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Effect of fires on soil organic carbon pool and mineralization in a Northeastern
China wetland
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Fire occurs frequently over wetland, but little is known of its impact on soil carbon variations and carbon min-
eralization, process that are potentially important in global carbon cycle. To investigate this issue, we have
designed and implemented a two-year field campaign to quality the effects of fire seasonality and frequency
on soil carbon abundance and carbon mineralization in a wetland of the Sanjiang Plain in Northeastern China.
A total of 4 burning experiments were conducted over 12 wetland plots from autumn 2007 to spring 2009.
Our results show that after burning soil organic carbon (OC) increased in the burned soils during the first
two growing seasons. Fire effects on dissolved organic carbon (DOC) and microbial biomass carbon (MBC),
however, were more subtle. During the first post-burning growing season, the levels of DOC and MBC were
higher than in the unburned soil. The increase however was temporary, and there was no significant difference
between the burned and unburned soils in the second growing season. Carbon mineralization rate increased
after burning, and CO2 emission rates were higher from burned soils than from unburned soils. Our findings
suggest that burning increased CO2 emission to the atmosphere not only during the combustion process, but
also through biogeochemical processes in an extended post-burning period.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fires exert multiple levels of effects on the earth system through
regulating nutrient cycling in ecosystems (Knicker, 2007; Smith,
1983), and emitting climate-forcing gases and aerosols into the atmo-
sphere (Wiedinymer et al., 2006). Fire activities are controlled by
many environmental factors, including regional climate change that
has been linked to an increased number of large wildfires (Westerling
et al., 2007). A myriad of gases and aerosols, including carbon dioxide
(CO2), oxides of nitrogen (NOx), and black carbon (BC) are emitted
into the atmosphere during fire events (Wiedinymer et al., 2006). Emis-
sions of these gases and aerosols can degrade air quality and form un-
healthy levels of smog and inhalable fine particles. Fire also intervenes
with the cycling of nutrients in ecosystems. It has been reported that
fires can substantially alter carbon cycling in forest (Hatten and
Zabowski, 2009; Palese et al., 2004) and grassland (Bremer and Ham,
2010; Oluwole, et al., 2008).

In the global carbon cycle, fire is estimated to cause 2–4 Pg carbon
to be emitted into the atmosphere each year (van der Werf et al.,
2006). Yet, emissions of biomass burning only reflect one aspect of
the fire and carbon dynamics. The long-term impact of fires on the
ecosystem–atmosphere carbon exchange is more complicated, de-
pending on several biogeochemical processes such as the carbon ac-
cumulation and release in plants and soils after fire (Houghton et al.,
2000; Kaye et al., 2010). Soil organic carbon is one of the largest car-
bon pools on the earth's surface, accounting for 2344 Pg of overall
global carbon (Jobbagy and Jackson, 2000). Fire affects soil organic
matter content not only at the time of burning but also during
post-burning period (Fernández et al., 1999). Many previous studies
have compared a number of environmental variables before and
after burning, but little is known about the evolution of these vari-
ables with time after burning. Furthermore, seasonal patterns of
soil carbon changes have not been reported before due to the diffi-
culty to collect long-term data. In this study we report the results
of a two-year consecutive observation of how fires affect carbon cy-
cling in a Sanjiang Plain wetland in the Northeastern China.

The Sanjiang Plain is one of the largest freshwater marshes in China.
This region is unique in that it has experienced intensive cultivation
over the past 50 years, in which prescribed burning has been frequently
used to reclaim land in order to feed a rapidly growing population. Orig-
inally, crop residues over the converted cropland are used for fuel dur-
ing cooking and heating. Withmore rural families in China switching to
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cleaner fuels, agricultural residues are increasingly being burned in the
field after harvesting (Li et al., 2007). The agricultural burning in the
Northeastern China peaks in April and October. These fires over
agricultural lands are frequently spread into wetland, especially in
Calamagrostis angustifolia wetland, producing a seasonal fire activity
pattern similar to that over farmland. Compared to other well-studied
ecosystems, few studies have previously investigated the effects of fire
on nutrient dynamics in the wetland ecosystems (Gu et al., 2008; Qian
et al., 2009). The results from this studywill provide further information
to reveal the behavior of carbon cycling in response to fires through a
series of carefully designed experiments.

The objective of this study is to investigate the temporal variations of
soil carbon content and carbonmineralization rate in response to differ-
ent fire seasonality, frequencies, and severity in the Sanjiang Plain wet-
land. Fire not only perturbs the level of soil organic carbon (OC), but also
redistributes different labile fractions of organic carbon, such as dis-
solved organic carbon (DOC) and microbial biomass carbon (MBC).
The labile fractions of organic carbon can respond rapidly to changes
in carbon supply (Zhang et al., 2007). In addition, some researchers
have observed that there was a noticeable amount of carbon minerali-
zation after burning, due to the release of soluble organics from micro-
bial biomass (Choromanska and DeLuca, 2002). Recognizing the
complex effects of fire on soil OC, we conducted a two-year field cam-
paign to study: (1) the effects of fire on soil OC, DOC and MBC; (2)
change in carbonmineralization rate after fire; (3) the effects of burning
time, burning frequency and time-since-burning on the soil carbon
pool. In particular, we tested the hypotheses that fires will reduce the
levels of soil OC, DOC and MBC, but increase the carbon mineralization
rate. We also examined if the burning time and frequency could affect
carbon cycling in wetland soils.

2. Materials and methods

2.1. Study site

The burning experiments were conducted over the Sanjiang Plain in
Northeastern China (47°35′ N, 133°38′ E). The Sanjiang Plain is an allu-
vial plain formed by three major rivers, namely, the Heiron River, the
Songhua River, and theWusuli River, in this region. The annual average
of temperature over this region ranges from 1.9 to 3.9 °C and the annual

rainfall varies from 500 to 650 mm (Wang et al., 2006). The low alti-
tude, flat topography, and inductive climate conditions make it one of
the largest wetlands in China (Wang et al., 2006). The entire region
was historically a contiguous wetland, but is currently fragmented
into different hydrological units by the agriculture land and canals.
The Sanjiang wetland covers an area of about 9069 km2 (Wang et al.,
2002) of depressional and riparian wetlands. The major soil types
in this region are marsh soil. We conducted the experiments in
a depressional wetland. In the depressional wetland, from the
edge to the center, there are C. angustifolia, Carex lasiocarpa, Carex
pseudo-curaica, Carex meyeriana, and Carex appendiculata, respectively
(Zhao, 1999). In a typical wetland plant community over this region,
C. angustifolia is the dominant plant species. In Sanjiang Plain
wetlands, C. angustifolia was once estimated to cover approximately
150.6×104 hm2, and account for 13.8% of the total land surface over
the Sanjiang Plain (Zhou, 2005). C. angustifolia are mostly spread at
the edges of the depressional or riparian wetlands, making it prone to
the effects of fire burning than other species during agricultural residue
burning or wildfires. In order to emulate the natural fire in Sanjiang
Plain wetland, we choose C. angustifolia as our object.

2.2. Design of experiments

In this study nine blocks over a depressional wetland were select-
ed to examine the fire effect on soil carbon content. These blocks in-
clude three for autumn burnings, three for spring burnings, and
three for reference (undisturbed). Each block was further divided
into three contiguous plots for fire treatment with different burning
frequencies. From 2007 to 2009, eight experiments were performed
over these plots to compare the effect of: 1) burning time (autumn
vs. spring burning), 2) burning frequency (burning once vs. twice),
and 3) post-burning period (immediately after burning and one
year after burning) on soil carbon and carbon mineralization. Each
treatment was repeated in three rectangular plots with an area of
150 m2 (10×15 m), and a spacing of 5 m between two plots. The
two burnt treatments had two burning frequencies. The autumn
burnings were conducted in early October of 2007 and 2008. Spring
burnings were conducted in April of 2008 and 2009, respectively.
The details of the on-set of prescribed burnings and pre- and post-
fire samplings are depicted in Fig. 1.

Fig. 1. Schedule map of fire treatments and sample collections in the Sanjiang Plain wetlands, Northeastern China. Fire treatments are abbreviated as follows: AB: autumn burning;
SB: spring burning; UB: unburned; AO: autumn fire once in October 2007; AT: autumn fire twice in October 2007 and October 2008; AF: autumn fire in October 2008; SO: spring fire
once in April 2008; ST: spring fire twice in April 2008 and April 2009; SF: spring fire in April 2009. Samples were collected in the growing season of 2008 and 2009.
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2.3. Sampling and carbon analysis

For wetland plants such as C. angustifolia wetlands, the highest
density of grass root is generally found in the top 15 cm soil layer.
Hence, the carbon contents in this grass root layer were more respon-
sive to the effects of imposed fires. Six soil samples of 15 cm deep
were collected for each experiment treatment: two soil samples per
plot, each soil sample consisting of three cores 2.5 cm in diameter in
the center of the plot, and each burning treatment with 3 plots. Soil
samples were immediately transported to the laboratory, passed
through 2-mm sieves and stored at 4 °C temperature until being ana-
lyzed. Dissolved organic carbon was estimated by extracting 20 g
oven-dry equivalents of field-moist soil samples in 100 mL distilled
water (1:5 w/v) in a 150 mL polypropylene bottlers, and shaken for
30 min on a shaker. Soil–water suspensions were centrifuged and
the supernatants were filtered through a 0.45 μm filter into separate
vials for analysis. The DOC content was determined with a TOC-VCPH

(Shimadzu, Japan) (Jones and Willett, 2006).
Microbial biomass carbon was determined by the chloroform–

fumigation extraction method as described by Lu (2000) and Vance
et al. (1987). The procedure was conducted on 10 g oven-dry equiva-
lents of field-moist soil samples. The non-fumigated samples were
immediately extracted with 0.5 mol L−1 K2SO4 (1:4, w/v) for
30 min on a shaker. The fumigated samples were placed in a vacuum
desiccator with a beaker containing 50 mL ethanol-free chloroform.
The desiccator was evacuated until the chloroform had boiled for
2 min. The desiccator was then sealed and incubated for 24 h in the
dark. Then the beaker of chloroform was removed and the desiccator
evacuated to remove all traces of chloroform from the soils. The fumi-
gated soils were extracted with 0.5 mol L−1 K2SO4 under the same
conditions as the non-fumigated samples. The carbon content of the
K2SO4 extracts was measured on TOC-VCPH (Shimadzu, Japan). The
amount of MBCwas then calculated from the difference in extractable
organic carbon between fumigated and unfumigated soil samples
using the following formula:

MBC ¼ EC=0:38: ð1Þ

Where EC is the difference in extractable organic carbon between
the fumigated and unfumigated treatments; 0.38 is the efficiency of
extraction constant (Lu, 2000; Vance et al., 1987). Here the unit of
MBC content was mg kg−1.

Soil organic carbon was determined using external heating potas-
sium dichromate oxidation method (Lu, 2000). Approximately 0.1 g
air-dry soil samples (processed through 0.178-mm sieves) were
transferred to flasks with 5 mL of 0.8 mol L−1 K2Cr2O7, and with
5 mL H2SO4 gradually added. The flasks and contents were then heat-
ed on the sand bath, the sample digested until the solution boiling for
5 min. The flask was then removed from the sand bath and allowed to
cool thoroughly. Then the sample was titrated with 0.2 mol L−1

FeSO4 to determine the amount of carbon mineralization. The carbon
contents (%) were then calculated as the following formula:

Carbon ¼ V0−Vð Þ � C � 0:003� 1:08� 100=W: ð2Þ

Where V0 was the amount of FeSO4 consumed by the reference; V
was the amount of FeSO4 consumed by the samples; 1.08 was the ox-
idation correction factor; W was the mass of air-dry soil.

2.4. Carbon mineralization

The intent of carbon mineralization was investigated using the al-
kali absorption method (Bridgham et al., 1998; Yang, 2006). Field-
moist samples, equivalent of 20 g oven-dry soil mass, were passed
through 2-mm sieves, and placed into a 500 mL canning jar filled
with 50 mL distilled water. An open-top plastic pot containing 5 mL

of 1 mol L−1 NaOH solution was put into each canning jar. The soil
samples were incubated in the canning jar with closed lids under
room temperature (approximately 28 °C). The total incubation period
was 31 days, during which samples were analyzed on the 2nd, 4th,
8th, 12th, 18th, 24th and 31st days. At each measurement time, the
plastic pot was removed, and the solution inside was titrated to de-
termine the amount of CO2 release. The amount of CO2 release
(expressed in mg C/g) was then calculated as the following formula:

CO2−C ¼ V0−Vð Þ � C
2

� 44� 12
44

� 1
m� 1−að Þ : ð3Þ

Where V0 was the amount of HCL consumed by the reference; V
was the amount of HCL consumed by the samples; C was the concen-
tration of HCL;mwas the mass of air-dry soil; awas the soil moisture.

2.5. Statistical analyses

Statistical analyses were conducted using SPSS 11.5. An analysis of
variance (ANOVA) was used to evaluate the effects of prescribed burn-
ing on OC, DOC, and MBC. One-way ANOVA was conducted for each
sample data separately. Two-wayANOVA testwas carried out for the ef-
fects of burning and sampling time on OC, DOC and MBC. In addition,
Levene's test was employed to test for homogeneity of variances. Final-
ly, we conducted least-significant-difference (LSD) test to determine
the significant differences among paired treatments. The LSD test is a
method for comparing treatment group means.

3. Results and discussions

3.1. Effects of fire on soil organic carbon

Our measurements showed that fires increased the content of soil
organic carbon in the first and second growing seasons after the burn-
ing (Fig. 2). Compared to that in the unburned plots, the OC contents
in the autumn burning and spring burning soil samples increased by
44% and 60%, respectively. The ANOVA test showed that there was a
significant effect of burning on OC contents during the whole
sampling period (pb0.05). The finding that soil OC increased signifi-
cantly after fire in this study was consistent with the results from
studies conducted elsewhere (e.g., Kara and Bolat, 2009; Pardini et
al., 2004). The increase is largely due to increased aboveground
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Fig. 2. Effects of prescribed fire on soil organic carbon in the first growing season after
fire in 2008. Values represent means±SE (n=6); Different letters (a, b, c etc.) indicat-
ed that the means were statistically different from each other; Abbreviations for fire
treatments are given in Fig.1; Sampling time was from May to September in 2008.
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production and very fine roots of grasses that may have passed
through sieve in fire treatment soils (Ansley et al., 2006).

The timing and frequency of burning also affected the OC abun-
dance in the soil. In our experiments, fires have been ignited in both
spring and autumn time. The timing of burning resulted in different
levels of perturbation in soil OC. During the first post-fire growing
season, spring burned plots showed the largest increase in soil OC
content in May 2008, approximately twice as large as the change in
autumn burned plots (Fig. 2). The difference between soil OC in
spring- and autumn-burn plots became smaller in the second year,
but the soil OC remained higher in the spring burned plots than in au-
tumn burned or unburned plots (Fig. 3). The spring burning, ignited
in April 2008, was only one month before the beginning of soil sam-
pling, while the autumn burning in October 2007 was six months be-
fore the sampling. Averaged over the five sampled months (May–
September), the concentration of soil OC in the spring burned plots
was elevated by 28% compared to that in unburned plots, while in
the autumn burned plots soil OC content was elevated by 27%. Several
previous studies have reported similar results that spring burnings
had a greater effect on soil OC than autumn burnings (e.g., Hatten et
al., 2008). The autumn burned soils had a lower OC content than
the spring burning soils, likely due to litter burned and soil organic
matter consumption by snowmelt and wind erosion during the win-
ter period from burning to sampling time (Hatten et al., 2008). For
the spring burning, litter could be decomposed and incorporated
into the soil by soil fauna. For the autumn burning, however, the
soil surface is left partly uncovered during the winter period,
resulting in loss of surface soil and litter through snowmelt and
wind erosion (Knicker, 2007).

Our results also showed that although fire can increase wetland
soil OC immediately after the burning, the fire effect diminished
with time. Monleon et al. (1997) observed an increase in mineral
soil nitrogen content immediately after fire, but a subsequent return
to the pre-burning level in a few years. To investigate if such a
trend exists for soil organic carbon, we further sampled andmeasured
soil OC in the second growing season (June, July and September
2009). We found that the OC content in burned soil remained signif-
icantly higher than in the unburned soil during the second post-
burning growing season (Fig. 3), regardless of the burning time and
burning frequency (once or twice). The difference in soil OC level be-
tween burned and unburned plots, however, became smaller in the
second post-fire growing year than in the first year. In addition, dur-
ing the second growing season, however, in soil OC between the

spring and autumn fire treatments became smaller, consistent with
the overall diminishing effect of fire on soil OC perturbation.

Fig. 3 also revealed that burning frequency affects soil OC abun-
dance. During the study period, double burning (a second fire ignited
one year after the first one) yielded lower soil OC than single fire
treatment in the second growing season, except in July. For the July
samples, soil with double treatments contained more OC than that
with single treatment. During the sampling period, the soil OC con-
tent increased by 20% and 29% in plots burned twice in autumn and
spring, respectively, compared to that in the unburned plots. Both
the burning time and the sampling time had a significant effect on
soil OC contents (pb0.05, Table 1). More frequent burning and great-
er fire severity led to the increase of soil OC due to the increased sur-
face biomass and underground carbon pool from dead roots
(Czimczik et al., 2005; Oluwole et al., 2008).

3.2. Effects of fire on dissolved organic carbon

Similar to the response in soil OC, DOC concentrations in burned
soils increased in the first post-fire growing season (Fig. 4). The
DOC contents in autumn burned and spring burned soils ranged
from 45.3 to 91.2 mg kg−1 and from 50.7 to 106.2 mg kg−1, respec-
tively, while in unburned soils the DOC concentrations ranged from
31.1 to 80.5 mg kg−1. The ANOVA test showed that the effect of pre-
scribed burning on DOC concentrations was significant (pb0.05). In
the second growing season after burning, however, the effects of pre-
scribed burning on DOC became insignificant (p>0.05) (Fig. 5). Dur-
ing the two-year sampling period, the DOC content reached its
maximum in May. Compared to autumn burnings, spring burnings
exerted a larger effect on DOC contents in May. Burning time and
sampling time had significant effects on soil DOC contents (pb0.05),
but the interaction between burning and sampling time on soil DOC
was insignificant (p>0.05, Table 1).
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after fire in 2009. Values represent means±SE (n=6); Different letters (a, b, c etc) in-
dicated that the means were statistically different from each other; Abbreviations for
fire treatments are given in Fig.1; Sampling time was from June to September in 2009.

Table 1
Repeated-measure analysis (ANOVA) of organic carbon (OC), dissolved organic carbon
(DOC) and microbial biomass carbon (MBC) content in wetland soils for data collected
in 2008.

Source of
variation

OC DOC MBC

F p F p F p

Burn 98.699 .000 14.163 .000 8.797 .001
Time 5.197 .002 32.528 .000 8.802 .000
Burn×time 3.799 .003 2.135 .058 .697 .691
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Fig. 4. Effects of prescribed fire on dissolved organic carbon in the first growing season
after fire in 2008. Values represent means±SE (n=6); Abbreviations for fire treat-
ments are given in Fig. 1; Sampling time was from May to September in 2008.
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Compared to the unburned soils, the DOC contents in the burned
soils were elevated but only for a short period. A previous study
showed soil organic matter content, carbon to nitrogen ratio, pH
values, and nutrient availability all increased after burning (e.g.,
Badía and Martí, 2003), which led to increase in microbial activity
and leaching of DOC (Andersson et al., 2004; Jokinen et al., 2006). In
another study, however, Shibata et al. (2003) found that fires signifi-
cantly reduced the DOC concentration in the surface moss layer com-
pared to that in the unburned site one month after the burning, due in
part to soluble organic carbon loss after ignition. In our study, the
DOC contents were larger in the burned soils in the first year after
burning, but there was no significant difference in the second year.
A short-lived peak DOC concentration in soil water after burning
was also observed by Clay et al. (2009), who also found that the
DOC content was not significantly elevated one year after the burning
of a blanket bog in USA.

During the two-year sampling period, the soil DOC content was at
peak in May in both burned and unburned plots. The DOC peak in
May is attributed to the decomposition of microorganism and snow
leaching in winter (Yang, 2006). Compared to the autumn burnings,
the spring burnings produced higher DOC contents in May because of
the addition of plant ashes and less exposure to water and wind ero-
sions between burning and sampling. The DOC contents in freshly bur-
ned ashes were about 140.4±45.9 mg kg−1, whichwas well above the
typical soil DOC level in this region (Zhao et al., 2010). The addition of
ashes would therefore increase DOC in the burned soils. The lag be-
tween burning and sampling affected the DOC level because the ashes
left on the surface soil can be removed bywind lifting and/or water ero-
sion and the longer the lag is, the more ashes will be removed. The au-
tumn burned plots were particularly subject to this influence as the
snowmelt and strong wind in winter and spring over the Northeastern
China were effective to remove the ashes from the soil surface. Conse-
quently, the soil DOC contents were lower in the autumn burned plots
than in the spring burned ones.

3.3. Effects of fire on microbial biomass carbon

The effect of fires on the content of MBC is similar to that of DOC,
with a significant increase in soil MBC in the first post-fire year, but a
considerably smaller change in the second year. In the first post-
burning growing season, the MBC contents in the burned soils were
greater than that in the unburned soils (Fig. 6). Soil MBC in the au-
tumn burned and spring burned soils increased by 28.4% and 33.2%,

respectively, from the level in the unburned soils. During the sampled
period, the largest increase was found in September, in which the
MBC contents were enriched by 56.6% and 47.4% in the autumn and
spring burned soils, respectively. The ANOVA test showed that the ef-
fect of fires on soil MBC was significant (pb0.05).

After the first post-burning year, the effect of burning became insig-
nificant (Fig. 7). In the second year, the ANOVA test showed that there
was no noticeable difference between the burned and unburned soils
(p>0.05). The MBC contents in the burned soils remained higher, but
the magnitude of MBC monthly variations was comparable to that in
the unburned soils. During the second growing season, the MBC con-
tents were higher inMay and August and lower in June and September,
different from that in the first year. Therefore, the timing of sample col-
lections imposed a significant effect on the determined content of MBC
(pb0.05), but the interaction between burning time and sampling time
on soil DOC was not significant (Table 1).

Our finding that fires significantly increased soil MBC in the first
post-fire growing season was in accordance with the results from
others (Liu et al., 2010; Rutigliano et al., 2007). Higher availability of
organic carbon, as suggested by the positive correlation between
MBC and OC, was partially responsible for higher MBC after burning.
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In addition, the growth of surviving microorganisms could be en-
hanced through the use of the “recycled” nutrients contained in the
ashes (Snyman, 2003) and labile organic carbon and ammonium
(NH4

+) released from microorganisms destroyed by heat (Andersson
et al., 2004). The fire impacts became less significant when the extra
ash input was consumed, which was shown by the lack of significant
difference of MBC contents between burned and unburned soils in the
second post-burning growing season.

Our results also showed that burning frequency had no consider-
able effect on soil MBC. This result is accordance with Kara and
Bolat (2009) who also found no significant differences in MBC be-
tween the burned and unburned soils. In other studies, however, it
was reported that soil MBC was reduced after burning (Harris et al.,
2008; Palese et al., 2004), because of decreased above-ground litter,
lower burning intensity, and cold and rainy weather over these
study areas. Similarly, Choromanska and DeLuca (2002) observed
that repeated burning can diminish MBC relative to soils that have
been only burnt once. In this study, the soil MBC increased after burn-
ing even though the increase was temporary, and the effects of burn-
ing on MBC varied with the burning frequency and the lag between
burning and sampling. The different responses in the MBC variations
between present and the previous studies were likely caused by sev-
eral interlaced factors, including fire frequency and severity, soil sur-
face conditions (wetland here vs. forest elsewhere), soil OC change,
and prevailing weather conditions. For instance, in one of the burning
experiments we found that the lower burning intensity resulted in a
considerable lower above-ground litter in the second year. Besides af-
fecting the litter accumulation, fire intensity can also play important
roles in determining the survival of microbial community after the
burning. Compared to forest floor, the Sanjiang wetland was typically
associated with very high soil moisture due to the constant presence
of water/snow at the surface. The high moisture and low fuel loading
in wetland could prevent the microbial community from the pene-
trating damages of the fires, ensuring a higher survival rate than in
forest. Meanwhile, the moist soil and sufficient litter deposition
formed favorable conditions to facilitate fast microbial growth in the
post-fire growing season. The MBC contents peaked in the first
post-fire growing season, and then declined in the second year, a be-
havior correlated with the soil OC variation.

The MBC/OC ratio, as a soil quality indicator, was a useful measure
to monitor soil organic carbon and provided a more sensitive index
than organic carbon alone in burning impacted soil. Generally, if a
soil is being degraded, the MBC pool will decline at a faster rate
than organic matter, and the MBC/OC ratio will decrease as well
(Anderson, 2003; Kara and Bolat, 2007). In this study, our data
showed that the MBC abundance was positively related to that of
OC. Meanwhile, the MBC/OC ratios were significantly lower in the
burned soils than in the unburned soils (pb0.05), which was consis-
tent with the results from Kara and Bolat (2009). Our results con-
firmed the earlier observation that based on the change of the
carbon pools, there was degradation in soil quality immediately fol-
lowing burning.

3.4. Effect of fire on carbon mineralization

Compared to that in the unburned soils, the total amount of min-
eralized carbon increased significantly in the burned soils (Fig. 8). The
results showed that burning time played an important role in regulat-
ing cumulative carbon mineralization. Spring fires affected the miner-
alized carbon content by a larger magnitude than autumn fires;
consistent with the response of soil OC and MBC. Burning frequency
also had a noticeable effect on carbon mineralization. For the autumn
burns, the mineralized carbon content in the burned once and twice
soils increased by 213% and 117%, respectively, compared to that in
the unburned soils. The ANOVA test showed that there was a signifi-
cant difference among the autumn burns (pb0.05). For the spring

burn, the mineralized carbon content in the burned once and twice
soils was greater than unburned soils by 367% and 300%, respectively.
ANOVA results showed that there was a significant difference among
the spring burned soils (pb0.01). The carbonmineralization rates also
increased significantly after burning. The spring and autumn burned
soils had higher carbon mineralization rates, which were about 4.7
and 2.6 times faster than the corresponding ones in the unburned
soils, respectively. During the incubation period, the carbon mineral-
ization rates decreased with the increasing incubation days, due to
the diminishing availability of the adequate carbon sources.

The significant increase in carbon mineralization rate after the pre-
scribed burnings in this study indicated higher carbon dioxide
emissions rom the unburned wetland than commanded by the
undisturbed seasonal variability. The short-term increase in carbon
mineralization rate was attributed to the increased organic carbon
and nitrogen contents in the burned soils, as well as an improved qual-
ity of substrate for microbial growth and a possible increase in labile
compounds, all of which stimulated microbial growth (Hatten and
Zabowski, 2009; Rutigliano et al., 2007). Furthermore, burning could
decrease the efficiency of carbon conservation by soil microflora
(Fierror et al., 2007). Overall, fires increased the microbial metabolism
in the post-burning soil through influencing both abiotic soil properties
and soil microbial composition and activity. In most fire-impacted eco-
systems, soil moisture is a key regulating factor for soil respiration
(Gupta and Singh, 1981). This is not the case for thewetland ecosystem.
The expanded decomposable carbon pool in the post-fire wetland can
increase the emission fluxes of carbon dioxides from vegetation respira-
tion and photosynthesis, similar to that observed byWard et al. (2007).
Consequently, the burnings over the wetland caused more carbon
losses from the burned soils than the unburned ecosystems. Higher
CO2 emissions from burned soils compared to unburned soils have
also been reported in many studies (Knapp et al., 1998; Rutigliano et
al., 2007; Ward et al., 2007). Therefore, burning increased CO2 emis-
sions into the atmosphere not only during combustion processes but
also for an extended period after the burning.

During the incubation period, spring burnings had a larger effect
on carbon mineralization than the autumn burnings. During the
spring burnings, the soil surface was covered by water from snow-
melt (an average depth of 5 cm). The presence of water reduced the
fire severity and carbon mineralization (Hatten and Zabowski,
2009). Another contributing factor that caused the higher carbon
mineralization in spring burning plot is the time between burning
and sampling. The samples for autumn burnings were collected five
months after the burning, while the samples for the spring burning
immediately after the burning. The longer lag in autumn burning
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plot allowed physical, chemical and biological processes to remove
and/transform burning residues from the soils, which in turn con-
trolled microbial growth. The combination of these factors would be
responsible for the higher carbon mineralization in the soils in the
spring than autumn burned plots.

4. Conclusions

Although it is well recognized that the effect of fire on soil carbon
pool is significant (Fig. 9), its long term effect on wetland carbon re-
mains uncertain, since previous studies were limited to a short period
(one year or two). The results from our two-year field campaign re-
veal that the fire effect varies from one soil carbon form to another.
Soil organic carbon (OC) increased in the burned soils in both grow-
ing seasons, but the abundances of soil dissolved organic carbon
(DOC) and microbial biomass carbon (MBC) increased in the first
post-burning growing season and then returned to the pre-burning
levels in the second growing season. The variability in soil MBC and
DOC also depends on burning time (spring vs. autumn) and sampling
time. In general, spring burnings exerted a larger effect than autumn
burnings on soil carbon pool, due in part to the difference in soil
water content and the lag between the burning and sampling time.
Although the impact seems short-lived, the frequent reoccurrence of
wildfires may extend the short-term effect to interfere with the
longer-term carbon cycling within and outside the burn areas.

Compared to the unburned soils, the cumulative carbon minerali-
zation data and carbon mineralization ratio in the burned soils were
higher, and the spring fire had more significant influence on carbon
mineralization than the autumn fire. Fires increased the microbial
metabolism in the post-burning period, resulting in higher carbon
losses from the ecosystem compared to undisturbed ecosystem.
Therefore, fires increased CO2 emissions to the atmosphere not only
during the combustion process, but also for an extended post-
burning period.
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