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Electrons, Stern–Gerlach magnets, and quantum mechanical propagation
H. Batelaana)

Behlen Laboratory of Physics, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0111

~Received 15 August 2001; accepted 20 December 2001!

Quantum corrections to Newton’s equations are obtained and used to illustrate that classical
dynamics is embedded explicitly in quantum dynamics. Originally, the resultant set of dynamical
equations has been used to shed light on quantum chaos. We show that the method can provide
insight into the dynamics of free particles and the harmonic oscillator. We then use it to determine
whether Stern–Gerlach magnets can be constructed for free electrons. ©2002 American Association of

Physics Teachers.

@DOI: 10.1119/1.1450559#

I. INTRODUCTION

One of the cornerstones of quantum mechanics is the
Stern–Gerlach effect. An unpolarized beam of silver atoms is
passed through a strong magnetic field gradient and splits
into two polarized beams. This effect is one of the main
reasons to postulate that electrons have spin, in particular
spin-1/2.1

The dynamical picture of the Stern-Gerlach effect involves
the interaction between the magnetic momentm associated
with spin and the magnetic field gradient. A particle with its
projection of spin in the positive/negativez direction will
experience a deflection due to the forceF56mdBz /dz @see
Fig. 1~a!#.

From this description we might expect that a beam of free
electrons would also be split after passing through a Stern–
Gerlach magnet. However, Mott, Bohr, and Pauli have
shown that this is impossible due to the blurring effect of
Lorentz forces on a finite-width beam.2–4 A very narrow
beam would not suffer from spatially varying Lorentz forces,
but would be so badly diffraction limited that it would no
longer be a beam. Alternative approaches designed to over-
come the Lorentz forces5 have been rejected by Pauli.3,6 One
of these, the longitudinal Stern–Gerlach experiment, origi-
nally suggested by Brillouin,5 has recently been
reexamined.7 In this configuration, the magnetic field gradi-
ent is aligned with the electron beam, and spin ‘‘forward’’
and spin ‘‘backward’’ electrons passing through the magnet
are separated along the direction of propagation@Fig. 1~b!#.

To analyze this experimental situation, we cannot resort to
the usual semiclassical dynamical picture where the electron
motion is treated classically and the spin quantum mechani-
cally. The reason is that to overcome the blurring Lorentz
forces, we need to approach the diffraction limit without los-
ing the beam, and have to treat the electron motion quantum
mechanically also. We recently analyzed this situation using
the Schro¨dinger equation and obtained the promising result
that the blurring is much less than our semiclassical analysis
indicated.8 As a check on our results, we used a simpler
method and found good agreement with the approach using
the Schro¨dinger equation. This method, which is the subject
of this paper, seems to have been originally developed for
maser theory9 and has been used to study quantum chaos.10,11

To illustrate the ease of the method, we first address several
standard problems that we hope will be useful for educa-
tional purposes. We then present the analysis of the longitu-
dinal Stern–Gerlach problem.

II. THEORY

Following Sundaramet al.,11 we write the position opera-
tor, x, and the momentum operator,p, as the sum of their
expectation value and quantum correction,

x5^x&1dx, p5^p&1dp, ~1!

with the commutation relation@dx,dp#5 i\. It is useful to
express the commutation relation of two arbitrary functions
of x and p by making a Taylor expansion about^x& and
^p&.12 Straightforward algebra yields for two arbitrary func-
tions F andG of x andp,

@F~x,p!,G~x,p!#5 i\$F~x,p!,G~x,p!%1 1
2 ~dxdp

1dpdx!S ]2F

]x2

]2G

]p2 2
]2G

]x2

]2F

]p2 D
1¯^dx2&S ]2F

]x2

2
]2G

]x]p

]2G

]x2

]2F

]x]pD2¯^dp2&

3S ]2F

]p2

]2G

]x]p
2

]2G

]p2

]2F

]x]pD1¯ ,

~2!

where the curly braces$ % indicate the Poisson bracket. The
time evolution of the expectation value of an operator that
can be written as a function ofx andp can be obtained from
the Heisenberg equation. For example, if we letF(x,p)5p
andG(x,p)5H, we obtain

d^p&
dt

5
1

i\
@p,H#5$p,H%1¯ . ~3!

Together withH5p2/2m1V(x), Eq. ~3! gives:

d^p&
dt

52
]V

]x U
x5^x&

2
1

2

]3V

]x3U
x5^x&

^dx2&1¯ . ~4!

The evolution of^x&,^dx2&,^dx3&,... ,̂ dxdp&, . . . , can be
found in a similar manner. The resulting equations to second-
order are given below. No additional calculational difficulties
are encountered to obtain expressions for third- and higher-
order terms such asd^dx3&/dt,
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d^x&
dt

5^p&/m, ~5!

d^dx2&
dt

5~^dxdp&1^dpdx&!/m, ~6!

d^dxdp&
dt

5^dp2&/m2
]2V

]x2 U
x5^x&

^dx2&1¯ , ~7!

d^dpdx&
dt

5^dp2&/m2
]2V

]x2 U
x5^x&

^dx2&1¯ , ~8!

d^dp2&
dt

52~^dxdp&1^dpdx&!
]2V

]x2 U
x5^x&

1¯ . ~9!

This set of equations, which can be continued indefinitely,
gives the values of̂x&,^dx2&,^dx3&,... from which the mo-
ments^x&,^x2&,... can beobtained.

From the Fourier transform of the probability distribution
ucu2:

E eikxucu2 dx5(
n

~ ik !n

n! E xnucu2 dx

[(
n

~ ik !n

n!
^xn&, ~10!

we observe that a knowledge of all the moments^xn& allows
us to construct the probability distributionucu2 through an
inverse Fourier transform. The solution of the set of equa-
tions~4!–~9! and its higher orders represent the basic method
used throughout this paper.

We first indicate some limitations of the method before
applying it to several examples. If we are not interested in
dynamics but in, say, energy eigenvalues, the method cannot

be used. Furthermore, knowing all the moments does not
automatically imply that the probability distribution can be
calculated. A general method for obtaining the function itself
from its moments does not seem to exist.13 The method is
useful when we are interested in studying the dynamics of a
system and the above set of equations either truncates or
converges rapidly. That is, the method can be applied when
the motion of a system is expected to be close to the classical
dynamics. Finally, we note that Eq.~4! can be obtained by
making a Taylor expansion of the potential in Ehrenfest’s
theorem:14

d^p&
dt

52 K ]V

]x L , ~11!

about the expectation value of the position.

III. FREE PARTICLE

What insight can be obtained from Eqs.~4!–~9!? Why not
use Schro¨dinger’s equation, which is one differential equa-
tion in contrast to the above infinite set of differential equa-
tions, most of which have an infinite number of terms? The
following question provides a partial answer. For which po-
tentials does the expectation value of the position follow the
classical trajectory exactly? One way to obtain the answer is
to compare the form of the time evolution of the Wigner
equation15 to the classical Liouville equation and note that
the quantum mechanical corrections introduced in the former
involve third- and higher-order spatial derivatives of the po-
tentials. Hence, the desired potential is any potential that has
zero third- and higher-order spatial derivatives.

A simpler way of obtaining this result is to note that for
any potential of the formV(x)5ax21bx1c, Eqs. ~4! and
~5! reduce to their classical counterparts,10 and quantum cor-
rections involve third- and higher-order spatial derivatives of
the potential. Equations~4! and~5! describe the average po-
sition and momentum and have the same form as Newton’s
equation for quadratic potentials. Thus, the expectation value
of the position follows its classical counterpart exactly for
this form of V(x), and we see that the present approach
exemplifies how classical mechanics is embedded in quan-
tum mechanics.

Although free particle propagation and the harmonic po-
tential are discussed in quantum mechanics textbooks~the
study of a linear potential is less common, but does exist16!,
each potential needs to be studied separately and with differ-
ing mathematical approaches. The present approach offers a
good opportunity to study, for example, a free particle and
the harmonic oscillator from the same viewpoint.

To illustrate this point, consider the spreading of the prob-
ability distribution for a free particle. We would like to ob-
tain the time evolution of the width,dA^dx2&/dt. For a free
particle ~or particle in a linear and quadratic potential!, Eqs.
~6!–~9! form a closed set of differential equations with a
limited number of terms. From Eq.~9! it is apparent that the
width of the momentum distribution will not change with
time for a free particle. After substitution of Eqs.~7!–~9! into
Eq. ~6!, we are left with d2^dx2&/dt252^dp2& t50 /m2,
which is solved by

Fig. 1. A schematic view of~a! the traditional Stern–Gerlach magnet and
~b! the longitudinal Stern–Gerlach magnet consisting of a current loop.
Arrows indicate the magnetic field direction, while the arrows in the ‘‘par-
ticle’’ represent spin-up~spin-forward! and spin-down~spin-backward!, re-
spectively.
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^dx2& t5^dx2&01
1

m
@^dxdp&01^dpdx&0#t

1
1

m2 ^dp2&0 t2, ~12!

where the notation̂ &0 means that the term in brackets is
evaluated att50.

We choose a Gaussian wave packet,uc(x,0)u2

5A(2/pa2) e22x2/a2
, as the initial condition with initial

widths in position and momentum space, such that the equal-
ity for the Heisenberg’s uncertainty relation holds,

DxDp5A^dx2&A^dp2&5\/2. ~13!

We follow the convention for the definition of width as given
in Ref. 17, and obtainDx5a/2. This choice yields the initial
conditions,

^dx2&05a2/4, ^dxdp1dpdx&050, ^dp2&05\2/a2.
~14!

The second initial condition in Eq.~14! can be found by
combining the uncertainty principle with the commutation
relation @dx,dp#5 i\ giving ^dxdp& t505 i\/2 and
^dpdx& t5052 i\/2. With these initial conditions in Eq.
~14!, the usual spreading of the free wave packet,

Dx~ t !5
a

2
A11

4\2t2

m2a4 , ~15!

is found by substituting Eq.~14! into Eq. ~12!.17 Note that
this result is the same for a free particle and a particle in a
linear potential.

IV. HARMONIC OSCILLATOR

To obtain the correspondence between the classical and
quantum harmonic oscillator, we can compare their respec-
tive probabilities for finding the particle at a positionx. This
probability is peaked around the classical turning points and
shows an increasing degree of agreement for higher energy
states.18 Schrödinger introduced states for which^x& and^p&
follow their oscillating classical counterparts exactly.19 We
can use the present method to show that for every initial
state, ^x& and ^p& will follow their classical counterparts
exactly. This result can also be obtained by using the Schro¨-
dinger or Heisenberg equation.20

To find how the widths evolve in time in the potential
V(x)5 1

2 mv2x2, we have to choose initial conditions. We
start again with a minimum uncertainty state.21 If we require
that the widths not change in time, thend^dx2&/dt50,
d^dxdp&/dt50, andd^dpdx&/dt50 for all times. By sub-
stitution this requirement leads tôdp2&/m5mv2^dx2&. If
the rate of change we combine this result with the Heisen-
berg uncertainty conditions, Eq.~13!, we obtain

^dx2&5\/2mv, ~16!

^dp2&5\mv/2. ~17!

These widths are identical to those of coherent states.22 That
is, an initial Gaussian wave packet placed in a harmonic
potential ~not necessarily in the center! will not change its
width over time.

If the widths are chosen differently, such that we still have
a minimum uncertainty state but not a coherent state, then

the widths start to oscillate with the motion. It is easy to
show that the solutions of Eqs.~6!–~9! are sinusoidal func-
tions with angular frequency 2v. Figure 2 shows how the
width Dx5^dx2&1/2 changes in time. Starting witĥdx2&
5\/8mv ~and accordinglŷdp2&52\mv), the widthDx is
a minimum whenever the position̂x& crosses zero, andDx
is maximum at the turning points. Minimum uncertainty
states with this property are called squeezed states. They are
defined by the property thatDx ~or Dp! is ‘‘squeezed’’ below
the width of the coherent state. Simultaneously,Dp ~or Dx!
has to be larger than the width of the coherent state to ensure
that the uncertainty relation holds at all times.

How can we now change a coherent state into a squeezed
state? One might think that applying an electric field pulse to
a charged particle starting in the lowest energy eigenstate of
the harmonic oscillator would suffice. The lowest energy
eigenstate is a Gaussian wave packet, and kicking the wave
packet to one side by an electrical pulse will start the wave
packet oscillating in the potential well. However, its width
will not change because the strength of the potential, or in
other words,v, did not change. The initial conditions for
^dx2& and^dp2& are still such that̂dx2& does not change in
time; thus, the conditions~16! and~17!, which depend onv
and not on the external pulse, still hold. The way to make a
squeezed state is to change the strength of the potential. But
how fast do we need to change the potential? One would
expect that when the rate of change in the potential, (1/V)
3(]V/]t), is small compared to the oscillation frequency of
the particle in the potential, the width of the Gaussian wave
packet does not change much@see Fig. 3~b!#. By numerically
integrating the differential equations governing the evolution
of the widths, this result turns out to be the case. When the
rate of change in the potential is large compared to the os-
cillation frequency, the width of the wave packet changes
quickly and some squeezing is obtained@see Fig. 3~a!#. The
amount of squeezing can be found by numerically integrat-
ing Eqs. ~6!–~9!. Choose for an example,m51, andV(t)
5mv2a(t)/2, wherea(t)511(arctan(b(t250))1p/2)/p.
A slow change in the width can be obtained forb50.2,
while the fast change can be obtained forb55.

Fig. 2. The quantum average position of a particle,^x&, in a harmonic
oscillator follows its classical counterpart exactly. The width of the prob-
ability distribution, ^dx2&1/2, oscillates with twice the frequency for a
squeezed state.
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V. TUNNELING

For both the free particle and the harmonic oscillator, the
motion of the particle is decoupled from the evolution of its
width. In other words, Eqs.~4! and ~5! are decoupled from
Eqs.~6!–~9!. Consider a potential for which this behavior is
not the case, which means that at least]3V/]x3Þ0. The
latter condition is satisfied for a one-dimensional tunneling
problem with a smooth potential barrier, such asV(x)
5V0 cosh22(x/a). If we takea51029 m andV053 eV, then
a particle with the mass of an electron moving with a kinetic
energy of about 2.7 eV toward this potential barrier has an
appreciable probability of tunneling through this barrier.

Tunneling can be treated exactly for this potential because
the wave functions can be obtained analytically.23 We can
compare this treatment to direct numerical integration of
Eqs. ~4!–~9! ~see Fig. 4!. Classically, the momentum of the
particle changes sign, while the position returns to its initial
value; the particle reflects from the barrier. In the quantum
mechanical description, the particle behaves quite differently.
The particle first slows somewhat more than in the classical
case, and subsequently decelerates less than in the classical
case, even before the top of the barrier is reached. We sug-
gest that the deviation from the classical motion can be
viewed as the onset of tunneling. To understand this behav-
ior, we may inspect Eq.~4!. For a sufficiently small width
A^dx2&, the force is equal to2 (]V/]x) ux5^x& , which is the

classical force, and the particle follows the classical trajec-
tory. For larger widths, the particle samples the force around
the average position ofx. Keeping in mind that Eq.~4! can
be obtained by a Taylor expansion of Ehrenfest’s theorem,
the next term we should look at involves]2V/]x2. This term
is ]2V/]x2ux5^x&*xucu2 dx, where the integral is zero due to
its antisymmetric argument and thus does not appear in Eq.
~4!. That is, a change of the force (}]2V/]x2) does not have
an effect because an increase in the force to one side of^x&
will be canceled by a decrease in the force to the other side
of ^x&. The first nonzero correction is proportional to the
curvature of the force@the second term on the right-hand side
of Eq. ~4!#.

Another important observation can be made from Fig. 4.
The momentum changes abruptly with very little change in
the position. This unphysical behavior occurs when it is no
longer valid to use the truncated set of differential equations
~4!–~9!. As soon as tunneling occurs, the wave function
splits into a reflected and a transmitted part. To describe this
effect, many moments of the probability distribution are
needed, and Eqs.~4!–~9! include moments only up to
second-order. However, increasing the number of differential
equations is not very useful because we do not expect the
motion to stay close to the classical trajectory. This example
illustrates the limitations of the present method. We now turn
our attention to the longitudinal Stern–Gerlach magnet.

VI. THE LONGITUDINAL STERN –GERLACH
MAGNET

An electron in a homogeneous magnetic field can be de-
scribed in terms of Landau states.24 In the Coulomb gauge, it
turns out that the effects of the vector potential on a charged
particle are the same as those of a harmonic scalar potential.
Although interesting in itself, for our purposes it is most
important that we can work with two-dimensional harmonic
oscillator states instead of Landau states.

Consider an unpolarized electron beam passing through a
longitudinal Stern–Gerlach magnet@see Fig. 1~b!#. We
choose our quantization axis along the symmetry axis~z
axis! of the magnet. We would like to show that the spin-
forward and spin-backward parts of the beam are separated

Fig. 3. ~a! The abrupt change of the strength of a harmonic potential att
550 changes a coherent state to a squeezed state, as shown by the change in
the evolution of the width. Simultaneously, the frequency and the amplitude
of the oscillation change.~b! The same amount of change is made, but
slowly. Now the change does not change the evolution of the width much.

Fig. 4. A particle with the mass of an electron moves into a potential barrier
with parameters such that tunneling is not negligible~see the text for de-
tails!. Its average position does not follow the classical trajectory due to the
quantum corrections to the classical force@the second term on the right-hand
side of Eq.~4!#. The dotted line indicates the classical trajectory.
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after passing through the magnet along the longitudinalz
direction. Such a separation of two spin states along the same
axis could only be detected for a pulsed beam. Therefore,
imagine our electron beam to consist of two overlapping,
incoherent ~three-dimensional! Gaussian wave packets
propagating toward the magnet along the symmetry axis. The
separation between the average positions along the symmetry
axis ~thez axis!of the packets after they leave the magnet is
given by

Dzspin5E E azdt8 dt5E E 2mB

m

]Bz

]z
dt8 dt, ~18!

whereaz is the acceleration along thez axis caused by the
magnetic gradient forces,6mB]Bz /]z, on each of the two
spins, andmB is the Bohr magneton. The first integration
gives the velocity and the second integration gives the
change in position. Note that for very small changes in ve-
locity, the approximationaz(z(t))5az(vz(t50)t) gives an
excellent result. The question that we have to answer is
whether the width of the wave packets along the symmetry
axis has increased significantly compared toDzspin after
passing through the magnet.

Classically, we have reason to believe that there is some
blurring.7 An electron entering the magnet off-axis performs
a cyclotron motion in the magnetic field. As the electron
moves closer to the magnet, the strength of the field in-
creases, and the orbit of the cyclotron motion becomes
tighter. This tighter orbit means that the orbital velocity of
the electron increases to keep the centrifugal and Lorentz
forces balanced. This increase in velocity takes energy from
the longitudinal motion of the electron. This effect is called
the magnetic bottle effect and slows off-axis electrons in
comparison to on-axis electrons.

Quantum mechanically, one may overcome this problem
by inserting an electron in the lowest Landau state into the
magnet. The orbital angular momentum of this state is zero;
thus, no magnetic bottle effect occurs, improving the separa-
tion of the two spin states.8 In terms of our present method,
the question would be formulated this way. Does the trans-
verse width of the wave packet couple to the longitudinal
width of the wave packet, as it would for the magnetic bottle
effect? The full set of coupled differential equations~see the
Appendix!shows that these widths are indeed coupled. But,
the range and strength of the magnetic field can be chosen in
such a way that the widths follow the change of the magnetic
field adiabatically. As the packet enters the magnetic field, it
is fairly wide in the transverse direction due to the fact that
the magnetic field is weak. After being narrowed in the cen-
ter of the magnet, it returns to its original width. The spread-
ing of the longitudinal width is the same as that of a free
particle and is not influenced by the strongly changing trans-
verse width. Figure 5 shows the results of a numerical inte-
gration of the three-dimensional version of Eqs.~21!–~37!.
The position dependence of the magnetic field is that of a
current loop~see the Appendix!. We find that the passage of
a Gaussian wave packet is nearly adiabatic in agreement with
the results of Gallupet al.8 An artistic impression of the spin
separation is given in Fig. 6.

VII. SUMMARY

Equations~4!–~9! give some insight into the connection
between the quantum mechanical and classical treatment of a

particle in a potential. Some of the usual properties of a free
particle and of a particle in a quadratic potential were found.
In general, the method is useful when the quantum and clas-
sical motion do not deviate strongly. In that case a small set
of equations with a limited number of terms is expected to
give a reasonable approximation. Not only can the presented

Fig. 5. The width of the probability distribution associated with a particle
propagating through a longitudinal Stern–Gerlach magnet. The center of the
magnet is situated at 1.0 m. The parameters are the same as in Ref. 8, the
electrons follow a 2-m path length that has a midpoint at the center of a
2-cm radius current ring, where the field magnitude is 10 T. The initial
electron speed is taken to be 105 m/s. The splitting obtained is 631mm.
Although the transverse width in~a! varies drastically, it is close to adiabatic
and does not couple to the longitudinal width shown in~b!, which evolves in
a similar manner as a free particle.

Fig. 6. Two Gaussian probability distributions propagating along thez di-
rection enter a longitudinal Stern–Gerlach magnet, one with spin-forward,
the other with spin-backward. In the center of the magnet their transverse
width is compressed by the strong magnetic field, while the spin-forward
electrons have climbed a potential hill and the spin-backward electrons have
descended a potential valley. Emerging from the magnet, the spin-forward
electrons have slowed down compared to the spin-backward electrons, and
are separated from each other. The transverse width is restored to its original
value. The longitudinal width only experienced the spreading of a free par-
ticle. For a more rigorous treatment see Gallupet al. ~Ref. 8!.
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method be applied to consider textbook problems from a
different perspective, it can also be used for some current
research issues, of which the longitudinal Stern–Gerlach
problem is an example.
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APPENDIX

The Hamiltonian for an electron passing through the mag-
netic field of a current loop, that is, the longitudinal Stern
Gerlach problem~see Fig. 1!, is given in cylindrical coordi-
nates (r,w,z) by

H5
pr

2

2m
1

pw
21 1

4

2mr2 1
pz

2

2m
2

v~z!

2
Lz1

1

8
mv2~z!r2. ~19!

We ignore all spin-dependent terms because the blurring due
to magnetic bottle effects are spin independent~see Sec.
VI!.8 The angular momentum in thez direction equals the
tangential momentum,Lz5pw . The Larmor frequency is
given byv(z)5qB(z)/2m. The magnetic field,B(z), of the
current loop is

B~z!5B0S R

AR21z2D 3

, ~20!

where R is the loop radius andB0 is the magnetic field
strength in the center of the loop.

The set of differential equations that describe the average
position, momentum, and widths of the probability distribu-
tion are given below. Equations~5!, ~4!, ~6!, ~7!, and~9! are
the one-dimensional versions of the three-dimensional equa-
tions ~21!, ~22!, ~23!, ~24!, and~25!, respectively. The coor-
dinatesr and w lead to additional differential equations re-
quired to close the following set of equations so that they can
be integrated numerically. Most important for our discussion
is that the valuêdz2& is a measure of the longitudinal width
of the wave packet, whilêdr2& is a measure of the trans-
verse width. Additional differential equations include the
terms for the tangential momentum,pw , and the radial mo-
mentum,pr ,

d^z&
dt

5^pz&/m, ~21!

d^pz&
dt

52
]H

dz U
x5^x&

2
1

2

]3H

]z3 U
x5^x&

^dz2&

2
]3H

]z2]pw
U

x5^x&

^dzdpw&2
1

2

]3H

]z]r2 U
x5^x&

^dr2&

2
]3H

]z2]rU
x5^x&

^dzdr&, ~22!

d^dz2&
dt

52^dzdpz&/m, ~23!

d^dzdpz&
dt

5^dpz
2&/m2A^dz2&2B^dzdpw&2C^dzdr&,

~24!

~25!d^dpz
2&

dt
522A^dzdpz&22B^dpzdpw&22C^dpzdr&,

d^dzdpw&
dt

5^dpzdpw&/m, ~26!

d^dzdr&
dt

5^dzdpr&/m1^drdpz&/m, ~27!

d^dpzdpw&
dt

52A^dzdpw&2B^dpw
2&2C^drdpw&, ~28!

d^drdpz&
dt

5^dpzdpr&/m2A^dzdr&2B^drdpw&

2C^dr2&, ~29!

d^dzdpr&
dt

5^dpzdpr&/m2C^dz2&2D^dzdr&, ~30!

d^dpw
2&

dt
50, ~31!

d^drdpw&
dt

5^dprdpw&/m, ~32!

d^dr2&
dt

52^drdpr&/m, ~33!

d^dpzdpr&
dt

52A^dzdpr&2B^dprdpw&2C^drdpr&

2C^dzdpz&2D^drdpz&

2E^dpzdpw&
d^drdpr&

dt

5^dpr
2&/m2C^dzdr&2D^dr2&, ~34!

d^dprdpw&
dt

52C^dzdpw&2D^drdpw&2E^dpw
2&, ~35!

d^dpr
2&

dt
522C^dzdpr&22D^drdpr&, ~36!

with

A5
]2H

]z2 , B5
]2H

]z]pw
, C5

]2H

]z]pr
,

~37!
D5

]2H

]r2 , E5
]2H

]w]r
.
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