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 The electronic structures, many-body interactions and Fermi surface topologies of 

Au/Mo(112) were investigated in detail and were found to play important roles in the 

newly discovered order-disorder structural phase transition of the system. First, the high-

resolution angle-resolved photoemission spectroscopy was utilized to characterize the 

electronic band structure of Mo(112) in far greater details than before. This elucidated the 

existence of several surface-derived states and their dispersion relations in high 

precisions near the Fermi level, as well as the symmetries of the bulk and surface 

electronic states, which are in good quantitative agreement with the ab-initio calculations. 

Such thorough understanding of the electronic states on Mo(112) made it possible to 

investigate the more complex electronic structure and many-body interactions in the Au 

overlayers formed on the Mo(112) surface and their interface. Upon the Au adsorption on 

Mo(112) substrate, the Au overlayer states are seen to hybridize with those of Mo 

substrate, which resulted in the formation of the several surface resonance bands, 

exhibiting high electronic localization near the surface and interface of the combined 

system. Furthermore, the electron-phonon coupling, involving these surface resonance 

states, is found to cause strong effective mass enhancement of the electrons near the 

Fermi level, which can contribute significantly to the surface lattice instability. In 

particular, for the (4x1) Au overlayer on Mo(112), the noticeable temperature-dependent 

changes in the Fermi surface contours were observed near the room temperature and were 



seen to act in favor of the stronger nesting condition and phonon-induced lattice 

distortions. The combination of the identified strong electron-phonon coupling and the 

critical Fermi surface topology near the room temperature likely relates to the overlayer 

lattice instability on the Au/Mo(112) system. In accord with the above general 

expectation, the order-disorder structural phase transitions were identified on 

Au/Mo(112) above the room temperature, which is characterized by the abrupt changes 

in the effective surface Debye temperature, indicative of significant softening of phonons 

on Au/Mo(112) across the transition. The sequence of these studies likely evidences that 

the strong electron-phonon coupling and the temperature-dependent Fermi surface 

topology are indispensable in driving the order-disorder transitions on Au/Mo(112).          
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Chapter 1  
Introduction 

 
 
 
 The physics of solids is essentially the physics of interacting many-body system. 

Naturally, such complex interactions are responsible for many of the phenomena 

observed in the bulk as well as near the surfaces of solids. Therefore, the understanding 

of the solids must involve the detailed investigation of various types of many-body 

interactions. In particular, electron-phonon coupling, one type of many-body interactions, 

plays a critical role in many types of phenomena, ranging from surface reconstructions to 

superconductivity [1]. Of our interest here is the role of electron-phonon coupling in the 

surface structural phase transitions, in which the surface lattice undergoes the 

temperature-dependent structural distortion. Perhaps the simplest example of a phonon-

induced lattice distortion is the Peierls’ transition in one-dimensional atomic chain, which 

is caused by the so-called perfect phonon nesting condition of the Fermi surface, possible 

in one-dimension [1,2]. Although in two and higher dimensions, the perfect nesting 

condition is never strictly satisfied it has been pointed out [3] that given strong electron-

phonon coupling and nesting condition (not necessarily perfect), the structural phase 

transition can occur through the mechanism similar to the Peierls’ transition. It is 

important to note here that the strong nesting conditions of Fermi surface are usually 

expected and observed for highly anisotropic materials such as for the (110) surfaces of 

fcc crystals or (112) surfaces of bcc crystals. 

The Mo(112) surface is known to exhibit highly anisotropic structural as well as 

electronic properties [5-10], which is expected to provide the good nesting properties [11]. 

On the other hand, the previously determined electron-phonon coupling parameters for 
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Mo [12,13] and Mo(112) [14] indicates relatively small strength of the interactions 

between the electrons and phonons, perhaps due to the fact that the phonon density of 

states is weighted towards relatively high energy (> 20 meV). However, in principle, the 

softer (lower energy) phonon modes can be induced on Mo(112) by adsorbing the atoms 

whose crystalline structure exhibits soft phonon modes. Our choice was Au atoms. We 

believe this choice is a feasible one, because it is known to form the commensurate 

overlayer structure on Mo(112) [15,16] preserving the anisotropy of the system besides 

(possibly) inducing the softer phonon modes. Thus, based on the above logic, the system 

for the investigations in this study is Au/Mo(112). The goals of our studies are to 

quantitatively characterize the electron-phonon coupling (and other many-body 

interactions) of Au/Mo(112), to identify the possible existence of structural phase 

transitions, and ultimately to unveil the fundamental mechanisms by which the two 

phenomena are interlinked.    

In elucidating the complex many-body interactions in Au/Mo(112), particularly 

the electron-phonon coupling, angle-resolved photoemission spectroscopy (ARPES) is 

considered one of the premier tools, as it directly extracts the electronic band structures 

of solids as well as the single-particle excitation spectra [17-19]. When ARPES spectra 

are combined with density functional theory (DFT) calculations of the electronic band 

structure and Eliashberg function [20], it becomes possible to characterize the nature of 

electron-phonon coupling in Au/Mo(112) and other many-body interactions in the solids 

with great accuracy. Another attracting feature of ARPES is its capability of providing 

the experimental images of the Fermi surface of solids, which yields critical insights into 

the nesting conditions in solids and hence the ‘effectiveness’ of electron-phonon coupling 
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in driving the structural instability. Thus, ARPES is our natural choice of experimental 

probe to investigate the many-body interactions in Au/Mo(112). In search for the surface 

structural instability, a natural choice of experimental technique is low energy electron 

diffraction (LEED), which is surface-sensitive and capable to characterizing the static as 

well as the dynamic properties of the surfaces and overlayers. Utilizing the 

abovementioned experimental and theoretical techniques, we now start to explore the 

many-body interactions and the fundamental mechanisms of structural phase transitions 

on Au/Mo(112).  
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Chapter 2 
 Photoemission spectroscopy 

 
 

2.1: Basic principles of photoemission 
 
2.1.1 Fermi’s golden rule 

 
In photoemission process, the incident electromagnetic wave (or in the language 

of second quantization, the photon) imposes a harmonic time-dependent perturbation to 

the system of electrons in the solid. Therefore, the photoemission transition rate is given 

by the Fermi’s golden rule: 

w = 2π Ψ f Δ Ψ i

2
δ(Ef −Ei −ω) ,                                                      (2.1)

 

 
where w is the transition probability from the initial state Ψi to final state Ψf per unit time 

(i.e., transition rate) and ∆ is the perturbation operator due to the incident electromagnetic 

field (note that in this treatment of photoemission, the electromagnetic field is not 

quantized and thus the vector potential A of the incident electromagnetic wave is just the 

vector A(r), not an operator). In the photoemission experiment, the intensity of signal into 

the detector is determined by the photocurrent I, proportional to w (or equivalently, the 

square of the matrix element). The above expression is exact up to the 1st order in the 

time-dependent perturbation. Therefore if we know everything about the initial and final 

states (Ψi and Ψf ), we can calculate the transition probability and the corresponding 

photoemission current (the photoelectron current out of our sample), and we know 

everything about the photoemission process (Δ can be determined fairly accurately). 

However, in reality, the situation is not that simple. The wave functions, Ψi and Ψf , for 

the initial and final states are enormously complicated by the fact that there are ~1023 
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electrons and ions in the real solid and they are all mutually interacting with each other. 

In fact, the most complex system for which we can solve the many-body Schrodinger 

equation exactly is hydrogen molecular ion (H2
+). Anything more complex than H2

+ is 

impossible to solve analytically.  

 

2.1.2: Photoemission Perturbation Hamiltonian 
 
In order to evaluate the transition rate w, we first write the total Hamiltonian of 

the crystal system in the presence of external electromagnetic field. 

,                                           (2.2)

 

 
where A = A(r, t) is the vector potential of external electromagnetic field and U is the 

crystal potential. The perturbation Hamiltonian H’(t) can be identified as: 

.                                                    (2.3)
 

 
We first simplify the above expression by ignoring the term with A·A, which is usually 

small compared to the p·A terms (in the view of second quantization, this small term 

corresponds to two-photon absorption). Then, 

.                                                                         (2.4)
 

 
Now, we rewrite the first term in a simpler form (note that this is not an approximation). 

But, since p is an operator, we must be careful in doing this. Thus, we look at how p·A 

operates on the test function f = f(r). 

 

€ 

H =
1
2m

p +
eA
c

" 

# 
$ 

% 

& 
' 
2

− eU − eφ

=
p2

2m
− eU +

e
2mc

p⋅ A + A⋅ p( ) +
e2

2mc 2
A⋅ A − eφ

€ 

H '(t) =
e
2mc

p⋅ A + A⋅ p( ) +
e2

2mc 2
A⋅ A − eφ

€ 

H '(t) =
e
2mc

p⋅ A + A⋅ p( ) − eφ
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.                                                    (2.5) 
 
If we use the Coulomb gauge for which , we have 
 

,                                                                       (2.6) 

 
which means the momentum operator p and vector potential A commute (note this is true 

only because A is not an operator). If we further take the gauge for which φ = 0 (which is 

always possible), we finally have 

 
          

 ,                                                                                  (2.7)
 

 
and the time-independent part Δ is identified as 
 

.                                                                                            (2.8)
 

 
Note that the above derivation is essentially exact for H’(t) and Δ up to this point (in the 

case of classical field as opposed to quantized field for A). Now, we make our first 

approximation to the vector field A.  

.                                                                                      (2.9) 
  
Thus, we are assuming the vector field A, and hence the electromagnetic field, is constant 

in space. This is called electric dipole approximation (or simply dipole approximation) 

Thus, within the dipole approximation, Δ is given by 

 ,                                                                                                 (2.10)
 

 
where A0 is the amplitude of the vector field (= constant). We now have the ingredients to 

describe the photoemission as soon as the initial and final states (Ψi and Ψf ) are given. 

€ 

p⋅ Af (r) = −i∇⋅ (Af ) = −i f (∇⋅ A) + A⋅ ∇f[ ]

€ 

∇⋅ A = 0

€ 

p⋅ Af (r) = −i A⋅ ∇f[ ] = A⋅ pf (r)
⇒ p⋅ A = A⋅ p

€ 

H '(t) =
e
mc

A⋅ p

€ 

=
e
mc

A0e
i(k⋅r−ωt )⋅ p

€ 

Δ =
e
mc

A0 ⋅ p( )eik⋅r

  

€ 

eik⋅r =1+ ik⋅ r + ≈1

€ 

Δ =
e
mc

A0 ⋅ p
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2.1.3 Validity of dipole approximation 

The physical interpretation of dipole approximation is that the electromagnetic 

wave is approximated by spatially constant electric field oscillating in time (with no 

magnetic field at all). This may seem a crude approximation. However, for the 

photoemission with ultraviolet light, which is utilized in this study, the wavelength of 

electromagnetic wave (~1000 Å) is much larger than the interatomic distance (~1 Å) of 

most crystals and therefore, the assumption of spatially constant electric field is a good 

approximation.  Furthermore, since the magnetic field only couples to the spin magnetic 

moment of electrons that is small (for the purpose of describing photoemission process), 

the contribution of magnetic dipole term to the photoemission matrix element is 

negligible in the ultraviolet region.  

 

 
2.1.4 What does photoemission spectroscopy measure? 
 
 In order to correctly interpret the photoemission spectra, it is important to 

understand the photoemission transition rate with account for the many-body nature of 

the system (system of ~1023 electrons and ions). As mentioned earlier, the photoemission 

transition rate is given by 

 w = 2π Ψ f Δ Ψ i

2
δ(Ef −Ei −ω) .                                                      (2.1) 

 
Note that this expression makes no reference to whether the state vectors are of single 

particle or many-particle system. Thus, we consider the system of N electrons and assume 

that N-electron initial state  with energy Ei can be decomposed into two parts; the 

€ 

Ψi
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state of single electron, which is to be photoemitted , and the state of remaining N - 1 

electrons . Thus, the initial state can be written as 

,                                                                 (2.11) 
 
where C is the operator that anti-symmetrizes the entire wave function. The final state 

can be similarly decomposed into the states of photoemitted electron with kinetic energy 

Ekin and the remaining N - 1 electrons and we can write 

.                                                                 (2.12) 
  
Thus the photoemission matrix element is written as 
 

 .            (2.13) 
 
The above expression tells us that the photoemission matrix element consists of single-

electron matrix element and the overlap integral. The overlap integral is nothing but the 

projection of initial N-1 electron state onto the final N-1 electron state, and thus tells us 

how much the initial and final state wave functions overlap (more the overlap, larger the 

overlap integral). In general, the initial and final N-1 electron states will be different 

because of the excitation caused by the removal (photoemission) of one electron. Thus, 

the final N-1 electron states is written as the superposition of the energy eigenstates of an 

appropriate Hamiltonian, 

 
Ψ f

N−1 = as
s
∑ Ψ s

N−1

.                      (2.14) 
  
Thus, the transition rate can be written as 
 

w = 2π φ f Δ φi
2

Ψ s
N−1 Ψ i

N−1 2

s
∑ δ(Ef +EN−1 −EN −ω)

.                (2.15)
 

If we take into account the finite temperature effect, we obtain 

€ 

φi

€ 

Ψi
N −1

€ 

Ψi = C φi Ψi
N −1

€ 

Ψf = C φ f Ψf
N −1

€ 

Ψf Δ Ψi = Ψf
N −1 φ f C

*[ ]Δ C φi Ψi
N −1[ ] = φ f Δ φi Ψf

N −1 Ψi
N −1
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w = 2π φ f Δ φi
2 1
Z

Ψ s
N−1 Ψ i

N−1 2

s
∑ e−βENδ(Ef +EN−1 −EN −ω)

,               (2.16)
 

 
where Z is the partition function. 

In order to understand the meaning of the transition rate, we introduce so-called 

single-particle Green’s function for the many-electron system 

 
G(k, t) = −iθ(t) ck,t,c

+
k,0

"# $%+ ,                                                     (2.17)
 

 
where the ck,t and c+k,0 are the annihilation operator for electron with momentum k at time 

t and the creation operator for electron with the same momentum k at time 0, respectively. 

The square bracket denotes the anti-commutator and ...  denotes the thermal average. 

Roughly speaking, the above Green’s function represents the probability that if the 

electron with momentum k is added to the system at time 0, the system is found still with 

added electron with k at later time t. If we represent this Green’s function in the complete 

basis of the total Hamiltonian H, then we have 

 

G(k, t) = iθ(t) 1
Z

ei(En−Em )t n ck,t m m c+k,0 n (e
−βEn + e−βEm )

n
∑

,    (2.18)
 

  
where the partition function Z and Boltzmann factors e−βEi  account for the finite 

temperature. If we transform the Green’s function from time domain to frequency domain 

(with complex frequency to ensure the convergence), 

 
G(k,ω) = ei(ω+iδ )t∫ G(k, t)dt

           = 1
Z

n ck,t m m c+k,0 n
e−βEn + e−βEm

ω +En −Em + iδn
∑

,                            (2.19)
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where δ is a positive infinitesimal. Given the Green’s function, its imaginary part 

contains very important information about how the many-electron system responds to the 

addition or removal of one electron.  

A(k,ω) = − 1
π

ImG(k,ω)

           = 1
Z

n ck,t m m c+k,0 n e−βEn + e−βEm( )δ(ω +En −Em )
n
∑

           = 1+ e−βω

Z
n ck,t m

2
e−βEmδ(ω +En −Em )

n
∑

.

               (2.20) 

 
This function, called the spectral function, is nothing but the sum of all the probabilities 

(or matrix elements) of transitions from the initial many-electron state m  to the final 

many-electron state n  during which the removal of electron with momentum k and 

energy ω occurs. Note that the partition function and Boltzmann factor appears as 

weighting factors to account for the finite temperature. Thus, the spectral function A(ω, k) 

describes the single-particle excitation spectrum of many-electron system as a function of 

energy and momentum. 

 At this point, the similarities between the expression for the photoemission 

transition rate and the spectral function can be identified. In fact, if A(ω, k) is multiplied 

by the Fermi function 1/ (1+ e−βω ) , we obtain 

w = 2π φ f Δ φi
2
f (ω,T )A(ω,k)

                                          (2.21)
 

 
Thus, in principle, the photoemission spectroscopy measures the single-particle spectral 

function (or equivalently the excitation spectrum of removal of one electron (or creation 

of a hole)). 
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2.1.5 General form of spectral function 
 
 It can be shown that the single-particle Green’s function introduced above can 

always be written in the form: 

G(k,ω) = 1
ω −ξ (k)−Σ(k,ω)+ iδ ,                                                    (2.22)

 

 
where ξ(k) is the eigenvalue of the Hamiltonian that is bilinear in creation and 

annihilation operators (such as free electron Hamiltonian), and Σ(ω, k) = ΣR(ω, k) + iΣI(ω, 

k) is so-called self-energy which can be considered as (complex) energy correction to 

ξ(k), which arises from the perturbative terms in the Hamiltonian that is not bilinear in 

creation and annihilation operators. Thus, taking the imaginary part of this Green’s 

function, the general form of spectral function can be written as  

A(k,ω) = − 1
π

ΣI (k,ω)
ω −ξ (k)−ΣR (k,ω)[ ]2 +ΣI (k,ω)

2

.                            (2.23)
 

 
Note that the small imaginary part δ has been absorbed into ΣI. When the spectral 

function is written in this form with the introduction of self-energy, it can be given a 

rather clear interpretation. Evidently the spectral function is a peaked function in k as 

well as in ω. In the absence of many-body interaction (i.e., when the Hamiltonian is 

bilinear), the self-energy vanishes and the spectral function is a delta function peaked at 

ξ(k) (in the limit Σ ! 0). For electrons, such spectral function gives the picture of their 

energy band structure in the absence of interactions. When many-body interactions are 

turned on (irrespective of the nature of the interactions), generally the self-energy 

becomes finite. According to the above general expression for the spectral function, it can 
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be seen that the real part of self-energy shifts the peak of the spectral function and the 

imaginary part gives rise to the finite width.         

 
 
 
2.2 Angle-resolved photoemission spectroscopy 
 

2.2.1 Band structure mapping 
 
 
 As introduced above, photoemission spectroscopy, in principle, measures the 

spectral function and hence can be used to extract the electronic band structure, as well as 

the nature of the many-body interactions in solids in E(k) space (via the analysis of self-

energy). In this section, we describe how the experiments are carried out in practice and 

how the acquired photoemission spectra can be interpreted in terms of spectral function. 

Figure 2.1 shows the common setup of photoemission experiment. There are several 

types of photon sources available today, including gas discharge lamp, X-ray tube, 

synchrotron light source, and more recently, laser light source. Discharge lamps filled 

with noble gas (such as He, Kr and Xe) can be used as a source of monochromatic light 

with the frequency given by the energy difference of atomic energy levels. Synchrotron 

radiation light can also be utilized as a photon source. Synchrotron light sources have 

several advantages over discharge lamps. First, the frequency (or energy) of the photon 

can be tuned within the wide range, which allows the access to wider range of 

information than when utilizing the discharge lamps. Second, the synchrotron light is 

highly plane-polarized, and thus depending on the orientation of the light polarization 

with respect to the sample surface, yields different information. Such polarization 
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dependence can be utilized, for example, to infer the symmetry of the electronic states 

under investigation as will be discussed below. 

 As the photon impinges on the sample surface and the photoelectrons are ejected, 

photoelectron analyzer collects those electrons within certain solid angle and measures 

their kinetic energies. The schematic representation of the relations between the 

electronic states in solid and photoemission spectrum is shown in Figure 2.2.        

 

 
Figure 2.1: A common setup of photoemission experiment. The photons are incident on 
the sample within the xz-plane and excite the electrons (photoelectrons) from the sample. 
The energy analyzer detects the kinetic energy of the photoelectrons leaving at an angle 
(θ, ϕ) with θ measured relative to the surface-normal of the sample and ϕ measured 
relative to the x-axis. 
 
 
If we tentatively assume that the creation of the hole will not give a rise to any relaxation 

of the remaining N-1 electrons (i.e., the initial N-1 electron state is the same as final N-1 

electron state, called frozen orbital approximation), then the kinetic energy (Ekin) of 

photoelectrons are given by 

Ekin = hν −Φ−Ebin  ,                                                                            (2.24) 
 
where hν  is the photon energy, Φ is the work function (i.e., potential “step” at the solid-

vacuum interface) and Ebin is the binding energy of the initial electronic state. Thus, 
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collecting the photoelectrons as a function of the measured kinetic energy can roughly be 

thought to represent a “copy” of the electronic distribution in solid as a function of 

energy. Of course, this view is an oversimplification. As seen in Figure 2.2 (e.g. for the 

core levels), the sharp peaks of energy levels (in frozen orbital approximation) are 

broadened in the photoemission spectrum, which is obviously an artifact of the 

experiment. Although there are many mechanisms causing such broadening due to the 

experiment (finite width of photon energy, inelastic scattering of photoelectrons within 

the sample etc.), it is important to note that the photoelectron detection process itself 

contributes to the broadening (i.e., finite instrumental resolution). Therefore, in the 

attempt of extracting the band structure (or the spectral function) of the solid, it is 

desirable to use the detector with as high-resolution as possible. That is, the smaller 

artificial broadening in the photoemission spectrum. After all, that is essentially the only 

thing we can directly control.   

 Up to this point, the discussion was limited to the photoemission spectra taken for 

the photoelectrons leaving the sample surface at fixed angle (particularly for θ, ϕ = 0), 

which gives the electronic structure as a function of energy at certain point in the 

Brillouin zone. It is, of course, possible to collect the photoelectrons leaving the sample 

at various non-zero angles (θ, ϕ). The initial states of those electrons (i.e., the state from 

which the electron was photoemitted) generally have finite momentum parallel to the 

sample surface (away from the surface Brillouin zone center).  Figure 2.3 shows, as an 

example, the bulk Brillouin zone of fcc crystal and the projected surface Brillouin zone 

for its (110) surface. For any given angle (θ, ϕ) and photon energy, the photoemission 

probes the electronic structure of certain k-point according to the momentum 
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conservation. Since in the direction parallel to sample surface, the potential has 

translational invariance within and outside the crystal (of course, within the crystal, the 

translational invariance is discrete), the surface-parallel momentum is conserved up to the 

crystal momentum: 

k f || = ki|| +G  ,                                                                                                     (2.25) 
 
where G is an appropriate reciprocal lattice vector.  On the other hand, the momentum 

perpendicular to the sample is generally not conserved due to the presence of the 

potential “step” at the solid-vacuum interface, called inner potential V0. Thus, the direct 

determination of the wave vector in initial state (ki) can be done only for the k|| 

components and they can be related to the photoemission angles (θ, ϕ) by 

k|| =
kx
ky

!

"

#
#

$

%

&
&
= 2mEkin sinθ

cosϕ
sinϕ

!

"
#
#

$

%
&
&

 .                                                             (2.26)

 

 
Therefore, measuring the photoemission spectrum at many different angles of emission 

allows for the determination of the electronic band structure in E(k||) space. 

 

 
2.2.2 Surface states and bulk states   

 
 The electronic states of solids can be classified into three categories according to 

the spatial extent of their wave functions, namely (a) bulk state, (b) surface state, and (c) 

surface resonance state. Bulk states are the three-dimensional Bloch state whose wave 

function is appreciable throughout the crystal and is characterized by k|| (kx, ky) and k⊥ (kz) 

and other quantum numbers such as spin. On the other hand the surface state is localized 

near the surface of the crystal and its wave function decays exponentially into the bulk. 
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Thus, for surface state, k⊥ is not a good quantum number and hence the state is 

characterized solely by k|| and their electronic band structure is completely determined in 

E(k||) space within the two-dimensional SBZ. Therefore, ARPES can be used to extract 

the entire band structure of surface states at a fixed photon energy. In contrast, since bulk 

state resides in the three-dimensional BZ, the indeterminacy of k⊥ can pose a problem in 

identifying the initial state in BZ. However, if we assume that the photoemission final 

state is that of free electron, then with the reasonable estimate of the inner potential V0, 

the k⊥ of the initial state can be roughly calculated from 

Ekin +V0 =
k||
2 + k⊥

2

2m .                                                                            (2.27)
 

 
Thus, under certain reasonable approximations, ARPES allows us to extract the surface 

as well as bulk electronic band structures of materials.     

 
 

2.2.3 Selection rules 
 
 As in equation (2.21), the photoemission transition rate is weighted with the 

single-electron matrix element φ f Δ φi
2
. Although the direct calculations of these 

matrix elements require considerable computational effort, the symmetry of the problem 

can be used to predict when the matrix element vanishes (i.e., for what initial/final states 

the transition is forbidden). The selection rules for photoemission (and, in fact, any other 

transition) can be derived from the symmetries of the initial state, final state, and 

photoemission perturbation operator (or appropriate operator pertinent to the problem). 

Since the initial state is a Bloch state in the crystal, its symmetry is determined by the 

symmetry of the crystal. For example, if we are probing the surface state on (110) surface 
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of fcc crystal at k|| = 0 (i.e., the state at Γ  in the surface Brillouin zone), the symmetry of 

the crystal surface is described by the group of C2v (Schoenflie’s notation), which 

consists of the following four symmetry operations: identity operation (E), π rotation (C2), 

and reflections about two axes (σv, σv’). Although all the four operations above leave the 

crystal structure invariant, they generally do not leave the wave functions invariant. 

Therefore, the wave function of the any electronic state can be classified according to 

how the wave function transforms under each of the operations in the pertinent group (the 

four operations of C2v group in the case of fcc(110) surface state). For the specific case of 

C2v group, there are four distinct categories: A1, A2, B1 and B2, and thus any surface state 

at Γ  on fcc(110) can be classified into one of these categories (called irreducible 

representations in the language of group theory) according to their transformation 

properties within the pertinent group. The irreducible representation is nothing but the set 

of matrices describing the transformation properties of the wave function. 

 In order to obtain the symmetry property of the photoemission perturbation 

operator Δ, it is customary to employ the dipole approximation. Then, it can be seen that 

Δ transforms as the vector parallel to the vector potential A. As for the symmetry property 

of final state, it is believed to be always the fully symmetric irreducible representation 

(i.e., the photoemission final state is invariant under all the symmetry operations that 

leave the system invariant). Now, given the transformation properties (i.e., the irreducible 

representations) for each of the ingredients in photoemission matrix element, the dipole 

selection rule (the decorative word “dipole” comes from the dipole approximation made 

here) can be derived. Taking the triple tensor product of irreducible representations to 

obtain the transformation property of φ f Δ φi will generally yield a ‘linear combination’ 
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of irreducible representations (or reducible representation). However, since the matrix 

element is a (complex) number, it is evident that it must transform as a number (i.e., 

invariant under all the symmetry operations). Thus, the general statement can be made on 

the selection rule of matrix element as, the matrix element must vanish unless it contains 

the fully symmetric irreducible representation, which gives the transformation property 

of scalar number.  

  It might seem, at this point, that the selection rule is merely an unwelcome 

restriction on the photoemission experiment because certain states will be invisible due to 

the symmetry restriction. However, proper understanding and utilization of the 

photoemission selection rules, in fact, can provide us with very useful information 

difficult to obtain otherwise. For the photoemission matrix element, since the 

transformation property of final state is fixed, by controlling the polarization direction of 

incident light (i.e., the transformation property of Δ), it is possible to ‘hide and show’ the 

states with certain symmetry. Observing at which light polarizations the certain state 

appear/disappear, we can obtain the information on the symmetry of the initial state. 

Furthermore, when probing the materials with complex electronic structure, it is often 

desirable to selectively view the electronic states, which allows us to avoid artificial 

overlap of the spectral intensities from different states with different symmetries. Thus, 

the photoemission selection rule is a powerful tool, which expands the capabilities of 

photoemission spectroscopy.     
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2.2.4 Fermi surface mapping 
 
 Another important utilization of photoemission spectroscopy is its capability to 

directly measure the Fermi surface of solid. This is achieved by measuring the spectral 

intensity within the small finite energy window about the Fermi level in small increments 

of emission angle (θ, ϕ). Since the electrons at the Fermi surface play an important role, 

for example, in transport properties, structural stability, as well as formation of charge 

density waves, an ability to obtain the Fermi surface mapping is one of most attracting 

features of ARPES.   

 
 

Figure 2.2: Schematic representation of electronic states in a solid (left) and the 
corresponding photoemission spectrum (right). The photon with energy hν impinges on 
the sample and excites the electrons. The electrons excited above the vacuum level (Evac) 
will gain finite kinetic energy. Note that the photoemission peaks gain the finite width 
due to the photoemission process (see text). Figure provided in courtesy of Dr. Eike F. 
Schwier. 
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Figure 2.3: Top: The bulk Brillouin zone of fcc crystal with the surface Brillouin zone of 
(110) surface (red rectangle) overlaid. The bulk electronic states in the vertical hatched 
slice can be observed by varying θ while fixing ϕ = 0, and those in the horizontal hatched 
slice can be observe by varying ϕ while fixing θ = 0. Bottom: The (110) surface Brillouin 
zone and the projected bulk Brillouin zone viewed along the <110> axis.    
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Chapter 3 
Low energy electron diffraction 

 
 

3.1 Reciprocal lattice and diffraction 
 
 Since the states of electrons in solid are labeled by their crystal momentum k (i.e., 

k is one of the good quantum numbers), it is important to understand the structure of the 

crystal in the reciprocal space (or k-space). When the real lattice (or direct lattice) is 

specified by the set of vectors R, its reciprocal lattice is defined as the set of all the wave 

vectors G such that 

eiG⋅R =1 .                                                                                          (3.1)  
 
In principle, the reciprocal lattice can be directly observed by diffraction measurements. 

If k is the wave vector of incident wave and k’ is the diffracted wave (here we assume the 

elastic scattering for which |k| = |k’|), it can be formally shown that the condition for the 

constructive interference is  

k − k '( ) ⋅R = 2πn                                                                                (3.2) 
 
or equivalently 
 

ei(k−k ')⋅R =1 ,                                                                                 (3.3) 
 
which gives, when compared to (3.1), 
 

G = k − k ' .                                                                                          (3.4) 
 
This is called the Laue condition (c.f., [1]), and thus by measuring the k’ (the diffracted 

beam) for which the diffraction intensity has maxima, the reciprocal lattice vectors G can 

be determined. Figure 3.1 shows the visualization of the Laue condition, called the Ewald 

construction. In reciprocal space, if we draw the sphere of radius |k| = |k’| (called the 
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Ewald sphere), then the diffraction peaks will be observed for the outgoing wave vector k’ 

that connect the reciprocal lattice point on the sphere and the center of the sphere (see 

Figure 3.1). There are many types of waves (beams) that can be utilized in the diffraction 

experiments, such as X-ray, neutrons, and electrons. Each of the beam sources has its 

advantages and disadvantages in characterizing the crystal structures in real and 

reciprocal spaces. Here, we focus on the low energy electrons as the probing means to 

identify the crystal structures at the surfaces.    

 

 
Figure 3.1: The Ewald construction in reciprocal space. Given the Ewald sphere, the 
diffraction peak will be observed for the outgoing wave vector k’ that connects the center 
of the sphere and the reciprocal lattice point on the surface of the sphere.   
 
 
 
3.2 LEED as a measure of surface structure 
 

In order to probe the crystal structures near the surface (as opposed to the bulk), it 

is critical to utilize the diffraction technique that is surface-sensitive, and not obscured by 

the bulk. Low energy electron diffraction (LEED) utilizes the incident electrons of the 

kinetic energy between 30-300 eV. Within this range of energy the electron’s mean free 

path is <10 Å [2], comparable to the lattice constant of most crystals. Although the mean 
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free path depends on the structure and the nature of the crystals, it has been shown 

experimentally that such dependence is rather small [3]. Thus, LEED is an ideal 

experimental technique to identify the surface structure of the crystals. Since the probing 

depth of LEED is limited to the topmost layer (or at most a few layers from the surface), 

the Laue condition for the surface-parallel direction dictates the diffraction condition, 

namely, 

G|| = k|| − k '|| ,                                                                                            (3.5)  
 

where k|| (k||’) denote the incident (outgoing) wave vector parallel to the crystal surface. In 

visualizing the Ewald construction for LEED, which reflects only the structural 

information within the limited slab thickness, we may imagine increasing the inter-slab 

distance in the direction perpendicular to the surface. In the limit as this inter-slab 

distance tends to infinity, the corresponding reciprocal lattice points becomes more and 

more densely spaced in the surface-normal direction and eventually form the reciprocal 

lattice “rods” lying parallel to the surface-normal. Therefore, in visualizing the diffraction 

condition for LEED, the Ewald sphere should be constructed as described above but the 

diffraction peak now appears for outgoing wave vector k’ that connects the center of the 

Ewald sphere with any point on the reciprocal lattice rods, as illustrated in Figure 3.2. Of 

course, this visualization is fully equivalent to the equation (3.5).     

LEED has numerous applications in characterizing the surface structures and 

surface phenomena (e.g., structural phase transitions etc.). In the present study, it is 

utilized to verify the surface cleanness (characterized by the sharpness of the LEED spot), 

adsorbate structures (as will be discussed), and to estimate the surface Debye temperature 

(sec. 3.3). Due to the surface-sensitivity of LEED, when foreign atoms adsorb on the 
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crystal surface, the LEED pattern can be affected as these atoms also serve as scattering 

centers in the diffraction. In particular if the adsorbed atoms form periodic structure, they 

give rise to extra diffraction spots. As an example, the LEED patterns for Mo(112) is 

shown in Figure 3.3a. When the certain number of oxygen atoms are adsorbed on 

Mo(112) surface, the LEED pattern shows additional spots midway between the original 

Mo-induced spots along 111  direction (indicated by thick arrows in Figure 3.3b). 

These spots are called superstructure spots and signify the formation of periodic structure 

on the Mo(112) surface. Since the reciprocal lattice points (i.e., LEED spots) reflect the 

periodicity of the structure, these superstructure spots which have half of the periodicity 

of Mo(112) spots in the 111  direction and the same periodicity in the 110  direction 

means that the oxygen atoms formed the structure with twice the periodicity in 111  

direction and the same periodicity in the 110  direction (relative to the Mo(112) 

substrate). Such overlayer structure is conventionally called (1x2) structure, where the 

first number (1) indicates the periodicity in 111  direction and the second number (2) 

indicates the periodicity in the 110  direction. Although the LEED patterns tell us the 

periodicity of the overlayer structure, it does not uniquely determine the structure itself. 

For this reason, other methods such as Auger electron spectroscopy (AES) etc. should be 

utilized to determine the amount of adorbate atoms in combination with LEED to fully 

determine the structure formed by the adsorbate atoms.  
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Figure 3.2: The Ewald construction for LEED. The diffraction peak is observed for any 
outgoing wave vector k’ that connects the center of the sphere and any point on the 
reciprocal lattice rod. 
 
 

 
Figure 3.3: (a) The LEED patterns for clean Mo(112). The crystallographic directions 
parallel to the surface are indicated with thin arrows. (b) The LEED pattern for 
O/Mo(112) at the nominal coverage of 0.5 monolayer, which shows (1x2) superstructure 
spots (two of them are indicated by thick arrows).   
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3.3 Surface Debye temperature 
 
 LEED is not only useful for obtaining the static properties of surface such as the 

lattice period, but also for determining its dynamic properties. In particular, in the present 

study, LEED is utilized to estimate the surface Debye temperature of Mo(112), which can 

roughly be obtained from the temperature dependence of the LEED spot intensities, as 

will be shown. The scattering of electrons from massive bodies (ions) can be described 

by the scattering amplitude 

 
A(k ',k)∝ e−ik '⋅ri ti (k ',k)e

ik⋅ri

i
∑  ,                                                        (3.6) 

 
where ri is position of i-th ion and ti(k’, k) is called t-matrix which describes the details of 

the scattering process from i-th ion. The complex exponential on the left (right) of t-

matrix describes the outgoing (incoming) wave with wave vector k’ (k). For the purpose 

of our discussion, the detailed scattering mechanism is irrelevant and we assume that t-

matrix does not depend on positions and the detailed properties of i-th ion and regard it as 

dependent only upon k and k’. In a naïve picture, we may assume for any given (k’, k), 

the t-matrix is chosen to be an appropriate constant t(k’, k) that best reproduces the 

scattering amplitude A in (3.6). If we now let ions move around its equilibrium position, 

the instantaneous position of i-th ion ri is defined as  

ri = Ri +Δri  ,                                                                                           (3.7) 
 
where Ri is the equilibrium position and Δri is the excursion from Ri. Then the scattering 

intensity is 

I(k ',k)∝ A(k ',k) 2 = t(k ',k) 2 eiΔk⋅ Ri−Rj( )eiΔk⋅ Δri−Δrj( )

ij
∑ .                              (3.8) 
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Now, since the time-scale of LEED measurement is much longer than that of the ionic 

motion in the crystal, the LEED spot intensity must be proportional to the time-averaged 

scattering intensity I(k ',k) . By noting that the last exponential is the only term that 

depends on time, we have 

I(k ',k) ∝ t(k ',k) 2 eiΔk⋅ Ri−Rj( ) eiΔk⋅ Δri−Δrj( )

ij
∑  .                              (3.9) 

If we now assume that the correlation between the motions of any two ions are weak or 

negligible (for justification, refer e.g., to sec. 5.9 on [2]), then  

eiΔk⋅ Δri−Δrj( ) ≈ eiΔk⋅Δri eiΔk⋅Δrj
.
                                         (3.10) 

 
If we further assume that the ions’ displacements are small, it can be expanded and 

approximated as 

eiΔk⋅Δri ≈ e
−12 Δk⋅Δri( )2  .                                                                (3.11) 

  
Note that the power series expansions of both sides in (3.11) are identical up to 2nd order. 

Therefore, the time-averaged scattering intensity (3.9) can be rewritten as 

I ∝ eiΔk⋅(Ri−Rj )
ij
∑ e

−
1
2
(Δk⋅Δri )

2

e
−
1
2
(Δk⋅Δrj )

2

= e− (Δk⋅Δr )
2

eiΔk⋅(Ri−Rj )
ij
∑

.                           (3.12)
 

 
Evidently, the Δr is the only temperature-dependent parameter. Thus, we expect the 

temperature-dependence of intensity I of any particular LEED spot to be described as 

I = I0e
−2W  .                                                                             (3.13) 

 
where I0 is the LEED spot intensity at the fixed reference temperature and W is called 

Debye-Waller factor: 
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W =
1
2
(Δk ⋅ Δr)2

.                                                                              (3.14)
 

 
This means that the LEED spot intensity is reduced exponentially by the mean-square 

displacement of ions. In order to extract the explicit temperature-dependence of W, the 

Debye model of phonons is conventionally employed, as it gives analytical solution. 

Using the Debye model of phonons, the Debye-Waller factor can be written, in the high 

temperature limit (T > ΘD), as 

W =
3
2
2 Δk( )2 T
mkBΘD                                                                             (3.15)

 

 
in 3-dimension, accounting for three polarizations of phonons, where m is the ion mass 

and ΘD is the Debye temperature. Therefore, under these assumptions, the LEED spot 

intensity decreases exponentially with increasing temperature and the decay factor 

directly relates to the Debye temperature of the material. Note that Debye temperature 

can be considered as the temperature scale for which the appreciable number of phonons 

are excited, or roughly speaking, the ‘stiffness’ of the lattice. This model is used in 

Chapter 9 to extract the Debye temperature of Au/Mo(112) overlayer from the observed 

exponential temperature-dependence of the LEED spot intensities. 
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Chapter 4 
 Sample preparations 

 
 

4.1 Cleaning of Mo(112) 
 
  In order to analyze the electronic structure and many-body interactions at the 

surface of Mo(112) and the interface of Au/Mo(112), the preparation of the atomically 

clean sample surface is critical. The Mo(112) sample with 99.99% purity with 

dimensions 7mm x 5mm x 1.5 mm was purchased from Princeton Scientific. It is known 

that Mo sample is contaminated mostly with carbon (C) and oxygen (O) at the surface 

and dissolved C within its bulk.  Removal of these impurities requires heating of the 

sample up to ~ 1800 °C [1-6]. Thus, in order to achieve the high-temperature, the method 

of high-voltage electron bombardment is employed. The preparation of clean Mo(112) 

sample is performed in the sample-preparation chamber at ultra-high vacuum (UHV) of 

base pressure of ~10-10 torr. The apparatuses for the electron bombardment consist of a 

sample holder made of Mo attached to the high-voltage supply, and the filament made of 

tungsten (W) which can be resistively heated. The amount of contaminations including C 

and O are monitored by Auger electron spectroscopy (AES) and the surface structural 

order is monitored by LEED.  

At the time of annealing and flashing of the Mo sample, the high-voltage between 

0.9 – 1.5 kV is applied to the Mo sample and the movable filament, located several 

millimeters from the backside (unpolished side) of the Mo sample, is heated to liberate 

the thermal electrons. The thermally emitted electrons are accelerated towards the Mo 

sample at the high-voltage, releasing the kinetic energy and thereby heating the Mo 

sample (bombardment). The temperature of the sample is continuously monitored by 
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infrared pyrometer. After degassing the sample, the UHV chamber is filled with oxygen 

atmosphere with the partial pressure of 10-6 – 10-8 torr and annealed at 1300 - 1450° C for 

at least 8 hours. This process removes most of C from the surface as well as some from 

the bulk. Although the prolonged annealing in oxygen atmosphere burns off C at the 

surface, it inevitably leaves oxygen at the surface. Thus, it is followed by flashing at 

~1800 °C or higher, which eliminates the residual oxygen. Unfortunately, at the 

temperature of the flashing to eliminate oxygen, some amount of dissolved C within the 

bulk of the Mo(112) sample comes to the surface due to surface segregation. Therefore, 

in order to eliminate both C and O from the Mo(112) sample, the process of repeated 

annealing (in oxygen atmosphere) and flashing is continued until the amount of C arising 

to the surface upon flashing is negligible (undetectable in AES). In conjunction with AES 

to confirm the removal of most contaminations, LEED is used to confirm the sharp spots 

and hence the surface structural order as shown in Figure 4.1 

 

 
Figure 4.1: Characterization of clean Mo(112) surface. (a) Sharp spots of LEED 
characterized the periodic structural order of the sample and (b) absence of most 
pronounced peaks of C and O in AES characterizes the adsorbate-free clean surface.   

 
 



 35 

 
 
4.2 Deposition of thin film Au 
 

Deposition of Au was performed by heating the spherical Au source (diameter ~2 

mm) below its melting point in front of the Mo(112) sample (physical vapor deposition). 

Since with a slow growth rate, Au is known to grow layer-by-layer on Mo(112) surface 

[6], the vapor pressure of Au and the distance between the Au source and the sample 

were adjusted so as to obtain sufficiently slow Au deposition rate as determined by the 

peak ratio of Mo and Au in AES spectra. Given the constant, slow deposition rate, the 

gradual growth of Au film in the submonolayer regime was monitored by observing the 

expected linear relation between the adsorbate coverage and Au peak intensity in AES [7] 

as well as the gradual formation of Au-derived superstructure spots in LEED. Near the 

completion of 1 ML coverage, the LEED was utilized to monitor and confirm the 

formation of 1 ML coverage, which is expected to show the sharp (1x1) structure 

following the disappearance of superstructure spots. 

Above 1 ML coverage, three distinct Au overlayer structures are observed; (2x1), 

(3x1), and (4x1) as shown in Figure 4.2. For each of these structures, the AES was 

utilized to estimate the Au coverage and the corresponding LEED patterns were utilized 

to characterize the overlayer periodicity and the structures at the room temperature (300 

K).        
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Figure 4.2: The surface structures and corresponding LEED patterns of Au/Mo(112) at 
the coverage of (a) 1 ML (1x1), (b) 1.5 ML (4x1), (c) 1.66 ML (3x1) and (d) 1.75 ML 
(4x1). The LEED images are taken at room temperature.  
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Chapter 5 
 Analysis of many-body interactions at metallic surfaces  

 
 
 
5.1 Quasiparticles and Fermi liquid theory 

 
It was described in Chapter 2 that photoemission spectroscopy measures the 

single-particle spectral function. The basic argument was that when a photon impinges on 

the surface of solid, it creates a hole in the occupied state and an electron in the 

unoccupied state (above the vacuum level).  Such process is called single-particle 

excitation. If the many-body system of the solid was non-interacting (e.g. the 

Hamiltonian is H = E(k)ck
+ckk

k
∑ ), then the Green’s function can be easily computed as  

 
G(k, t) = −iθ(t) ck,t,c

+
k,0

"# $%+

          = −iθ(t)e−iE (k )t ,                                                                  (5.1)
 

 
which, upon Fourier transform, gives 
 

 
G(k,ω) = ei(ω+iδ )t∫ G(k, t)dt

           = 1
ω −E(k)+ iδ ,                                                                  (5.2)

 

 
where δ is a positive infinitesimal. Then the spectral function for the non-interacting 

system is 

A(k,ω) = − 1
π
ImG(k,ω) = δ(ω −E(k)) ,                                                     (5.3) 

 
which is nonzero only at the excitation energy given by the non-interacting electronic 

band dispersion relation E(k). Above delta function for each k can be thought of as 

representing electrons (real particles) localized completely in the E(k) space. This is of 

course expected, because in the absence of interactions, the electrons will remain in their 
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eigenstates forever and their states are completely well defined. However, in reality, the 

many particles (not only electrons) in solids interact with one another. In such general 

and more correct case, the Hamiltonian governing the equation of motion for creation 

and annihilation operators of electrons is no longer bilinear, and the exact calculation of 

Green’s function as in (5.2) is not possible. Nevertheless, we have shown in chapter 2 

that general form of single-particle Green’s function as well as the corresponding spectral 

function can be derived. The general form of single-particle spectral function is 

 

A(ω,k;T ) = − 1
π

ΣI (ω,k;T )
ω −E(k)−ΣR (ω,k;T )[ ]2 +ΣI (ω,k;T )

2

.                  (5.4) 
     
Roughly speaking, we converted the problem of calculating the Green’s function to the 

problem of calculating the self-energy Σ(k, ω). In other words, all the many-body 

corrections to the simple delta function are now ‘stuffed’ into the self-energy. 

Unfortunately, full computation of self-energy is as difficult as the calculation of Green’s 

function itself. So, it may seem that we achieved very little. However, the beauty is that 

since the spectral function, in principle, can be directly observed in ARPES, casting the 

many-body problem of realistic solid into the determination of self-energy is a convenient 

conversion from the experimental point of view. It can be seen that the spectral function 

is a Lorentizan-like function with the peak given by 

  
ω −E(k)−ΣR (ω,k;T ) = 0 ,                                                                  (5.5) 

  
 
and the width (FWHM) given by 2ΣI (ω,k;T ) . 



 40 

Although the spectral function is still a peaked function, it is no longer identified as real 

particle (electron etc.), but rather as quasiparticle; it has the renormalized dispersion 

relation and the finite spread in the E(k) space. 

 The effects of the many-body interactions in solid are reflected in the self-energy, 

which, in turn, controls the shape of the spectral function. Thus, it is important to 

understand the physical meaning of the self-energy. First, in order to understand the 

imaginary part of the self-energy, we consider the following Green’s function.  

G(k, t) = −iθ(t)e−iE (k )te−t/τ ,                                                                  (5.6) 
 
which is nothing but the free-particle Green’s function with the decay parameter e−t/τ . 

The single-particle Green’s function represents the probability amplitude that if the 

particle is inserted into a certain state of the system, the system will be found in the same 

state at later time t. Thus, the decaying exponential will decrease such probability as a 

function of time, which is of course due to the interactions within the system. As the extra 

particle enters the system, the interaction with all the other particles will scatter this extra 

particle out of the ‘initial’ state within the given time scale τ. The corresponding spectral 

function can be written as 

 A(k,ω) = 1/ τ
ω −E(k)[ ]2 + (1 / τ )2

 ,                                                       (5.7) 

 
in which case the self-energy can be identified as 
 

ΣR = 0,  ΣI =1/ τ .                                                                              (5.8) 
 
Thus, the imaginary part is directly related to the temporal decay of the single-particle 

excitation. Such decay can be considered as the lifetime of the quasiparticle. On the other 
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hand, the real part of self-energy is seen to alter the single particle excitation energy. In 

the absence of interaction the excitation energy ω is given by 

ω = E(k) .                                                                                          (5.9) 
 
But, when the interaction is turned on and the real part is finite, the new dispersion 

relation is  

ω = E(k)+ΣR (ω,k) .                                                                            (5.10) 
 
Thus, the interaction can dress the real (or bare) particle and ‘changes’ its dispersion 

relation. In order to see the consequence of this change in the dispersion relation, we note 

that dispersion relation (whether it is the bare or the modified dispersion relation) can be 

expanded in linear order in k sufficiently close to the Fermi level. Therefore, the bare 

dispersion E(k) and the modified dispersion E(k) + ΣR(ω, k) can be written as 

E(k) ≈ kF
m

k − kF( )

E(k)+ΣR (ω,k) ≈
kF
m* k − kF( )

                                                     (5.11)

 

    
near the Fermi level, where m is the band mass of the particle and m* is the renormalized 

mass of the particle, which accounts for the change in the slope of the dispersion due to 

the many-body interactions. The band mass m and renormalized mass m* can be related 

by writing 

dω
dk

=
d
dk

E(k)+ΣR (ω,k)[ ] = dE(k)
dk

+
∂ΣR (k,ω)

∂k
+
∂ΣR (k,ω)

∂ω
dω
dk   .                   (5.12) 

 
Since dω/dk = kF/m* and dE/dk = kF/m, then we have 
 

m* =
1− ∂ΣR

∂ω

1+ m
kF
∂ΣR

∂k

$

%

&
&
&
&

'

(

)
)
)
)

m   .                                                                (5.13) 
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Thus, the real part of self-energy gives rise to the renormalization of the effective mass of 

the particle. Although the real and the imaginary part of self-energy have quite distinct 

physical interpretations, since the self-energy is a causal complex function, they must be 

related by the Kramers-Kronig relation 

ΣR (ω,k) =
1
π
P ΣI (ω ',k)

ω '−ω
dω

−∞

∞

∫
,                                                    (5.14) 

 
where P denotes the Cauchy principal value. 

In particular, for metals, the majority of the contributions to the self-energy come 

from electron-phonon coupling (Σ(e-p)), electron-electron coupling (Σ(e-e)), and electron-

impurity coupling (Σ(e-i)). The main focus on the current study will be on these three. 

Fortunately, the self-energies are additive, provided that the interaction mechanisms are 

independent, namely  

.                                                                           (5.15) 
     
 
 
 
 
5.2 Characterization of many-body interactions  
 

The central equation in the analysis of electron-phonon coupling as well as other 

many-body interactions is, again, the quasiparticle spectral function: 

 

A(ω,k;T ) = − 1
π

ΣI (ω,k;T )
ω −E(k)−ΣR (ω,k;T )[ ]2 +ΣI (ω,k;T )

2
.                  (5.4) 

 
Note that ΣI is an intrinsically negative quantity. From the experimental perspective, 

starting point is the observation of A(ω, k) by ARPES and the goal is to find the self-

energy associated with each interaction mechanism. By finding the bare particle 

Σ = Σ(e−p) +Σ(e−e) +Σ(e−i)
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dispersion relation E(k), it is possible to obtain the complex self-energy Σ(ω, k) from the 

observed spectral function, which characterizes the many-body interactions of the 

material in question. Of course, as (5.4) is a general expression, the experimentally 

extracted self-energy is a ‘mixture’ of electron-phonon coupling (Σ(e-p)), electron-electron 

coupling (Σ(e-e)), and electron-impurity coupling (Σ(e-i)). In identifying each of the three 

contributions in the experimentally extracted self-energy, the theoretically expected 

general features of each of Σ(e-p), Σ(e-e) and Σ(e-i) as well as the Kramers-Kronig relation 

(5.14) can be utilized. Besides the self-energy Σ, another quantity of interest is mass 

enhancement parameter at the Fermi level λ(k = kF; T), which is defined by the equation 

(5.13) assuming ∂Σ/∂k = 0 

 
 m* = 1+λ(kF;T )[ ]m ,                                        (5.16) 
 
where 
 

 λ(kF;T ) = −
∂ΣR (ω,kF;T )

∂ω ω=0

,                               (5.17) 

 
where m and m* are the ‘bare’ (or unrenormalized) band mass and the dressed (or 

renormalized) mass of the electron respectively.  

 Experimentally, there are two physically equivalent methods to extract the self-

energy from the observed spectral function. One method is to slice the ARPES spectrum 

at constant wavenumber k, which gives the sequence of energy distribution curves 

(EDCs) for each k. The other method is to slice the ARPES spectrum at constant energy, 

which gives the sequence of momentum distribution curves (MDCs). Although, in 

principle, both methods are equivalent, it is usually more advantageous to employ the 

MDC method. To see this point, it is important to note that a spectral function is not 
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precisely Lorentzian either in EDC or MDC due to the energy and momentum 

dependence of Σ as well as the functional dependence of E(k). However, the momentum 

dependence of Σ is generally much smaller than the energy dependence and, in fact, 

nearly negligible in the vicinity of single band (where the spectral function is 

appreciable). Furthermore, if we make the approximation E(k) = vk (i.e., linear 

dispersion), justified sufficiently close to EF (where v is the group velocity), then the 

MDC lineshape is in fact Lorentizan with the peak position (kpeak) and FWHM (Γ) given 

by 

kpeak (ω) =
1
v
ω −ΣR (ω)[ ]

Γ(ω) = − 2
v
ΣI (ω)

                               (5.18) 

 
for each MDC with fixed energy ω. Thus, MDC slices are generally expected to fit 

Lorentzian lineshape better than the EDC slices in the presence of many-body interaction, 

which allows for more accurate analysis of the spectral function and hence the associated 

self-energy. For this reason, in the present study, the MDC methods are employed to 

extract the peak position and the width of the lineshape, which directly relates to the real 

and imaginary part of Σ as in (5.18). In order to correctly extract the self-energy 

contribution from each of the coupling (interaction) mechanisms, it is critical to 

understand the general features of self-energy associated with electron-phonon, electron-

electron, and electron-impurity coupling.  

Electron-phonon coupling is the interaction between the phonon modes with the 

electrons in which the electron exchanges its energy and momentum with phonons. In the 

phonon absorption process, certain phonon is annihilated and gives the energy and 
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momentum to the electron, thereby scattering the electron out of the initial state. In the 

phonon emission process, the electron gives out certain amount of energy and momentum 

to create a phonon and gets scattered out of the initial state. Since the maximum 

excitation energy of phonon, characterized by Debye energy ωD, is small (ωD < 100 meV), 

it is intuitive that any structures in the self-energy Σ(e-p) should be limited within this 

small range near the Fermi level. In principle, the self-energy Σ(e-p) can be calculated from 

so-called Eliashberg function α2(ω, k)F(ω, k), where α2 is the electron-phonon coupling 

function (related to the electron-phonon coupling matrix element) and F is the k-resolved 

phonon density of states (or phonon band structure). Roughly speaking, the Eliashberg 

function can be considered as the electron-phonon coupling matrix element summed over 

the entire Fermi surface, taking into account all the possible electronic scattering with the 

absorption/emission of a phonon. Once the Eliashberg function is known, it is 

straightforward to calculate the imaginary part of self-energy using the equation 

ΣI
(e−p) (ω,k;T ) = −π α 2 (ω ',k)F(ω ',k)

0

∞

∫
                        × 1− f (ω −ω ';T )+ f (ω +ω ';T )+ 2n(ω ';T )[ ]dω '  ,

                  (5.19) 

 
where f and n are Fermi and Bose distribution functions respectively, and the real part of 

self-energy can be obtained using the Kramers-Kronig relation (5.13). If the bare particle 

dispersion relation E(k) is known, the spectral function can then be obtained. The 

difficulty is, of course, in calculating the Eliashberg function, which in most general case 

depends on energy ω as well as the wave vector k. The first-principle calculation of such 

ω- and k-dependent Eliashberg function is a formidable task and it is conventional to 

compute the Eliashberg function averaged over the entire Brillouin zone, so that it only 
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depends on ω (i.e., α2(ω)F(ω)). Mass enhancement parameter λ at zero-temperature can 

be obtained as the inverse moment of the Eliashberg function in energy as 

 

                      (5.20) 

 
 Electron-impurity coupling is the interaction between the electrons in the solids 

with the lattice defects or foreign atoms or anything that can break the perfect crystalinity 

(collectively called impurities). Such impurities can be though of as ‘external’ 

perturbation to the Hamiltonian of the perfect crystal and the electrons in the 

(unperturbed) eigenstates can be scattered out on some time scale (i.e., electrons acquire 

finite lifetime). It can be shown that if such impurities are randomly distributed in the 

crystal, electron-impurity coupling can give a rise to the imaginary part of self-energy 

that is independent of the excitation energy ω (i.e., Σ(e-i)
I = constant) (see for example ref. 

[1,2]). This means that, by virtue of the Kramers-Kronig relation, the real part of self-

energy due to the electron-impurity coupling Σ(e-i)
R must vanish. Thus, Σ(e-i) is purely 

imaginary and only gives rise to the broadening of the spectral function, but does not alter 

the electronic dispersion relation.  

 Electron-electron coupling is the interaction between the electrons in which the 

mutual scattering in and out of the electronic states occur due to the Coulomb interactions. 

As in the case of electron-phonon coupling, the self-energy due to electron-electron 

coupling Σ(e-e) strongly depends on the topology of the Fermi surface. However, in the 

simple case of the three-dimensional spherical Fermi surface, the imaginary part of self-

energy Σ(e-e)
I
 can be shown to be proportional to [(πkT)2 + ω2] and in the case of 

λ(T = 0) = α 2 (ω)F(ω)
ω

dω
0

∞

∫
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cylindrical Fermi surface, proportional to ω2|ln(ω)| at zero-temperature, both near the 

Fermi level [3,4].  

 Therefore, when equipped with the above knowledge of the interactions 

mechanisms and the general features of self-energy to be expected from each type of 

interactions, it is possible to give, at least within the range of few adjustable free 

parameters, quantitative interpretations for the observed self-energy in terms of electron-

phonon, electron-electron and electron-impurity couplings. 
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Chapter 6 
Electronic band structure of Mo(112)  

 
 

6.1 Motivation 
 

The surfaces of molybdenum are among the most studied in surface science, yet 

the detailed picture of their electronic structures as well as their many-body interactions 

remains incomplete. Surface states and surface resonance states in solids have a very long 

history [1-6] and the existence of surface resonance states was first verified for Mo(100) 

in 1977 [7,8], and subsequently characterized in more detail both theoretically and 

experimentally [9]. More recently, high-resolution angle-resolved photoemission 

spectroscopy (ARPES) made it possible to extract the detailed surface band structures as 

well as projected bulk band structures of solids, which has led to the elucidation of many-

body interactions and their effects on the electronic structure of molybdenum [10,11]. In 

particular, theoretically predicted small yet characteristic band renormalization and quasi-

particle lifetime effects due to electron-phonon coupling were first experimentally 

identified on Mo(110) in 1999, and were seen to be consistent, at least qualitatively, with 

the theoretical predictions [10].  

The detailed characterization of the surface band structures near the Fermi level is 

particularly important in evaluating the effects of electron-phonon coupling in any 

material, for such effect is most pronounced within the Debye energy ωD, which is about 

several tens of meV for transition metals. Electron-phonon coupling for the surfaces of 

molybdenum may provide insights into various kinds of surface structural phase 

transitions. In particular, the Mo(100) surface [12-19] is well known for the surface 

reconstructions driven by Peierls-like instability [20-24] that results from the surface 
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charge density wave transition due to the nesting of the Fermi surfaces. The Mo(112) 

surface, on the other hand, has a very anisotropic in-plane band structure [25-29] with 

strongly surface-weighted density of states. It is important to note that Mo(112) exhibits a 

significant surface relaxation, in which interlayer distances show large variations (e.g. 

>15% contraction for the first two layers from the surface) from the bulk-truncated value 

[28,30,31]. 

The surface charge density of the Mo(112) substrate is a significant factor in the 

formation of well ordered quasi-one-dimensional structures such as seen for Li/Mo(112) 

[32,33], Sr/Mo(112) [34-37], Ba/Mo(112) [38] and Gd/Mo(112) [39], where overlayer 

systems have, in common, very large lateral distances between the adjacent atomic chains, 

favorable for the quasi-one-dimensionality [40]. Yet to understand the rich physics of 

these ordered quasi-one-dimensional overlayers, the details of the Mo(112) band 

structure must be understood and thus drives us to re-examine the band structure of 

Mo(112) in far greater detail than before. 

 
6.2 Experimental details 
 
 The high-resolution angle-resolved photoemission spectroscopy (ARPES) was 

performed at the linear undulator beamline (BL-1) [41] of Hiroshima Synchrotron 

Radiation Center (HiSOR) at Hiroshima University, Japan. The surface of the Mo(112) 

sample was cleaned by the methods described in section 4.1 [25-28,42]. Low energy 

electron diffraction (LEED) and Auger electron spectroscopy (AES) were used to verify 

the quality of the Mo(112) surface, including the periodic structural order. The amount of 

surface contamination, such as C and O, were evaluated to be below the detection limit of 

the AES.  
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 The high-resolution ARPES spectra were taken along the two lines (  and 

) in the surface Brillouin zone (SBZ), schematically illustrated in Figure 6.1, with 

the s- and p-polarization geometries (with the electric field vector of the incident plane-

polarized light parallel to the surface and within the plane containing the surface normal 

respectively). The ARPES experiments were carried out using an angular (display) mode 

of the hemispherical electron analyzer (R4000, VG-Scienta) with the acceptance angle of 

±15°. The experimental band structure mapping was performed using multiple photon 

energies but with an emphasis on the incident photon energy of 22 eV. The energy 

resolution was estimated to be 10 meV and the angular resolution was 0.3°, 

corresponding to the wave vector resolution of 0.01±0.001 Å-1 at the Fermi level. The 

obtained ARPES spectra were not seen to be completely symmetric about  in the p-

polarization geometry, which likely derives from the small misalignment of the sample. 

In addition, the electromagnetic field component perpendicular to the surface may vary 

due to the presence of vacuum-solid interface, which may give a rise to nontrivial 

dependence of photoemission matrix element on photon incident angle [43-50], so that in 

photoemission from surfaces for p-polarized geometry, there could be some apparent 

variation in the band intensities measured as a function of wave vector. For this reason, 

we have taken the averaged experimental band mapping on the both sides of . Thus, 

Figure 6.2b and 6.2e represents the band structure along  integrated over a finite 

thickness in ky. The temperature of the sample was maintained at 50 K [51] by a constant 

flow of liquid helium. Throughout the discussion, the binding energies are referenced to 

the Fermi level, in terms of EF - E. 

Γ−X

Γ−Y

Γ

Γ

Γ−X
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Figure 5.1: The structure of Mo(112) in real space as well as in the reciprocal space. (a) 
shows the schematic of real space structure. (b) shows the LEED pattern with  
direction aligned vertically. (c) shows the surface Brillouin zone of Mo(112).    
 
 
 
6.3 Theoretical methodology 

 

In order to obtain a theoretical band structure to be compared with the ARPES 

band mapping, DFT semi-relativistic calculations in generalized gradient approximation 

(GGA) [52] were performed with the ABINIT [53] package using Troullier-Martins 

norm-conserving pseudopotentials [54] by Prof. Ivan N. Yakovkin at the National 

Academy of Sciences of Ukraine. The periodicity in the direction normal to the surface 

was maintained by adopting the repeat-slab model. The slabs were built of 7 layers of 

Mo(112) atomic planes. The vacuum gap was about 10 Å. The optimizations of the 

atomic positions were performed until all forces became less than 0.05 eV/Å. The energy 

cutoff of 20 Hartrees (Ha) and 8×5×1 Monkhorst-Pack set of special k points provided 

the 0.001 Ha convergence of the total energy. The band structure along the high 

symmetry lines in the SBZ was calculated with a small step (0.036 Å-1, corresponding to 

110
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33 k-points within the  line), which was found to be important to reveal the details 

of surface resonance bands in vicinity of EF. 

Surface weights for every band and k-point were estimated by integration of the 

partial local electron density within the atomic spheres (with r = 2.5 Bohr), using post-

processing tools of the ABINIT. As the next-to-surface atomic layer of the open Mo(112) 

surface can also be attributed to the surface, the surface resonances correspond to the 

localization of the wave function within the first two surface layers. Some surface-

derived states were found to be strongly localized in the top two surface layers (with 

weights of more than 90%), as discussed below. The symmetry of the surface bands was 

determined from the dominant partial weights of the states decomposed into spherical 

harmonics at the surface atoms.  

Additionally, the band structure calculations based on 9 and 13 layer thick slabs 

of Mo(112) were performed in order to minimize the possible misinterpretation of the 

computational artefacts of the of the 7-layer slab calculation. Although the 7-layer slab 

calculation should reproduce most essential features deriving from the surface, these 

additional calculations serve to distinguish the possible ‘artificial’ surface resonances (i.e., 

arising solely due to the limited slab thickness) from the real surface resonances.    

In order to further identify the ARPES spectral contribution from the pure bulk 

states, the projected bulk band structure calculations were performed by Dr. Tula R. 

Paudel at the University of Nebraska-Lincoln under the supervision of Prof. Evgeny Y. 

Tymbal. In these calculations, Mo unit cell was constructed such that two-dimensional 

Brilluoin zone matches the SBZ of Mo(112). Projector augmented-wave (PAW) [55] 

Perdew-Burke-Ernzerhof (PBE) [52] pseudopotential within the density functional theory 

X−Γ
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(DFT) band structure approach as implemented in VASP code [56,57] was utilized. The 

Mo 4p, 4d and 5s were treated as valence orbitals in the pseudopotential. The kinetic 

energy cutoff of 340 eV and 8x12x4 Monkhorst-Pack [58] k-points were taken for 

Brilluoin zone sampling.  

 
 
6.4 The band structure characterization of Mo(112) 
  

Utilization of linearly polarized light, as is available from synchrotron light 

sources, enables us to exploit the dipole selection rules for the photoemission process and 

allows us to clarify the symmetry properties of the electronic states in solids [59-61]. 

Although strictly peaking, Mo(112) is invariant only under the reflection about xz-plane 

(i.e., Mo(112) has C1h symmetry), it is observed that the similarity of the crystal structure 

under the reflection about yz-plane (near-symmetry) is enough to produce the strong 

polarization dependence in accord with the dipole selection rule for C2v structure (in 

which both reflection symmetries under xz- and yz-planes are present). Thus, for the 

discussion of symmetry of the electronic states of Mo(112), it is reasonable to assume 

that Mo(112) has a (near-) C2v symmetry. Under such assumption, the pertinent point 

group symmetry is C2v at  and C1h along the two high-symmetry directions 

(  and ). Since the final state of photoemission can be described by the plane 

wave traveling to the photoelectron analyzer, the photoelectrons in the final state 

transform as the fully symmetric representation in both groups of C2v and C1h. Under 

these assumptions, we may identify the symmetries of the initial states allowed to make a 

photoemission transition [59-61]. These allowed initial symmetries are summarized in 

Table 6.1 according to the directions of light polarization. Note that, throughout the 
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Γ−X Γ−Y



 54 

present discussion, the coordinate axes are defined so that the  direction (the  

direction in SBZ) coincides with x-axis and the  direction (the  direction in 

SBZ) coincides with y-axis. Since the direction of light incidence and photoelectron 

detection lie within the same plane (xz-plane for the spectra taken along the  

direction and yz-plane for the spectra taken along the  direction), the vector 

potential of incident light in the p-polarization (s-polarization) geometry lies in the xz-

plane (y-axis) for the spectra taken along the  direction and lies in yz-plane (x-axis) 

for the spectra taken along the  direction.  

 
 

High 
symmetry 

points 

Symmetry 
group 

Irreducible representations 
(Basis functions) 

Allowed initial symmetries 
A || x A || y A || z 

 C1h A’ (x, z, z2, xz, x2-y2), 
A” (y, xy, yz) 

A’ A” A’ 

 C1h A’ (y, z, z2, yz, x2-y2), 
A” (x, xy, xz) 

A” A’ A’ 

 C2v A1 (z, z2), A2 (xy), 
B1 (x, xz), B2 (y, yz) 

B1 B2 A1 

Table 6.1: The dipole selection rules for the electronic states at  points (C2v) and 
along the  and the  directions (C1h). The irreducible representations in each 
point group are listed in the third column with the representative basis functions in the 
parentheses. Allowed initial state symmetries in the photoemission are listed for each 
direction of incident light polarization determined by the vector potential A. The x-axis 
and y-axis are defined parallel to  and  respectively, and z-axis is along the 
surface normal direction. For the ARPES taken along the  direction, vector 
potential in the s-polarized geometry only has y-component and that of the p-polarized 
geometry has the mixture of x- and z-components. Similarly, for the ARPES taken along 
the  direction, vector potential in the s-polarized geometry only has x-component 
and that of the p-polarized geometry has the mixture of y- and z-components. The final 
state of photoemission is assumed to be described by a plane wave, which transforms as 
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the fully symmetric representations, A1 and A’, in both symmetry groups of C2v and C1h 
respectively. 
 

 
 

6.4.1 The band structure along the  direction 
  

While two bands have been observed to cross the Fermi level at 0.45±0.05 Å-1 

and 0.59±0.05 Å-1 along the  direction in ARPES [25,26,28], with the higher 

resolution and improved sensitivity of ARPES, three additional bands can now be 

observed and resolved crossing the Fermi level along the  direction, as seen in the 

experimental band structure in Figure 6.2. Figure 6.2b shows the ARPES band mapping 

taken along the  direction with the p-polarized geometry. Four bands are found to 

cross the Fermi level (labeled as p1, p2, p3, p4). The Fermi level crossings of the p1 and p2 

bands are identified to be 0.47 Å-1 and 0.60 Å-1 respectively and are consistent with the 

previously observed values [25,26,28]. The newly found bands, labeled as p3 and p4, are 

seen to cross the Fermi level at 0.64 Å-1 and 0.81 Å-1 respectively, as summarized in 

Table 6.2. It is known that for the electronic states along the  direction, the 

symmetry of the wave function can be classified either as even (A’ representation) or odd 

(A” representation) with respect to the reflection about xz-plane. Since the incident light 

polarization lies within xz-plane for the p-polarized geometry, the selection rule (Table 

6.1) reveals that the light can only excite the electrons from the states with even 

reflection-parity about xz-plane (A’). Thus, the four bands seen to cross the Fermi level in 

Figure 6.2b are experimentally identified as even states for the binding energies near the 

Fermi level.   
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 The result of the band structure calculation based on 7-layer slab model is shown 

in Figure 6.2a and the calculated surface weights (defined here as the charge localization 

within the first two layers) near the Fermi level for selected bands are summarized in 

Table 6.2. In Figure 6.2a, the states with noticeable surface weight are marked with blue 

symbols, and among those surface-weighted states, the clearly identified even states (A’) 

are marked with blue circles. The calculated band structure has been overlaid on the 

experimental ARPES band mapping, as shown in Figure 6.2c and the respectable 

quantitative agreement is obtained between the theoretical and experimental band 

structures except for the p3 band.  

Among the four bands experimentally observed crossing the Fermi level along the 

 direction, the band labeled p1 was found to exhibit noticeable photon energy 

dependence. Although this band (p1) is seen to cross the Fermi level at 0.47 Å-1 at the 

photon energy of 22 eV (Figure 6.2b), the Fermi level crossing of this band is found to be 

0.40 Å-1 at the photon energy of 50 eV and variously reported to be crossing the Fermi 

level with wave vectors as high as 0.54 Å-1 [11,28]. Such photon energy dependence 

indicates dispersion of the p1 band in k⊥ (the wave vector perpendicular to the surface) 

and suggests the bulk origin of the band. This identification is supported by the relatively 

small surface weight of 51% in the band structure calculation, as summarized in Table 

6.2. Figure 6.3b shows the projected bulk band structure along  direction in which 

the calculated band structures at 10 different k⊥ are overlaid. Since this calculation shows 

the high density of bulk bands that gives quantitative agreement with the p1 band in 

ARPES band mapping, it serves to further confirm the bulk band structure origin of the p1 

band.   

Γ−X
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The p2 band, with the Fermi level crossing at 0.60 Å-1 (experiment), was found to 

be sensitive to small amount of surface contamination (the intensity of this band was seen 

to vary while those of the other bands remained nearly constant). Such surface sensitivity 

of the p2 band most likely derives from the fact that it carries a strong surface weight 

(78% as shown in Table 6.2), and it can be seen in Figure 6.2c that the calculated position 

of the band as well as its Fermi level crossing (kF = 0.58 Å-1) are in a good agreement 

with the experiment. Since the projected bulk band calculation, shown in Figure 6.3b, 

indicates no bulk band that exhibits the dispersion of the p2 band in ARPES band 

mapping, evidently this band should not be identified as a bulk band. For these reasons, 

the p2 band must largely be surface in origin and should be identified either as a surface 

resonance or true surface state of the Mo(112) surface. The further theoretical analysis 

revealed that the dominant orbital contributions to this band are of dz
2 and dxz character, 

leading to the even reflection-parity of the wave function near the Fermi level, which is 

consistent with the visibility of this band in the p-polarized spectrum and the invisibility 

in the s-polarized spectrum (Figure 6.2e).  

The p3 band, with the Fermi level crossing at 0.64 Å-1 (experiment), is evident in 

the ARPES band mapping, but not reproduced in the band structure calculation based on 

7-layer slab model (Figure 6.2c). On the other hand, the projected bulk band structure 

calculation (Figure 6.3b) clearly shows the presence of the densely spaced bulk bands in 

qualitative agreement with the p3 band in observed in ARPES (Figure 6.2b) in terms of 

both the position and the dispersion. Therefore, the p3 band likely originates from the 

bulk band continuum.   
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The p4 band (Figure 6.2b), with the Fermi level crossing at 0.81 Å-1 (experiment), 

was also found to exhibit surface sensitivity in the experiment. On the other hand, the 

result of the band structure calculations based on 7-layer slab model suggest the existence 

of two closely spaced bands, labeled as p4 and p4’ in Figure 6.2a, with nearly equal 

significant surface weights (> 90%) with the Fermi level crossings at 0.82 and 0.88 Å-1 

(Table 6.2). These two bands (p4 and p4’) both exhibit the predominant dz
2 orbital 

character (i.e., even states), hence the expected visibility in the experimental band 

structure taken in the p-polarized geometry. This apparent discrepancy that the closely 

spaced double bands are not observed in ARPES is resolved by comparing the 

calculations based on the slab models of different thickness. Figure 6.3a shows the 

overlay of the calculated band structures using 7, 9 and 13-layer slab models. In this 

comparison, it is seen that the p4 band found in 7-layer slab calculation remains nearly 

unchanged as the slab thickness is increased, which is an evidence of surface localization 

of the p4 band. However, the wave vector position of the p4’ band is seen to be sensitive 

to the slab thickness, indicative of the greater bulk band structure attributes of the p4’ 

band. The calculated projected bulk band structure (Figure 6.3b) further verifies this 

assignment. It is evident in this calculation that the bulk bands exhibiting the dispersion 

similar to p4’ bands are present in the region of the p4 and p4’ bands. Thus, the 

comparison of the calculated band structures among the different slab thickness as well as 

the projected bulk band structure leads us to identify the p4’ band in 7-layer calculation 

(Figure 6.2a) as the band from the bulk continuum that appears near the p4 surface-

derived band. Furthermore, since the surface-derived p4 band lies within this bulk 
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continuum which shares the same symmetry with that of the p4 band, this band is likely 

identified as surface resonance, not the true surface band.  

Figure 6.2e shows the experimental ARPES band mapping taken along the  

direction with the s-polarized geometry. It is evident that the band structure acquired in 

the s-polarized geometry is significantly different from that taken with the p-polarized 

geometry. In Figure 6.2e, there is a distinct band (labeled as s1) with downward 

dispersion (towards greater binding energy) away from . Note that the s1 band loses 

most of its intensity between 0.5 eV and 1.2 eV. The results of the band structure 

calculation are shown in Figure 6.2d, where the states with noticeable surface weight are 

marked with blue symbols and the electronic states clearly identified as odd (A”) with 

respect to xz-plane are marked with blue triangles. The position of the Fermi level 

crossing for this band (s1) is in a respectable agreement with the calculation for the both 

parts (above 0.5 eV and below 1.2 eV) of this band, as seen in Figure 6.2f and Table 6.2. 

Since the incident light polarization lies along y-axis for the s-polarized geometry, by the 

selection rules (Table 6.1), the symmetry of this electronic state is identified to be odd 

under the reflection about xz-plane (A”). The strong photoemission intensity of this 

downward-dispersing band in the experimental band structure in the s-polarized geometry 

is in agreement with our expectations from the calculation (odd states are signified with 

blue triangles). We suggest that the s1 band originates mostly from the bulk state 

continuum above 0.5 eV, as the projected bulk band structure calculation also reproduces 

the bands with very similar dispersions and positions to those of the s1 band, as shown in 

Figure 6.3b.  On the other hand, the lower part (below 1.2 eV) of the s1 band should 

contain noticeable surface weight as it is only reproduced in the surface slab calculations 

Γ−X

Γ
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(Figure 6.3a), but not in the bulk calculation. The band structure calculation also predicts 

the existence of the shallow band crossing the Fermi level at 0.40 Å-1 and 0.62 Å-1, much 

like an electron pocket (labeled as s2 in Figure 6.2d). This band is predicted to be of odd 

reflection-parity (hence is expected to be visible only in the experimental band structure 

taken in the s-polarized geometry). The s2 electron pocket is likely observed as the 

“glowing” region in the experimental band structure obtained in the s-polarized geometry 

(Figure 6.2e). Although the 7-layer slab calculation indicates the discernable surface 

weight of this band (between 62% and 77% depending on the wave vector k||), we find in 

the comparison of 7, 9 and 13-layer slab calculations that the position of the band in wave 

vector k (but not its shape, that is to say the dispersion in E(k)) exhibits a noticeable 

dependence on the slab thickness as shown in Figure 6.3a. Furthermore, the projected 

bulk band calculation (Figure 6.3b) reproduced the bands of very similar characteristics 

(i.e., the electron-pocket-like bands between 0.4 Å-1 and 0.7 Å-1 that shifts vertically as a 

function of k⊥). Thus, it is likely that s2 band identified in ARPES band mapping and the 

7-layer slab calculation (Figure 6.2d,e) is part of the projection of a bulk band. It is 

worthwhile to note, at the same time, that the s2 band is predicted to exhibit fairly steep 

dispersion along k⊥, as can be seen from the large spacing among the s2 projected bulk 

bands in Figure 6.3c. Such steep dispersion in k⊥ direction may have caused the spread of 

ARPES intensity in the wide range, as seen Figure 6.2e.          
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Figure 6.2: The band structure of Mo(112) along the  direction. (a) shows the 
calculated band structure with the 7-layer slab model. The states with noticeable surface 
weight (more than 60% charge localization within the first two layers) are marked with 
blue symbols (!,") out of which circles (") represent the states of clearly identified 
even symmetry with respect to xz-plane (A’ representation). (b) shows the ARPES band 
mapping taken with the p-polarized geometry at the photon energy of 22 eV. (c) shows 
the comparison of the calculated band structure with the ARPES band mapping taken 
with the p-polarized geometry. (d) shows the calculated band structure (same as (a)) but 
with the clearly identified odd states with respect to xz-plane (A”) marked with blue 
triangles (!). (e) shows the ARPES band mapping taken with the s-polarized geometry 
at the photon energy of 22 eV. (f) shows the comparison of the calculated band structure 
with the ARPES band mapping taken with the s-polarized geometry. 
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Figure 6.3: (a) the overlay of the calculated band structures along  direction based 
on 7 (!), 9 (!) and 13 (!) layer slab models, which is expected to show the surface-
derived bands as well as some of the bulk bands. (b) the projected bulk band structure of 
Mo(112), which is composed of the band structures calculated along  direction (i.e., 
parallel to ) at 10 different k⊥. The bands identified in AREPS band mapping and 
calculated band structure based on 7-layer slab model (Figure 2) are labeled 
correspondingly.   
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Band Label kF (Å-1) 
experiment 

kF (Å-1) 
theory 

Surface Weight 

p1 0.47±0.01 0.48 51% 
p2 0.60±0.01 0.58 78% 
p3 0.64±0.01 - - 
p4 0.81±0.01 0.82 91% 
p4’ 0.81±0.01 0.88 90% 
s1 0.22±0.01 0.27 52% 
s2 ~ 0.4-0.5 0.40-0.62 62-77% 
y1 0.34±0.01 0.36 81% 

Table 6.2: The list of the bands crossing the Fermi level. The band labels are defined in 
the Figure 5.2 and 5.3. The 2nd and 3rd columns compare the Fermi wave vector for each 
band. The estimates of the surface weight (the percentage charge localization within the 
first two layers in the 7-monolayer model) near the Fermi level are listed for each band. 
Note that the experimentally observed p3 band is not unambiguously reproduced in the 
present calculation.  
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6.4.2 The band structure along the  direction 
 

Due to the large in-plane interatomic distance along the  direction (4.45 Å), 

the electronic band structure along the direction is expected to be much less 

dispersive than in the 111  direction (the  direction). This general tendency is 

evident in the experimental as well as in the calculated band structures, as shown in 

Figure 6.4. Along the  direction, we note that the vector potential of incident light 

in the p-polarized geometry lies within yz-plane and that of the s-polarized geometry lies 

along x-axis. This dictates the selection rule for the ARPES along the  direction, as 

summarized in Table 6.1.          

 Figure 6.4b shows the experimental band structure obtained along the  

direction with the p-polarized incident light geometry. The characteristic ‘crossing’ of the 

bands seen at k|| = 0.70 Å-1 and binding energy = 2.3 eV (2.4 eV in calculated band 

structure) experimentally places the edge of the surface Brillouin zone ( ) and is 

consistent with the value determined from the surface structure (0.706 Å-1). Of particular 

interest in the band structure along the  direction is the distinct parabolic band 

centered at , crossing the Fermi level at 0.34 Å-1 (labeled as y1). This band is only 

evident in the ARPES band mapping obtained in the p-polarized geometry, indicating 

that the y1 band is of even symmetry with respect to the yz-reflection (A’) away from  

and is of A1 or B2 symmetry at  (see Table 6.1). The calculated band structure, in 

Figure 6.4a (where again bands with significant surface weight are marked by blue 

symbols and even symmetry states are marked by blue circles), shows a good general 
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agreement with the experimental band structure as shown in Figure 6.4c. In particular, 

there is an excellent agreement for the y1 band in terms of dispersion, the placement of 

the Fermi level crossing (kF = 0.36 Å-1 in theory), as well as the reflection-parity away 

from  (i.e., calculated to be even as signified by the circles in Figure 6.4a). Furthermore, 

the band structure calculation reveals the predominant dz
2 orbital character and the 

noticeable surface weight (81%) for the y1 band near the Fermi level.  

 To further verify the surface or bulk origin and weight of the y1 band, band 

structure calculations based on different slab thickness as well as the projected bulk band 

structure calculations were performed and compared for  direction. Figure 6.5a 

shows the overlay of slab calculations based on 7, 9 and 13 layer models. The y1 band 

exhibits noticeable dependence on the slab thickness in the calculated band structure in 

terms of position and dispersion, an indication of bulk weight. On the other hand, the 

projected bulk band calculation, shown in Figure 6.5b, is not in good quantitative 

agreement with the y1 band observed in ARPES. The ARPES band mapping is not 

expected to give precise agreement with the bulk band structure mapped along the 

straight line in bulk Brillouin zone, because the “sampling depth” of k⊥ in ARPES varies 

with wave vector parallel to the surface for photoemission at single photon energy, but 

even with this consideration in mind, quantitative agreement between the ARPES and 

bulk band structure calculation is absent, particularly near the Fermi level. Such a 

discrepancy between experiment and theory may have arisen from two artificial effects of 

bulk and slab calculations that (1) the bulk calculation does not take into account any 

mixing of the states with surface-derived states, and (2) the present slab calculation does 

not properly include the mixing of the surface states with the bulk continuum for any 
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weak surface resonance that penetrates into bulk more than 13 layers. We tentatively 

suggest that the y1 band be identified as weakly surface weighted, particularly near the 

Fermi level (i.e., where the agreement between the bulk/slab calculations and ARPES is 

relatively poor).  

 Figure 6.4e shows the ARPES band mapping taken along the  direction 

with the s-polarized geometry. In this experimental band structure, there is no distinct 

band crossing the Fermi level. Although there is noticeable continuous spread of 

photoemission intensity, which resembles an hourglass shape between 0.3 and 0.4 Å-1 

near the Fermi level, this is likely a contribution from the projected bulk bands, as is 

suggested by comparison with the bulk band structure calculation in Figure 6.5b. As seen 

in Figure 6.4d and 6.4f, the band structure obtained by ARPES and the calculated band 

structure are in general agreement. The upward-dispersing band and the downward-

dispersing band that merge at  near 2.3 eV, in Figure 6.3f, are most likely projected 

bulk bands. These bands are reproduced in the projected bulk band structure calculation. 

Since these bulk bands are only distinct in the s-polarized spectrum, they are 

experimentally identified as of odd symmetry.              
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Figure 6.4: The band structure of Mo(112) along the  direction. (a) shows the 
calculated band structure with the 7-layer slab model. The states with noticeable surface 
weight (more than 60% charge localization within the first two layers) are marked with 
blue symbols (!,") out of which circles (") represent the states of clearly identified 
even symmetry with respect to yz-plane (A’ representation). (b) shows the ARPES band 
mapping taken with the p-polarized geometry at the photon energy of 22 eV. (c) shows 
the comparison of the calculated band structure with the ARPES band mapping taken 
with the p-polarized geometry. (d) shows the calculated band structure (same as (a)) but 
with the clearly identified odd states with respect to yz-plane (A”) marked with blue 
triangles (!). (e) shows the ARPES band mapping taken with the s-polarized geometry 

Γ−Y
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at the photon energy of 22 eV. (f) shows the comparison of the calculated band structure 
with the ARPES band mapping taken with the s-polarized geometry. 
 
 
 

 
Figure 6.5: (a) the overlay of the calculated band structures along  direction based 
on 7, 9 and 13-layer slab models, which is expected to show the surface-derived bands as 
well as some of the bulk bands. (b) the projected bulk band structure of Mo(112), which 
is composed of the band structures calculated along  direction (i.e., parallel to 

) at 10 different k⊥. The bands identified in AREPS band mapping and calculated 
band structure based on 7-layer slab model (Figure 6.4) are labeled correspondingly.   
 
 
 
 
 
6.4.3 The electronic states near  
 

There are number of distinct states observed near . Since the pertinent point 

group symmetry at  is C2v, the symmetry of the electronic states at this point can be 
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classified into A1, A2, B1 and B2 representations, as opposed to the even (A’) and odd 

(A”) classifications along the  and the  directions. The utilization of the 

photoemission selection rules (Table 6.1) allows us to clarify the symmetry properties of 

the electronic states at . Figure 6.6 shows the energy distribution curves (EDCs) of the 

photoemission spectra at  (integrated over ±0.01 Å-1) for the four distinct incident light 

polarizations (the polarization of vector potential A for each EDC is noted in the legend). 

The peak at around the binding energy of 1.0 eV is identified in the spectra (b) and (c) in 

which the light polarization lies within yz-plane and along y-axis respectively. The 

absence of this peak in the other two spectra is consistent and thus indicates that this state, 

at 1.0 eV binding energy near , is of B2 symmetry. It was previously reported that the 

position of this band exhibited noticeable periodic photon energy dependence in the range 

of 18-83 eV [25,26]. Since our band structure calculations show the relatively low 

surface weight of 56-67% (note that the surface weight of this band near the Fermi level 

is estimated to be 81% along ), this band at 1.0 eV binding energy near  is 

identified either as a projected bulk state or a surface resonance that is strongly 

hybridized with the bulk bands.  

There is another peak at 1.5 eV binding energy near , which is pronounced only 

in the spectra (a) and (b) of Figure 6.6. From the selection rules, this state is most likely 

of A1 symmetry character. In fact, this is consistent with the previously suggested 

symmetry of this state as inferred from the angular dependence of the photoemission 

intensity in the earlier study [26]. It was also reported that this state exhibited only weak, 

but discernable, photon energy dependence [26]. In fact our calculation identifies the 
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significant surface charge localization for this state (87-92%) and thus we suggest 

attributing the observed state, at a binding energy of 1.5 eV, to a surface resonance state. 

It is important to point out that the symmetry identification of the band at the 

binding energy of 1.0 eV at  (B2) requires that while the p2 band along  (Figure 

6.2a, 6.2b) and the y1 band along  (Figure 6.4a, 6.4b) both reach  at around 1.0 

eV binding energy, these two bands should not actually meet (or become degenerate) at 

, unless there is an accidental degeneracy. The reflection-parity of a B1 state is odd with 

respect to xz-plane, but even with respect to yz-plane. However, since the reflection-

parity of the p2 band is identified as even with respect to xz-plane, the symmetry of the p2 

band is incompatible with the state found at 1.0 eV binding energy. Thus, the state of B2 

symmetry found at , in Figure 6.6, must be attributed to the y1 band but not to the p2 

band. Therefore, the vanishingly small ARPES intensity of the p2 band near  cannot a 

priori be associated with photoemission selection rules.   

 
 
 

6.5 Summary 
 

The band structures along the two high-symmetry directions,  and , 

are shown to be significantly different, which is expected and serves to verify the strong 

anisotropy of the surface of Mo(112). By utilizing the light-polarization-dependence of 

ARPES spectra and the dipole selection rules, the symmetry character of some bands are 

identified and seen to be in good agreement with the expectations. Our study suggests the 

existence of at least two surface resonance bands along the  direction (with kF = 

0.59 Å-1 and 0.81 Å-1) and one along the  direction (with kF = 0.34 Å-1).  
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Figure 6.6: The energy distribution curves (photoemission intensity vs. binding energy) 
at for the four different incident light polarization geometry. The data are obtained by 
integrating the ARPES spectra in Figure 6.2 (b), (e) and Figure 6.3 (b), (e) over ±0.01 Å-1. 
The non-vanishing component(s) of vector potential A for the four incident light 
polarization geometries are; (a) x- and z-component (b) y-component, (c) y- and z-
component, (d) x-component.        
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Chapter 7 
Enhanced Electron-phonon Coupling on Au/Mo(112) 

 
 
 

7.1. Motivation 
 

Electron-phonon coupling is one of the most fundamental many-body interactions 

in solid state physics, which is essential for the proper description of normal properties of 

materials as well as critical phenomena in solids [1]. The former includes low-

temperature electronic heat capacity and finite electrical conductivity. The latter ranges 

from surface reconstructions to superconducting phase transitions [2,3]. Although the 

electron-phonon coupling is ubiquitous, due to the low excitation energy of phonons 

(typically <100 meV for metals), its effect on the electronic structure is most pronounced 

in the vicinity of Fermi level (EF). Therefore, the quantification of electron-phonon 

coupling is most readily realized in the metallic systems for which the excitation energy 

is, by definition, zero. 

The detailed experimental investigations of electron-phonon coupling utilizing 

high-resolution angle-resolved photoemission spectroscopy (ARPES) have become more 

common. Since the first direct experimental quantification of the electron-phonon 

coupling in Mo(110) [4], ARPES has been applied to various metals including Be(0001) 

[5-7], Cu(111), Ag(111), Au(111) [8-11], Fe(110) [12,13], Al(100) [8,14-16], and 

Mo(112) [17,18]. So far, the characterization of the electron-phonon coupling has been 

largely limited to clean, adsorbate-free systems and only a few studies have been devoted 

to the examinations of the electron-phonon coupling of adsorbate structures, such as 

H/W(110), for which a noticeable enhancement of the electron-phonon coupling is 

observed [19,20]. Yet, the adsorbate structures are known to exhibit various types of 
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interesting phenomena such as overlayer structural phase transitions, and thus, major 

insights in such adlayer phase transitions and its properties may be obtained from a 

quantitative characterization of the electron-phonon coupling in overlayer structures.  

 Mo(112) surface is known to exhibit highly anisotropic electronic structure [21] 

on which Au forms the commensurate atomic chains, as schematically illustrated in 

Figure 7.1a. At certain coverages of Au/Mo(112), order-disorder transitions of the Au 

chains have been observed [22], as will be discussed in the later chapter. Electron-phonon 

coupling may well play an important role in such overlayer instabilities and thus, our 

investigation of the electron-phonon coupling of Au/Mo(112) can serve as an important 

milestone in the study of such overlayer instability.    

 

7.2. Experimental details 

 

The high-resolution ARPES was performed at the linear undulator beamline (BL-

1) [23] of Hiroshima Synchrotron Radiation Center (HiSOR) at Hiroshima University, 

Japan. The surface of the Mo(112) sample was cleaned by the methods described in 

section 4.1 [21,24-28]. Low energy electron diffraction (LEED) and Auger electron 

spectroscopy (AES) were used to verify the quality of the Mo(112) surface. The amount 

of surface contamination, mainly C and O, were evaluated to be below the detection limit 

of the AES.  

Deposition of Au was performed by physical vapor evaporation of Au onto the 

Mo(112) sample by heating the Au source below the melting temperature. The Au growth 

rate was adjusted to be sufficiently slow to ensure the layer-by-layer growth on Mo(112) 
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surface up to the coverage of 1 monolayer (ML), for which the structure is illustrated in 

Figure 7.1a. The constant gradual growth of Au film within the submonolayer coverage 

was monitored by the linear relationship between the adsorbate coverage and Au peak 

intensity in AES [29]. At coverages near the completion of 1 ML, LEED was utilized to 

confirm the formation of the 1 ML 1x1 adlayer.        

 The high-resolution ARPES spectra were taken along the  line in 111  

direction in the surface Brillouin zone (SBZ), schematically illustrated in Figure 7.1b, 

with the s-polarization geometry (where the vector potential A of incident light is 

perpendicular to the detection plane, lying parallel to y-direction in Figure 7.1a) and p-

polarization geometries (where A lies within the detection plane or xz-plane in Figure 

7.1a). The ARPES experiments were carried out using the angular mode of the 

hemispherical electron analyzer (R4000, VG-Scienta). The experimental band structure 

mappings for the entire dimension along  line (Figure 7.2) were performed using 

the incident photon energy of = 22 eV with the analyzer acceptance angle of ±15° 

(Angular 30 mode). The energy resolution was estimated to be 10 meV and the angular 

resolution was ~0.9°, corresponding to the wave vector resolution of ~0.03 Å-1 at EF. The 

close-up of the surface resonance band near EF (Figure 7.3) was taken with the incident 

photon energy of = 22 eV with the analyzer acceptance angle of ±7° (Angular 14 

mode) with the estimated energy resolution of ~10 meV and the angular resolution of 

~0.2°, corresponding to a wave vector resolution of ~0.008 Å-1 at EF. The temperature of 

the sample was maintained at ~60 K by constant flow of liquid helium. Throughout the 

discussion, the binding energies are referenced to the Fermi level, in terms of EF - E.  
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Figure 7.1: The schematic illustration of Au/Mo(112) at the coverage of nominal 1 ML 
(a). The corresponding surface Brillouin zone is illustrated in (b) with the approximate 
dimensions along  and  lines. 
 

 

7.3. Theoretical methodology 

The DFT semirelativistic calculations in generalized gradient approximation 

(GGA) [30] were performed with the ABINIT [31] package using Troullier-Martins 

norm-conserving pseudopotentials [32] by Prof. Ivan N. Yakovkin at the National 

Academy of Sciences of Ukraine. The periodicity in the direction normal to the surface 

was maintained by adopting the repeat-slab model. The slabs were built of 7 layers of 

Mo(112) atomic planes with one Au layer on one side of the slab for the 1 ML 

Au/Mo(112) system. The vacuum gap was about 10 Å. The optimization of positions of 

atoms was performed until all forces became less than 0.05 eV/ Å. The energy cutoff of 

20 Ha (Hartrees) and 6×4×1 Monkhorst-Pack set of special k points provided the 0.001 

Ha convergence of the total energy. 

 Prof. Yakovkin has also provided the phonon band structure, phonon density of 

states, F(ω), and the Eliashberg function, α2F(ω), calculated by the response function 

method [33], implemented in the ABINIT set of programs [31]. The isotropic Eliashberg 

Γ−X Γ−Y
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function was obtained by averaging over the wave vectors ki and kf of initial and final 

states on the Fermi surface. Using the Eliashberg function, we calculated the real and 

imaginary parts of the self-energy due to the electron-phonon coupling, and compared 

with the experimental ones in Sec. 7.5. 

 

7.4. Electronic structure of Au/Mo(112) 

Prior to the investigation of the electron-phonon coupling of Au/Mo(112), its 

detailed electronic band structure near EF must be understood. This is crucial in two 

ways: (1) since the electron-phonon coupling parameters in bulk and in surface are 

generally different, the origin of the bands (that is to say the contributing weight is 

surface-derived, bulk-derived, or a surface resonance) should be clearly understood when 

the experimental results are to be compared to the ab initio calculation, (2) due to the 

finite resolution of ARPES, there arises, in some cases, overlap of the spectral intensities 

which can obscure the small renormalization of the electronic band dispersion [21]. 

Having the detailed picture of the band structure mapped by AREPS enables us to choose 

the appropriate band (not obscured by the band nearby) for the accurate characterization 

of the electron-phonon coupling parameters.    

 Figure 7.2a shows the experimental band structure of the clean Mo(112) substrate 

along the  line obtained by ARPES with the p-polarization geometry (after ref. 

[21]). Among the four bands seen to cross the Fermi level, the two bands with kF = 0.60 

and 0.81 Å-1 have been identified to be surface-derived, while the other two are projected 

bulk bands. As the surface of Mo(112) is covered by Au, the significant change in the 

band structure is observed. Figure 7.2b shows the experimental band structure of 

Γ−X
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Au/Mo(112) at the nominal Au coverage of 1 monolayer (1 ML) as schematically 

illustrated in Figure 7.1a. As is expected, the adsorption of Au monolayer results in the 

significant modification to the surface-derived bands of the Mo(112) substrate. While the 

surface band with kF = 0.81 Å-1 is shifted towards the edge of the SBZ at kF = 0.91 Å-1, 

the other surface-derived band of Mo(112) at kF = 0.60 Å-1 has disappeared from the 

ARPES spectrum. On the other hand, the bulk-derived bands are less affected upon Au 

adsorption. Although the projected Mo bulk band with kF = 0.47 Å-1 is slightly shifted 

and ARPES intensity diminishes within 0.5 eV from EF (relative to the rest portion of the 

band), the general features of dispersion remain unchanged. The dispersion of the other 

Mo bulk band with kF = 0.64 Å-1 is more significantly affected by the Au adsorption as 

can be seen from the ‘bending’ of the dispersion and the enhancement of the ARPES 

intensity near 0.8 eV. Thus, it is experimentally evident that the adsorption of Au 

monolayer results in modification of the band structure of Mo(112) not only for its 

surface-derived states but also for the projected bulk states.  

It is important to note that the modification of the surface potential induced by the 

Au adsorption should quickly diminish into the bulk of Mo(112) due to the screening in 

metal substrate and therefore, the observed change in the projected bulk band structure 

should not be directly attributed to the change in the surface potential. The noticeable 

modification in the projected bulk states should therefore be derived from the 

hybridization with the electronic states of Au overlayer. Consequently, it is plausible to 

expect that the observed bands with kF = 0.51 and 0.64 Å-1 are surface resonance bands 

which have large weight (i.e., amplitude of the wave function) near the surface and 

penetrates into the Mo bulk with non-negligible amplitude. 
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This view is consistent with the theoretical expectations. Figure 7.2d shows the 

band structure of free-standing Au monolayer (detached from Mo(112) surface as in 

Figure 7.1a) plotted along the  direction. In this plot, the band that crosses the 

Fermi level at kF = 0.64 Å-1 is apparent and it is seen to exhibit nearly parabolic 

dispersion down to ~500 meV. Due to the presence of projected bulk continuum of 

Mo(112) in this region [21], this Au band is expected to form a surface resonance band 

upon adsorption on the Mo(112) surface.  Figure 7.2c shows the calculated surface band 

structure of 1 ML Au/Mo(112) based on the 7-layer slab model overlaid on the ARPES 

spectrum shown in Figure 7.2b. The expected surface resonance band appears with kF = 

0.66 Å-1 and its dispersion is also modified. The calculation indicates noticeable surface 

weight for this band (~52%) as well as for the two bands seen to cross the Fermi level in 

ARPES spectrum. Thus, the band with kF = 0.66 Å-1 (0.64 Å-1 in ARPES) is most likely 

identified as surface resonance arising from the hybridization between the Au overlayer 

states and the projected bulk states on Mo(112).  

 

Γ−X
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Figure 7.2: The ARPES band mapping taken along the  line with the incident 
photon energy of 22 eV with p-polarization geometry (i.e., only the states with even 
reflection-parity about  are visible) for (a) Mo(112) (reprinted from [21]) and, (b) 1 
ML Au/Mo(112). The band structure calculated from the 7-layer slab model are overlaid 
for 1 ML Au/Mo(112) in (c). For (c), the significantly surface-weighted states with even 
reflection-parity are marked with yellow circles ("). (d) shows the band structure along 

 line of free-standing monolayer of Au with the same structure as the topmost layer 
of Mo(112). The band with a Fermi level crossing of kF = 0.64 Å-1 can be identified and is 
expected to hybridize with the Mo bulk state with nearly the same Fermi momentum kF. 
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7.5. Electron-phonon coupling 

 The presence of the surface resonance states on Au/Mo(112) resulting from the 

hybridization of the Mo bulk states with the surface states on Au overlayer makes the 

system ideal for investigating the effect of adsorption on the strength of electron-phonon 

coupling. So far, several experimental and theoretical studies have been devoted to the 

characterization of the electron-phonon coupling parameters of the bulk as well as 

surfaces of Mo [4,17,18,33]. In particular, the mass enhancement parameter due to the 

electron-phonon coupling for Mo bulk is calculated to be λ = 0.39-0.42 [18,33], which is 

in agreement with the experimental identification of λ = 0.42 for the bulk-weighted band 

[17,21]. The electron-phonon coupling parameters λ for Mo(110) and Mo(112) are also 

reported [4,18] and are summarized in Table 7.1. Thus, there are fairly consistent 

characterizations of the electron-phonon coupling parameters for the Mo substrate. 

In the present study, the theoretical and experimental investigations of the 

electron-phonon coupling parameters for 1 ML Au/Mo(112) have been carried out and 

are compared to those of clean Mo substrate. Here, the band with kF = 0.64 Å-1 (see 

Figure 7.2b) is analyzed with MDC method described above with the energy increment of 

1.5 meV to extract the peak positions (kpeak) as well as the linewidth (Γ). Figure 7.3a 

shows the ARPES spectrum of the analyzed band within 150 meV from EF. The MDC 

peak positions as well as the expected bare dispersion (broken curve fitted by parabola 

with the fixed kF determined from the experiment) are overlaid. The distortion of the 

band within ~50 meV below EF, characteristic of the electron-phonon coupling, is 

apparent. The parabolic fit shows an excellent match down to at least 500 meV and is 

given by  
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E(k) =  -17.666k2 + 14.404k - 1.9828,                                (7.1) 

where E and k are measured in units of eV and Å-1 respectively.  

Figure 7.4 shows the calculated phonon density of states F(ω) and the phonon 

band structure. The electron-phonon coupling function α2(ω) are calculated as outlined in 

sec. 7.3 and it gives the Eliashberg function α2(ω)F(ω) shown as solid curve in Figure 7.4. 

Given the Eliashberg function, the spectral function can be calculated using the 

experimentally determined bare dispersion E(k) given by (7.1) and the broadening due to 

the electron-impurity coupling (whose value is estimated below) as shown in Figure 7.3b. 

The calculated MDC peak positions are shown as the solid curve. In the present 

simulation, the finite energy resolution and the self-energy due to the electron-electron 

coupling are not included. As described below the electron-electron coupling is not 

significant near EF. In Figure 7.3b, the experimental MDC peak positions are also 

indicated and are in good agreement with the calculated spectral function. Figure 7.3c 

shows the calculated spectral function with electron-impurity coupling “turned off”, in 

which the agreement between the experimental MDC peak positions and the 

characteristic distortion due to electron-phonon coupling is more clearly seen.  

In order to get further quantitative insights into the self-energy due to electron-

phonon coupling, the experimental self-energy is extracted using the equation (5.18) with 

the group velocity v = -35.332k + 14.404 eV/Å-1 and are compared to the calculated self-

energy at T = 60 K (solid curves) as in Figure 7.5. It can be seen that the real part (Figure 

7.5a) shows reasonable agreement between the theory and the experiment (note that in 

the binding energy scale as employed here, ΣR is negative for the occupied states). The 
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imaginary part in Figure 7.5b also gives a good agreement provided that the calculated ΣI 

is rigidly shifted up by 171 meV, corresponding to the electron-impurity coupling and the 

instrumental broadening of the MDC linewidth. Since the MCD width at EF is evaluated 

to be ~0.022 Å-1 and the instrumental angular resolution is estimated to be 0.2° (or in k-

space ~0.008 Å-1), the broadening due to the electron-impurity coupling can be estimated 

as ~0.019 Å-1 (note that the electron-impurity coupling gives Lorentzian lineshape and 

the instrumental broadening is modeled by Gaussian lineshape). Thus, the self-energy 

contribution from the electron-impurity coupling can be estimated as 2Σ(e-i)
I ~156 meV. 

Note that the electron-impurity coupling only affects the lifetime of the quasiparticle and 

hence Σ(e-i)
R = 0.  

Here, it is important to mention that since the analyzed band is a surface 

resonance, the hybridization of local (surface) state of Au with the Mo bulk continuum 

may cause the linewidth broadening. However, given the agreement of the experimental 

and calculated self-energy due to electron-phonon coupling and the internal consistency 

between experimental ΣR and ΣI (related by the Kramers-Kronig relation (5.14)), the 

linewidth broadening due to such hybridization is either negligible or nearly constant 

within the small window of 150 meV below EF. Thus, some portion of the estimated 2Σ(e-

i)
I ~156 meV may be due to the bulk-surface hybridization. Note that the real part of self-

energy due to hybridization is already accounted for in the ‘unrenormalized’ parabolic fit 

in Figure 7.3a and thus expected to give negligible alteration in Figure 7.5a.  

Another scattering mechanism, electron-electron coupling is expected to give rise 

to the self-energy Σ(e-e) with the monotonic increase in |2Σ(e-e)
I| as a function of binding 

energy [14,34,35] and is observed in various metallic systems including Mo [17]. For 
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Au/Mo(112), as can be seen from the essentially constant imaginary part in Figure 7.5b 

(2ΣI ~ 210 meV for E > 50 meV), Σ(e-e) appears to be dominated by Σ(e-p) and Σ(e-i) and the 

contribution from Σ(e-e) is likely rather small, which is in contrast to Mo substrate [17]. 

 From the point of view of anisotropy of the system, it is rather surprising that the 

experimentally extracted Σ(e-p) for a specific band gives a good agreement with that 

calculated by averaging over all the possible ki and kf. Such a calculation gives identical 

Σ(e-p) values for all the bands in the entire SBZ, whereas in general it should be different 

for each band. Either that the structural and electronic anisotropy of 1 ML Au/Mo(112) is 

not significant enough to cause major anisotropy in electron-phonon coupling (to the 

degree it can be readily identified in the scale of Figure 7.5), or the band chosen for this 

particular analysis “coincidentally” agrees very well with the homogeneous (or averaged) 

model of electron-phonon coupling, in spite of the anisotropic electronic structure [21].  

 

 

Figure 7.3: (a) The ARPES spectrum taken along the line in the vicinity of the 
Fermi level. The surface resonance band with kF = 0.64 Å-1 can be identified to exhibit 
the renormalization due to electron-phonon coupling within ~50 meV below the Fermi 
level. The peak positions obtained in MDCs are indicated with circles (") and the 
expected unrenormalized band dispersion is indicated with blue broken curve. (b) The 
spectral function weighted with the Fermi function at T = 60 K in the vicinity of Fermi 
level calculated from the theoretically determined Eliashberg function and experimentally 
determined bare band dispersion E(k) and the impurity scattering rate (estimated to be 
~78 meV contribution to ΣI). The MDC peak positions (") determined from ARPES is 
overlaid for the comparison and are seen to agree well with the theoretically expected 
renormalization. The peaks of the calculated spectral functions are shown in red solid 

Γ−X
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curve as a visual guide. (c) The calculated spectral function in which impurity scattering 
is turned off (band renormalization is solely due to electron-phonon coupling). The 
agreement between the ARPES-determined MDC peak positions (") and the calculated 
band distortion is more apparent. Note that the Fermi edge cut-off at finite temperature 
(60 K) is also turned off for the visual clarity. 
 

Figure 7.4: The phonon band structure calculated using the 7-layer slab model is shown 
in (a), where the surface-weighted modes are marked with thick dotted line (blue = 
longitudinal mode; red = vertical mode; brown = horizontal mode). Isotropic Eliashberg 
function, α2F(ω), calculated from the 7-layer slab model is shown in (b). Note that the 
Eliashberg function is dimensionless.  
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Figure 7.5:  The real part (a), and the imaginary part (b) of self-energy for the surface 
resonance band with kF = 0.64 Å-1. The experimental data points (") for ΣR are obtained 
from the deviation of the ARPES peak positions from the expected unrenormalized band 
dispersion (see Figure 7.3a) and those for ΣI are obtained from the (energy) width of the 
photoemission peaks as described in the text. For the theoretical part, the self-energy due 
to electron-phonon coupling are obtained from the calculated isotropic Eliashberg 
function at T = 60 K and plotted as solid curves. The calculated ΣI is rigidly shifted up by 
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171 meV so as to fit the experimental data (interpreted as deriving from the electron-
impurity coupling and instrumental broadening as discussed in text). The dotted curves 
represent the self-energy obtained from the free-parameter Eliashberg function that gives 
the best fit to the experimental data. 
 

 

 

 Mass enhancement parameter λ(T = 0) 

 Theory Experiment 

Mo bulk 0.39 – 0.42 [18,33] 0.42 [17] 

Mo(110)  0.42-0.52 [4] 

Mo(112) 0.46 [18]  

Au/Mo(112) 0.68 (0.67 at 60 K) 0.70 (0.65 at 60 K) 

Table 7.1: The mass enhancement parameters for bulk Mo as well as its various surfaces. 
The listed values are evaluated at T = 0 unless otherwise specified.  

 

 

7.6. Important modes of coupling 

 Given the electron-phonon coupling near the interface of Au/Mo(112), it is 

worthwhile to explore qualitatively the important modes of coupling (i.e., which phonon 

modes may be giving rise to the major contribution to Σ(e-p)) for the observed band with 

kF = 0.64 Å-1. Note that the low energy phonon modes contribute more significantly to 

the self-energy than those lying at higher energy. This can be seen from the fact that the 

electron-phonon coupling matrix element is proportional to ω-1/2 (see (A.5) in Appendix 

A). In fact, it has been pointed out that the contributions from the acoustic phonon modes 

(or Rayleigh modes) give dominant contribution to the electron-phonon coupling at the 
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surface of Cu(111), Ag(111) and Au(111) [8,9]. In Figure 7.4, among the surface phonon 

modes for the  line (marked by colored squares) the surface acoustic modes (shear 

horizontal modes in brown and vertical modes in red) lie well below the bulk band edge 

and produces the pronounced peaks at 5 and 9 meV in the phonon density of states F(ω). 

However, along the  line, the symmetry of the electronic states and the phonon 

modes restricts the possible coupling modes. Since the electronic states and phonon 

modes lying along  are described by C1h group, they can be classified as either even 

(A’ irreducible representation) or odd (A”) with respect to the reflection about  line. 

Since experimental band mapping in Figure 7.2b as well as Figure 7.3a are taken with p-

polarization geometry, in which vector potential of the incident light lies within xz-plane 

(see Figure 7.1a), according to the dipole selection rules [36], the electronic bands 

analyzed for the electron-phonon coupling is of even symmetry (A’). On the other hand, 

the symmetry properties of phonons are classified by their polarizations. It can be derived 

for the group of C1h, under certain reasonable approximations, that the electron-phonon 

coupling matrix element vanishes unless the electronic state and phonon mode are both 

even or both odd (the detailed derivations are summarized in Appendix A). Thus, the 

shear horizontal phonon modes (marked brown) are forbidden to couple with the 

electrons in the analyzed band. Although this selection rule is valid only along the  

line, the coupling matrix element is usually small near this high-symmetry line if it 

vanishes along it. One can therefore expect that shear horizontal modes contribute less to 

the observed self-energy than do the shear vertical modes. This leads to the inference that 

besides the bulk phonon contribution, the surface phonons, particularly shear vertical 

modes play an important role in the observed electron-phonon coupling. 

Γ−X

Γ−X

Γ−X

Γ−X
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7.7. Enhancement of electron-phonon coupling 

 The mass enhancement parameter λ(T) is important in characterizing the electron-

phonon coupling strength. In the present study, λ estimated from the calculated 

Eliashberg function gives λ(T = 0) = 0.68 and λ(T = 60 K) = 0.67. The experimental 

extraction of λ(T) involves some difficulty as the slope of Σ(e-p)
R(ω) with respect ω must 

be evaluated right at EF, around which the ARPES intensity is diminished proportional to 

the Fermi function. In order to overcome this difficulty, we fit the experimental ΣR(ω) 

using the free-parameter Eliashberg function α2F(ω), in which α2 is taken to be the 

energy-independent free parameter, and extract λ associated with the α2F(ω) which gives 

the best fit for both ΣR(ω) and ΣI(ω).  

The dotted curves in Figure 7.5 shows the self-energy extracted from the free-

parameter Eliashberg function with α2 = 0.23. This fit gives a better overall match with 

the experimental data points (particularly for ΣR(ω)). Given this free-parameter 

Eliashberg function, the λ can be estimated as 0.70 at T = 0 and 0.65 at T = 60 K, 

providing fairly good agreement between the theory and the experiment. This is 

consistent with the overall agreement between the theory and the experiment obtained for 

the mass enhancement parameter λ, as summarized in Table 7.1. 

 The λ of 1 ML Au/Mo(112) should now be compared to that of the Mo substrate. 

Although the combination of theory and experiment gives the range of λ = 0.68 – 0.70, it 

is evidently larger than λ = 0.39 - 0.42 for Mo bulk and λ = 0.42 for Mo(112) surface as 

identified in the previous studies (see Table 7.1). It is plausible to argue that adsorption of 

Au on Mo(112) enhances the electron-phonon coupling. Such an increase in λ can be 
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viewed as a direct consequence of the soft Au phonon contributions to the modes of 

coupling. Thus, the addition of soft phonon modes by means of adsorption does affect the 

electron-phonon coupling parameter and the quasiparticle effective mass. 

 

7.8. Summary 

The investigation of the electronic structure and the electron-phonon coupling 

parameters of Au/Mo(112), at the nominal coverage of 1 ML of Au, has been performed 

by means of high-resolution ARPES and DFT calculations. The adsorption of Au 

modifies the electronic band structure of Mo(112) and the details of the band structure 

indicates the hybridization occurs between the projected bulk electronic states of 

Mo(112) and those of Au overlayer. The detailed analysis of the ARPES spectrum leads 

to the quantitative evaluations of the many-body interactions in terms of electron-phonon, 

electron-electron and electron-impurity coupling near the interface of Au/Mo(112) and 

suggests that the electron-phonon coupling gives the dominant contribution to the self-

energy of quasiparticles. In spite of the appreciable structural and electronic anisotropy of 

Au/Mo(112), the DFT calculation of the k-averaged Eliashberg function yields the self-

energy due to electron-phonon coupling in good agreement with the particular k point 

along  in the experiment. Given the change in the quasiparticle self-energy upon 

Au adsorption on Mo(112), the Au overlayer enhances the strength of electron-phonon 

coupling at EF (from 0.39-0.42 to 0.68-0.70) and noticeably suppresses the electron-

electron interaction. The enhancement of electron-phonon coupling likely derives from 

the creation of the soft surface phonon modes upon Au adsorption. 

 
 

Γ−X
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Chapter 8 
 Fermi surface of (4x1) Au/Mo(112) and structural instability 

 
 
 

8.1 Motivation 
 

Electron-phonon coupling plays an important role in various types of phase 

transitions [1]. In one-dimension, the divergence of electronic susceptibility function 

leads to periodic lattice distortion well known as Peierls transition [2] and subsequent 

formation of charge density wave (CDW). Such transition occurs at finite temperature 

due to the perfect nesting condition on the Fermi surface in one-dimension. In two-

dimension, several transition metal dichalcogenides are reported to undergo periodic 

lattice distortion induced by the strong, but not perfect, nesting condition in their Fermi 

surface topology [3-5]. The recent studies, presented above, have shown that the Au 

overlayer on Mo(112) surface exhibits significant electron-phonon coupling involving its 

surface resonance states [6]. Due to the highly anisotropic electronic structure of 

Mo(112) [7] and the quasi-one-dimensional properties of its Fermi surface [8] to which 

the electronic states of Au overlayer is strongly coupled, the electronic susceptibility of 

Au overlayer can exhibit lattice instability due to the strong phonon nesting. We explore 

the interplay between the strong electron-phonon coupling and its nesting properties, as 

determined by the topology of the Fermi surface. 

 
 
8.2 Charge density wave and lattice instability 
 
 When electrons in solids are subject to perturbation (e.g., applied fields, ionic 

vibrations etc.), they respond in certain way to minimize their energy. Within the linear 
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response theory (see e.g., ref. [9]), the induced charge (due to the perturbation) is given 

by 

ρind (r, t) = dr ' dt '
−∞

∞

∫ χ (r, t;r ', t ')φext (r ', t ')∫  ,                                        (8.1a) 

 
or in energy-momentum space 
 

ρind (q,ω) = χ (q,ω)φext (q,ω)  ,                                                               (8.1b) 
 
where φext is the ‘external’ perturbation potential and χ is called susceptibility function, 

which describes how the system of many-electrons will respond to the applied 

perturbation. For simplicity, if we assume the non-interacting electron system (or Fermi 

gas, in which there is no ‘internal’ interaction), the susceptibility function χ can be 

calculated as 

χ (q,ω) =
nf (Ek )− nf (Ek+q )
Ek −Ek+q +ω + iηk

∑
,
                                                      (8.2) 

 
where nf is Fermi distribution function, q and ω are the momentum and frequency of 

excitation, respectively (i.e., the response of electrons to the q-th Fourier component of 

time-dependent external potential with frequency ω). The expression (8.2) is called 

Lindhard response function. Of course, the non-interacting electron system is a crude 

model, and it is possible and conventional to include the Coulomb interactions etc. within 

the random phase approximation (RPA). However, in arriving at the qualitative (or semi-

quantitative) conclusion of this section, use of the non-interacting model is not a severe 

restriction. In the static limit ω = 0, we have, for the real part of Lindhard response 

function,    
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χ (q,ω = 0) =
nf (Ek )− nf (Ek+q )

Ek −Ek+qk
∑

.                                                      (8.3) 

 
 

For electron-phonon coupling, in which phonons provide the perturbation to the many-

electron system, it is reasonable to adopt the above static limit due to the generally small 

frequency of phonons (ω ~ 10 meV). The Lindhard function (8.3) for the non-interacting 

electron system is shown in Figure 8.1 for one-, two- and three-dimensions. It is seen that 

the Lindhard function in one-dimension exhibits a singularity at q = 2kF. This means, 

mathematically, the Fourier component of the electronic charge density with q = 2kF 

diverges, and it physically means the system of electrons becomes unstable against the 

formation of the periodic electron density modulation of with wavelength λ = π/kF. This 

is called a charge density wave (CDW). Formation of the CDW in one-dimension is a 

direct consequence of the Fermi surface of electrons in one-dimension, which consists of 

two points at kF and –kF. The phonons of wave vector 2kF, which provide the critical 

perturbation, span these two points on the one-dimensional Fermi surface and said to be a 

nesting phonon. Since in one-dimension all the phonon modes with q = 2kF can provide 

the critical perturbation to the many-electron system, such Fermi surface (two points at –

kF and kF) are said to satisfy the perfect nesting condition. Such nesting condition not 

only affects the electrons, but also the phonons. In particular, the frequency of phonon is 

renormalized due to the ‘rearrangement’ of surrounding electrons and is given by, within 

the mean field approximation, 

ω 2
ren (q) =ω

2 (q)+ 2g2ω(q)χ (q;T ) ,                                                      (8.4) 
 
where g is called the electron-phonon coupling constant (not to be confused with the 

electron-phonon coupling parameter λ), which is a pure imaginary quantity (i.e., ωren < 
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ω). Thus, near the 2kF, the renormalized phonon frequency dips significantly (in fact, it 

becomes imaginary) in a purely one-dimensional system. At this point, the phonon of 

wave vector 2kF freezes and the lattice becomes distorted with the new periodicity given 

by π/kF. Such lattice distortion accompanied by the electronic CDW formation in one-

dimension is called the Peierls transition [2]. The perfect nesting condition breaks down 

in two- and three-dimensions and the formation of CDW does not necessarily occur. 

However, if the coupling of electrons with phonons is strong enough and the Fermi 

surface exhibits strong (even if not perfect) nesting conditions, the CDW formation does 

in fact occur and has been observed. The criterion for the lattice instability is proposed to 

be [10] 

4M (q)2 ω(q)− 2U(q)+V (q) ≥1/ χ (q) ,                                          (8.5) 
 
where M is the electron-phonon coupling matrix element, U(q) = k + q,k 'U k '+ q,k  is 

the direct Coulomb interaction matrix element, and V (q) = k + q,k ' V k,k '+ q  is the 

exchange Coulomb interaction matrix element. In this simplified view, it can be seen that, 

for any given q, the instability condition is more likely to be met with higher electronic 

response χ(q) and stronger electron-phonon coupling M (q) .  
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Figure 8.1: The Lindhard response function in the static limit (ω = 0) for the three-, two- 
and one-dimensional Fermi gas (normalized to the value at q = 0). Peculiar features can 
be identified at q = 2kF in each dimension. The derivative of electronic response diverges 
in three-dimension, it is discontinuous in two-dimension, and the electronic response 
itself is divergent in one-dimension.   
 
 
8.3 Experimental details 
 

The surface of the Mo(112) sample was cleaned by the standard method of 

repeated annealing (at ~1400° C) in oxygen atmosphere with the oxygen partial pressure 

of ~1×10-6 torr, followed by cycles of annealing (at 1000-1300° C) and flashing (at 

~1800°C) as described in section 4.1. Low energy electron diffraction (LEED) and Auger 

electron spectroscopy (AES) were used to verify the quality of the Mo(112) surface, 

including the periodic structural order. The amount of surface contamination, such as C 

and O, were evaluated to be below the detection limit of the AES. The deposition of Au 
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was performed by the method described in section 4.2 to obtain the coverage of 1.75 ML. 

The corresponding LEED image and the schematic of the overlayer structure are 

illustrated in Figure  4.2d.  

 The high-resolution ARPES was performed at the linear undulator beamline (BL-

1) [11] of Hiroshima Synchrotron Radiation Center (HiSOR) at Hiroshima University, 

Japan. The experiments were carried out using an angular (display) mode of the 

hemispherical electron analyzer (R4000, VG Scienta), with the acceptance angle of ±15°. 

The Fermi contour mapping was performed at the incident photon energy of ћω = 50 eV 

by rotating the sample in its surface plane by increments of 2°, using incident photon 

sources with both p-polarization geometries (the vector potential of the incident light is 

50° with respect to the surface normal). The band mapping along the  high 

symmetry direction was also performed with p-polarization geometry (with the vector 

potential lying 40° with respect to the surface normal). For both the Fermi contour 

mapping and the band mapping taken for a photon energy of 50 eV, the energy resolution 

was estimated to be ~18 meV and the angular resolution was ~0.3°, corresponding to a 

wave vector resolution of ~0.018 Å-1 at the Fermi level.  

 Throughout the experiment, the sample was maintained at the desired temperature 

by the combination of automated flow of liquid helium and heating of the filament behind 

the sample.  

 
 
8.4 Temperature-dependent Fermi surface of (4x1) Au/Mo(112)    
 
 Figure 8.2 shows the Fermi surface contours of (4x1) Au/Mo(112) observed at 60 

K. A number of distinct features can be identified on this Fermi surface mapping. The 

Γ−X
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half-rectangular ‘box’ around Γ  derives from the surface resonance states created upon 

Au adsorption [6] and the contour shaped like ‘⊂’ near X  along the  line derives 

from the bulk Mo Fermi surface.  

Of particular importance is the vertical segment of the half-rectangle box 

(crossing the  line at ~0.47 Å-1). The Fermi contour for this segment was extracted 

from the peak fitting and shown in Figure 8.3 for five different temperatures. It can be 

seen that this segment exhibits noticeable temperature dependence, particularly within the 

range of 230-330 K. At low temperature, it is seen to be ‘convex’ (curving away from Γ ) 

up to at least 230 K. However, it can be seen that this segment is observed to be nearly 

straight, or perhaps slightly concave, (curving towards Γ ) at 290 K, which indicates the 

change in this Fermi surface segment between the temperature of 230 K and 290 K. Upon 

further increase of the temperature, this Fermi surface segment is, again, seen to exhibit 

the convex curvature, as can be seen for 330 K, showing that the change in Fermi contour 

is non-monotonic.  

Although the detailed origin of such changes in the Fermi contour on Au/Mo(112) 

is not unambiguously determined, since the nesting condition is determined by the 

topology of the Fermi surface, the observed change in the Fermi surface segment will 

affect the surface phonon nesting properties on Au/Mo(112). In order to understand how 

the observed change in the Fermi contour may affect the nesting properties on 

Au/Mo(112), we note that the straight parallel Fermi contour segments give rise to the 

pronounced peak in the Lindhard function [1]. Thus, it is likely that as the Fermi surface 

segment flattens near 290 K, the Lindhard function becomes more and more peaked at 

the wave vector 2kF = kF1 + kF2. As mentioned above, such pronounced response of 

Γ−X

Γ−X
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electrons at 2kF, in turn, gives rise to the softening of the phonon mode (Kohn anomaly). 

It is not clear whether the instability condition (8.5) is met near 290 K. However, it is 

clear that the observed change of Fermi surface contour for the surface resonance states 

of (4x1) Au/Mo(112) near 290 K favors the stronger nesting condition and that the 

electron-phonon coupling is strongly enhanced on Au/Mo(112) as a result of Au 

adsorption, as presented in previous chapter. Therefore, it is plausible to speculate, based 

on the above facts uncovered in the course of this study, that combination of strong 

electron-phonon coupling and temperature-dependent nesting conditions are responsible 

for some structural instability and/or phonon softening which occurs for the Au overlayer 

structure on Mo(112).  

Furthermore, even if the nesting of the Fermi surface is not strong enough to 

induce lattice instability (i.e., the instability condition (8.5) is not met) near 290 K, as the 

changes of Fermi surface are seen to be non-monotonic and persisting above 290 K, it is 

not difficult to imagine that at certain temperature above 290 K, the Fermi surface again 

evolves in favor of stronger nesting condition thereby inducing some type of structural 

phase transition.   
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Figure 8.2: The Fermi surface contour mapping of (4x1) Au/Mo(112) within the SBZ. 
The high-symmetry points are labeled.  
 

 
Figure 8.3: The temperature dependence of the segment of the Fermi surface. At low 
temperatures (60 – 100 K), this segment is seen to be convex and remains unchanged 
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(within the experimental error), but gradually flattens from ~230 K and becomes nearly 
straight at ~290 K. At 330 K, it is again seen to be convex.   
 
 
 
8.5 Summary 
 
 We observed noticeable temperature dependence of the Fermi surface contours of 

(4x1) Au/Mo(112) by means of high-resolution angle-resolved photoemission 

spectroscopy. Within the temperature range of 60 K- 330 K, the vertical segment of the 

Fermi surface (parallel to 110  direction), attributable to the surface resonance states, 

evolves in non-monotonic manner. Near 290 K, this vertical segment is seen to be nearly 

straight, which could cause the system to undergo the structural phase transition. The 

change in the Fermi surface persists above 290 K and possibly implies another lattice 

instability above 330 K.   
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Chapter 9 
Order-disorder transition 

 
 

9.1 Motivation 

 Lattice distortions, including both longitudinal distortions (a Peierls distortion) 

and transverse distortions (a transverse Peierls distortion) have been predicted to occur 

for quasi-one-dimensional overlayers structures [1,2], which results in the abrupt change 

in the lattice compressibility [3]. This type of lattice stiffening/softening transition has 

been observed for various systems, including a crystal made of parallel insulating 

polymer chains [4] and Gd/W(112) and Gd/Mo(112), in which Gd atoms form the chain-

like structure on the furrowed substrates [5]. These transitions [4,5] are identified with 

the abrupt change in the effective Debye temperature across the transition temperature. 

Below the transition temperature of 240 K the gadolinium overlayer lattice has much 

higher effective Debye temperature than that observed for higher temperatures [5]. 

However, the detailed mechanism of these structural phase transitions are yet unknown. It 

was presented in the preceding chapters that Au/Mo(112) exhibits pronounced electron-

phonon coupling near the surface and the strong phonon nesting condition within certain 

temperature range, which implies possible lattice instability. Thus, it is interesting to 

investigate if, in fact, Au/Mo(112) undergoes similar structural phase transitions, 

characterized by the abrupt change in the effective Debye temperature.  

 

9.2 Experimental details 

 The scanning tunneling microscopy (STM) and low energy electron diffraction 

(LEED) experiments were performed in separate ultra high vacuum (UHV) chambers. 
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The scanning tunneling microscopy (STM) experiments were performed using a 

commercial Omicron variable temperature STM apparatus under the same conditions 

used for the LEED, photoemission and Auger electron spectroscopy measurements [6]. 

Much of experimental work was undertaken by Dr. Yaroslav Losovyj at Louisiana State 

University and the experimental data analysis was performed by me.  

 The LEED experiments were performed in the same UHV chamber as the 

photoemission spectroscopy [6] with the pressure of 1x10-10 torr. The LEED intensities 

were obtained as a function of electron kinetic energy and temperature using a CCD 

camera. Surface structures and surface order are seen to be strongly dependent upon Au 

coverage. The LEED images were taken at various substrate temperatures for each of the 

nominal gold coverages of 1.66 monolayer (ML), and 1.75 ML. The gold overlayers 

adopt ordered structures on Mo(112) corresponding to the 3x1 structure for 1.66 ML, and 

the 4x1 structure for 1.75 ML, as illustrated in Figure 4.2. The temperature dependent 

intensity analysis on LEED was performed for each of these overlayer gold coverages 

with the temperature ranging from approximately 300-800 K. 

 The surface of the Mo(112) crystal was cleaned by the method described in 

section 4.1 [6-9]. The quality of the surface order for the Mo(112) surface and Au 

overlayers was verified by LEED. Surface cleanness was monitored by Auger electron 

spectroscopy and photoemission. The crystal temperature was controlled by a 

combination of cooling with liquid nitrogen and resistive heating. The temperature was 

monitored with a W-5% Re/W-26% thermocouple with an accuracy of ±5 K.  
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9.3 Effective Debye temperature 

It is known that the intensity of the LEED spots decays exponentially as a 

function of temperature, and can be quantified by Debye-Waller model (see section 3.3).  

Thus, by extracting the temperature dependence of the LEED spots, it is possible to 

obtain the effective Debye temperature from the following equations  [8-13]:  

  

€ 

I = I0 exp(−2W )

2W =
32T(Δk)2

mkBΘD
2

,

                                                                                                (9.1) 

where W is the Debye-Waller factor as introduced in chapter 3, T is the temperature of 

the sample (in Kelvin), )( kΔ is the electron momentum transfer, m is the mass of the 

scattering center, kB is the Boltzmann constant, and DΘ  is the effective Debye 

temperature. The magnitude of momentum transfer is given by: 

|Δk | = | k f − ki | = | 2k cos
θ
2
|  ,                                                                               (9.2) 

where θ  is the angle between surface normal and diffracted electron beam. Due to 

geometry of our LEED experiments, sin(θ/2) (surface-parallel component of Δk) is much 

smaller than cos(θ/2) (surface-normal component of Δk). Thus, the calculated effective 

surface Debye temperature is most indicative of the vibrational modes normal to the 

surface [8-11].  

 In determining the intensity of LEED spots, the brightness in the fixed region 

around the spot was integrated and the background intensity was subtracted, a procedure 

similar to the temperature-dependent LEED analysis performed elsewhere [10-11]. Here 

we have also normalized to the value of the LEED spot intensities to the value obtained at 

the lowest temperature in each of the Au coverages on Mo(112), as is the common 
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practice [8,11-13]. Although the superstructure spots (or fractional order spots) are 

produced by Au adatoms and it is reasonable to take the mass of the Au atom as the mass 

of the scattering centers m in equation (8.1), for the integral order spots, both the Au 

atoms and the Mo atoms contribute to the LEED spot intensity. For this reason, we have 

taken the geometric average of the masses of Au and Mo as the mass of the scattering 

center for the integral order spots analyzed in each of the Au coverages.  

  

9.4 The surface order-disorder transition 

The structure of gold adlayers on Mo(112) at the coverage of 1.66 ML forms the 

missing row 3x1 structure (two filled rows and one empty row parallel to the <

€ 

111> 

direction) as seen in the STM image in Figure 9.1c and d, which can be compared to 

those for the stoichiometric coverage (1 ML) as in Figure 9.1a and b. This structure can 

also be identified by the LEED image in Figure 4.2c, with two fractional order diffraction 

spots observed between the integral order diffraction spots.  As seen in Figure 9.2a, the 

LEED intensity (logarithmic scale) as a function of temperature for integral order spot 

shows an abrupt change in the slope near 468 K. Thus, in an attempt to fit this graph 

(Figure 9.2a) with the Debye-Waller model (which gives straight line in the semi-log 

scale in Figure 9.2a), two separate fits must be used for each temperature region (i.e., 

above and below ~468 K), giving the two different effective Debye temperatures in the 

two regions. Although we have attempted to fit the entire range of data by including the 

2nd dominant term in the Debye-Waller factor, as in: 

2W =
32 (Δk)2T
mkBΘD

2 1+ 1
36

ΘD

T
#

$
%

&

'
(
2

+
)

*
+
+

,

-
.
.
 ,                                   (9.3) 
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the attempt was fruitless as in the case of Gd chains [5]. Furthermore, this need for two 

different effective Debye temperatures to fit our data is more evident in the temperature 

dependent intensities of the fractional order spots induced by the 3x1 structure of the gold 

overlayer as in Figure 9.2b. The abrupt change in the slope is easily identified near 470 K, 

the same temperature as in the case of integral order spots.    

We have, therefore, a direct indication that there is a structural phase transition 

near 468 K, which significantly affects the stiffness of the phonons (or ionic vibrations). 

At this transition temperature, the surface effective Debye temperature dramatically 

decreases from 219±15 K to about 70±10 K as determined from the fractional order spots 

(the values are summarized in Table 9.1). For the integral order 1x1 diffraction spots this 

decrease in effective Debye temperature is less dramatic (386 to 184 K). As the integral 

order spots are produced by both Au and Mo atoms, if the structural phase transition has 

occurred only for Au overlayer and not for the Mo(112) surface, the observed less 

dramatic change in the effective Debye temperature can be qualitatively explained. 

However, it is important to note that the possibility some structural change in Mo(112) 

cannot be a priori excluded and the definite conclusion must be drawn from more 

complete quantitative analyses.  

 The similar behavior is also observed in the intensity of the fractional order 

diffraction spots at a coverage of 1.75 ML of gold (corresponding LEED image and 

structure are illustrated in Figure 4.2d) as seen in Figure 9.3b, where the gold overlayer 

forms a missing row 4x1 structure. Here the effective surface Debye temperature drops 

from 177±20 K to 63±15 K, at a critical temperature of about 407 K as determined from 
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the fractional order spots (see Table 9.1). Note that for the integral order spots, the abrupt 

change in the effective Debye temperature (slope of Figure 9.3a) was not identified, 

which is perhaps due to the high kinetic energy of the electrons which probes several 

layers below the surface of Au/Mo(112). Thus, there is also a direct evidence of the 

structural phase transition for the Au overlayer of (4x1) 1.75 ML Au/Mo(112) 

  The abrupt change in the effective Debye temperature, as found for (3x1) 1.66 

ML and (4x1) 1.75 ML Au/Mo(112) implies the sudden softening of phonon modes, 

particularly the ones polarized along the surface normal direction, across the transition 

temperature. Thus, it is evident that Au overlayer has undergone some structural phase 

transition and has led to the observed sudden softening of the lattice above the transition 

temperatures. In identifying the type of this structural phase transition for 1.66 and 1.75 

ML, it is important to notice that, besides the rapid diminishing of the fractional order 

spots, no sudden change was observed in LEED patterns across the transition temperature 

(such as appearance/disappearance of extra spots). This likely means that the Au 

overlayer is significantly more disordered in the high-temperature phase, because if the 

Au overlayer was still ordered (commensurate or incommensurate) above the structural 

phase transition, appearance of additional spots ought to be observed as the fractional 

order spots (observed at room temperature) diminish. Note that commensurate 3x1 to 1x1 

transition for 1.66 ML (and 4x1 to 1x1 transition for 1.75 ML) is not possible because the 

both are non-stoichiometric coverages (i.e., they cannot form ordered 1x1 structure due to 

the geometry restriction). Supported by these evidences, we identify the structural phase 

transitions observed for 1.66 ML and 1.75 ML are of order-disorder transition of the Au 

overlayer.      
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Figure 9.1: The STM images for Au/Mo(112) for (1x1) 1 ML and (3x1) 1.66 ML 
coverages. (a) The image for the stoichiometric coverage of 1 ML, where the inset shows 
the fast Fourier transform (FFT) of the image. (b) The simulated STM image for 1 ML 
coverage based on the images in (a). (c) The image for the (3x1) 1.66 ML coverage, 
where the inset shows the fast Fourier transform (FFT) of the image. (d) The simulated 
STM image for 1.66 ML coverage based on the images in (c).  
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Figure 9.2: The intensity of the LEED spot for (3x1) 1.66 ML Au/Mo(112) as a function 
of temperature for (a) the integral order spot, and (b) fractional order spot. Note the log 
scale of the intensity referenced to the I0 (the LEED spot intensity at the lowest 
temperature analyzed) 
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Figure 9.3: The intensity of the LEED spot for (4x1) 1.75 ML Au/Mo(112) as a function 
of temperature for (a) the integral order spot, and (b) fractional order spot. Note the log 
scale of the intensity referenced to the I0 (the LEED spot intensity at the lowest 
temperature analyzed) 
 
 
 
 

Nominal Au 
Coverage (ML) 

ΘD 
T< Tc 

order-disorder 
Tc 

ΘD 
T>Tc 

1.66 219±15 K 
(386±30 K)* 

468±10 K 70±10 K 
(184±50 K)* 

1.75 177±20 K 407±10 K 90±15 K 
Table 9.1: The estimated effective surface Debye temperature ΘD above and below the 
transition temperature Tc for each of 1.66 and 1.75 ML coverages, obtained from the 
fractional order spots. *The values in parentheses indicate the effective Debye 
temperature obtained from the integral order spots, which contains more contribution 
from the Mo atoms than for the fractional order spots. 
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9.5 Summary 

The order-disorder structural phase transitions were observed for the Au overlayer 

structure of Au/Mo(112) at 1.66 ML and 1.75 ML. These transitions are accompanied by 

the significant softening of the lattice identified by the abrupt change in the effective 

surface Debye temperature, as determined by our temperature-dependent LEED analyses. 

For 1.66 ML Au/Mo(112), which exhibits commensurate 3x1 structure at room 

temperature, the order-disorder transition temperature was identified to be ~ 470 K. 

Above this temperature, the effective Debye temperature was estimated to be about 

70±10 K which is in sharp contrast to 219±15 K below the transition temperature. The 

same type of transition was observed also for the 1.75 ML (commensurate 4x1 structure) 

coverage, but with slightly lower transition temperature of ~407 K. For this coverage, the 

effective Debye temperature was estimated to be 177±20 K below the transition and  

63±15 K above the transition.    
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Chapter 10 
Conclusion and future 

 

10.1 What do we think we understand?  

As mentioned in the introduction, the two critical factors that contribute to the 

instability of the surface crystal structure are the strength of the electron-phonon coupling 

and the phonon nesting conditions of the Fermi surface. Our investigation on 

Au/Mo(112) (chapter 7) revealed the pronounced electron-phonon coupling for the 

surface resonance states, which is signified by the large mass enhancement parameter (λ) 

as high as 0.7, which is in contrast to λ < 0.46 for Mo(112). Such pronounced electron-

phonon coupling near the interface of Au/Mo(112) makes the system more susceptible 

(compared to the clean Mo(112)) towards the formation of charge density wave and 

surface lattice distortion.  

Another critical factor, the Fermi surface topology, has also been explored in this 

study for the (4x1) 1.75 ML Au/Mo(112). The ARPES-derived Fermi surface contour 

exhibits the nearly straight segment parallel to the <110 > direction, composed of the 

surface resonance states of the system. This Fermi contour segment spans the large 

portion of the surface Brillouin zone in this direction. The presence of such feature in the 

Fermi surface is a characteristic of the quasi-one-dimensional structure of Au overlayer 

on Mo(112), which is expected to result in the enhanced response of the electrons to the 

applied ‘perturbation’ of phonons at particular wave vector (2kF). Thus, as a result of the 

present study, the strength of both the electron-phonon coupling and the nesting 

conditions of Fermi surface have been identified and found to favor the occurrence of 

surface lattice instability.  
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The temperature dependence of the nearly straight Fermi contour segment, 

mentioned above, in (4x1) Au/Mo(112) is of further interest, particularly above 230 K, 

for which the discernable change is observed. At ~290 K, the Fermi contour segment is 

seen to be almost precisely straight within the experimental error. Such temperature-

driven change in the Fermi surface is a direct indication of structural changes in the 

system. Moreover, the change in the Fermi surface persisted above 290 K in non-

monotonic manner, which further modifies the nesting condition at higher temperatures. 

 Although the detailed mechanism is yet to be discovered, the combination of 

strong electron-phonon coupling and the non-monotonic temperature-dependent Fermi 

surface nesting condition likely implies the existence of structural phase transitions 

(possibly) at multiple temperatures. We believe that the order-disorder transition 

observed for (4x1) 1.75 ML Au/Mo(112) is closely related to such special properties of 

Au/Mo(112).    

 

10.2 What is not fully understood? 

Although the series of studies performed on Mo(112) and Au/Mo(112) has 

resulted in the number of findings related to their many-body interactions and the 

structural phase transitions, this is by no means the end of the story. That is to say, the 

most fundamental mechanism which bridges the two phenomena are not yet understood. 

Evidently, it takes more time and effort to find such bridge. Therefore, in this last section, 

we suggest several studies to be performed in order to approach the ‘solution’ to this 

problem. 
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First, the order-disorder transitions identified on the Au/Mo(112) must be further 

characterized. The analysis of integrated intensity can identify the existence of the phase 

transition. However, in the future, it would be desirable to quantify the evolution of the 

LEED spots (both the intensity and the width) in the close vicinity of the phase transition. 

Perhaps the utilization of SPA-LEED is ideal. At the same time, it is important that such 

experiment be performed for heating as well as cooling across the transition temperature. 

Such experiments should, in principle, identify whether the transition is of 1st order 

(irreversible) or 2nd order (reversible) with the presence or absence of the hysteresis, and 

if the experimental precision permits, the critical exponents pertinent to the phase 

transition could be obtained. 

It is worthwhile to point out that based on the Lifshitz condition [1], which 

imposes the symmetry restriction on continuous phase transition, the continuous order-

disorder transition of Au overlayer structure for (3x1) and (4x1) Au/Mo(112), which 

exhibits rectangular symmetry, are not allowed. However, the Lifshitz condition assumes 

the presence of ‘global’ or ‘perfect’ symmetry and thus, if the overlayer system exhibits 

only a ‘local’ symmetry, such as in the presence of domain structures etc., the system is 

in fact, allowed to undergo the continuous order-disorder transition [2,3]. It has been 

pointed out that dislocations of atoms in the (px1) rectangular lattice, where p ≥ 3, can 

form multiple types of domain walls. From such phase, the system can undergo the 

continuous transition, classified as chiral p-states Potts model [4]. Thus, if the order-

disorder transitions on (3x1) and (4x1) Au/Mo(112) are to be identified as continuous, 

then between the ordered and the disordered phase, there must exist another phase, which 

is still ordered, but lacks the global symmetry. In order to test for the existence of such 
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phase, the temperature-dependent STM measurements may be an ideal experimental 

probe, although perhaps the imaging difficulties at high temperature must be overcome. 

In fact, we suspect that the observed temperature-dependent change in the Fermi surface 

at (4x1) 1.75 ML may be related to the structural phase transition from the ordered phase 

(< 290 K) to this intermediate phase of broken global symmetry (> 290 K).  

In order to elucidate the possible role of many-body interactions in driving the 

order-disorder transition on Au/Mo(112), we believe it is critical to carry out the high-

resolution ARPES experiments for the disordered phase. Across the transition 

temperature, the role of electron-phonon coupling and the nesting phonons can be 

elucidated by calculating the Lindhard response function from the experimental Fermi 

surface contour, as done for 2H-TaSe2 and similar materials [5-7]. Such method allows 

for the identification of phonon mode(s) providing the critical perturbation to the 

electronic as well as the structural instability towards the formation of charge density 

wave and the lattice distortions and its possible roles in driving the observed order-

disorder transitions on Au/Mo(112).  
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Appendix A 
Selection rules on electron-phonon coupling 

 
The matrix element that describes the electron-phonon coupling is given by [1,2] 

,                      (A.1) 

where Hep is the electron-phonon coupling Hamiltonian and α (α’) and β (β’) denote the 

complete set of quantum numbers for initial (final) electron state and phonon state 

respectively. In the rigid-ion approximation [1,2], Hep can be written in position basis as 

,                     (A.2) 

where uj is the small displacement of j-th ion from its equilibrium position Rj. Assuming 

the electronic part of the wave function can be written as a product of Bloch states, the 

coupling of a single electron with wave vector k with phonon mode of wave vector q and 

polarization p can be described by the matrix element 

,        (A.3) 

whereψk  and ψk '  denote the initial and final electronic wave functions, respectively. 

Since the displacement uj is an operator which acts on the phonon states,  

,           (A.4) 

 where a+
q,p and a-q,p are the creation and annihilation operators of phonon with wave 

vector q and polarization p respectively, and p̂  is the phonon polarization unit vector. 

The matrix element becomes 

,    (A.5) 

α ',β ' Hep α,β

Hep = uj ⋅∇V (r − Rj )
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where N is the number of ions, M is the ion mass, and  is the frequency of the 

phonon mode (q, p). The phonon part of matrix element vanishes unless the initial and 

final states differ in the occupation number of the mode (q, p) by unity. In particular, if 

we take the process in which one particular phonon of (q, p) is emitted by an electron, we 

have 

 ,  (A.6) 

where  denotes the state in which there is nq,p phonons of mode (q, p) (the 

occupation numbers for all the other phonon modes are omitted for brevity). Note that q 

and p now denote the wave vector and the polarization of specific phonon mode involved 

in the electron-phonon coupling and are no longer the running index of summation. Since 

the phonon part of the matrix element is now constant, the electron-phonon coupling 

selection rule is dictated by the electronic part of the matrix element 

.          (A.7) 

In general, the integral must vanish if the triple tensor product of irreducible 

representations of initial state, final state and perturbation operator does not contain a 

fully symmetric representation. In the present study, the band renormalization is observed 

for the electronic states near the Fermi level along  direction and the symmetry of 

the associated wave functions were found to be even with respect to the reflection about 

xz-plane (i.e., transforms as A’ representation in C1h group). Thus, the phonons with wave 

vector along  direction are allowed to couple with these electrons of A’ symmetry 
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only if the polarization of phonon and the final electronic state share the same symmetry 

(i.e., both A’ or both A”). In particular, for the coupling with q = 2kF, for which the initial 

and final electronic states share the same symmetry (A’), we are lead to conclude that the 

coupling phonons must also have A’ symmetry. Since the horizontal transverse mode 

(marked brown in Figure 7.5) transforms as A”, it cannot serve as a coupling mode and 

hence not expected to contribute to the Eliashberg function or the observed band 

renormalization (at least for the contribution due to electron-phonon coupling). It is 

important to note that this selection rule only applies when the initial and final electronic 

states lie along the same symmetry axis. For any final states at the general point in the 

SBZ (near the Fermi level), the symmetry selection rule does not a priori exclude the 

possibility of electron-phonon coupling, provided, of course, the existence of phonon 

modes which conserve the momentum.  
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