is warranted in any case.
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