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Software properties define how software systems should operate. Specifying cor-

rect properties, however, can be difficult and expensive as it requires deep knowledge

of the system’s expected behavior and the environment in which it operates. Au-

tomated analysis techniques to infer properties from code or code executions can

mitigate that cost, but are still unable to go beyond state properties and the simplest

patterns of temporal properties. This limitation renders properties that sacrifice fault

detection power.

To address this problem, we introduce a new type of software properties called

statistical properties, which characterize significant statistical relationships among

the values of variables across program states. We define an approach to infer these

relationships automatically and support their monitoring while controlling the trade-

offs between overhead and the precision and recall of the inferred properties.

We perform several experiments to assess the approach in the context of dis-

tributed robotics applications. Our findings indicate that the inferred statistical

properties can be use to generate precise and cost-effective models capable of de-

tecting faults in software systems while keeping the number of false positives close to

zero and previous knowledge of the software system design and behavior unnecessary.
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Chapter 1

Introduction

Software properties characterize how a system operates or should operate. Such

characterization aims to capture different functional and non-functional attributes to

support various forms of validation and verification. This aim in turn influences how

the properties are specified and checked.

Consider for example, the Java construct assert(x ! =null). This construct speci-

fies a property in the code, which may have been derived by the programmer based

on his domain or program knowledge, or by an automated inference tool through the

analysis of the program structure or of some of its execution traces. This property

is represented by a boolean expression, which will be checked at run-time, raising an

exception if the subset of the program state represented by variable x is null.

Now consider the property �(Booting → ©CheckMem) which asserts that it

is always the case that CheckMem occurs right after Booting. This is a richer

property in that it operates over a set of states, but it is also more challenging

to specify correctly as it includes richer semantics. It is also more expensive to

check as it involves keeping track of data across multiple states and may require

constructs that are not part of standard programming languages. Yet, in spite of its
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cost, such temporal properties are often critical for reactive systems that maintain

an ongoing interaction with their environment rather than produce some final value

upon termination [37].

These two sample properties illustrate some of the trade-offs to consider between

properties involving one state (state-properties) versus properties involving multiple

states (temporal-properties). Such trade-offs include the costs of correctly specifying

and checking those properties and their benefits in terms of fault detection power.

In this work we propose a new type of properties, statistical properties, that

provide an intermediate choice in this spectrum. These properties aim to capture

significant statistical relationships between a window of values of variables across

multiple program states which makes them interesting from several perspectives.

Statistical properties have several interesting attributes. First, they are a natural

match for systems that have a distribution of outputs or events that can be statisti-

cally fitted such as those systems that employ control algorithms or planners, or that

propagate messages across distributed and independent components in a somewhat

consistent manner. Second, they can be inferred with similar effectiveness and level of

automation as state-properties, avoiding some of the challenges involved in inferring

the more complex temporal properties. Third, they offer simple and intuitive param-

eters that can be adjusted to meet monitoring costs, and can be easily extended by

providing more statistical relationships.

Statistical properties, however, are not always appropriate or efficient. Properties

that cannot be easily map to a distribution or statistical relationship may be more

appropriate for other types of representation. Statistical properties are also not rich

enough to capture relationships that include implicit system variables such as time

or locality, and may become impractical in the presence of many events.
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Figure 1.1: Asctec Hummingbird quad-rotor

In the rest of this chapter we define the problem in more detail, illustrate our

approach, and detailed the contribution of the work.

1.1 Motivating Example

Consider a system that controls a quad-rotor helicopter like the one shown in Figure

1.1. The software system enables a pilot to move the quad-rotor using a joystick

controller and it includes a height controller that automatically adjusts the quad-

rotor thrust to maintain a target height without human intervention. Figure 1.2

shows a graph of the software components. Each vertex corresponds to a component

of the distributed system and the edges specify the type of message sent between

components. So, for example, the vertex /asctecjoy corresponds to the component in

charge of transforming raw data from the joystick controller into commands, and the

edge with the label /TargetHeight represents messages that set the target height.

Specifying and monitoring properties of this type of systems is difficult because

their interaction with rich physical environments leads to many potential scenarios

where properties can be easily over or under specified. Another difficulty is that

the sensory information that the systems collect is often noisy, which is particularly

problematic for tools trying to automatically infer properties from run-time data.
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Figure 1.2: Graph representation of the distributed system under analysis

Consider the zigbeeRanger component (Figure 1.2) which constantly receives raw

data about the quad-rotor’s distance to the floor and publishes the filtered distance

value. The process to produce the filtered distance is triggered whenever a message

containing the raw distance, /ADC3, is received (the content of messages with label

/ADC2 is ignored by the system and does not have any impact in the component

behavior).

Since changes in the environment can cause abrupt changes in the ranger’s read-

ings, the filtering process reduces the variance of the raw height data it receives. This

process is as follows. First, raw distance readings are stored in a queue and the av-

erage of the raw readings received in the last s seconds is calculated. Then, for each

raw value in the queue (starting from the most recent value), the absolute value of the

difference between average and raw is calculated and compared against a constant

threshold. If the difference is lower than threshold, raw is considered noise-free and

it is used to compute the filtered distance, where filtered distance is the average of

the latest 3 noise-free raw distances. Given this explanation, it seems that a strong

property of the zigbee ranger component must capture the fact that filtered distance

is a function of the raw height values, and threshold.
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1.1.1 State Properties

State properties can characterize the set of valid program states of software systems

by describing the correct values of its state variables and the relationship between

them using propositional or first-order logic. They can be specified by someone with

previous knowledge of the system or automatically inferred by program analysis tools

that instantiate predefined property templates with the program variables and their

values collected at run-time.

Consider for example a proposition like raw−filtered < threshold. This property

would be effective in discovering outliers in the raw readings and could be generated by

automatic inference generation tools like Daikon[21]. However, the effectiveness of this

characterization relies heavily in the choice of threshold which may be problematic

to determine automatically for systems like this where the data is noisy. Also, the

relationships between variables may be more complicated and only hold for some

scenarios (e.g., it may not hold if the quad-rotor is on the ground), which further

challenges inference tools.

Last, state properties will be unable to capture anomalies that manifest across

several states, like when the UAV oscillates without converging to the target height.

1.1.2 Temporal Properties

Temporal properties are those that can be described using first-order logic or temporal

logic, where each proposition contains one or more temporal operators and one or more

propositional variables which represent an event or state of the system. Temporal

properties have an implicit notion of time that allows them to reason about the

ordering of events or states.
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These properties must be specified by someone with previous knowledge of the

system or, for their simplest types (e.g., properties with just two events appearing

in specific patterns), inferred from an execution trace of the system. In the context

of the sample system under analysis, every message type could represent a propo-

sitional variable and every published message could represent an occurrence of that

proposition.

Automatic inference techniques for temporal properties try to match the relation-

ship between various types of events to a series of templates in the form of specification

patterns. For example, an instance of the Response temporal pattern [19] could be

automatically inferred for our example. This pattern states that after receiving the

raw distance to the floor (event P), the system next action is to publish the filtered

distance to the floor (event Q). Using linear temporal logic, the property specification

is defined as �(P →©Q) and should be read as it is always the case that an occur-

rence of event Q will happen immediately after an occurrence of event P. While it is

true that the automatically inferred temporal property holds, it can only judge the

behavior of the zigbeeRanger component by the type of messages received and sent,

but not by of the data they transmit, which hurts fault detection when the payload

of the events is the key to the faults.

With some knowledge of the system, more meaningful properties can be defined

by defining richer propositions that represent a monotonic relationship between the

parameter values. Let’s assume that it is expected that filtered values change in the

same direction than raw values. The new propositions could represent the direc-

tion in which the value of a given parameter changes with respect to the previous

event of the same type. Therefore, given the last occurrence of event Pi and the

previous occurrence of event Pi−1, we could define as an occurrence of event type

PE(P Equal) when the values of Pi.value and Pi−1.value are the same. If Pi.value is
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lower than Pi−1.value, then we have an occurrence of PL(P Lower). Otherwise, the

occurred event is PG(P Greater). Once we have defined this new family of propo-

sitions, properties stating that an occurrence of PE is immediately followed by an

occurrence of QE can be defined to model the expected behavior. So, these new in-

stances of the ‘Response’ pattern are specified as �(PG→©QG), �(PE →©QE)

and �(PL → ©QL). The first one for example indicates that it is always the case

(�)that an occurrence of PG (the new value of raw height is greater than the previous

one) is immediately followed (©) by an occurrence of QG (the new value of filtered

height is greater than the previous one).

Even when the new propositions do not model the system perfectly, they are more

accurate than the one insensitive to the message data. However, the definition of this

new set of richer propositions requires someone with domain knowledge to map the

relationship between parameters to new propositions since the state of the art in

automatic inference tools cannot infer such complex properties.

1.1.3 Probabilistic Temporal Properties

Probabilistic temporal properties are described using probabilistic temporal logics.

These logics extend temporal logics by adding discrete time constraints and the ca-

pability of describing the probabilistic nature of some software systems. As systems

that define or require the specification of these behaviors are generally mission critical

and the properties quite complex, system designers with previous domain knowledge

are preferred rather than inference tools to take care of properties specification.

In the context of the sample system under analysis, let’s now suppose that the

system under analysis is considered to be more stable and the system’s developers

would like to define a less strict behavior so event Q to is not required to occur
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immediately after event P . In that case, they could specify a soft deadline or property

that states that after receiving the raw distance to the floor (P ) there is at least a

90% probability that the filtered distance to the floor will be published (Q) within 5

time units. Using probabilistic temporal logic, this property can be specified like this

�[(P → ♦≤5≥.9Q)].

As probabilistic temporal logics extend temporal logics, probabilistic temporal

properties share the benefits and downsides of temporal properties against state prop-

erties. Comparing probabilistic temporal properties and temporal properties, proba-

bilistic temporal properties offer more expressiveness capabilities because they provide

more branching options. While temporal properties can specify that a sequence of

event must occur in every path or at least one path, probabilistic temporal properties

can define the exact percentage of executions path in which those events must occur.

However, their specification requires a more accurate and detailed knowledge of the

system under analysis and its environment.

1.1.4 Statistical Properties

We have briefly discussed state, temporal and probabilistic temporal properties and

their trade-offs between inference cost and meaningful characterization. We believe

that statistical properties are an intermediate alternative in that trade-off spectrum.

While state properties rely on propositional formulae and ignore the execution his-

tory, temporal properties rely on abstract states derived using the execution history,

and probabilistic temporal properties offer a larger expressiveness power at cost of

little inference automation, statistical properties model the system behavior by find-

ing significant statistical relationships between a window of values of a set of state

variables.
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In the same way as state and temporal properties automated inference tools try

to find instances of predefined property templates using execution data, inference of

statistical properties tries to find instances of statistical relationships between vari-

ables and their values. For example, the subsystem under analysis is a potential

candidate for the correlation template property. To determine if raw and filtered

are an instance of this property, our approach keeps two windows of their values

and calculates the correlation coefficient between those two windows every time new

values are assigned to both of them. The property is discarded if a statistical test

determines that it cannot be assured that the correlation relationship does not exist

by chance.

Contrary to state property raw− filter < threshold, the power of the statistical

property correlation is less dependent on the quality of the test suite and it can adapt

easier to untested scenarios. For example, it is possible that raw − filter becomes

greater than threshold by an insignificant amount after a new target height is set.

While this is not a fault in practice, it will be considered a violation to the state

property even if it happens once. A correlation property will be robust enough to

handle that scenario because it considers the relationship between a window of values

of raw and filter. Furthermore, a state property would not capture that the quad-

rotor is oscillating as long as each individual state does not violate a state property.

A statistical property describing the correlation between these variables may expose

this undesired behavior.

The robustness comes at a cost. The computation of the correlation coefficient

is more costly than the proposition raw − filter < threshold, which increases the

inferring and monitoring time of the correlation property. Still, in general, the in-

ference is less costly for statistical properties than temporal properties because the

latter have to keep track of an undetermined number of program states to discard



10

Attributes

Property Type

State Temporal
Probabilistic
Temporal

Statistical

Number of
States

One Multiple Multiple Bounded

Expressiveness Low High High Medium

Logic Propositional Temporal Probabilistic First Order

Automation
Support

High Medium Low High

Inference
Cost

Low High High Medium

Monitoring
Cost

Low High High Medium

Table 1.1: Property Types Comparison

an instance of a property template. The monitoring cost of temporal properties and

probabilistic temporal properties is proportional to their complexity which is deter-

mined by the number of variables, states, and temporal operators. For statistical

properties, the cost is fixed and adjustable, and most statistical functions can be

computed incrementally.

In order to concisely position statistical properties in the software properties spec-

trum, Table 1.1 summarizes the main attributes and trade-offs of each type of software

properties that we have discussed in this section. The column corresponding to sta-

tistical properties contains our claims about them and the other columns provide an

approximation of the attributes of the other types of properties.

1.2 Research Contributions

In this work we present statistical properties that can be inferred and monitored

automatically and cost-effectively. Concretely, our contributions are:
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• Formal definition of statistical properties, their constituent elements, and the

explanation of how overhead and fault detection power can be adjusted to satisfy

the needs of their users.

• Development of a dynamic analysis approach to infer statistical properties, op-

timize their window size, and monitor them.

• The inference and monitoring approach, including a mechanism to build and

refine models of software systems, and a framework to extend the approach by

adding statistical properties defined by third parties.

• Study of the cost-effectiveness of statistical properties in generating models for

3 distributed robotics systems. The results indicate that precision, recall and

overhead can be manipulated to achieve a desired range of performance. Com-

parison between the cost of inferring and the fault detection power of properties

generated by our tool against Daikon, a state properties inference tool.

1.3 Thesis Overview

After introducing statistical properties and their trade-offs against state and temporal

properties, the rest of the thesis is organized as follows. Chapter 2 presents related

work pertaining to the inference and monitoring of software properties. In Chapter 3

we formally define statistical properties and provide the details of the inference and

monitoring processes. We also present a tool that implements our approach. Chapter

4 presents the results of a study performed to evaluate if statistical properties are able

to effectively model distributed robotics system by distinguishing correct and faulty

behaviors. Chapter 5 discusses the conclusions of this work and outlines our plans

for the future of this work.
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Chapter 2

Background and Related Work

This chapter focuses on introducing the three types of software properties that have

kept the attention of researchers: state properties, temporal properties and proba-

bilistic temporal properties. These types of properties have being shown to be useful

in characterizing the behavior of software systems in many situations, have been tar-

geted for inference, and used extensively in the context of run-time verification. This

chapter defines these types of properties and presents previous research efforts to infer

and verify software properties.

2.1 Software Properties

To fully position statistical properties in the cost-effectiveness trade-off spectrum,

we first introduce the definition of program state and transition systems, and then

present state and temporal properties along with their benefits and limitations.
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2.1.1 Program State

At a specific time t, a state s of a given program S that has a set of state variables X,

is defined as the set of key-value pairs such that the key component refers to a state

variable x ∈ X and the value component v(x) represents the current value of x. The

set of state variables is frequently defined as a subset of all program variables and

the criteria to select them depends heavily on the characteristics and/or behavior of

each program.

Definition (Program State) Given system S = (X,D, dom) where:

1. X is the finite set of state variables of S,

2. D or domain is a non-empty set of values,

3. dom is a mapping from X to the set of non-empty subsets of D. For each state

variable x ∈ X, the set dom(x) is called the domain for x.

then, state s of system S is a function d : X → D such that for every x ∈ X and

its value v(x), v(x) ∈ dom(x). [31]

The previous definition implies that every program, at every moment, is in one

and only one state defined by the values of its state variables.

As an example of program state, if a given system has state variable x ∈ X and

domain D ⊆ N, then it is possible to define state st = {(x, 1)} if x = 1 at time t or

state su = {(x, 0)} if x = 0 at time u. Figure 2.1 illustrates those states.

2.1.2 Transition Systems

Transition or state-full systems need to reason about sequences of program states

and how they change in time in order to achieve their goals and perform correct
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Figure 2.1: Program states of a stateless system

computations [37]. As their name suggests, transition systems define a set of pairs of

states called transitions that specify correct sequences of program states.

Definition (Transition System) A transition system is a tuple S = (X,D, dom, In, T )

where:

1. X is a finite set of state variables,

2. D or domain is a non-empty set of values,

3. dom is a mapping from X to the set of non-empty subsets of D. For each state

variable x ∈ X, the set dom(x) is called the domain for x,

4. In is a set of states, called the initial states of S,

5. T is a finite set of transitions.

A state of a transition system S is a function d : X → D such that for every

x ∈ X and its value v(x), v(x) ∈ dom(x). A transition is a set of pairs of states. A

transition t is applicable to a state s if there exists a state s′ such that (s, s′) ∈ T .

[31]
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Figure 2.2: Program states of a transition system

From the previous definition it can be observed that a transition (s, s′) determines

that state s′ is one of the valid next program states only if the current program

state is s. For example, given a sample system with program states st = {(x, 1)},

su = {(x, 0)} and sv = {(x,−3)}, it is possible to define a potential set of valid

transitions as T = {(st, su), (st, sv), (su, st), (sv, su)}. Figure 2.2 depicts that potential

set T as a digraph where system states are represented by the graph vertices and

transitions by the graph edges.

Usually, transition systems are able to differentiate distinct types of events. This

last point is important because transition systems move from the current state to the

next state as a consequence of internal or external events of various types. However,

not every event always triggers a transition to a different state. In practice, the next

program state is a function of the current state and the event type.

2.1.3 State Properties

The state properties of transition systems characterize their set of valid program

states by describing the correct values of their state variables and the relationship

between them. One way to perform these characterizations is by using propositional

formulae whose propositions inquire about the value of the program state variables.
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Figure 2.3: State properties representation

This is a practical way, for example, to describe invariants that should hold during the

entire program execution. Some examples include defining ranges of state variables

(altitude ≥ 0 ∧ altitude ≤ 100), expected values (temperature ≥ 50, object 6= null)

and relationships between variables (door open = 1∧altitude = 0 or power motor1 =

power motor2).

A more powerful option consists of defining properties using first-order logic, in-

corporating the universal quantifier ∀, the existential quantifier ∃ and quantified vari-

ables. These additions make it possible to operate over sets of variables like for ex-

ample ∀sensor ∈ Sensors : sensor.status = ‘ok′ or ∃battery ∈ Batteries : battery >

0.20.

Now, given a formula describing the valid program states we can check whether

a state obides to it. For example, given a sample system that has state variable

pitch angle ∈ X and state property svalid = {pitch angle > −10◦ ∧ pitch angle <=

10◦} which characterizes every valid program state, it is possible to define proposi-

tional formula F = {pitch angle >= −10 ∧ pitch angle <= 10} to express the set of
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valid program states and define state property StateProperty = {s ∈ S | s |= F}.

Figure 2.3 illustrates an execution of this system and its corresponding state prop-

erty. As only one state variable, pitch angle, is present in F , each dot in Figure 2.3

represents the system state (y axis) over time (x axis) and the dashed lines enclose

the valid values of pitch angle. The crossed out dot depicts an invalid state or failure

as the value of pitch angle is larger than 10◦, which is inconsistent with property

StateProp.

2.1.4 Temporal Properties

While propositional logic is able to model systems by specifying state properties or

valid program states, propositional formulae present some limitations when modeling

complex temporal aspects of transition systems or properties that require some rea-

soning about the ordering of system transitions. Those properties, called temporal

properties, can be represented using first-order logic or temporal logics [38]. In prac-

tice, both logics can express temporal properties, but quantified variables in terms

of time quickly become cumbersome to interpret simple and readable than temporal

formulae. Temporal logics are best suited to express temporal properties of transition

systems because of their implicit notion of time.

To achieve the required expressiveness, temporal logic extends propositional logic

by including several temporal operators. Hence, temporal formulae contain both

temporal operators and propositional formulae representing a transition of the system.

In the case of linear temporal logic (LTL [37]), these temporal operators are �, ♦,

©, U , R. The semantics of these operators given formulae A and B and an ordered

sequence of states or path π = {s0, s1, s2 . . .} where s0 is the current state, are:

• � (always) Temporal formula A hold at all states along path π.
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• ♦ (eventually) Temporal formula A hold at some state on the path π.

• © (next) Temporal formula A holds at the next state in π, that is, at s1.

• U (until) Temporal formula A U B holds if A holds until B occurs and if B does

not occu

• R (release) Temporal formula A R B holds if whenever qB occurs at a state on

path π, A occurs before. Or equivalently, either B holds globally on the path,

or A occurs before the first state at which B is violated.

To illustrate a simple temporal property, let’s consider a sample system with state

variable pitch angle ∈ X, states smove = {(pitch angle > 0 ∧ pitch angle <= 10)

∨ (pitch angle >= −10 ∧ pitch angle < 0)}, sno move = {pitch angle = 0}, initial

state In = {sno move}, transitions T = { (smove, sno move), (sno move, smove)} and able

to process events of type ObstacleDetected. Then, we can define temporal formula

F = �(ObstacleDetected → ©sno move) that expresses that it is always the case (�

operator) that an occurrence of event ObstacleDetected implies that the next state

(© operator) is sno move. Then, given a sequence of states π = s0, s1, s2 . . . we can

define temporal property TempProp = {si ∈ π | si |= F}.

Figure 2.4 shows this last example where black circles represent the program

state and the white circles the occurrence of event ObstacleDetected. The solid lines

represent the fact that, according to the specified temporal property, an occurrence

of ObstacleDetected has to be followed by a transition that sets the system state to

sno move. The crossed out circle depicts a violation of the property.

Specifying temporal properties is hard [28]. To address that challenge, researchers

have created various mechanisms to facilitate their development. For example, Dwyer

et al. [19] have developed a framework of frequently appearing patterns in properties
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Figure 2.4: Temporal properties representation

specification focus on the matching of problem characteristics to solution strategies.

Another example is the creation of specification languages [14] [33] which provide

built-in higher-level operators or abstractions designed to facilitate the specification

of temporal properties.

2.1.4.1 Computation Trees and Paths

A practical way to facilitate the analysis of the behavior of transition systems, and

consequently their properties, is by constructing their corresponding computation

tree [20]. A computation tree defines the set of all possible executions of a transition

system by representing the states s of system S as the tree nodes and the applicable

transitions (s, s′) ∈ T as its edges.

Consider the sample system again, we can construct its computation tree as shown

in Figure 2.5. This graph allows us to understand that (R,Q), (R,P ), (P,R), (Q,R)

and (Q,P ) are the applicable transitions T of the system. Not only that, it tells us

that to reach P we need to go first through R and then through Q.
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Figure 2.5: A sample computation tree

By constructing the computation tree of a transition system it is also possible to

define every computation path of the system. A computation path is a sequence of

nodes such that for all i we have (si, si+1) ∈ T . If the sequence is finite then there

exists no state s such that (sn, sroot) ∈ T . A computation path is any maximal se-

quence of states through which a computation may go by applying the transitions.

Computation trees are a convenient representation of the possible temporal behav-

iors of transition systems, since assertions about possible temporal behaviors can be

conveniently formulated as properties of computation paths or the states on those

paths. In fact, linear temporal formulae express temporal properties of the system

computation paths.

Figure 2.6 shows a sample computation path. In this case, the graph illustrates

that the sequence of states that the system went through was (R,Q, P,R,Q, P ).

While it is true that temporal formulae can define temporal properties of transi-

tion systems and computation trees can also be used to verify that a given temporal
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formula holds during the system execution, in practice, a problem called ‘state explo-

sion’ compromises the efficiency of validating temporal properties. This problem is

caused by the fact that computation trees grow exponentially and even small systems

can end up building extremely large transition systems. In the case of the most typical

transition systems, reactive systems, this situation gets worse given the unpredictable

ordering of external events that force the consideration of every single transition. In

the systems that we study, such trees contain billions of states.

2.1.5 Probabilistic Temporal Properties

While temporal properties can express conditions that must hold in every or at least

one path, they cannot state that a property must hold for a certain portion of the

computations, for example, 50% of the system executions. Properties that encode

the probability of making a transition between states instead of simply the existence

of such a transition are called Probabilistic Temporal Properties and can be specified

using probabilistic temporal logics such as Probabilistic Computation Tree Logic [26]

(PCTL), PCTL* [10] or CSL (Continuous Stochastic Logic) [11] [9]. Probabilistic
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temporal logics usually extend a temporal logic. Therefore, besides the operators

these logics define, probabilistic temporal formulae also include state propositions

and temporal operators. In the case of PCTL, it also includes timing constraints that

bound the occurrence of events. This logic treats time as a discrete unit where each

time unit correspond to one transition along the execution path.

Probabilistic temporal properties are used to specify the behavior of real-time

distributed systems where probability represents a tool to analyze their performance

[42]. Some examples of probabilistic temporal properties are ‘with at least 50% prob-

ability p will hold within 20 time units (F≤20≥0.5p)’ and, ‘with at least 99% probability q

will hold continuously for 20 time units (G≤20≥0.99q)’. Probabilistic models are specified

using discrete-time Markov chains (DTMCs) or Markov decision processes (MDPs).

The first type specifies the probability π(s, s′) of making a transition from state s to

some target state s′, where the total probabilities of reaching the target state is 1.

The latter type of models extends DTMCs by allowing non-deterministic behavior.

In spite of the more expressiveness power of probabilistic temporal properties,

there are theoretical results indicating that the problem of learning transitions prob-

abilities to automatically infer probabilistic temporal formulae is hard [6] [29]. There-

fore, researchers have developed specification pattern system of common probabilistic

properties to help practitioners formulate these properties correctly [24]. In addition,

checking that probabilistic properties are being meet is also a challenging problem

because there is no a binary acceptance condition.

2.2 Automatic Inference of Software Properties

Daikon [21] is the most prominent work on automatic inference of state properties. Its

authors present it as a dynamic analysis approach to discover likely invariants from
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program executions. The technique consists of instrumenting the target program to

record the values taken on by a set of variables of interest, executing the instrumented

program over a test suite, and running an inference engine over the collected traces.

The inference engine identifies properties by instantiating a set of possible invariants,

testing them against the values captured from the variables of interest, and keeping

only those invariants that are never falsified.

Daikon attempts to infer invariants located in what its authors called ‘program

points’. By default, these points are procedure entries, procedures exits and loop

heads. An instrumenter injects code that records in execution traces the value of every

variable in scope when the program point is executed. The inference engine supports

several types of invariants over 1, 2 or 3 variables such as constant value, range limits,

linear relationship, functions or ordering comparison. The tool also creates ‘derived

variables’ like array[int], sum(array), min(array), max(array) or size(array) which

are treated like hard coded variables when invariants are tested.

Programs instrumented by Daikon run an order of magnitude slower [21], the cost

of the inference process is hard to predict as it depends on the number of variables in

scope in each program point the size of the test suite, and the number of invariants

discovered [21].

Diduce [25] is an online dynamic invariant detector and checker capable of identify

the root of program crashes. Diduce instruments read/write operations and methods

invocation of the target program to derive invariants (tracked expressions). Each

instrumented program point has a set of associated expressions and a counter keeping

track of the executions. Expressions are a function of the object or variable being

accessed and invariants are created from this expressions. Diduce does not consider as

a fault a single violation of an invariant. To determine faults, the invariant confidence

is checked. This metric is the ratio between the number of times that the invariant is
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accessed and the number of times that it was accepted. Large drops of the coincidence

indicate an ongoing violation. The reported overhead of the tool ranges from 8x and

reaches 20x.

DySy [18] is a dynamic analysis approach that makes use of dynamic symbolic

execution to discover likely invariants. Unlike other approaches, DySy does not falsify

invariants produced by predefined templates. Instead, invariants are generated by

combining concrete execution of test cases with the path conditions generated by

symbolic execution tools. In this way, DySy reduces the size of the test suite required

to obtain good invariants. While this technique is able to infer the majority of the

interesting Daikon invariants, it does not capture all of them.

Techniques that extract temporal behavior from software systems can be classified

into automaton and non-automaton based techniques. The first group of techniques

generate finite state automata (FSA) from execution traces [36] [40] [8]. Lo et al. [36]

for example presented a technique to steer the automata learner algorithm kTail [12]

by denying merge operations which produce automata that do not satisfy temporal

properties previously inferred.

Non-automaton based techniques instead infer the ordering of the system events

or states [35] [41]. Perracotta [41] is an example of non-automaton based technique.

It was inspired by Daikon and it uses a dynamic analysis approach for automatically

inferring temporal properties of software systems. The instrumenter also injects code

at all method entry and exit points and the recorded events consist of the threads

identifier, method name, and a location (entering a method or exiting the method).

Then, a set of 2 event temporal patterns are instantiated with the monitored event.

The distinctive attribute of Perracotta is that it was the first temporal properties

inference approach being able to find faults in large programs like JBoss or the Win-
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dows kernel. Its down-side was that it was only capable of inferring variations of the

Response pattern [19].

Javert [22] is a dynamic analysis approach to infer general temporal properties

from execution traces. Under the assumption that complex properties can be can

formed by composing instances of small generic patterns, this approach specifies ar-

bitrary size temporal properties by concatenating what the authors called micropat-

terns. Gabel it. al [23] presented an automatic dynamic technique for simultaneously

learning and enforcing temporal properties over sequences of method calls. This is

an on-line approach that operates over a short finite window of trace events and it

considers the fact that method calls usually exhibit temporal locality. Under the

assumption that common behavior represents correct behavior, its learning and en-

forcing strategies are tuned on-line by changing parameters, such as the window size,

and by analyzing the effect of the change on an objective function that defines the

tolerance to anomalies or violations. While this approach has being shown to be

useful in finding defects and code-smells related to the wrong usage of APIs, it incurs

a significant amount of overhead. Like Perracotta, this technique ignores the param-

eters of the methods invocations, losing information that encodes part of the system

behavior.

2.3 Run-time Verification of Software Properties

The aim of run-time verification techniques is to check at run-time that software

systems work in accordance to their specifications [16]. Run-time monitors are au-

tomatically generated pieces of code that check program executions against their

specification. Monitors can be embedded in the program or operated remotely by

receiving a stream of data with run-time information.
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The work on run-time verification undertakes two key challenges: how to specify

different types of properties for monitoring, and how to encode them to monitor them

efficiently. We discuss some attempts that have received considerable attention.

MOP [16], monitoring-oriented programming, allows the specification of proper-

ties using different formalisms such as design-by-contracts approaches (JML [34]),

temporal properties, and extended regular expressions, and generates monitors from

the specified properties. The framework integrates those run-monitors into the target

program together with custom code to handle violations to the specified properties.

JavaMop [15] takes advantage of the MOP framework by transforming properties

specified using MOP into AspectJ [30] aspects. Those aspects are synthesized into

the target program and they will act as the run-time monitors that check the program

specification. The different mechanisms to specify properties allows the verification

of both state and temporal properties.

A different approach is used in JPaX [27] to monitor temporal properties. In order

to allow the specification of complex behaviors, JPaX supports properties defined

using custom logics developed with Maude [17]. This tool also instruments the target

program, but instead of synthesizing monitors into the code, events are extracted from

the running program and sent to an observer which decides whether requirements are

violated or not.

Allan et al. [7] introduced the notion of tracematches, a run-time monitoring

approach able to detect temporal properties of AspectJ join-points executions or

patterns in the behavior of freevariables whose values are bound to the AspectJ

pointcuts of the program under analysis. Free variables allow tracematches to share

a history of their values, so monitors are able to find patters in that history of values.

Bodden et al. [13] investigated the use of Dependency State Machines to facilitate

the specification of typestate properties in a flow-sensitive manner. State machines are
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generally easier to understand for developers with some knowledge of state machines.

Several tools [7] [15] [32] are able to automatically convert Dependency State Machines

into flow-sensitive run-time monitors aware of the order in which events have to occur.
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Chapter 3

Statistical Properties

This chapter moves forward by expanding the definition of statistical properties and

detailing the types of statistical properties that we have developed. Through this

chapter we also explain our approach to infer and monitor statistical properties and

introduce a tool that implements the proposed approach.

3.1 Definition

Just like others types of software properties, the goal of statistical properties is to

model the expected behavior of the system under analysis. Once a model is created,

it can be used in many different ways. However, our main target is to check if the

modeled system is behaving as expected by, for example, automatically generating

monitors that can be checked at run-time.

Informally, we define a statistical property as a significant relationship computed

over the values of some variables across program states. In other words, given a set of

state variables and a window containing their current and previous values, a statistical

property dictates that it is always the case that a significant statistical relationship
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exists between those values. The significance of the relationship is determined using

statistical inference techniques that draw propositions of the collected values. The

term significant denotes that the relationship between the values of the state variables

does not exist by chance for a determined confidence level.

Four elements should be distinguished from the previous definition as they apply to

every statistical property: a statistical relationship, a set of involved state variables, a

window size, and a significance level. Any statistical relationship can be used to define

statistical properties as long as its significance can be determined. A relationship is

implemented through a statistical function that maps a set of collected variable values

to a single statistic. Depending on whether the relationship is over single or multiple

states variables, different statistical functions can be employed. For example, two

state variables should be considered if the property aims to capture the existence of

a correlation relationship, while only one is required if the property is checking that

the variable belongs to a given distribution. The window size dictates how many

previous values of the involved state variables are required to evaluate the statistical

relationship. Finally, the significance level is used to determine if the relationship

exists by chance.

Given this intuition of the definition of statistical properties, a more formal version

is provided next.

Definition (Statistical Property)

Given program S and its set of state variables X where:

1. y is a subset of the state variables X,

2. ws is the window size,

3. sn is the current state of S,
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Figure 3.1: Conceptual Representation of Statistical Property over Single Variable

4. ~yws = {yn−ws . . . yn} | yi ∈ si,

5. stat is a statistical function that operates over ~yws and returns a statistic

6. α is the significance level

7. th = f(stat, ws, α) is a threshold value, and

8. F = {stat(~yws) ≥ th}

then StatisticalProp is defined as {(sn−ws . . . sn) |= F}.

Figure 3.1 depicts how a statistical property over a single variable would be checked

in practice. The property is defined over a single state variable called ‘altitude’, the

used statistical function is ‘mean’, the windows size is 6 and the threshold value is 0.5.

For example, the first observation in the right-hard graph is derived by computing

the mean across the six values of variable altitude depicted in the left-hand graph

from time ti to ti+n. The crossed out dot denotes a violation of the property because

the statistical relationship is not significant for the first six elements as it is below
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the specified threshold, while the black dot indicates that the property was met for

the next group of values of the state variable (dashed ellipse) containing observations

ti+1 to ti+n+1.

Given the space of properties defined by state and temporal properties, statistical

properties seem to reside in between as they share characteristics with both of them.

On the one hand, like state properties, statistical properties take into account the

concrete value of state variables and they could be inferred efficiently using automatic

techniques.

On the other hand, like temporal properties, the information provided by multi-

ple program states can be used to check deeper aspects of the behavior of the system

under analysis. They also share the ability to model systems composed of multi-

ple components that communicate by sequences of messages. In general, whenever

temporal properties can be applied, we conjecture that statistical properties can be

applied as well.

Statistical properties also offer distinctive characteristics. One advantage is the

possibility of tuning their overhead and strength by adjusting the significance level.

However, there is a trade-off between overhead and property strength. Using lower

significance levels will lead to the inference of weaker properties that require smaller

window sizes. Typically, a small window size is desirable as it represents less memory

consumption to store historical values and also a faster computation of the statistical

relationships. However, inferring weaker properties means greater chances for an

inferred property to be false. The opposite happens with high significance levels.

Stronger relationships are inferred, with lower false positives, but larger window sizes

are required to ensure their significance.

The following section explains how those concepts are taken into practice.
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Figure 3.2: Inference Approach

3.2 Approaches for Inferring and Monitoring

Our approaches to infer and monitor statistical properties are illustrated in Figures

3.2 and 3.3. As depicted in Figure 3.2, the input of the inference process are execution

traces, the desired significance level and a set of properties templates. Our approach

assumes that each line of an execution trace is an event and the parameters of the

events correspond to the state variables of the system. The figure shows two compo-

nents. From each trace, the first component outputs a partial model that contains a

set of inferred statistical properties with at least the significance level specified as an

input of the process.

During the first step of the inference phase, property instantiation, every pos-

sible combination of variables are instantiated as a statistical property and their

significance given the maximum windows size is determined. During the property

elimination step, statistical properties that do not achieve the minimum significance
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level are identified and removed. Finally, the window size optimization step performs

a binary search algorithm to find, for each statistical property, the smallest window

that maintains the required significance and also a lower overhead.

The monitoring phase, illustrated in Figure 3.3, is in charge of checking that an

execution trace under analysis respects every statistical property specified in the in-

ferred model and to determine which properties are violated. The property templates

are a required input as these templates specify the computation of each property

statistic and the statistical test used to determine their significance. While the mon-

itoring approach has been tested off-line, we think that it could be easily adapted to

be used on-line by encoding the refined model into a monitor that can be checked at

run-time.

While the main goal of this section is to provide a detailed explanation of the

dynamic analysis approach that we have developed in order to infer and monitor
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statistical properties from execution traces, a few concepts are introduced first to fa-

cilitate their understanding. Firstly, the characteristics of the statistical relationships

supported by our approach are listed followed by the statistical properties that we

have already developed. After that, we explain how the concept of aggregate state

helped us to deal with different update frequencies of the state variables.

3.2.1 Statistical Properties Templates

A property template should include the maximum window size, the minimum window

size, the required conditions to update its aggregate state, a procedure to measure the

statistical relationship and a procedure to check the significance of the relationship.

As we have mentioned in Section 3.1, any conclusion about the values of the target

state variables that can be statistically tested is a candidate statistical relationship

for our approach. In other words, it should be possible to determine if the relation-

ship exists by chance or not. Some examples of potentially interesting relationships

include: analysis of means, analysis of variances, correlation analysis, and covariance

analysis, or determining if a given variable or set of variables belong to a determined

distribution.

We have developed and evaluated two statistical relationships: correlation and

mean. As we will show, our choice was meant to capture some of the properties we

have informally observed in the type of robotics systems we were analyzing. The

statistical relationship established between variables determines the name of the sta-

tistical property. For example, we use the term correlation property to refer to any

statistical property that infers a correlation relationship between two state variables.

The specifics of correlation and mean properties are detailed next.
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3.2.1.1 Spearman’s Rank Correlation Coefficient

Correlation coefficients can describe many behaviors of the robotics systems which

are the target of our experiments. An example of correlated variables is pitchangle

and the velocity of a quad-rotor. If the pitch angle of a quad-rotor increases, then its

velocity increases as well.

There exist a number of correlation coefficients that measure the statistical de-

pendence between two variables. This basically means that they can determine the

likelihood that the values of two variables are ruled by a monotonic relationship. So,

if one variable increases its value whenever the other increases its value, then the

coefficient is positive. If one variable decreases its value whenever the other increases

its value, then the coefficient is negative. In particular, we selected the Spearman’s

Rank correlation coefficient [39] because it is a non-parametric method less sensi-

tive to non-normality in distributions. To calculate the Spearman’s Rank correlation

coefficient, the observations of each variable are ranked in ascending order and the

differences between the ranks diff rank of each observation on the two variables are

calculated. Then, the coefficient is the result of applying the following formula:

Correlation Coefficient = 1− 6 ∗
∑

diff rank2

window size ∗(window size2−1)
(3.1)

To determine the significance of a correlation relationship, the threshold value

for a given window and significance level is determined using the critical values of

the Spearman’s rank correlation [5]. These values indicate the minimum correlation

coefficient to reject the null hypothesis that no correlation exists between the two

variables. Table A.1 shows the critical values of the Spearman’s rank correlation.

For example, given a window size of 10 (row) and a significance level (alpha) of 0.05

(column), the minimum correlation coefficient to reject the null hypothesis that there
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is no correlation between the variables is 0.564. So, if the coefficient is higher than

0.564, the relationship is significant.

3.2.1.2 Mean

This property determines if, given the mean and standard deviation of a window of

values of a single variable, the next value of the variable is within the confidence

interval for the mean determined by the significance level [39]. In the context of

robotics applications, this property could capture the behavior of many sensors. For

example, range finders may return different readings even when the robot does not

move. However, those readings should have similar values and are a potential target

of the statistical relationship of the mean property. If later, during the monitoring

phase, a value of the state variable is out of the confidence interval, it can be said

that a fault or, at least, an unknown behavior was detected.

3.2.1.3 Setting Maximum and Minimum Windows

Besides defining the statistical relationship, our approach requires new property tem-

plates that define the maximum and minimum window size they are willing to deal

with. Recall that a small minimum window size is desirable as it reduces the cost

of calculating the statistical relationship. However, the minimum window size has to

be as big as the minimum number of observations required by the statistical test to

calculate the significance of the relationship. Decreasing the maximum window size

can be used to adjust the overhead of our approach in several ways. First, the infer-

ence approach converges faster with a low difference between maximum and minimum

window size. As we performs a binary search to find the optimal window size, less

elements means less steps until the optimal is found. Second, weak properties are go-

ing to be discarded faster because smaller windows increase the value required by the
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significance test to reject the null hypothesis that no relationship exists between the

variables. Third, the calculation of the statistics is also faster. Less data means less

operations. However, choosing a maximum window size depends on each property.

3.2.1.4 Update Policies

Consider two variables commanded pitch and pitch that are supposed to be correlated

but whose update frequency is 10Hz and 1Hz respectively. Let’s suppose a window

size of 10 and a system where only the last value of commanded pitch affects the

value of pitch. Then, when pitch is changed by the 10th time, a real relationship

between the window of commanded pitch and pitch will not be detected, even if it

really exists, as the windows of commanded pitch and pitch contain values that may

have been generated 10 times apart.

To accommodate such potential inconsistencies, we have developed the concept of

aggregate state. This is an abstract state that stores just the relevant values, those that

are going to be used to determine if a significant statistical relationship exists. Every

statistical property has an aggregate state and each aggregate state stores a window

of values per state variable involved with the statistical property. To determine what

values are relevant, each statistical function must define a policy that specifies what

values to add to the aggregate state. These policies are defined as predicates over the

occurrence of events that update the value of the involved variables. Each property

template has to indicate under what conditions the current value of the involved state

variables are stored in the aggregate state.

Figure 3.4 provides a depiction of what state variables values are stored in the

aggregate state of correlation template properties. This figure shows the two variables

involved in the property, a and b, and their changes over the system execution. Each

circle represents a program state and the suffixes represent the order in which they
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Figure 3.4: Aggregate state representation for correlation properties

occur. As seen in the figure, the current values of a and b are copied to the aggregate

state only after both variables are updated.

The case of mean properties is different because the aggregate state is updated

whenever the single state variable is updated, so no condition is set.

Every time, after all the new values are added to the aggregate state, as per

the property policy, the significance of the statistical relationship associated to the

statistical property is checked. So, if new property types are to be added to the

inference process, those properties have to define the conditions under which the

aggregate state is updated and the significance test that will check that the required

significance is achieved.
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3.2.2 Inference

The goal of the inference phase (Figure 3.2) is not only to identify statistical properties

but also to determine the smallest window size that minimizes overhead. From a high

level perspective, the way that our approach fulfills these objectives is by identifying

every state variable in a trace, creating every possible statistical property from the

set of state variables and the properties templates, and running an iterative process

that evaluates the significance of the candidate statistical properties until all non-

significant statistical properties are discarded and the optimal window size of the

significant ones is found. The inference process is listed in Algorithm 1.

The inputs to this process are an execution trace, the significance level of the

statistical properties and a set of statistical properties templates. The output of the

inference process is the list of inferred statistical properties or model. For each inferred

property, the model specifies the property type, state variables involved, window size

and significance level.

The first step of the inference approach is to identify all the state variables of the

program. Procedure RetrieveStateV ariables (line 3 of Algorithm 1) identifies the set

of state variables by iterating over the trace events and storing their parameter names.

Then, procedure CreateStatisticalProp creates every possible statistical property

from the set of state variables and properties templates (line 4 of Algorithm 1). The

number of statistical properties created for each template is the k-combination of

the state variables set, where k is the number of variables required by the template’s

statistical function. Procedure CreateStatisticalProp also creates the aggregate state

of each property and sets their window size to its maximum.

After that, an iterative process (lines 5-27) is launched to discard statistical prop-

erties that are not significant even when their maximum window is set and to op-
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Algorithm 1 Inference Phase

Require: trace, property templates, significance level
1: first iteration = true
2: properties optimized = false
3: state variables = RetrieveStateVariables(trace)
4: properties = CreateStatisticalProp(state variables, property templates)
5: while ¬properties optimized do
6: properties optimized = true
7: ProcessTrace(trace, properties, significance level)
8: for all propertyi in properties do
9: if ¬propertyi.significant then
10: if first iteration then
11: properties = properties - propertyi

12: continue
13: else
14: propertyi.min window = propertyi.window
15: end if
16: else
17: propertyi.max window = propertyi.window
18: end if
19: propertyi.window = (propertyi.max window + propertyi.min window) / 2
20: if propertyi.max window ≤ propertyi.min window then
21: properties optimized = false
22: else
23: propertyi.optimized = true
24: end if
25: end for
26: first iteration = false
27: end while
28: return properties
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timize the window size of the rest. The statistical properties elimination process is

performed only after the first iteration is completed. Procedure ProcessTrace (line

7) checks which of the properties created in line 4 are significant. The result of that

operation is stored in the attribute significant of every property. After the first iter-

ation, ProcessTrace will deem only the subset of instantiated significant properties.

ProcessTrace is listed in Algorithm 2 and explained later.

After the ProcessTrace procedure is executed for the first time, any non-significant

statistical property is discarded (line 11) and never used again. The remaining prop-

erties move to the window optimization process.

In order to determine the optimal window size for the surviving statistical prop-

erties, we use a binary-search-like algorithm (line 9 - 19). This optimization process

starts after each iteration is completed. At that point, if the statistical property to

optimize is significant, a reduction of the property window size is attempted. Oth-

erwise, the window size is increased. To reduce the window size, max window is

set to the current window size and then the window size is set to (max window +

min window)/2. To increase the window size, min window is set to the current

window size and then the window size is set to (max window +min window)/2.

The optimization process continues until max window > min window in every

statistical property (lines 21) as it indicates that the binary search algorithm is over.

Otherwise, individual properties that reach their convergence point are marked as

optimized and not processed any more. Once the set of relevant statistical properties

is determined and their window sizes optimized, they are grouped together to define

a model.
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The procedure ProcessTrace (Algorithm 2) is in charge of checking, for a given

significance level and the current window size of each statistical property in properties,

if the statistical relationships are significant throughout trace. Whenever the statis-

tical relationship of a determined statistical property is not significant, the attribute

significant is set to false.

Algorithm 2 Process Trace Procedure

Require: trace, properties, significance level
1: for all eventi in trace do
2: for all parameterj in eventi do
3: program state[parameterj.name] = parameterj.value
4: end for
5: for all parameterj in eventi do
6: param properties = properties.get(parameterj)
7: for all propertyk in param properties do
8: if propertyk.significant && ¬ propertyk.optimized then
9: if propertyk.updateAggregatedState() then
10: propertyk.significant= propertyk.checkSignificance(significance level)
11: end if
12: end if
13: end for
14: end for
15: end for

To accomplish this, the events in trace are processed one by one. For each event,

their parameters are retrieved and the program state updated (lines 2-4) as we match

each event parameter to a state variable of the system. After that, each state variable

or event parameter is processed.

First, the list of statistical properties where parameterj is an involved variable is

retrieved (line 6). For each of those properties, if it was not marked as not significant

(line 8) and it was not marked as optimized yet, then the conditions to update the ag-

gregate state are checked (line 9). If affirmative, checkSignificance(significance level)

is invoked. This procedure, specified by each property template, evaluates the sta-
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tistical relationship between the involved variables and returns true if the statistical

relationship is significant or false otherwise (line 10).

The complexity of procedure ProcessTrace depends on the templates used in

practice. Its template-independent complexity is O(ppsum∗check), where check rep-

resents the complexity of procedure template.checkSignificance(significance level)

and ppsum is the number of times that procedure is invoked. The value of ppsum is

calculated as
n∑

i=1

p∑
j=1

ppij, where n is the number of events in trace, p is the number of

parameters in ni and ppij is the number of statistical properties where pij is involved.

Therefore, in the case of the correlation template, as the complexity of calculating the

Spearman’s correlation coefficient is ws∗log ws [39], where ws is the window size, then

the complexity of procedure ProcessTrace is O(ppsum ∗ws ∗ log ws). If we consider

the mean template, the complexity of procedure ProcessTrace is O(ppsum ∗ ws).

The complexity of procedure template.updateAggregatedState() is constant and it is

not considered in the computation of ProcessTrace’s complexity.

The complexity of the inference process also depends on the used templates. If

we consider the correlation template, then the complexity of inferring statistical

properties is O(log(max − min) ∗ (ws ∗ log ws +
(
vars
2

)
)), where max and min are

the maximum and minimum window sizes defined by template, vars the number of

state properties in trace,
(
vars
2

)
the number of statistical properties instantiated by

procedure CreateStatisticalProp(), and ws ∗ log ws is the complexity of procedure

ProcessTrace(). As our optimization process always lead to the worst case of the

binary search algorithm, the log(max−min) factor represents that situation.

Our approach to filter out wrongly inferred statistical properties, listed in Algo-

rithm 3, that could be encountered in some executions traces by coincidence, consists

in the creation of a ‘refined’ model that contains only the properties found in every

single model (line 11).
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Algorithm 3 Model Refinement

Require: models
1: refined model = model1;
2: for all modelj in models do
3: for all propertyi in modelj do
4: if refined model.has(propertyi) then
5: new window = propertyi.window
6: cur window = refined model.get(propertyi).window
7: if new window > cur window then
8: refined model.put(propertyi, new window)
9: end if
10: else
11: refined model.delete(propertyi)
12: end if
13: end for
14: end for
15: return refined model

It could be also the case that a statistical property is present in every model of the

set but its window size is not the same across them. In those situations, the larger

window size is kept (lines 5-11). Increasing the window size also increases the moni-

toring overhead of the property and makes it easier to achieve the desired significance

as significance tests lower the threshold to which the relationship is compared against

when the number of observations increase.

The complexity of the model refinement process is O(modprop), where modprop

is the summation of the number of properties in every model that belongs to models.

Therefore, modprop can be calculated as
m∑
i=1

p∑
j=1

1, where m is the number of considered

models and p the number of properties in model mi.

3.2.3 Monitoring

Our approach to monitor that a given execution trace does not violate the inferred

statistical properties, Figure 3.3, is performed off-line. Algorithm 4 lists our approach.
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The inputs of this process are the execution trace capturing the run-time behavior

to monitor, the refined model created during the inference phase, and the properties

templates.

The monitoring phase starts by creating monitors only for the statistical properties

that were inferred (line 2) and then the optimal window size for each property, as spec-

ified in the model (lines 3-5). The monitors use the statistical function, significance

test and update policy to compute the required statistics and verify that the signif-

icance level remains above the threshold. After that, the procedure ProcessTrace

is invoked to check that the statistical relationship of each property is significant

throughout the entire trace (line 5). In this case, only one iteration is needed. Fi-

nally, an error message is printed for every violated property.

Algorithm 4 Off-line Monitoring Phase

Require: model, trace, property templates, significance level
1: state variables = RetrieveStateVariables(trace)
2: monitors = CreateStatisticalMonitor(model, state variables)
3: for all monitori in monitors do
4: monitori.window = model.get(monitori).window
5: end for
6: ProcessTrace(trace, monitors, significance level)
7: for all monitori in monitors do
8: if monitori.significant == false then
9: print monitori violated
10: end if
11: end for

Like the inference process, the complexity of the monitoring process depends on

the used templates. In the case of the correlation template, the complexity of mon-

itoring is O(monitors + (ws ∗ log ws)), where monitors is the number of properties

defined by model and (ws ∗ log ws) is the complexity of procedure ProcessTrace().
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Figure 3.5: Architecture of Implementation

3.3 Tool

We have developed an infrastructure, using 1826 lines of Java code, in order to il-

lustrate the effectiveness of our approach. Figure 3.5 shows the architecture that

implements the inference and monitoring phases, and the mechanism we used to in-

terface with them. As we already discussed these phases before, this section explains

how these tool can be extended by adding new statistical properties and the format

of the trace and model files.

3.3.1 Statistical Properties

In Figure 3.5, the box containing classes Correlation and Mean depict the two statis-

tical properties that we have implemented. New statistical properties can be added



47

Correlation Mean

Compound
StatisticalProperty

SingleVariable
Statistical Property

Statistical Property
- computeStatFunction() : void 
- checkSignicance() : void
- updateAggregateState() : void
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though a set of abstract classes that includes three core methods: computeStatFunc-

tion, checkSignificance and updateAggregateState. Custom classes should implement

those methods. Method computeStatFunction calculates and returns the value of

the statistical relationship under test. For example, in the case of the correlation

property, this method return the Spearman’s rank correlation coefficient. Method

checkSignificance should determine the significance of the current value of the sta-

tistical relationship for the current window size and significance level and returns

true if it is significant. Otherwise, it should return false. Finally, method updateAg-

gregateState should return true if the conditions to update the aggregated state are

met.

Figure 3.6 shows that class hierarchy of statistical properties that model the be-

havior of one variable should extend SingleVariableStatisticalProperty and statistical

properties that model the relationship between two or more variables should extend

CompoundStatisticalProperty. Classes StatisticalProperty, SingleVariableStatistical-
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Property and CompoundStatisticalProperty take the responsibility of optimizing the

window size, updating the aggregated state and invoking the methods implemented

by custom statistical properties when necessary.

3.3.2 Execution Traces and Models Format

The content of the execution traces should be specified using JSON [3]. We selected

JSON because is a popular light-weigh format and the high availability of libraries

that read and create JSON files. This can simplify the process of consuming execution

traces from third parties.

Listing 3.1 shows a JSON trace example where each line represents an event. The

first element of each line is a numerical identifier used to distinguish each event and

to define the ordering in which they are processed. The next element is the event

type and, lastly, the event parameters are specified.

To define this format, we followed the conventions that JSON dictates. In a

glance, JSON files are a collection of coma separated key:value pairs where strings

are quoted, colons separate keys and values and brackets indicate nested key:value

pairs.

Listing 3.1: JSON execution trace

{

’ 1 ’ : { ’/ motorSpeedLeft ’ : { ’ data ’ : 0 . 3 5 } } ,

’ 2 ’ : { ’/ motorSpeedRight ’ : { ’ data ’ : 0 . 3 4 6 595} } ,

’ 3 ’ : { ’/ l e f tRanger ’ : { ’ data ’ : 3 0 8 . 0 } } ,

’ 4 ’ : { ’/ r ightRanger ’ : { ’ data ’ : 0 . 0 } } ,

’ 5 ’ : { ’/ rightRangerAvg ’ : { ’ data ’ : 2 . 52380952381} } ,

’ 6 ’ : { ’/ leftRangerAvg ’ : { ’ data ’ : 3 0 7 . 5 5 } }

}

Models specify the inferred properties by enumerating their property type, state

variables involved, window size and significance level as a set of comma separated
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values. Listing 3.2 shows two sample properties. The first line indicates a correla-

tion relationship between the parameter data of the event motorSpeedLeft and the

parameter data of the event leftRander, where the inferred optimal window size is 13

for a significance level of 0.05. The second line indicates a mean relationship between

the values of parameter data of event motorSpeedRight, where the inferred optimal

window size is 8 for a significance level of 0.05. In order to prevent having state

variables with the same name, the name of the event is attached to them.

Listing 3.2: Model Format

Corre la t i on , motorSpeedLeft+data , l e f tRange r+data , 1 3 , 0 . 0 5

Mean , motorSpeedRight+data , 8 , 0 . 0 5

3.3.3 Property Violation Report

The final output of the monitoring process is a text file that lists the violated statistical

properties. Listing 3.3 show an example where the correlation property between

variables motorSpeedLeft+data and motorSpeedRight+data was violated. The report

file name results from the concatenation of the trace file name and string ‘.res’. After

the entire test trace is monitored, some scripts are executed to aggregate the data of

these reports. The output of those scripts are 2 ranks. The first one show the most

effective property in detecting true negatives and the other the statistical properties

responsible for the false positives.

Listing 3.3: Fault Report Format

Corre la t i on , motorSpeedLeft+data , motorSpeedRight+data

Corre la t i on , l e f tRange r+data , r ightRanger+data
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Chapter 4

Assessment

A set of three experiments have been conducted in order to evaluate if automatically

inferred statistical properties are able to effectively characterize the behavior of dis-

tributed robotics systems. The effectiveness is determined by measuring the precision

and recall of the inferred statistical properties at identifying successful and faulty ex-

ecutions of three artifacts. This study also assesses the effect of different significance

levels, training set sizes, and the statistical functions used in the precision and recall

of the generated models.

The cost of generating those models and the cost of monitoring them against other

execution traces is also presented and the effect of significance, training set sizes, and

the statistical functions is analyzed as well.

All studies share the same experimental setup, depicted in Figure 4.1, and the

specific details of each experiment are discussed later in this chapter. In the figure,

rectangles with thick lines represent processes, and rectangles with thinner lines rep-

resent data. The words in italic depicts the manipulated variables. Initially, and in

accordance with the capabilities of each artifact, a particular task was chosen and

two different scenarios were selected to affect the likelihood that the artifact could
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Figure 4.1: Experimental Design
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accomplish the task successfully. While the tasks were executed by the artifacts, their

execution traces were collected and later classified as successful or faulty according to

whether or not the task objective was met. Once the execution traces of each artifact

were collected and classified, a randomly selected subset of the successful executions

was analyzed to automatically infer statistical properties of the artifact. Finally, the

generated model was used to determine if the remaining successful traces were ac-

cepted by the derived properties and if the faulty traces broke the properties in a

model. The time required to infer and monitor properties was collected to determine

the cost of each phase.

The rest of this chapter is organized as follows. First, the three artifacts utilized

in these experiments are described. Later, the experimental setup is further described

along with the execution trace collection process. Finally, the results of the training

and test phases are presented and analyzed, including a description of the generated

models and a discussion of the inferred properties violated by the test traces.

4.1 Artifacts, Tasks and Scenarios

This section briefly introduces the distributed robotics systems used to evaluate the

proposed approach, including both the hardware and software components that make

the artifacts. Also the experiments’ tasks and their outcome classification criteria are

explained.

On the hardware side, the three artifacts used in this study are existing robotics

platforms. These robotic platforms were acquired from two well-known robots ven-

dors that design robots for researchers who focus on using them, not on building

them. In this way, efforts could be concentrated on developing algorithms, controllers

and new behaviors that extend the platforms’ basic functionality. This is possible
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Task LOC #Comp. #Events #Vars.
Wall following 1497 2 7 15
Ranger height controller 6006 16 23 134
Vision height controller 8387 17 15 98

Table 4.1: Experiments Artifacts

as both platforms provide mechanisms to retrieve sensory data and to control the

robot actuators. These robotics platforms are: the Garcia Robot [1] (Figure 4.2),

manufactured by Acroname Inc., and the AscTec Hummingbird [2] (Figure 1.1), from

Ascending Technologies which is used in two of the three experiments.

All the software components of the artifacts were developed by researchers and

graduate students of the University of Nebraska-Lincoln, as part of their daily work,

who kindly let us use them to accomplish these experiments. These components

were the artifacts under the analysis of our approach and provide the additional

behaviors, which are not provided out-of-the-box by these robotics platforms, needed

to accomplish the assigned tasks. We were not involved in the development of any of

these components and no changes were performed to run the experiments.

The software components consist of a collection of distributed ROS-based compo-

nents developed in C++. ROS [4], Robot Operating System, is a popular open source

meta-operating system. It provides a rich library of features ranging from low-level

device drivers to commonly used high-level functionality, and it wraps many popular

open source libraries used by roboticists. It also provides a publish-subscribe archi-

tecture for software modules to communicate through well-defined messages, and a

service construct for synchronous communication. This architecture hides the com-

plexity of component communication which is realized through a name-server process.

From the point of view of our approach, we have considered that messages sent

by ROS components are events that may cause a change in the system state and
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the value of the messages parameters are the system state variables and their values.

We made this decision under the assumption that the information passed through

messages by the system components provides an accurate overall representation of the

systems behavior. Clearly, the variables of each component may provide additional

information, but we conjectured that the key information eventually becomes part of

messages to other components. Besides, considering internal variables increases the

cost of the approach.

Table 4.1 summarizes the artifacts under analysis. The table lists their lines

of code, the number of ROS components that conform the system, the number of

messages types, and the total number of variables across all the messages. Table 4.2

shows the artifacts, the tasks, the scenarios, assertions used to classify their traces.

More details are provided next.

We classify the executions programmatically through assertions in order to reduce

experimental noise and costs. The assertions we selected were meant to coarsely

mimic human observer who classifies executions as successful or faulty. Note that

in practice, however, more sophisticated mechanisms would be needed to classify the

system behavior.

4.1.1 Garcia Robot - Wall Following

The first artifact is built on top of the Garcia Robot, a ground customizable robot

which has a set of base configurations available to facilitate the customization expe-

rience. The offered configurations differ in the type and quantity of included sensors.

In particular, the robot used during our study is equipped with 6 IR range finders to

measure the proximity to occasional obstacles, 4 servo motors to control the wheels

and gripper, and wireless and serial communication interfaces.
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Platform Task Scenarios Assertions

Garcia Wall following
Straight wall

|dcurrent - dtarget| < 8cm
Angled wall

Hummingbird
Ranger height
controller

Passive pilot
|hcurrent - htarget| < 15cm
|ht - ht+0.5sec| < 5cm

Aggressive pilot

∑
|htarget - hcurrent| < 5cm

Hummingbird
Vision height
controller

Outdoors
|hcurrent - htarget| < 15cm
|ht - ht+0.5sec| < 5cm

Indoors

∑
|htarget - hcurrent| < 5cm

Table 4.2: Experiments Tasks

During the first experiment, the wall following task is assigned to the Garcia

Robot. For this task, given points A and B in a wooden wall, the robot must move

from point A to point B at a distance of 20 cm to the wall. A successful execution

of this task is one in which the robot never deviates more than 8 centimeters from

the target distance. Otherwise, the execution is considered as faulty. The maximum

deviation was set to 8 centimeter according to the experience of the graduate student

that developed this system.

The scenario that altered the probabilities of successful executions was a change

in the physical environment in which the Garcia Robot performed the task. Figure

4.3 depicts this task and both scenarios. During the first scenario, the robot has to

follow a straight wall (left part of the figure). During the second scenario the wall has

a 45 degree angle, forcing the robot to change its direction (right part of the figure).

The solid arrows in the figure show the expected behavior of the robot.

To perform this task, we reused a couple of ROS components developed by a

graduate student of the University of Nebraska-Lincoln. This components add the

required functionality through the Garcia API, which offers a high-level control frame-
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Figure 4.2: Garcia Robot

work to sends commands through a data streaming link to the network running on

the Garcia robot.

Figure 4.4 provides a graph of the ROS components that conform the artifact

under test and how these components interact. The artifact components are rep-

resented as ellipses connected by arrows whose labels represent the messages sent

by each component. Each artifact component or ROS node is an individual operat-

ing process in charge of a specific functionality of the artifact. Their operations are

usually triggered by messages of a determined type sent from other components and

they send new messages to communicate the result of those operations. Each message

type is a well-known structure by both the sender and the receiver that define a set

of pair-value pairs.
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WALL

GARCIA ROBOT

Figure 4.3: Wall Following: Training (Left) and Test (Right) Scenarios

In Figure 4.4 we can distinguish the two components that conform this artifact.

The first component, garciaControlNode, holds the controller that calculates the speed

of each wheel based on the IR range readings. The second component, garciaIn-

terfaceNode, is an interface between the first component and the Garcia API. The

interface node sends commands to the robot to set the wheels’ speed and receives

the information collected by the robot sensors (IR range readings). These commands

do not appear in the graph as they are sent to the robot directly. The figure also

depicts the exchange of messages between the components. It can be observed that

the control node sends the adjusted speed of the wheels, motorSpeedLeft and motor-

SpeedRight, to the interface node and also that the interface node sends the range

readings, rightRanger and leftRanger, to the control node.
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Figure 4.4: Wall Following System

4.1.2 Hummingbird - Ranger Height Controller

The second artifact is built on top of the AscTec Hummingbird (Figure 1.1), a quad-

rotor whose vendor also offers a number of basic configurations. The basic configu-

ration of this quad-rotor is equipped with MEMS gyro sensors, a GPS receiver, and

a barometric altimeter. More advanced configurations include a 1.6Ghz Intel Atom

processor for high computation processes such as image processing.

The task assigned to the second artifact is called Ranger height controller. The

desired behavior in this case is that, given a target height set by a pilot, the quad-

rotor should be able to maintain a target height using an ultrasound range finder

attached to the rear arm of the quad-rotor as the height data source. It is important

to point out that the pilot is still in control of the x and y position of the robot.
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Once the target height is reached, a successful execution should fulfill three re-

quirements. The first condition is that the difference between the target height and

the actual height of the robot reported by the range finder is never greater than 15

cm. This condition checks that the main objective of the task is achieved. The second

condition is that the difference between the actual height on time t and the actual

height on time t + 0.5sec is never greater than 5 cm. This condition checks if the

quad-rotor goes up or down abruptly. The third condition is that the average differ-

ence between the target height and the current height is during the last 10 seconds

less than 5 cm. The last condition checks if the robot is constantly oscillating. If

any of these conditions is not met, the execution is considered a faulty one. These

conditions were defined after we asked the researchers who developed this system how

they determine if the system is working as expected.

The scenarios of the second experiment differed in that the quad-rotor pilot

adopted contrary attitudes. During the first scenario, pilots were instructed to only

perform slow and short maneuvers or to try to hover in place. During the second

scenario, pilots were instructed to perform full accelerations and hard brakes. This

last scenario was harder to handle by the ranger height controller because the ranger

sensor was attached to an arm of the quad-rotor, which caused abrupt changes in the

rotation angles, and consequently, in the height readings.

A total of 16 ROS components were developed for this artifact that can be grouped

into 4 subsystems. The first subsystem (Figure B.1) is a PID controller for setting

the required thrust level based on the ranger information and the target height set by

the user. A second subsystem (Figure B.2) retrieves the ranger information, filtering

it up and forwarding it to the controller. The third one (Figure B.3) processes the

user commands. As mentioned before, pilots can set the target height and control the

quad-rotor position by setting its pitch, roll and yaw angles. And the last subsystem
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(Figures B.4 - B.5 - B.6) handles all the in-going and out-going serial communication

from the remote computer to the quad-rotor.

4.1.3 Hummingbird - Vision Height Controller

The third artifact is also built on top of the Hummingbird platform and its task is

called Vision height controller. The desired behavior is the same as the previous task:

the quad-rotor should keep a target height without intervention of a pilot. Successful

executions are determined using the same criteria as the previous task.

One of the differences with the second artifact is that this artifact has two height

data sources. The first data source is the barometric pressure sensor included with

the quad-rotor. The second data source is the result of a computer vision process

that returns the radius of a purple ball located below the quad-rotor. A downward

video camera had been attached to the aerial vehicle and connected to an Intel Atom

processor in charge of processing the video stream in order to calculate the radius of

the purple ball. Then, the inverse relationship between the ball radius and distance

was used to calculate a estimate of the quad-rotor height and to adjust the commanded

thrust. For this to work, the pilot was instructed to control the x and y position of

the robot in order to locate it on top of the ball on the ground.

The two scenarios of the third experiment consisted of performing the experiment

inside and outside where we expected for the different the light and pressure condi-

tions to render different behaviors. The training executions were performed outdoors

and the test executions indoors. The authors of this system noticed that more con-

sistent results were observed in outdoor settings than indoor settings. Their analysis

indicated that the reason of this problem are bursts of inaccurate readings of the

pressure sensor.
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The 17 ROS components developed for this artifact were grouped into 4 subsys-

tems to make them more understandable. The first subsystem (Figure C.1) is a PID

controller that calculates the required thrust by fusing the data obtained from the

barometric pressure sensor and the image processing procedure. The second (Figure

C.2) and third (Figure C.3) subsystems retrieve the pressure and radius information,

filtering them up and forwarding them to the PID controller. And the last subsystem

(Figures C.4 - C.5 - C.6), which was mostly reused from the previous artifact, handles

the serial communication to and from the robot.

4.2 Experimental Setup

The experimental design is shared among the three performed experiments. It aims to

evaluate if cost-effective models of statistical properties extracted from the execution

traces of the artifacts could be built and monitored.

4.2.1 Measurements and Treatments

The effectiveness of the generated models is measured in terms of their precision and

recall at predicting faults. Precision is defined as:

precision =
TP

TP + FP
(4.1)

And recall is defined as:

recall =
TP

TP + FN
(4.2)

where TP means true positives (number of successful executions that our approach

classified as correct), FP means false positives (number of successful executions that
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Indep. Var.
Manipulated

Model Name
Signif.
Level

Training
Set Size

Statistical
Function

Significance Level
A025-T10-Fc 0.025 10% correlation
A050-T10-Fc 0.050 10% correlation
A100-T10-Fc 0.100 10% correlation

Training Set Size
A050-T05-Fc 0.050 5% correlation
A050-T10-Fc 0.050 10% correlation
A050-T25-Fc 0.050 25% correlation

Stat. Function
A050-T10-Fc 0.050 10% correlation
A050-T10-Fm 0.050 10% mean
A050-T10-Fcm 0.050 10% correlation & mean

Table 4.3: Generated models during the training phase

our approach classified as faulty), and FN means false negatives (number of faulty

executions that our approach classified as correct). The cost of the approach is

determined by the time required to infer statistical properties and monitor them.

Different combinations of the experiment’s independent variables were used to

evaluate their effect on the model effectiveness and cost. The independent variables

of the experiments were the significance level of the statistical properties, the size of

the training set, and the statistical functions used to identify statistical properties.

The procedure to study the effect of a independent variable was to fix the value of

the other two and to generate 3 different models using 3 different values of the target

variable.

Table 4.3 shows how the independent variables were manipulated to generate 7

different models per artifact. Model A050-T10-Fc is repeated 3 times in the table to

show how the independent variables were manipulated. Still, it was computed once.

The significance levels studied were 0.025, 0.05 and 0.1, which lead to the generation

of models A025-T10-Fc, A050-T10-Fc and A100-T10-Fc. In the case of the training

set size, the values were 5%, 10% and 25% and the models were A050-T05-Fc, A050-

T10-Fc and A050-T25-Fc. Finally, the statistical functions ‘correlation’, ‘mean’ and
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‘correlation-mean’ (which means that both functions were used) ended up building

models A050-T10-Fc, A050-T10-Fcm and A050-T10-Fm.

4.2.2 Execution Traces Collection

The same procedure was used to collect the execution traces of all the artifacts. They

were collected using a ROS utility called rosbag. This tool is able to record every

message sent during run-time by the components of a ROS system into bag files and

save them to disk. These files are stored using a compressed binary format and an

API is provided to retrieve raw information back.

An additional feature of this utility is the ability to split large bags into smaller

ones. This feature was heavily used during experiments 2 and 3 because a flying

session typically included several instances of the same task. In this way, we were

able to generate multiple execution traces per task instance recorded during a single

long flying session. A visualization tool called rxbag, also provided by ROS, was used

to distinguish the different instances.

A Python script was developed to extract the execution traces information from

bag files and to create new trace files using the JSON format accepted by our tool.

This script makes use of the rosbag API.

Two factors constrained the number of traces we collected for the experiments on

the Hummingbirds. First, as quad-rotors move in three dimensions and can achieve a

high speed, a pilot is required to hold the radio controller to take control of the robot

in case that something goes wrong. Second, batteries only last for a maximum of 15

minutes and the replacement process once they drain takes between 2 and 5 minutes.

Still, we collected at least 100 traces per artifact. For the experiments on the Garcia,
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the limitation were the 90 seconds that took to run the task and to take the robot

from the finish line to the start point.

In the end, every execution trace collected and used in the experiments contains at

least 12 seconds and no more than 15 seconds of the artifact execution. This means

that execution traces for the first artifact have an average of 5210 events, for the

second 6471 events and 6091 events per execution trace of the third artifact.

After each scenario was executed, the traces were classified as successful or faulty

using the objectives described for each artifact previously that were encoded as as-

sertions in the code. Then, the training and test sets were defined. The traces of

the training set were randomly selected successful traces from the training scenario.

The test set consisted of every trace from the test scenario, the faulty traces from the

training scenario, and the successful traces from the training scenario that were not

included in the training set.

4.3 Results

The aim of this section is to present and discuss the results of the performed experi-

ments. First, the statistical properties derived by our approach for each artifact are

introduced. After that, the effects of the independent variables on the approach preci-

sion and recall are analyzed along with an explanation of the specific changes caused

by each variable on the generated models. A discussion about the true negatives and

false positives closes the analysis of the approach effectiveness. After that, the cost

of inferring and monitoring properties are presented along with the effect caused by

the independent variables.
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Model Name Wall
Following

Ranger Height
Controller

Vision Height
Controller

A025-T10-Fc 5 34 24
A050-T10-Fc 5 35 26
A100-T10-Fc 5 38 27

A050-T05-Fc 5 36 27
A050-T10-Fc 5 35 26
A050-T25-Fc 5 33 22

A050-T10-Fc 5 35 26
A050-T10-Fm 3 42 39
A050-T10-Fcm 8 77 65

Table 4.4: Number of Inferred Statistical Properties

4.3.1 Artifacts Models

Table 4.4 shows the number of properties inferred by each treatment. We can observe

that the number of properties decreases or remains the same with larger training

sets and significance levels, suggesting that weaker properties were discarded. As

expected, the number of inferred properties by model A050-T10-Fcm is the sum of

model A050-T10-Fc and A050-T10-Fm.

For the Garcia Robot, our approach inferred the same 3 mean properties and 5

correlation properties regardless the value of the independent variables. This was

expected as this artifact has only 15 variables and the task does not require a human

operator, making the artifact behavior more consistent. The inferred properties cap-

ture the relationship between the state variables involved in the PID controller that

sets the wheel’s speed, the current distance to the wall, the error (current distance

minus target distance) and the proportional (P) and derivative (D) values of the PID

controller. Listing 4.1 presents the model A025 − T10 − Fc and shows the specific

properties generated during the training process. For example, the first line indicates

that a correlation relationship exists between the error and the current distance to
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the wall. The window size of 5 of this property indicates a strong correlation which

is obvious as error = target − leftRanger and target is a constant. The third line

shows a strong correlation between error and P. This makes sense as the P term of

a PID controller is proportional to the error. The larger window size in line number

4 shows a weaker correlation between the commanded speed of the wheel and the D

term of the PID controller. The reason why is weaker is that the speed of the wheel is

a function of several variables such as the difference between the previous and current

error.

Listing 4.1: Model A025-T10-Fc of the Wall Following task

Corre la t i on , s t a tu s+error , l e f tRange r+data , 5 , 0 . 0 2 5

Corre la t i on , motorSpeedLeft+data , s t a tu s+sum ,15 , 0 . 0 25

Corre la t i on , s t a tu s+error , s t a tu s+P, 5 , 0 . 0 2 5

Corre la t i on , motorSpeedLeft+data , s t a tu s+D,19 , 0 . 0 25

Corre la t i on , s t a tu s+P, l e f tRange r+data , 5 , 0 . 0 2 5

Several more properties were inferred for the artifacts built on top of the Hum-

mingbird as these are for more complex and larger systems. A group of properties

inferred the correlation between the pilot commands and the navigation angles of

the quad-rotor (e.g, when the commanded pitch increases, the pitch angle increases),

other group captured the correlation relationship between speed and acceleration

(e.g., if x acceleration increases, x speed increases), and another one captured the

correlation between the variables that form part of the height PID controller. In the

case of the ranger height controller, those variables are current height, thrust, P and

D.

On the other hand, the statistical properties of the vision height controller includes

the ball radius, the current pressure, thrust, P and D. We did not find a relevant

pattern among the inferred mean properties except for the fact that 79.7% of the
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properties of this type had window sizes close to the maximum, indicating that they

may be weaker properties.
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Figure 4.5: Effect of Alpha on Fault Detection Effectiveness

4.3.1.1 Effect of Alpha

Figure 4.5 shows how precision and recall change with different significance levels

or alpha values. The x-axis describe the models recall and the y-axis their precision.
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Each line corresponds to a particular artifact and the dots corresponds to a particular

model of the artifact. From these graphs, it is possible to observe that with lower

values of alpha, precision increases while recall decreases. This tendency can be

explained by the fact that higher significance levels retain stronger properties and

discard weaker ones. In some situations, a low alpha is not able to discard weak

properties, but instead sets a window size close to the maximum. This makes weak

properties hard to violate causing false negatives.

Figure 4.5 also shows that the models’ precision never stays below 85% for sig-

nificance levels of at least 0.05; however, the models’ recall never reaches 80% for

the second and third artifact. Between the models of these two artifacts, the Vision

Height Controller ones have a higher precision. Our conjecture is that faults related

to inaccurate sensors are easier to identify by our approach than those forced by the

pilot because robots are built under the assumption that sensor have a minimum level

of accuracy. The case of the Garcia robot is different as both precision and recall stay

close to 100% for every value of alpha. As we mentioned before, we attribute this

situation to the limited variability across the scenarios during the task execution.

4.3.1.2 Effect of the Training Set Size

Figure 4.6 shows how different sizes of the training set affect precision and recall.

These figures depict a similar effect than the alpha value. Larger training set sizes

increase precision while reducing recall. For example, the inferred models of the Vision

Height Controller achieve a perfect precision if the training size is of 25%, while recall

is reduced by 11% compared against the recall of training sets of 5%. This means the

inferred models are able to retain most relevant properties when given more training.
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Figure 4.6: Effect of the Training Set Size on Fault Detection Effectiveness

Except for the Garcia robot artifact, small training sets are not capable of remov-

ing many weak properties, hurting the precision of the models. As more traces are

added to the training set, weak properties are removed which improves precision.
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4.3.1.3 Effect of the Statistical Functions

Figure 4.7 shows the effect of the used statistical functions on precision and recall

where label c means correlation, label m means mean and label cm means correlation

and mean. These plots show that the statistical function mean does not add much

value. By its own, the mean function classified almost every execution as correct,
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leading to a almost perfect precision at the expense of a very low recall. When

combined with the correlation function, the results are almost identical to only using

the correlation function. The mean properties did not have any effect over the models

of the Garcia and Vision Height Controller systems because they were never violated.

4.3.1.4 Noticeable True Negatives

The property that detected 90% of the true negatives or unknown behaviors for the

first artifact was the one specified in the 4th row of Table 4.1. This property correlates

the wheel’s speed and the derivative term (D) of the PID controller. By inspecting

the code, we found that the P term is a function of the current error, the D term

is a function of the current error and the previous error and speed is a function of

D and P. During training, as error was low, P and D changed together following a

monotonic relationship. The test scenario breaks the property after the robot reaches

the 45 degree angle in the wall. This cause and abrupt change in the error, and

consequently, P and D changed in different directions.

In the case of the Ranger Height Controller artifact, the most effective statistical

property at detecting violations of the task goals was the property that related the

total acceleration of the quad-rotor and its speed over the z axis. This finding is

correct but non-intuitive, and requires further explanation. During training, as the

pilot performed smooth maneuvers or hovered, both total acceleration and z speed

exhibited small variations apparently in same direction. This behavior created a

strong correlation property with a window of 5. During the test scenario, the quad-

rotor moved at full speed for a few seconds. This action is enough to unbalance the

quad-rotor’s arms. Thus, if the quad-rotor moved forward, then the rear arm would

be higher than the target height, and consequently, the attached sensor ranger as

well. Then, the height PID controller would reduce the drone thrust to adjust it
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to the correct height. However, even when it is moving at full speed, the artifact

can handle this scenario successfully without violating any property. The violation

actually happened when the pilot breaks the quad-rotor hard by moving full speed

to the opposite direction. At that point, the total acceleration and speed over z still

changed in the same direction, but at different intensities. As the window size was

too small as determined by the training process, the strong correlation did not hold,

and the property was violated.

Two properties revealed 82% of the failures of the Vision Height Controller arti-

fact: the correlation between pressure and radius data and the correlation between

pressure and thrust. These properties were inferred during the training scenario be-

cause they followed the monotonic relationship that they were expected to follow. If

the radius increases, the pressure sensor indicates a lower altitude. However, during

the test scenario, they were frequently violated because the pressure sensor operating

indoors returned bursts of inconsistent data, altering the relationship inferred during

training between radius and thrust.

4.3.1.5 Noticeable False Positives

One property caused 67% of the false positives in the Garcia Robot system. This

property, which captures the correlation between motor speed and sum, is specified

in the second line of Listing 4.1. The sum variable, probably created for debugging

purposes by the system developer, is defined as P + D. We inspected the traces of

these executions and the reason was that a few range messages were lost, causing the

message that adjusts the wheel to not be sent as usual. When range messages were

delivered at the usual rate, a bigger correction was applied with the consequences

explained in 4.3.1.4.
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During the training scenario of the Ranger Height Controller, a relationship be-

tween the commands pitch and roll was inferred when a training size of 5 was use.

This is a property inferred by chance, which led to many false positives. The reason

why it was inferred was the drift of the used Hummingbird. This drone, if no com-

mands are sent, moves on it own backwards and to the left. This forced the pilot to

apply a pitch and roll in the opposite directions in order to make the drone hover,

originating the property. However, this was not the behavior of the pilot during the

entire training sessions and the property was discarded with a training size of 10,

reducing the number of false positives.

In the case of the Vision Height Controller, an example was the casual correlation

relationship between pressure/radius and the commanded pitch. This property exists

because during one of the training sessions the weather was windy, forcing the pilot to

apply some pitch to keep the quad-rotor on top of the ball. Forcing small variations

on pitch and radius in the same direction originated this casual property that caused

a number of false positives when the smallest training set was used. We note that in

both of the last two scenarios, larger training sets mitigated the false positives.

4.3.2 Cost of Training

We have defined the cost of training as the time required to create the 7 models

specified in Table 4.3. The impact of each independent variable is analyzed separately.

The results reported in this section were collected using the Unix command time.
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Figure 4.8: Effect of Alpha on Cost of Training

4.3.2.1 Effect of Alpha

Figure 4.8 depicts that the value of alpha has an insignificant effect on the time

required to create the artifact’s models. Three seconds is the improvement of the

Ranger Height Controller artifact from the biggest to the smalles significance level.
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The figure suggests that the cost for the Garcia robot artifact is lower because it

has less variables, the executions traces have less events, and the number of properties

in each model is lower than the other two artifacts.

Figure 4.8 also shows a considerable difference between the cost of training the

Ranger and Vision Height Controller, even when these artifacts share a number of

software components. One reason is that the models of the Ranger Height Controller

have an average of 34 properties while the Vision Height Controller have an average

of 25 properties per model.

It also appears that the number of iterations required to find the optimal windows

size for each property is related to that cost given that the number of properties

remains somewhat stable across the different alpha values. This means that the cost

of the training phase can be adjusted by altering the maximum and/or minimum

windows size or by changing the convergence condition.

4.3.2.2 Effect of the Training Set Size

Figure 4.9 shows the effect of the training set size. On the one hand, the artifact that

incurs in the biggest cost is the Ranger Height Controller. This artifact generated

larger traces and is the artifact with the larger number of properties. On the other

hand, the Garcia robot generates the smallest traces and fewer properties. This

indicates that the effect of the training set on the cost of training is proportional

to the length of the execution traces and the number of properties. More data is

need data to determine the specific impact of each variable. But overall we note that

increases in processing time are proportionally smaller than increases in the training

set size. Furthermore, we have several ideas on how to improve the performance of the

approach by more closely connecting the inference and refinement cycle. We discuss

those further in Chapter 5.
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Figure 4.9: Effect of the Training Set Size on Cost of Training

4.3.2.3 Effect of the Statistical Functions

Figure 4.10 denotes that the cost of processing the mean function is less expensive

than processing the correlation function by several orders of magnitude. For example,

in the case of the Ranger Height Controller, the cost of inferring 77 mean properties
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System Garcia Robot Ranger Height Controller Vision Height Controller
Mean(sec) 0.10 0.11 0.13
SD(sec) 0.08 0.08 0.16

Table 4.5: Overhead

remains below 10 seconds while the cost of inferring 35 correlation properties is 81

seconds.

The figure also depict the cost of training properties with larger window sizes. The

average window size of the correlation properties of the Ranger Height Controller is

17.5 and the average of the window size of the correlation properties of the Vision

Height Controller is 11.6. While the difference is not a considerable, it seems to

contribute significantly in the cost training, in addition to the number of properties.

This can be explained by the fact that the binary-search optimization algorithm tested

larger windows sizes when optimizing the properties of the Ranger Height Controller.

4.3.3 Cost of Monitoring

The cost of monitoring was defined as the total time required to execute the moni-

toring phase of our approach. The monitors were created using the models inferred

in the previous experiment and we measured the time required to process the test

against them. The time required to monitor the conformance of execution traces to

a determined model is considerably lower than the cost of training mainly because

only one iteration is performed during the test phase.

The average overhead of monitoring single traces and the average standard devi-

ation are depicted in table 4.5. We can observe that the overhead does not present

a high variability among artifacts, being higher when monitoring the Vision Height

Controller artifact. An intuition of the reason is given later in this section.
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Figure 4.10: Effect of the Statistical Function on Cost of Training

4.3.3.1 Effect of Alpha

Figure 4.11 shows that alpha has little impact on the time required to monitor a set

of traces. The difference between the Ranger and the Vision Controllers is in average

1.48 seconds. The cost of monitoring the Garcia Robot is only 7.2 seconds lower on

average.
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Figure 4.11: Effect of Alpha on Cost of Monitoring

Considering each system in isolation, it can be observed that the required time

increases a slightly with higher values of alpha as this favors the inference of weak

properties. The difference between the bigger and smaller alpha is 2.1 seconds on

average.
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Figure 4.12: Effect of the Training Set Size on Cost of Monitoring

4.3.3.2 Effect of the Training Set Size

Figure 4.12 shows the effect of the training set size on the cost of monitoring. The

required time barely increases with lower training set sizes because those models con-

tain weaker properties while models generated with large training sets discard some
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of those properties, saving some monitoring time. The average difference between a

training set of 5% and 25% for all systems is 0.89 seconds.

4.3.3.3 Effect of the Statistical Functions

Figure 4.13 denotes that the required time for monitoring correlation and mean prop-

erties is similar. A reason of this result is that the number of mean properties inferred

is more than two times the inferred correlation properties. Another situation that

balanced the costs between correlation and mean is that the mean properties are

never violated, so the are monitored thoughout the entire process.

4.4 Alternative Methods

Using the same artifacts and the collected set of traces, we evaluated the fault de-

tection power of properties generated by Daikon, a state properties inference tool,

and compared it against statistical properties obtained with an alpha of 0.05 and

correlation function. We faced several challenges in order to perform this comparison

because there are not free automatic inferencing tools that can handle the distributed

systems we are working with. As a result, we had to adapt Daikon to work at the

message level as our tool does in order to achieve a fair comparison in terms of fault

detection. Our adaptation required that the invariant inferencing and checking have

to run separately for each component of the system. As Daikon does not have a

parameter equivalent to the significance level of statistical properties, we have per-

formed this comparison using just different training set sizes. Table 4.6 shows the

number of invariants inferred by Daikon for each of the artifacts and training set

sizes. The table shows that more training reduces the number of inferred state prop-
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Figure 4.13: Effect of the Statistical Function on Cost of Monitoring

erties. However, the number of inferred state properties is considerably larger than

the number of inferred statistical properties (Table 4.4).

Figure 4.14 shows the precision and recall of the state properties inferred with

Daikon and the inferred statistical properties for the Wall Following task. In the figure

it can be observed that Daikon was able to detect every faulty trace in the test set as

faulty because the assertion that we used to classify them is an instance of Daikon’s
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Training Set
Size

Wall
Following

Ranger Height
Controller

Vision Height
Controller

5% 33 586 2392
10% 31 574 2040
25% 26 546 1830

Table 4.6: Number of Invariants Inferred by Daikon

templates. The inferred invariant was target − leftRanger ≤ 89 and the assertion

that we used to classify traces was target − leftRanger ≤ 100. The invariant that

caused most of the false positives with a small training set was the casual relationship

rightMotorSpeed ≤ target. We did not find any reason other than chance to explain

why the relationship held for the smaller training set. The small difference in precision

between the smallest and largest training set sizes suggests that statistical properties

need less training data to achieve higher precision while recall remains comparable.

Figure 4.15 shows the results of the state properties inferred with Daikon and

the statistical properties infered by our approach for the Ranger Height Controller

task. The analysis of the violated invariants shows that the stronger state properties

are those that included the speed of the quad-rotor. During training, the speed of

the quad-rotor was maintained low while during test almost maximum speed was

achieved. The lower precision of state properties was caused by those defining a max-

imum or minimum limit for altitude, pitch, roll, yaw, velocity or acceleration. They

were violated easily when the pilot performed slightly different maneuvers during

monitoring. Statistical properties seemed more tolerant to low quality test suites as

they capture more fundamental relationships between variables and not just absolute

values. As before, statistical properties required a smaller training set to achieve

higher precision but their recall never reach 80%. State properties still keep perfect

recall but precision barely passes 70% with the largest training set.
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Figure 4.14: Wall Following - Comparison of inferred statistical properties against
state properties inferred through Daikon using different training set sizes

Figure 4.16 shows similar results than the previous two figures except that the

precision of the Daikon invariants are below 45%. This can be related to the large

number of invariants inferred for this system, most of them uninteresting and highly

dependent of the test suite. Invariants considering pressure sensor readings were the

strong ones that classified the test set traces as faulty. False positives instead were
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Figure 4.15: Ranger Height Controller - Comparison of inferred statistical properties
against state properties inferred through Daikon using different training set sizes

caused by of invariants modeling ranges of navigation data as altitude, pitch, roll,

yaw, velocity or acceleration.

Table 4.7 provides a comparison of the infering and monitoring cost of state and

statistical properties. The cost of state properties should be viewed with caution as

we used a version of Daikon that operates on message data instead of method entry
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Figure 4.16: Visual Height Controller - Comparison of inferred statistical properties
against state properties inferred through Daikon using different training set sizes

and exit data. These changes forced us to run the inference and monitoring process

of state properties on individual nodes. For example, for the Visual Height Controller

and a given training set size, we run the inference process 17 times, 1 per component,

and the monitoring process another 17 times. The values shown in Table 4.7 for state

properties are the sum of those 17 executions. Compared to our approach that only
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Artifact Prop. Type
Cost Training Cost Monitoring

5% 10% 25% 5% 10% 25%

Wall following
Statistical 5.7 8.3 14.7 7.8 7.3 7.2
State 5.3 7.5 13.8 135.5 151.1 152.2

Ranger Height
Controller

Statistical 41.6 80.2 195.9 15.9 15.0 14.6
State 10.1 20.2 50.6 953.0 857.7 810.1

Visual Height
Controller

Statistical 15.1 25.4 57.7 15.0 14.2 13.4
State 27.8 54.2 135.4 1015.2 913.7 862.9

Table 4.7: Cost of Inferring and Monitoring in Seconds

runs once for the entire system, this added a considerable extra overhead caused by

the creation of new OS processes and I/O operations. This extra overhead and the

considerable larger number of state properties made their cost of monitoring higher

than monitoring statistical properties. The window optimization process incurs in a

large overhead when inferring statistical properties making them more costly to infer

than state properties. However, in the case of the Visual Height Controller, as the

number of inferred state properties is so large (an average of 2087 for the three training

set sizes) the inferring cost is indeed larger than inferring statistical properties. In

spite of the relative differences in time, we can observe that in both cases the cost of

inferring increases with the training set and the monitoring cost instead decreases as

a consequence of the lower number of state properties to check.

4.5 Summary

The results of the performed experiments showed a number of interesting character-

istics of our approach. In the first place, the results show that correlation properties

achieved a precision of 91.1% on average across all artifacts with a training set of

10%, and recall levels of over 77.8%. Properties using the mean function, however,

were not as effective. We also understand how weak properties hurt the precision of
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models and how they can be reduced by increasing the significance level and the size

of the training set. Figures 4.5 and 4.6 depicts that these corrective techniques also

caused a decrease of recall, but at a lower rate.

The study of the time incurred in creating models and checking properties sug-

gests that the cost of training is a function of the number of traces in the training

set, the size of those traces, the number of properties inferred, their windows and

the condition that marks the end of the training phase. These are assumptions due

to the lack of comparative data. We assume that the bottleneck of the inferenc-

ing process is the optimization procedure. During the first iteration, training phase

has to deal with a large number of statistical properties. Concretely, n properties per

SingleV ariableStatisticalProperty and n∗(n−1) per CompoundStatisticalPropertey.

As expected, the cost of monitoring is significantly lower than the cost of training.

The fact that the significance level does seem to affect the cost of monitoring is

encouraging because suggest that stronger properties do not incur in more overhead.

Compared to automatically inferred state properties, our experiments showed that

statistical properties require less training data to achieve higher precision than state

properties. Also, state properties are highly sensitive to the test suite quality while

statistical properties seem to better tolerate this type of variation. Like statistical

properties, the cost of infering and monitoring state properties is proportional to the

training set and the number of inferred properties to check.
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Chapter 5

Conclusions and Future Work

In this work, we have introduced a new type of software properties called Statistical

Properties which characterize the behavior of software systems by identifying statis-

tically significant relationships between a window of values of their variables. These

properties can be inferred efficiently using automatic techniques and used to check

deeper aspects of the behavior of the system under analysis. We have also devel-

oped approaches to automatically infer and monitor these statistical properties. The

inference approach discovers instances of statistical properties specified in a set of

pre-defined property templates and optimizes their window size so the incurred over-

head is as low as possible while the required significance is maintained. Mechanisms

to eliminate weaker properties and handle tuples of variables with different updates

rates were developed as well. Our approach considers that the information passed

through messages can represent the system behavior. If the traced variables do not

contain fundamental information about the system operations, statistical properties

inferred from those traces will have little fault detection power.

We have also implemented these approaches and two properties templates: cor-

relation and mean. Third parties can use our implementation simply by formatting
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execution traces as a sequence of JSON objects and augment the set of property

templates by extending an abstract class which takes care of interacting with our

implementation.

We have assessed our approach against three distributed software systems that

control robotic platforms. The approach was able to infer interesting properties for

all the three systems we studied, and the assessment showed what factors contributed

the most to its effectiveness. More specifically, the higher significance levels and larger

training sets lead to the identification of strong correlation properties that characterize

the systems operations with a higher precision with minimal reduction in terms of

recall. The results also show that stronger statistical properties have smaller window

sizes which implies a reduction in the monitoring cost.

In the future, we will expand this work in several directions. First, we need to

conduct more extensive comparison of statistical properties against state properties,

and also start a comparison versus temporal properties to allow us to more precisely

locate statistical properties in the cost-effectiveness spectrum. The major challenge

to accomplish this is to identify inference tools that are robust enough to work on the

systems we are targeting.

Second, we will also define new statistical property templates and evaluate their

efficiency. More specifically, we are considering properties that focus on the distribu-

tion of variables and properties that performs analysis of variances and covariances.

We would also like to study the effect of the minimum and maximum window sizes

defined by property templates since these parameters can affect the cost of inferring

by reducing the number of iterations during the optimization process. Similarly, we

would like to develop and study more complex update policies to accommodate vari-

ables with different frequencies and also occurring in different parts of the system. In

addition, we would like to investigate the performance of our approach on different
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languages and architectures to better understand the generality of our approach. Fur-

thermore, although the approach effectiveness was shown for systems whose behavior

was dominates by controllers, it would be interesting to observe it on a broader kind

of systems.

Third, we plan to adapt our tool to enable on-line verification of statistical proper-

ties. We are considering different options depending on whether the involved variables

resides in the same program or are distributed across programs. Encoding monitors

into the program is a viable option for single programs. A plausible approach for com-

pound properties located across different processes is to create an observer process

that subscribes to the topics containing the variables of interest. When moving the

approach to operate on-line, we would like to explore how to do sampling to control

the technique’s overhead without losing effectiveness. We conjecture that sampling

could be embedded into the policy structure to, for example, reduce the monitoring

frequency of properties that are unlikely to fail.

Fourth, we plan to explore if statistical properties are able to predict faults, instead

of just detecting the occurrence of faults, in order to take corrective actions to prevent

them. Initially, we would like to prevent the last action that causes the fault. In a

more advanced stage, the goal would be to learn a sequence of events or a tendency

that leads to faults and take a corrective action earlier.
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Appendix A

Statistical Tables
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n α = 0.05 α = 0.025 α = 0.01 α = 0.005
5 0.900
6 0.829 0.886 0.943
7 0.714 0.786 0.893
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.745 0.794
11 0.523 0.623 0.736 0.818
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689
16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591
21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526
26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Table A.1: Critical Values for Spearman’s Rank Correlation Coefficients
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Appendix B

Ranger Height Controller System



95

Figure B.1: PID Controller Subsystem
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Figure B.2: Ranger Subsystem
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Figure B.3: User Commands Subsystem
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Figure B.4: Serial Communication Subsystem - Part 1
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Figure B.5: Serial Communication Subsystem - Part 2
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Figure B.6: Serial Communication Subsystem - Part 3
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Appendix C

Vision Height Controller System
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Figure C.1: PID Controller Subsystem
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Figure C.2: Pressure Subsystem
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Figure C.3: Radius Subsystem
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Figure C.4: Serial Communication Subsystem - Part 1
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Figure C.5: Serial Communication Subsystem - Part 2
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Figure C.6: Serial Communication Subsystem - Part 3
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behaviors of Java programs at runtime with Java-MOP. Electron. Notes Theor.

Comput. Sci., 144(4):3–20, May 2006.



110
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