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Abstract

This paper briefly reviews research on passive in situ samplers for aquatic environments but focuses on the
development and application of the triolein-containing semipermeable membrane device in aquatic environmental
monitoring. Special attention is paid to the calibration of the devices, quality control issues, and its potential uses in
environmental assessments of aquatic contaminants. Also, the suitability of the technique for incorporation with
selected bioassays is examined. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Chemicals listed by the US EPA as priority
pollutants contribute little to broad environmen-
tal indices such as BOD, COD or TOC. Never
the less, these contaminants can pose a major
threat to ecosystem and human health. For exam-
ple, many substances that cause cancer belong to
persistent organic contaminants (POPs). In 1999,
the China EPA designated 40-organic contami-
nants from US EPA’s list of 2347 toxic chemicals
as priority pollutants for water quality standards.

* Corresponding author. Tel.: + 86-10-62849140; fax: + 86-
10-6292-3563.
E-mail address: wangzj@mail.rcees.ac.cn (Z. Wang).

Nearly all-environmental samples require some
type of preparation before analysis. Conventional
solid phase extraction (SPE), such as XAD resin
sorption, and liquid-liquid extraction are among
the oldest and most frequently used sample
preparation methods. However, use of these
methods for monitoring ultra trace to trace-level
(e.g. pg to ng/L) organic contaminants in water,
may be problematic. More specifically, difficulties
or limitations associated with the methods are
often encountered when collecting and extracting
large volumes of water needed for trace contami-
nant analysis. These include sampling and han-
dling induced changes in some water quality
parameters, and loss of analytes due to filtration,
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volatilization and sorption. Also, analysis of ex-
cised water reflects residue composition only at
the moment of sampling and may fail to detect
episodic contamination events (Huckins et al.,
1990a, 1993). Therefore, the recent availability of
SPE cartridges has facilitated the analysis of
many environmental samples, but the method is
generally more suitable for the analysis of samples
with moderate (e.g. pg/L) to trace levels of target
contaminants.

Because of the aforementioned difficulties in
analyzing trace-level contaminants, the levels of
POPs in water are often inferred from their equi-
librium concentrations in the tissue of aquatic
organisms. Weaknesses in this approach include
possible metabolism and depuration of accumu-
lated chemicals, prejudices in absorption, site-to-
site variations in organism stress, and limited
viability (Prest et al., 1995b), which affect equi-
librium concentrations. Estimates of POP concen-
trations in water can also be made by measuring
their concentrations in benthic sediments from
rivers, lakes or seashores and then using equi-
librium distribution coefficients (i.e. K,sS) to
derive levels of dissolved phase analytes (Gale et
al., 1997). This approach is limited by the assump-
tion of equilibrium between sediments and the
water column, and the potential effects of organic
carbon quality differences among sediments that
are not accounted for in current equilibrium parti-
tion models.

Increasingly, the development of effective, eco-
nomic and selective passive sampling techniques is
becoming a widespread goal of environmental
scientist. In particular there is a need for tech-
niques, which fulfill the demands of monitoring
trace or ultra-trace bioavailable organic contami-
nants in water and at the same time bridge the
gaps between environmental analytical chemistry
and ecotoxicology approaches. Among various
passive sampling approaches for organic contami-
nants, the solid phase micro-extraction (SPME)
fibers and semipermeable membrane devices (SP-
MDs) appear to show the most promise. SPME
fibers are widely accepted as analytical tools for
measuring semi-volatile contaminants (Pawliszyn,
1997), are very convenient to use, but are gener-
ally limited by small sample size/capacity.

Several passive samplers have been proposed
based on the diffusion of hydrophobic substances
from the water to membrane bags filled with
lipophilic phases. Some of the early designs in-
cluded dialysis bags made of regenerated cellulose
tubing and polyethylene membrane bags filled
with hexane (Sodergren, 1987, 1990; Johnson,
1991; Hasset et al., 1989). At about the same time,
Zabik (1988) and Huckins (1988) evaluated
polypropylene, polyvinyl chlorides, polyacetate,
and silicone membranes for use in passive sam-
plers. In other studies (Byrne and Aylott, 1980),
vinyl chlorides, polyvinylidene fluoride, polyte-
trafluoro ethylene, acrylic copolymer and nylon
membrane bags were used as semipermeable
membranes for passive samplers. Also,
polyethylene membranes were filled with XAD-4
and C,g, or common organic solvents such as
2,2, 4-trimethylpentane, octanol, and hexane for
environmental sampling (Zabik et al., 1992).
Pekol and Cox (1995) described a system in which
micellar Brij35 and Brij58 were used in combina-
tion with a cellulose ester dialysis membrane. The
micellar media compared well with organic sol-
vents as receivers for fugacity based membrane
preconcentrators of hydrophobic compounds. In
a comparative study (Macrae and Hall, 1998),
triolein-containing  semipermeable = membrane
device (triolein-SPMD), Tenax TA, and
polyethylene tube dialysis (PTD) of sediment were
used to estimate the available fraction of poly-
cyclic aromatic hydrocarbons (PAHs) in marine
sediment slurries. The results of this study sug-
gested that PTD is useful for assessing chemical
exposure from to soils or sediments, while tri-
olein-SPMD and Tenax TA are useful for estima-
tion of the fraction of chemicals in sediments that
would likely be biodegradable in reasonable
length of time.

Recently a polar organic chemical integrative
sampler (POCIS), consisting of a hydrophilic
polyethersulfone membrane containing an admix-
ture of a hyper-cross linked polystyrene-divinyl-
benzene SPE resin and S-X3 Biobeads coated with
fine particles of dispersed Ambersorb® 1500, was
designed (Alvarez et al., 2000). The polyethersul-
fone membrane was selected because of all the
membranes studied; it exhibited the greatest up-
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take of hydrophilic analytes and had the greatest
membrane durability. Using POCIS samplers, lin-
ear uptake of polar analytes (e.g. atrazine) was
observed through 28 days, and biofouling was
minimal.

Besides SPME fibers, the most popular passive
sampling configuration for aquatic environments is
the triolein-containing SPMD developed by Huck-
ins (1988) and Huckins et al. (1990a). Fig. 1
illustrates the principle of the triolein-SPMD. The
following sections summarize the theory, practice,
and applications of SPMDs as passive in situ
samplers of aquatic environments.

2. Design and basis of triolein-SPMDs
2.1. Generic configuration

All triolein-SPMDs contain a thin film of lipid
sealed within an additive free layflat polyethylene
(LDPE) tube. LDPE employed in triolein-SPMDs
is referred to as nonporous, although random
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Fig. 1. Illustration of the principle of nonporous membrane
size-exclusion phenomenon, which mediates the containment
of triolein-SPMD lipid and allows the diffusive exchange of
smaller analyte molecules. Also, a partial illustration of de-
ployment apparatus is shown as well. Courtesy of Carl Crazio
and Randal Clark, USGS, Colombia, MO, USA.

thermal motions of the polymer chains form tran-
sient cavities with maximum diameters of approx-
imately 10 A (Huckins et al., 1990a). Because the
cross-sectional diameters of most environmental
contaminant molecules are nearly as large as LDPE
cavities, only dissolved (i.e. readily bioavailable)
organic contaminants can diffuse into the mem-
brane and be concentrated in the membrane and
triolein. The neutral-triglyceride triolein was se-
lected for use in SPMDs for the following reasons:
(1) it is a significant constituent of fish lipids; (2)
Chiou (1985) has shown a good correlation between
equilibrium triolein—water partition coefficients
(K.ws) and widely available equilibrium octanol-
water partition coefficients (K,,s); (3) the high
molecular weight of triolein (i.e. > 800 Da) greatly
reduces LDPE membrane permeability even during
organic solvent dialysis; and (4) triolein is commer-
cially available in high purity forms (Huckins et al.,
1990a, 1993, 1996).

Triolein-SPMDs were designed to mimic the
bioconcentration of organic contaminants in fatty
tissues of organisms, using a much more repro-
ducible sampling matrix. Among the many poten-
tial environmental variables, uptake rates are only
affected by temperature, flow velocity-turbulence,
and biofouling. SPMDs can be used for in situ
monitoring contaminants, estimating respiratory
exposure, concentrating trace organic contami-
nants for assessing their toxicity, and the LDPE
tubing can be used for analytical separations (Huck-
ins et al., 1990a,b; Meadows et al., 1993; Strand-
berg, 1998; Bergqvist et al., 1998a). Huckins et al.
(1990a, 1993, 1996, 1999, 2000) have delineated
important considerations in the design, application,
performance, and data comparability of SPMDs.

2.2. Models for estimation of ambient
concentration

Procedures for the estimation of ambient water
concentrations of contaminants from their concen-
trations in triolein-SPMDs are different from those
used in active sampling strategies. In general,
sample size and thus concentration factors are not
predetermined for SPMD exposures, as is common
in active sampling strategies. There are many
mathematic models developed to estimate ambient
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analyte concentration based on first-order ex-
change kinetics and equilibrium partitioning con-
cepts (Booij et al., 1998; Huckins et al., 1993;
Huckins et al., in press). Perhaps, the most simple
and common approaches used are the equilibrium
(Eq. (1)), linear uptake kinetics (Eq. (2)), and
exponential accumulation (Eq. (3)) models given by
Huckins et al. (1993).

C
f= K (D

R
! 2

= K (1—e ") 3)

Do Dla O
N

Eq. (1) describes the equilibrium partitioning of
a pollutant between the triolein and water phases,
where C, is the concentration of the contaminant
in the lipid (does not include membrane contribu-
tion), C,, is the water concentration, and K,,, was
defined ecarlier. Eq. (2) is based on the assumption
that C, is linearly related to the sampling time,
where R, is the chemical-specific SPMD (triolein
alone) sampling rate, expressed as the volume of
water cleared of chemical per unit time (¢), and V,
is the volume of the lipid in the device. The R,
values for chemicals of interest are independent of
analyte concentration and are obtained through
laboratory exposures under controlled conditions.
Eq. (3) is based on the assumption that C, is
exponentially related to the exposure time, where
k, 1s defined as the overall uptake rate constant and
is mathematically identical to the loss rate constant
(k.). Eq. (3) integrates all three phases of SPMD
uptake (i.e. linear, curvilinear and equilibrium).
Because triolein-SPMDs have a large capacity for
hydrophobic contaminants, most lipophilic ana-
lytes will not achieve equilibrium within sampling
periods of <28 d.

A simple relationship between log K, and
log K, can be applied (Chiou, 1985) for the
derivation of K,,, used in Eq. (1) and Eq. (3).

log K, =log K, + 0.105 (€))]

where K, was defined earlier and values are
available for most of the priority contaminants.
Application of Egs. (1)—(3) is also based on the

assumption that the chemicals accumulated by
triolein-SPMDs are only in the triolein phase.
However, the membrane is a functional constituent
in the sampling process rather than simply a
container for the triolein (Huckins et al., 1990a;
Petty et al., 1994; Gale, 1998; Booij et al., 1998).
Studies have indicated that the polyethylene mem-
brane used in triolein-SPMD is a significant reser-
voir for hydrophobic residues and has a
membrane/solute partitioning coefficients only a
little less than the inner triolein reservoir (K, &
0.1-0.5K,,,, Gale, 1998). For example, a typical
sampler has a total mass of about 4.5 g, which
contains 0.91 g (1 ml) of triolein and represents a
polyethylene to triolein ratio of about 4:1 (Huckins
et al., 1996). This finding implies that about 33—
71% of the total accumulated chemicals are in
triolein phase at steady state.

If the lipid and membrane are analyzed together
(e.g. organic solvent dialysis of intact SPMDs), a
simple alternative to modeling lipid accumulation
alone is to substitute Vgpyp for V, and Cgpyp for
C, in Eq. (2) to obtain the empirical sampling rates
for the whole device (Huckins et al., 1999):

Cspmp _ Ry

Cw a VSPMD

where R/ is the sampling rate for the whole device
(i.e. polyethylene plus triolein), Cspmp 1 the con-
centration in the whole device, and Vgpyp is the
volume of the whole sampler.

A three-compartment (3C) differential equation
model has been developed and used to describe
the kinetics of the accumulation processes (Gale,
1998). Based on the 3C model, it was suggested
that the accumulation of a chemical in a triolein-
SPMD may be controlled by either: (1) polymer
film diffusion for large molecules with low poly-
mer diffusivity, where steady-state solute concen-
trations in polyethylene and water are reached
before they attained in polyethylene and triolein;
(2) aqueous film diffusion for highly polymer-dif-
fusive molecules, where the ratio of the solute
concentrations in triolein and polyethylene
reaches steady state before the whole device ap-
proaches steady state with the water; (3) a combi-
nation of aqueous and polymer film diffusion
where solute concentrations in polyethylene and

)
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triolein reach a relatively constant ratio, but not
necessarily the final steady-state value (i.e. equi-
librium concentrations among the three compart-
ments). By modeling potential variations in expo-
sure conditions and the triolein-SPMD physical
parameters, the overall accumulation by the whole
devise is predicted to remain under aqueous film
control for high K, compounds. However, for very
large molecules, accumulation in the triolein may
be subject to polymer film control.

In the literature, most of the R, (or R)) values
were obtained under controlled laboratory condi-
tions (Huckins et al., 1993, 1999; Huckins et al., in
press, Rantalainen et al., 2000). When triolein-SP-
MDs are used in natural environments periphyton
often attach to the exterior of the membrane and
contribute to the total impedance to chemical
uptake. Ellis et al. (1995) reported extensive bio-
fouling of triolein-SPMD membranes during an
exposure on the upper Mississippi River. Periphy-
ton growth varies with environmental conditions
under which the device was deployed, and it is
difficult to correct for its influence. Huckins et al.
(1993, 1996, 1997a) and Huckins et al. (1999) and
Huckins et al. (2000) have proposed the use of
permeability/performance reference compounds
(PRC:s; i.e. selected compounds spiked into SPMD
triolein prior to deployment), which provide infor-
mation that can be used to derive in situ triolein-
SPMD sampling rates. Thus, laboratory-sampling
rates (Rs) of triolein-SPMDs can be adjusted to
reflect specific field sampling conditions, such as
biofouling, by introducing a coefficient F;, which is
defined as one minus the fractional reduction in
sampling rate due to biofouling (Petty et al., 2000):

Ry = RF; (6)

where R, is the corrected sampling rate for a
chemical and is obviously a conditional constant
for a specific set of exposure conditions. Currently,
the PRC approach has been extended to the effects
of temperature and flow velocity-turbulence of the
medium sampled (Huckins et al., in press), which
permits the derivation of an exposure adjustment
factor (EAF). The EAF accounts for the effects of
all three environmental variables (i.e. flow-turbu-
lence, temperature and biofouling) affecting tri-
olein-SPMD sampling rates. Correct use of the

PRC approach should enable investigators to pre-
dict water concentrations with estimation errors of
less than twofold (Huckins et al., in press).

2.3. Quality control

The level of quality control related to triolein-
SPMD applications varies with project goals and
the analytical procedures used. A typical analytical
scheme for analyzing organic contaminants in tri-
olein-SPMDs includes sample preparation, extrac-
tion, enrichment/purification, fractionation, and
quantitative or qualitative analysis. For example,
analysis of PAHs in triolein-SPMDs generally
includes dialytic recovery of the PAHs from the
intact device, cleanup the dialysate using size exclu-
sion and adsorption chromatography, then analysis
by gas chromatography (GC) with photoionization
or mass spectrometric detection (Lebo et al., 1992,
Orazio et al., 1995). More specifically, triolein-SP-
MDs are dialyzed in hexane to recover the analytes,
followed by high performance size exclusion chro-
matography and potassium silicate enrichment
procedures (Petty et al., 2000). The precision of this
process, including sampling and analysis, is typi-
cally better than 20% RSD (Petty et al., 2000). In
the case of triolein-SPMDs, used to preconcentrate
water samples for bioassays or biomarker tests,
cleanup is typically less rigorous than that de-
scribed above. However, some potential lipid impu-
rities may still interfere with the assay. This issue
is subsequently discussed in more detail.

Devita and Crunkilton (1998) applied triolein-
SPMDs to monitor PAHs in an urban stream.
Relative percent differences (RPDs) were calcu-
lated to estimate precision in triolein-SPMD repli-
cates and RPDs were found within 13.9-56.0%
(n = 14).Variations in replicates encompassed tri-
olein-SPMD preparation, deployment, exposure,
retrieval and analysis, and the average percent
recoveries were 52—82% (n=7). The method de-
tection limits (MDLs) were assessed by spiking
each of 10 triolein-SPMDs with 0.200 mg PAHs
per g triolein. After a 14-day exposure period, the
MDLs for the PAHs studied corresponded to
detectable water concentrations of 2.1-13 ng1~".
These values were as much as 2000 times lower
than MDLs derived from standard approach of
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solvent extraction of water samples. In general,
the quality control criteria used for GC-mass
spectrometric identification of target chemicals in
triolein-SPMDs is the same as other sampling
strategies (Strandberg, 1998). Clearly, when inter-
laboratory results are compared, there is a need
for the standardization of triolein-SPMDs to en-
sure comparability of results.

3. Environmental monitoring and research
applications

Since the beginning of the 1990s, triolein-SP-
MDs have received wide recognition, especially in
the United States, as effective tools for environ-
mental research and analysis. They have been
successfully used for monitoring chemicals in
aquatic environments (Huckins et al.,, 1990a
Huckins et al., 1997b; Petty et al., 1995, 1998;
Ellis et al., 1995; Lebo et al., 1992, 1995; Bennett
et al., 1996; Moring and Rose, 1997; Bergqvist et
al., 1998a; Axelman et al., 1999; Zimmerman et
al., 2000), and in air (Ockenden et al., 1998;
Lohmann et al., 2001). Triolein-SPMDs have also
been used for screening and preliminary identifi-
cation of emission sources in wastewater systems
and groundwater (Stuer-Lauridsen and Kjolholt,
2000; Granmo et al., 2000; Gustavson and
Harkin, 2000), and appear to simulate the biocon-
centration of dissolved chemicals by aquatic or-
ganisms (Huckins et al., 1996; Prest et al., 1992;
Wood, 1994; Devita and Crunkilton, 1994; Herve
et al., 1995; Peven et al., 1996; Hofelt and Shea,
1997). The procedure for dialytic recovery of ana-
lytes can be used separately to remove lipids and
other interferences from environmental sample ex-
tracts (Huckins et al., 1990b; Meadows et al.,
1993, 1996; Strandberg, 1998; Bergqvist et al.,
1998b).

In general, triolein-SPMDs can be used for a
wide range of organic contaminants. However,
chemicals that are predominantly ionic at envi-
ronmental pHs are not accumulated in triolein-
SPMDs. In addition, chemicals with
log K,,,s < 2.0 are too polar or their fugacity from
non-polar organic phases is too high to be suffi-
ciently concentrated in triolein-SPMDs.

3.1. Comparisons to biomonitoring organisms

Triolein-SPMDs have been proposed as a
mimetic (i.e. to mimic complex biological pro-
cesses in simple media) supplement or replace-
ment for biomonitoring organisms used in organic
contaminant assessments (Herve et al., 1995; Prest
et al., 1995a). Regardless of the issue of the
appropriate application of triolein-SPMDs to
biomonitoring programs, these authors found tri-
olein-SPMDs to be very useful tools for assessing
the presence of  bioavailable organic
contaminants.

The capacity of an organism to accumulate
non-metabolized organic contaminant residues is
mainly controlled by the lipophilicity (i.e. K,,) of
the compound and the lipid content of the organ-
ism. Usually, a correlation between bioconcentra-
tion factor (BCF) and the device (triolein-SPMD)
concentration factor (DCF) is assumed, when tri-
olein-SPMDs are substituted for organism in ex-
treme environments. However, Huckins et al. (in
press) has pointed out that organism uptake rate
constants vary widely for the same chemical and
unlike triolein-SPMDs their tissues levels may not
be proportional to environmental concentrations.
Thus, it is unlikely that correlation between BCFs
and DCFs will always be found (Huckins et al., in
press). A good correlation was shown between the
log K, and log BAF (bioaccumulation factor) in
mussels and between the log K, and log DCF
(Sabaliunas et al., 1998). These findings are based
on a continuous-flow laboratory exposure of tri-
olein-SPMDs and lake mussels (Anodonta pisci-
nalis) to four pesticides (Sabaliunas et al., 1998).
The compositions and ratios of different pesticides
in triolein-SPMDs and in mussels were also simi-
lar, which indicate that triolein-SPMDs serve as
good surrogates for aquatic organisms with re-
spect to the discriminatory uptake of these hydro-
phobic chemicals (Sabaliunas et al., 1998). When
goldfish (Crassius auratus) and triolein-SPMD
were simultaneously exposed to nine relatively
hydrophilic chlorophenols in a laboratory con-
tinuous flow experiment, steady state concentra-
tions were achieved after 12 h in triolein-SPMDs
and in fish, and the partition coefficients (log K.,
log BCF, and logkK,,) were closely cor-
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related each other (Wang et al., 1998). Similar
results were obtained for nine weakly hydropho-
bic nitroaromatics (Wang et al., 1999a).

In field studies, the relationship between
log DCFs and log BCFs often becomes more
difficult to establish, mostly because of problems
related to the measurement of free concentrations
of contaminants in complex mixtures and the
much longer times to equilibrium for SPMDs.
For chemicals with high K_.s, i.e. log K ,s > 6.0,
attainment of equilibrium in standard triolein-SP-
MDs may require more than a year (Gale, 1998).
However, similar concentrations of chemicals
have been reported in side-by-side field exposures
of triolein-SPMDs and biomonitoring organisms
(Prest et al., 1998; Gale et al., 1997). Hofelt and
Shea (1997) suggested that the correlation be-
tween SPMDs and monitoring organisms was im-
proved when using a device with a smaller volume
of triolein, a thinner LDPE membrane and a
larger membrane surface area (25 pum thick and
900 cm? in area). The correlation coefficients (R?)
for triolein-SPMDs and caged mussels (Mytilus
edulis) ranged from 0.57-0.85 for individual pes-
ticides (n = 16) and from 0.81-0.96 for individual
congeners of polychlorinated biphenyl (PCB, n=
20). However, based on the work of Booij et al.
(1998) and Gale (1998), membrane thickness
should have little to do with time to equilibrium
of contaminants with log K_ s greater than about
5.0. Also, when benthic organisms (i.e. Lum-
briculus variegates) and triolein-SPMDs were ex-
posed  simultaneously to  sediment-bound
chemicals, such as polychlorinated diphenylethers
(PCDEs), BCFs and DCFs were reasonable close
(Kukkonen et al., 1998).

The propensity of some organisms to rapidly
biotransform certain anthropogenic chemicals,
such as PAHs (Buhler and Williams, 1989),
through activation of the mixed function oxidases
(MFOs), severely limits any correlation between
concentrations in tissue concentrations and expo-
sure concentrations. Because no biotransforma-
tion or metabolism of chemicals occurs in
triolein-SPMDs (assuming photolysis is pre-
vented), they can be used to determine the relative
roles of uptake from water (the bioconcentration
process) and by difference, the dietary route (the
BAF reflects both routes of uptake).

Application of triolein-SPMDs with PRCs to
monitoring programs could improve the inter-lab-
oratory comparability of residue concentration
data for many contaminants (Huckins et al., in
press). Because a variety of SPMD designs have
been employed for environmental assessments
without PRCs or appropriate calibration data, the
comparability of these data will be questionable.
Even if PRCs are used, shortcomings will exist in
the extrapolation of triolein-SPMD data to some
organisms, such as the inability to directly predict
(models are required for these estimates) contami-
nant transfer up through the food web, i.e. SPMD
levels do not reflect the potential for biomagnifi-
cation. Clearly, triolein-SPMDs can be applied to
discriminate bioconcentration from bioaccumula-
tion in field studies. In summary, even though
several laboratory and field tests have shown that
triolein-SPMD and test organism tissue concen-
trations are remarkably similar across a wide
range of chemical hydrophobicities, it is unrea-
sonable to expect SPMDs to closely mimic the
accumulation of all organic contaminants by all
biomonitoring test species (Huckins et al., 2000).

3.2. Use in chemical monitoring

Since their inception, triolein-SPMDs have been
largely intended for passively monitoring chemical
concentrations in different environmental media.
There are several advantages in using SPMDs for
monitoring priority organic pollutants, which in-
clude the following: (1) the non-mechanical or
passive operation; (2) the ability to sample large
sample volumes (i.e. volume of water or air ex-
tracted) and (3) the generally reduced effort re-
quired for triolein-SPMD deployment and
analytical cleanup when compared to transplanted
organisms.

The following studies are specific examples of
triolein-SPMD use for environmental contami-
nant monitoring. Prior to and after an extensive
Midwest (USA) flood of 1993, triolein-SPMDs
were employed to detect the presence of bioavail-
able organochlorine pesticides (OCs), PCBs, and
PAHs in the water of the main stem of the lower
Missouri River, and its tributaries (Petty et al.,
1995, 1998). Contaminant residues found at post-
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flood sites were nearly all at higher concentrations
than those found in the earlier pre-flood sampling.
Dieldrin was found to range from a low of 110
ng sample ~! in the Gasconade River to a high of
2000 ng sample ! at Glasgow, while in the pre-
flood sampling, dieldrin ranged from a low of 64
ngsample ~! at Sioux City to a high of 800
ng sample ~! at Glasgow (Petty et al., 1998).

In a study on the temporal distribution patterns
of different contaminants in flood-plume water
along the Swedish Coast, DDTs, PCBs, and dield-
rin showed elevated levels during the first and
second sampling period (Bergqvist et al., 1998D).
Then, a more stable, but lower contaminant level
followed. Surprisingly, chlordanes and hex-
achlorocyclohexanes (HCHs) showed a more
complex pattern with elevated levels at the begin-
ning, followed by a temporary decrease and then
a second rise in concentrations. Chlorobenzenes
showed no measurable shift in concentrations
during the total sampling period (Bergqvist et al.,
1998b).

Ultra-trace organic contaminants can be de-
tected by using triolein-SPMDs. Following dialy-
sis, cleanup, and fractionation, concentrations of
polychlorinated dibenzo-p-dioxins (PCDDs) and
polychlorinated dibenzofurans (PCDFs) as low as
30 fgl—!, were detected (Lebo et al., 1995) in
aqueous exposures using a composite sample of
four triolein-SPMDs (17 g, includes mass of mem-
brane and triolein). Also, the average TCDD
equivalents obtained from residue quantitation by
GC/MS was generally similar to that measured by
a H41IE bioassay (Lebo et al., 1995).

Rantalainen et al. (1998) compared the levels
and the congener profiles of PCDDs, PCDFs and
non-o,0’-PCBs sampled by triolein-SPMDs in the
water column and in the sediments of the lower
Fraser River (Canada). Triolein-SPMD concen-
trations were compared to concentrations in resi-
dent benthic-feeding fish. SPMD derived
concentration estimates of the water column were
compared to measured values as determined by an
active Infiltrex® sampler equipped with SPE
columns. The results suggested that triolein-SP-
MDs are the most suitable for sampling water for
contaminants such as PCDD/Fs and non-0,0'-
PCBs, which are present at ultra-trace levels in the

environments of interest (Rantalainen et al.,
1998). In another case, extracts from SPE of
water samplers, triolein-SPMDs, fish and sedi-
ment were compared for their efficacy as monitors
of prior pollutants in the Yanghe River, China.
Triolein-SPMD appeared to be the most efficient
approach (Wang et al.,, 1999b). The triolein-
SPMD approach also has an advantage of being
useable in extreme environmental and climatic
conditions. For example, it was successfully de-
ployed at McMurdo station in Antarctica in both
the water column and sediments (Crockett, 1994).

Triolein-SPMDs have been shown to concen-
trate several other types of compounds of envi-
ronmental concern, such as organometallics
(Folsvik et al., 2000) and volatile olefinic and
aromatic hydrocarbons. The latter hydrocarbons
include monoterpenes, which are emitted from
bark wounds as part of a tree defense mechanism
and during wood processing (Strandberg, 1998).
More specifically, triolein-SPMDs can be used to
concentrate monoterpenes to adequate levels, so
that the post identification and analysis is easier
to perform.

Both Prest et al. (1998) have suggested that
triolein-SPMDs are unsuitable for determining
rapid or short-term temporal variability, since
they are designed to integratively sample (i.e. they
provide time weighted average [TWA] concentra-
tions) over periods on the order of days or weeks
not hours. Also, Gustafson suggested that tri-
olein-SPMDs might be unsuitable for monitoring
gas exchange of chemicals across the air—water
interface, because flux is dependent upon instanta-
neous concentration gradients. In such circum-
stance, Prest et al. (1998) suggested that the
simultaneous air and water sampling with SPEs
and triolein-SPMDs is likely to be a powerful tool
for assessing the net flux of chemicals between
these compartments. His argument was based the
observation that thermodynamic relationships for
air—water transport are formulated in terms of
dissolved and vapor phase concentrations and the
triolein-SPMD membrane inherently provides a
level of discrimination against particle bound
chemicals (Prest et al., 1995a,b; Ockenden et al.,
1998, Booij et al., 1998). When triolein-SPMDs
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are applied to soil ecosystem, they provide a
simple and efficient in situ method for the concen-
tration of pollutants in compost, as well as
lipophilic vapors above the soil surface (Strand-
berg, 1998).

In principle, triolein-SPMDs were designed to
sequester free concentrations (i.e. dissolved and
vapor phases) of chemicals in waters. However,
the fraction of free concentrations of very hydro-
phobic contaminants in natural waters and air
may be small when compared to the total concen-
trations. For example, dissolved PCB congener
concentrations in water samples from a contami-
nated spring were assessed with triolein-SPMDs
and total water-borne PCB concentrations were
determined separately with a conventional solvent
extraction (i.e. liquid/liquid partitioning) ap-
proach (Meadows et al., 1998). Concentrations of
dissolved hydrophobic chemicals in water (C,q)
were related to the TOC content of the water by
the following equation (Meadows et al., 1998):

m,
C — a(tol) 7
wd m,, + M K ( )

octtoc

where m1,,,, is the total mass of analyte, m,, is the
mass of water, K is the compound’s organic
carbon sorption coefficient, and M, is the mass
of organic carbon in the water. The results of this
exercise show that the total organic carbon con-
tent of the water is critical in determining the
amount of high K_, compounds accumulated by
triolein-SPMDs or biota, because of its impact on
the fractional amount of the dissolved, or readily
bioavailable residues in water. For example, as-
suming that K . ~ K, dissolved concentration of
PCBs with log K, greater than 7.0 are reduced by
more than 80% when correcting for 0.5 mgl—!
TOC. However, aquatic organisms that ingest
carbon rich particulates or prey organisms with
very hydrophobic chemicals may accumulate a
significant fraction of the residues by assimilation
across the gut.

3.3. Preconcentration of samples for bioassays
There appears to be considerable need for

rapid, easy to use, effective, and low-cost integra-
tive methods that allow not only the direct moni-

toring of the fate and concentrations of
trace-contaminant mixtures in the environment,
but also an assessment of the potential hazards
these chemicals pose to aquatic organisms and
human health. Extracts of triolein-SPMDs can be
examined with standard bioassays (Huckins et al.,
1996; Sabaliunas and Sodergren, 1997). Often,
risk assessment of organic contaminants in
aquatic environments is based on the measure-
ment of individual compound levels and compari-
son of each chemical’s concentration to existing
toxicity data. However, all chemicals exert their
effects as components of complex environmental
mixtures that are influenced by a number of fac-
tors. Clearly, it is the effects of the complex
mixtures that must be considered in a comprehen-
sive environmental risk assessment. When triolein-
SPMDs are used as surrogates for or in
conjunction with biomonitoring organisms, the
sequestered contaminants are available for assess-
ment with a wide array of biomarker and
bioassay tests. For example, concentrations of the
dialysates of triolein-SPMDs have been assayed
with standard bioindicator screening tests, such as
Microtox and Mutatox (Huckins et al., 1996), or
the ethoxy resorufin-o-deethylase assay (Niewolny
et al., 1995). Consequently, this triolein-SPMD-
bioassay linkage provides a potential means of
determining the relative biological significance of
contaminants mixtures accumulated at study sites.

There have been numerous trials using triolein-
SPMDs for ecotoxicology applications. Enriched
extracts from triolein-SPMDs exposed to bleach
Kraft mill effluents (Huckins et al., 1996) and
surface water contaminated by trace levels of
PCDDs and PCDFs (Huckins et al., 1996; Lebo
et al., 1995) were found to induce cytochrome
P450 activity in fish and rat cell lines. Purified
dialysates from triolein-SPMDs, which were ex-
posed to pesticides in a laboratory continuous-
flow system or deployed in polluted water in
Lithuania, were highly toxic to the luminescent
bacteria Vibrio fischeri (Sabaliunas and Soder-
gren, 1997). It is noteworthy that these bioassays
were performed with only a small portion of
dialysate. However, sample clean-up procedures
to remove oleic (an impurity is some triolein) may
be required prior to toxicity testing for the estima-
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tion of the true toxic potential of accumulated
pollutants (Sabaliunas et al., 1999).

In freshwater microcosm studies that simulated
a crude oil spill, triolein-SPMDs were used to
concentrate the oil related pollutants in air, water
columns and sediments. By using triolein-SPMDs
the time-dependent changes in the acute toxicity
(as assayed by Microtox®) and the genotoxicity
(as assayed by Mutatox®) were successfully moni-
tored (Johnson, 1995). The combination of the
use of triolein-SPMDs for the preconcentration of
certain trace contaminants (e.g. PAHs) and the
subsequent assay of enriched dialysates by
bioindicator tests appears to be an useful ap-
proach for screening the relative toxicity of
bioavailable organic contaminants (Johnson et al.,
2000). Triolein-SPMDs were deployed in the
Athabasca River area to sequester any hydropho-
bic toxic compounds from different point sources
along the river. The SPMD-extracts were assayed
for MFO induction in a fish cell line (Parrott et
al., 1995). Discharges from three pulp mills were
found to have pollutants that strongly induced
MFO activity in the cell line, when compared to
the background river water.

Koistinen et al. (1998), used liquid—liquid ex-
traction, SPE, and triolein-SPMDs to extract pol-
lutants from the effluents and sludge of primary
and secondary clarifiers of activated sludge treat-
ment plants at a Finnish bleached-kraft pulp and
paper mill, and then assessed the resulting extracts
with two Hepa-1 mouse hepatoma cells bioassays.
SPMDs were found to be particularly useful in
accumulating non-polar inducers of MFO from
the pulp mill effluents. Petty et al. (1998) exposed
SPMDs to Missouri River water at several sites
following the great flood of 1993 (Midwest USA).
Enriched extracts of triolein-SPMD laboratory
processing controls injected into rainbow trout
(Oncorgynchus Myriss) showed no evidence of
vitellogenin production (a bioindicator of the
presence of estrogenic chemicals), whereas injec-
tion of extracts from SPMDs exposed at the
Napoleon site on the river showed enhanced es-
trogenic activity in the trout. The authors suggest
that these data indicate that long-term exposure
of fish and wildlife to this type of contaminant
mixture, may result in reproductive perturbations.

3.4. Overview of attributes and drawbacks

From the investigations summarized in this
work, it is clear that triolein-SPMDs have consid-
erable potential as monitors of environmental pol-
lutants. However, all sampling or monitoring
methods have strengths and weaknesses and tri-
olein-SPMDs are no exception. Table 1 compares
the attributes and drawbacks of triolein-SPMDs
and two other common environmental monitoring
approaches.

4. Conclusions

The most common applications of triolein-SP-
MDs appear to be the determination of the pres-
ence, source, and TWA concentrations of
hydrophobic organic contaminants in aquatic en-
vironments and in the atmosphere. Also, triolein-
SPMDs are often used as surrogates for, or
additions to biomonitoring studies to improve
estimates of exposure to waterborne organic con-
taminant mixtures, and in some cases, to predict
tissue concentrations of specific contaminants in
the tissues of organisms of concern (Petty et al.,
1998). To reduce the magnitude of the error asso-
ciated with a triolein-SPMD derived water con-
centration estimate, PRCs must be used to correct
for site-specific environmental factors such as
variations in temperature, membrane biofouling,
and the flow-turbulence regime (Booij et al., 1998;
Booij and Drooge, 2001 Huckins et al., 1997b,
1999, 2000; Huckins et al., in press). Standardiza-
tion of the design of the triolein-SPMDs (e.g.
membrane thickness and triolein to membrane
mass ratios) is also needed to improve the com-
parability of triolein-SPMD data (Huckins et al.,
1999).

The use of triolein-SPMDs as a tool for the
assessment of the ecological consequences of
chemical pollution is promising, particularly when
the effects of long-term exposure to ultra-trace
hydrophobic contaminants are a primary concern.
Triolein-SPMDs can be used as a mimetic surro-
gate or as a compliment to biomonitoring organ-
isms (Huckins et al., 2000) for the determination
of bioavailable contaminants in aquatic environ-
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ments. The mimetic nature of triolein-SPMDs,
suggest that bioassays of SPMD extracts will be
more representative of feral organism responses
than a combination of active sampling tradition-
ally used followed by bioassay of sample extracts.
Although more research work is needed to fully
develop the aforementioned applications, consid-
erable progress has been made.
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