University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Faculty Publications from the Harold W. Manter Laboratory of Parasitology

Parasitology, Harold W. Manter Laboratory of

2005

Molecular Phylogenetics and Diagnosis of *Anisakis*, *Pseudoterranova*, and *Contracaecum* from Northern Pacific Marine Mammals

Steven A. Nadler University of California - Davis, sanadler@ucdavis.edu

Stefano D'Amelio University of Rome "La Sapienza"

Murray D. Dailey Marine Mammal Center

Lia Paggi University of Rome "La Sapienza"

Sandra Siu University of California - Davis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs

Part of the Parasitology Commons

Nadler, Steven A.; D'Amelio, Stefano; Dailey, Murray D.; Paggi, Lia; Siu, Sandra; and Sakanari, Jusy A., "Molecular Phylogenetics and Diagnosis of *Anisakis, Pseudoterranova*, and *Contracaecum* from Northern Pacific Marine Mammals" (2005). *Faculty Publications from the Harold W. Manter Laboratory of Parasitology*. 740.

https://digitalcommons.unl.edu/parasitologyfacpubs/740

This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Steven A. Nadler, Stefano D'Amelio, Murray D. Dailey, Lia Paggi, Sandra Siu, and Jusy A. Sakanari

MOLECULAR PHYLOGENETICS AND DIAGNOSIS OF ANISAKIS, PSEUDOTERRANOVA, AND CONTRACAECUM FROM NORTHERN PACIFIC MARINE MAMMALS

Steven A. Nadler, Stefano D'Amelio*, Murray D. Dailey†, Lia Paggi*, Sandra Siu, and Judy A. Sakanari‡

Department of Nematology, University of California, Davis, California 95616-8668. e-mail: sanadler@ucdavis.edu

ABSTRACT: Individual specimens of Anisakis, Pseudoterranova, and Contracaecum collected from marine mammals inhabiting northern Pacific waters were used for comparative diagnostic and molecular phylogenetic analyses. Forty-eight new sequences were obtained for this study of 14 Anisakis taxa, 8 Pseudoterranova taxa, 4 Contracaecum taxa, and 4 outgroup species. Partial 28S (LSU) and complete internal transcribed spacer (ITS-1, 5.8S, ITS-2) ribosomal DNA was amplified by the polymerase chain reaction and sequenced. Sequences of ITS indicated that Pseudoterranova specimens from Zalophus californianus (California sea lion), Mirounga angustirostris (northern elephant seal), Phoca vitulina (harbor seal), Enhydra lutris (sea otter), and Eumetopias jubatus (Steller's sea lion) exactly matched P. decipiens s. str., extending the host and geographic range of this species. Anisakis from northern Pacific marine mammals were most closely related to members of the A. simplex species complex. Comparison of Anisakis ITS sequences diagnosed the presence of A. simplex C in 2 M. angustirostris hosts, which is a new host record. Anisakis specimens from Phocoena phocoena (harbor porpoise), Lissodelphis borealis (Pacific rightwhale porpoise), and E. jubatus included 3 ITS sequences that did not match any known species. Contracaecum adults obtained from Z. californianus were most closely related to C. ogmorhini s.l. and C. rudolphii, but ITS sequences of these Contracaecum specimens did not match C. ogmorhini s. str. or C. margolisi. These novel Anisakis and Contracaecum ITS sequences may represent previously uncharacterized species. Phylogenetic analysis of LSU sequences revealed strong support for the monophyly of Anisakinae, Contracaecum plus Phocascaris, Pseudoterranova, and Anisakis. Phylogenetic trees inferred from ITS sequences yielded robustly supported relationships for Pseudoterranova and Anisakis species that are primarily consistent with previously published phenograms based on multilocus electrophoretic data.

Anisakid nematodes are common parasites of marine mammals, and have a worldwide distribution. Larvae of these nematodes are a major problem for commercial fishing industries (Rohlwing et al., 1998), and are potential human health hazards, both as causative agents of anisakiasis (Sakanari and Mc-Kerrow, 1989), and as potential food-borne allergens (Moneo et al., 2000; Baeza et al., 2001). Numerous studies employing data from multilocus enzyme electrophoresis have revealed that morphospecies of Anisakis, Contracaecum, and Pseudoterranova consist of genetically differentiated sibling species with different geographic and host distributions (Mattiucci et al., 1986; Nascetti et al., 1986; Orecchia et al., 1986; Paggi et al., 1991; Nascetti et al., 1993; Mattiucci et al., 1997, 1998; Paggi, Mattiucci et al., 1998; Paggi et al., 2000; Mattiucci et al., 2003). These population-level allozyme studies have been instrumental in detecting evidence of genetic heterogeneity (noninterbreeding individuals within populations) among large samples of ascaridoids collected from paratenic or definitive hosts in nature (Paggi and Bullini, 1994; Bullini et al., 1997), and have led to the discovery and description of several new species. Such studies have facilitated the development of other molecular diagnostic tools for these species, in particular, those based on the polymerase chain reaction (PCR) including PCR-restriction fragment length polymorphism (PCR-RFLP) (Zhu, Gasser, Podolska, and Chilton, 1998; D'Amelio et al., 2000; Kijewska et al., 2002; Shih, 2004), single-strand conformational polymorphism (SSCP) of PCR products (Zhu, Gasser, Podolska, and Chilton, 1998; Zhu et al., 2000; Hu et al., 2001; Zhu et al., 2001, 2002), and direct sequencing of PCR-amplified DNA

(Zhu, Gasser, Podolska, and Chilton, 1998; Nadler et al., 2000; Zhu et al., 2000; Hu et al., 2001; Zhu et al., 2001, 2002; Mattiucci et al., 2003). These DNA-based diagnostic techniques are advantageous because individual alcohol-preserved adults and larvae can be identified; in contrast, allozyme techniques require enzymatic activities that are only preserved in frozen tissues. Diagnostic DNA markers from a single genetic locus can be quite useful for nematode identification (Gasser et al., 1996; Zhu, Gasser, Podolska, and Chilton, 1998; D'Amelio et al., 2000; Nadler et al., 2003). However, such single-locus studies are of considerably less utility for finding and delimiting new species in nature (Nadler, 2002, 2005). Nevertheless, unexpected nucleotide sequence variation at even 1 locus provides valuable information that can lead to testing hypotheses of species using multilocus datasets (allozymes or DNA based approaches) with reference to explicit species concepts (Adams, 1998; Nadler, 2002).

The most detailed studies of North American marine mammal ascaridoids have focused on hosts from Canadian Atlantic waters (Brattey and Ni, 1992; Brattey and Stenson, 1993; Brattey and Davidson, 1996). These investigations have characterized ascaridoids in Halichoerus grypus (gray seal, GS), Phoca vitulina (harbor seal, HS), Phoca hispida (ringed seal, RS), Cystophora cristata (hooded seal, HDS), Phoca groenlandica (harp seal, HRS), and Erignathus barbatus (bearded seal, BS), and have used molecular methods to identify species of Anisakis, Pseudoterranova, Contracaecum, Phocascaris, when assessing parasite abundance and host distribution. Studies using molecular tools to diagnose ascaridoids in North American Pacific waters have been very limited in scope. For Anisakis, investigators have used allozyme and PCR-RFLP techniques to document adults of A. simplex C (Mattiucci et al., 1997; D'Amelio et al., 2000) from Pseudorca crassidens (false killer whale) and A. simplex s. str. from Phocoena phocoena (harbor porpoise, HP) and P. crassidens (Mattiucci et al., 1997; D'Amelio et al., 2000) occurring in Canadian Pacific waters. Contracaecum ogmorhini s.l. was reported from Zalophus californianus (Cali-

Received 19 November 2004; revised 21 March 2005; accepted 21 March 2005.

^{*} Section of Parasitology, Department of Public Health Sciences, University of Rome "La Sapienza," Piazzale Aldo Moro, 5, I-00185 Rome, Italy.

[†] The Marine Mammal Center, Marin Headlands, 1065 Fort Cronkhite, Sausalito, California 94965.

[‡] Department of Biology, Sonoma State University, 1801 E. Cotati Avenue, Rohnert Park, California 94928.

fornia sea lion, CSL) in Mexican and Californian Pacific waters (Fagerholm and Gibson, 1987), and these authors predicted this parasite would be found in additional host species from the Pacific, including Callorhinus ursinus (northern fur seal, NFS) and Eumetopias jubatus (Steller's sea lion, SSL). More recent genetic studies show that C. ogmorhini s.l. consists of 2 sibling species, C. ogmorhini s. str. and Contracaecum margolisi (Mattiucci et al., 2003), with the latter species diagnosed genetically (Zhu et al., 2001; Mattiucci et al., 2003) from 1 locality (Vancouver Island, Canada) in Z. californianus (CSL). The third common genus of marine mammal ascaridoid, Pseudoterranova, is also a complex of at least 5 species (Paggi et al., 1991; Mattiucci et al., 1998; George-Nascimento and Urrutia, 2000; Paggi et al., 2000; Zhu et al., 2002) that can be diagnosed by allozyme markers (Paggi et al., 2000), nucleotide sequences (Zhu et al., 2002), and, for adult males, morphometric differences (Di Deco et al., 1994; Mattiucci et al., 1998; George-Nascimento and Urrutia, 2000; Paggi et al., 2000). Reports of Pseudoterranova decipiens from North American Pacific waters predate the common use of molecular markers to identify species, thus, Pseudoterranova taxa from these hosts have not yet been investigated relative to recently described species.

In the present study, specimens of *Anisakis*, *Pseudoterranova*, and *Contracaecum* collected from marine mammals inhabiting North American Pacific waters were sequenced for ITS ribosomal DNA (rDNA), compared with diagnostic sequences for known species, and used to infer phylogenies. Some of these specimens were also sequenced for a region of LSU rDNA and analyzed in a comparative phylogenetic context to assess relationships among taxonomic groups of aquatic ascaridoids.

MATERIALS AND METHODS

Taxa for molecular systematics

Nematodes (Table I) were obtained from stranded marine mammals by staff at the Marine Mammal Center, Sausalito, California. Ascaridoids were collected at necropsy, preserved in 95% ethanol, and stored at -20 C. Anterior and posterior ends of specimens were removed, cleared in lactophenol, and diagnosed by microscopy. Morphologically, the northern Pacific specimens corresponded to A. simplex s.l., P. decipiens s.l., or C. ogmorhini s.l. Four of the other Anisakis specimens used for comparative study were diagnosed to species based on morphology (A. typica, A. ziphidarum, A. physeteris, and A. brevispiculata), and all such reference species were confirmed by using diagnostic allozyme markers. Voucher specimens of northern Pacific specimens have been retained in the University of California-Davis frozen tissue collection. Contracaecum and Pseudoterranova reference ITS sequences were obtained from GenBank as were 34 of 56 partial LSU sequences used for phylogenetic analysis (Table I). Additional ascaridoids sequenced for comparative analysis of LSU rDNA included Parascaris equorum, Ascaris suum, Baylisascaris procyonis, Hysterothylacium auctum, and Raphidascaris acus (Table I).

DNA amplification and sequencing

DNA was extracted from pieces of individual nematodes using commercial kits (DNAzol, Molecular Research Center Inc., Cincinnati, Ohio; MasterPure[®], Epicentre Technologies, Madison, Wisconsin). A region of the 5' end of the nuclear large subunit ribosomal RNA gene (LSU rDNA) containing the D2 and D3 divergent domains was amplified using a forward PCR primer (#391, 5'-AGCGGAGGAAAAGAA ACTAA, or #538, 5'-AGCATATCATTTAGCGGAGG) in combination with a reverse primer (#390, 5'-ATCCGTGTTTCAAGACGGG, or #501, 5'-TCGGAAGGAACCAGCTACTA). A region of nuclear rDNA including the internal transcribed spacers (ITS-1, ITS-2) and 5.8S subunit was amplified using primers that anneal to the 3' end of the 18S rDNA (#93, 5'-TTGAACCGGGTAAAAGTCG) and the 5' end of the 28S rDNA (#94, 5'-TTAGTTTCTTTTCCTCCGCT). PCR reactions (25 µl) consisted of 0.5 µM each primer, 200 µM deoxynucleoside triphosphates, and MgCl₂, ranging from 1.5 to 3 mM as required for specific amplification. Proofreading polymerase (0.5 unit, Finnzymes DNAzyme EXT, MJ Research, Waltham, Massachusetts) was used for PCR, and cycling parameters included denaturation at 94 C for 3 min, followed by 35 cycles of 94 C for 30 sec, 48-57 C for 30 sec, and 72 C for 1 min, followed by a postamplification extension at 72 C for 7 min. PCR products were prepared for direct nucleotide sequencing by using enzymatic treatment with exonuclease I and shrimp alkaline phosphatase (PCR product presequencing kit, USB Corporation, Cleveland, Ohio). PCR products were cloned when they could not be successfully sequenced directly. For cloning, PCR products were washed 3 times with TE buffer (pH 7.0) by spin filtration (Millipore Ultrafree-MC 30,000 NMWL, Millipore Corporation, Bedford, Massachusetts), ligated into pGEM-T vector (Promega, Madison, Wisconsin), and cloned into JM109 Escherichia coli. Plasmid DNA was obtained using Qiaprep spin miniprep kits (Qiagen, Valencia, California). Sequencing reactions were performed using dye-terminator sequencing chemistry, and reaction products were separated and detected using an ABI 3730 capillary DNA sequencer (PE Applied Biosystems, Boston, Massachusetts). All sequences were completely double stranded for verification using reactions primed from the PCR or vector primers and 2 or more internal sequencing primers. Site polymorphisms in directly sequenced PCR products were recorded only when both alternative nucleotide peaks were present in all sequence reactions representing both DNA strands. If the heights of the alternative nucleotide peaks at polymorphic sites were not equal, the height of the minor peak was required to significantly exceed background terminations and comprise at least 25% of the major peak to be scored as a polymorphism (Nadler et al., 2003). For cloned rDNA, conflicts between clones were recorded as polymorphisms. Phred base-calling was used before contig assembly with CodonCode Aligner (Version 1.2.2).

Phylogenetic analyses

Sequences determined in this study (indicated in Table I), plus those obtained from GenBank, were aligned using ProAlign Version 0.5 (Löytynoja and Milinkovitch, 2003). For each alignment, a ProAlign guide tree was constructed using corrected (for multiple hits) pairwise distances; this guide tree was used to estimate the hidden Markov model parameters (δ and ϵ) for progressive multiple alignment. Program (Java) memory and band widths were increased, as required, to complete the alignment. The minimum posterior probability of sites was used as the criterion for detecting and removing unreliably aligned sequence. To reduce the likelihood of excluding correctly aligned sites, the filter threshold was set to 60% minimum posterior probability (Löytynoja and Milinkovitch, 2003). Pairwise sequence differences (absolute distances) were determined from multiple alignments using PAUP* 4.0b10 (Swofford, 1998). Phylogenetic trees were inferred using unweighted maximum parsimony (MP) and maximum likelihood (ML) methods using PAUP* executed on a dual-processor Linux computer. Gaps were treated as missing data in parsimony analyses. Modeltest Version 3.06 (Posada and Crandall, 1998) was used to compare the fit of nucleotide substitution models for datasets using the Akaike information criterion. The best-fit ML model for each dataset was used for likelihood analysis.

For the 56-taxa LSU dataset, heuristic MP searches were conducted using 500 replicates of random taxon addition with tree-bisection-reconnection (TBR) branch swapping. Bootstrap MP searches were conducted using 1,000 pseudoreplicates, with random taxon addition and a search time limit of 30 sec per pseudoreplicate. Maximum likelihood trees were inferred using a neighbor-joining (NJ) starting tree, with heuristic searching of tree space by TBR branch swapping. The bootstrap ML tree was produced using 100 pseudoreplicates of heuristic searches as indicated for individual ML trees, except each replicate was limited to 800 sec. Maximum parsimony and ML trees were rooted using *Heterocheilus tunicatus* (Ascaridoidea, Heterocheilidae), a choice supported by previous analyses of molecular datasets (Nadler and Hudspeth, 1998, 2000).

For the Anisakis and Pseudoterranova ITS datasets, MP searches were conducted using the branch-and-bound method; bootstrap MP trees were inferred using 1,000 pseudoreplicates of branch-and-bound. Maximum likelihood and bootstrap ITS ML trees were inferred using

the same methods as for the LSU dataset. The sister-group relationship of *Anisakis* and *Pseudoterranova* recovered in analysis of ribosomal DNA and mitochondrial sequences (Nadler and Hudspeth, 1998, 2000) and for regions of LSU sequence (this study) was the basis for using *Anisakis* to root the *Pseudoterranova* ITS tree, and in a separate analysis, *Pseudoterranova* to root the *Anisakis* ITS tree. Thus, these ITS analyses cannot be used to test the monophyly of *Pseudoterranova* or Anisakis. Phylogenetic analyses that would permit more comprehensive comparisons and tests of monophyly with ITS sequences through inclusion of more "basal" ascaridoid taxa were not undertaken because of substantial regions of positional homology uncertainty in ITS alignments that included more taxonomically diverse ascaridoids.

RESULTS

28S rDNA sequence data and analysis

Sequences of LSU rDNA from 9 Pseudoterranova specimens (8 P. decipiens s.l. and 1 P. decipiens s. str.) were identical. These included individual nematodes obtained from 2 P. vitulina (HS), 3 Z. californianus (CSL), 1 Mirounga angustirostris (northern elephant seal, NES), 1 Enhydra lutris (sea otter, SO), and 1 E. jubatus (SSL). These sequences also matched the LSU sequence of P. decipiens s. str. (Nadler and Hudspeth, 1998). Likewise, LSU sequences of 4 Contracaecum specimens obtained from 4 Z. californianus (CSL) were identical and matched the sequence of C. ogmorhini s. str. (Nadler et al., 2000) obtained from Arctocephalus pusillus pusillus (Cape fur seal, CFS). Pairwise comparisons of Anisakis LSU sequences showed absolute nucleotide distances ranging from 0 to 5 differences. All 3 Anisakis individuals from M. angustirostris (NES) hosts were identical in sequence, as were specimens from 1 E. jubatus (SSL) and 1 Lissodelphis borealis (Pacific rightwhale porpoise, PRP).

For phylogenetic analysis of LSU sequences, using ProAlign to detect and remove unreliably aligned sites by their posterior probabilities excluded 52 of 712 alignment sites. This dataset of 660 characters included 206 parsimony informative sites. Maximum parsimony analysis of the LSU dataset yielded 4 most parsimonious trees of 774 steps (C.I. = 0.53). The strict consensus of these trees (Fig. 1) depicted Anisakis plus (Pseudoterranova, Terranova) as monophyletic, with 100% bootstrap support. Likewise, representatives of Pseudoterranova and Anisakis were each monophyletic, with 100% and 93% bootstrap support, respectively. The strict consensus of MP trees also revealed a monophyletic Contracaecum plus Phocascaris clade, with 100% bootstrap support. Anisakidae (sampled genera included Anisakis, Pseudoterranova, Contracaecum, Phocascaris) was not a clade in the strict consensus of MP trees or in the bootstrap majority-rule MP consensus tree. Genera in the Raphidascarididae (Hysterothylacium, Goezia, Iheringascaris, and Raphidascaris) were monophyletic in the MP trees, but this clade received low bootstrap support (69%). Taxa from the Ascaridinae (Parascaris, Ascaris, Toxascaris, Baylisascaris) were strongly supported as monophyletic (99% bootstrap), but Ascarididae was not monophyletic because of the exclusion of Toxocara. In general, relationships among these clades, e.g., Raphidascaridae, Ascaridinae, and Anisakinae, representing the deepest nodes in the phylogenetic hypothesis, were not reliably supported as assessed by MP bootstrap resampling (Fig. 1).

Maximum likelihood analysis of the 660-character LSU dataset yielded a single tree (Fig. 2). Anisakis plus (Pseudoterranova, Terranova) was monophyletic in the ML tree with 100% bootstrap support. Like for MP trees, *Pseudoterranova*, *Anisakis*, and *Contracaecum* + *Phocascaris* were each monophyletic, with \geq 99% support in ML bootstrap trees. Unlike the MP result, the ML tree recovered a monophyletic Anisakidae, but this clade was not found in the ML bootstrap majority-rule consensus tree. The Raphidascarididae received moderate (89%) support in the ML bootstrap tree. Genera representing Ascaridinae were strongly supported as monophyletic (100% bootstrap), but representatives of the Toxocarinae (*Toxocara*, *Porrocaecum*) were more closely related to anisakids (*Toxocara*) or the clade that included anisakids plus raphidascarids in the ML tree. As found for bootstrap MP analysis, the deepest nodes in the phylogenetic tree were not reliably supported as assessed by bootstrap resampling with ML inference (Fig. 2).

ITS rDNA sequence data and analysis

Sequences of ITS rDNA from 7 of the 8 *Pseudoterranova* specimens from Pacific waters (obtained from 5 different host species, Table I), were identical and matched the sequence of *P. decipiens* s. str. (Zhu et al., 2002). One *Pseudoterranova* sequence from a *Z. californianus* (CSL) host (CSL, 4994) was polymorphic (A/G) at 1 ITS-2 site (position 50 in the alignment of Zhu et al., 2002) that was an adenine in the other CSL *Pseudoterranova* specimens. This polymorphic nucleotide occurred at the single site that distinguishes the ITS sequences of *P. decipiens* s. str. (adenine at this site) from *Pseudoterranova azarasi* (guanine at this site).

Sequences of ITS rDNA from the 4 Contracaecum specimens obtained from 4 Z. californianus (CSL) hosts were identical except for 1 ITS-1 polymorphism in 1 individual (CSL, 4836). These sequences were not identical with any of the C. ogmorhini s.l. published sequences (Zhu et al., 2001), which are highly conserved, with only 1 ITS-1 site and 2 ITS-2 site differences (Fig. 3) between austral (C. ogmorhini s. str.) and boreal (C. margolisi) species. Three of 4 Contracaecum individuals sequenced from Z. californianus hosts in this study matched the sequence of C. margolisi (from a Pacific Canada Z. californianus) at all 3 sites (1 ITS-1, 2 ITS-2) that distinguish C. ogmorhini s. str. from C. margolisi, including the diagnostic ITS-2 BstN1 restriction site (Zhu et al., 2001). The polymorphic (C/T) ITS-1 site found in 1 individual (Fig. 1, position 254) occurred at a site that distinguishes C. ogmorhini s. str. (cytosine at this site) from C. margolisi (thymine at this site). All 4 of the Contracaecum sequences from Z. californianus hosts had 1 ITS-1 difference (position 407, a transition) that distinguished them from C. ogmorhini s. str. and C. margolisi. Three additional ITS-1 sequence sites were different for published C. ogmorhini s.l. sequences (Zhu et al., 2001) and the 4 Contracaecum sequences from Z. californianus hosts obtained from California. The characteristics of these differences are consistent with potential errors in the previously published sequences. For example, GA dinucleotides at positions 91-92 are AG in the newly obtained sequences (Fig. 3) and also in 6 Contracaecum osculatum sequences (Zhu et al., 2000). Similarly, there are 2 C nucleotides at positions 240-241 (trailing C also in 6 C. osculatum sequences) and 2 T nucleotides at positions 409-410 rather than the single nucleotide indicated in each case for previously published sequences (Zhu et al., 2001).

Pairwise comparisons of 14 Anisakis ITS sequences showed

					GenBank a	cession no.†
Species	Host	Host ID*	Stage	Collection locality	LSU	STI
Anisakis brevispiculata	Kogia breviceps		Adult	Coast of Florida, USA		AY826719
Anisakis pegreffi	Micromesistius poutassou		Larva	Tyrrhenian Sea, Italy		AY826720
Anisakis physeteris	Physeter catodon		Adult	Tyrrhenian Sea, Italy		AY826721
Anisakis simplex C	Pseudorca crassidens		Adult	Nanaimo, Canada		AY826722
Anisakis simplex s. str.	Trachurus trachurus		Larva	Cantabrian Sea, Spain		AY826723
Anisakis sp.	Mirounga angustirostris	NES 1940	Adult	San Francisco, Baker Beach, California, USA	AY821754	AY821739
Anisakis sp.	Mirounga angustirostris	NES 4	Adult	Ana Nuevo Island, California, USA	AY821755	AY821736
Anisakis sp.	Mirounga angustirostris	NES 2013	Adult	Half Moon Bay, California, USA	AY821757	AY821746
Anisakis sp.	Phocoena phocoena	HP C141	Adult	San Francisco, Ocean Beach, California, USA	AY821759	AY821749
Anisakis sp.	Lissodelphis borealis	PRP C140	Adult	Drakes Beach, California, USA		AY821740
Anisakis sp.	Lissodelphis borealis	PRP C140	Adult	Drakes Beach, California, USA	AY821758	AY821745
Anisakis sp.	Eumetopias jubatus	SSL 17	Adult	Seward, Alaska, USA	AY821756	AY821738
Anisakis sp. Clone 2	Sebastes sp.		Larva	Northern California Coast, USA	U94749	
Anisakis sp. Clone 3	Sebastes sp.		Larva	Northern California Coast, USA	U94750	
Anisakis typica	Stenella longirostris		Adult	Coast of Brazil		AY826724
Anisakis ziphidarum	Ziphius cavirostris		Adult	South Africa		AY826725
Ascaris suum	Sus scrofa		Adult	Cassopolis, Michigan, USA	AY826773	
Baylisascaris procyonis	Procyon lotor	FDL 7	Adult	Cheshire, Connecticut, USA	AY826774	
Baylisascaris transfuga	Ursus americana	DJR 410	Adult	Pocahontus County, West Virginia, USA	U94754	
Contracaecum o. baicalensis	Phoca sibirica		Adult	Lake Baikal. Russia	AF226589	
Contracaecum eudvotulae	Eudvotula minor		Adult	Philip Island, Victoria, Australia	AF226586	
Contracaecum margolisi	Zalonhus californianus		Adult	Vancouver Island, Canada		AJ291470.
						AJ291471
Contracaecum microcephalum	Phalacrocorax pygmaeus		Adult	Scutari Lake, Yugoslavia	AF226573	
Contracaecum micropapillatum	Pelecanus onocrotalus		Adult	Assuan, Egypt	AF226587	
Contracaecum miroungae	Mirounga leonina		Adult	King George Island, Antarctica	AF226581	
Contracaecum multipapillatum	Pelecanus crispus		Adult	Psatatopi, Greece	AF226574	
Contracaecum multipapillatum cl 1	Mugil curema		Larva	Grand Lagoon, Horn Island, Mississippi	U94755	
Contracaecum multipapillatum cl 3	Mugil curema		Larva	Grand Lagoon, Horn Island, Mississippi	U94756	
Contracaecum ogmorhini	Arctocephalus pusillus pusillus		Adult	South Africa	AF226582	
Contracaecum osculatum A	Erignathus barbatus		Adult	St. Anthony, Newfoundland, Canada	AF226583	
Contracaecum osculatum B	Phoca groenlandica		Adult	Front, Newfoundland, Canada	AF226580	
Contracaecum osculatum s. str	Myoxocephalus quadricomis		Larva	Geta, Åland, Finland	AF226576	
Contracaecum radiatum	Leptonychotes weddelli		Adult	Weddell Sea, Antarctica	AF226577	
Contracaecum rudolphii A	Phalacrocorax carbo		Adult	Policoro, Italy	AF226585	
Contracaecum rudolphii B	Phalacrocorax carbo		Adult	Policoro, Italy	AF226579	
Contracaecum septentrionale	Phalacrocorax carbo		Adult	Husavik, Iceland	AF226588	
Contracaecum sp.	Zalophus californianus	CSL 4881	Adult	Monterey, California, USA	AY821771	AY821753
Contracaecum sp.	Zalophus californianus	CSL 4966	Adult	Morro Bay, California, USA	AY821768	AY821752
Contracaecum sp.	Zalophus californianus	CSL 4836	Adult	Santa Cruz, California, USA	AY821769	AY821750
Contracaecum sp.	Zalophus californianus	CSL 5034	Adult	San Francisco, Crissy Field, California, USA	AY821770	AY821751
Goezia pelagia	Chaetodipterus faber		Adult	East Ship Island, Mississippi Gulf Coast, USA	U94758	
Heterocheilus tunicatus	Trichechus manatus		Adult	Citrus County, Florida, USA	AF226592	
Hysterothylacium auctum	Zoarces viviparus		Adult	Geta, Aland, Finland	AF226591	
Hysterothylacum fortalezae	Lutjanus campechanus		Adult	25 mi S Horn Island, Mississippi Gulf Coast, USP	A U94760	

TABLE I. Specimen information and GenBank accession numbers for taxa used for comparative analyses.

					- 4	
					GenBank ad	cession no. [†]
Species	Host	Host ID*	Stage	Collection locality	LSU	STI
Hysterothylacium pelagicum Hysterothylacium reliquens Iheringascaris inquies Parascaris equorum Phocascaris sp. Phocascaris sp. Porrocaecum depressum Pseudoterranaova decipiens s. stt.	Coryphaena hippurus Micropogonias undulatus Rachycentron canadum Equus caballus Cystophora cristata Phoca groenlandica Phoca groenlandica Strix varia Myoxocephalus scorpius		Adult Larva Adult Adult Adult Adult Adult Larva	Gulf Coast of Mississippi, USA Davis Bayou, Ocean Springs, Mississippi, USA Petit Bois oil rig, Mississippi Gulf, USA Baton Rouge, Louisiana, USA Front, Newfoundland, Canada Sotra, Norway Gulf of St. Lawrence, Newfoundland, Canada Baton Rouge, Louisiana, USA	AF226590 U94762 U94762 AY821775 AF226578 AF226578 AF226575 U94765	
Pseudoterranaova sp. Pseudoterranaova sp. Pseudoterranaova sp. Pseudoterranaova sp. Pseudoterranaova sp. Pseudoterranova sp.	Zalophus californianus Zalophus californianus Zalophus californianus Phoca vitulina Eumetopias jubatus Mirounga angustirostris Eumetopias jubatus	CSL 4934 CSL 4994 CSL 5024 HS 1421 HS 2 SSL NES 5 SO	Adult Adult Adult Adult Adult Adult Adult Adult	ada Muir Beach, Marin County, California, USA Monterey, California, USA Monterey, California, USA Pacifica, Rockaway Beach, California, USA Richardson Bay, California, USA Seward, Alaska, USA Santa Cruz, California, USA Monterey, California, USA Monterey, California, USA Iwani, Japan	AY821766 AY821764 AY821763 AY821763 AY821765 AY821767 AY821761 	AY821748 AY821748 AY821747 AY821744 AY821744 AY821737 AY821741 AY821741 AJ413973, AJ413973,
Pseudoterranova bulbosa Pb1 Pseudoterranova bulbosa Pb5	Erignathus barbatus Erignathus barbatus		Adult Adult	Newfoundland, Canada Newfoundland, Canada		AJ413969, AJ413971 AJ413970,
Pseudoterranova cattani Pc1 Pseudoterranova cattani Pc6	Otaria byronia Otaria byronia		Adult Adult	Concepcion, Chile Concepcion, Chile		AJ413972 AJ413981, AJ413983 AJ413982,
Pseudoterranova decipiens s.l. PdCAI Pseudoterranova decipiens s. str. PdOe1	Chaenocephalus aceratus Osmerus eperalanus		Larva Larva	South Shetland Islands, Antarctica Elbe estuary, Germany		AJ413984 AJ413979, AJ413980 AJ413975,
Pseudoterranova decipiens s. str. PdOe5 Pseudoterranova decipiens s. str. Pd1	Osmerus eperlanus Phoca vitulina		Larva Adult	Elbe estuary, Germany Newfoundland, Canada		AJ413978 AJ413976, AJ413977 AJ413967,
Pseudoterranova krabbei Pk1	Halichoerus grypus		Adult	Froya Island, Norway		AJ413968 AJ413965,
Raphidascaris acus Terranova caballeroi Toxascaris leonina Toxocara canis	Esox lucius Nerodia cyclopion Vulpes vulpes Canis familiaris		Adult Adult Adult Adult Adult	Geta, Åland, Finland Hammond, Louisiana, USA Brookings, South Dakota DeKalb, Illinois, USA	AY821772 U94767 U94769 U94768	000014LA

TABLE I. Continued.

* Host identification (ID) designators were not assigned by all collectors. † Underlined GenBank numbers are new submissions sequenced herein.

FIGURE 1. Strict consensus of 4 equally parsimonious trees inferred from LSU rDNA sequences. Trees inferred using unweighted MP from a ProAlign alignment after excluding sites with minimum posterior probabilities of 60% or less (52 of 712 sites). These 4 MP trees required 774 steps and had a C.I. of 0.53. Bootstrap percentages of clades (\geq 70%) as inferred by MP are shown above internal nodes. Vertical black bars mark *Anisakis, Contracaecum*, and *Pseudoterranova* taxa with identical LSU sequences as inferred from pairwise comparison of the alignment without exclusion of sites. Tree rooted by *Heterocheilus tunicatus* outgroup. Abbreviations for genera: An (*Anisakis*), As (*Ascaris*), Ba (*Baylisascaris*), Co (*Contracaecum*), Go (*Goezia*), Hy (*Hysterothylacium*), Ih (*Iheringascaris*), Pa (*Parascaris*), Ph (*Phocascaris*), Po (*Porrocaecum*), Ps (*Pseudoterranova*), Ra (*Raphidascaris*), Te (*Terranova*), To (*Toxocara*), Tx (*Toxascaris*). Abbreviations for seal), NES (northern elephant seal), PRP (Pacific rightwhale porpoise), SO (sea otter), SSL (Steller's sea lion).

FIGURE 2. Maximum likelihood tree inferred from LSU rDNA sequences. Tree inferred from a ProAlign alignment after excluding sites with minimum posterior probabilities of 60% or less (52 of 712 sites). Vertical black bars mark *Anisakis*, *Contracaecum*, and *Pseudoterranova* taxa with identical LSU sequences as inferred from pairwise comparison of the alignment without exclusion of sites. Bootstrap percentages of clades (\geq 70%) as inferred by ML are shown above internal nodes. Likelihood search conducted using TVM+1+G model with gamma shape = 0.7169 and Pinvar = 0.3443 as selected by ModelTest. Tree rooted by *Heterocheilus tunicatus* outgroup. Abbreviations for genera: An (*Anisakis*), As (*Ascaris*), Ba (*Baylisascaris*), Co (*Contracaecum*), Go (*Goezia*), Hy (*Hysterothylacium*), Ih (*Iheringascaris*), Pa (*Parascaris*), Ph (*Phocascaris*), Po (*Porrocaecum*), Ps (*Pseudoterranova*), Ra (*Raphidascaris*), Te (*Terranova*), To (*Toxocara*), Tx (*Toxascaris*). Abbreviations for host species and individual host identifier follow selected parasite species: CSL (California sea lion), HP (harbor porpoise), HS (harbor seal), NES (northern elephant seal), PRP (Pacific rightwhale porpoise), SO (sea otter), SSL (Steller's sea lion).

				10	0 20) 30) 40) 50	0 60
C. ogmorhini	s.	str.	APD	ATCGAGCTAA	ACCAAAAAGT	CTCCTTACGT	GCATAAATTC	CATTTGCGCG	TAATCGTGAG
C. ogmorhini	s.	str.	APP		• • • • • • • • • • •	• • • • • • • • • • •			• • • • • • • • • • •
C. margolisi					• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
Contracaecum	sp.	CSL	4966	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	
Contracaecum	sp.	CSL	4836	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
				_					
				7	0 80) 90) 10	0 1	10 120
C. ogmornini	s.	str.	APD	CCATGCAGCG	AGTCATACAC	ATGTGGTGGC	GACCGTCGGC	TGTTTTTCRT	TTGGCTGACA
C. Ogmornini	s.	str.	APP	• • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • •	A.	••••
Contragaogum	CCT	1966	5		•••••	•••••	AC	А. Л	•••••
Contracaecum	en	CSL	1836	•••••	•••••	•••••	AG	A.	•••••
concracacoum	SP.	COL	4050						
				1:	30 14	40 15	50 1 <i>6</i>	50 1.	70 180
C. oqmorhini	s.	str.	APD	ATGGCTTATG	GCTTGCTGTG	TGTTGAGGGG	AAGTGAGTGA	TCCGATATGC	TAGAAAGGCG
C. ogmorhini	s.	str.	APP						
C. margolisi									
Contracaecum	sp.	CSL	4966						
Contracaecum	sp.	CSL	4836						
				19	90 20	2	10 22	20 23	30 240
C. ogmorhini	s.	str.	APD	GATCGATGGC	GCTCATTTCC	TCGTTATTCT	CAACAACGGT	GTCCACTTTG	GCGTCTACGC
C. ogmorhini	s.	str.	APP	•••••	•••••	•••••	•••••	•••••	•••••
C. margolisi		CCT	1066	• • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • • • •
Contracaecum	sp.	CSL	4900	•••••	•••••	•••••	•••••	•••••	•••••
concracaecum	sp.	COL	4000	•••••	•••••	•••••	•••••	•••••	•••••
				21	50 26	50 2.	70 28	30 24	90 300
C. ogmorhini	s.	str.	APD	-TCACCTAGC	TATCGCCCGG	ACCGTCGGTA	GCGATGAAAG	GTGGGGAGAA	AGTTCCTCTC
C. ogmorhini	s.	str.	APP						
C. margolisi					T				
Contracaecum	sp.	CSL	4966	c	T				
Contracaecum	sp.	CSL	4836	c	Y	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •
				2	10 24	20 2.	20 24	10 21	50 200
C ogmorhini	e	etr	מפג	татсасттса		TGAGCCCTCC	0 34 CTCACCCCC	CCANAACCCA	30 300 300
C. ogmorhini	s.	str.	APP		GEAGACTTAA	IGAGECETGE		CCAAAACCCA	AAACACAACC
C. margolisi									
Contracaecum	sp.	CSL	4966						
Contracaecum	sp.	CSL	4836						
				3.	70 38	30 39	90 40	0 4	10 420
C. ogmornini	s.	str.	APD	GTTTCTTTTC	ATTTCCGAAG	TTGACCGATG	AGTCGAGGCG	TCCCGCTGT-	CCATTCTTGG
C. ogmornini	s.	str.	APP	• • • • • • • • • • •	• • • • • • • • • • • •	•••••	• • • • • • • • • • •	•••••	• • • • • • • • • • •
Contracaecum	en	CSL	1966	•••••	•••••	•••••	•••••	····	•••••
Contracaecum	sp.	CSL	4900	•••••	•••••	•••••	•••••	с т	•••••
concractuccum	op.	001	1000						
				4	30 44	40 45	50 46	50 41	70 480
C. ogmorhini	s.	str.	APD	ATATGCGGGC	GTGTTGATGA	GTCGTTAACT	AATATTCAAT	ACTATCCGCA	CAATGCTTCA
C. ogmorhini	s.	str.	APP						
C. margolisi									• • • • • • • • • • •
Contracaecum	sp.	CSL	4966	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •		
Contracaecum	sp.	CSL	4836	•••••	• • • • • • • • • • •	•••••	•••••	•••••	•••••
				4	90 50	10 5	10 53	0 5	30 540
C. ogmorhini	s .	str.	APD	GACGGTTCGT	GTGAAGCGTG	TGGTGCATTC	GACAAGCAGT	GTCCCTTTGG	50 540 GGCGCTCCTT
C. oqmorhini	s.	str.	APP						
C. margolisi									
Contracaecum	sp.	CSL	4966						
Contracaecum	sp.	CSL	4836						
				5	50 50	50 5'	70 58	30 51	90 600
C. ogmorhini	s.	str.	APD	GCCTGGTTTG	AACGGCAAAT	TATTGCAAAG	GTTTACTCGG	TAAGCAGCAA	TAATGGCCGT
C. ogmorhini	s.	str.	APP						
C. margolisi				.т		R	т		
Contracaecum	sp.	CSL	4966	.T			т		
Contracaecum	sp.	CSL	4836	.T	• • • • • • • • • • •		т	• • • • • • • • • • •	• • • • • • • • • • •
				<i>c</i> .	10		20 64	10 5	=0
C ormarhini		0+r		5. AAGTCTCTCTCTCT	10 62 mmcammcmcm		30 64 ATCCCCCCCCC		50 56U TCACTCCCTC
C. ogmornini	s.	str.	APD	AAGTGTGAGA	TTGATTGTGT	ACGTCCCTCG	ATGCGGCCCC	CAGTATITGT	TGACTGCCTC
C. margoligi	5.	JCT.							
Contracaecum	sp.	CSL	4966						
Contracaecum	sp.	CSL	4836						
	-								
				6	70 68	30 69	90 70	0 7	10 720
C. ogmorhini	s.	str.	APD	TGGTGGTGAC	TGGGGGTTAA	GTATCGGATT	ATCGAAAGAA	TGTGACATGT	CTTATACGGT
C. ogmorhini	s.	str.	APP		• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	•••••
c. margolisi		0.07	1000	•••••	• • • • • • • • • • • •	•••••	•••••	•••••	•••••
Contracaecum	sp.	CSL	4900 1836	•••••	•••••	•••••	•••••	•••••	••••
concracaecam	sp.	СЭТ	1030		•••••	•••••	•••••	•••••	•••••
				728					
C. ogmorhini	s.	str.	APD	TATGTGCT					
C. ogmorhini	s.	str.	APP						
C. margolisi		_							
Contracaecum	sp.	CSL	4966	• • • • • • • • •					
contracaecum	sp.	CSL	4836	••••					

FIGURE 3. Alignment of ITS-1 (positions 1–451) and ITS-2 (452–728) sequences representing *C. ogmorhini* s.l. taxa. Dots indicate identity with the first sequence and dashes are inferred insertion-deletion events; standard IUB ambiguity codes are used, i.e., Y = C/T, R = A/G. *Contracaecum* CSL 4966 and 4836 include the diversity of sequences found in 4 specimens from *Zalophus californianus* obtained from California waters. Sequences of *Contracaecum ogmorhini* s. str. from austral localities are represented by specimens from *Arctocephalus pusillus pusillus pusillus contracaecum ogmorhini* s. str. from austral localities are represented by specimens from *Arctocephalus pusillus pusillus pusillus contentaecum ogmorhini* s. str. from a *Z. californianus* from Pacific Canada.

	1	2	3	4	5	6	7	8	9	10	11	12	13
1. A. typica													
2. A. sp. SSL 17	149												
3. A. pegreffii	151	2											
4. A. sp. PRP C140	149	0	2										
5. A. sp. PRP C140	149	0	2	0									
6. A. sp. HP C141	149	3	5	3	3								
7. A. simplex s. str.	148	2	4	2	2	1							
8. Anisakis NES 1940	147	4	6	4	4	5	4						
9. A. simplex C.	147	4	6	4	4	5	4	0					
10. A. sp. NES 4	146	4	6	4	4	5	4	0	0				
11. A. sp. NES 2013	147	6	8	6	6	7	6	2	2	1			
12. A. ziphidarum	128	43	45	43	43	44	44	44	44	43	45		
13. A. physeteris	153	129	131	129	129	129	130	132	132	131	132	128	
14. A. brevispiculata	144	126	128	126	126	124	125	124	124	123	124	123	37

TABLE II. Pairwise nucleotide distances (absolute differences) for ITS-1, 5.8S, and ITS-2 sequences between Anisakis taxa.

a large range of absolute distances (Table II), with many comparisons showing 2 or more differences. Comparisons involving *Anisakis typica*, *Anisakis ziphidarum*, *Anisakis physeteris*, or *Anisakis brevispiculata* yielded large pairwise distances. Two of 3 *Anisakis* specimens from *M. angustirostris* (NES) were identical with *A. simplex* C, and these were the only matches between *Anisakis* reference ITS sequences and the 7 *Anisakis* from hosts inhabiting northern Pacific waters (Fig. 4). Identical sequences were found between 2 specimens from *L. borealis* (PRP) and 1 specimen from *E. jubatus* (SSL). This sample of 7 *Anisakis* individuals included 3 unique sequences from 5 individual nematodes (hosts SSL 17, PRP C140, HP C141, NES 2013) that did not match ITS sequences of *A. brevispiculata*, *Anisakis simplex* s. str., *Anisakis simplex* C., *Anisakis pegreffii*, *A. physeteris*, *A. typica*, and *A. ziphidarum*.

For the phylogenetic analysis of Anisakis taxa, using Pro-Align to detect and remove unreliably aligned sites by their posterior probabilities excluded 198 of 922 ITS sites. This dataset of 724 characters included 96 phylogenetically informative characters. Maximum parsimony analysis of this ITS dataset yielded 3 most parsimonious trees of 240 steps (C.I. = 0.88); ML analysis yielded 3 trees of equal likelihood. The strict consensus of the MP trees (Fig. 5) depicted A. physeteris plus A. brevispiculata as the sister group to the remaining Anisakis taxa. This clade was reliably supported in the MP bootstrap tree (92%) but was not recovered in the ML bootstrap tree. The remaining 12 ingroup Anisakis were monophyletic in ML and MP consensus trees, with 100% bootstrap support. Anisakis taxa from hosts collected in northern Pacific waters were nested within the strongly supported clade that included A. pegreffii, A. simplex s. str., and A. simplex C. A clade including A. simplex s. str., A. pegreffii, and specimens from P. phocoena (HP), L. borealis (PRP), and E. jubatus (SSL) was recovered in the strict consensus of MP and ML trees and received moderate bootstrap support.

For the phylogenetic analysis of *Pseudoterranova* taxa, using ProAlign to detect and remove unreliably aligned sites excluded 83 of 681 ITS characters. This yielded a dataset of 598 characters that included 23 phylogenetically informative sites. Maximum parsimony analysis yielded 2 equally parsimonious trees of 114 steps (C.I. = 0.93); ML analysis recovered 2 trees of equal likelihood. A strict consensus of MP trees (Fig. 6) and 1 for ML trees depicted *P. decipiens* s.l. from *Chaenocephalus aceratus* (Blackfin icefish) as sister to the remaining taxa, which were supported as monophyletic with moderate support in MP and ML bootstrap analyses. *Pseudoterranova* specimens from hosts inhabiting northern Pacific waters were part of a clade in MP and ML consensus trees that included *P. decipiens* s. str. and *P. azarasi*.

DISCUSSION

Molecular approaches to delimiting and identifying anisakid nematodes have markedly influenced our understanding of their systematics and biodiversity (Paggi and Bullini, 1994; Bullini et al., 1997). For example, in a detailed morphologically based revision of Anisakis, Davey (1971) recognized 3 valid species (A. simplex, A. typica, and A. physeteris) and retained 4 others as species inquirendae (Anisakis dussumierii, Anisakis insignis, Anisakis schupakovi, and Anisakis alexandri). Multilocus allozyme methods, which have a long history of application to investigations of Anisakis diversity (Mattiucci et al., 1986; Nascetti et al., 1986; Orecchia et al., 1986; Paggi and Bullini, 1994; Bullini et al., 1997), have independently supported the validity of A. simplex s. str., A. typica, A. physeteris, and A. schupakovi, plus other species not recognized as valid by Davey (1971), such as A. brevispiculata (Mattiucci et al., 2001). These methods have also proved to be powerful tools for revealing cryptic Anisakis species, such as members of the A. simplex complex, including A. simplex C and A. pegreffii.

Multilocus protein electrophoresis with population-level sampling of *Anisakis*, *Contracaecum*, and *Pseudoterranova* has been used to detect evidence of distinct biological species in natural populations and develop allozyme keys for their identification (Mattiucci et al., 1997, 1998; Paggi et al., 2000). Reference individuals initially characterized by allozymes have also been used to develop DNA-based approaches for species identification such as PCR-RFLP and direct sequencing of ITS rDNA or mitochondrial DNA. For molecular systematics, multilocus approaches offer significant theoretical advantages for

	3	10 32	20 3	30 3.	40 3	50 360
A. simplex s. str.	GACTTAATGA	GCCACGCT	AGGTGGCCGC	CAAAACCCAA	AACACAACCG	GTCTATTTGA
A. simplex C						• • • • • • • • • •
A. pegreffii				• • • • • • • • • •		• • • • • • • • • •
A. ziphidarum	• • • • • • • • • • •			• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A. physeteris	• • • • • • • • • • •	•••••	Τ	• • • • • • • • • • •	A	••••
A. brevispiculata	• • • • • • • • • • •	G	TC	• • • • • • • • • •	A	• • • • • • • • • •
A. typica	•••••	CT	• • • • • • • • • • •	G	C.AA	T.GT
Anisakis sp. PRP C140	••••	•••••	••••	••••	••••	••••
Anisakis sp. HP C141	• • • • • • • • • •	•••••	••••	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •
Anisakis sp. NES 2013	•••••	•••••	•••••	••••	•••••	• • • • • • • • • •
	2	70 39	20 3	90 1	00 1	10 /20
A simpley s str		70 50 ጥጥጥሮ አጥጥሮ ጥል				
A. simplex C	CATIOTIA==	TITCATIOIA	1010110/2023	AIGIAIIACO	GIORMEIGIC	
A. pegreffii	· · · · · · · · · · -=					
A. ziphidarum		C				G
A. physeteris	CAG	.A.GCG.TG.	CA.TAC.TT.	T.	.CAA	GT
A. brevispiculata	CAG	.A.GCG.TG.	CA.TATT.	т.	.CAA	G
A. typica	TGAC	T	GAATT	GT.	C.AG.GCA	TG.AATCA
Anisakis sp. PRP C140						–
Anisakis sp. HP C141						–
Anisakis sp. NES 2013						C
	4	30 44	10 4	50 4	60 4	70 480
A. simplex s. str.	TTTCT	GGACTG	TGAAGCATTC	GGCAAGCAAT	TGCTGTTGTG	TTGTTGGTGA
A. simplex C	••••		• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •
A. pegreffii	••••		• • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •
A. ziphidarum	••••AG	T	• • • • • • • • • •	G	TC	A
A. physeteris	-GCTC	C.G.C.	A	G.	C	T
A. brevispiculata	-G.T	C.G		G.	C	T
A. typica	CCTCAG	ATTGTT		GG	TC	С.Т.
Anisakis sp. PRP C140						
Anisakis sp. HP C141	T					• • • • • • • • • •
Anisakis sp. NES 2013						• • • • • • • • • •
	4	90 50	0 5	10 5	20 5	30 540
A. simplex s. str.	TTCTATCATG	G	ACAATATG	ACGAGCGGTT	CCTTGCTTAG	TGATGAC-
A. simplex C	• • • • • • • • • • •	•		c	• • • • • • • • • •	T-
A. pegreffii	• • • • • • • • • • •	•		••••	• • • • • • • • • •	
A. ziphidarum	GAG	•		G.ACA	• • • • • • • • • •	.TA-
A. physeteris	.GG		GG.C.T	TGA.TC	GAGCGGC	TC
A. brevispiculata	CGG		GG.C.C	GGTC	GAACAGC	T-
A. typica	AGG.GA.GAT	TGAATCGGCA	CCG.GCG.CA	CGACA		.TTGAC
Anisakis sp. PRP C140						
Anisakis HP C141						
Anisakis sp. NES 2013		•		C		T-
	5	50 50	50 5	70 5	80 5	90 600
A. simplex s. str.	-AAAAGAAGA	CGTCAACACC	GAATCTACTA	ТАСТ	АСТААТАСТА	GTATATAGGT
A. simplex C		• • • • • • • • • •	• • • • • • • • • •	••••••	• • • • • • • • • •	• • • • • • • • • •
A. pegreffii		• • • • • • • • • • •		•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • •	• • • • • • • • • •
A. ziphidarum	G.G		c	•••••••••••••••••••••••••••••••••••••••	G	G
A. physeteris	GCTC	.T.GCTT.GT	TGT.G.GTG.	GGAG	GTCAAC	C-GA.CA
A. brevispiculata	GCTC	.T.GCTT.GT	TGT.G.GTG.	AGAG	GTTAAC	C-GA.CG
A. typica	АС.Т	.CCGC	CCG.CTGC	AACACTAG	GAGG	G.CAG
Anisakis sp. PRP C140						
Anisakis sp. HP C141						
Anisakis sp. NES 2013	A		C	•••••	• • • • • • • • • •	G

FIGURE 4. Alignment of ITS-1 (positions 1–395) and ITS-2 (396–765) sequences of *Anisakis* taxa. One representative of each unique sequence was included for comparison. Dots indicate identity with the first sequence and dashes are inferred insertion-deletion events.

	33	10 32	20 3	30 3	40 3	50 360
A. <i>simplex</i> s. str.	GACTTAATGA	GCCACGCT	AGGTGGCCGC	CAAAACCCAA	AACACAACCG	GTCTATTTGA
A. simplex C						
A. pegreffii						
A. ziphidarum						
A. physeteris			т		A	
A. brevispiculata		G	тс		A	
A. typica		Ст		G	C.AA	Т. G Т
Anisakis sp. PRP C140						
Anisakis sp. HP C141						
Anigakig sp. NES 2013	•••••		•••••	•••••	•••••	•••••
AILBUXIS SP. NES 2015	••••	•••••	•••••	• • • • • • • • • • •	•••••	• • • • • • • • • • •
	2.	70 20	20 2	00 1	00 1	10 420
A cimplox c str						
A. Simplex S. Sti.	CATIGITA	IIICAIIGIA	IGIGIIGAAA	AIGIAIIACG	GIGAACIGIC	IICACG-GII
A. Simplex C		•••••	•••••	•••••	•••••	
A. pegreiiii	•••••		• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	
A. zipnidarum		C		•••••		G
A. physeteris	CAG	.A.GCG.TG.	CA.TAC.TT.	•••••T•	.CAA	GI
A. brevispiculata	CAG	.A.GCG.TG.	CA.TATT.	••••••••••••••••••••••••••••••••••••••	.CAA	••••G•••
A. typica	TGAC	T	GAATT	GT.	C.AG.GCA	TG.AATCA
Anisakis sp. PRP C140	••••	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •
Anisakis sp. HP C141	•••••	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	–
Anisakis sp. NES 2013		• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	C
	43	30 44	40 4	50 4	60 4	70 480
A. simplex s. str.	TTTCT	GGACTG	TGAAGCATTC	GGCAAGCAAT	TGCTGTTGTG	TTGTTGGTGA
A. simplex C	••••					
A. pegreffii A. ziphidarum						
	AG	T		G	TC	A
A. physeteris	-GCTC	C.G.C.	A	G.	C	T
A. brevispiculata	-G.T	C.G		G.	C	T
A. typica	CCTCAG	ATTGTT		GG	TC	C.T.
Anisakis sp. PRP C140						
Anisakis sp. HP C141	T					
Anisakis sp. NES 2013						
	49	90 50	0 5	10 5.	20 5	30 540
A. simplex s. str.	TTCTATCATG	G	ACAATATG	ACGAGCGGTT	CCTTGCTTAG	TGATGAC-
A. simplex C				C		· · · · · · T -
A. pegreffii						
A. ziphidarum	GAG			G ACA		Τ Δ-
A physeteris	GG		GG C T	тса т С	GA GCGGC	TC -
A brevispiculata						то
A. bievispiculucu		<u> <u> </u> <u></u></u>			UA ACAUC	
Anicakia an DPD C140	AGG.GA.GAI	IGAAICGGCA	CCG.GCG.CA	CGACA	• • • • • • • • • •	•11G••••AC
Anisakis sp. PRP C140	•••••	·		•••••	•••••	
Anisakis nP C141	•••••	•			•••••	
ANISAKIS Sp. NES 2013	••••	•		••••	••••	····
	E 1	=0 = F	со г	70 5	0.0 5	0.0 6.0.0
	C		ou o	/0 5		<i>90</i> 600
A. simplex s. str.	-AAAAGAAGA	CGTCAACACC	GAATCTACTA	TACT	АСТААТАСТА	GTATATAGGT
A. SIMPLEX C		••••	•••••	•••••	••••	••••
A. pegreiili		••••	•••••	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •
A. ziphidarum	G.G		C		G	G
A. physeteris	GCTC	.T.GCTT.GT	TGT.G.GTG.	GGAG	GTCAAC	C-GA.CA
A. brevispiculata	GCTC	.T.GCTT.GT	TGT.G.GTG.	AGAG	GTTAAC	C-GA.CG
A. typica	AC.T	.CCGC	CCG.CTGC	AACACTAG	GAGG	G.CAG
Anisakis sp. PRP C140		••••	• • • • • • • • • •	••••••	• • • • • • • • • •	••••
Anisakis sp. HP C141		• • • • • • • • • • •		••••••	• • • • • • • • • • •	
Anisakis sp. NES 2013	A	• • • • • • • • • •	C	•••••	• • • • • • • • • •	G

FIGURE 4. Continued.

	63	10 62	20 63	30 64	40 6	50	660
A. simplex s. str.	GAGGTGCTTT	TGGTGGTCAC	AAAAGTGACA	AGTATGCCAT	TTCATAGGGG	CAACAACCA	.G
A. simplex C	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	•
A. pegreffii	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	•
A. ziphidarum	• • • • • • • • • • •	• • • • • • • • • • •	A.	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	•
A. physeteris	CA.A.	AG.	CA.	C	• • • • • • • • • •	• • • • • • • • •	•
A. brevispiculata	CA.A.	AG.	.CCG.	C	• • • • • • • • • •	• • • • • • • • •	•
A. typica	.T.TGG.G	A.TT.G.T	GGTCACA.A.	GTGCC	T	• • • • • • • • • •	•
Anisakis sp. PRP C140	••••	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	•
Anisakis sp. HP C141	••••	••••	••••	••••	••••	•••••	•
Anisakis sp. NES 2013	••••	••••	••••	•••••	•••••	••••	•
	67	70 60	20 60	0.0 7.	<u> </u>	10	720
A simploy s str	CATACCT	/0 00 САТ		20 / · CTTCATCAAA			120
A. Simplex S. Sti.	CATACGI	GA1	AAGIIGGCIG	GIIGAIGAAA	CGGCAA	CGGAAIG	-
A. Simplex C A pegreffii			•••••	•••••			_
A ziphidarum	Δ		•••••	•••••			_
A physeteris	····A·		ст Ст	· · · · · · · · · · · · · · · · · · ·	-TGTT	G ==	_
A. brevispiculata			. Т	C	. TGTT	G 	_
A. typica	СТА	TGATACTAG.	.G			TG	C
Anisakis sp. PRP C140							_
Anisakis sp. HP C141							_
Anisakis sp. NES 2013							-
	73	30 74	40 7!	50 70	60		
A. simplex s. str.	ACGGACGT	CTATGTGATC	AAA-AATGAT	ACTATTTGAC	CTCAG		
A. simplex C		T		• • • • • • • • • •	• • • • •		
A. pegreffii		T		• • • • • • • • • •	• • • • •		
A. ziphidarum	T	T	· · · - · · · · T ·	ΤΑ	• • • • •		
A. physeteris		G.G	.GGC.T.	TG	• • • • •		
A. brevispiculata		G.G	.GGC.T.	TG	• • • • •		
A. typica	GC.T.C.T	GATC.AAG	СG.ТТ.	CG	• • • • •		
Anisakis sp. PRP C140		· · · · · ^T · · · ·		••••	••••		
Anisakis sp. HP Cl41		•••••T••••	•••-••	•••••	••••		
Anisakis sp. NES 2013		•••• ^T ••••	•••-	••••	••••		

FIGURE 4. Continued.

detecting and delimiting species when investigating natural populations (Nadler, 2002, 2005), whereas DNA diagnostic markers based on a single locus are most useful as practical tools for identification of known species from either larvae or adults. Single-locus studies based on sequencing or SSCP methods have the potential to reveal previously uncharacterized genetic variation, as in this study. However, interpreting this variation is often difficult, in particular, when relatively few individuals have been studied. Although such unique genetic variants may represent the derived states characteristic of distinct evolutionary species (and the markers of noninterbreeding populations as inferred for biological species), an alternative interpretation is that they represent intraspecific polymorphisms. When the genetic differentiation between known species and newly discovered genetic variants is large, it is tempting to hypothesize that the new variant represents an uncharacterized species, even when these data come from 1 locus. More typically, there are few differences between new variants and known species, as in this study, and multilocus studies of population samples are required to assess whether the genetic differences are fixed and the pattern consistent with separate species. Nevertheless, discovering novel sequences, as reported here for specimens of Anisakis and Contracaecum, is valuable because it reveals that previously unrecognized species may exist. Genetic data for fully testing hypotheses of new species (species delimitation) must come from additional research, such as comparisons of nucleotide sequences from multiple loci (and interpretation of multiple gene trees) or from multilocus protein electrophoresis (and population genetic analysis).

Pseudoterranova adults collected from hosts inhabiting northern Pacific waters, including Z. californianus (CSL), M. angustirostris (NES), P. vitulina (HS), E. lutris (SO), and E. jubatus (SSL), had LSU and ITS sequences that were identical with P. decipiens s. str. (formerly called P. decipiens B). These results represent new host records for P. decipiens s. str. in M. angustirostris, E. lutris, and E. jubatus, extending the confirmed host and geographic range of this anisakid, which is geographically widespread in pinniped hosts of the Northern Hemisphere. Surveys of marine mammals from Pacific waters using morphological approaches have reported P. decipiens s.l. or Pseudoterranova sp. from these same hosts plus C. ursinus (NFS), in which it has a high prevalence (Spraker et al., 2003). Pseudoterranova decipiens s. str. is 1 of 4 species from the P. decipiens complex, which also includes Pseudoterranova bulbosa, Pseudoterranova krabbei, and P. azarasi (Mattiucci et al., 1998; Paggi et al., 2000). The latter was redescribed based on specimens from E. barbatus (BS) and E. jubatus (SSL) collected in Japanese waters of the northern Pacific Ocean. These investigators tested 237 individual adult P. decipiens s.l. from these 2 host species using allozyme electrophoresis and only

FIGURE 5. Strict consensus of 3 equally parsimonious trees inferred from *Anisakis* ITS rDNA sequences. Trees inferred using unweighted MP from a ProAlign alignment after excluding sites with minimum posterior probabilities of 60% or less (198 of 922 sites). These 3 MP trees required 240 steps and had a C.I. of 0.88. Bootstrap percentages of clades (\geq 70%) are shown above internal nodes, with MP values listed first, followed by ML values. Vertical black bars mark *Anisakis* taxa with identical ITS sequences as inferred from pairwise comparison of the alignment without exclusion of sites. Tree rooted by *Pseudoterranova decipiens* s. str. sequence. Abbreviations for host species and individual host identifier follow selected parasite species: HP (harbor porpoise), NES (northern elephant seal), PdCa (blackfin icefish), PdOe (european smelt), PRP (Pacific rightwhale porpoise), SSL (Steller's sea lion).

found individuals of *P. bulbosa* and *P. azarasi*. Although *P. azarasi* was not found in the small sample of nematodes examined in these North American hosts, 1 individual was polymorphic for the only ITS site that distinguishes *P. azarasi* from *P. decipiens* s. str. Additional research is needed to determine if this site is polymorphic within *P. decipiens* s. str. or *P. azarasi* (compromising the diagnostic utility of this ITS site in this case), or alternatively if this individual represents an F1 hybrid. Genetic evidence has revealed 1 instance of hybridization between *P. decipiens* s. str. and *P. krabbei* (Paggi et al., 1991), and hybridization of other anisakids has been suggested based on ITS sequences (Abollo et al., 2003).

Previous systematic analyses of *Pseudoterranova* species have included comparisons based on allozyme genetic distances (Paggi et al., 1991; Bullini et al., 1997; Paggi et al., 2000) and a phenogram of uncorrected ITS rDNA distances (Zhu et al., 2002). The allozyme studies indicated a close genetic relationship between *P. decipiens* s. str. and *P. azarasi* (Bullini et al., 1997; Paggi et al., 2000), with the topology: ((((*P. decipiens* s. str., *P. azarasi*), *P. krabbei*), *P. bulbosa*), *P. decipiens* E) (Bullini et al., 1997). Considering only taxa that were identified to

species, the ITS phenogram (Zhu et al., 2002) also depicted greatest similarity between P. decipiens s. str. and P. azarasi; however, their ITS phenogram was different from the allozyme tree: (((((P. decipiens s. str., P. azarasi), P. bulbosa), P. cattani), P. krabbei), P. decipiens Ca1). Zhu et al. (2002) have hypothesized that P. decipiens Ca1 is most likely equivalent to P. decipiens E. Maximum parsimony and ML analyses of ITS sequences (Fig. 6) also depicted a clade including P. azarasi and P. decipiens s. str.; however, the remaining topology was different from the previously published ITS analysis but was the same as the allozyme phenogram (excepting the absence of P. cattani from the allozyme study). Differences between these 2 analyses of ITS sequences are not unexpected, given that methods of inferring phenograms and phylogenetic trees involve very different assumptions. One potentially interesting phylogenetic result is that the Southern Hemisphere Pseudoterranova Ca1 and P. cattani are not sister taxa, suggesting a more complex evolutionary history than might be explained by a simple biogeographic scenario.

Contracaecum adults collected from *Z. californianus* (CSL) hosts inhabiting northern Pacific waters were identical in LSU

FIGURE 6. Strict consensus of 2 equally parsimonious trees inferred from *Pseudoterranova* ITS rDNA sequences. Only 2 of 8 new *Pseudoterranova* sequences representing hosts from northern Pacific waters were included; these sequences represented all the variation among these 8 sequences. Vertical black bars mark taxa with identical ITS sequences as inferred from pairwise comparison of the alignment without exclusion of sites. Trees inferred using unweighted MP from a ProAlign alignment after excluding sites with minimum posterior probabilities of 60% or less (83 of 681 sites). These MP trees required 114 steps and had a C.I. of 0.93. Bootstrap percentages of clades (\geq 70%) are shown above internal nodes, with MP values listed first, followed by ML values. Abbreviations for host species and individual host identifier follow selected parasite species: BS (bearded seal), CSL (California sea lion), GS (grey seal), HS (harbor seal), NES (northern elephant seal), PdCa (blackfin icefish), PdCe (european smelt), PRP (Pacific rightwhale porpoise), SASL (South American sea lion), SSL (Steller's sea lion).

sequence with C. ogmorhini s. str., but their ITS sequences matched neither C. ogmorhini s. str. nor C. margolisi. This apparent conflict between LSU and ITS rDNA can be explained by the more conservative substitution rate of this LSU region. All 4 Contracaecum individuals from Z. californianus differed from C. margolisi and C. ogmorhini s. str. at 1 site; 4 other ITS-1 site differences were noted, but the nature of these differences suggest they may represent errors in the previously published sequences. One individual specimen was polymorphic at the only ITS-1 site that is different between C. ogmorhini s. str. and C. margolisi. Although this individual nematode would not be confused with C. ogmorhini s. str. or C. margolisi due to the difference in ITS sequence at position 407 (Fig. 3), the presence of such site polymorphisms in the few individuals of C. ogmorhini s.l. examined indicates that more individuals should be sequenced to confirm that sites with differences are fixed within species. From a phylogenetic perspective, the LSU analysis establishes that the Contracaecum from these Z. californianus is most closely related to C. ogmorhini s.l. and C. rudolphii. Phylogenetic analysis of ITS sequences was not undertaken for *Contracaecum* because of the potential sequence errors previously noted and the lack of ITS variation (Fig. 3). Additional genetic studies are required to determine whether these novel sequences from California sea lion hosts represent a previously unrecognized species.

Anisakis adults collected from northern Pacific marine mammals included individuals of A. simplex C from 2 M. angustirostris (NES) hosts; this is a new host record for this species. None of the other 5 individuals had ITS sequences that matched known species. Specimens from L. borealis (PRP) and E. jubatus (SSL) were most closely related to A. pegreffii, as inferred from phylogenetic analysis of ITS rDNA. The unique sequence from P. phocoena (HP) was part of the clade that included A. pegreffii and A. simplex s. str. All the specimens from northern Pacific marine mammals were nested within the clade that included ((A. pegreffii, A. simplex s. str.) A. simplex C); these represent the 3 known species within the A. simplex species complex and are characterized (along with A. typica and A. ziphidarum) by having type I larvae sensu Berland (1961), which may represent the apomorphic (derived) state within Anisakis. Thus, these 3 unique ITS sequences may represent previously unidentified species of the A. simplex complex, but testing this hypothesis will require additional data. Previously published assessments of Anisakis relationships have been based on analysis of allozyme data (Bullini et al., 1997; Mattiucci et al., 1997; Paggi, Mattiucci et al., 1998; Mattiucci et al., 2002). Allozyme studies that have included explicit trees have indicated that a close genetic relationship exists among species of the A. simplex complex, with phenograms depicting the topology: ((((A. simplex s. str., A. simplex C), A. pegreffii), A. ziphidarum), A. physeteris) (Mattiucci et al., 1997; Paggi, Nascetti et al., 1998). In contrast to these multilocus phenograms, the MP and ML analyses of ITS sequences supported a sister-group relationship for A. pegreffii and A. simplex s. str., with A. simplex C as sister to this clade (Fig. 5). Although the ITS phylogeny contains more species than in the published allozyme phenograms, there is good agreement between phenetic clustering of allozyme data and phylogenetic analysis of ITS sequences.

Molecular phylogenetic studies of anisakids and other "aquatic" ascaridoids have been relatively limited with respect to species representation (Nadler and Hudspeth, 1998; Nadler et al., 2000; Nadler and Hudspeth, 2000). Phylogenetic support for Anisakidae and Raphidascarididae has varied according to both the genes analyzed and the types of analytical methods used (Nadler and Hudspeth, 1998; Zhu, Gasser, and Chilton, 1998; Nadler and Hudspeth, 2000; Shih, 2004). For example, phylogenetic analyses of SSU or LSU sequences recovered a raphidascarid clade, but did not find evidence of a monophyletic Anisakidae, whereas combined analysis of SSU and LSU sequences yielded a monophyletic Anisakidae using ML inference but not by MP (Nadler and Hudspeth, 1998). Such problems may be addressed by adding taxa, or characters, or both (Graybeal, 1998; Mitchell et al., 2000); however, in the most comprehensive phylogenetic analysis of Ascaridoidea, which included data from 3 genes plus morphological characters, support for the anisakid clade remained weak (Nadler and Hudspeth, 2000). To provide increased taxon representation, published and new 28S sequences were combined in an analysis that used a probabilistic approach to determine which sites were ambiguous with respect to multiple alignment and warranted exclusion from the phylogenetic analyses. In these analyses, Contracaecum diversity was well represented, and raphidascarids included 4 of 9 genera. Anisakinae was less well represented, with only members of the A. simplex complex, Terranova, and 1 species of Pseudoterranova. The latter genus shows relatively little ITS diversity among known species (Zhu et al., 2002), and, therefore, additional Pseudoterranova 28S sequences are unlikely to substantially alter the LSU tree. In contrast, Anisakis taxa show substantial ITS sequence diversity (Fig. 4), and because species with the most divergent ITS sequences (A. typica, A. physeteris, A. brevispiculata) are absent from the LSU trees, these trees cannot be considered definitive statements about Anisakis monophyly. Parsimony and ML analyses indicated that the Raphidascarididae, Contracaecum plus Phocascaris, and Anisakinae (Pseudoterranova, Anisakis, Terranova) are each monophyletic, the latter 2 groups with consistently strong (MP and ML) bootstrap support. Anisakidae was recovered in the ML analysis, but without reliable bootstrap support; this clade was absent from the MP tree. In general, clade support was weak at deeper nodes in the LSU gene tree as evidenced by low bootstrap values for both MP and ML. In this case, adding taxa did not appear to increase the resolution of rDNA trees when testing the monophyly of the Anisakidae or Ascarididae. Improving phylogenetic resolution for deeper nodes in the evolutionary history of Ascaridoidea will apparently require additional gene sequences, perhaps those with relatively conservative rates of evolutionary change (Nadler, 1995).

ACKNOWLEDGMENTS

We thank Derek Hyman and Eugene Bolotin for assistance with contig assembly and database management. This study was supported in part by NSF Tree of Life grant DEB-0228692.

LITERATURE CITED

- ABOLLO, E., L. PAGGI, S. PASCUAL, AND S. D'AMELIO. 2003. Occurrence of recombinant genotypes of *Anisakis simplex* s.s. and *Anisakis pegreffii* (Nematoda: Anisakidae) in an area of sympatry. Infection, Genetics and Evolution 3: 175–181.
- ADAMS, B. J. 1998. Species concepts and the evolutionary paradigm in modern nematology. Journal of Nematology 30: 1–21.
- BAEZA, M. L., V. MATHEU, A. RODRIGUEZ, M. DE BARRIO, P. TORNERO, M. RUBIO, AND J. M. ZUBELDIA. 2001. Excretory-secretory *Anisakis simplex* allergens: In vivo and in vitro studies. Journal of Allergy and Clinical Immunology **107**: S184.
- BERLAND, B. 1961. Nematodes from some Norwegian marine fishes. Sarsia 2: 1–50.
- BRATTEY, J., AND W. S. DAVIDSON. 1996. Genetic variation within *Pseudoterranova decipiens* (Nematoda: Ascaridoidea) from Canadian Atlantic marine fishes and seals: Characterization by RFLP analysis of genomic DNA. Canadian Journal of Fisheries and Aquatic Sciences 53: 333–341.
- —, AND I.-H. NI. 1992. Ascaridoid nematodes from the stomach of harp seals, *Phoca groenlandica*, from Newfoundland and Labrador. Canadian Journal of Fisheries and Aquatic Sciences **49**: 956– 966.
- —, AND G. B. STENSON. 1993. Host-specificity and abundance of parasitic nematodes (Ascaridoidea) from the stomachs of 5 phocid species from Newfoundland and Labrador. Canadian Journal of Zoology 71: 2156–2166.
- BULLINI, L., P. ARDUINO, R. CIANCHI, G. NASCETTI, S. D'AMELIO, S. MATTIUCCI, L. PAGGI, P. ORECCHIA, J. PLOTZ, B. BERLAND, J. W. SMITH, AND J. BRATTEY. 1997. Genetic and ecological research on Anisakid endoparasites of fish and marine mammals in the Antarctic and Arctic-boreal regions. *In* Antarctic communities: Species, structure, and survival, B. Battaglia, J. Valencia, and D. W. H. Walton (eds.). Cambridge University Press, Cambridge, U.K., p. 39–44.
- D'AMELIO, S., K. D. MATHIOPOULOS, C. P. SANTOS, O. N. PUGACHEV, S. C. WEBB, M. PICANÇO, AND L. PAGGI. 2000. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase chain reaction-based restriction fragment length polymorphism. International Journal for Parasitology 30: 223–226.
- DAVEY, J. T. 1971. A revision of the genus Anisakis Dujardin, 1845 (Nematoda: Ascaridata). Journal of Helminthology 45: 51–72.
- DI DECO, M. A., P. ORECCHIA, L. PAGGI, AND V. PETRARCA. 1994. Morphometric stepwise discriminant analysis of three genetically identified species within *Pseudoterranova decipiens* (Krabbe, 1878) (Nematoda: Ascaridida). Systematic Parasitology **29**: 81–88.
- FAGERHOLM, H. P., AND D. I. GIBSON. 1987. A redescription of the pinniped parasite *Contracaecum ogmorhini* (Nematoda, Ascaridoidea), with an assessment of its antiboreal circumpolar distribution. Zoologica Scripta 16: 19–24.
- GASSER, R. B., L. E. STEWART, AND R. SPEARE. 1996. Genetic markers in ribosomal DNA for hookworm identification. Acta Tropica 62: 15–21.
- GEORGE-NASCIMENTO, M., AND X. URRUTIA. 2000. Pseudoterranova cat-

tani sp nov (Ascaridoidea: Anisakidae), a parasite of the South American sea lion Otaria byronia De Blainville from Chile. Revista Chilena De Historia Natural **73**: 93–98.

- GRAYBEAL, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology **47**: 9–17.
- Hu, M., S. D'AMELIO, X. Q. ZHU, L. PAGGI, AND R. GASSER. 2001. Mutation scanning for sequence variation in three mitochondrial DNA regions for members of the *Contracaecum osculatum* (Nematoda: Ascaridoidea) complex. Electrophoresis 22: 1069–1075.
- KIJEWSKA, A., J. ROKICKI, J. SITKO, AND G. WEGRZYN. 2002. Ascaridoidea: A simple DNA assay for identification of 11 species infecting marine and freshwater fish, mammals, and fish-eating birds. Experimental Parasitology **101:** 35–39.
- LÖYTYNOJA, A., AND M. C. MILINKOVITCH. 2003. A hidden Markov model for progressive multiple alignment. Bioinformatics 19: 1505– 1513.
- MATTIUCCI, S., R. CIANCHI, G. NASCETTI, L. PAGGI, N. SARDELLA, J. TIMI, S. C. WEBB, R. BASTIDA, D. RODRIGUEZ, AND L. BULLINI. 2003. Genetic evidence for two sibling species within *Contracaecum ogmorhini* Johnston & Mawson, 1941 (Nematoda : Anisakidae) from otariid seals of boreal and austral regions. Systematic Parasitology 54: 13–23.
 - —, G. NASCETTI, L. BULLINI, P. ORECCHIA, AND L. PAGGI. 1986. Genetic structure of *Anisakis physeteris*, and its differentiation from the *Anisakis simplex* complex (Ascaridida, Anisakidae). Parasitology **93**: 383–387.
 - , —, R. CIANCHI, L. PAGGI, P. ARDUINO, L. MARGOLIS, J. BRATTEY, S. WEBB, S. D'AMELIO, P. ORECCHIA, AND L. BULLINI. 1997. Genetic and ecological data on the *Anisakis simplex* complex, with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae). Journal of Parasitology 83: 401–416.
 - —, L. PAGGI, G. NASCETTI, E. ABOLLO, S. C. WEBB, S. PASCUAL, R. CIANCHI, AND L. BULLINI. 2001. Genetic divergence and reproductive isolation between *Anisakis brevispiculata* and *Anisakis physeteris* (Nematoda: Anisakidae). International Journal for Parasitology **31**: 9–14.
 - —, —, —, H. ISHIKURA, K. KIKUCHI, N. SATO, R. CIAN-CHI, AND L. BULLINI. 1998. Allozyme and morphological identification of *Anisakis*, *Contracaecum* and *Pseudoterranova* from Japanese waters (Nematoda, Ascaridoidea). Systematic Parasitology 40: 81–92.
- , ____, C. P. SANTOS, G. COSTA, A. P. DI BENEDITTO, R. RAMOS, M. ARGYROU, R. CIANCHI, AND L. BULLINI. 2002. Genetic markers in the study of *Anisakis* typica (Diesing, 1860): Larval identification and genetic relationships with other species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae). Systematic Parasitology **51**: 159–170.
- MITCHELL, A., C. MITTER, AND J. C. REGIER. 2000. More taxa or more characters revisited: Combining data from nuclear protein-encoding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). Systematic Biology 49: 202–224.
- MONEO, I., M. L. CABALLERO, F. GOMEZ, E. ORTEGA, AND M. J. ALONSO. 2000. Isolation and characterization of a major allergen from the fish parasite *Anisakis simplex*. Journal of Allergy and Clinical Immunology **106**: 177–182.
- NADLER, S. A. 1995. Advantages and disadvantages of molecular phylogenetics: A case study of ascaridoid nematodes. Journal of Nematology 27: 423–432.
- 2002. Species delimitation and nematode biodiversity: Phylogenies rule. Nematology 4: 615–625.
- 2005. Speciation and species delimitation. *In* Marine parasites,
 K. Rohde (ed.). CSIRO Publishing, Collingwood, Australia, p. 339–345.
- —, R. A. CARRENO, B. J. ADAMS, H. KINDE, J. G. BALDWIN, AND M. MUNDO-OCAMPO. 2003. Molecular phylogenetics and diagnosis of soil and clinical isolates of *Halicephalobus gingivalis* (Nematoda: Cephalobina: Panagrolaimoidea), an opportunistic pathogen of horses. International Journal for Parasitology **33**: 1115–1125.
- —, S. D'AMELIO, H. P. FAGERHOLM, B. BERLAND, AND L. PAGGI. 2000. Phylogenetic relationships among species of Contracaecum Railliet & Henry, 1912 and *Phocascaris* Host, 1932 (Nematoda: Ascaridoidea) based on nuclear rDNA sequence data. Parasitology **121:** 455–463.

—, AND D. S. S. HUDSPETH. 1998. Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secennentea): Implications for morphological evolution and classification. Molecular Phylogenetics and Evolution 10: 221–236.

- —, AND —, 2000. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: Hypotheses of structural and sequence evolution. Journal of Parasitology 86: 380– 393.
- NASCETTI, G., R. CIANCHI, S. MATTIUCCI, S. D'AMELIO, P. ORECCHIA, L. PAGGI, J. BRATTEY, B. BERLAND, J. W. SMITH, AND L. BULLINI. 1993. Three sibling species within *Contracaecum osculatum* (Nematoda, Ascaridida, Ascaridoidea) from the Atlantic Arctic-boreal region: Reproductive isolation and host preferences. International Journal for Parasitology 23: 105–120.
- —, L. PAGGI, P. ORECCHIA, J. W. SMITH, S. MATTIUCCI, AND L. BULLINI. 1986. Electrophoretic studies on the *Anisakis simplex* complex (Ascaridida: Anisakidae) from the Mediterranean and North-East Atlantic. International Journal for Parasitology 16: 633–640.
- ORECCHIA, P., L. PAGGI, S. MATTIUCCI, J. W. SMITH, G. NASCETTI, AND L. BULLINI. 1986. Electrophoretic identification of larvae and adults of *Anisakis* (Ascaridida: Anisakidae). Journal of Helminthology 60: 331–339.
- PAGGI, L., AND L. BULLINI. 1994. Molecular taxonomy in anisakids. Bulletin of the Scandinavian Society of Parasitology 4: 25–39.
- —, S. MATTIUCCI, D. I. GIBSON, B. BERLAND, G. NASCETTI, R. CIAN-CHI, AND L. BULLINI. 2000. *Pseudoterranova decipiens* species A and B (Nematoda, Ascaridoidea): Nomenclatural designation, morphological diagnostic characters and genetic markers. Systematic Parasitology **45**: 185–197.
- , _____, H. ISHIKURA, K. KIKUCHI, N. SATO, G. NASCETTI, R. CIANCHI, AND L. BULLINI. 1998. Molecular genetics in anisakid nematodes from the Pacific Boreal region. *In* Host response to international parasitic zoonoses, H. Ishikura (ed.). Springer-Verlag, Tokyo, Japan, p. 83–107.
- G. NASCETTI, R. CIANCHI, P. ORECCHIA, S. MATTIUCCI, S. D'AMELIO, B. BERLAND, J. BRATTEY, J. W. SMITH, AND L. BULLINI. 1991. Genetic evidence for three species within *Pseudoterranova decipiens* (Nematoda, Ascaridida, Ascaridoidea) in the North Atlantic and Norwegian and Barents Seas. International Journal for Parasitology **21:** 195–212.
- —, —, S. C. WEBB, S. MATTIUCCI, R. CIANCHI, AND L. BUL-LINI. 1998. A new species of *Anisakis* Dujardin, 1845 (Nematoda, Anisakidae) from beaked whales (Ziphiidae): Allozyme and morphological evidence. Systematic Parasitology **40**: 161–174.
- POSADA, D., AND K. A. CRANDALL. 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817–818.
- ROHLWING, T., H. W. PALM, AND H. ROSENTHAL. 1998. Parasitation with *Pseudoterranova decipiens* (Nematoda) influences the survival rate of the European smelt *Osmerus eperlanus* retained by a screen wall of a nuclear power plant. Diseases of Aquatic Organisms **32**: 233– 236.
- SAKANARI, J. A., AND J. H. MCKERROW. 1989. Anisakiasis. Clinical Microbiology Reviews 2: 278–284.
- SHIH, H.-H. 2004. Parasitic helminth fauna of the cutlass fish, *Trichiurus lepturus* L., and the differentiation of four anisakid nematode thirdstage larvae by nuclear ribosomal DNA sequences. Parasitology Research **93**: 188–195.
- SPRAKER, T. R., E. T. LYONS, S. C. TOLLIVER, AND H. D. BAIR. 2003. Ascaridoid nematodes and associated lesions in stomachs of subadult male northern fur seals (*Callorhinus ursinus*) on St. Paul Island, Alaska: (1987–1999). Journal of Veterinary Diagnostic Investigation 15: 432–437.
- SWOFFORD, D. L. 1998. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.
- ZHU, X., R. B. GASSER, AND N. B. CHILTON. 1998. Differences in the 5.8S rDNA sequences among ascarid nematodes. International Journal for Parasitology 28: 617–622.
- , —, M. PODOLSKA, AND N. B. CHILTON. 1998. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. International Journal for Parasitology 28: 1911–1921.

—, S. D'AMELIO, M. HU, L. PAGGI, AND R. B. GASSER. 2001. Electrophoretic detection of population variation within *Contracaecum ogmorhini* (Nematoda: Ascaridoidea : Anisakidae). Electrophoresis **22:** 1930–1934.

—, —, L. PAGGI, AND R. B. GASSER. 2000. Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the *Contracaecum osculatum* complex (Nematoda: Ascaridoidea: Anisakidae). Parasitology Research **86:** 677–683.

, —, H. W. PALM, L. PAGGI, M. GEORGE-NASCIMENTO, AND R. B. GASSER. 2002. SSCP-based identification of members within the *Pseudoterranova decipiens* complex (Nematoda: Ascaridoidea: Anisakidae) using genetic markers in the internal transcribed spacers of ribosomal DNA. Parasitology **124**: 615–623.

ERRATUM. . .

We have printed the first page (of 3 pages) of Figure 4 from Nadler et al., 2005, volume **91:** 1413–1429. Unfortunately, in the original paper, the first full page of Figure 4 was missing, whereas the second page of the figure was reproduced twice.

	10) 20) 31	0 4	0 50) 60
A. simplex s. str.	ATCCAAAACG	AACGAAAAAG	TCTCCCAACG	TGCATACCTT	CCATTTGCAT	GTTGTTGTGA
A. simplex C						
A. pegreffii						
A. ziphidarum		T		G.		
A. physeteris				G.		
A. brevispiculata				A.		
A. typica		T		GC		
Anisakis sp. PRP C140						
<i>Anisakis</i> sp. HP C141						
<i>Anisakis</i> sp. NES 2013						
	7() 80) 91	0 1	00 11	LO 120
A. simplex s. str.	GCCACATGGA	AACTCGTACA	CACGT	GGTGGCAGCC	GTCTGCTGTG	CTTTTTTAG
A. simplex C			· · · · · ·	• • • • • • • • • • •		
A. pegreffii		• • • • • • • • • • •	····	• • • • • • • • • • •		
A. ziphidarum	G		<u>T</u>	• • • • • • • • • • •		GT.
A. physeteris	G	A	<u>T</u>	• • • • • • • • • • •	• • • • • • • • • • •	AGT.
A. brevispiculata	G	A	T		• • • • • • • • • • •	AGT.
A. typica	GC	• • • • • • • • • • •	.GITTIGIG	A'I'	• • • • • • • • • • •	.GCGG.
Anisakis sp. PRP C140	• • • • • • • • • • •	• • • • • • • • • • •	· · · · · ·	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
Anisakis sp. HP C141	• • • • • • • • • • •	• • • • • • • • • • •	· · · · · ·	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
Anisakis sp. NES 2013	• • • • • • • • • • •	• • • • • • • • • • •		• • • • • • • • • • •		• • • • • • • • • • •
	13	30 1/	10 1	50 1	60 1 ⁻	70 180
A simpley s str	ССАСАСААТС	COTTACCACT				
A. simplex C	00/10/10/1110	0011/100/101		00110110/21	011100010110	-
A. pegreffii			– – .			
A. ziphidarum			····			
A. physeteris		т	– – .			
A. brevispiculata		т	– – .	C		
A. typica			TCC			Т
Anisakis sp. PRP C140						
Anisakis sp. HP C141			==.			
Anisakis sp. NES 2013						
-						
	19	90 20	22	10 23	20 23	30 240
A. simplex s. str.	GTCTACGCCG	TATCTAGCTT	CTGCCTGGAC	CGTCAGTTGC	GATGAAAGAT	GCGGAGAAAG
A. simplex C		• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •		
A. pegreffii	• • • • • • • • • • •	• • • • • • • • • • •		• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •
A. ziphidarum			.C	G	• • • • • • • • • • •	G
A. physeteris	• • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •	A	• • • • • • • • • • •	• • • • • • • • • • •
A. previspiculata	• • • • • • • • • • •	C	· · · · · · · · · · · · · · · · · · ·	GA	• • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
A. typica	• • • • • • • • • • •	••••	.C	GA	• • • • • • • • • • •	G
Anisakis sp. PRP C140	• • • • • • • • • • •	••••	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	
Anisakis sp. HP C141		•••••	• • • • • • • • • • •	• • • • • • • • • • •		
Allisakis sp. NES 2013	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	••••		• • • • • • • • • • •
	21	50 26	50 2'	70 2	80 29	30 300
A. simplex s. str.	TTCCTTTGTT	TTGGCTGCTA	ATCATCATTG	ATGAGCAGTA	GCTTAAGGCA	GAGTTGAGCA
A. simplex C				C.		
A. pegreffii				C.		C
A. ziphidarum	G	T		CT	T	C
A. physeteris	C	A	TCG	GGC	CA	.GC
A. brevispiculata	C		G.TCC	GAC	CT	.G
A. typica	C				T.G	
Anisakis sp. PRP C140				C.		C
<i>Anisakis</i> sp. HP C141						
Anisakis sp. NES 2013				C		

FIGURE 4. Alignment of ITS-1 positions 1–300 for sequences of *Anisakis* taxa. One representative of each unique sequence was included for comparison. Dots indicate identity with the first sequence and dashes are inferred insertion-deletion events. Positions 301–395 of ITS-1 and sequences for ITS-2 (positions 396–765) are correct as found in the original paper.

Published in the *Journal of Parasitology* (2007) 93(2): 444. DOI: 10.1645/0022-3395(2007)93[444:E]2.0.CO;2. Copyright 2007, American Society of Parasitologists. Used by permission.

ERRATUM... We have printed the first page (of 3 pages) of Figure 4 from Nadler et al., 2005, volume 91: 1413–1429. Unfortunately, in the original paper, the first full page of Figure 4 was missing, whereas the second page of the figure was reproduced twice.

	1	0 20) 30	0 40) 50) 60
A. simplex s. str.	ATCCAAAACG	AACGAAAAAG	TCTCCCAACG	TGCATACCTT	CCATTTGCAT	GTTGTTGTGA
A. simplex C						
A. pegreffii						
A. ziphidarum				G.		
A physeteris				G		
A browigniculate						
A timica						
Anigabic on DPD 0140						
Anisakis sp. FRF C140						
Anisakis sp. HP C141						
Anisakis sp. NES 2013						
	23					
a. (************************************	1) 80) 90	0 10	0 1	10 120
A. simplex s. str.	GCCACATGGA	AACTCGTACA	CACGT	GGTGGCAGCC	GTCTGCTGTG	CTTTTTTTAG
A. simplex C			· · · · · · · · · · · · · · · ·			
A. pegreffii						
A. ziphidarum	G		T			GT.
A. physeteris	G	A	T			AGT.
A. brevispiculata	G	A	T			AGT.
A. typica	GC		.GTTTGTG	AT		.GCGG.
Anisakis sp. PRP C140						
Anisakis sp. HP C141						
Anisakis sp. NES 2013						
introducto op i mos soas						
	13	30 1/	10 11	50 16	50 17	70 180
a cimplox c ctr	CCACACAAMC	000000000000000000000000000000000000000	CCCC_CTC_T	COMPANY A A	CAACCOUCAC	CAATTROCC-
A. SIMPLEX S. SCI.	GCAGACAAIG	GCTIACGAGI	GGCC-G1G-1	GCIIGIIGAA	CHACGGIGAC	CAATTIGGC-
A. simplex C A. pegreffii						
				• • • • • • • • • • •		
A. zipnidarum			· · · · T- · · · - ·			
A. physeteris		T				
A. brevispiculata		T		C		
A. typica			TCC			T
Anisakis sp. PRP C140						
Anisakis sp. HP C141						
Anisakis sp. NES 2013						
	1	90 20	2:	10 22	20 23	30 240
A. simplex s. str.	GTCTACGCCG	TATCTAGCTT	CTGCCTGGAC	CGTCAGTTGC	GATGAAAGAT	GCGGAGAAAG
A. simplex C						
A. pegreffii						
A. ziphidarum			.c	G		G
A. physeteris						
A brevispiculata	water control of the	C		GA		na na standar an an
A tunica			C	G A		G
Anicakic cp DPD C140						
Anigakia ap. HD C141						
Anisakis sp. HP C141						
Anisakis sp. NES 2013		• • • • • • • • • • •				
12 Designation and the second second	2	50 26	50 2	/0 28	50 25	10 300
A. simplex s. str.	TTCCTTTGTT	TIGGCIGCTA	ATCATCATTG	ATGAGCAGTA	GCTTAAGGCA	GAGTTGAGCA
A. simplex C				C.		
A. pegreffii				C.		C
A. ziphidarum	G	T		CT	T	C
A. physeteris	C	A	TCG	GGC	CA	.GC
A. brevispiculata	C		G.TCC	GAC	CT	.G
A. typica	C				T.G	
Anisakis sp. PRP C140				C.		c
Anisakis sp. HP C141						
Anisakis sp NES 2013		0.0101000000000000000000000000000000000		C		0204000000000000000000
						2

Figure 4. Alignment of ITS-1 positions 1–300 for sequences of *Anisakis* taxa. One representative of each unique sequence was included for comparison. Dots indicate identity with the first sequence and dashes are inferred insertion-deletion events. Positions 301–395 of ITS-1 and sequences for ITS-2 (positions 396–765) are correct as found in the original paper.